| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * heapam_handler.c |
| 4 | * heap table access method code |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/heap/heapam_handler.c |
| 12 | * |
| 13 | * |
| 14 | * NOTES |
| 15 | * This files wires up the lower level heapam.c et al routines with the |
| 16 | * tableam abstraction. |
| 17 | * |
| 18 | *------------------------------------------------------------------------- |
| 19 | */ |
| 20 | #include "postgres.h" |
| 21 | |
| 22 | #include <math.h> |
| 23 | |
| 24 | #include "miscadmin.h" |
| 25 | |
| 26 | #include "access/genam.h" |
| 27 | #include "access/heapam.h" |
| 28 | #include "access/multixact.h" |
| 29 | #include "access/rewriteheap.h" |
| 30 | #include "access/tableam.h" |
| 31 | #include "access/tsmapi.h" |
| 32 | #include "access/tuptoaster.h" |
| 33 | #include "access/xact.h" |
| 34 | #include "catalog/catalog.h" |
| 35 | #include "catalog/index.h" |
| 36 | #include "catalog/storage.h" |
| 37 | #include "catalog/storage_xlog.h" |
| 38 | #include "commands/progress.h" |
| 39 | #include "executor/executor.h" |
| 40 | #include "optimizer/plancat.h" |
| 41 | #include "pgstat.h" |
| 42 | #include "storage/bufmgr.h" |
| 43 | #include "storage/bufpage.h" |
| 44 | #include "storage/bufmgr.h" |
| 45 | #include "storage/lmgr.h" |
| 46 | #include "storage/predicate.h" |
| 47 | #include "storage/procarray.h" |
| 48 | #include "storage/smgr.h" |
| 49 | #include "utils/builtins.h" |
| 50 | #include "utils/rel.h" |
| 51 | |
| 52 | |
| 53 | static void reform_and_rewrite_tuple(HeapTuple tuple, |
| 54 | Relation OldHeap, Relation NewHeap, |
| 55 | Datum *values, bool *isnull, RewriteState rwstate); |
| 56 | |
| 57 | static bool SampleHeapTupleVisible(TableScanDesc scan, Buffer buffer, |
| 58 | HeapTuple tuple, |
| 59 | OffsetNumber tupoffset); |
| 60 | |
| 61 | static BlockNumber heapam_scan_get_blocks_done(HeapScanDesc hscan); |
| 62 | |
| 63 | static const TableAmRoutine heapam_methods; |
| 64 | |
| 65 | |
| 66 | /* ------------------------------------------------------------------------ |
| 67 | * Slot related callbacks for heap AM |
| 68 | * ------------------------------------------------------------------------ |
| 69 | */ |
| 70 | |
| 71 | static const TupleTableSlotOps * |
| 72 | heapam_slot_callbacks(Relation relation) |
| 73 | { |
| 74 | return &TTSOpsBufferHeapTuple; |
| 75 | } |
| 76 | |
| 77 | |
| 78 | /* ------------------------------------------------------------------------ |
| 79 | * Index Scan Callbacks for heap AM |
| 80 | * ------------------------------------------------------------------------ |
| 81 | */ |
| 82 | |
| 83 | static IndexFetchTableData * |
| 84 | heapam_index_fetch_begin(Relation rel) |
| 85 | { |
| 86 | IndexFetchHeapData *hscan = palloc0(sizeof(IndexFetchHeapData)); |
| 87 | |
| 88 | hscan->xs_base.rel = rel; |
| 89 | hscan->xs_cbuf = InvalidBuffer; |
| 90 | |
| 91 | return &hscan->xs_base; |
| 92 | } |
| 93 | |
| 94 | static void |
| 95 | heapam_index_fetch_reset(IndexFetchTableData *scan) |
| 96 | { |
| 97 | IndexFetchHeapData *hscan = (IndexFetchHeapData *) scan; |
| 98 | |
| 99 | if (BufferIsValid(hscan->xs_cbuf)) |
| 100 | { |
| 101 | ReleaseBuffer(hscan->xs_cbuf); |
| 102 | hscan->xs_cbuf = InvalidBuffer; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | static void |
| 107 | heapam_index_fetch_end(IndexFetchTableData *scan) |
| 108 | { |
| 109 | IndexFetchHeapData *hscan = (IndexFetchHeapData *) scan; |
| 110 | |
| 111 | heapam_index_fetch_reset(scan); |
| 112 | |
| 113 | pfree(hscan); |
| 114 | } |
| 115 | |
| 116 | static bool |
| 117 | heapam_index_fetch_tuple(struct IndexFetchTableData *scan, |
| 118 | ItemPointer tid, |
| 119 | Snapshot snapshot, |
| 120 | TupleTableSlot *slot, |
| 121 | bool *call_again, bool *all_dead) |
| 122 | { |
| 123 | IndexFetchHeapData *hscan = (IndexFetchHeapData *) scan; |
| 124 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 125 | bool got_heap_tuple; |
| 126 | |
| 127 | Assert(TTS_IS_BUFFERTUPLE(slot)); |
| 128 | |
| 129 | /* We can skip the buffer-switching logic if we're in mid-HOT chain. */ |
| 130 | if (!*call_again) |
| 131 | { |
| 132 | /* Switch to correct buffer if we don't have it already */ |
| 133 | Buffer prev_buf = hscan->xs_cbuf; |
| 134 | |
| 135 | hscan->xs_cbuf = ReleaseAndReadBuffer(hscan->xs_cbuf, |
| 136 | hscan->xs_base.rel, |
| 137 | ItemPointerGetBlockNumber(tid)); |
| 138 | |
| 139 | /* |
| 140 | * Prune page, but only if we weren't already on this page |
| 141 | */ |
| 142 | if (prev_buf != hscan->xs_cbuf) |
| 143 | heap_page_prune_opt(hscan->xs_base.rel, hscan->xs_cbuf); |
| 144 | } |
| 145 | |
| 146 | /* Obtain share-lock on the buffer so we can examine visibility */ |
| 147 | LockBuffer(hscan->xs_cbuf, BUFFER_LOCK_SHARE); |
| 148 | got_heap_tuple = heap_hot_search_buffer(tid, |
| 149 | hscan->xs_base.rel, |
| 150 | hscan->xs_cbuf, |
| 151 | snapshot, |
| 152 | &bslot->base.tupdata, |
| 153 | all_dead, |
| 154 | !*call_again); |
| 155 | bslot->base.tupdata.t_self = *tid; |
| 156 | LockBuffer(hscan->xs_cbuf, BUFFER_LOCK_UNLOCK); |
| 157 | |
| 158 | if (got_heap_tuple) |
| 159 | { |
| 160 | /* |
| 161 | * Only in a non-MVCC snapshot can more than one member of the HOT |
| 162 | * chain be visible. |
| 163 | */ |
| 164 | *call_again = !IsMVCCSnapshot(snapshot); |
| 165 | |
| 166 | slot->tts_tableOid = RelationGetRelid(scan->rel); |
| 167 | ExecStoreBufferHeapTuple(&bslot->base.tupdata, slot, hscan->xs_cbuf); |
| 168 | } |
| 169 | else |
| 170 | { |
| 171 | /* We've reached the end of the HOT chain. */ |
| 172 | *call_again = false; |
| 173 | } |
| 174 | |
| 175 | return got_heap_tuple; |
| 176 | } |
| 177 | |
| 178 | |
| 179 | /* ------------------------------------------------------------------------ |
| 180 | * Callbacks for non-modifying operations on individual tuples for heap AM |
| 181 | * ------------------------------------------------------------------------ |
| 182 | */ |
| 183 | |
| 184 | static bool |
| 185 | heapam_fetch_row_version(Relation relation, |
| 186 | ItemPointer tid, |
| 187 | Snapshot snapshot, |
| 188 | TupleTableSlot *slot) |
| 189 | { |
| 190 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 191 | Buffer buffer; |
| 192 | |
| 193 | Assert(TTS_IS_BUFFERTUPLE(slot)); |
| 194 | |
| 195 | bslot->base.tupdata.t_self = *tid; |
| 196 | if (heap_fetch(relation, snapshot, &bslot->base.tupdata, &buffer)) |
| 197 | { |
| 198 | /* store in slot, transferring existing pin */ |
| 199 | ExecStorePinnedBufferHeapTuple(&bslot->base.tupdata, slot, buffer); |
| 200 | slot->tts_tableOid = RelationGetRelid(relation); |
| 201 | |
| 202 | return true; |
| 203 | } |
| 204 | |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | static bool |
| 209 | heapam_tuple_tid_valid(TableScanDesc scan, ItemPointer tid) |
| 210 | { |
| 211 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 212 | |
| 213 | return ItemPointerIsValid(tid) && |
| 214 | ItemPointerGetBlockNumber(tid) < hscan->rs_nblocks; |
| 215 | } |
| 216 | |
| 217 | static bool |
| 218 | heapam_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot, |
| 219 | Snapshot snapshot) |
| 220 | { |
| 221 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 222 | bool res; |
| 223 | |
| 224 | Assert(TTS_IS_BUFFERTUPLE(slot)); |
| 225 | Assert(BufferIsValid(bslot->buffer)); |
| 226 | |
| 227 | /* |
| 228 | * We need buffer pin and lock to call HeapTupleSatisfiesVisibility. |
| 229 | * Caller should be holding pin, but not lock. |
| 230 | */ |
| 231 | LockBuffer(bslot->buffer, BUFFER_LOCK_SHARE); |
| 232 | res = HeapTupleSatisfiesVisibility(bslot->base.tuple, snapshot, |
| 233 | bslot->buffer); |
| 234 | LockBuffer(bslot->buffer, BUFFER_LOCK_UNLOCK); |
| 235 | |
| 236 | return res; |
| 237 | } |
| 238 | |
| 239 | |
| 240 | /* ---------------------------------------------------------------------------- |
| 241 | * Functions for manipulations of physical tuples for heap AM. |
| 242 | * ---------------------------------------------------------------------------- |
| 243 | */ |
| 244 | |
| 245 | static void |
| 246 | heapam_tuple_insert(Relation relation, TupleTableSlot *slot, CommandId cid, |
| 247 | int options, BulkInsertState bistate) |
| 248 | { |
| 249 | bool shouldFree = true; |
| 250 | HeapTuple tuple = ExecFetchSlotHeapTuple(slot, true, &shouldFree); |
| 251 | |
| 252 | /* Update the tuple with table oid */ |
| 253 | slot->tts_tableOid = RelationGetRelid(relation); |
| 254 | tuple->t_tableOid = slot->tts_tableOid; |
| 255 | |
| 256 | /* Perform the insertion, and copy the resulting ItemPointer */ |
| 257 | heap_insert(relation, tuple, cid, options, bistate); |
| 258 | ItemPointerCopy(&tuple->t_self, &slot->tts_tid); |
| 259 | |
| 260 | if (shouldFree) |
| 261 | pfree(tuple); |
| 262 | } |
| 263 | |
| 264 | static void |
| 265 | heapam_tuple_insert_speculative(Relation relation, TupleTableSlot *slot, |
| 266 | CommandId cid, int options, |
| 267 | BulkInsertState bistate, uint32 specToken) |
| 268 | { |
| 269 | bool shouldFree = true; |
| 270 | HeapTuple tuple = ExecFetchSlotHeapTuple(slot, true, &shouldFree); |
| 271 | |
| 272 | /* Update the tuple with table oid */ |
| 273 | slot->tts_tableOid = RelationGetRelid(relation); |
| 274 | tuple->t_tableOid = slot->tts_tableOid; |
| 275 | |
| 276 | HeapTupleHeaderSetSpeculativeToken(tuple->t_data, specToken); |
| 277 | options |= HEAP_INSERT_SPECULATIVE; |
| 278 | |
| 279 | /* Perform the insertion, and copy the resulting ItemPointer */ |
| 280 | heap_insert(relation, tuple, cid, options, bistate); |
| 281 | ItemPointerCopy(&tuple->t_self, &slot->tts_tid); |
| 282 | |
| 283 | if (shouldFree) |
| 284 | pfree(tuple); |
| 285 | } |
| 286 | |
| 287 | static void |
| 288 | heapam_tuple_complete_speculative(Relation relation, TupleTableSlot *slot, |
| 289 | uint32 specToken, bool succeeded) |
| 290 | { |
| 291 | bool shouldFree = true; |
| 292 | HeapTuple tuple = ExecFetchSlotHeapTuple(slot, true, &shouldFree); |
| 293 | |
| 294 | /* adjust the tuple's state accordingly */ |
| 295 | if (succeeded) |
| 296 | heap_finish_speculative(relation, &slot->tts_tid); |
| 297 | else |
| 298 | heap_abort_speculative(relation, &slot->tts_tid); |
| 299 | |
| 300 | if (shouldFree) |
| 301 | pfree(tuple); |
| 302 | } |
| 303 | |
| 304 | static TM_Result |
| 305 | heapam_tuple_delete(Relation relation, ItemPointer tid, CommandId cid, |
| 306 | Snapshot snapshot, Snapshot crosscheck, bool wait, |
| 307 | TM_FailureData *tmfd, bool changingPart) |
| 308 | { |
| 309 | /* |
| 310 | * Currently Deleting of index tuples are handled at vacuum, in case if |
| 311 | * the storage itself is cleaning the dead tuples by itself, it is the |
| 312 | * time to call the index tuple deletion also. |
| 313 | */ |
| 314 | return heap_delete(relation, tid, cid, crosscheck, wait, tmfd, changingPart); |
| 315 | } |
| 316 | |
| 317 | |
| 318 | static TM_Result |
| 319 | heapam_tuple_update(Relation relation, ItemPointer otid, TupleTableSlot *slot, |
| 320 | CommandId cid, Snapshot snapshot, Snapshot crosscheck, |
| 321 | bool wait, TM_FailureData *tmfd, |
| 322 | LockTupleMode *lockmode, bool *update_indexes) |
| 323 | { |
| 324 | bool shouldFree = true; |
| 325 | HeapTuple tuple = ExecFetchSlotHeapTuple(slot, true, &shouldFree); |
| 326 | TM_Result result; |
| 327 | |
| 328 | /* Update the tuple with table oid */ |
| 329 | slot->tts_tableOid = RelationGetRelid(relation); |
| 330 | tuple->t_tableOid = slot->tts_tableOid; |
| 331 | |
| 332 | result = heap_update(relation, otid, tuple, cid, crosscheck, wait, |
| 333 | tmfd, lockmode); |
| 334 | ItemPointerCopy(&tuple->t_self, &slot->tts_tid); |
| 335 | |
| 336 | /* |
| 337 | * Decide whether new index entries are needed for the tuple |
| 338 | * |
| 339 | * Note: heap_update returns the tid (location) of the new tuple in the |
| 340 | * t_self field. |
| 341 | * |
| 342 | * If it's a HOT update, we mustn't insert new index entries. |
| 343 | */ |
| 344 | *update_indexes = result == TM_Ok && !HeapTupleIsHeapOnly(tuple); |
| 345 | |
| 346 | if (shouldFree) |
| 347 | pfree(tuple); |
| 348 | |
| 349 | return result; |
| 350 | } |
| 351 | |
| 352 | static TM_Result |
| 353 | heapam_tuple_lock(Relation relation, ItemPointer tid, Snapshot snapshot, |
| 354 | TupleTableSlot *slot, CommandId cid, LockTupleMode mode, |
