| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nbtinsert.c |
| 4 | * Item insertion in Lehman and Yao btrees for Postgres. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/nbtree/nbtinsert.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "access/nbtree.h" |
| 19 | #include "access/nbtxlog.h" |
| 20 | #include "access/tableam.h" |
| 21 | #include "access/transam.h" |
| 22 | #include "access/xloginsert.h" |
| 23 | #include "miscadmin.h" |
| 24 | #include "storage/lmgr.h" |
| 25 | #include "storage/predicate.h" |
| 26 | #include "storage/smgr.h" |
| 27 | |
| 28 | /* Minimum tree height for application of fastpath optimization */ |
| 29 | #define BTREE_FASTPATH_MIN_LEVEL 2 |
| 30 | |
| 31 | |
| 32 | static Buffer _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf); |
| 33 | |
| 34 | static TransactionId _bt_check_unique(Relation rel, BTInsertState insertstate, |
| 35 | Relation heapRel, |
| 36 | IndexUniqueCheck checkUnique, bool *is_unique, |
| 37 | uint32 *speculativeToken); |
| 38 | static OffsetNumber _bt_findinsertloc(Relation rel, |
| 39 | BTInsertState insertstate, |
| 40 | bool checkingunique, |
| 41 | BTStack stack, |
| 42 | Relation heapRel); |
| 43 | static void _bt_stepright(Relation rel, BTInsertState insertstate, BTStack stack); |
| 44 | static void _bt_insertonpg(Relation rel, BTScanInsert itup_key, |
| 45 | Buffer buf, |
| 46 | Buffer cbuf, |
| 47 | BTStack stack, |
| 48 | IndexTuple itup, |
| 49 | OffsetNumber newitemoff, |
| 50 | bool split_only_page); |
| 51 | static Buffer _bt_split(Relation rel, BTScanInsert itup_key, Buffer buf, |
| 52 | Buffer cbuf, OffsetNumber newitemoff, Size newitemsz, |
| 53 | IndexTuple newitem); |
| 54 | static void _bt_insert_parent(Relation rel, Buffer buf, Buffer rbuf, |
| 55 | BTStack stack, bool is_root, bool is_only); |
| 56 | static bool _bt_pgaddtup(Page page, Size itemsize, IndexTuple itup, |
| 57 | OffsetNumber itup_off); |
| 58 | static void _bt_vacuum_one_page(Relation rel, Buffer buffer, Relation heapRel); |
| 59 | |
| 60 | /* |
| 61 | * _bt_doinsert() -- Handle insertion of a single index tuple in the tree. |
| 62 | * |
| 63 | * This routine is called by the public interface routine, btinsert. |
| 64 | * By here, itup is filled in, including the TID. |
| 65 | * |
| 66 | * If checkUnique is UNIQUE_CHECK_NO or UNIQUE_CHECK_PARTIAL, this |
| 67 | * will allow duplicates. Otherwise (UNIQUE_CHECK_YES or |
| 68 | * UNIQUE_CHECK_EXISTING) it will throw error for a duplicate. |
| 69 | * For UNIQUE_CHECK_EXISTING we merely run the duplicate check, and |
| 70 | * don't actually insert. |
| 71 | * |
| 72 | * The result value is only significant for UNIQUE_CHECK_PARTIAL: |
| 73 | * it must be true if the entry is known unique, else false. |
| 74 | * (In the current implementation we'll also return true after a |
| 75 | * successful UNIQUE_CHECK_YES or UNIQUE_CHECK_EXISTING call, but |
| 76 | * that's just a coding artifact.) |
| 77 | */ |
| 78 | bool |
| 79 | _bt_doinsert(Relation rel, IndexTuple itup, |
| 80 | IndexUniqueCheck checkUnique, Relation heapRel) |
| 81 | { |
| 82 | bool is_unique = false; |
| 83 | BTInsertStateData insertstate; |
| 84 | BTScanInsert itup_key; |
| 85 | BTStack stack = NULL; |
| 86 | Buffer buf; |
| 87 | bool fastpath; |
| 88 | bool checkingunique = (checkUnique != UNIQUE_CHECK_NO); |
| 89 | |
| 90 | /* we need an insertion scan key to do our search, so build one */ |
| 91 | itup_key = _bt_mkscankey(rel, itup); |
| 92 | |
| 93 | if (checkingunique) |
| 94 | { |
| 95 | if (!itup_key->anynullkeys) |
| 96 | { |
| 97 | /* No (heapkeyspace) scantid until uniqueness established */ |
| 98 | itup_key->scantid = NULL; |
| 99 | } |
| 100 | else |
| 101 | { |
| 102 | /* |
| 103 | * Scan key for new tuple contains NULL key values. Bypass |
| 104 | * checkingunique steps. They are unnecessary because core code |
| 105 | * considers NULL unequal to every value, including NULL. |
| 106 | * |
| 107 | * This optimization avoids O(N^2) behavior within the |
| 108 | * _bt_findinsertloc() heapkeyspace path when a unique index has a |
| 109 | * large number of "duplicates" with NULL key values. |
| 110 | */ |
| 111 | checkingunique = false; |
| 112 | /* Tuple is unique in the sense that core code cares about */ |
| 113 | Assert(checkUnique != UNIQUE_CHECK_EXISTING); |
| 114 | is_unique = true; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Fill in the BTInsertState working area, to track the current page and |
| 120 | * position within the page to insert on |
| 121 | */ |
| 122 | insertstate.itup = itup; |
| 123 | /* PageAddItem will MAXALIGN(), but be consistent */ |
| 124 | insertstate.itemsz = MAXALIGN(IndexTupleSize(itup)); |
| 125 | insertstate.itup_key = itup_key; |
| 126 | insertstate.bounds_valid = false; |
| 127 | insertstate.buf = InvalidBuffer; |
| 128 | |
| 129 | /* |
| 130 | * It's very common to have an index on an auto-incremented or |
| 131 | * monotonically increasing value. In such cases, every insertion happens |
| 132 | * towards the end of the index. We try to optimize that case by caching |
| 133 | * the right-most leaf of the index. If our cached block is still the |
| 134 | * rightmost leaf, has enough free space to accommodate a new entry and |
| 135 | * the insertion key is strictly greater than the first key in this page, |
| 136 | * then we can safely conclude that the new key will be inserted in the |
| 137 | * cached block. So we simply search within the cached block and insert |
| 138 | * the key at the appropriate location. We call it a fastpath. |
| 139 | * |
| 140 | * Testing has revealed, though, that the fastpath can result in increased |
| 141 | * contention on the exclusive-lock on the rightmost leaf page. So we |
| 142 | * conditionally check if the lock is available. If it's not available |
| 143 | * then we simply abandon the fastpath and take the regular path. This |
| 144 | * makes sense because unavailability of the lock also signals that some |
| 145 | * other backend might be concurrently inserting into the page, thus |
| 146 | * reducing our chances to finding an insertion place in this page. |
| 147 | */ |
| 148 | top: |
| 149 | fastpath = false; |
| 150 | if (RelationGetTargetBlock(rel) != InvalidBlockNumber) |
| 151 | { |
| 152 | Page page; |
| 153 | BTPageOpaque lpageop; |
| 154 | |
| 155 | /* |
| 156 | * Conditionally acquire exclusive lock on the buffer before doing any |
| 157 | * checks. If we don't get the lock, we simply follow slowpath. If we |
| 158 | * do get the lock, this ensures that the index state cannot change, |
| 159 | * as far as the rightmost part of the index is concerned. |
| 160 | */ |
| 161 | buf = ReadBuffer(rel, RelationGetTargetBlock(rel)); |
| 162 | |
| 163 | if (ConditionalLockBuffer(buf)) |
| 164 | { |
| 165 | _bt_checkpage(rel, buf); |
| 166 | |
| 167 | page = BufferGetPage(buf); |
| 168 | |
| 169 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 170 | |
| 171 | /* |
| 172 | * Check if the page is still the rightmost leaf page, has enough |
| 173 | * free space to accommodate the new tuple, and the insertion scan |
| 174 | * key is strictly greater than the first key on the page. |
| 175 | */ |
| 176 | if (P_ISLEAF(lpageop) && P_RIGHTMOST(lpageop) && |
| 177 | !P_IGNORE(lpageop) && |
| 178 | (PageGetFreeSpace(page) > insertstate.itemsz) && |
| 179 | PageGetMaxOffsetNumber(page) >= P_FIRSTDATAKEY(lpageop) && |
| 180 | _bt_compare(rel, itup_key, page, P_FIRSTDATAKEY(lpageop)) > 0) |
| 181 | { |
| 182 | /* |
| 183 | * The right-most block should never have an incomplete split. |
| 184 | * But be paranoid and check for it anyway. |
| 185 | */ |
| 186 | Assert(!P_INCOMPLETE_SPLIT(lpageop)); |
| 187 | fastpath = true; |
| 188 | } |
| 189 | else |
| 190 | { |
| 191 | _bt_relbuf(rel, buf); |
| 192 | |
| 193 | /* |
| 194 | * Something did not work out. Just forget about the cached |
| 195 | * block and follow the normal path. It might be set again if |
| 196 | * the conditions are favourable. |
| 197 | */ |
| 198 | RelationSetTargetBlock(rel, InvalidBlockNumber); |
| 199 | } |
| 200 | } |
| 201 | else |
| 202 | { |
| 203 | ReleaseBuffer(buf); |
| 204 | |
| 205 | /* |
| 206 | * If someone's holding a lock, it's likely to change anyway, so |
| 207 | * don't try again until we get an updated rightmost leaf. |
| 208 | */ |
| 209 | RelationSetTargetBlock(rel, InvalidBlockNumber); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | if (!fastpath) |
| 214 | { |
| 215 | /* |
| 216 | * Find the first page containing this key. Buffer returned by |
| 217 | * _bt_search() is locked in exclusive mode. |
| 218 | */ |
| 219 | stack = _bt_search(rel, itup_key, &buf, BT_WRITE, NULL); |
| 220 | } |
| 221 | |
| 222 | insertstate.buf = buf; |
| 223 | buf = InvalidBuffer; /* insertstate.buf now owns the buffer */ |
| 224 | |
| 225 | /* |
| 226 | * If we're not allowing duplicates, make sure the key isn't already in |
| 227 | * the index. |
| 228 | * |
| 229 | * NOTE: obviously, _bt_check_unique can only detect keys that are already |
| 230 | * in the index; so it cannot defend against concurrent insertions of the |
| 231 | * same key. We protect against that by means of holding a write lock on |
| 232 | * the first page the value could be on, with omitted/-inf value for the |
| 233 | * implicit heap TID tiebreaker attribute. Any other would-be inserter of |
| 234 | * the same key must acquire a write lock on the same page, so only one |
| 235 | * would-be inserter can be making the check at one time. Furthermore, |
| 236 | * once we are past the check we hold write locks continuously until we |
| 237 | * have performed our insertion, so no later inserter can fail to see our |
| 238 | * insertion. (This requires some care in _bt_findinsertloc.) |
| 239 | * |
| 240 | * If we must wait for another xact, we release the lock while waiting, |
| 241 | * and then must start over completely. |
| 242 | * |
| 243 | * For a partial uniqueness check, we don't wait for the other xact. Just |
| 244 | * let the tuple in and return false for possibly non-unique, or true for |
| 245 | * definitely unique. |
| 246 | */ |
| 247 | if (checkingunique) |
| 248 | { |
| 249 | TransactionId xwait; |
| 250 | uint32 speculativeToken; |
| 251 | |
| 252 | xwait = _bt_check_unique(rel, &insertstate, heapRel, checkUnique, |
| 253 | &is_unique, &speculativeToken); |
| 254 | |
| 255 | if (TransactionIdIsValid(xwait)) |
| 256 | { |
| 257 | /* Have to wait for the other guy ... */ |
| 258 | _bt_relbuf(rel, insertstate.buf); |
| 259 | insertstate.buf = InvalidBuffer; |
| 260 | |
| 261 | /* |
| 262 | * If it's a speculative insertion, wait for it to finish (ie. to |
| 263 | * go ahead with the insertion, or kill the tuple). Otherwise |
| 264 | * wait for the transaction to finish as usual. |
| 265 | */ |
| 266 | if (speculativeToken) |
| 267 | SpeculativeInsertionWait(xwait, speculativeToken); |
| 268 | else |
| 269 | XactLockTableWait(xwait, rel, &itup->t_tid, XLTW_InsertIndex); |
| 270 | |
| 271 | /* start over... */ |
| 272 | if (stack) |
| 273 | _bt_freestack(stack); |
| 274 | goto top; |
| 275 | } |
| 276 | |
| 277 | /* Uniqueness is established -- restore heap tid as scantid */ |
| 278 | if (itup_key->heapkeyspace) |
| 279 | itup_key->scantid = &itup->t_tid; |
| 280 | } |
| 281 | |
| 282 | if (checkUnique != UNIQUE_CHECK_EXISTING) |
| 283 | { |
| 284 | OffsetNumber newitemoff; |
| 285 | |
| 286 | /* |
| 287 | * The only conflict predicate locking cares about for indexes is when |
| 288 | * an index tuple insert conflicts with an existing lock. We don't |
| 289 | * know the actual page we're going to insert on for sure just yet in |
| 290 | * checkingunique and !heapkeyspace cases, but it's okay to use the |
| 291 | * first page the value could be on (with scantid omitted) instead. |
