| 1 | /* | 
|---|
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation. | 
|---|
| 8 | * | 
|---|
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 11 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 12 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 13 | * accompanied this code). | 
|---|
| 14 | * | 
|---|
| 15 | * You should have received a copy of the GNU General Public License version | 
|---|
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 18 | * | 
|---|
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 20 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 21 | * questions. | 
|---|
| 22 | * | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #ifndef SHARE_UTILITIES_BITMAP_INLINE_HPP | 
|---|
| 26 | #define SHARE_UTILITIES_BITMAP_INLINE_HPP | 
|---|
| 27 |  | 
|---|
| 28 | #include "runtime/atomic.hpp" | 
|---|
| 29 | #include "utilities/bitMap.hpp" | 
|---|
| 30 | #include "utilities/count_trailing_zeros.hpp" | 
|---|
| 31 |  | 
|---|
| 32 | inline void BitMap::set_bit(idx_t bit) { | 
|---|
| 33 | verify_index(bit); | 
|---|
| 34 | *word_addr(bit) |= bit_mask(bit); | 
|---|
| 35 | } | 
|---|
| 36 |  | 
|---|
| 37 | inline void BitMap::clear_bit(idx_t bit) { | 
|---|
| 38 | verify_index(bit); | 
|---|
| 39 | *word_addr(bit) &= ~bit_mask(bit); | 
|---|
| 40 | } | 
|---|
| 41 |  | 
|---|
| 42 | inline bool BitMap::par_set_bit(idx_t bit) { | 
|---|
| 43 | verify_index(bit); | 
|---|
| 44 | volatile bm_word_t* const addr = word_addr(bit); | 
|---|
| 45 | const bm_word_t mask = bit_mask(bit); | 
|---|
| 46 | bm_word_t old_val = *addr; | 
|---|
| 47 |  | 
|---|
| 48 | do { | 
|---|
| 49 | const bm_word_t new_val = old_val | mask; | 
|---|
| 50 | if (new_val == old_val) { | 
|---|
| 51 | return false;     // Someone else beat us to it. | 
|---|
| 52 | } | 
|---|
| 53 | const bm_word_t cur_val = Atomic::cmpxchg(new_val, addr, old_val); | 
|---|
| 54 | if (cur_val == old_val) { | 
|---|
| 55 | return true;      // Success. | 
|---|
| 56 | } | 
|---|
| 57 | old_val = cur_val;  // The value changed, try again. | 
|---|
| 58 | } while (true); | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | inline bool BitMap::par_clear_bit(idx_t bit) { | 
|---|
| 62 | verify_index(bit); | 
|---|
| 63 | volatile bm_word_t* const addr = word_addr(bit); | 
|---|
| 64 | const bm_word_t mask = ~bit_mask(bit); | 
|---|
| 65 | bm_word_t old_val = *addr; | 
|---|
| 66 |  | 
|---|
| 67 | do { | 
|---|
| 68 | const bm_word_t new_val = old_val & mask; | 
|---|
| 69 | if (new_val == old_val) { | 
|---|
| 70 | return false;     // Someone else beat us to it. | 
|---|
| 71 | } | 
|---|
| 72 | const bm_word_t cur_val = Atomic::cmpxchg(new_val, addr, old_val); | 
|---|
| 73 | if (cur_val == old_val) { | 
|---|
| 74 | return true;      // Success. | 
|---|
| 75 | } | 
|---|
| 76 | old_val = cur_val;  // The value changed, try again. | 
|---|
| 77 | } while (true); | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) { | 
|---|
| 81 | if (hint == small_range && end - beg == 1) { | 
|---|
| 82 | set_bit(beg); | 
|---|
| 83 | } else { | 
|---|
| 84 | if (hint == large_range) { | 
|---|
| 85 | set_large_range(beg, end); | 
|---|
| 86 | } else { | 
|---|
| 87 | set_range(beg, end); | 
|---|
| 88 | } | 
|---|
| 89 | } | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { | 
|---|
| 93 | if (end - beg == 1) { | 
|---|
| 94 | clear_bit(beg); | 
|---|
| 95 | } else { | 
|---|
| 96 | if (hint == large_range) { | 
|---|
| 97 | clear_large_range(beg, end); | 
|---|
| 98 | } else { | 
|---|
| 99 | clear_range(beg, end); | 
|---|
| 100 | } | 
|---|
| 101 | } | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | inline void BitMap::par_set_range(idx_t beg, idx_t end, RangeSizeHint hint) { | 
|---|
| 105 | if (hint == small_range && end - beg == 1) { | 
|---|
| 106 | par_at_put(beg, true); | 
|---|
| 107 | } else { | 
|---|
| 108 | if (hint == large_range) { | 
|---|
| 109 | par_at_put_large_range(beg, end, true); | 
|---|
| 110 | } else { | 
|---|
| 111 | par_at_put_range(beg, end, true); | 
|---|
| 112 | } | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | inline void BitMap::set_range_of_words(idx_t beg, idx_t end) { | 
|---|
| 117 | bm_word_t* map = _map; | 
|---|
| 118 | for (idx_t i = beg; i < end; ++i) map[i] = ~(bm_word_t)0; | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | inline void BitMap::clear_range_of_words(bm_word_t* map, idx_t beg, idx_t end) { | 
|---|