| 355 | LockWaitPolicy wait_policy, uint8 flags, |
| 356 | TM_FailureData *tmfd) |
| 357 | { |
| 358 | BufferHeapTupleTableSlot *bslot = (BufferHeapTupleTableSlot *) slot; |
| 359 | TM_Result result; |
| 360 | Buffer buffer; |
| 361 | HeapTuple tuple = &bslot->base.tupdata; |
| 362 | bool follow_updates; |
| 363 | |
| 364 | follow_updates = (flags & TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS) != 0; |
| 365 | tmfd->traversed = false; |
| 366 | |
| 367 | Assert(TTS_IS_BUFFERTUPLE(slot)); |
| 368 | |
| 369 | tuple_lock_retry: |
| 370 | tuple->t_self = *tid; |
| 371 | result = heap_lock_tuple(relation, tuple, cid, mode, wait_policy, |
| 372 | follow_updates, &buffer, tmfd); |
| 373 | |
| 374 | if (result == TM_Updated && |
| 375 | (flags & TUPLE_LOCK_FLAG_FIND_LAST_VERSION)) |
| 376 | { |
| 377 | ReleaseBuffer(buffer); |
| 378 | /* Should not encounter speculative tuple on recheck */ |
| 379 | Assert(!HeapTupleHeaderIsSpeculative(tuple->t_data)); |
| 380 | |
| 381 | if (!ItemPointerEquals(&tmfd->ctid, &tuple->t_self)) |
| 382 | { |
| 383 | SnapshotData SnapshotDirty; |
| 384 | TransactionId priorXmax; |
| 385 | |
| 386 | /* it was updated, so look at the updated version */ |
| 387 | *tid = tmfd->ctid; |
| 388 | /* updated row should have xmin matching this xmax */ |
| 389 | priorXmax = tmfd->xmax; |
| 390 | |
| 391 | /* signal that a tuple later in the chain is getting locked */ |
| 392 | tmfd->traversed = true; |
| 393 | |
| 394 | /* |
| 395 | * fetch target tuple |
| 396 | * |
| 397 | * Loop here to deal with updated or busy tuples |
| 398 | */ |
| 399 | InitDirtySnapshot(SnapshotDirty); |
| 400 | for (;;) |
| 401 | { |
| 402 | if (ItemPointerIndicatesMovedPartitions(tid)) |
| 403 | ereport(ERROR, |
| 404 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
| 405 | errmsg("tuple to be locked was already moved to another partition due to concurrent update" ))); |
| 406 | |
| 407 | tuple->t_self = *tid; |
| 408 | if (heap_fetch(relation, &SnapshotDirty, tuple, &buffer)) |
| 409 | { |
| 410 | /* |
| 411 | * If xmin isn't what we're expecting, the slot must have |
| 412 | * been recycled and reused for an unrelated tuple. This |
| 413 | * implies that the latest version of the row was deleted, |
| 414 | * so we need do nothing. (Should be safe to examine xmin |
| 415 | * without getting buffer's content lock. We assume |
| 416 | * reading a TransactionId to be atomic, and Xmin never |
| 417 | * changes in an existing tuple, except to invalid or |
| 418 | * frozen, and neither of those can match priorXmax.) |
| 419 | */ |
| 420 | if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple->t_data), |
| 421 | priorXmax)) |
| 422 | { |
| 423 | ReleaseBuffer(buffer); |
| 424 | return TM_Deleted; |
| 425 | } |
| 426 | |
| 427 | /* otherwise xmin should not be dirty... */ |
| 428 | if (TransactionIdIsValid(SnapshotDirty.xmin)) |
| 429 | elog(ERROR, "t_xmin is uncommitted in tuple to be updated" ); |
| 430 | |
| 431 | /* |
| 432 | * If tuple is being updated by other transaction then we |
| 433 | * have to wait for its commit/abort, or die trying. |
| 434 | */ |
| 435 | if (TransactionIdIsValid(SnapshotDirty.xmax)) |
| 436 | { |
| 437 | ReleaseBuffer(buffer); |
| 438 | switch (wait_policy) |
| 439 | { |
| 440 | case LockWaitBlock: |
| 441 | XactLockTableWait(SnapshotDirty.xmax, |
| 442 | relation, &tuple->t_self, |
| 443 | XLTW_FetchUpdated); |
| 444 | break; |
| 445 | case LockWaitSkip: |
| 446 | if (!ConditionalXactLockTableWait(SnapshotDirty.xmax)) |
| 447 | /* skip instead of waiting */ |
| 448 | return TM_WouldBlock; |
| 449 | break; |
| 450 | case LockWaitError: |
| 451 | if (!ConditionalXactLockTableWait(SnapshotDirty.xmax)) |
| 452 | ereport(ERROR, |
| 453 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 454 | errmsg("could not obtain lock on row in relation \"%s\"" , |
| 455 | RelationGetRelationName(relation)))); |
| 456 | break; |
| 457 | } |
| 458 | continue; /* loop back to repeat heap_fetch */ |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * If tuple was inserted by our own transaction, we have |
| 463 | * to check cmin against cid: cmin >= current CID means |
| 464 | * our command cannot see the tuple, so we should ignore |
| 465 | * it. Otherwise heap_lock_tuple() will throw an error, |
| 466 | * and so would any later attempt to update or delete the |
| 467 | * tuple. (We need not check cmax because |
| 468 | * HeapTupleSatisfiesDirty will consider a tuple deleted |
| 469 | * by our transaction dead, regardless of cmax.) We just |
| 470 | * checked that priorXmax == xmin, so we can test that |
| 471 | * variable instead of doing HeapTupleHeaderGetXmin again. |
| 472 | */ |
| 473 | if (TransactionIdIsCurrentTransactionId(priorXmax) && |
| 474 | HeapTupleHeaderGetCmin(tuple->t_data) >= cid) |
| 475 | { |
| 476 | tmfd->xmax = priorXmax; |
| 477 | |
| 478 | /* |
| 479 | * Cmin is the problematic value, so store that. See |
| 480 | * above. |
| 481 | */ |
| 482 | tmfd->cmax = HeapTupleHeaderGetCmin(tuple->t_data); |
| 483 | ReleaseBuffer(buffer); |
| 484 | return TM_SelfModified; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * This is a live tuple, so try to lock it again. |
| 489 | */ |
| 490 | ReleaseBuffer(buffer); |
| 491 | goto tuple_lock_retry; |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * If the referenced slot was actually empty, the latest |
| 496 | * version of the row must have been deleted, so we need do |
| 497 | * nothing. |
| 498 | */ |
| 499 | if (tuple->t_data == NULL) |
| 500 | { |
| 501 | return TM_Deleted; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * As above, if xmin isn't what we're expecting, do nothing. |
| 506 | */ |
| 507 | if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple->t_data), |
| 508 | priorXmax)) |
| 509 | { |
| 510 | if (BufferIsValid(buffer)) |
| 511 | ReleaseBuffer(buffer); |
| 512 | return TM_Deleted; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * If we get here, the tuple was found but failed |
| 517 | * SnapshotDirty. Assuming the xmin is either a committed xact |
| 518 | * or our own xact (as it certainly should be if we're trying |
| 519 | * to modify the tuple), this must mean that the row was |
| 520 | * updated or deleted by either a committed xact or our own |
| 521 | * xact. If it was deleted, we can ignore it; if it was |
| 522 | * updated then chain up to the next version and repeat the |
| 523 | * whole process. |
| 524 | * |
| 525 | * As above, it should be safe to examine xmax and t_ctid |
| 526 | * without the buffer content lock, because they can't be |
| 527 | * changing. |
| 528 | */ |
| 529 | if (ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid)) |
| 530 | { |
| 531 | /* deleted, so forget about it */ |
| 532 | if (BufferIsValid(buffer)) |
| 533 | ReleaseBuffer(buffer); |
| 534 | return TM_Deleted; |
| 535 | } |
| 536 | |
| 537 | /* updated, so look at the updated row */ |
| 538 | *tid = tuple->t_data->t_ctid; |
| 539 | /* updated row should have xmin matching this xmax */ |
| 540 | priorXmax = HeapTupleHeaderGetUpdateXid(tuple->t_data); |
| 541 | if (BufferIsValid(buffer)) |
| 542 | ReleaseBuffer(buffer); |
| 543 | /* loop back to fetch next in chain */ |
| 544 | } |
| 545 | } |
| 546 | else |
| 547 | { |
| 548 | /* tuple was deleted, so give up */ |
| 549 | return TM_Deleted; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | slot->tts_tableOid = RelationGetRelid(relation); |
| 554 | tuple->t_tableOid = slot->tts_tableOid; |
| 555 | |
| 556 | /* store in slot, transferring existing pin */ |
| 557 | ExecStorePinnedBufferHeapTuple(tuple, slot, buffer); |
| 558 | |
| 559 | return result; |
| 560 | } |
| 561 | |
| 562 | static void |
| 563 | heapam_finish_bulk_insert(Relation relation, int options) |
| 564 | { |
| 565 | /* |
| 566 | * If we skipped writing WAL, then we need to sync the heap (but not |
| 567 | * indexes since those use WAL anyway / don't go through tableam) |
| 568 | */ |
| 569 | if (options & HEAP_INSERT_SKIP_WAL) |
| 570 | heap_sync(relation); |
| 571 | } |
| 572 | |
| 573 | |
| 574 | /* ------------------------------------------------------------------------ |
| 575 | * DDL related callbacks for heap AM. |
| 576 | * ------------------------------------------------------------------------ |
| 577 | */ |
| 578 | |
| 579 | static void |
| 580 | heapam_relation_set_new_filenode(Relation rel, |
| 581 | const RelFileNode *newrnode, |
| 582 | char persistence, |
| 583 | TransactionId *freezeXid, |
| 584 | MultiXactId *minmulti) |
| 585 | { |
| 586 | SMgrRelation srel; |
| 587 | |
| 588 | /* |
| 589 | * Initialize to the minimum XID that could put tuples in the table. We |
| 590 | * know that no xacts older than RecentXmin are still running, so that |
| 591 | * will do. |
| 592 | */ |
| 593 | *freezeXid = RecentXmin; |
| 594 | |
| 595 | /* |
| 596 | * Similarly, initialize the minimum Multixact to the first value that |
| 597 | * could possibly be stored in tuples in the table. Running transactions |
| 598 | * could reuse values from their local cache, so we are careful to |
| 599 | * consider all currently running multis. |
| 600 | * |
| 601 | * XXX this could be refined further, but is it worth the hassle? |
| 602 | */ |
| 603 | *minmulti = GetOldestMultiXactId(); |
| 604 | |
| 605 | srel = RelationCreateStorage(*newrnode, persistence); |
| 606 | |
| 607 | /* |
| 608 | * If required, set up an init fork for an unlogged table so that it can |
| 609 | * be correctly reinitialized on restart. An immediate sync is required |
| 610 | * even if the page has been logged, because the write did not go through |
| 611 | * shared_buffers and therefore a concurrent checkpoint may have moved the |
| 612 | * redo pointer past our xlog record. Recovery may as well remove it |
| 613 | * while replaying, for example, XLOG_DBASE_CREATE or XLOG_TBLSPC_CREATE |
| 614 | * record. Therefore, logging is necessary even if wal_level=minimal. |
| 615 | */ |
| 616 | if (persistence == RELPERSISTENCE_UNLOGGED) |
| 617 | { |
| 618 | Assert(rel->rd_rel->relkind == RELKIND_RELATION || |
| 619 | rel->rd_rel->relkind == RELKIND_MATVIEW || |
| 620 | rel->rd_rel->relkind == RELKIND_TOASTVALUE); |
| 621 | smgrcreate(srel, INIT_FORKNUM, false); |
| 622 | log_smgrcreate(newrnode, INIT_FORKNUM); |
| 623 | smgrimmedsync(srel, INIT_FORKNUM); |
| 624 | } |
| 625 | |
| 626 | smgrclose(srel); |
| 627 | } |
| 628 | |
| 629 | static void |
| 630 | heapam_relation_nontransactional_truncate(Relation rel) |
| 631 | { |
| 632 | RelationTruncate(rel, 0); |
| 633 | } |
| 634 | |
| 635 | static void |
| 636 | heapam_relation_copy_data(Relation rel, const RelFileNode *newrnode) |
| 637 | { |
| 638 | SMgrRelation dstrel; |
| 639 | |
| 640 | dstrel = smgropen(*newrnode, rel->rd_backend); |
| 641 | RelationOpenSmgr(rel); |
| 642 | |
| 643 | /* |
| 644 | * Since we copy the file directly without looking at the shared buffers, |
| 645 | * we'd better first flush out any pages of the source relation that are |
| 646 | * in shared buffers. We assume no new changes will be made while we are |
| 647 | * holding exclusive lock on the rel. |
| 648 | */ |
| 649 | FlushRelationBuffers(rel); |
| 650 | |
| 651 | /* |
| 652 | * Create and copy all forks of the relation, and schedule unlinking of |
| 653 | * old physical files. |
| 654 | * |
| 655 | * NOTE: any conflict in relfilenode value will be caught in |
| 656 | * RelationCreateStorage(). |
| 657 | */ |
| 658 | RelationCreateStorage(*newrnode, rel->rd_rel->relpersistence); |
| 659 | |
| 660 | /* copy main fork */ |
| 661 | RelationCopyStorage(rel->rd_smgr, dstrel, MAIN_FORKNUM, |
| 662 | rel->rd_rel->relpersistence); |
| 663 | |
| 664 | /* copy those extra forks that exist */ |
| 665 | for (ForkNumber forkNum = MAIN_FORKNUM + 1; |
| 666 | forkNum <= MAX_FORKNUM; forkNum++) |
| 667 | { |
| 668 | if (smgrexists(rel->rd_smgr, forkNum)) |
| 669 | { |
| 670 | smgrcreate(dstrel, forkNum, false); |
| 671 | |
| 672 | /* |
| 673 | * WAL log creation if the relation is persistent, or this is the |
| 674 | * init fork of an unlogged relation. |
| 675 | */ |
| 676 | if (rel->rd_rel->relpersistence == RELPERSISTENCE_PERMANENT || |
| 677 | (rel->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED && |
| 678 | forkNum == INIT_FORKNUM)) |
| 679 | log_smgrcreate(newrnode, forkNum); |