| 292 | */ |
| 293 | CheckForSerializableConflictIn(rel, NULL, insertstate.buf); |
| 294 | |
| 295 | /* |
| 296 | * Do the insertion. Note that insertstate contains cached binary |
| 297 | * search bounds established within _bt_check_unique when insertion is |
| 298 | * checkingunique. |
| 299 | */ |
| 300 | newitemoff = _bt_findinsertloc(rel, &insertstate, checkingunique, |
| 301 | stack, heapRel); |
| 302 | _bt_insertonpg(rel, itup_key, insertstate.buf, InvalidBuffer, stack, |
| 303 | itup, newitemoff, false); |
| 304 | } |
| 305 | else |
| 306 | { |
| 307 | /* just release the buffer */ |
| 308 | _bt_relbuf(rel, insertstate.buf); |
| 309 | } |
| 310 | |
| 311 | /* be tidy */ |
| 312 | if (stack) |
| 313 | _bt_freestack(stack); |
| 314 | pfree(itup_key); |
| 315 | |
| 316 | return is_unique; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * _bt_check_unique() -- Check for violation of unique index constraint |
| 321 | * |
| 322 | * Returns InvalidTransactionId if there is no conflict, else an xact ID |
| 323 | * we must wait for to see if it commits a conflicting tuple. If an actual |
| 324 | * conflict is detected, no return --- just ereport(). If an xact ID is |
| 325 | * returned, and the conflicting tuple still has a speculative insertion in |
| 326 | * progress, *speculativeToken is set to non-zero, and the caller can wait for |
| 327 | * the verdict on the insertion using SpeculativeInsertionWait(). |
| 328 | * |
| 329 | * However, if checkUnique == UNIQUE_CHECK_PARTIAL, we always return |
| 330 | * InvalidTransactionId because we don't want to wait. In this case we |
| 331 | * set *is_unique to false if there is a potential conflict, and the |
| 332 | * core code must redo the uniqueness check later. |
| 333 | * |
| 334 | * As a side-effect, sets state in insertstate that can later be used by |
| 335 | * _bt_findinsertloc() to reuse most of the binary search work we do |
| 336 | * here. |
| 337 | * |
| 338 | * Do not call here when there are NULL values in scan key. NULL should be |
| 339 | * considered unequal to NULL when checking for duplicates, but we are not |
| 340 | * prepared to handle that correctly. |
| 341 | */ |
| 342 | static TransactionId |
| 343 | _bt_check_unique(Relation rel, BTInsertState insertstate, Relation heapRel, |
| 344 | IndexUniqueCheck checkUnique, bool *is_unique, |
| 345 | uint32 *speculativeToken) |
| 346 | { |
| 347 | IndexTuple itup = insertstate->itup; |
| 348 | BTScanInsert itup_key = insertstate->itup_key; |
| 349 | SnapshotData SnapshotDirty; |
| 350 | OffsetNumber offset; |
| 351 | OffsetNumber maxoff; |
| 352 | Page page; |
| 353 | BTPageOpaque opaque; |
| 354 | Buffer nbuf = InvalidBuffer; |
| 355 | bool found = false; |
| 356 | |
| 357 | /* Assume unique until we find a duplicate */ |
| 358 | *is_unique = true; |
| 359 | |
| 360 | InitDirtySnapshot(SnapshotDirty); |
| 361 | |
| 362 | page = BufferGetPage(insertstate->buf); |
| 363 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 364 | maxoff = PageGetMaxOffsetNumber(page); |
| 365 | |
| 366 | /* |
| 367 | * Find the first tuple with the same key. |
| 368 | * |
| 369 | * This also saves the binary search bounds in insertstate. We use them |
| 370 | * in the fastpath below, but also in the _bt_findinsertloc() call later. |
| 371 | */ |
| 372 | Assert(!insertstate->bounds_valid); |
| 373 | offset = _bt_binsrch_insert(rel, insertstate); |
| 374 | |
| 375 | /* |
| 376 | * Scan over all equal tuples, looking for live conflicts. |
| 377 | */ |
| 378 | Assert(!insertstate->bounds_valid || insertstate->low == offset); |
| 379 | Assert(!itup_key->anynullkeys); |
| 380 | Assert(itup_key->scantid == NULL); |
| 381 | for (;;) |
| 382 | { |
| 383 | ItemId curitemid; |
| 384 | IndexTuple curitup; |
| 385 | BlockNumber nblkno; |
| 386 | |
| 387 | /* |
| 388 | * make sure the offset points to an actual item before trying to |
| 389 | * examine it... |
| 390 | */ |
| 391 | if (offset <= maxoff) |
| 392 | { |
| 393 | /* |
| 394 | * Fastpath: In most cases, we can use cached search bounds to |
| 395 | * limit our consideration to items that are definitely |
| 396 | * duplicates. This fastpath doesn't apply when the original page |
| 397 | * is empty, or when initial offset is past the end of the |
| 398 | * original page, which may indicate that we need to examine a |
| 399 | * second or subsequent page. |
| 400 | * |
| 401 | * Note that this optimization allows us to avoid calling |
| 402 | * _bt_compare() directly when there are no duplicates, as long as |
| 403 | * the offset where the key will go is not at the end of the page. |
| 404 | */ |
| 405 | if (nbuf == InvalidBuffer && offset == insertstate->stricthigh) |
| 406 | { |
| 407 | Assert(insertstate->bounds_valid); |
| 408 | Assert(insertstate->low >= P_FIRSTDATAKEY(opaque)); |
| 409 | Assert(insertstate->low <= insertstate->stricthigh); |
| 410 | Assert(_bt_compare(rel, itup_key, page, offset) < 0); |
| 411 | break; |
| 412 | } |
| 413 | |
| 414 | curitemid = PageGetItemId(page, offset); |
| 415 | |
| 416 | /* |
| 417 | * We can skip items that are marked killed. |
| 418 | * |
| 419 | * In the presence of heavy update activity an index may contain |
| 420 | * many killed items with the same key; running _bt_compare() on |
| 421 | * each killed item gets expensive. Just advance over killed |
| 422 | * items as quickly as we can. We only apply _bt_compare() when |
| 423 | * we get to a non-killed item. Even those comparisons could be |
| 424 | * avoided (in the common case where there is only one page to |
| 425 | * visit) by reusing bounds, but just skipping dead items is fast |
| 426 | * enough. |
| 427 | */ |
| 428 | if (!ItemIdIsDead(curitemid)) |
| 429 | { |
| 430 | ItemPointerData htid; |
| 431 | bool all_dead; |
| 432 | |
| 433 | if (_bt_compare(rel, itup_key, page, offset) != 0) |
| 434 | break; /* we're past all the equal tuples */ |
| 435 | |
| 436 | /* okay, we gotta fetch the heap tuple ... */ |
| 437 | curitup = (IndexTuple) PageGetItem(page, curitemid); |
| 438 | htid = curitup->t_tid; |
| 439 | |
| 440 | /* |
| 441 | * If we are doing a recheck, we expect to find the tuple we |
| 442 | * are rechecking. It's not a duplicate, but we have to keep |
| 443 | * scanning. |
| 444 | */ |
| 445 | if (checkUnique == UNIQUE_CHECK_EXISTING && |
| 446 | ItemPointerCompare(&htid, &itup->t_tid) == 0) |
| 447 | { |
| 448 | found = true; |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * Check if there's any table tuples for this index entry |
| 453 | * satisfying SnapshotDirty. This is necessary because for AMs |
| 454 | * with optimizations like heap's HOT, we have just a single |
| 455 | * index entry for the entire chain. |
| 456 | */ |
| 457 | else if (table_index_fetch_tuple_check(heapRel, &htid, |
| 458 | &SnapshotDirty, |
| 459 | &all_dead)) |
| 460 | { |
| 461 | TransactionId xwait; |
| 462 | |
| 463 | /* |
| 464 | * It is a duplicate. If we are only doing a partial |
| 465 | * check, then don't bother checking if the tuple is being |
| 466 | * updated in another transaction. Just return the fact |
| 467 | * that it is a potential conflict and leave the full |
| 468 | * check till later. Don't invalidate binary search |
| 469 | * bounds. |
| 470 | */ |
| 471 | if (checkUnique == UNIQUE_CHECK_PARTIAL) |
| 472 | { |
| 473 | if (nbuf != InvalidBuffer) |
| 474 | _bt_relbuf(rel, nbuf); |
| 475 | *is_unique = false; |
| 476 | return InvalidTransactionId; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * If this tuple is being updated by other transaction |
| 481 | * then we have to wait for its commit/abort. |
| 482 | */ |
| 483 | xwait = (TransactionIdIsValid(SnapshotDirty.xmin)) ? |
| 484 | SnapshotDirty.xmin : SnapshotDirty.xmax; |
| 485 | |
| 486 | if (TransactionIdIsValid(xwait)) |
| 487 | { |
| 488 | if (nbuf != InvalidBuffer) |
| 489 | _bt_relbuf(rel, nbuf); |
| 490 | /* Tell _bt_doinsert to wait... */ |
| 491 | *speculativeToken = SnapshotDirty.speculativeToken; |
| 492 | /* Caller releases lock on buf immediately */ |
| 493 | insertstate->bounds_valid = false; |
| 494 | return xwait; |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Otherwise we have a definite conflict. But before |
| 499 | * complaining, look to see if the tuple we want to insert |
| 500 | * is itself now committed dead --- if so, don't complain. |
| 501 | * This is a waste of time in normal scenarios but we must |
| 502 | * do it to support CREATE INDEX CONCURRENTLY. |
| 503 | * |
| 504 | * We must follow HOT-chains here because during |
| 505 | * concurrent index build, we insert the root TID though |
| 506 | * the actual tuple may be somewhere in the HOT-chain. |
| 507 | * While following the chain we might not stop at the |
| 508 | * exact tuple which triggered the insert, but that's OK |
| 509 | * because if we find a live tuple anywhere in this chain, |
| 510 | * we have a unique key conflict. The other live tuple is |
| 511 | * not part of this chain because it had a different index |
| 512 | * entry. |
| 513 | */ |
| 514 | htid = itup->t_tid; |
| 515 | if (table_index_fetch_tuple_check(heapRel, &htid, |
| 516 | SnapshotSelf, NULL)) |
| 517 | { |
| 518 | /* Normal case --- it's still live */ |
| 519 | } |
| 520 | else |
| 521 | { |
| 522 | /* |
| 523 | * It's been deleted, so no error, and no need to |
| 524 | * continue searching |
| 525 | */ |
| 526 | break; |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Check for a conflict-in as we would if we were going to |
| 531 | * write to this page. We aren't actually going to write, |
| 532 | * but we want a chance to report SSI conflicts that would |
| 533 | * otherwise be masked by this unique constraint |
| 534 | * violation. |
| 535 | */ |
| 536 | CheckForSerializableConflictIn(rel, NULL, insertstate->buf); |
| 537 | |
| 538 | /* |
| 539 | * This is a definite conflict. Break the tuple down into |
| 540 | * datums and report the error. But first, make sure we |
| 541 | * release the buffer locks we're holding --- |
| 542 | * BuildIndexValueDescription could make catalog accesses, |
| 543 | * which in the worst case might touch this same index and |
| 544 | * cause deadlocks. |
| 545 | */ |
| 546 | if (nbuf != InvalidBuffer) |
| 547 | _bt_relbuf(rel, nbuf); |
| 548 | _bt_relbuf(rel, insertstate->buf); |
| 549 | insertstate->buf = InvalidBuffer; |
| 550 | insertstate->bounds_valid = false; |
| 551 | |
| 552 | { |
| 553 | Datum values[INDEX_MAX_KEYS]; |
| 554 | bool isnull[INDEX_MAX_KEYS]; |
| 555 | char *key_desc; |
| 556 | |
| 557 | index_deform_tuple(itup, RelationGetDescr(rel), |
| 558 | values, isnull); |
| 559 | |
| 560 | key_desc = BuildIndexValueDescription(rel, values, |
| 561 | isnull); |
| 562 | |
| 563 | ereport(ERROR, |
| 564 | (errcode(ERRCODE_UNIQUE_VIOLATION), |
| 565 | errmsg("duplicate key value violates unique constraint \"%s\"" , |
| 566 | RelationGetRelationName(rel)), |
| 567 | key_desc ? errdetail("Key %s already exists." , |
| 568 | key_desc) : 0, |
| 569 | errtableconstraint(heapRel, |
| 570 | RelationGetRelationName(rel)))); |
| 571 | } |
| 572 | } |
| 573 | else if (all_dead) |
| 574 | { |
| 575 | /* |
| 576 | * The conflicting tuple (or whole HOT chain) is dead to |
| 577 | * everyone, so we may as well mark the index entry |
| 578 | * killed. |
| 579 | */ |
| 580 | ItemIdMarkDead(curitemid); |
| 581 | opaque->btpo_flags |= BTP_HAS_GARBAGE; |
| 582 | |
| 583 | /* |
| 584 | * Mark buffer with a dirty hint, since state is not |
| 585 | * crucial. Be sure to mark the proper buffer dirty. |
| 586 | */ |
| 587 | if (nbuf != InvalidBuffer) |
| 588 | MarkBufferDirtyHint(nbuf, true); |
| 589 | else |
| 590 | MarkBufferDirtyHint(insertstate->buf, true); |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * Advance to next tuple to continue checking. |
| 597 | */ |
