| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nbtree.c |
| 4 | * Implementation of Lehman and Yao's btree management algorithm for |
| 5 | * Postgres. |
| 6 | * |
| 7 | * NOTES |
| 8 | * This file contains only the public interface routines. |
| 9 | * |
| 10 | * |
| 11 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 12 | * Portions Copyright (c) 1994, Regents of the University of California |
| 13 | * |
| 14 | * IDENTIFICATION |
| 15 | * src/backend/access/nbtree/nbtree.c |
| 16 | * |
| 17 | *------------------------------------------------------------------------- |
| 18 | */ |
| 19 | #include "postgres.h" |
| 20 | |
| 21 | #include "access/nbtree.h" |
| 22 | #include "access/nbtxlog.h" |
| 23 | #include "access/relscan.h" |
| 24 | #include "access/xlog.h" |
| 25 | #include "commands/progress.h" |
| 26 | #include "commands/vacuum.h" |
| 27 | #include "miscadmin.h" |
| 28 | #include "nodes/execnodes.h" |
| 29 | #include "pgstat.h" |
| 30 | #include "postmaster/autovacuum.h" |
| 31 | #include "storage/condition_variable.h" |
| 32 | #include "storage/indexfsm.h" |
| 33 | #include "storage/ipc.h" |
| 34 | #include "storage/lmgr.h" |
| 35 | #include "storage/smgr.h" |
| 36 | #include "utils/builtins.h" |
| 37 | #include "utils/index_selfuncs.h" |
| 38 | #include "utils/memutils.h" |
| 39 | |
| 40 | |
| 41 | /* Working state needed by btvacuumpage */ |
| 42 | typedef struct |
| 43 | { |
| 44 | IndexVacuumInfo *info; |
| 45 | IndexBulkDeleteResult *stats; |
| 46 | IndexBulkDeleteCallback callback; |
| 47 | void *callback_state; |
| 48 | BTCycleId cycleid; |
| 49 | BlockNumber lastBlockVacuumed; /* highest blkno actually vacuumed */ |
| 50 | BlockNumber lastBlockLocked; /* highest blkno we've cleanup-locked */ |
| 51 | BlockNumber totFreePages; /* true total # of free pages */ |
| 52 | TransactionId oldestBtpoXact; |
| 53 | MemoryContext pagedelcontext; |
| 54 | } BTVacState; |
| 55 | |
| 56 | /* |
| 57 | * BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started. |
| 58 | * |
| 59 | * BTPARALLEL_ADVANCING indicates that some process is advancing the scan to |
| 60 | * a new page; others must wait. |
| 61 | * |
| 62 | * BTPARALLEL_IDLE indicates that no backend is currently advancing the scan |
| 63 | * to a new page; some process can start doing that. |
| 64 | * |
| 65 | * BTPARALLEL_DONE indicates that the scan is complete (including error exit). |
| 66 | * We reach this state once for every distinct combination of array keys. |
| 67 | */ |
| 68 | typedef enum |
| 69 | { |
| 70 | BTPARALLEL_NOT_INITIALIZED, |
| 71 | BTPARALLEL_ADVANCING, |
| 72 | BTPARALLEL_IDLE, |
| 73 | BTPARALLEL_DONE |
| 74 | } BTPS_State; |
| 75 | |
| 76 | /* |
| 77 | * BTParallelScanDescData contains btree specific shared information required |
| 78 | * for parallel scan. |
| 79 | */ |
| 80 | typedef struct BTParallelScanDescData |
| 81 | { |
| 82 | BlockNumber btps_scanPage; /* latest or next page to be scanned */ |
| 83 | BTPS_State btps_pageStatus; /* indicates whether next page is |
| 84 | * available for scan. see above for |
| 85 | * possible states of parallel scan. */ |
| 86 | int btps_arrayKeyCount; /* count indicating number of array scan |
| 87 | * keys processed by parallel scan */ |
| 88 | slock_t btps_mutex; /* protects above variables */ |
| 89 | ConditionVariable btps_cv; /* used to synchronize parallel scan */ |
| 90 | } BTParallelScanDescData; |
| 91 | |
| 92 | typedef struct BTParallelScanDescData *BTParallelScanDesc; |
| 93 | |
| 94 | |
| 95 | static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, |
| 96 | IndexBulkDeleteCallback callback, void *callback_state, |
| 97 | BTCycleId cycleid, TransactionId *oldestBtpoXact); |
| 98 | static void btvacuumpage(BTVacState *vstate, BlockNumber blkno, |