| 680 | RelationCopyStorage(rel->rd_smgr, dstrel, forkNum, |
| 681 | rel->rd_rel->relpersistence); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | |
| 686 | /* drop old relation, and close new one */ |
| 687 | RelationDropStorage(rel); |
| 688 | smgrclose(dstrel); |
| 689 | } |
| 690 | |
| 691 | static void |
| 692 | heapam_relation_copy_for_cluster(Relation OldHeap, Relation NewHeap, |
| 693 | Relation OldIndex, bool use_sort, |
| 694 | TransactionId OldestXmin, |
| 695 | TransactionId *xid_cutoff, |
| 696 | MultiXactId *multi_cutoff, |
| 697 | double *num_tuples, |
| 698 | double *tups_vacuumed, |
| 699 | double *tups_recently_dead) |
| 700 | { |
| 701 | RewriteState rwstate; |
| 702 | IndexScanDesc indexScan; |
| 703 | TableScanDesc tableScan; |
| 704 | HeapScanDesc heapScan; |
| 705 | bool use_wal; |
| 706 | bool is_system_catalog; |
| 707 | Tuplesortstate *tuplesort; |
| 708 | TupleDesc oldTupDesc = RelationGetDescr(OldHeap); |
| 709 | TupleDesc newTupDesc = RelationGetDescr(NewHeap); |
| 710 | TupleTableSlot *slot; |
| 711 | int natts; |
| 712 | Datum *values; |
| 713 | bool *isnull; |
| 714 | BufferHeapTupleTableSlot *hslot; |
| 715 | |
| 716 | /* Remember if it's a system catalog */ |
| 717 | is_system_catalog = IsSystemRelation(OldHeap); |
| 718 | |
| 719 | /* |
| 720 | * We need to log the copied data in WAL iff WAL archiving/streaming is |
| 721 | * enabled AND it's a WAL-logged rel. |
| 722 | */ |
| 723 | use_wal = XLogIsNeeded() && RelationNeedsWAL(NewHeap); |
| 724 | |
| 725 | /* use_wal off requires smgr_targblock be initially invalid */ |
| 726 | Assert(RelationGetTargetBlock(NewHeap) == InvalidBlockNumber); |
| 727 | |
| 728 | /* Preallocate values/isnull arrays */ |
| 729 | natts = newTupDesc->natts; |
| 730 | values = (Datum *) palloc(natts * sizeof(Datum)); |
| 731 | isnull = (bool *) palloc(natts * sizeof(bool)); |
| 732 | |
| 733 | /* Initialize the rewrite operation */ |
| 734 | rwstate = begin_heap_rewrite(OldHeap, NewHeap, OldestXmin, *xid_cutoff, |
| 735 | *multi_cutoff, use_wal); |
| 736 | |
| 737 | |
| 738 | /* Set up sorting if wanted */ |
| 739 | if (use_sort) |
| 740 | tuplesort = tuplesort_begin_cluster(oldTupDesc, OldIndex, |
| 741 | maintenance_work_mem, |
| 742 | NULL, false); |
| 743 | else |
| 744 | tuplesort = NULL; |
| 745 | |
| 746 | /* |
| 747 | * Prepare to scan the OldHeap. To ensure we see recently-dead tuples |
| 748 | * that still need to be copied, we scan with SnapshotAny and use |
| 749 | * HeapTupleSatisfiesVacuum for the visibility test. |
| 750 | */ |
| 751 | if (OldIndex != NULL && !use_sort) |
| 752 | { |
| 753 | const int ci_index[] = { |
| 754 | PROGRESS_CLUSTER_PHASE, |
| 755 | PROGRESS_CLUSTER_INDEX_RELID |
| 756 | }; |
| 757 | int64 ci_val[2]; |
| 758 | |
| 759 | /* Set phase and OIDOldIndex to columns */ |
| 760 | ci_val[0] = PROGRESS_CLUSTER_PHASE_INDEX_SCAN_HEAP; |
| 761 | ci_val[1] = RelationGetRelid(OldIndex); |
| 762 | pgstat_progress_update_multi_param(2, ci_index, ci_val); |
| 763 | |
| 764 | tableScan = NULL; |
| 765 | heapScan = NULL; |
| 766 | indexScan = index_beginscan(OldHeap, OldIndex, SnapshotAny, 0, 0); |
| 767 | index_rescan(indexScan, NULL, 0, NULL, 0); |
| 768 | } |
| 769 | else |
| 770 | { |
| 771 | /* In scan-and-sort mode and also VACUUM FULL, set phase */ |
| 772 | pgstat_progress_update_param(PROGRESS_CLUSTER_PHASE, |
| 773 | PROGRESS_CLUSTER_PHASE_SEQ_SCAN_HEAP); |
| 774 | |
| 775 | tableScan = table_beginscan(OldHeap, SnapshotAny, 0, (ScanKey) NULL); |
| 776 | heapScan = (HeapScanDesc) tableScan; |
| 777 | indexScan = NULL; |
| 778 | |
| 779 | /* Set total heap blocks */ |
| 780 | pgstat_progress_update_param(PROGRESS_CLUSTER_TOTAL_HEAP_BLKS, |
| 781 | heapScan->rs_nblocks); |
| 782 | } |
| 783 | |
| 784 | slot = table_slot_create(OldHeap, NULL); |
| 785 | hslot = (BufferHeapTupleTableSlot *) slot; |
| 786 | |
| 787 | /* |
| 788 | * Scan through the OldHeap, either in OldIndex order or sequentially; |
| 789 | * copy each tuple into the NewHeap, or transiently to the tuplesort |
| 790 | * module. Note that we don't bother sorting dead tuples (they won't get |
| 791 | * to the new table anyway). |
| 792 | */ |
| 793 | for (;;) |
| 794 | { |
| 795 | HeapTuple tuple; |
| 796 | Buffer buf; |
| 797 | bool isdead; |
| 798 | |
| 799 | CHECK_FOR_INTERRUPTS(); |
| 800 | |
| 801 | if (indexScan != NULL) |
| 802 | { |
| 803 | if (!index_getnext_slot(indexScan, ForwardScanDirection, slot)) |
| 804 | break; |
| 805 | |
| 806 | /* Since we used no scan keys, should never need to recheck */ |
| 807 | if (indexScan->xs_recheck) |
| 808 | elog(ERROR, "CLUSTER does not support lossy index conditions" ); |
| 809 | } |
| 810 | else |
| 811 | { |
| 812 | if (!table_scan_getnextslot(tableScan, ForwardScanDirection, slot)) |
| 813 | break; |
| 814 | |
| 815 | /* |
| 816 | * In scan-and-sort mode and also VACUUM FULL, set heap blocks |
| 817 | * scanned |
| 818 | */ |
| 819 | pgstat_progress_update_param(PROGRESS_CLUSTER_HEAP_BLKS_SCANNED, |
| 820 | heapScan->rs_cblock + 1); |
| 821 | } |
| 822 | |
| 823 | tuple = ExecFetchSlotHeapTuple(slot, false, NULL); |
| 824 | buf = hslot->buffer; |
| 825 | |
| 826 | LockBuffer(buf, BUFFER_LOCK_SHARE); |
| 827 | |
| 828 | switch (HeapTupleSatisfiesVacuum(tuple, OldestXmin, buf)) |
| 829 | { |
| 830 | case HEAPTUPLE_DEAD: |
| 831 | /* Definitely dead */ |
| 832 | isdead = true; |
| 833 | break; |
| 834 | case HEAPTUPLE_RECENTLY_DEAD: |
| 835 | *tups_recently_dead += 1; |
| 836 | /* fall through */ |
| 837 | case HEAPTUPLE_LIVE: |
| 838 | /* Live or recently dead, must copy it */ |
| 839 | isdead = false; |
| 840 | break; |
| 841 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 842 | |
| 843 | /* |
| 844 | * Since we hold exclusive lock on the relation, normally the |
| 845 | * only way to see this is if it was inserted earlier in our |
| 846 | * own transaction. However, it can happen in system |
| 847 | * catalogs, since we tend to release write lock before commit |
| 848 | * there. Give a warning if neither case applies; but in any |
| 849 | * case we had better copy it. |
| 850 | */ |
| 851 | if (!is_system_catalog && |
| 852 | !TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(tuple->t_data))) |
| 853 | elog(WARNING, "concurrent insert in progress within table \"%s\"" , |
| 854 | RelationGetRelationName(OldHeap)); |
| 855 | /* treat as live */ |
| 856 | isdead = false; |
| 857 | break; |
| 858 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 859 | |
| 860 | /* |
| 861 | * Similar situation to INSERT_IN_PROGRESS case. |
| 862 | */ |
| 863 | if (!is_system_catalog && |
| 864 | !TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetUpdateXid(tuple->t_data))) |
| 865 | elog(WARNING, "concurrent delete in progress within table \"%s\"" , |
| 866 | RelationGetRelationName(OldHeap)); |
| 867 | /* treat as recently dead */ |
| 868 | *tups_recently_dead += 1; |
| 869 | isdead = false; |
| 870 | break; |
| 871 | default: |
| 872 | elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result" ); |
| 873 | isdead = false; /* keep compiler quiet */ |
| 874 | break; |
| 875 | } |
| 876 | |
| 877 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 878 | |
| 879 | if (isdead) |
| 880 | { |
| 881 | *tups_vacuumed += 1; |
| 882 | /* heap rewrite module still needs to see it... */ |
| 883 | if (rewrite_heap_dead_tuple(rwstate, tuple)) |
| 884 | { |
| 885 | /* A previous recently-dead tuple is now known dead */ |
| 886 | *tups_vacuumed += 1; |
| 887 | *tups_recently_dead -= 1; |
| 888 | } |
| 889 | continue; |
| 890 | } |
| 891 | |
| 892 | *num_tuples += 1; |
| 893 | if (tuplesort != NULL) |
| 894 | { |
| 895 | tuplesort_putheaptuple(tuplesort, tuple); |
| 896 | |
| 897 | /* |
| 898 | * In scan-and-sort mode, report increase in number of tuples |
| 899 | * scanned |
| 900 | */ |
| 901 | pgstat_progress_update_param(PROGRESS_CLUSTER_HEAP_TUPLES_SCANNED, |
| 902 | *num_tuples); |
| 903 | } |
| 904 | else |
| 905 | { |
| 906 | const int ct_index[] = { |
| 907 | PROGRESS_CLUSTER_HEAP_TUPLES_SCANNED, |
| 908 | PROGRESS_CLUSTER_HEAP_TUPLES_WRITTEN |
| 909 | }; |
| 910 | int64 ct_val[2]; |
| 911 | |
| 912 | reform_and_rewrite_tuple(tuple, OldHeap, NewHeap, |
| 913 | values, isnull, rwstate); |
| 914 | |
| 915 | /* |
| 916 | * In indexscan mode and also VACUUM FULL, report increase in |
| 917 | * number of tuples scanned and written |
| 918 | */ |
| 919 | ct_val[0] = *num_tuples; |
| 920 | ct_val[1] = *num_tuples; |
| 921 | pgstat_progress_update_multi_param(2, ct_index, ct_val); |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | if (indexScan != NULL) |
| 926 | index_endscan(indexScan); |
| 927 | if (tableScan != NULL) |
| 928 | table_endscan(tableScan); |
| 929 | if (slot) |
| 930 | ExecDropSingleTupleTableSlot(slot); |
| 931 | |
| 932 | /* |
| 933 | * In scan-and-sort mode, complete the sort, then read out all live tuples |
| 934 | * from the tuplestore and write them to the new relation. |
| 935 | */ |
| 936 | if (tuplesort != NULL) |
| 937 | { |
| 938 | double n_tuples = 0; |
| 939 | |
| 940 | /* Report that we are now sorting tuples */ |
| 941 | pgstat_progress_update_param(PROGRESS_CLUSTER_PHASE, |
| 942 | PROGRESS_CLUSTER_PHASE_SORT_TUPLES); |
| 943 | |
| 944 | tuplesort_performsort(tuplesort); |
| 945 | |
| 946 | /* Report that we are now writing new heap */ |
| 947 | pgstat_progress_update_param(PROGRESS_CLUSTER_PHASE, |
| 948 | PROGRESS_CLUSTER_PHASE_WRITE_NEW_HEAP); |
| 949 | |
| 950 | for (;;) |
| 951 | { |
| 952 | HeapTuple tuple; |
| 953 | |
| 954 | CHECK_FOR_INTERRUPTS(); |
| 955 | |
| 956 | tuple = tuplesort_getheaptuple(tuplesort, true); |
| 957 | if (tuple == NULL) |
| 958 | break; |
| 959 | |
| 960 | n_tuples += 1; |
| 961 | reform_and_rewrite_tuple(tuple, |
| 962 | OldHeap, NewHeap, |
| 963 | values, isnull, |
| 964 | rwstate); |
| 965 | /* Report n_tuples */ |
| 966 | pgstat_progress_update_param(PROGRESS_CLUSTER_HEAP_TUPLES_WRITTEN, |
| 967 | n_tuples); |
| 968 | } |
| 969 | |
| 970 | tuplesort_end(tuplesort); |
| 971 | } |
| 972 | |
| 973 | /* Write out any remaining tuples, and fsync if needed */ |
| 974 | end_heap_rewrite(rwstate); |
| 975 | |
| 976 | /* Clean up */ |
| 977 | pfree(values); |
| 978 | pfree(isnull); |
| 979 | } |
| 980 | |
| 981 | static bool |
| 982 | heapam_scan_analyze_next_block(TableScanDesc scan, BlockNumber blockno, |
| 983 | BufferAccessStrategy bstrategy) |
| 984 | { |
| 985 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 986 | |
| 987 | /* |
| 988 | * We must maintain a pin on the target page's buffer to ensure that |
| 989 | * concurrent activity - e.g. HOT pruning - doesn't delete tuples out from |
| 990 | * under us. Hence, pin the page until we are done looking at it. We |
| 991 | * also choose to hold sharelock on the buffer throughout --- we could |
| 992 | * release and re-acquire sharelock for each tuple, but since we aren't |
| 993 | * doing much work per tuple, the extra lock traffic is probably better |
| 994 | * avoided. |
| 995 | */ |
| 996 | hscan->rs_cblock = blockno; |
| 997 | hscan->rs_cindex = FirstOffsetNumber; |
| 998 | hscan->rs_cbuf = ReadBufferExtended(scan->rs_rd, MAIN_FORKNUM, |
| 999 | blockno, RBM_NORMAL, bstrategy); |
| 1000 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 1001 | |
| 1002 | /* in heap all blocks can contain tuples, so always return true */ |
| 1003 | return true; |
| 1004 | } |
| 1005 | |
| 1006 | static bool |
| 1007 | heapam_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin, |
| 1008 | double *liverows, double *deadrows, |
| 1009 | TupleTableSlot *slot) |
| 1010 | { |
| 1011 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 1012 | Page targpage; |
| 1013 | OffsetNumber maxoffset; |
| 1014 | BufferHeapTupleTableSlot *hslot; |
| 1015 | |
| 1016 | Assert(TTS_IS_BUFFERTUPLE(slot)); |
| 1017 | |
| 1018 | hslot = (BufferHeapTupleTableSlot *) slot; |
| 1019 | targpage = BufferGetPage(hscan->rs_cbuf); |
| 1020 | maxoffset = PageGetMaxOffsetNumber(targpage); |
| 1021 | |
| 1022 | /* Inner loop over all tuples on the selected page */ |
| 1023 | for (; hscan->rs_cindex <= maxoffset; hscan->rs_cindex++) |
| 1024 | { |
| 1025 | ItemId itemid; |
| 1026 | HeapTuple targtuple = &hslot->base.tupdata; |
| 1027 | bool sample_it = false; |
| 1028 | |
| 1029 | itemid = PageGetItemId(targpage, hscan->rs_cindex); |