| 598 | if (offset < maxoff) |
| 599 | offset = OffsetNumberNext(offset); |
| 600 | else |
| 601 | { |
| 602 | int highkeycmp; |
| 603 | |
| 604 | /* If scankey == hikey we gotta check the next page too */ |
| 605 | if (P_RIGHTMOST(opaque)) |
| 606 | break; |
| 607 | highkeycmp = _bt_compare(rel, itup_key, page, P_HIKEY); |
| 608 | Assert(highkeycmp <= 0); |
| 609 | if (highkeycmp != 0) |
| 610 | break; |
| 611 | /* Advance to next non-dead page --- there must be one */ |
| 612 | for (;;) |
| 613 | { |
| 614 | nblkno = opaque->btpo_next; |
| 615 | nbuf = _bt_relandgetbuf(rel, nbuf, nblkno, BT_READ); |
| 616 | page = BufferGetPage(nbuf); |
| 617 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 618 | if (!P_IGNORE(opaque)) |
| 619 | break; |
| 620 | if (P_RIGHTMOST(opaque)) |
| 621 | elog(ERROR, "fell off the end of index \"%s\"" , |
| 622 | RelationGetRelationName(rel)); |
| 623 | } |
| 624 | maxoff = PageGetMaxOffsetNumber(page); |
| 625 | offset = P_FIRSTDATAKEY(opaque); |
| 626 | /* Don't invalidate binary search bounds */ |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * If we are doing a recheck then we should have found the tuple we are |
| 632 | * checking. Otherwise there's something very wrong --- probably, the |
| 633 | * index is on a non-immutable expression. |
| 634 | */ |
| 635 | if (checkUnique == UNIQUE_CHECK_EXISTING && !found) |
| 636 | ereport(ERROR, |
| 637 | (errcode(ERRCODE_INTERNAL_ERROR), |
| 638 | errmsg("failed to re-find tuple within index \"%s\"" , |
| 639 | RelationGetRelationName(rel)), |
| 640 | errhint("This may be because of a non-immutable index expression." ), |
| 641 | errtableconstraint(heapRel, |
| 642 | RelationGetRelationName(rel)))); |
| 643 | |
| 644 | if (nbuf != InvalidBuffer) |
| 645 | _bt_relbuf(rel, nbuf); |
| 646 | |
| 647 | return InvalidTransactionId; |
| 648 | } |
| 649 | |
| 650 | |
| 651 | /* |
| 652 | * _bt_findinsertloc() -- Finds an insert location for a tuple |
| 653 | * |
| 654 | * On entry, insertstate buffer contains the page the new tuple belongs |
| 655 | * on. It is exclusive-locked and pinned by the caller. |
| 656 | * |
| 657 | * If 'checkingunique' is true, the buffer on entry is the first page |
| 658 | * that contains duplicates of the new key. If there are duplicates on |
| 659 | * multiple pages, the correct insertion position might be some page to |
| 660 | * the right, rather than the first page. In that case, this function |
| 661 | * moves right to the correct target page. |
| 662 | * |
| 663 | * (In a !heapkeyspace index, there can be multiple pages with the same |
| 664 | * high key, where the new tuple could legitimately be placed on. In |
| 665 | * that case, the caller passes the first page containing duplicates, |
| 666 | * just like when checkingunique=true. If that page doesn't have enough |
| 667 | * room for the new tuple, this function moves right, trying to find a |
| 668 | * legal page that does.) |
| 669 | * |
| 670 | * On exit, insertstate buffer contains the chosen insertion page, and |
| 671 | * the offset within that page is returned. If _bt_findinsertloc needed |
| 672 | * to move right, the lock and pin on the original page are released, and |
| 673 | * the new buffer is exclusively locked and pinned instead. |
| 674 | * |
| 675 | * If insertstate contains cached binary search bounds, we will take |
| 676 | * advantage of them. This avoids repeating comparisons that we made in |
| 677 | * _bt_check_unique() already. |
| 678 | * |
| 679 | * If there is not enough room on the page for the new tuple, we try to |
| 680 | * make room by removing any LP_DEAD tuples. |
| 681 | */ |
| 682 | static OffsetNumber |
| 683 | _bt_findinsertloc(Relation rel, |
| 684 | BTInsertState insertstate, |
| 685 | bool checkingunique, |
| 686 | BTStack stack, |
| 687 | Relation heapRel) |
| 688 | { |
| 689 | BTScanInsert itup_key = insertstate->itup_key; |
| 690 | Page page = BufferGetPage(insertstate->buf); |
| 691 | BTPageOpaque lpageop; |
| 692 | |
| 693 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 694 | |
| 695 | /* Check 1/3 of a page restriction */ |
| 696 | if (unlikely(insertstate->itemsz > BTMaxItemSize(page))) |
| 697 | _bt_check_third_page(rel, heapRel, itup_key->heapkeyspace, page, |
| 698 | insertstate->itup); |
| 699 | |
| 700 | Assert(P_ISLEAF(lpageop) && !P_INCOMPLETE_SPLIT(lpageop)); |
| 701 | Assert(!insertstate->bounds_valid || checkingunique); |
| 702 | Assert(!itup_key->heapkeyspace || itup_key->scantid != NULL); |
| 703 | Assert(itup_key->heapkeyspace || itup_key->scantid == NULL); |
| 704 | |
| 705 | if (itup_key->heapkeyspace) |
| 706 | { |
| 707 | /* |
| 708 | * If we're inserting into a unique index, we may have to walk right |
| 709 | * through leaf pages to find the one leaf page that we must insert on |
| 710 | * to. |
| 711 | * |
| 712 | * This is needed for checkingunique callers because a scantid was not |
| 713 | * used when we called _bt_search(). scantid can only be set after |
| 714 | * _bt_check_unique() has checked for duplicates. The buffer |
| 715 | * initially stored in insertstate->buf has the page where the first |
| 716 | * duplicate key might be found, which isn't always the page that new |
| 717 | * tuple belongs on. The heap TID attribute for new tuple (scantid) |
| 718 | * could force us to insert on a sibling page, though that should be |
| 719 | * very rare in practice. |
| 720 | */ |
| 721 | if (checkingunique) |
| 722 | { |
| 723 | for (;;) |
| 724 | { |
| 725 | /* |
| 726 | * Does the new tuple belong on this page? |
| 727 | * |
| 728 | * The earlier _bt_check_unique() call may well have |
| 729 | * established a strict upper bound on the offset for the new |
| 730 | * item. If it's not the last item of the page (i.e. if there |
| 731 | * is at least one tuple on the page that goes after the tuple |
| 732 | * we're inserting) then we know that the tuple belongs on |
| 733 | * this page. We can skip the high key check. |
| 734 | */ |
| 735 | if (insertstate->bounds_valid && |
| 736 | insertstate->low <= insertstate->stricthigh && |
| 737 | insertstate->stricthigh <= PageGetMaxOffsetNumber(page)) |
| 738 | break; |
| 739 | |
| 740 | /* Test '<=', not '!=', since scantid is set now */ |
| 741 | if (P_RIGHTMOST(lpageop) || |
| 742 | _bt_compare(rel, itup_key, page, P_HIKEY) <= 0) |
| 743 | break; |
| 744 | |
| 745 | _bt_stepright(rel, insertstate, stack); |
| 746 | /* Update local state after stepping right */ |
| 747 | page = BufferGetPage(insertstate->buf); |
| 748 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * If the target page is full, see if we can obtain enough space by |
| 754 | * erasing LP_DEAD items |
| 755 | */ |
| 756 | if (PageGetFreeSpace(page) < insertstate->itemsz && |
| 757 | P_HAS_GARBAGE(lpageop)) |
| 758 | { |
| 759 | _bt_vacuum_one_page(rel, insertstate->buf, heapRel); |
| 760 | insertstate->bounds_valid = false; |
| 761 | } |
| 762 | } |
| 763 | else |
| 764 | { |
| 765 | /*---------- |
| 766 | * This is a !heapkeyspace (version 2 or 3) index. The current page |
| 767 | * is the first page that we could insert the new tuple to, but there |
| 768 | * may be other pages to the right that we could opt to use instead. |
| 769 | * |
| 770 | * If the new key is equal to one or more existing keys, we can |
| 771 | * legitimately place it anywhere in the series of equal keys. In |
| 772 | * fact, if the new key is equal to the page's "high key" we can place |
| 773 | * it on the next page. If it is equal to the high key, and there's |
| 774 | * not room to insert the new tuple on the current page without |
| 775 | * splitting, then we move right hoping to find more free space and |
| 776 | * avoid a split. |
| 777 | * |
| 778 | * Keep scanning right until we |
| 779 | * (a) find a page with enough free space, |
| 780 | * (b) reach the last page where the tuple can legally go, or |
| 781 | * (c) get tired of searching. |
| 782 | * (c) is not flippant; it is important because if there are many |
| 783 | * pages' worth of equal keys, it's better to split one of the early |
| 784 | * pages than to scan all the way to the end of the run of equal keys |
| 785 | * on every insert. We implement "get tired" as a random choice, |
| 786 | * since stopping after scanning a fixed number of pages wouldn't work |
| 787 | * well (we'd never reach the right-hand side of previously split |
| 788 | * pages). The probability of moving right is set at 0.99, which may |
| 789 | * seem too high to change the behavior much, but it does an excellent |
| 790 | * job of preventing O(N^2) behavior with many equal keys. |
| 791 | *---------- |
| 792 | */ |
| 793 | while (PageGetFreeSpace(page) < insertstate->itemsz) |
| 794 | { |
| 795 | /* |
| 796 | * Before considering moving right, see if we can obtain enough |
| 797 | * space by erasing LP_DEAD items |
| 798 | */ |
| 799 | if (P_HAS_GARBAGE(lpageop)) |
| 800 | { |
| 801 | _bt_vacuum_one_page(rel, insertstate->buf, heapRel); |
| 802 | insertstate->bounds_valid = false; |
| 803 | |
| 804 | if (PageGetFreeSpace(page) >= insertstate->itemsz) |
| 805 | break; /* OK, now we have enough space */ |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * Nope, so check conditions (b) and (c) enumerated above |
| 810 | * |
| 811 | * The earlier _bt_check_unique() call may well have established a |
| 812 | * strict upper bound on the offset for the new item. If it's not |
| 813 | * the last item of the page (i.e. if there is at least one tuple |
| 814 | * on the page that's greater than the tuple we're inserting to) |
| 815 | * then we know that the tuple belongs on this page. We can skip |
| 816 | * the high key check. |
| 817 | */ |
| 818 | if (insertstate->bounds_valid && |
| 819 | insertstate->low <= insertstate->stricthigh && |
| 820 | insertstate->stricthigh <= PageGetMaxOffsetNumber(page)) |
| 821 | break; |
| 822 | |
| 823 | if (P_RIGHTMOST(lpageop) || |
| 824 | _bt_compare(rel, itup_key, page, P_HIKEY) != 0 || |
| 825 | random() <= (MAX_RANDOM_VALUE / 100)) |
| 826 | break; |
| 827 | |
| 828 | _bt_stepright(rel, insertstate, stack); |
| 829 | /* Update local state after stepping right */ |
| 830 | page = BufferGetPage(insertstate->buf); |
| 831 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * We should now be on the correct page. Find the offset within the page |
| 837 | * for the new tuple. (Possibly reusing earlier search bounds.) |
| 838 | */ |
| 839 | Assert(P_RIGHTMOST(lpageop) || |
| 840 | _bt_compare(rel, itup_key, page, P_HIKEY) <= 0); |
| 841 | |
| 842 | return _bt_binsrch_insert(rel, insertstate); |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * Step right to next non-dead page, during insertion. |
| 847 | * |
| 848 | * This is a bit more complicated than moving right in a search. We must |
| 849 | * write-lock the target page before releasing write lock on current page; |
| 850 | * else someone else's _bt_check_unique scan could fail to see our insertion. |
| 851 | * Write locks on intermediate dead pages won't do because we don't know when |
| 852 | * they will get de-linked from the tree. |
| 853 | * |
| 854 | * This is more aggressive than it needs to be for non-unique !heapkeyspace |
| 855 | * indexes. |
| 856 | */ |
| 857 | static void |
| 858 | _bt_stepright(Relation rel, BTInsertState insertstate, BTStack stack) |
| 859 | { |
| 860 | Page page; |
| 861 | BTPageOpaque lpageop; |
| 862 | Buffer rbuf; |
| 863 | BlockNumber rblkno; |
| 864 | |
| 865 | page = BufferGetPage(insertstate->buf); |
| 866 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 867 | |
| 868 | rbuf = InvalidBuffer; |
| 869 | rblkno = lpageop->btpo_next; |
| 870 | for (;;) |
| 871 | { |
| 872 | rbuf = _bt_relandgetbuf(rel, rbuf, rblkno, BT_WRITE); |
| 873 | page = BufferGetPage(rbuf); |
| 874 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 875 | |