| 122 | for (idx_t i = beg; i < end; ++i) map[i] = 0; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | inline void BitMap::clear_range_of_words(idx_t beg, idx_t end) { | 
|---|
| 126 | clear_range_of_words(_map, beg, end); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | inline void BitMap::clear() { | 
|---|
| 130 | clear_range_of_words(0, size_in_words()); | 
|---|
| 131 | } | 
|---|
| 132 |  | 
|---|
| 133 | inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) { | 
|---|
| 134 | if (hint == small_range && end - beg == 1) { | 
|---|
| 135 | par_at_put(beg, false); | 
|---|
| 136 | } else { | 
|---|
| 137 | if (hint == large_range) { | 
|---|
| 138 | par_at_put_large_range(beg, end, false); | 
|---|
| 139 | } else { | 
|---|
| 140 | par_at_put_range(beg, end, false); | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | template<BitMap::bm_word_t flip, bool aligned_right> | 
|---|
| 146 | inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const { | 
|---|
| 147 | STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip); | 
|---|
| 148 | verify_range(l_index, r_index); | 
|---|
| 149 | assert(!aligned_right || is_word_aligned(r_index), "r_index not aligned"); | 
|---|
| 150 |  | 
|---|
| 151 | // The first word often contains an interesting bit, either due to | 
|---|
| 152 | // density or because of features of the calling algorithm.  So it's | 
|---|
| 153 | // important to examine that first word with a minimum of fuss, | 
|---|
| 154 | // minimizing setup time for later words that will be wasted if the | 
|---|
| 155 | // first word is indeed interesting. | 
|---|
| 156 |  | 
|---|
| 157 | // The benefit from aligned_right being true is relatively small. | 
|---|
| 158 | // It saves a couple instructions in the setup for the word search | 
|---|
| 159 | // loop.  It also eliminates the range check on the final result. | 
|---|
| 160 | // However, callers often have a comparison with r_index, and | 
|---|
| 161 | // inlining often allows the two comparisons to be combined; it is | 
|---|
| 162 | // important when !aligned_right that return paths either return | 
|---|
| 163 | // r_index or a value dominated by a comparison with r_index. | 
|---|
| 164 | // aligned_right is still helpful when the caller doesn't have a | 
|---|
| 165 | // range check because features of the calling algorithm guarantee | 
|---|
| 166 | // an interesting bit will be present. | 
|---|
| 167 |  | 
|---|
| 168 | if (l_index < r_index) { | 
|---|
| 169 | // Get the word containing l_index, and shift out low bits. | 
|---|
| 170 | idx_t index = word_index(l_index); | 
|---|
| 171 | bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index); | 
|---|
| 172 | if ((cword & 1) != 0) { | 
|---|
| 173 | // The first bit is similarly often interesting. When it matters | 
|---|
| 174 | // (density or features of the calling algorithm make it likely | 
|---|
| 175 | // the first bit is set), going straight to the next clause compares | 
|---|
| 176 | // poorly with doing this check first; count_trailing_zeros can be | 
|---|
| 177 | // relatively expensive, plus there is the additional range check. | 
|---|
| 178 | // But when the first bit isn't set, the cost of having tested for | 
|---|
| 179 | // it is relatively small compared to the rest of the search. | 
|---|
| 180 | return l_index; | 
|---|
| 181 | } else if (cword != 0) { | 
|---|
| 182 | // Flipped and shifted first word is non-zero. | 
|---|
| 183 | idx_t result = l_index + count_trailing_zeros(cword); | 
|---|
| 184 | if (aligned_right || (result < r_index)) return result; | 
|---|
| 185 | // Result is beyond range bound; return r_index. | 
|---|
| 186 | } else { | 
|---|
| 187 | // Flipped and shifted first word is zero.  Word search through | 
|---|
| 188 | // aligned up r_index for a non-zero flipped word. | 
|---|
| 189 | idx_t limit = aligned_right | 
|---|
| 190 | ? word_index(r_index) | 
|---|
| 191 | : (word_index(r_index - 1) + 1); // Align up, knowing r_index > 0. | 
|---|
| 192 | while (++index < limit) { | 
|---|
| 193 | cword = map(index) ^ flip; | 
|---|
| 194 | if (cword != 0) { | 
|---|
| 195 | idx_t result = bit_index(index) + count_trailing_zeros(cword); | 
|---|
| 196 | if (aligned_right || (result < r_index)) return result; | 
|---|
| 197 | // Result is beyond range bound; return r_index. | 
|---|
| 198 | assert((index + 1) == limit, "invariant"); | 
|---|
| 199 | break; | 
|---|
| 200 | } | 
|---|
| 201 | } | 
|---|
| 202 | // No bits in range; return r_index. | 
|---|
| 203 | } | 
|---|
| 204 | } | 
|---|