| 1030 | |
| 1031 | /* |
| 1032 | * We ignore unused and redirect line pointers. DEAD line pointers |
| 1033 | * should be counted as dead, because we need vacuum to run to get rid |
| 1034 | * of them. Note that this rule agrees with the way that |
| 1035 | * heap_page_prune() counts things. |
| 1036 | */ |
| 1037 | if (!ItemIdIsNormal(itemid)) |
| 1038 | { |
| 1039 | if (ItemIdIsDead(itemid)) |
| 1040 | *deadrows += 1; |
| 1041 | continue; |
| 1042 | } |
| 1043 | |
| 1044 | ItemPointerSet(&targtuple->t_self, hscan->rs_cblock, hscan->rs_cindex); |
| 1045 | |
| 1046 | targtuple->t_tableOid = RelationGetRelid(scan->rs_rd); |
| 1047 | targtuple->t_data = (HeapTupleHeader) PageGetItem(targpage, itemid); |
| 1048 | targtuple->t_len = ItemIdGetLength(itemid); |
| 1049 | |
| 1050 | switch (HeapTupleSatisfiesVacuum(targtuple, OldestXmin, |
| 1051 | hscan->rs_cbuf)) |
| 1052 | { |
| 1053 | case HEAPTUPLE_LIVE: |
| 1054 | sample_it = true; |
| 1055 | *liverows += 1; |
| 1056 | break; |
| 1057 | |
| 1058 | case HEAPTUPLE_DEAD: |
| 1059 | case HEAPTUPLE_RECENTLY_DEAD: |
| 1060 | /* Count dead and recently-dead rows */ |
| 1061 | *deadrows += 1; |
| 1062 | break; |
| 1063 | |
| 1064 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 1065 | |
| 1066 | /* |
| 1067 | * Insert-in-progress rows are not counted. We assume that |
| 1068 | * when the inserting transaction commits or aborts, it will |
| 1069 | * send a stats message to increment the proper count. This |
| 1070 | * works right only if that transaction ends after we finish |
| 1071 | * analyzing the table; if things happen in the other order, |
| 1072 | * its stats update will be overwritten by ours. However, the |
| 1073 | * error will be large only if the other transaction runs long |
| 1074 | * enough to insert many tuples, so assuming it will finish |
| 1075 | * after us is the safer option. |
| 1076 | * |
| 1077 | * A special case is that the inserting transaction might be |
| 1078 | * our own. In this case we should count and sample the row, |
| 1079 | * to accommodate users who load a table and analyze it in one |
| 1080 | * transaction. (pgstat_report_analyze has to adjust the |
| 1081 | * numbers we send to the stats collector to make this come |
| 1082 | * out right.) |
| 1083 | */ |
| 1084 | if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(targtuple->t_data))) |
| 1085 | { |
| 1086 | sample_it = true; |
| 1087 | *liverows += 1; |
| 1088 | } |
| 1089 | break; |
| 1090 | |
| 1091 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 1092 | |
| 1093 | /* |
| 1094 | * We count and sample delete-in-progress rows the same as |
| 1095 | * live ones, so that the stats counters come out right if the |
| 1096 | * deleting transaction commits after us, per the same |
| 1097 | * reasoning given above. |
| 1098 | * |
| 1099 | * If the delete was done by our own transaction, however, we |
| 1100 | * must count the row as dead to make pgstat_report_analyze's |
| 1101 | * stats adjustments come out right. (Note: this works out |
| 1102 | * properly when the row was both inserted and deleted in our |
| 1103 | * xact.) |
| 1104 | * |
| 1105 | * The net effect of these choices is that we act as though an |
| 1106 | * IN_PROGRESS transaction hasn't happened yet, except if it |
| 1107 | * is our own transaction, which we assume has happened. |
| 1108 | * |
| 1109 | * This approach ensures that we behave sanely if we see both |
| 1110 | * the pre-image and post-image rows for a row being updated |
| 1111 | * by a concurrent transaction: we will sample the pre-image |
| 1112 | * but not the post-image. We also get sane results if the |
| 1113 | * concurrent transaction never commits. |
| 1114 | */ |
| 1115 | if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetUpdateXid(targtuple->t_data))) |
| 1116 | *deadrows += 1; |
| 1117 | else |
| 1118 | { |
| 1119 | sample_it = true; |
| 1120 | *liverows += 1; |
| 1121 | } |
| 1122 | break; |
| 1123 | |
| 1124 | default: |
| 1125 | elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result" ); |
| 1126 | break; |
| 1127 | } |
| 1128 | |
| 1129 | if (sample_it) |
| 1130 | { |
| 1131 | ExecStoreBufferHeapTuple(targtuple, slot, hscan->rs_cbuf); |
| 1132 | hscan->rs_cindex++; |
| 1133 | |
| 1134 | /* note that we leave the buffer locked here! */ |
| 1135 | return true; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /* Now release the lock and pin on the page */ |
| 1140 | UnlockReleaseBuffer(hscan->rs_cbuf); |
| 1141 | hscan->rs_cbuf = InvalidBuffer; |
| 1142 | |
| 1143 | /* also prevent old slot contents from having pin on page */ |
| 1144 | ExecClearTuple(slot); |
| 1145 | |
| 1146 | return false; |
| 1147 | } |
| 1148 | |
| 1149 | static double |
| 1150 | heapam_index_build_range_scan(Relation heapRelation, |
| 1151 | Relation indexRelation, |
| 1152 | IndexInfo *indexInfo, |
| 1153 | bool allow_sync, |
| 1154 | bool anyvisible, |
| 1155 | bool progress, |
| 1156 | BlockNumber start_blockno, |
| 1157 | BlockNumber numblocks, |
| 1158 | IndexBuildCallback callback, |
| 1159 | void *callback_state, |
| 1160 | TableScanDesc scan) |
| 1161 | { |
| 1162 | HeapScanDesc hscan; |
| 1163 | bool is_system_catalog; |
| 1164 | bool checking_uniqueness; |
| 1165 | HeapTuple heapTuple; |
| 1166 | Datum values[INDEX_MAX_KEYS]; |
| 1167 | bool isnull[INDEX_MAX_KEYS]; |
| 1168 | double reltuples; |
| 1169 | ExprState *predicate; |
| 1170 | TupleTableSlot *slot; |
| 1171 | EState *estate; |
| 1172 | ExprContext *econtext; |
| 1173 | Snapshot snapshot; |
| 1174 | bool need_unregister_snapshot = false; |
| 1175 | TransactionId OldestXmin; |
| 1176 | BlockNumber previous_blkno = InvalidBlockNumber; |
| 1177 | BlockNumber root_blkno = InvalidBlockNumber; |
| 1178 | OffsetNumber root_offsets[MaxHeapTuplesPerPage]; |
| 1179 | |
| 1180 | /* |
| 1181 | * sanity checks |
| 1182 | */ |
| 1183 | Assert(OidIsValid(indexRelation->rd_rel->relam)); |
| 1184 | |
| 1185 | /* Remember if it's a system catalog */ |
| 1186 | is_system_catalog = IsSystemRelation(heapRelation); |
| 1187 | |
| 1188 | /* See whether we're verifying uniqueness/exclusion properties */ |
| 1189 | checking_uniqueness = (indexInfo->ii_Unique || |
| 1190 | indexInfo->ii_ExclusionOps != NULL); |
| 1191 | |
| 1192 | /* |
| 1193 | * "Any visible" mode is not compatible with uniqueness checks; make sure |
| 1194 | * only one of those is requested. |
| 1195 | */ |
| 1196 | Assert(!(anyvisible && checking_uniqueness)); |
| 1197 | |
| 1198 | /* |
| 1199 | * Need an EState for evaluation of index expressions and partial-index |
| 1200 | * predicates. Also a slot to hold the current tuple. |
| 1201 | */ |
| 1202 | estate = CreateExecutorState(); |
| 1203 | econtext = GetPerTupleExprContext(estate); |
| 1204 | slot = table_slot_create(heapRelation, NULL); |
| 1205 | |
| 1206 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 1207 | econtext->ecxt_scantuple = slot; |
| 1208 | |
| 1209 | /* Set up execution state for predicate, if any. */ |
| 1210 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
| 1211 | |
| 1212 | /* |
| 1213 | * Prepare for scan of the base relation. In a normal index build, we use |
| 1214 | * SnapshotAny because we must retrieve all tuples and do our own time |
| 1215 | * qual checks (because we have to index RECENTLY_DEAD tuples). In a |
| 1216 | * concurrent build, or during bootstrap, we take a regular MVCC snapshot |
| 1217 | * and index whatever's live according to that. |
| 1218 | */ |
| 1219 | OldestXmin = InvalidTransactionId; |
| 1220 | |
| 1221 | /* okay to ignore lazy VACUUMs here */ |
| 1222 | if (!IsBootstrapProcessingMode() && !indexInfo->ii_Concurrent) |
| 1223 | OldestXmin = GetOldestXmin(heapRelation, PROCARRAY_FLAGS_VACUUM); |
| 1224 | |
| 1225 | if (!scan) |
| 1226 | { |
| 1227 | /* |
| 1228 | * Serial index build. |
| 1229 | * |
| 1230 | * Must begin our own heap scan in this case. We may also need to |
| 1231 | * register a snapshot whose lifetime is under our direct control. |
| 1232 | */ |
| 1233 | if (!TransactionIdIsValid(OldestXmin)) |
| 1234 | { |
| 1235 | snapshot = RegisterSnapshot(GetTransactionSnapshot()); |
| 1236 | need_unregister_snapshot = true; |
| 1237 | } |
| 1238 | else |
| 1239 | snapshot = SnapshotAny; |
| 1240 | |
| 1241 | scan = table_beginscan_strat(heapRelation, /* relation */ |
| 1242 | snapshot, /* snapshot */ |
| 1243 | 0, /* number of keys */ |
| 1244 | NULL, /* scan key */ |
| 1245 | true, /* buffer access strategy OK */ |
| 1246 | allow_sync); /* syncscan OK? */ |
| 1247 | } |
| 1248 | else |
| 1249 | { |
| 1250 | /* |
| 1251 | * Parallel index build. |
| 1252 | * |
| 1253 | * Parallel case never registers/unregisters own snapshot. Snapshot |
| 1254 | * is taken from parallel heap scan, and is SnapshotAny or an MVCC |
| 1255 | * snapshot, based on same criteria as serial case. |
| 1256 | */ |
| 1257 | Assert(!IsBootstrapProcessingMode()); |
| 1258 | Assert(allow_sync); |
| 1259 | snapshot = scan->rs_snapshot; |
| 1260 | } |
| 1261 | |
| 1262 | hscan = (HeapScanDesc) scan; |
| 1263 | |
| 1264 | /* Publish number of blocks to scan */ |
| 1265 | if (progress) |
| 1266 | { |
| 1267 | BlockNumber nblocks; |
| 1268 | |
| 1269 | if (hscan->rs_base.rs_parallel != NULL) |
| 1270 | { |
| 1271 | ParallelBlockTableScanDesc pbscan; |
| 1272 | |
| 1273 | pbscan = (ParallelBlockTableScanDesc) hscan->rs_base.rs_parallel; |
| 1274 | nblocks = pbscan->phs_nblocks; |
| 1275 | } |
| 1276 | else |
| 1277 | nblocks = hscan->rs_nblocks; |
| 1278 | |
| 1279 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL, |
| 1280 | nblocks); |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * Must call GetOldestXmin() with SnapshotAny. Should never call |
| 1285 | * GetOldestXmin() with MVCC snapshot. (It's especially worth checking |
| 1286 | * this for parallel builds, since ambuild routines that support parallel |
| 1287 | * builds must work these details out for themselves.) |
| 1288 | */ |
| 1289 | Assert(snapshot == SnapshotAny || IsMVCCSnapshot(snapshot)); |
| 1290 | Assert(snapshot == SnapshotAny ? TransactionIdIsValid(OldestXmin) : |
| 1291 | !TransactionIdIsValid(OldestXmin)); |
| 1292 | Assert(snapshot == SnapshotAny || !anyvisible); |
| 1293 | |
| 1294 | /* set our scan endpoints */ |
| 1295 | if (!allow_sync) |
| 1296 | heap_setscanlimits(scan, start_blockno, numblocks); |
| 1297 | else |
| 1298 | { |
| 1299 | /* syncscan can only be requested on whole relation */ |
| 1300 | Assert(start_blockno == 0); |
| 1301 | Assert(numblocks == InvalidBlockNumber); |
| 1302 | } |
| 1303 | |
| 1304 | reltuples = 0; |
| 1305 | |
| 1306 | /* |
| 1307 | * Scan all tuples in the base relation. |
| 1308 | */ |
| 1309 | while ((heapTuple = heap_getnext(scan, ForwardScanDirection)) != NULL) |
| 1310 | { |
| 1311 | bool tupleIsAlive; |
| 1312 | |
| 1313 | CHECK_FOR_INTERRUPTS(); |
| 1314 | |
| 1315 | /* Report scan progress, if asked to. */ |
| 1316 | if (progress) |
| 1317 | { |
| 1318 | BlockNumber blocks_done = heapam_scan_get_blocks_done(hscan); |
| 1319 | |
| 1320 | if (blocks_done != previous_blkno) |
| 1321 | { |
| 1322 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE, |
| 1323 | blocks_done); |
| 1324 | previous_blkno = blocks_done; |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * When dealing with a HOT-chain of updated tuples, we want to index |
| 1330 | * the values of the live tuple (if any), but index it under the TID |
| 1331 | * of the chain's root tuple. This approach is necessary to preserve |
| 1332 | * the HOT-chain structure in the heap. So we need to be able to find |
| 1333 | * the root item offset for every tuple that's in a HOT-chain. When |
| 1334 | * first reaching a new page of the relation, call |
| 1335 | * heap_get_root_tuples() to build a map of root item offsets on the |
| 1336 | * page. |
| 1337 | * |
| 1338 | * It might look unsafe to use this information across buffer |
| 1339 | * lock/unlock. However, we hold ShareLock on the table so no |
| 1340 | * ordinary insert/update/delete should occur; and we hold pin on the |
| 1341 | * buffer continuously while visiting the page, so no pruning |
| 1342 | * operation can occur either. |
| 1343 | * |
| 1344 | * Also, although our opinions about tuple liveness could change while |
| 1345 | * we scan the page (due to concurrent transaction commits/aborts), |