| 876 | /* |
| 877 | * If this page was incompletely split, finish the split now. We do |
| 878 | * this while holding a lock on the left sibling, which is not good |
| 879 | * because finishing the split could be a fairly lengthy operation. |
| 880 | * But this should happen very seldom. |
| 881 | */ |
| 882 | if (P_INCOMPLETE_SPLIT(lpageop)) |
| 883 | { |
| 884 | _bt_finish_split(rel, rbuf, stack); |
| 885 | rbuf = InvalidBuffer; |
| 886 | continue; |
| 887 | } |
| 888 | |
| 889 | if (!P_IGNORE(lpageop)) |
| 890 | break; |
| 891 | if (P_RIGHTMOST(lpageop)) |
| 892 | elog(ERROR, "fell off the end of index \"%s\"" , |
| 893 | RelationGetRelationName(rel)); |
| 894 | |
| 895 | rblkno = lpageop->btpo_next; |
| 896 | } |
| 897 | /* rbuf locked; unlock buf, update state for caller */ |
| 898 | _bt_relbuf(rel, insertstate->buf); |
| 899 | insertstate->buf = rbuf; |
| 900 | insertstate->bounds_valid = false; |
| 901 | } |
| 902 | |
| 903 | /*---------- |
| 904 | * _bt_insertonpg() -- Insert a tuple on a particular page in the index. |
| 905 | * |
| 906 | * This recursive procedure does the following things: |
| 907 | * |
| 908 | * + if necessary, splits the target page, using 'itup_key' for |
| 909 | * suffix truncation on leaf pages (caller passes NULL for |
| 910 | * non-leaf pages). |
| 911 | * + inserts the tuple. |
| 912 | * + if the page was split, pops the parent stack, and finds the |
| 913 | * right place to insert the new child pointer (by walking |
| 914 | * right using information stored in the parent stack). |
| 915 | * + invokes itself with the appropriate tuple for the right |
| 916 | * child page on the parent. |
| 917 | * + updates the metapage if a true root or fast root is split. |
| 918 | * |
| 919 | * On entry, we must have the correct buffer in which to do the |
| 920 | * insertion, and the buffer must be pinned and write-locked. On return, |
| 921 | * we will have dropped both the pin and the lock on the buffer. |
| 922 | * |
| 923 | * This routine only performs retail tuple insertions. 'itup' should |
| 924 | * always be either a non-highkey leaf item, or a downlink (new high |
| 925 | * key items are created indirectly, when a page is split). When |
| 926 | * inserting to a non-leaf page, 'cbuf' is the left-sibling of the page |
| 927 | * we're inserting the downlink for. This function will clear the |
| 928 | * INCOMPLETE_SPLIT flag on it, and release the buffer. |
| 929 | *---------- |
| 930 | */ |
| 931 | static void |
| 932 | _bt_insertonpg(Relation rel, |
| 933 | BTScanInsert itup_key, |
| 934 | Buffer buf, |
| 935 | Buffer cbuf, |
| 936 | BTStack stack, |
| 937 | IndexTuple itup, |
| 938 | OffsetNumber newitemoff, |
| 939 | bool split_only_page) |
| 940 | { |
| 941 | Page page; |
| 942 | BTPageOpaque lpageop; |
| 943 | Size itemsz; |
| 944 | |
| 945 | page = BufferGetPage(buf); |
| 946 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 947 | |
| 948 | /* child buffer must be given iff inserting on an internal page */ |
| 949 | Assert(P_ISLEAF(lpageop) == !BufferIsValid(cbuf)); |
| 950 | /* tuple must have appropriate number of attributes */ |
| 951 | Assert(!P_ISLEAF(lpageop) || |
| 952 | BTreeTupleGetNAtts(itup, rel) == |
| 953 | IndexRelationGetNumberOfAttributes(rel)); |
| 954 | Assert(P_ISLEAF(lpageop) || |
| 955 | BTreeTupleGetNAtts(itup, rel) <= |
| 956 | IndexRelationGetNumberOfKeyAttributes(rel)); |
| 957 | |
| 958 | /* The caller should've finished any incomplete splits already. */ |
| 959 | if (P_INCOMPLETE_SPLIT(lpageop)) |
| 960 | elog(ERROR, "cannot insert to incompletely split page %u" , |
| 961 | BufferGetBlockNumber(buf)); |
| 962 | |
| 963 | itemsz = IndexTupleSize(itup); |
| 964 | itemsz = MAXALIGN(itemsz); /* be safe, PageAddItem will do this but we |
| 965 | * need to be consistent */ |
| 966 | |
| 967 | /* |
| 968 | * Do we need to split the page to fit the item on it? |
| 969 | * |
| 970 | * Note: PageGetFreeSpace() subtracts sizeof(ItemIdData) from its result, |
| 971 | * so this comparison is correct even though we appear to be accounting |
| 972 | * only for the item and not for its line pointer. |
| 973 | */ |
| 974 | if (PageGetFreeSpace(page) < itemsz) |
| 975 | { |
| 976 | bool is_root = P_ISROOT(lpageop); |
| 977 | bool is_only = P_LEFTMOST(lpageop) && P_RIGHTMOST(lpageop); |
| 978 | Buffer rbuf; |
| 979 | |
| 980 | /* |
| 981 | * If we're here then a pagesplit is needed. We should never reach |
| 982 | * here if we're using the fastpath since we should have checked for |
| 983 | * all the required conditions, including the fact that this page has |
| 984 | * enough freespace. Note that this routine can in theory deal with |
| 985 | * the situation where a NULL stack pointer is passed (that's what |
| 986 | * would happen if the fastpath is taken). But that path is much |
| 987 | * slower, defeating the very purpose of the optimization. The |
| 988 | * following assertion should protect us from any future code changes |
| 989 | * that invalidate those assumptions. |
| 990 | * |
| 991 | * Note that whenever we fail to take the fastpath, we clear the |
| 992 | * cached block. Checking for a valid cached block at this point is |
| 993 | * enough to decide whether we're in a fastpath or not. |
| 994 | */ |
| 995 | Assert(!(P_ISLEAF(lpageop) && |
| 996 | BlockNumberIsValid(RelationGetTargetBlock(rel)))); |
| 997 | |
| 998 | /* split the buffer into left and right halves */ |
| 999 | rbuf = _bt_split(rel, itup_key, buf, cbuf, newitemoff, itemsz, itup); |
| 1000 | PredicateLockPageSplit(rel, |
| 1001 | BufferGetBlockNumber(buf), |
| 1002 | BufferGetBlockNumber(rbuf)); |
| 1003 | |
| 1004 | /*---------- |
| 1005 | * By here, |
| 1006 | * |
| 1007 | * + our target page has been split; |
| 1008 | * + the original tuple has been inserted; |
| 1009 | * + we have write locks on both the old (left half) |
| 1010 | * and new (right half) buffers, after the split; and |
| 1011 | * + we know the key we want to insert into the parent |
| 1012 | * (it's the "high key" on the left child page). |
| 1013 | * |
| 1014 | * We're ready to do the parent insertion. We need to hold onto the |
| 1015 | * locks for the child pages until we locate the parent, but we can |
| 1016 | * at least release the lock on the right child before doing the |
| 1017 | * actual insertion. The lock on the left child will be released |
| 1018 | * last of all by parent insertion, where it is the 'cbuf' of parent |
| 1019 | * page. |
| 1020 | *---------- |
| 1021 | */ |
| 1022 | _bt_insert_parent(rel, buf, rbuf, stack, is_root, is_only); |
| 1023 | } |
| 1024 | else |
| 1025 | { |
| 1026 | Buffer metabuf = InvalidBuffer; |
| 1027 | Page metapg = NULL; |
| 1028 | BTMetaPageData *metad = NULL; |
| 1029 | OffsetNumber itup_off; |
| 1030 | BlockNumber itup_blkno; |
| 1031 | BlockNumber cachedBlock = InvalidBlockNumber; |
| 1032 | |
| 1033 | itup_off = newitemoff; |
| 1034 | itup_blkno = BufferGetBlockNumber(buf); |
| 1035 | |
| 1036 | /* |
| 1037 | * If we are doing this insert because we split a page that was the |
| 1038 | * only one on its tree level, but was not the root, it may have been |
| 1039 | * the "fast root". We need to ensure that the fast root link points |
| 1040 | * at or above the current page. We can safely acquire a lock on the |
| 1041 | * metapage here --- see comments for _bt_newroot(). |
| 1042 | */ |
| 1043 | if (split_only_page) |
| 1044 | { |
| 1045 | Assert(!P_ISLEAF(lpageop)); |
| 1046 | |
| 1047 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); |
| 1048 | metapg = BufferGetPage(metabuf); |
| 1049 | metad = BTPageGetMeta(metapg); |
| 1050 | |
| 1051 | if (metad->btm_fastlevel >= lpageop->btpo.level) |
| 1052 | { |
| 1053 | /* no update wanted */ |
| 1054 | _bt_relbuf(rel, metabuf); |
| 1055 | metabuf = InvalidBuffer; |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * Every internal page should have exactly one negative infinity item |
| 1061 | * at all times. Only _bt_split() and _bt_newroot() should add items |
| 1062 | * that become negative infinity items through truncation, since |
| 1063 | * they're the only routines that allocate new internal pages. Do not |
| 1064 | * allow a retail insertion of a new item at the negative infinity |
| 1065 | * offset. |
| 1066 | */ |
| 1067 | if (!P_ISLEAF(lpageop) && newitemoff == P_FIRSTDATAKEY(lpageop)) |
| 1068 | elog(ERROR, "cannot insert second negative infinity item in block %u of index \"%s\"" , |
| 1069 | itup_blkno, RelationGetRelationName(rel)); |
| 1070 | |
| 1071 | /* Do the update. No ereport(ERROR) until changes are logged */ |
| 1072 | START_CRIT_SECTION(); |
| 1073 | |
| 1074 | if (!_bt_pgaddtup(page, itemsz, itup, newitemoff)) |
| 1075 | elog(PANIC, "failed to add new item to block %u in index \"%s\"" , |
| 1076 | itup_blkno, RelationGetRelationName(rel)); |
| 1077 | |
| 1078 | MarkBufferDirty(buf); |
| 1079 | |
| 1080 | if (BufferIsValid(metabuf)) |
| 1081 | { |
| 1082 | /* upgrade meta-page if needed */ |
| 1083 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 1084 | _bt_upgrademetapage(metapg); |
| 1085 | metad->btm_fastroot = itup_blkno; |
| 1086 | metad->btm_fastlevel = lpageop->btpo.level; |
| 1087 | MarkBufferDirty(metabuf); |
| 1088 | } |
| 1089 | |
| 1090 | /* clear INCOMPLETE_SPLIT flag on child if inserting a downlink */ |
| 1091 | if (BufferIsValid(cbuf)) |
| 1092 | { |
| 1093 | Page cpage = BufferGetPage(cbuf); |
| 1094 | BTPageOpaque cpageop = (BTPageOpaque) PageGetSpecialPointer(cpage); |
| 1095 | |
| 1096 | Assert(P_INCOMPLETE_SPLIT(cpageop)); |
| 1097 | cpageop->btpo_flags &= ~BTP_INCOMPLETE_SPLIT; |
| 1098 | MarkBufferDirty(cbuf); |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * Cache the block information if we just inserted into the rightmost |
| 1103 | * leaf page of the index and it's not the root page. For very small |
| 1104 | * index where root is also the leaf, there is no point trying for any |
| 1105 | * optimization. |
| 1106 | */ |
| 1107 | if (P_RIGHTMOST(lpageop) && P_ISLEAF(lpageop) && !P_ISROOT(lpageop)) |
| 1108 | cachedBlock = BufferGetBlockNumber(buf); |
| 1109 | |
| 1110 | /* XLOG stuff */ |
| 1111 | if (RelationNeedsWAL(rel)) |
| 1112 | { |
| 1113 | xl_btree_insert xlrec; |
| 1114 | xl_btree_metadata xlmeta; |
| 1115 | uint8 xlinfo; |
| 1116 | XLogRecPtr recptr; |
| 1117 | |
| 1118 | xlrec.offnum = itup_off; |
| 1119 | |
| 1120 | XLogBeginInsert(); |
| 1121 | XLogRegisterData((char *) &xlrec, SizeOfBtreeInsert); |
| 1122 | |
| 1123 | if (P_ISLEAF(lpageop)) |
| 1124 | xlinfo = XLOG_BTREE_INSERT_LEAF; |
| 1125 | else |
| 1126 | { |
| 1127 | /* |
| 1128 | * Register the left child whose INCOMPLETE_SPLIT flag was |
| 1129 | * cleared. |
| 1130 | */ |
| 1131 | XLogRegisterBuffer(1, cbuf, REGBUF_STANDARD); |
| 1132 | |
| 1133 | xlinfo = XLOG_BTREE_INSERT_UPPER; |
| 1134 | } |
| 1135 | |
| 1136 | if (BufferIsValid(metabuf)) |
| 1137 | { |
| 1138 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
| 1139 | xlmeta.version = metad->btm_version; |
| 1140 | xlmeta.root = metad->btm_root; |
| 1141 | xlmeta.level = metad->btm_level; |
| 1142 | xlmeta.fastroot = metad->btm_fastroot; |
| 1143 | xlmeta.fastlevel = metad->btm_fastlevel; |
| 1144 | xlmeta.oldest_btpo_xact = metad->btm_oldest_btpo_xact; |
| 1145 | xlmeta.last_cleanup_num_heap_tuples = |
| 1146 | metad->btm_last_cleanup_num_heap_tuples; |
| 1147 | |
| 1148 | XLogRegisterBuffer(2, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 1149 | XLogRegisterBufData(2, (char *) &xlmeta, sizeof(xl_btree_metadata)); |
| 1150 | |
| 1151 | xlinfo = XLOG_BTREE_INSERT_META; |
| 1152 | } |
| 1153 | |
| 1154 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
| 1155 | XLogRegisterBufData(0, (char *) itup, IndexTupleSize(itup)); |
| 1156 | |
| 1157 | recptr = XLogInsert(RM_BTREE_ID, xlinfo); |