| 205 | return r_index; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | inline BitMap::idx_t | 
|---|
| 209 | BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const { | 
|---|
| 210 | return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset); | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | inline BitMap::idx_t | 
|---|
| 214 | BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const { | 
|---|
| 215 | return get_next_bit_impl<find_zeros_flip, false>(l_offset, r_offset); | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | inline BitMap::idx_t | 
|---|
| 219 | BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const { | 
|---|
| 220 | return get_next_bit_impl<find_ones_flip, true>(l_offset, r_offset); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | // Returns a bit mask for a range of bits [beg, end) within a single word.  Each | 
|---|
| 224 | // bit in the mask is 0 if the bit is in the range, 1 if not in the range.  The | 
|---|
| 225 | // returned mask can be used directly to clear the range, or inverted to set the | 
|---|
| 226 | // range.  Note:  end must not be 0. | 
|---|
| 227 | inline BitMap::bm_word_t | 
|---|
| 228 | BitMap::inverted_bit_mask_for_range(idx_t beg, idx_t end) const { | 
|---|
| 229 | assert(end != 0, "does not work when end == 0"); | 
|---|
| 230 | assert(beg == end || word_index(beg) == word_index(end - 1), | 
|---|
| 231 | "must be a single-word range"); | 
|---|
| 232 | bm_word_t mask = bit_mask(beg) - 1;   // low (right) bits | 
|---|
| 233 | if (bit_in_word(end) != 0) { | 
|---|
| 234 | mask |= ~(bit_mask(end) - 1);       // high (left) bits | 
|---|
| 235 | } | 
|---|
| 236 | return mask; | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | inline void BitMap::set_large_range_of_words(idx_t beg, idx_t end) { | 
|---|
| 240 | assert(beg <= end, "underflow"); | 
|---|
| 241 | memset(_map + beg, ~(unsigned char)0, (end - beg) * sizeof(bm_word_t)); | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | inline void BitMap::clear_large_range_of_words(idx_t beg, idx_t end) { | 
|---|
| 245 | assert(beg <= end, "underflow"); | 
|---|
| 246 | memset(_map + beg, 0, (end - beg) * sizeof(bm_word_t)); | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | inline BitMap::idx_t BitMap::word_index_round_up(idx_t bit) const { | 
|---|
| 250 | idx_t bit_rounded_up = bit + (BitsPerWord - 1); | 
|---|
| 251 | // Check for integer arithmetic overflow. | 
|---|
| 252 | return bit_rounded_up > bit ? word_index(bit_rounded_up) : size_in_words(); | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | inline bool BitMap2D::is_valid_index(idx_t slot_index, idx_t bit_within_slot_index) { | 
|---|
| 256 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 257 | return (bit_index(slot_index, bit_within_slot_index) < size_in_bits()); | 
|---|
| 258 | } | 
|---|
| 259 |  | 
|---|
| 260 | inline bool BitMap2D::at(idx_t slot_index, idx_t bit_within_slot_index) const { | 
|---|
| 261 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 262 | return _map.at(bit_index(slot_index, bit_within_slot_index)); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | inline void BitMap2D::set_bit(idx_t slot_index, idx_t bit_within_slot_index) { | 
|---|
| 266 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 267 | _map.set_bit(bit_index(slot_index, bit_within_slot_index)); | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | inline void BitMap2D::clear_bit(idx_t slot_index, idx_t bit_within_slot_index) { | 
|---|
| 271 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 272 | _map.clear_bit(bit_index(slot_index, bit_within_slot_index)); | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | inline void BitMap2D::at_put(idx_t slot_index, idx_t bit_within_slot_index, bool value) { | 
|---|
| 276 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 277 | _map.at_put(bit_index(slot_index, bit_within_slot_index), value); | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | inline void BitMap2D::at_put_grow(idx_t slot_index, idx_t bit_within_slot_index, bool value) { | 
|---|
| 281 | verify_bit_within_slot_index(bit_within_slot_index); | 
|---|
| 282 |  | 
|---|
| 283 | idx_t bit = bit_index(slot_index, bit_within_slot_index); | 
|---|
| 284 | if (bit >= _map.size()) { | 
|---|
| 285 | _map.resize(2 * MAX2(_map.size(), bit)); | 
|---|
| 286 | } | 
|---|
| 287 | _map.at_put(bit, value); | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | #endif // SHARE_UTILITIES_BITMAP_INLINE_HPP | 
|---|
| 291 |  | 
|---|