| 1346 | * the chain root locations won't, so this info doesn't need to be |
| 1347 | * rebuilt after waiting for another transaction. |
| 1348 | * |
| 1349 | * Note the implied assumption that there is no more than one live |
| 1350 | * tuple per HOT-chain --- else we could create more than one index |
| 1351 | * entry pointing to the same root tuple. |
| 1352 | */ |
| 1353 | if (hscan->rs_cblock != root_blkno) |
| 1354 | { |
| 1355 | Page page = BufferGetPage(hscan->rs_cbuf); |
| 1356 | |
| 1357 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 1358 | heap_get_root_tuples(page, root_offsets); |
| 1359 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 1360 | |
| 1361 | root_blkno = hscan->rs_cblock; |
| 1362 | } |
| 1363 | |
| 1364 | if (snapshot == SnapshotAny) |
| 1365 | { |
| 1366 | /* do our own time qual check */ |
| 1367 | bool indexIt; |
| 1368 | TransactionId xwait; |
| 1369 | |
| 1370 | recheck: |
| 1371 | |
| 1372 | /* |
| 1373 | * We could possibly get away with not locking the buffer here, |
| 1374 | * since caller should hold ShareLock on the relation, but let's |
| 1375 | * be conservative about it. (This remark is still correct even |
| 1376 | * with HOT-pruning: our pin on the buffer prevents pruning.) |
| 1377 | */ |
| 1378 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 1379 | |
| 1380 | /* |
| 1381 | * The criteria for counting a tuple as live in this block need to |
| 1382 | * match what analyze.c's heapam_scan_analyze_next_tuple() does, |
| 1383 | * otherwise CREATE INDEX and ANALYZE may produce wildly different |
| 1384 | * reltuples values, e.g. when there are many recently-dead |
| 1385 | * tuples. |
| 1386 | */ |
| 1387 | switch (HeapTupleSatisfiesVacuum(heapTuple, OldestXmin, |
| 1388 | hscan->rs_cbuf)) |
| 1389 | { |
| 1390 | case HEAPTUPLE_DEAD: |
| 1391 | /* Definitely dead, we can ignore it */ |
| 1392 | indexIt = false; |
| 1393 | tupleIsAlive = false; |
| 1394 | break; |
| 1395 | case HEAPTUPLE_LIVE: |
| 1396 | /* Normal case, index and unique-check it */ |
| 1397 | indexIt = true; |
| 1398 | tupleIsAlive = true; |
| 1399 | /* Count it as live, too */ |
| 1400 | reltuples += 1; |
| 1401 | break; |
| 1402 | case HEAPTUPLE_RECENTLY_DEAD: |
| 1403 | |
| 1404 | /* |
| 1405 | * If tuple is recently deleted then we must index it |
| 1406 | * anyway to preserve MVCC semantics. (Pre-existing |
| 1407 | * transactions could try to use the index after we finish |
| 1408 | * building it, and may need to see such tuples.) |
| 1409 | * |
| 1410 | * However, if it was HOT-updated then we must only index |
| 1411 | * the live tuple at the end of the HOT-chain. Since this |
| 1412 | * breaks semantics for pre-existing snapshots, mark the |
| 1413 | * index as unusable for them. |
| 1414 | * |
| 1415 | * We don't count recently-dead tuples in reltuples, even |
| 1416 | * if we index them; see heapam_scan_analyze_next_tuple(). |
| 1417 | */ |
| 1418 | if (HeapTupleIsHotUpdated(heapTuple)) |
| 1419 | { |
| 1420 | indexIt = false; |
| 1421 | /* mark the index as unsafe for old snapshots */ |
| 1422 | indexInfo->ii_BrokenHotChain = true; |
| 1423 | } |
| 1424 | else |
| 1425 | indexIt = true; |
| 1426 | /* In any case, exclude the tuple from unique-checking */ |
| 1427 | tupleIsAlive = false; |
| 1428 | break; |
| 1429 | case HEAPTUPLE_INSERT_IN_PROGRESS: |
| 1430 | |
| 1431 | /* |
| 1432 | * In "anyvisible" mode, this tuple is visible and we |
| 1433 | * don't need any further checks. |
| 1434 | */ |
| 1435 | if (anyvisible) |
| 1436 | { |
| 1437 | indexIt = true; |
| 1438 | tupleIsAlive = true; |
| 1439 | reltuples += 1; |
| 1440 | break; |
| 1441 | } |
| 1442 | |
| 1443 | /* |
| 1444 | * Since caller should hold ShareLock or better, normally |
| 1445 | * the only way to see this is if it was inserted earlier |
| 1446 | * in our own transaction. However, it can happen in |
| 1447 | * system catalogs, since we tend to release write lock |
| 1448 | * before commit there. Give a warning if neither case |
| 1449 | * applies. |
| 1450 | */ |
| 1451 | xwait = HeapTupleHeaderGetXmin(heapTuple->t_data); |
| 1452 | if (!TransactionIdIsCurrentTransactionId(xwait)) |
| 1453 | { |
| 1454 | if (!is_system_catalog) |
| 1455 | elog(WARNING, "concurrent insert in progress within table \"%s\"" , |
| 1456 | RelationGetRelationName(heapRelation)); |
| 1457 | |
| 1458 | /* |
| 1459 | * If we are performing uniqueness checks, indexing |
| 1460 | * such a tuple could lead to a bogus uniqueness |
| 1461 | * failure. In that case we wait for the inserting |
| 1462 | * transaction to finish and check again. |
| 1463 | */ |
| 1464 | if (checking_uniqueness) |
| 1465 | { |
| 1466 | /* |
| 1467 | * Must drop the lock on the buffer before we wait |
| 1468 | */ |
| 1469 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 1470 | XactLockTableWait(xwait, heapRelation, |
| 1471 | &heapTuple->t_self, |
| 1472 | XLTW_InsertIndexUnique); |
| 1473 | CHECK_FOR_INTERRUPTS(); |
| 1474 | goto recheck; |
| 1475 | } |
| 1476 | } |
| 1477 | else |
| 1478 | { |
| 1479 | /* |
| 1480 | * For consistency with |
| 1481 | * heapam_scan_analyze_next_tuple(), count |
| 1482 | * HEAPTUPLE_INSERT_IN_PROGRESS tuples as live only |
| 1483 | * when inserted by our own transaction. |
| 1484 | */ |
| 1485 | reltuples += 1; |
| 1486 | } |
| 1487 | |
| 1488 | /* |
| 1489 | * We must index such tuples, since if the index build |
| 1490 | * commits then they're good. |
| 1491 | */ |
| 1492 | indexIt = true; |
| 1493 | tupleIsAlive = true; |
| 1494 | break; |
| 1495 | case HEAPTUPLE_DELETE_IN_PROGRESS: |
| 1496 | |
| 1497 | /* |
| 1498 | * As with INSERT_IN_PROGRESS case, this is unexpected |
| 1499 | * unless it's our own deletion or a system catalog; but |
| 1500 | * in anyvisible mode, this tuple is visible. |
| 1501 | */ |
| 1502 | if (anyvisible) |
| 1503 | { |
| 1504 | indexIt = true; |
| 1505 | tupleIsAlive = false; |
| 1506 | reltuples += 1; |
| 1507 | break; |
| 1508 | } |
| 1509 | |
| 1510 | xwait = HeapTupleHeaderGetUpdateXid(heapTuple->t_data); |
| 1511 | if (!TransactionIdIsCurrentTransactionId(xwait)) |
| 1512 | { |
| 1513 | if (!is_system_catalog) |
| 1514 | elog(WARNING, "concurrent delete in progress within table \"%s\"" , |
| 1515 | RelationGetRelationName(heapRelation)); |
| 1516 | |
| 1517 | /* |
| 1518 | * If we are performing uniqueness checks, assuming |
| 1519 | * the tuple is dead could lead to missing a |
| 1520 | * uniqueness violation. In that case we wait for the |
| 1521 | * deleting transaction to finish and check again. |
| 1522 | * |
| 1523 | * Also, if it's a HOT-updated tuple, we should not |
| 1524 | * index it but rather the live tuple at the end of |
| 1525 | * the HOT-chain. However, the deleting transaction |
| 1526 | * could abort, possibly leaving this tuple as live |
| 1527 | * after all, in which case it has to be indexed. The |
| 1528 | * only way to know what to do is to wait for the |
| 1529 | * deleting transaction to finish and check again. |
| 1530 | */ |
| 1531 | if (checking_uniqueness || |
| 1532 | HeapTupleIsHotUpdated(heapTuple)) |
| 1533 | { |
| 1534 | /* |
| 1535 | * Must drop the lock on the buffer before we wait |
| 1536 | */ |
| 1537 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 1538 | XactLockTableWait(xwait, heapRelation, |
| 1539 | &heapTuple->t_self, |
| 1540 | XLTW_InsertIndexUnique); |
| 1541 | CHECK_FOR_INTERRUPTS(); |
| 1542 | goto recheck; |
| 1543 | } |
| 1544 | |
| 1545 | /* |
| 1546 | * Otherwise index it but don't check for uniqueness, |
| 1547 | * the same as a RECENTLY_DEAD tuple. |
| 1548 | */ |
| 1549 | indexIt = true; |
| 1550 | |
| 1551 | /* |
| 1552 | * Count HEAPTUPLE_DELETE_IN_PROGRESS tuples as live, |
| 1553 | * if they were not deleted by the current |
| 1554 | * transaction. That's what |
| 1555 | * heapam_scan_analyze_next_tuple() does, and we want |
| 1556 | * the behavior to be consistent. |
| 1557 | */ |
| 1558 | reltuples += 1; |
| 1559 | } |
| 1560 | else if (HeapTupleIsHotUpdated(heapTuple)) |
| 1561 | { |
| 1562 | /* |
| 1563 | * It's a HOT-updated tuple deleted by our own xact. |
| 1564 | * We can assume the deletion will commit (else the |
| 1565 | * index contents don't matter), so treat the same as |
| 1566 | * RECENTLY_DEAD HOT-updated tuples. |
| 1567 | */ |
| 1568 | indexIt = false; |
| 1569 | /* mark the index as unsafe for old snapshots */ |
| 1570 | indexInfo->ii_BrokenHotChain = true; |
| 1571 | } |
| 1572 | else |
| 1573 | { |
| 1574 | /* |
| 1575 | * It's a regular tuple deleted by our own xact. Index |
| 1576 | * it, but don't check for uniqueness nor count in |
| 1577 | * reltuples, the same as a RECENTLY_DEAD tuple. |
| 1578 | */ |
| 1579 | indexIt = true; |
| 1580 | } |
| 1581 | /* In any case, exclude the tuple from unique-checking */ |
| 1582 | tupleIsAlive = false; |
| 1583 | break; |
| 1584 | default: |
| 1585 | elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result" ); |
| 1586 | indexIt = tupleIsAlive = false; /* keep compiler quiet */ |
| 1587 | break; |
| 1588 | } |
| 1589 | |
| 1590 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 1591 | |
| 1592 | if (!indexIt) |
| 1593 | continue; |
| 1594 | } |
| 1595 | else |
| 1596 | { |
| 1597 | /* heap_getnext did the time qual check */ |
| 1598 | tupleIsAlive = true; |
| 1599 | reltuples += 1; |
| 1600 | } |
| 1601 | |
| 1602 | MemoryContextReset(econtext->ecxt_per_tuple_memory); |
| 1603 | |
| 1604 | /* Set up for predicate or expression evaluation */ |
| 1605 | ExecStoreBufferHeapTuple(heapTuple, slot, hscan->rs_cbuf); |
| 1606 | |
| 1607 | /* |
| 1608 | * In a partial index, discard tuples that don't satisfy the |
| 1609 | * predicate. |
| 1610 | */ |
| 1611 | if (predicate != NULL) |
| 1612 | { |
| 1613 | if (!ExecQual(predicate, econtext)) |
| 1614 | continue; |
| 1615 | } |
| 1616 | |
| 1617 | /* |
| 1618 | * For the current heap tuple, extract all the attributes we use in |
| 1619 | * this index, and note which are null. This also performs evaluation |
| 1620 | * of any expressions needed. |
| 1621 | */ |
| 1622 | FormIndexDatum(indexInfo, |
| 1623 | slot, |
| 1624 | estate, |
| 1625 | values, |
| 1626 | isnull); |
| 1627 | |
| 1628 | /* |
| 1629 | * You'd think we should go ahead and build the index tuple here, but |
| 1630 | * some index AMs want to do further processing on the data first. So |
| 1631 | * pass the values[] and isnull[] arrays, instead. |
| 1632 | */ |
| 1633 | |
| 1634 | if (HeapTupleIsHeapOnly(heapTuple)) |
| 1635 | { |
| 1636 | /* |
| 1637 | * For a heap-only tuple, pretend its TID is that of the root. See |
| 1638 | * src/backend/access/heap/README.HOT for discussion. |
| 1639 | */ |
| 1640 | HeapTupleData rootTuple; |
| 1641 | OffsetNumber offnum; |
| 1642 | |
| 1643 | rootTuple = *heapTuple; |
| 1644 | offnum = ItemPointerGetOffsetNumber(&heapTuple->t_self); |
| 1645 | |
| 1646 | if (!OffsetNumberIsValid(root_offsets[offnum - 1])) |
| 1647 | ereport(ERROR, |
| 1648 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 1649 | errmsg_internal("failed to find parent tuple for heap-only tuple at (%u,%u) in table \"%s\"" , |
| 1650 | ItemPointerGetBlockNumber(&heapTuple->t_self), |
| 1651 | offnum, |
| 1652 | RelationGetRelationName(heapRelation)))); |
| 1653 | |
| 1654 | ItemPointerSetOffsetNumber(&rootTuple.t_self, |
| 1655 | root_offsets[offnum - 1]); |
| 1656 | |
| 1657 | /* Call the AM's callback routine to process the tuple */ |
| 1658 | callback(indexRelation, &rootTuple, values, isnull, tupleIsAlive, |
| 1659 | callback_state); |
| 1660 | } |
| 1661 | else |
| 1662 | { |
| 1663 | /* Call the AM's callback routine to process the tuple */ |
| 1664 | callback(indexRelation, heapTuple, values, isnull, tupleIsAlive, |
| 1665 | callback_state); |
| 1666 | } |
| 1667 | } |
| 1668 | |
| 1669 | /* Report scan progress one last time. */ |
| 1670 | if (progress) |
| 1671 | { |
| 1672 | BlockNumber blks_done; |
| 1673 | |
| 1674 | if (hscan->rs_base.rs_parallel != NULL) |
| 1675 | { |
| 1676 | ParallelBlockTableScanDesc pbscan; |
| 1677 | |
| 1678 | pbscan = (ParallelBlockTableScanDesc) hscan->rs_base.rs_parallel; |
| 1679 | blks_done = pbscan->phs_nblocks; |
| 1680 | } |
| 1681 | else |
| 1682 | blks_done = hscan->rs_nblocks; |
| 1683 | |
| 1684 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE, |