| 1158 | |
| 1159 | if (BufferIsValid(metabuf)) |
| 1160 | { |
| 1161 | PageSetLSN(metapg, recptr); |
| 1162 | } |
| 1163 | if (BufferIsValid(cbuf)) |
| 1164 | { |
| 1165 | PageSetLSN(BufferGetPage(cbuf), recptr); |
| 1166 | } |
| 1167 | |
| 1168 | PageSetLSN(page, recptr); |
| 1169 | } |
| 1170 | |
| 1171 | END_CRIT_SECTION(); |
| 1172 | |
| 1173 | /* release buffers */ |
| 1174 | if (BufferIsValid(metabuf)) |
| 1175 | _bt_relbuf(rel, metabuf); |
| 1176 | if (BufferIsValid(cbuf)) |
| 1177 | _bt_relbuf(rel, cbuf); |
| 1178 | _bt_relbuf(rel, buf); |
| 1179 | |
| 1180 | /* |
| 1181 | * If we decided to cache the insertion target block, then set it now. |
| 1182 | * But before that, check for the height of the tree and don't go for |
| 1183 | * the optimization for small indexes. We defer that check to this |
| 1184 | * point to ensure that we don't call _bt_getrootheight while holding |
| 1185 | * lock on any other block. |
| 1186 | * |
| 1187 | * We do this after dropping locks on all buffers. So the information |
| 1188 | * about whether the insertion block is still the rightmost block or |
| 1189 | * not may have changed in between. But we will deal with that during |
| 1190 | * next insert operation. No special care is required while setting |
| 1191 | * it. |
| 1192 | */ |
| 1193 | if (BlockNumberIsValid(cachedBlock) && |
| 1194 | _bt_getrootheight(rel) >= BTREE_FASTPATH_MIN_LEVEL) |
| 1195 | RelationSetTargetBlock(rel, cachedBlock); |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | /* |
| 1200 | * _bt_split() -- split a page in the btree. |
| 1201 | * |
| 1202 | * On entry, buf is the page to split, and is pinned and write-locked. |
| 1203 | * newitemoff etc. tell us about the new item that must be inserted |
| 1204 | * along with the data from the original page. |
| 1205 | * |
| 1206 | * itup_key is used for suffix truncation on leaf pages (internal |
| 1207 | * page callers pass NULL). When splitting a non-leaf page, 'cbuf' |
| 1208 | * is the left-sibling of the page we're inserting the downlink for. |
| 1209 | * This function will clear the INCOMPLETE_SPLIT flag on it, and |
| 1210 | * release the buffer. |
| 1211 | * |
| 1212 | * Returns the new right sibling of buf, pinned and write-locked. |
| 1213 | * The pin and lock on buf are maintained. |
| 1214 | */ |
| 1215 | static Buffer |
| 1216 | _bt_split(Relation rel, BTScanInsert itup_key, Buffer buf, Buffer cbuf, |
| 1217 | OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem) |
| 1218 | { |
| 1219 | Buffer rbuf; |
| 1220 | Page origpage; |
| 1221 | Page leftpage, |
| 1222 | rightpage; |
| 1223 | BlockNumber origpagenumber, |
| 1224 | rightpagenumber; |
| 1225 | BTPageOpaque ropaque, |
| 1226 | lopaque, |
| 1227 | oopaque; |
| 1228 | Buffer sbuf = InvalidBuffer; |
| 1229 | Page spage = NULL; |
| 1230 | BTPageOpaque sopaque = NULL; |
| 1231 | Size itemsz; |
| 1232 | ItemId itemid; |
| 1233 | IndexTuple item; |
| 1234 | OffsetNumber leftoff, |
| 1235 | rightoff; |
| 1236 | OffsetNumber firstright; |
| 1237 | OffsetNumber maxoff; |
| 1238 | OffsetNumber i; |
| 1239 | bool newitemonleft, |
| 1240 | isleaf; |
| 1241 | IndexTuple lefthikey; |
| 1242 | int indnatts = IndexRelationGetNumberOfAttributes(rel); |
| 1243 | int indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel); |
| 1244 | |
| 1245 | /* |
| 1246 | * origpage is the original page to be split. leftpage is a temporary |
| 1247 | * buffer that receives the left-sibling data, which will be copied back |
| 1248 | * into origpage on success. rightpage is the new page that will receive |
| 1249 | * the right-sibling data. |
| 1250 | * |
| 1251 | * leftpage is allocated after choosing a split point. rightpage's new |
| 1252 | * buffer isn't acquired until after leftpage is initialized and has new |
| 1253 | * high key, the last point where splitting the page may fail (barring |
| 1254 | * corruption). Failing before acquiring new buffer won't have lasting |
| 1255 | * consequences, since origpage won't have been modified and leftpage is |
| 1256 | * only workspace. |
| 1257 | */ |
| 1258 | origpage = BufferGetPage(buf); |
| 1259 | oopaque = (BTPageOpaque) PageGetSpecialPointer(origpage); |
| 1260 | origpagenumber = BufferGetBlockNumber(buf); |
| 1261 | |
| 1262 | /* |
| 1263 | * Choose a point to split origpage at. |
| 1264 | * |
| 1265 | * A split point can be thought of as a point _between_ two existing |
| 1266 | * tuples on origpage (lastleft and firstright tuples), provided you |
| 1267 | * pretend that the new item that didn't fit is already on origpage. |
| 1268 | * |
| 1269 | * Since origpage does not actually contain newitem, the representation of |
| 1270 | * split points needs to work with two boundary cases: splits where |
| 1271 | * newitem is lastleft, and splits where newitem is firstright. |
| 1272 | * newitemonleft resolves the ambiguity that would otherwise exist when |
| 1273 | * newitemoff == firstright. In all other cases it's clear which side of |
| 1274 | * the split every tuple goes on from context. newitemonleft is usually |
| 1275 | * (but not always) redundant information. |
| 1276 | */ |
| 1277 | firstright = _bt_findsplitloc(rel, origpage, newitemoff, newitemsz, |
| 1278 | newitem, &newitemonleft); |
| 1279 | |
| 1280 | /* Allocate temp buffer for leftpage */ |
| 1281 | leftpage = PageGetTempPage(origpage); |
| 1282 | _bt_pageinit(leftpage, BufferGetPageSize(buf)); |
| 1283 | lopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage); |
| 1284 | |
| 1285 | /* |
| 1286 | * leftpage won't be the root when we're done. Also, clear the SPLIT_END |
| 1287 | * and HAS_GARBAGE flags. |
| 1288 | */ |
| 1289 | lopaque->btpo_flags = oopaque->btpo_flags; |
| 1290 | lopaque->btpo_flags &= ~(BTP_ROOT | BTP_SPLIT_END | BTP_HAS_GARBAGE); |
| 1291 | /* set flag in leftpage indicating that rightpage has no downlink yet */ |
| 1292 | lopaque->btpo_flags |= BTP_INCOMPLETE_SPLIT; |
| 1293 | lopaque->btpo_prev = oopaque->btpo_prev; |
| 1294 | /* handle btpo_next after rightpage buffer acquired */ |
| 1295 | lopaque->btpo.level = oopaque->btpo.level; |
| 1296 | /* handle btpo_cycleid after rightpage buffer acquired */ |
| 1297 | |
| 1298 | /* |
| 1299 | * Copy the original page's LSN into leftpage, which will become the |
| 1300 | * updated version of the page. We need this because XLogInsert will |
| 1301 | * examine the LSN and possibly dump it in a page image. |
| 1302 | */ |
| 1303 | PageSetLSN(leftpage, PageGetLSN(origpage)); |
| 1304 | isleaf = P_ISLEAF(oopaque); |
| 1305 | |
| 1306 | /* |
| 1307 | * The "high key" for the new left page will be the first key that's going |
| 1308 | * to go into the new right page, or a truncated version if this is a leaf |
| 1309 | * page split. |
| 1310 | * |
| 1311 | * The high key for the left page is formed using the first item on the |
| 1312 | * right page, which may seem to be contrary to Lehman & Yao's approach of |
| 1313 | * using the left page's last item as its new high key when splitting on |
| 1314 | * the leaf level. It isn't, though: suffix truncation will leave the |
| 1315 | * left page's high key fully equal to the last item on the left page when |
| 1316 | * two tuples with equal key values (excluding heap TID) enclose the split |
| 1317 | * point. It isn't actually necessary for a new leaf high key to be equal |
| 1318 | * to the last item on the left for the L&Y "subtree" invariant to hold. |
| 1319 | * It's sufficient to make sure that the new leaf high key is strictly |
| 1320 | * less than the first item on the right leaf page, and greater than or |
| 1321 | * equal to (not necessarily equal to) the last item on the left leaf |
| 1322 | * page. |
| 1323 | * |
| 1324 | * In other words, when suffix truncation isn't possible, L&Y's exact |
| 1325 | * approach to leaf splits is taken. (Actually, even that is slightly |
| 1326 | * inaccurate. A tuple with all the keys from firstright but the heap TID |
| 1327 | * from lastleft will be used as the new high key, since the last left |
| 1328 | * tuple could be physically larger despite being opclass-equal in respect |
| 1329 | * of all attributes prior to the heap TID attribute.) |
| 1330 | */ |
| 1331 | if (!newitemonleft && newitemoff == firstright) |
| 1332 | { |
| 1333 | /* incoming tuple will become first on right page */ |
| 1334 | itemsz = newitemsz; |
| 1335 | item = newitem; |
| 1336 | } |
| 1337 | else |
| 1338 | { |
| 1339 | /* existing item at firstright will become first on right page */ |
| 1340 | itemid = PageGetItemId(origpage, firstright); |
| 1341 | itemsz = ItemIdGetLength(itemid); |
| 1342 | item = (IndexTuple) PageGetItem(origpage, itemid); |
| 1343 | } |
| 1344 | |
| 1345 | /* |
| 1346 | * Truncate unneeded key and non-key attributes of the high key item |
| 1347 | * before inserting it on the left page. This can only happen at the leaf |
| 1348 | * level, since in general all pivot tuple values originate from leaf |
| 1349 | * level high keys. A pivot tuple in a grandparent page must guide a |
| 1350 | * search not only to the correct parent page, but also to the correct |
| 1351 | * leaf page. |
| 1352 | */ |
| 1353 | if (isleaf && (itup_key->heapkeyspace || indnatts != indnkeyatts)) |
| 1354 | { |
| 1355 | IndexTuple lastleft; |
| 1356 | |
| 1357 | /* |
| 1358 | * Determine which tuple will become the last on the left page. This |
| 1359 | * is needed to decide how many attributes from the first item on the |
| 1360 | * right page must remain in new high key for left page. |
| 1361 | */ |
| 1362 | if (newitemonleft && newitemoff == firstright) |
| 1363 | { |
| 1364 | /* incoming tuple will become last on left page */ |
| 1365 | lastleft = newitem; |
| 1366 | } |
| 1367 | else |
| 1368 | { |
| 1369 | OffsetNumber lastleftoff; |
| 1370 | |
| 1371 | /* item just before firstright will become last on left page */ |
| 1372 | lastleftoff = OffsetNumberPrev(firstright); |
| 1373 | Assert(lastleftoff >= P_FIRSTDATAKEY(oopaque)); |
| 1374 | itemid = PageGetItemId(origpage, lastleftoff); |
| 1375 | lastleft = (IndexTuple) PageGetItem(origpage, itemid); |
| 1376 | } |
| 1377 | |
| 1378 | Assert(lastleft != item); |
| 1379 | lefthikey = _bt_truncate(rel, lastleft, item, itup_key); |
| 1380 | itemsz = IndexTupleSize(lefthikey); |
| 1381 | itemsz = MAXALIGN(itemsz); |
| 1382 | } |
| 1383 | else |
| 1384 | lefthikey = item; |
| 1385 | |
| 1386 | /* |
| 1387 | * Add new high key to leftpage |
| 1388 | */ |
| 1389 | leftoff = P_HIKEY; |
| 1390 | |
| 1391 | Assert(BTreeTupleGetNAtts(lefthikey, rel) > 0); |
| 1392 | Assert(BTreeTupleGetNAtts(lefthikey, rel) <= indnkeyatts); |
| 1393 | if (PageAddItem(leftpage, (Item) lefthikey, itemsz, leftoff, |
| 1394 | false, false) == InvalidOffsetNumber) |
| 1395 | elog(ERROR, "failed to add hikey to the left sibling" |
| 1396 | " while splitting block %u of index \"%s\"" , |
| 1397 | origpagenumber, RelationGetRelationName(rel)); |
| 1398 | leftoff = OffsetNumberNext(leftoff); |
| 1399 | /* be tidy */ |
| 1400 | if (lefthikey != item) |
| 1401 | pfree(lefthikey); |
| 1402 | |
| 1403 | /* |
| 1404 | * Acquire a new right page to split into, now that left page has a new |
| 1405 | * high key. From here on, it's not okay to throw an error without |
| 1406 | * zeroing rightpage first. This coding rule ensures that we won't |
| 1407 | * confuse future VACUUM operations, which might otherwise try to re-find |
| 1408 | * a downlink to a leftover junk page as the page undergoes deletion. |
| 1409 | * |
| 1410 | * It would be reasonable to start the critical section just after the new |
| 1411 | * rightpage buffer is acquired instead; that would allow us to avoid |
| 1412 | * leftover junk pages without bothering to zero rightpage. We do it this |
| 1413 | * way because it avoids an unnecessary PANIC when either origpage or its |