| 1685 | blks_done); |
| 1686 | } |
| 1687 | |
| 1688 | table_endscan(scan); |
| 1689 | |
| 1690 | /* we can now forget our snapshot, if set and registered by us */ |
| 1691 | if (need_unregister_snapshot) |
| 1692 | UnregisterSnapshot(snapshot); |
| 1693 | |
| 1694 | ExecDropSingleTupleTableSlot(slot); |
| 1695 | |
| 1696 | FreeExecutorState(estate); |
| 1697 | |
| 1698 | /* These may have been pointing to the now-gone estate */ |
| 1699 | indexInfo->ii_ExpressionsState = NIL; |
| 1700 | indexInfo->ii_PredicateState = NULL; |
| 1701 | |
| 1702 | return reltuples; |
| 1703 | } |
| 1704 | |
| 1705 | static void |
| 1706 | heapam_index_validate_scan(Relation heapRelation, |
| 1707 | Relation indexRelation, |
| 1708 | IndexInfo *indexInfo, |
| 1709 | Snapshot snapshot, |
| 1710 | ValidateIndexState *state) |
| 1711 | { |
| 1712 | TableScanDesc scan; |
| 1713 | HeapScanDesc hscan; |
| 1714 | HeapTuple heapTuple; |
| 1715 | Datum values[INDEX_MAX_KEYS]; |
| 1716 | bool isnull[INDEX_MAX_KEYS]; |
| 1717 | ExprState *predicate; |
| 1718 | TupleTableSlot *slot; |
| 1719 | EState *estate; |
| 1720 | ExprContext *econtext; |
| 1721 | BlockNumber root_blkno = InvalidBlockNumber; |
| 1722 | OffsetNumber root_offsets[MaxHeapTuplesPerPage]; |
| 1723 | bool in_index[MaxHeapTuplesPerPage]; |
| 1724 | BlockNumber previous_blkno = InvalidBlockNumber; |
| 1725 | |
| 1726 | /* state variables for the merge */ |
| 1727 | ItemPointer indexcursor = NULL; |
| 1728 | ItemPointerData decoded; |
| 1729 | bool tuplesort_empty = false; |
| 1730 | |
| 1731 | /* |
| 1732 | * sanity checks |
| 1733 | */ |
| 1734 | Assert(OidIsValid(indexRelation->rd_rel->relam)); |
| 1735 | |
| 1736 | /* |
| 1737 | * Need an EState for evaluation of index expressions and partial-index |
| 1738 | * predicates. Also a slot to hold the current tuple. |
| 1739 | */ |
| 1740 | estate = CreateExecutorState(); |
| 1741 | econtext = GetPerTupleExprContext(estate); |
| 1742 | slot = MakeSingleTupleTableSlot(RelationGetDescr(heapRelation), |
| 1743 | &TTSOpsHeapTuple); |
| 1744 | |
| 1745 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 1746 | econtext->ecxt_scantuple = slot; |
| 1747 | |
| 1748 | /* Set up execution state for predicate, if any. */ |
| 1749 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
| 1750 | |
| 1751 | /* |
| 1752 | * Prepare for scan of the base relation. We need just those tuples |
| 1753 | * satisfying the passed-in reference snapshot. We must disable syncscan |
| 1754 | * here, because it's critical that we read from block zero forward to |
| 1755 | * match the sorted TIDs. |
| 1756 | */ |
| 1757 | scan = table_beginscan_strat(heapRelation, /* relation */ |
| 1758 | snapshot, /* snapshot */ |
| 1759 | 0, /* number of keys */ |
| 1760 | NULL, /* scan key */ |
| 1761 | true, /* buffer access strategy OK */ |
| 1762 | false); /* syncscan not OK */ |
| 1763 | hscan = (HeapScanDesc) scan; |
| 1764 | |
| 1765 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL, |
| 1766 | hscan->rs_nblocks); |
| 1767 | |
| 1768 | /* |
| 1769 | * Scan all tuples matching the snapshot. |
| 1770 | */ |
| 1771 | while ((heapTuple = heap_getnext(scan, ForwardScanDirection)) != NULL) |
| 1772 | { |
| 1773 | ItemPointer heapcursor = &heapTuple->t_self; |
| 1774 | ItemPointerData rootTuple; |
| 1775 | OffsetNumber root_offnum; |
| 1776 | |
| 1777 | CHECK_FOR_INTERRUPTS(); |
| 1778 | |
| 1779 | state->htups += 1; |
| 1780 | |
| 1781 | if ((previous_blkno == InvalidBlockNumber) || |
| 1782 | (hscan->rs_cblock != previous_blkno)) |
| 1783 | { |
| 1784 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE, |
| 1785 | hscan->rs_cblock); |
| 1786 | previous_blkno = hscan->rs_cblock; |
| 1787 | } |
| 1788 | |
| 1789 | /* |
| 1790 | * As commented in table_index_build_scan, we should index heap-only |
| 1791 | * tuples under the TIDs of their root tuples; so when we advance onto |
| 1792 | * a new heap page, build a map of root item offsets on the page. |
| 1793 | * |
| 1794 | * This complicates merging against the tuplesort output: we will |
| 1795 | * visit the live tuples in order by their offsets, but the root |
| 1796 | * offsets that we need to compare against the index contents might be |
| 1797 | * ordered differently. So we might have to "look back" within the |
| 1798 | * tuplesort output, but only within the current page. We handle that |
| 1799 | * by keeping a bool array in_index[] showing all the |
| 1800 | * already-passed-over tuplesort output TIDs of the current page. We |
| 1801 | * clear that array here, when advancing onto a new heap page. |
| 1802 | */ |
| 1803 | if (hscan->rs_cblock != root_blkno) |
| 1804 | { |
| 1805 | Page page = BufferGetPage(hscan->rs_cbuf); |
| 1806 | |
| 1807 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 1808 | heap_get_root_tuples(page, root_offsets); |
| 1809 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 1810 | |
| 1811 | memset(in_index, 0, sizeof(in_index)); |
| 1812 | |
| 1813 | root_blkno = hscan->rs_cblock; |
| 1814 | } |
| 1815 | |
| 1816 | /* Convert actual tuple TID to root TID */ |
| 1817 | rootTuple = *heapcursor; |
| 1818 | root_offnum = ItemPointerGetOffsetNumber(heapcursor); |
| 1819 | |
| 1820 | if (HeapTupleIsHeapOnly(heapTuple)) |
| 1821 | { |
| 1822 | root_offnum = root_offsets[root_offnum - 1]; |
| 1823 | if (!OffsetNumberIsValid(root_offnum)) |
| 1824 | ereport(ERROR, |
| 1825 | (errcode(ERRCODE_DATA_CORRUPTED), |
| 1826 | errmsg_internal("failed to find parent tuple for heap-only tuple at (%u,%u) in table \"%s\"" , |
| 1827 | ItemPointerGetBlockNumber(heapcursor), |
| 1828 | ItemPointerGetOffsetNumber(heapcursor), |
| 1829 | RelationGetRelationName(heapRelation)))); |
| 1830 | ItemPointerSetOffsetNumber(&rootTuple, root_offnum); |
| 1831 | } |
| 1832 | |
| 1833 | /* |
| 1834 | * "merge" by skipping through the index tuples until we find or pass |
| 1835 | * the current root tuple. |
| 1836 | */ |
| 1837 | while (!tuplesort_empty && |
| 1838 | (!indexcursor || |
| 1839 | ItemPointerCompare(indexcursor, &rootTuple) < 0)) |
| 1840 | { |
| 1841 | Datum ts_val; |
| 1842 | bool ts_isnull; |
| 1843 | |
| 1844 | if (indexcursor) |
| 1845 | { |
| 1846 | /* |
| 1847 | * Remember index items seen earlier on the current heap page |
| 1848 | */ |
| 1849 | if (ItemPointerGetBlockNumber(indexcursor) == root_blkno) |
| 1850 | in_index[ItemPointerGetOffsetNumber(indexcursor) - 1] = true; |
| 1851 | } |
| 1852 | |
| 1853 | tuplesort_empty = !tuplesort_getdatum(state->tuplesort, true, |
| 1854 | &ts_val, &ts_isnull, NULL); |
| 1855 | Assert(tuplesort_empty || !ts_isnull); |
| 1856 | if (!tuplesort_empty) |
| 1857 | { |
| 1858 | itemptr_decode(&decoded, DatumGetInt64(ts_val)); |
| 1859 | indexcursor = &decoded; |
| 1860 | |
| 1861 | /* If int8 is pass-by-ref, free (encoded) TID Datum memory */ |
| 1862 | #ifndef USE_FLOAT8_BYVAL |
| 1863 | pfree(DatumGetPointer(ts_val)); |
| 1864 | #endif |
| 1865 | } |
| 1866 | else |
| 1867 | { |
| 1868 | /* Be tidy */ |
| 1869 | indexcursor = NULL; |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | /* |
| 1874 | * If the tuplesort has overshot *and* we didn't see a match earlier, |
| 1875 | * then this tuple is missing from the index, so insert it. |
| 1876 | */ |
| 1877 | if ((tuplesort_empty || |
| 1878 | ItemPointerCompare(indexcursor, &rootTuple) > 0) && |
| 1879 | !in_index[root_offnum - 1]) |
| 1880 | { |
| 1881 | MemoryContextReset(econtext->ecxt_per_tuple_memory); |
| 1882 | |
| 1883 | /* Set up for predicate or expression evaluation */ |
| 1884 | ExecStoreHeapTuple(heapTuple, slot, false); |
| 1885 | |
| 1886 | /* |
| 1887 | * In a partial index, discard tuples that don't satisfy the |
| 1888 | * predicate. |
| 1889 | */ |
| 1890 | if (predicate != NULL) |
| 1891 | { |
| 1892 | if (!ExecQual(predicate, econtext)) |
| 1893 | continue; |
| 1894 | } |
| 1895 | |
| 1896 | /* |
| 1897 | * For the current heap tuple, extract all the attributes we use |
| 1898 | * in this index, and note which are null. This also performs |
| 1899 | * evaluation of any expressions needed. |
| 1900 | */ |
| 1901 | FormIndexDatum(indexInfo, |
| 1902 | slot, |
| 1903 | estate, |
| 1904 | values, |
| 1905 | isnull); |
| 1906 | |
| 1907 | /* |
| 1908 | * You'd think we should go ahead and build the index tuple here, |
| 1909 | * but some index AMs want to do further processing on the data |
| 1910 | * first. So pass the values[] and isnull[] arrays, instead. |
| 1911 | */ |
| 1912 | |
| 1913 | /* |
| 1914 | * If the tuple is already committed dead, you might think we |
| 1915 | * could suppress uniqueness checking, but this is no longer true |
| 1916 | * in the presence of HOT, because the insert is actually a proxy |
| 1917 | * for a uniqueness check on the whole HOT-chain. That is, the |
| 1918 | * tuple we have here could be dead because it was already |
| 1919 | * HOT-updated, and if so the updating transaction will not have |
| 1920 | * thought it should insert index entries. The index AM will |
| 1921 | * check the whole HOT-chain and correctly detect a conflict if |
| 1922 | * there is one. |
| 1923 | */ |
| 1924 | |
| 1925 | index_insert(indexRelation, |
| 1926 | values, |
| 1927 | isnull, |
| 1928 | &rootTuple, |
| 1929 | heapRelation, |
| 1930 | indexInfo->ii_Unique ? |
| 1931 | UNIQUE_CHECK_YES : UNIQUE_CHECK_NO, |
| 1932 | indexInfo); |
| 1933 | |
| 1934 | state->tups_inserted += 1; |
| 1935 | } |
| 1936 | } |
| 1937 | |
| 1938 | table_endscan(scan); |
| 1939 | |
| 1940 | ExecDropSingleTupleTableSlot(slot); |
| 1941 | |
| 1942 | FreeExecutorState(estate); |
| 1943 | |
| 1944 | /* These may have been pointing to the now-gone estate */ |
| 1945 | indexInfo->ii_ExpressionsState = NIL; |
| 1946 | indexInfo->ii_PredicateState = NULL; |
| 1947 | } |
| 1948 | |
| 1949 | /* |
| 1950 | * Return the number of blocks that have been read by this scan since |
| 1951 | * starting. This is meant for progress reporting rather than be fully |
| 1952 | * accurate: in a parallel scan, workers can be concurrently reading blocks |
| 1953 | * further ahead than what we report. |
| 1954 | */ |
| 1955 | static BlockNumber |
| 1956 | heapam_scan_get_blocks_done(HeapScanDesc hscan) |
| 1957 | { |
| 1958 | ParallelBlockTableScanDesc bpscan = NULL; |
| 1959 | BlockNumber startblock; |
| 1960 | BlockNumber blocks_done; |
| 1961 | |
| 1962 | if (hscan->rs_base.rs_parallel != NULL) |
| 1963 | { |
| 1964 | bpscan = (ParallelBlockTableScanDesc) hscan->rs_base.rs_parallel; |
| 1965 | startblock = bpscan->phs_startblock; |
| 1966 | } |
| 1967 | else |
| 1968 | startblock = hscan->rs_startblock; |
| 1969 | |
| 1970 | /* |
| 1971 | * Might have wrapped around the end of the relation, if startblock was |
| 1972 | * not zero. |
| 1973 | */ |
| 1974 | if (hscan->rs_cblock > startblock) |
| 1975 | blocks_done = hscan->rs_cblock - startblock; |
| 1976 | else |
| 1977 | { |
| 1978 | BlockNumber nblocks; |
| 1979 | |
| 1980 | nblocks = bpscan != NULL ? bpscan->phs_nblocks : hscan->rs_nblocks; |
| 1981 | blocks_done = nblocks - startblock + |
| 1982 | hscan->rs_cblock; |
| 1983 | } |
| 1984 | |
| 1985 | return blocks_done; |
| 1986 | } |
| 1987 | |
| 1988 | |
| 1989 | /* ------------------------------------------------------------------------ |
| 1990 | * Miscellaneous callbacks for the heap AM |
| 1991 | * ------------------------------------------------------------------------ |
| 1992 | */ |
| 1993 | |
| 1994 | static uint64 |
| 1995 | heapam_relation_size(Relation rel, ForkNumber forkNumber) |
| 1996 | { |
| 1997 | uint64 nblocks = 0; |
| 1998 | |
| 1999 | /* Open it at the smgr level if not already done */ |
| 2000 | RelationOpenSmgr(rel); |
| 2001 | |
| 2002 | /* InvalidForkNumber indicates returning the size for all forks */ |
| 2003 | if (forkNumber == InvalidForkNumber) |
| 2004 | { |
| 2005 | for (int i = 0; i < MAX_FORKNUM; i++) |
| 2006 | nblocks += smgrnblocks(rel->rd_smgr, i); |
| 2007 | } |
| 2008 | else |
| 2009 | nblocks = smgrnblocks(rel->rd_smgr, forkNumber); |
| 2010 | |
| 2011 | return nblocks * BLCKSZ; |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Check to see whether the table needs a TOAST table. It does only if |
| 2016 | * (1) there are any toastable attributes, and (2) the maximum length |
| 2017 | * of a tuple could exceed TOAST_TUPLE_THRESHOLD. (We don't want to |
| 2018 | * create a toast table for something like "f1 varchar(20)".) |
| 2019 | */ |
| 2020 | static bool |
| 2021 | heapam_relation_needs_toast_table(Relation rel) |
| 2022 | { |
| 2023 | int32 data_length = 0; |
| 2024 | bool maxlength_unknown = false; |
| 2025 | bool has_toastable_attrs = false; |
| 2026 | TupleDesc tupdesc = rel->rd_att; |
| 2027 | int32 tuple_length; |
| 2028 | int i; |
| 2029 | |
| 2030 | for (i = 0; i < tupdesc->natts; i++) |
| 2031 | { |
| 2032 | Form_pg_attribute att = TupleDescAttr(tupdesc, i); |
| 2033 | |
| 2034 | if (att->attisdropped) |
| 2035 | continue; |
| 2036 | data_length = att_align_nominal(data_length, att->attalign); |
| 2037 | if (att->attlen > 0) |
| 2038 | { |
| 2039 | /* Fixed-length types are never toastable */ |
| 2040 | data_length += att->attlen; |
| 2041 | } |
| 2042 | else |
| 2043 | { |
| 2044 | int32 maxlen = type_maximum_size(att->atttypid, |
| 2045 | att->atttypmod); |
| 2046 | |
| 2047 | if (maxlen < 0) |
| 2048 | maxlength_unknown = true; |
| 2049 | else |
| 2050 | data_length += maxlen; |
| 2051 | if (att->attstorage != 'p') |
| 2052 | has_toastable_attrs = true; |
| 2053 | } |
| 2054 | } |
| 2055 | if (!has_toastable_attrs) |
| 2056 | return false; /* nothing to toast? */ |
| 2057 | if (maxlength_unknown) |
| 2058 | return true; /* any unlimited-length attrs? */ |
| 2059 | tuple_length = MAXALIGN(SizeofHeapTupleHeader + |
| 2060 | BITMAPLEN(tupdesc->natts)) + |
| 2061 | MAXALIGN(data_length); |
| 2062 | return (tuple_length > TOAST_TUPLE_THRESHOLD); |
| 2063 | } |
| 2064 | |
| 2065 | |
| 2066 | /* ------------------------------------------------------------------------ |
| 2067 | * Planner related callbacks for the heap AM |
| 2068 | * ------------------------------------------------------------------------ |
| 2069 | */ |
| 2070 | |
| 2071 | static void |
| 2072 | heapam_estimate_rel_size(Relation rel, int32 *attr_widths, |
| 2073 | BlockNumber *pages, double *tuples, |
| 2074 | double *allvisfrac) |
| 2075 | { |
| 2076 | BlockNumber curpages; |
| 2077 | BlockNumber relpages; |
| 2078 | double reltuples; |
| 2079 | BlockNumber relallvisible; |
| 2080 | double density; |
| 2081 | |
| 2082 | /* it has storage, ok to call the smgr */ |
| 2083 | curpages = RelationGetNumberOfBlocks(rel); |
| 2084 | |
| 2085 | /* coerce values in pg_class to more desirable types */ |
| 2086 | relpages = (BlockNumber) rel->rd_rel->relpages; |
| 2087 | reltuples = (double) rel->rd_rel->reltuples; |
| 2088 | relallvisible = (BlockNumber) rel->rd_rel->relallvisible; |
| 2089 | |
| 2090 | /* |
| 2091 | * HACK: if the relation has never yet been vacuumed, use a minimum size |
| 2092 | * estimate of 10 pages. The idea here is to avoid assuming a |
| 2093 | * newly-created table is really small, even if it currently is, because |
| 2094 | * that may not be true once some data gets loaded into it. Once a vacuum |
| 2095 | * or analyze cycle has been done on it, it's more reasonable to believe |
| 2096 | * the size is somewhat stable. |
| 2097 | * |
| 2098 | * (Note that this is only an issue if the plan gets cached and used again |
| 2099 | * after the table has been filled. What we're trying to avoid is using a |
| 2100 | * nestloop-type plan on a table that has grown substantially since the |
| 2101 | * plan was made. Normally, autovacuum/autoanalyze will occur once enough |
| 2102 | * inserts have happened and cause cached-plan invalidation; but that |
| 2103 | * doesn't happen instantaneously, and it won't happen at all for cases |
| 2104 | * such as temporary tables.) |
| 2105 | * |
| 2106 | * We approximate "never vacuumed" by "has relpages = 0", which means this |
| 2107 | * will also fire on genuinely empty relations. Not great, but |
| 2108 | * fortunately that's a seldom-seen case in the real world, and it |
| 2109 | * shouldn't degrade the quality of the plan too much anyway to err in |
| 2110 | * this direction. |
| 2111 | * |
| 2112 | * If the table has inheritance children, we don't apply this heuristic. |
| 2113 | * Totally empty parent tables are quite common, so we should be willing |
| 2114 | * to believe that they are empty. |
| 2115 | */ |
| 2116 | if (curpages < 10 && |
| 2117 | relpages == 0 && |
| 2118 | !rel->rd_rel->relhassubclass) |
| 2119 | curpages = 10; |
| 2120 | |
| 2121 | /* report estimated # pages */ |
| 2122 | *pages = curpages; |
| 2123 | /* quick exit if rel is clearly empty */ |
| 2124 | if (curpages == 0) |
| 2125 | { |
| 2126 | *tuples = 0; |
| 2127 | *allvisfrac = 0; |
| 2128 | return; |
| 2129 | } |
| 2130 | |
| 2131 | /* estimate number of tuples from previous tuple density */ |
| 2132 | if (relpages > 0) |
| 2133 | density = reltuples / (double) relpages; |
| 2134 | else |
| 2135 | { |
| 2136 | /* |
| 2137 | * When we have no data because the relation was truncated, estimate |
| 2138 | * tuple width from attribute datatypes. We assume here that the |
| 2139 | * pages are completely full, which is OK for tables (since they've |
| 2140 | * presumably not been VACUUMed yet) but is probably an overestimate |
| 2141 | * for indexes. Fortunately get_relation_info() can clamp the |
| 2142 | * overestimate to the parent table's size. |
| 2143 | * |
| 2144 | * Note: this code intentionally disregards alignment considerations, |
| 2145 | * because (a) that would be gilding the lily considering how crude |
| 2146 | * the estimate is, and (b) it creates platform dependencies in the |
| 2147 | * default plans which are kind of a headache for regression testing. |
| 2148 | */ |
| 2149 | int32 tuple_width; |
| 2150 | |
| 2151 | tuple_width = get_rel_data_width(rel, attr_widths); |
| 2152 | tuple_width += MAXALIGN(SizeofHeapTupleHeader); |
| 2153 | tuple_width += sizeof(ItemIdData); |
| 2154 | /* note: integer division is intentional here */ |
| 2155 | density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width; |
| 2156 | } |
| 2157 | *tuples = rint(density * (double) curpages); |
| 2158 | |
| 2159 | /* |
| 2160 | * We use relallvisible as-is, rather than scaling it up like we do for |
| 2161 | * the pages and tuples counts, on the theory that any pages added since |
| 2162 | * the last VACUUM are most likely not marked all-visible. But costsize.c |
| 2163 | * wants it converted to a fraction. |
| 2164 | */ |
| 2165 | if (relallvisible == 0 || curpages <= 0) |
| 2166 | *allvisfrac = 0; |
| 2167 | else if ((double) relallvisible >= curpages) |
| 2168 | *allvisfrac = 1; |
| 2169 | else |
| 2170 | *allvisfrac = (double) relallvisible / curpages; |
| 2171 | } |
| 2172 | |
| 2173 | |
| 2174 | /* ------------------------------------------------------------------------ |
| 2175 | * Executor related callbacks for the heap AM |
| 2176 | * ------------------------------------------------------------------------ |
| 2177 | */ |
| 2178 | |
| 2179 | static bool |
| 2180 | heapam_scan_bitmap_next_block(TableScanDesc scan, |
| 2181 | TBMIterateResult *tbmres) |
| 2182 | { |
| 2183 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 2184 | BlockNumber page = tbmres->blockno; |
| 2185 | Buffer buffer; |
| 2186 | Snapshot snapshot; |
| 2187 | int ntup; |
| 2188 | |
| 2189 | hscan->rs_cindex = 0; |
| 2190 | hscan->rs_ntuples = 0; |
| 2191 | |
| 2192 | /* |
| 2193 | * Ignore any claimed entries past what we think is the end of the |
| 2194 | * relation. It may have been extended after the start of our scan (we |
| 2195 | * only hold an AccessShareLock, and it could be inserts from this |
| 2196 | * backend). |
| 2197 | */ |
| 2198 | if (page >= hscan->rs_nblocks) |
| 2199 | return false; |
| 2200 | |
| 2201 | /* |
| 2202 | * Acquire pin on the target heap page, trading in any pin we held before. |
| 2203 | */ |
| 2204 | hscan->rs_cbuf = ReleaseAndReadBuffer(hscan->rs_cbuf, |
| 2205 | scan->rs_rd, |
| 2206 | page); |
| 2207 | hscan->rs_cblock = page; |
| 2208 | buffer = hscan->rs_cbuf; |
| 2209 | snapshot = scan->rs_snapshot; |
| 2210 | |
| 2211 | ntup = 0; |
| 2212 | |
| 2213 | /* |
| 2214 | * Prune and repair fragmentation for the whole page, if possible. |
| 2215 | */ |
| 2216 | heap_page_prune_opt(scan->rs_rd, buffer); |
| 2217 | |
| 2218 | /* |
| 2219 | * We must hold share lock on the buffer content while examining tuple |
| 2220 | * visibility. Afterwards, however, the tuples we have found to be |
| 2221 | * visible are guaranteed good as long as we hold the buffer pin. |
| 2222 | */ |
| 2223 | LockBuffer(buffer, BUFFER_LOCK_SHARE); |
| 2224 | |
| 2225 | /* |
| 2226 | * We need two separate strategies for lossy and non-lossy cases. |
| 2227 | */ |
| 2228 | if (tbmres->ntuples >= 0) |
| 2229 | { |
| 2230 | /* |
| 2231 | * Bitmap is non-lossy, so we just look through the offsets listed in |
| 2232 | * tbmres; but we have to follow any HOT chain starting at each such |
| 2233 | * offset. |
| 2234 | */ |
| 2235 | int curslot; |
| 2236 | |
| 2237 | for (curslot = 0; curslot < tbmres->ntuples; curslot++) |
| 2238 | { |
| 2239 | OffsetNumber offnum = tbmres->offsets[curslot]; |
| 2240 | ItemPointerData tid; |
| 2241 | HeapTupleData heapTuple; |
| 2242 | |
| 2243 | ItemPointerSet(&tid, page, offnum); |
| 2244 | if (heap_hot_search_buffer(&tid, scan->rs_rd, buffer, snapshot, |
| 2245 | &heapTuple, NULL, true)) |
| 2246 | hscan->rs_vistuples[ntup++] = ItemPointerGetOffsetNumber(&tid); |
| 2247 | } |
| 2248 | } |
| 2249 | else |
| 2250 | { |
| 2251 | /* |
| 2252 | * Bitmap is lossy, so we must examine each line pointer on the page. |
| 2253 | * But we can ignore HOT chains, since we'll check each tuple anyway. |
| 2254 | */ |
| 2255 | Page dp = (Page) BufferGetPage(buffer); |
| 2256 | OffsetNumber maxoff = PageGetMaxOffsetNumber(dp); |
| 2257 | OffsetNumber offnum; |
| 2258 | |
| 2259 | for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) |
| 2260 | { |
| 2261 | ItemId lp; |
| 2262 | HeapTupleData loctup; |
| 2263 | bool valid; |
| 2264 | |
| 2265 | lp = PageGetItemId(dp, offnum); |
| 2266 | if (!ItemIdIsNormal(lp)) |
| 2267 | continue; |
| 2268 | loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lp); |
| 2269 | loctup.t_len = ItemIdGetLength(lp); |
| 2270 | loctup.t_tableOid = scan->rs_rd->rd_id; |
| 2271 | ItemPointerSet(&loctup.t_self, page, offnum); |
| 2272 | valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer); |
| 2273 | if (valid) |
| 2274 | { |
| 2275 | hscan->rs_vistuples[ntup++] = offnum; |
| 2276 | PredicateLockTuple(scan->rs_rd, &loctup, snapshot); |
| 2277 | } |
| 2278 | CheckForSerializableConflictOut(valid, scan->rs_rd, &loctup, |
| 2279 | buffer, snapshot); |
| 2280 | } |
| 2281 | } |
| 2282 | |
| 2283 | LockBuffer(buffer, BUFFER_LOCK_UNLOCK); |
| 2284 | |
| 2285 | Assert(ntup <= MaxHeapTuplesPerPage); |
| 2286 | hscan->rs_ntuples = ntup; |
| 2287 | |
| 2288 | return ntup > 0; |
| 2289 | } |
| 2290 | |
| 2291 | static bool |
| 2292 | heapam_scan_bitmap_next_tuple(TableScanDesc scan, |
| 2293 | TBMIterateResult *tbmres, |
| 2294 | TupleTableSlot *slot) |
| 2295 | { |
| 2296 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 2297 | OffsetNumber targoffset; |
| 2298 | Page dp; |
| 2299 | ItemId lp; |
| 2300 | |
| 2301 | /* |
| 2302 | * Out of range? If so, nothing more to look at on this page |
| 2303 | */ |
| 2304 | if (hscan->rs_cindex < 0 || hscan->rs_cindex >= hscan->rs_ntuples) |
| 2305 | return false; |
| 2306 | |
| 2307 | targoffset = hscan->rs_vistuples[hscan->rs_cindex]; |
| 2308 | dp = (Page) BufferGetPage(hscan->rs_cbuf); |
| 2309 | lp = PageGetItemId(dp, targoffset); |
| 2310 | Assert(ItemIdIsNormal(lp)); |
| 2311 | |
| 2312 | hscan->rs_ctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lp); |
| 2313 | hscan->rs_ctup.t_len = ItemIdGetLength(lp); |
| 2314 | hscan->rs_ctup.t_tableOid = scan->rs_rd->rd_id; |
| 2315 | ItemPointerSet(&hscan->rs_ctup.t_self, hscan->rs_cblock, targoffset); |
| 2316 | |
| 2317 | pgstat_count_heap_fetch(scan->rs_rd); |
| 2318 | |
| 2319 | /* |
| 2320 | * Set up the result slot to point to this tuple. Note that the slot |
| 2321 | * acquires a pin on the buffer. |
| 2322 | */ |
| 2323 | ExecStoreBufferHeapTuple(&hscan->rs_ctup, |
| 2324 | slot, |
| 2325 | hscan->rs_cbuf); |
| 2326 | |
| 2327 | hscan->rs_cindex++; |
| 2328 | |
| 2329 | return true; |
| 2330 | } |
| 2331 | |
| 2332 | static bool |
| 2333 | heapam_scan_sample_next_block(TableScanDesc scan, SampleScanState *scanstate) |
| 2334 | { |