| 1414 | * existing sibling page are corrupt. |
| 1415 | */ |
| 1416 | rbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); |
| 1417 | rightpage = BufferGetPage(rbuf); |
| 1418 | rightpagenumber = BufferGetBlockNumber(rbuf); |
| 1419 | /* rightpage was initialized by _bt_getbuf */ |
| 1420 | ropaque = (BTPageOpaque) PageGetSpecialPointer(rightpage); |
| 1421 | |
| 1422 | /* |
| 1423 | * Finish off remaining leftpage special area fields. They cannot be set |
| 1424 | * before both origpage (leftpage) and rightpage buffers are acquired and |
| 1425 | * locked. |
| 1426 | */ |
| 1427 | lopaque->btpo_next = rightpagenumber; |
| 1428 | lopaque->btpo_cycleid = _bt_vacuum_cycleid(rel); |
| 1429 | |
| 1430 | /* |
| 1431 | * rightpage won't be the root when we're done. Also, clear the SPLIT_END |
| 1432 | * and HAS_GARBAGE flags. |
| 1433 | */ |
| 1434 | ropaque->btpo_flags = oopaque->btpo_flags; |
| 1435 | ropaque->btpo_flags &= ~(BTP_ROOT | BTP_SPLIT_END | BTP_HAS_GARBAGE); |
| 1436 | ropaque->btpo_prev = origpagenumber; |
| 1437 | ropaque->btpo_next = oopaque->btpo_next; |
| 1438 | ropaque->btpo.level = oopaque->btpo.level; |
| 1439 | ropaque->btpo_cycleid = lopaque->btpo_cycleid; |
| 1440 | |
| 1441 | /* |
| 1442 | * Add new high key to rightpage where necessary. |
| 1443 | * |
| 1444 | * If the page we're splitting is not the rightmost page at its level in |
| 1445 | * the tree, then the first entry on the page is the high key from |
| 1446 | * origpage. |
| 1447 | */ |
| 1448 | rightoff = P_HIKEY; |
| 1449 | |
| 1450 | if (!P_RIGHTMOST(oopaque)) |
| 1451 | { |
| 1452 | itemid = PageGetItemId(origpage, P_HIKEY); |
| 1453 | itemsz = ItemIdGetLength(itemid); |
| 1454 | item = (IndexTuple) PageGetItem(origpage, itemid); |
| 1455 | Assert(BTreeTupleGetNAtts(item, rel) > 0); |
| 1456 | Assert(BTreeTupleGetNAtts(item, rel) <= indnkeyatts); |
| 1457 | if (PageAddItem(rightpage, (Item) item, itemsz, rightoff, |
| 1458 | false, false) == InvalidOffsetNumber) |
| 1459 | { |
| 1460 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1461 | elog(ERROR, "failed to add hikey to the right sibling" |
| 1462 | " while splitting block %u of index \"%s\"" , |
| 1463 | origpagenumber, RelationGetRelationName(rel)); |
| 1464 | } |
| 1465 | rightoff = OffsetNumberNext(rightoff); |
| 1466 | } |
| 1467 | |
| 1468 | /* |
| 1469 | * Now transfer all the data items (non-pivot tuples in isleaf case, or |
| 1470 | * additional pivot tuples in !isleaf case) to the appropriate page. |
| 1471 | * |
| 1472 | * Note: we *must* insert at least the right page's items in item-number |
| 1473 | * order, for the benefit of _bt_restore_page(). |
| 1474 | */ |
| 1475 | maxoff = PageGetMaxOffsetNumber(origpage); |
| 1476 | |
| 1477 | for (i = P_FIRSTDATAKEY(oopaque); i <= maxoff; i = OffsetNumberNext(i)) |
| 1478 | { |
| 1479 | itemid = PageGetItemId(origpage, i); |
| 1480 | itemsz = ItemIdGetLength(itemid); |
| 1481 | item = (IndexTuple) PageGetItem(origpage, itemid); |
| 1482 | |
| 1483 | /* does new item belong before this one? */ |
| 1484 | if (i == newitemoff) |
| 1485 | { |
| 1486 | if (newitemonleft) |
| 1487 | { |
| 1488 | Assert(newitemoff <= firstright); |
| 1489 | if (!_bt_pgaddtup(leftpage, newitemsz, newitem, leftoff)) |
| 1490 | { |
| 1491 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1492 | elog(ERROR, "failed to add new item to the left sibling" |
| 1493 | " while splitting block %u of index \"%s\"" , |
| 1494 | origpagenumber, RelationGetRelationName(rel)); |
| 1495 | } |
| 1496 | leftoff = OffsetNumberNext(leftoff); |
| 1497 | } |
| 1498 | else |
| 1499 | { |
| 1500 | Assert(newitemoff >= firstright); |
| 1501 | if (!_bt_pgaddtup(rightpage, newitemsz, newitem, rightoff)) |
| 1502 | { |
| 1503 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1504 | elog(ERROR, "failed to add new item to the right sibling" |
| 1505 | " while splitting block %u of index \"%s\"" , |
| 1506 | origpagenumber, RelationGetRelationName(rel)); |
| 1507 | } |
| 1508 | rightoff = OffsetNumberNext(rightoff); |
| 1509 | } |
| 1510 | } |
| 1511 | |
| 1512 | /* decide which page to put it on */ |
| 1513 | if (i < firstright) |
| 1514 | { |
| 1515 | if (!_bt_pgaddtup(leftpage, itemsz, item, leftoff)) |
| 1516 | { |
| 1517 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1518 | elog(ERROR, "failed to add old item to the left sibling" |
| 1519 | " while splitting block %u of index \"%s\"" , |
| 1520 | origpagenumber, RelationGetRelationName(rel)); |
| 1521 | } |
| 1522 | leftoff = OffsetNumberNext(leftoff); |
| 1523 | } |
| 1524 | else |
| 1525 | { |
| 1526 | if (!_bt_pgaddtup(rightpage, itemsz, item, rightoff)) |
| 1527 | { |
| 1528 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1529 | elog(ERROR, "failed to add old item to the right sibling" |
| 1530 | " while splitting block %u of index \"%s\"" , |
| 1531 | origpagenumber, RelationGetRelationName(rel)); |
| 1532 | } |
| 1533 | rightoff = OffsetNumberNext(rightoff); |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | /* cope with possibility that newitem goes at the end */ |
| 1538 | if (i <= newitemoff) |
| 1539 | { |
| 1540 | /* |
| 1541 | * Can't have newitemonleft here; that would imply we were told to put |
| 1542 | * *everything* on the left page, which cannot fit (if it could, we'd |
| 1543 | * not be splitting the page). |
| 1544 | */ |
| 1545 | Assert(!newitemonleft); |
| 1546 | if (!_bt_pgaddtup(rightpage, newitemsz, newitem, rightoff)) |
| 1547 | { |
| 1548 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1549 | elog(ERROR, "failed to add new item to the right sibling" |
| 1550 | " while splitting block %u of index \"%s\"" , |
| 1551 | origpagenumber, RelationGetRelationName(rel)); |
| 1552 | } |
| 1553 | rightoff = OffsetNumberNext(rightoff); |
| 1554 | } |
| 1555 | |
| 1556 | /* |
| 1557 | * We have to grab the right sibling (if any) and fix the prev pointer |
| 1558 | * there. We are guaranteed that this is deadlock-free since no other |
| 1559 | * writer will be holding a lock on that page and trying to move left, and |
| 1560 | * all readers release locks on a page before trying to fetch its |
| 1561 | * neighbors. |
| 1562 | */ |
| 1563 | if (!P_RIGHTMOST(oopaque)) |
| 1564 | { |
| 1565 | sbuf = _bt_getbuf(rel, oopaque->btpo_next, BT_WRITE); |
| 1566 | spage = BufferGetPage(sbuf); |
| 1567 | sopaque = (BTPageOpaque) PageGetSpecialPointer(spage); |
| 1568 | if (sopaque->btpo_prev != origpagenumber) |
| 1569 | { |
| 1570 | memset(rightpage, 0, BufferGetPageSize(rbuf)); |
| 1571 | elog(ERROR, "right sibling's left-link doesn't match: " |
| 1572 | "block %u links to %u instead of expected %u in index \"%s\"" , |
| 1573 | oopaque->btpo_next, sopaque->btpo_prev, origpagenumber, |
| 1574 | RelationGetRelationName(rel)); |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * Check to see if we can set the SPLIT_END flag in the right-hand |
| 1579 | * split page; this can save some I/O for vacuum since it need not |
| 1580 | * proceed to the right sibling. We can set the flag if the right |
| 1581 | * sibling has a different cycleid: that means it could not be part of |
| 1582 | * a group of pages that were all split off from the same ancestor |
| 1583 | * page. If you're confused, imagine that page A splits to A B and |
| 1584 | * then again, yielding A C B, while vacuum is in progress. Tuples |
| 1585 | * originally in A could now be in either B or C, hence vacuum must |
| 1586 | * examine both pages. But if D, our right sibling, has a different |
| 1587 | * cycleid then it could not contain any tuples that were in A when |
| 1588 | * the vacuum started. |
| 1589 | */ |
| 1590 | if (sopaque->btpo_cycleid != ropaque->btpo_cycleid) |
| 1591 | ropaque->btpo_flags |= BTP_SPLIT_END; |
| 1592 | } |
| 1593 | |
| 1594 | /* |
| 1595 | * Right sibling is locked, new siblings are prepared, but original page |
| 1596 | * is not updated yet. |
| 1597 | * |
| 1598 | * NO EREPORT(ERROR) till right sibling is updated. We can get away with |
| 1599 | * not starting the critical section till here because we haven't been |
| 1600 | * scribbling on the original page yet; see comments above. |
| 1601 | */ |
| 1602 | START_CRIT_SECTION(); |
| 1603 | |
| 1604 | /* |
| 1605 | * By here, the original data page has been split into two new halves, and |
| 1606 | * these are correct. The algorithm requires that the left page never |
| 1607 | * move during a split, so we copy the new left page back on top of the |
| 1608 | * original. Note that this is not a waste of time, since we also require |
| 1609 | * (in the page management code) that the center of a page always be |
| 1610 | * clean, and the most efficient way to guarantee this is just to compact |
| 1611 | * the data by reinserting it into a new left page. (XXX the latter |
| 1612 | * comment is probably obsolete; but in any case it's good to not scribble |
| 1613 | * on the original page until we enter the critical section.) |
| 1614 | * |
| 1615 | * We need to do this before writing the WAL record, so that XLogInsert |
| 1616 | * can WAL log an image of the page if necessary. |
| 1617 | */ |
| 1618 | PageRestoreTempPage(leftpage, origpage); |
| 1619 | /* leftpage, lopaque must not be used below here */ |
| 1620 | |
| 1621 | MarkBufferDirty(buf); |
| 1622 | MarkBufferDirty(rbuf); |
| 1623 | |
| 1624 | if (!P_RIGHTMOST(ropaque)) |
| 1625 | { |
| 1626 | sopaque->btpo_prev = rightpagenumber; |
| 1627 | MarkBufferDirty(sbuf); |
| 1628 | } |
| 1629 | |
| 1630 | /* |
| 1631 | * Clear INCOMPLETE_SPLIT flag on child if inserting the new item finishes |
| 1632 | * a split. |
| 1633 | */ |
| 1634 | if (!isleaf) |
| 1635 | { |
| 1636 | Page cpage = BufferGetPage(cbuf); |
| 1637 | BTPageOpaque cpageop = (BTPageOpaque) PageGetSpecialPointer(cpage); |
| 1638 | |
| 1639 | cpageop->btpo_flags &= ~BTP_INCOMPLETE_SPLIT; |
| 1640 | MarkBufferDirty(cbuf); |
| 1641 | } |
| 1642 | |
| 1643 | /* XLOG stuff */ |
| 1644 | if (RelationNeedsWAL(rel)) |
| 1645 | { |
| 1646 | xl_btree_split xlrec; |
| 1647 | uint8 xlinfo; |
| 1648 | XLogRecPtr recptr; |
| 1649 | |
| 1650 | xlrec.level = ropaque->btpo.level; |
| 1651 | xlrec.firstright = firstright; |
| 1652 | xlrec.newitemoff = newitemoff; |
| 1653 | |
| 1654 | XLogBeginInsert(); |
| 1655 | XLogRegisterData((char *) &xlrec, SizeOfBtreeSplit); |
| 1656 | |
| 1657 | XLogRegisterBuffer(0, buf, REGBUF_STANDARD); |
| 1658 | XLogRegisterBuffer(1, rbuf, REGBUF_WILL_INIT); |
| 1659 | /* Log the right sibling, because we've changed its prev-pointer. */ |
| 1660 | if (!P_RIGHTMOST(ropaque)) |
| 1661 | XLogRegisterBuffer(2, sbuf, REGBUF_STANDARD); |
| 1662 | if (BufferIsValid(cbuf)) |
| 1663 | XLogRegisterBuffer(3, cbuf, REGBUF_STANDARD); |
| 1664 | |
| 1665 | /* |
| 1666 | * Log the new item, if it was inserted on the left page. (If it was |
| 1667 | * put on the right page, we don't need to explicitly WAL log it |
| 1668 | * because it's included with all the other items on the right page.) |
| 1669 | * Show the new item as belonging to the left page buffer, so that it |
| 1670 | * is not stored if XLogInsert decides it needs a full-page image of |
| 1671 | * the left page. We store the offset anyway, though, to support |
| 1672 | * archive compression of these records. |
| 1673 | */ |
| 1674 | if (newitemonleft) |
| 1675 | XLogRegisterBufData(0, (char *) newitem, MAXALIGN(newitemsz)); |
| 1676 | |
| 1677 | /* Log the left page's new high key */ |
| 1678 | itemid = PageGetItemId(origpage, P_HIKEY); |
| 1679 | item = (IndexTuple) PageGetItem(origpage, itemid); |
| 1680 | XLogRegisterBufData(0, (char *) item, MAXALIGN(IndexTupleSize(item))); |
| 1681 | |
| 1682 | /* |
| 1683 | * Log the contents of the right page in the format understood by |
| 1684 | * _bt_restore_page(). The whole right page will be recreated. |
| 1685 | * |
| 1686 | * Direct access to page is not good but faster - we should implement |
| 1687 | * some new func in page API. Note we only store the tuples |
| 1688 | * themselves, knowing that they were inserted in item-number order |
| 1689 | * and so the line pointers can be reconstructed. See comments for |
| 1690 | * _bt_restore_page(). |
| 1691 | */ |
| 1692 | XLogRegisterBufData(1, |
| 1693 | (char *) rightpage + ((PageHeader) rightpage)->pd_upper, |
| 1694 | ((PageHeader) rightpage)->pd_special - ((PageHeader) rightpage)->pd_upper); |
| 1695 | |
| 1696 | xlinfo = newitemonleft ? XLOG_BTREE_SPLIT_L : XLOG_BTREE_SPLIT_R; |
| 1697 | recptr = XLogInsert(RM_BTREE_ID, xlinfo); |
| 1698 | |
| 1699 | PageSetLSN(origpage, recptr); |
| 1700 | PageSetLSN(rightpage, recptr); |
| 1701 | if (!P_RIGHTMOST(ropaque)) |
| 1702 | { |
| 1703 | PageSetLSN(spage, recptr); |
| 1704 | } |
| 1705 | if (!isleaf) |
| 1706 | { |
| 1707 | PageSetLSN(BufferGetPage(cbuf), recptr); |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | END_CRIT_SECTION(); |
| 1712 | |
| 1713 | /* release the old right sibling */ |
| 1714 | if (!P_RIGHTMOST(ropaque)) |
| 1715 | _bt_relbuf(rel, sbuf); |
| 1716 | |
| 1717 | /* release the child */ |
| 1718 | if (!isleaf) |
| 1719 | _bt_relbuf(rel, cbuf); |
| 1720 | |
| 1721 | /* split's done */ |
| 1722 | return rbuf; |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | * _bt_insert_parent() -- Insert downlink into parent, completing split. |
| 1727 | * |
| 1728 | * On entry, buf and rbuf are the left and right split pages, which we |
| 1729 | * still hold write locks on. Both locks will be released here. We |
| 1730 | * release the rbuf lock once we have a write lock on the page that we |
| 1731 | * intend to insert a downlink to rbuf on (i.e. buf's current parent page). |
| 1732 | * The lock on buf is released at the same point as the lock on the parent |
| 1733 | * page, since buf's INCOMPLETE_SPLIT flag must be cleared by the same |
| 1734 | * atomic operation that completes the split by inserting a new downlink. |
| 1735 | * |
| 1736 | * stack - stack showing how we got here. Will be NULL when splitting true |
| 1737 | * root, or during concurrent root split, where we can be inefficient |
| 1738 | * is_root - we split the true root |
| 1739 | * is_only - we split a page alone on its level (might have been fast root) |
| 1740 | */ |
| 1741 | static void |
| 1742 | _bt_insert_parent(Relation rel, |
| 1743 | Buffer buf, |
| 1744 | Buffer rbuf, |
| 1745 | BTStack stack, |
| 1746 | bool is_root, |
| 1747 | bool is_only) |
| 1748 | { |
| 1749 | /* |
| 1750 | * Here we have to do something Lehman and Yao don't talk about: deal with |
| 1751 | * a root split and construction of a new root. If our stack is empty |
| 1752 | * then we have just split a node on what had been the root level when we |
| 1753 | * descended the tree. If it was still the root then we perform a |
| 1754 | * new-root construction. If it *wasn't* the root anymore, search to find |
| 1755 | * the next higher level that someone constructed meanwhile, and find the |
| 1756 | * right place to insert as for the normal case. |
| 1757 | * |
| 1758 | * If we have to search for the parent level, we do so by re-descending |
| 1759 | * from the root. This is not super-efficient, but it's rare enough not |
| 1760 | * to matter. |
| 1761 | */ |
| 1762 | if (is_root) |
| 1763 | { |
| 1764 | Buffer rootbuf; |
| 1765 | |
| 1766 | Assert(stack == NULL); |
| 1767 | Assert(is_only); |
| 1768 | /* create a new root node and update the metapage */ |
| 1769 | rootbuf = _bt_newroot(rel, buf, rbuf); |
| 1770 | /* release the split buffers */ |
| 1771 | _bt_relbuf(rel, rootbuf); |
| 1772 | _bt_relbuf(rel, rbuf); |
| 1773 | _bt_relbuf(rel, buf); |
| 1774 | } |
| 1775 | else |
| 1776 | { |
| 1777 | BlockNumber bknum = BufferGetBlockNumber(buf); |
| 1778 | BlockNumber rbknum = BufferGetBlockNumber(rbuf); |
| 1779 | Page page = BufferGetPage(buf); |
| 1780 | IndexTuple new_item; |
| 1781 | BTStackData fakestack; |
| 1782 | IndexTuple ritem; |
| 1783 | Buffer pbuf; |
| 1784 | |
| 1785 | if (stack == NULL) |
| 1786 | { |
| 1787 | BTPageOpaque lpageop; |
| 1788 | |
| 1789 | elog(DEBUG2, "concurrent ROOT page split" ); |
| 1790 | lpageop = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1791 | /* Find the leftmost page at the next level up */ |
| 1792 | pbuf = _bt_get_endpoint(rel, lpageop->btpo.level + 1, false, |
| 1793 | NULL); |
| 1794 | /* Set up a phony stack entry pointing there */ |
| 1795 | stack = &fakestack; |
| 1796 | stack->bts_blkno = BufferGetBlockNumber(pbuf); |
| 1797 | stack->bts_offset = InvalidOffsetNumber; |
| 1798 | stack->bts_btentry = InvalidBlockNumber; |
| 1799 | stack->bts_parent = NULL; |
| 1800 | _bt_relbuf(rel, pbuf); |
| 1801 | } |
| 1802 | |
| 1803 | /* get high key from left, a strict lower bound for new right page */ |
| 1804 | ritem = (IndexTuple) PageGetItem(page, |
| 1805 | PageGetItemId(page, P_HIKEY)); |
| 1806 | |
| 1807 | /* form an index tuple that points at the new right page */ |
| 1808 | new_item = CopyIndexTuple(ritem); |
| 1809 | BTreeInnerTupleSetDownLink(new_item, rbknum); |
| 1810 | |
| 1811 | /* |
| 1812 | * Re-find and write lock the parent of buf. |
| 1813 | * |
| 1814 | * It's possible that the location of buf's downlink has changed since |
| 1815 | * our initial _bt_search() descent. _bt_getstackbuf() will detect |
| 1816 | * and recover from this, updating the stack, which ensures that the |
| 1817 | * new downlink will be inserted at the correct offset. Even buf's |
| 1818 | * parent may have changed. |
| 1819 | */ |
| 1820 | stack->bts_btentry = bknum; |
| 1821 | pbuf = _bt_getstackbuf(rel, stack); |
| 1822 | |
| 1823 | /* |
| 1824 | * Now we can unlock the right child. The left child will be unlocked |
| 1825 | * by _bt_insertonpg(). |
| 1826 | */ |
| 1827 | _bt_relbuf(rel, rbuf); |
| 1828 | |
| 1829 | if (pbuf == InvalidBuffer) |
| 1830 | elog(ERROR, "failed to re-find parent key in index \"%s\" for split pages %u/%u" , |
| 1831 | RelationGetRelationName(rel), bknum, rbknum); |
| 1832 | |
| 1833 | /* Recursively update the parent */ |
| 1834 | _bt_insertonpg(rel, NULL, pbuf, buf, stack->bts_parent, |
| 1835 | new_item, stack->bts_offset + 1, |
| 1836 | is_only); |
| 1837 | |
| 1838 | /* be tidy */ |
| 1839 | pfree(new_item); |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | /* |
| 1844 | * _bt_finish_split() -- Finish an incomplete split |
| 1845 | * |
| 1846 | * A crash or other failure can leave a split incomplete. The insertion |
| 1847 | * routines won't allow to insert on a page that is incompletely split. |
| 1848 | * Before inserting on such a page, call _bt_finish_split(). |
| 1849 | * |
| 1850 | * On entry, 'lbuf' must be locked in write-mode. On exit, it is unlocked |
| 1851 | * and unpinned. |
| 1852 | */ |
| 1853 | void |
| 1854 | _bt_finish_split(Relation rel, Buffer lbuf, BTStack stack) |
| 1855 | { |
| 1856 | Page lpage = BufferGetPage(lbuf); |
| 1857 | BTPageOpaque lpageop = (BTPageOpaque) PageGetSpecialPointer(lpage); |
| 1858 | Buffer rbuf; |
| 1859 | Page rpage; |
| 1860 | BTPageOpaque rpageop; |
| 1861 | bool was_root; |
| 1862 | bool was_only; |
| 1863 | |
| 1864 | Assert(P_INCOMPLETE_SPLIT(lpageop)); |
| 1865 | |
| 1866 | /* Lock right sibling, the one missing the downlink */ |
| 1867 | rbuf = _bt_getbuf(rel, lpageop->btpo_next, BT_WRITE); |
| 1868 | rpage = BufferGetPage(rbuf); |
| 1869 | rpageop = (BTPageOpaque) PageGetSpecialPointer(rpage); |
| 1870 | |
| 1871 | /* Could this be a root split? */ |
| 1872 | if (!stack) |
| 1873 | { |
| 1874 | Buffer metabuf; |
| 1875 | Page metapg; |
| 1876 | BTMetaPageData *metad; |
| 1877 | |
| 1878 | /* acquire lock on the metapage */ |
| 1879 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); |
| 1880 | metapg = BufferGetPage(metabuf); |
| 1881 | metad = BTPageGetMeta(metapg); |
| 1882 | |
| 1883 | was_root = (metad->btm_root == BufferGetBlockNumber(lbuf)); |
| 1884 | |
| 1885 | _bt_relbuf(rel, metabuf); |
| 1886 | } |
| 1887 | else |
| 1888 | was_root = false; |
| 1889 | |
| 1890 | /* Was this the only page on the level before split? */ |
| 1891 | was_only = (P_LEFTMOST(lpageop) && P_RIGHTMOST(rpageop)); |
| 1892 | |
| 1893 | elog(DEBUG1, "finishing incomplete split of %u/%u" , |
| 1894 | BufferGetBlockNumber(lbuf), BufferGetBlockNumber(rbuf)); |
| 1895 | |
| 1896 | _bt_insert_parent(rel, lbuf, rbuf, stack, was_root, was_only); |
| 1897 | } |
| 1898 | |
| 1899 | /* |
| 1900 | * _bt_getstackbuf() -- Walk back up the tree one step, and find the item |
| 1901 | * we last looked at in the parent. |
| 1902 | * |
| 1903 | * This is possible because we save the downlink from the parent item, |
| 1904 | * which is enough to uniquely identify it. Insertions into the parent |
| 1905 | * level could cause the item to move right; deletions could cause it |
| 1906 | * to move left, but not left of the page we previously found it in. |
| 1907 | * |
| 1908 | * Adjusts bts_blkno & bts_offset if changed. |
| 1909 | * |
| 1910 | * Returns write-locked buffer, or InvalidBuffer if item not found |
| 1911 | * (should not happen). |
| 1912 | */ |
| 1913 | Buffer |
| 1914 | _bt_getstackbuf(Relation rel, BTStack stack) |
| 1915 | { |
| 1916 | BlockNumber blkno; |
| 1917 | OffsetNumber start; |
| 1918 | |
| 1919 | blkno = stack->bts_blkno; |
| 1920 | start = stack->bts_offset; |
| 1921 | |
| 1922 | for (;;) |
| 1923 | { |
| 1924 | Buffer buf; |
| 1925 | Page page; |
| 1926 | BTPageOpaque opaque; |
| 1927 | |
| 1928 | buf = _bt_getbuf(rel, blkno, BT_WRITE); |
| 1929 | page = BufferGetPage(buf); |
| 1930 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1931 | |
| 1932 | if (P_INCOMPLETE_SPLIT(opaque)) |
| 1933 | { |
| 1934 | _bt_finish_split(rel, buf, stack->bts_parent); |
| 1935 | continue; |
| 1936 | } |
| 1937 | |
| 1938 | if (!P_IGNORE(opaque)) |
| 1939 | { |
| 1940 | OffsetNumber offnum, |
| 1941 | minoff, |
| 1942 | maxoff; |
| 1943 | ItemId itemid; |
| 1944 | IndexTuple item; |
| 1945 | |
| 1946 | minoff = P_FIRSTDATAKEY(opaque); |
| 1947 | maxoff = PageGetMaxOffsetNumber(page); |
| 1948 | |
| 1949 | /* |
| 1950 | * start = InvalidOffsetNumber means "search the whole page". We |
| 1951 | * need this test anyway due to possibility that page has a high |
| 1952 | * key now when it didn't before. |
| 1953 | */ |
| 1954 | if (start < minoff) |
| 1955 | start = minoff; |
| 1956 | |
| 1957 | /* |
| 1958 | * Need this check too, to guard against possibility that page |
| 1959 | * split since we visited it originally. |
| 1960 | */ |
| 1961 | if (start > maxoff) |
| 1962 | start = OffsetNumberNext(maxoff); |
| 1963 | |
| 1964 | /* |
| 1965 | * These loops will check every item on the page --- but in an |
| 1966 | * order that's attuned to the probability of where it actually |
| 1967 | * is. Scan to the right first, then to the left. |
| 1968 | */ |
| 1969 | for (offnum = start; |
| 1970 | offnum <= maxoff; |
| 1971 | offnum = OffsetNumberNext(offnum)) |
| 1972 | { |
| 1973 | itemid = PageGetItemId(page, offnum); |
| 1974 | item = (IndexTuple) PageGetItem(page, itemid); |
| 1975 | |
| 1976 | if (BTreeInnerTupleGetDownLink(item) == stack->bts_btentry) |
| 1977 | { |
| 1978 | /* Return accurate pointer to where link is now */ |
| 1979 | stack->bts_blkno = blkno; |
| 1980 | stack->bts_offset = offnum; |
| 1981 | return buf; |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | for (offnum = OffsetNumberPrev(start); |
| 1986 | offnum >= minoff; |
| 1987 | offnum = OffsetNumberPrev(offnum)) |
| 1988 | { |
| 1989 | itemid = PageGetItemId(page, offnum); |
| 1990 | item = (IndexTuple) PageGetItem(page, itemid); |
| 1991 | |
| 1992 | if (BTreeInnerTupleGetDownLink(item) == stack->bts_btentry) |