| 2335 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 2336 | TsmRoutine *tsm = scanstate->tsmroutine; |
| 2337 | BlockNumber blockno; |
| 2338 | |
| 2339 | /* return false immediately if relation is empty */ |
| 2340 | if (hscan->rs_nblocks == 0) |
| 2341 | return false; |
| 2342 | |
| 2343 | if (tsm->NextSampleBlock) |
| 2344 | { |
| 2345 | blockno = tsm->NextSampleBlock(scanstate, hscan->rs_nblocks); |
| 2346 | hscan->rs_cblock = blockno; |
| 2347 | } |
| 2348 | else |
| 2349 | { |
| 2350 | /* scanning table sequentially */ |
| 2351 | |
| 2352 | if (hscan->rs_cblock == InvalidBlockNumber) |
| 2353 | { |
| 2354 | Assert(!hscan->rs_inited); |
| 2355 | blockno = hscan->rs_startblock; |
| 2356 | } |
| 2357 | else |
| 2358 | { |
| 2359 | Assert(hscan->rs_inited); |
| 2360 | |
| 2361 | blockno = hscan->rs_cblock + 1; |
| 2362 | |
| 2363 | if (blockno >= hscan->rs_nblocks) |
| 2364 | { |
| 2365 | /* wrap to beginning of rel, might not have started at 0 */ |
| 2366 | blockno = 0; |
| 2367 | } |
| 2368 | |
| 2369 | /* |
| 2370 | * Report our new scan position for synchronization purposes. |
| 2371 | * |
| 2372 | * Note: we do this before checking for end of scan so that the |
| 2373 | * final state of the position hint is back at the start of the |
| 2374 | * rel. That's not strictly necessary, but otherwise when you run |
| 2375 | * the same query multiple times the starting position would shift |
| 2376 | * a little bit backwards on every invocation, which is confusing. |
| 2377 | * We don't guarantee any specific ordering in general, though. |
| 2378 | */ |
| 2379 | if (scan->rs_flags & SO_ALLOW_SYNC) |
| 2380 | ss_report_location(scan->rs_rd, blockno); |
| 2381 | |
| 2382 | if (blockno == hscan->rs_startblock) |
| 2383 | { |
| 2384 | blockno = InvalidBlockNumber; |
| 2385 | } |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | if (!BlockNumberIsValid(blockno)) |
| 2390 | { |
| 2391 | if (BufferIsValid(hscan->rs_cbuf)) |
| 2392 | ReleaseBuffer(hscan->rs_cbuf); |
| 2393 | hscan->rs_cbuf = InvalidBuffer; |
| 2394 | hscan->rs_cblock = InvalidBlockNumber; |
| 2395 | hscan->rs_inited = false; |
| 2396 | |
| 2397 | return false; |
| 2398 | } |
| 2399 | |
| 2400 | heapgetpage(scan, blockno); |
| 2401 | hscan->rs_inited = true; |
| 2402 | |
| 2403 | return true; |
| 2404 | } |
| 2405 | |
| 2406 | static bool |
| 2407 | heapam_scan_sample_next_tuple(TableScanDesc scan, SampleScanState *scanstate, |
| 2408 | TupleTableSlot *slot) |
| 2409 | { |
| 2410 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 2411 | TsmRoutine *tsm = scanstate->tsmroutine; |
| 2412 | BlockNumber blockno = hscan->rs_cblock; |
| 2413 | bool pagemode = (scan->rs_flags & SO_ALLOW_PAGEMODE) != 0; |
| 2414 | |
| 2415 | Page page; |
| 2416 | bool all_visible; |
| 2417 | OffsetNumber maxoffset; |
| 2418 | |
| 2419 | /* |
| 2420 | * When not using pagemode, we must lock the buffer during tuple |
| 2421 | * visibility checks. |
| 2422 | */ |
| 2423 | if (!pagemode) |
| 2424 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_SHARE); |
| 2425 | |
| 2426 | page = (Page) BufferGetPage(hscan->rs_cbuf); |
| 2427 | all_visible = PageIsAllVisible(page) && |
| 2428 | !scan->rs_snapshot->takenDuringRecovery; |
| 2429 | maxoffset = PageGetMaxOffsetNumber(page); |
| 2430 | |
| 2431 | for (;;) |
| 2432 | { |
| 2433 | OffsetNumber tupoffset; |
| 2434 | |
| 2435 | CHECK_FOR_INTERRUPTS(); |
| 2436 | |
| 2437 | /* Ask the tablesample method which tuples to check on this page. */ |
| 2438 | tupoffset = tsm->NextSampleTuple(scanstate, |
| 2439 | blockno, |
| 2440 | maxoffset); |
| 2441 | |
| 2442 | if (OffsetNumberIsValid(tupoffset)) |
| 2443 | { |
| 2444 | ItemId itemid; |
| 2445 | bool visible; |
| 2446 | HeapTuple tuple = &(hscan->rs_ctup); |
| 2447 | |
| 2448 | /* Skip invalid tuple pointers. */ |
| 2449 | itemid = PageGetItemId(page, tupoffset); |
| 2450 | if (!ItemIdIsNormal(itemid)) |
| 2451 | continue; |
| 2452 | |
| 2453 | tuple->t_data = (HeapTupleHeader) PageGetItem(page, itemid); |
| 2454 | tuple->t_len = ItemIdGetLength(itemid); |
| 2455 | ItemPointerSet(&(tuple->t_self), blockno, tupoffset); |
| 2456 | |
| 2457 | |
| 2458 | if (all_visible) |
| 2459 | visible = true; |
| 2460 | else |
| 2461 | visible = SampleHeapTupleVisible(scan, hscan->rs_cbuf, |
| 2462 | tuple, tupoffset); |
| 2463 | |
| 2464 | /* in pagemode, heapgetpage did this for us */ |
| 2465 | if (!pagemode) |
| 2466 | CheckForSerializableConflictOut(visible, scan->rs_rd, tuple, |
| 2467 | hscan->rs_cbuf, scan->rs_snapshot); |
| 2468 | |
| 2469 | /* Try next tuple from same page. */ |
| 2470 | if (!visible) |
| 2471 | continue; |
| 2472 | |
| 2473 | /* Found visible tuple, return it. */ |
| 2474 | if (!pagemode) |
| 2475 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 2476 | |
| 2477 | ExecStoreBufferHeapTuple(tuple, slot, hscan->rs_cbuf); |
| 2478 | |
| 2479 | /* Count successfully-fetched tuples as heap fetches */ |
| 2480 | pgstat_count_heap_getnext(scan->rs_rd); |
| 2481 | |
| 2482 | return true; |
| 2483 | } |
| 2484 | else |
| 2485 | { |
| 2486 | /* |
| 2487 | * If we get here, it means we've exhausted the items on this page |
| 2488 | * and it's time to move to the next. |
| 2489 | */ |
| 2490 | if (!pagemode) |
| 2491 | LockBuffer(hscan->rs_cbuf, BUFFER_LOCK_UNLOCK); |
| 2492 | |
| 2493 | ExecClearTuple(slot); |
| 2494 | return false; |
| 2495 | } |
| 2496 | } |
| 2497 | |
| 2498 | Assert(0); |
| 2499 | } |
| 2500 | |
| 2501 | |
| 2502 | /* ---------------------------------------------------------------------------- |
| 2503 | * Helper functions for the above. |
| 2504 | * ---------------------------------------------------------------------------- |
| 2505 | */ |
| 2506 | |
| 2507 | /* |
| 2508 | * Reconstruct and rewrite the given tuple |
| 2509 | * |
| 2510 | * We cannot simply copy the tuple as-is, for several reasons: |
| 2511 | * |
| 2512 | * 1. We'd like to squeeze out the values of any dropped columns, both |
| 2513 | * to save space and to ensure we have no corner-case failures. (It's |
| 2514 | * possible for example that the new table hasn't got a TOAST table |
| 2515 | * and so is unable to store any large values of dropped cols.) |
| 2516 | * |
| 2517 | * 2. The tuple might not even be legal for the new table; this is |
| 2518 | * currently only known to happen as an after-effect of ALTER TABLE |
| 2519 | * SET WITHOUT OIDS. |
| 2520 | * |
| 2521 | * So, we must reconstruct the tuple from component Datums. |
| 2522 | */ |
| 2523 | static void |
| 2524 | reform_and_rewrite_tuple(HeapTuple tuple, |
| 2525 | Relation OldHeap, Relation NewHeap, |
| 2526 | Datum *values, bool *isnull, RewriteState rwstate) |
| 2527 | { |
| 2528 | TupleDesc oldTupDesc = RelationGetDescr(OldHeap); |
| 2529 | TupleDesc newTupDesc = RelationGetDescr(NewHeap); |
| 2530 | HeapTuple copiedTuple; |
| 2531 | int i; |
| 2532 | |
| 2533 | heap_deform_tuple(tuple, oldTupDesc, values, isnull); |
| 2534 | |
| 2535 | /* Be sure to null out any dropped columns */ |
| 2536 | for (i = 0; i < newTupDesc->natts; i++) |
| 2537 | { |
| 2538 | if (TupleDescAttr(newTupDesc, i)->attisdropped) |
| 2539 | isnull[i] = true; |
| 2540 | } |
| 2541 | |
| 2542 | copiedTuple = heap_form_tuple(newTupDesc, values, isnull); |
| 2543 | |
| 2544 | /* The heap rewrite module does the rest */ |
| 2545 | rewrite_heap_tuple(rwstate, tuple, copiedTuple); |
| 2546 | |
| 2547 | heap_freetuple(copiedTuple); |
| 2548 | } |
| 2549 | |
| 2550 | /* |
| 2551 | * Check visibility of the tuple. |
| 2552 | */ |
| 2553 | static bool |
| 2554 | SampleHeapTupleVisible(TableScanDesc scan, Buffer buffer, |
| 2555 | HeapTuple tuple, |
| 2556 | OffsetNumber tupoffset) |
| 2557 | { |
| 2558 | HeapScanDesc hscan = (HeapScanDesc) scan; |
| 2559 | |
| 2560 | if (scan->rs_flags & SO_ALLOW_PAGEMODE) |
| 2561 | { |
| 2562 | /* |
| 2563 | * In pageatatime mode, heapgetpage() already did visibility checks, |
| 2564 | * so just look at the info it left in rs_vistuples[]. |
| 2565 | * |
| 2566 | * We use a binary search over the known-sorted array. Note: we could |
| 2567 | * save some effort if we insisted that NextSampleTuple select tuples |
| 2568 | * in increasing order, but it's not clear that there would be enough |
| 2569 | * gain to justify the restriction. |
| 2570 | */ |
| 2571 | int start = 0, |
| 2572 | end = hscan->rs_ntuples - 1; |
| 2573 | |
| 2574 | while (start <= end) |
| 2575 | { |
| 2576 | int mid = (start + end) / 2; |
| 2577 | OffsetNumber curoffset = hscan->rs_vistuples[mid]; |
| 2578 | |
| 2579 | if (tupoffset == curoffset) |
| 2580 | return true; |
| 2581 | else if (tupoffset < curoffset) |
| 2582 | end = mid - 1; |
| 2583 | else |
| 2584 | start = mid + 1; |
| 2585 | } |
| 2586 | |
| 2587 | return false; |
| 2588 | } |
| 2589 | else |
| 2590 | { |
| 2591 | /* Otherwise, we have to check the tuple individually. */ |
| 2592 | return HeapTupleSatisfiesVisibility(tuple, scan->rs_snapshot, |
| 2593 | buffer); |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | |
| 2598 | /* ------------------------------------------------------------------------ |
| 2599 | * Definition of the heap table access method. |
| 2600 | * ------------------------------------------------------------------------ |
| 2601 | */ |
| 2602 | |
| 2603 | static const TableAmRoutine heapam_methods = { |
| 2604 | .type = T_TableAmRoutine, |
| 2605 | |
| 2606 | .slot_callbacks = heapam_slot_callbacks, |
| 2607 | |
| 2608 | .scan_begin = heap_beginscan, |
| 2609 | .scan_end = heap_endscan, |
| 2610 | .scan_rescan = heap_rescan, |
| 2611 | .scan_getnextslot = heap_getnextslot, |
| 2612 | |
| 2613 | .parallelscan_estimate = table_block_parallelscan_estimate, |
| 2614 | .parallelscan_initialize = table_block_parallelscan_initialize, |
| 2615 | .parallelscan_reinitialize = table_block_parallelscan_reinitialize, |
| 2616 | |
| 2617 | .index_fetch_begin = heapam_index_fetch_begin, |
| 2618 | .index_fetch_reset = heapam_index_fetch_reset, |
| 2619 | .index_fetch_end = heapam_index_fetch_end, |
| 2620 | .index_fetch_tuple = heapam_index_fetch_tuple, |
| 2621 | |
| 2622 | .tuple_insert = heapam_tuple_insert, |
| 2623 | .tuple_insert_speculative = heapam_tuple_insert_speculative, |
| 2624 | .tuple_complete_speculative = heapam_tuple_complete_speculative, |
| 2625 | .multi_insert = heap_multi_insert, |
| 2626 | .tuple_delete = heapam_tuple_delete, |
| 2627 | .tuple_update = heapam_tuple_update, |
| 2628 | .tuple_lock = heapam_tuple_lock, |
| 2629 | .finish_bulk_insert = heapam_finish_bulk_insert, |
| 2630 | |
| 2631 | .tuple_fetch_row_version = heapam_fetch_row_version, |
| 2632 | .tuple_get_latest_tid = heap_get_latest_tid, |
| 2633 | .tuple_tid_valid = heapam_tuple_tid_valid, |
| 2634 | .tuple_satisfies_snapshot = heapam_tuple_satisfies_snapshot, |
| 2635 | .compute_xid_horizon_for_tuples = heap_compute_xid_horizon_for_tuples, |
| 2636 | |
| 2637 | .relation_set_new_filenode = heapam_relation_set_new_filenode, |
| 2638 | .relation_nontransactional_truncate = heapam_relation_nontransactional_truncate, |
| 2639 | .relation_copy_data = heapam_relation_copy_data, |
| 2640 | .relation_copy_for_cluster = heapam_relation_copy_for_cluster, |
| 2641 | .relation_vacuum = heap_vacuum_rel, |
| 2642 | .scan_analyze_next_block = heapam_scan_analyze_next_block, |
| 2643 | .scan_analyze_next_tuple = heapam_scan_analyze_next_tuple, |
| 2644 | .index_build_range_scan = heapam_index_build_range_scan, |
| 2645 | .index_validate_scan = heapam_index_validate_scan, |
| 2646 | |
| 2647 | .relation_size = heapam_relation_size, |
| 2648 | .relation_needs_toast_table = heapam_relation_needs_toast_table, |
| 2649 | |
| 2650 | .relation_estimate_size = heapam_estimate_rel_size, |
| 2651 | |
| 2652 | .scan_bitmap_next_block = heapam_scan_bitmap_next_block, |
| 2653 | .scan_bitmap_next_tuple = heapam_scan_bitmap_next_tuple, |
| 2654 | .scan_sample_next_block = heapam_scan_sample_next_block, |
| 2655 | .scan_sample_next_tuple = heapam_scan_sample_next_tuple |
| 2656 | }; |
| 2657 | |
| 2658 | |
| 2659 | const TableAmRoutine * |
| 2660 | GetHeapamTableAmRoutine(void) |
| 2661 | { |
| 2662 | return &heapam_methods; |
| 2663 | } |
| 2664 | |
| 2665 | Datum |
| 2666 | heap_tableam_handler(PG_FUNCTION_ARGS) |
| 2667 | { |
| 2668 | PG_RETURN_POINTER(&heapam_methods); |
| 2669 | } |
| 2670 | |