| 1993 | { |
| 1994 | /* Return accurate pointer to where link is now */ |
| 1995 | stack->bts_blkno = blkno; |
| 1996 | stack->bts_offset = offnum; |
| 1997 | return buf; |
| 1998 | } |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | /* |
| 2003 | * The item we're looking for moved right at least one page. |
| 2004 | */ |
| 2005 | if (P_RIGHTMOST(opaque)) |
| 2006 | { |
| 2007 | _bt_relbuf(rel, buf); |
| 2008 | return InvalidBuffer; |
| 2009 | } |
| 2010 | blkno = opaque->btpo_next; |
| 2011 | start = InvalidOffsetNumber; |
| 2012 | _bt_relbuf(rel, buf); |
| 2013 | } |
| 2014 | } |
| 2015 | |
| 2016 | /* |
| 2017 | * _bt_newroot() -- Create a new root page for the index. |
| 2018 | * |
| 2019 | * We've just split the old root page and need to create a new one. |
| 2020 | * In order to do this, we add a new root page to the file, then lock |
| 2021 | * the metadata page and update it. This is guaranteed to be deadlock- |
| 2022 | * free, because all readers release their locks on the metadata page |
| 2023 | * before trying to lock the root, and all writers lock the root before |
| 2024 | * trying to lock the metadata page. We have a write lock on the old |
| 2025 | * root page, so we have not introduced any cycles into the waits-for |
| 2026 | * graph. |
| 2027 | * |
| 2028 | * On entry, lbuf (the old root) and rbuf (its new peer) are write- |
| 2029 | * locked. On exit, a new root page exists with entries for the |
| 2030 | * two new children, metapage is updated and unlocked/unpinned. |
| 2031 | * The new root buffer is returned to caller which has to unlock/unpin |
| 2032 | * lbuf, rbuf & rootbuf. |
| 2033 | */ |
| 2034 | static Buffer |
| 2035 | _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf) |
| 2036 | { |
| 2037 | Buffer rootbuf; |
| 2038 | Page lpage, |
| 2039 | rootpage; |
| 2040 | BlockNumber lbkno, |
| 2041 | rbkno; |
| 2042 | BlockNumber rootblknum; |
| 2043 | BTPageOpaque rootopaque; |
| 2044 | BTPageOpaque lopaque; |
| 2045 | ItemId itemid; |
| 2046 | IndexTuple item; |
| 2047 | IndexTuple left_item; |
| 2048 | Size left_item_sz; |
| 2049 | IndexTuple right_item; |
| 2050 | Size right_item_sz; |
| 2051 | Buffer metabuf; |
| 2052 | Page metapg; |
| 2053 | BTMetaPageData *metad; |
| 2054 | |
| 2055 | lbkno = BufferGetBlockNumber(lbuf); |
| 2056 | rbkno = BufferGetBlockNumber(rbuf); |
| 2057 | lpage = BufferGetPage(lbuf); |
| 2058 | lopaque = (BTPageOpaque) PageGetSpecialPointer(lpage); |
| 2059 | |
| 2060 | /* get a new root page */ |
| 2061 | rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); |
| 2062 | rootpage = BufferGetPage(rootbuf); |
| 2063 | rootblknum = BufferGetBlockNumber(rootbuf); |
| 2064 | |
| 2065 | /* acquire lock on the metapage */ |
| 2066 | metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); |
| 2067 | metapg = BufferGetPage(metabuf); |
| 2068 | metad = BTPageGetMeta(metapg); |
| 2069 | |
| 2070 | /* |
| 2071 | * Create downlink item for left page (old root). Since this will be the |
| 2072 | * first item in a non-leaf page, it implicitly has minus-infinity key |
| 2073 | * value, so we need not store any actual key in it. |
| 2074 | */ |
| 2075 | left_item_sz = sizeof(IndexTupleData); |
| 2076 | left_item = (IndexTuple) palloc(left_item_sz); |
| 2077 | left_item->t_info = left_item_sz; |
| 2078 | BTreeInnerTupleSetDownLink(left_item, lbkno); |
| 2079 | BTreeTupleSetNAtts(left_item, 0); |
| 2080 | |
| 2081 | /* |
| 2082 | * Create downlink item for right page. The key for it is obtained from |
| 2083 | * the "high key" position in the left page. |
| 2084 | */ |
| 2085 | itemid = PageGetItemId(lpage, P_HIKEY); |
| 2086 | right_item_sz = ItemIdGetLength(itemid); |
| 2087 | item = (IndexTuple) PageGetItem(lpage, itemid); |
| 2088 | right_item = CopyIndexTuple(item); |
| 2089 | BTreeInnerTupleSetDownLink(right_item, rbkno); |
| 2090 | |
| 2091 | /* NO EREPORT(ERROR) from here till newroot op is logged */ |
| 2092 | START_CRIT_SECTION(); |
| 2093 | |
| 2094 | /* upgrade metapage if needed */ |
| 2095 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 2096 | _bt_upgrademetapage(metapg); |
| 2097 | |
| 2098 | /* set btree special data */ |
| 2099 | rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); |
| 2100 | rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE; |
| 2101 | rootopaque->btpo_flags = BTP_ROOT; |
| 2102 | rootopaque->btpo.level = |
| 2103 | ((BTPageOpaque) PageGetSpecialPointer(lpage))->btpo.level + 1; |
| 2104 | rootopaque->btpo_cycleid = 0; |
| 2105 | |
| 2106 | /* update metapage data */ |
| 2107 | metad->btm_root = rootblknum; |
| 2108 | metad->btm_level = rootopaque->btpo.level; |
| 2109 | metad->btm_fastroot = rootblknum; |
| 2110 | metad->btm_fastlevel = rootopaque->btpo.level; |
| 2111 | |
| 2112 | /* |
| 2113 | * Insert the left page pointer into the new root page. The root page is |
| 2114 | * the rightmost page on its level so there is no "high key" in it; the |
| 2115 | * two items will go into positions P_HIKEY and P_FIRSTKEY. |
| 2116 | * |
| 2117 | * Note: we *must* insert the two items in item-number order, for the |
| 2118 | * benefit of _bt_restore_page(). |
| 2119 | */ |
| 2120 | Assert(BTreeTupleGetNAtts(left_item, rel) == 0); |
| 2121 | if (PageAddItem(rootpage, (Item) left_item, left_item_sz, P_HIKEY, |
| 2122 | false, false) == InvalidOffsetNumber) |
| 2123 | elog(PANIC, "failed to add leftkey to new root page" |
| 2124 | " while splitting block %u of index \"%s\"" , |
| 2125 | BufferGetBlockNumber(lbuf), RelationGetRelationName(rel)); |
| 2126 | |
| 2127 | /* |
| 2128 | * insert the right page pointer into the new root page. |
| 2129 | */ |
| 2130 | Assert(BTreeTupleGetNAtts(right_item, rel) > 0); |
| 2131 | Assert(BTreeTupleGetNAtts(right_item, rel) <= |
| 2132 | IndexRelationGetNumberOfKeyAttributes(rel)); |
| 2133 | if (PageAddItem(rootpage, (Item) right_item, right_item_sz, P_FIRSTKEY, |
| 2134 | false, false) == InvalidOffsetNumber) |
| 2135 | elog(PANIC, "failed to add rightkey to new root page" |
| 2136 | " while splitting block %u of index \"%s\"" , |
| 2137 | BufferGetBlockNumber(lbuf), RelationGetRelationName(rel)); |
| 2138 | |
| 2139 | /* Clear the incomplete-split flag in the left child */ |
| 2140 | Assert(P_INCOMPLETE_SPLIT(lopaque)); |
| 2141 | lopaque->btpo_flags &= ~BTP_INCOMPLETE_SPLIT; |
| 2142 | MarkBufferDirty(lbuf); |
| 2143 | |
| 2144 | MarkBufferDirty(rootbuf); |
| 2145 | MarkBufferDirty(metabuf); |
| 2146 | |
| 2147 | /* XLOG stuff */ |
| 2148 | if (RelationNeedsWAL(rel)) |
| 2149 | { |
| 2150 | xl_btree_newroot xlrec; |
| 2151 | XLogRecPtr recptr; |
| 2152 | xl_btree_metadata md; |
| 2153 | |
| 2154 | xlrec.rootblk = rootblknum; |
| 2155 | xlrec.level = metad->btm_level; |
| 2156 | |
| 2157 | XLogBeginInsert(); |
| 2158 | XLogRegisterData((char *) &xlrec, SizeOfBtreeNewroot); |
| 2159 | |
| 2160 | XLogRegisterBuffer(0, rootbuf, REGBUF_WILL_INIT); |
| 2161 | XLogRegisterBuffer(1, lbuf, REGBUF_STANDARD); |
| 2162 | XLogRegisterBuffer(2, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 2163 | |
| 2164 | Assert(metad->btm_version >= BTREE_NOVAC_VERSION); |
| 2165 | md.version = metad->btm_version; |
| 2166 | md.root = rootblknum; |
| 2167 | md.level = metad->btm_level; |
| 2168 | md.fastroot = rootblknum; |
| 2169 | md.fastlevel = metad->btm_level; |
| 2170 | md.oldest_btpo_xact = metad->btm_oldest_btpo_xact; |
| 2171 | md.last_cleanup_num_heap_tuples = metad->btm_last_cleanup_num_heap_tuples; |
| 2172 | |
| 2173 | XLogRegisterBufData(2, (char *) &md, sizeof(xl_btree_metadata)); |
| 2174 | |
| 2175 | /* |
| 2176 | * Direct access to page is not good but faster - we should implement |
| 2177 | * some new func in page API. |
| 2178 | */ |
| 2179 | XLogRegisterBufData(0, |
| 2180 | (char *) rootpage + ((PageHeader) rootpage)->pd_upper, |
| 2181 | ((PageHeader) rootpage)->pd_special - |
| 2182 | ((PageHeader) rootpage)->pd_upper); |
| 2183 | |
| 2184 | recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT); |
| 2185 | |
| 2186 | PageSetLSN(lpage, recptr); |
| 2187 | PageSetLSN(rootpage, recptr); |
| 2188 | PageSetLSN(metapg, recptr); |
| 2189 | } |
| 2190 | |
| 2191 | END_CRIT_SECTION(); |
| 2192 | |
| 2193 | /* done with metapage */ |
| 2194 | _bt_relbuf(rel, metabuf); |
| 2195 | |
| 2196 | pfree(left_item); |
| 2197 | pfree(right_item); |
| 2198 | |
| 2199 | return rootbuf; |
| 2200 | } |
| 2201 | |
| 2202 | /* |
| 2203 | * _bt_pgaddtup() -- add a tuple to a particular page in the index. |
| 2204 | * |
| 2205 | * This routine adds the tuple to the page as requested. It does |
| 2206 | * not affect pin/lock status, but you'd better have a write lock |
| 2207 | * and pin on the target buffer! Don't forget to write and release |
| 2208 | * the buffer afterwards, either. |
| 2209 | * |
| 2210 | * The main difference between this routine and a bare PageAddItem call |
| 2211 | * is that this code knows that the leftmost index tuple on a non-leaf |
| 2212 | * btree page doesn't need to have a key. Therefore, it strips such |
| 2213 | * tuples down to just the tuple header. CAUTION: this works ONLY if |
| 2214 | * we insert the tuples in order, so that the given itup_off does |
| 2215 | * represent the final position of the tuple! |
| 2216 | */ |
| 2217 | static bool |
| 2218 | _bt_pgaddtup(Page page, |
| 2219 | Size itemsize, |
| 2220 | IndexTuple itup, |
| 2221 | OffsetNumber itup_off) |
| 2222 | { |
| 2223 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2224 | IndexTupleData trunctuple; |
| 2225 | |
| 2226 | if (!P_ISLEAF(opaque) && itup_off == P_FIRSTDATAKEY(opaque)) |
| 2227 | { |
| 2228 | trunctuple = *itup; |
| 2229 | trunctuple.t_info = sizeof(IndexTupleData); |
| 2230 | /* Deliberately zero INDEX_ALT_TID_MASK bits */ |
| 2231 | BTreeTupleSetNAtts(&trunctuple, 0); |
| 2232 | itup = &trunctuple; |
| 2233 | itemsize = sizeof(IndexTupleData); |
| 2234 | } |
| 2235 | |
| 2236 | if (PageAddItem(page, (Item) itup, itemsize, itup_off, |
| 2237 | false, false) == InvalidOffsetNumber) |
| 2238 | return false; |
| 2239 | |
| 2240 | return true; |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * _bt_vacuum_one_page - vacuum just one index page. |
| 2245 | * |
| 2246 | * Try to remove LP_DEAD items from the given page. The passed buffer |
| 2247 | * must be exclusive-locked, but unlike a real VACUUM, we don't need a |
| 2248 | * super-exclusive "cleanup" lock (see nbtree/README). |
| 2249 | */ |
| 2250 | static void |
| 2251 | _bt_vacuum_one_page(Relation rel, Buffer buffer, Relation heapRel) |
| 2252 | { |
| 2253 | OffsetNumber deletable[MaxOffsetNumber]; |
| 2254 | int ndeletable = 0; |
| 2255 | OffsetNumber offnum, |
| 2256 | minoff, |
| 2257 | maxoff; |
| 2258 | Page page = BufferGetPage(buffer); |
| 2259 | BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 2260 | |
| 2261 | Assert(P_ISLEAF(opaque)); |
| 2262 | |
| 2263 | /* |
| 2264 | * Scan over all items to see which ones need to be deleted according to |
| 2265 | * LP_DEAD flags. |
| 2266 | */ |
| 2267 | minoff = P_FIRSTDATAKEY(opaque); |
| 2268 | maxoff = PageGetMaxOffsetNumber(page); |
| 2269 | for (offnum = minoff; |
| 2270 | offnum <= maxoff; |
| 2271 | offnum = OffsetNumberNext(offnum)) |
| 2272 | { |
| 2273 | ItemId itemId = PageGetItemId(page, offnum); |
| 2274 | |
| 2275 | if (ItemIdIsDead(itemId)) |
| 2276 | deletable[ndeletable++] = offnum; |
| 2277 | } |
| 2278 | |
| 2279 | if (ndeletable > 0) |
| 2280 | _bt_delitems_delete(rel, buffer, deletable, ndeletable, heapRel); |
| 2281 | |
| 2282 | /* |
| 2283 | * Note: if we didn't find any LP_DEAD items, then the page's |
| 2284 | * BTP_HAS_GARBAGE hint bit is falsely set. We do not bother expending a |
| 2285 | * separate write to clear it, however. We will clear it when we split |
| 2286 | * the page. |
| 2287 | */ |
| 2288 | } |
| 2289 | |