| 99 | BlockNumber orig_blkno); |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | * Btree handler function: return IndexAmRoutine with access method parameters |
| 104 | * and callbacks. |
| 105 | */ |
| 106 | Datum |
| 107 | bthandler(PG_FUNCTION_ARGS) |
| 108 | { |
| 109 | IndexAmRoutine *amroutine = makeNode(IndexAmRoutine); |
| 110 | |
| 111 | amroutine->amstrategies = BTMaxStrategyNumber; |
| 112 | amroutine->amsupport = BTNProcs; |
| 113 | amroutine->amcanorder = true; |
| 114 | amroutine->amcanorderbyop = false; |
| 115 | amroutine->amcanbackward = true; |
| 116 | amroutine->amcanunique = true; |
| 117 | amroutine->amcanmulticol = true; |
| 118 | amroutine->amoptionalkey = true; |
| 119 | amroutine->amsearcharray = true; |
| 120 | amroutine->amsearchnulls = true; |
| 121 | amroutine->amstorage = false; |
| 122 | amroutine->amclusterable = true; |
| 123 | amroutine->ampredlocks = true; |
| 124 | amroutine->amcanparallel = true; |
| 125 | amroutine->amcaninclude = true; |
| 126 | amroutine->amkeytype = InvalidOid; |
| 127 | |
| 128 | amroutine->ambuild = btbuild; |
| 129 | amroutine->ambuildempty = btbuildempty; |
| 130 | amroutine->aminsert = btinsert; |
| 131 | amroutine->ambulkdelete = btbulkdelete; |
| 132 | amroutine->amvacuumcleanup = btvacuumcleanup; |
| 133 | amroutine->amcanreturn = btcanreturn; |
| 134 | amroutine->amcostestimate = btcostestimate; |
| 135 | amroutine->amoptions = btoptions; |
| 136 | amroutine->amproperty = btproperty; |
| 137 | amroutine->ambuildphasename = btbuildphasename; |
| 138 | amroutine->amvalidate = btvalidate; |
| 139 | amroutine->ambeginscan = btbeginscan; |
| 140 | amroutine->amrescan = btrescan; |
| 141 | amroutine->amgettuple = btgettuple; |
| 142 | amroutine->amgetbitmap = btgetbitmap; |
| 143 | amroutine->amendscan = btendscan; |
| 144 | amroutine->ammarkpos = btmarkpos; |
| 145 | amroutine->amrestrpos = btrestrpos; |
| 146 | amroutine->amestimateparallelscan = btestimateparallelscan; |
| 147 | amroutine->aminitparallelscan = btinitparallelscan; |
| 148 | amroutine->amparallelrescan = btparallelrescan; |
| 149 | |
| 150 | PG_RETURN_POINTER(amroutine); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * btbuildempty() -- build an empty btree index in the initialization fork |
| 155 | */ |
| 156 | void |
| 157 | btbuildempty(Relation index) |
| 158 | { |
| 159 | Page metapage; |
| 160 | |
| 161 | /* Construct metapage. */ |
| 162 | metapage = (Page) palloc(BLCKSZ); |
| 163 | _bt_initmetapage(metapage, P_NONE, 0); |
| 164 | |
| 165 | /* |
| 166 | * Write the page and log it. It might seem that an immediate sync would |
| 167 | * be sufficient to guarantee that the file exists on disk, but recovery |
| 168 | * itself might remove it while replaying, for example, an |
| 169 | * XLOG_DBASE_CREATE or XLOG_TBLSPC_CREATE record. Therefore, we need |
| 170 | * this even when wal_level=minimal. |
| 171 | */ |
| 172 | PageSetChecksumInplace(metapage, BTREE_METAPAGE); |
| 173 | smgrwrite(index->rd_smgr, INIT_FORKNUM, BTREE_METAPAGE, |
| 174 | (char *) metapage, true); |
| 175 | log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM, |
| 176 | BTREE_METAPAGE, metapage, true); |
| 177 | |
| 178 | /* |
| 179 | * An immediate sync is required even if we xlog'd the page, because the |
| 180 | * write did not go through shared_buffers and therefore a concurrent |
| 181 | * checkpoint may have moved the redo pointer past our xlog record. |
| 182 | */ |
| 183 | smgrimmedsync(index->rd_smgr, INIT_FORKNUM); |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * btinsert() -- insert an index tuple into a btree. |
| 188 | * |
| 189 | * Descend the tree recursively, find the appropriate location for our |
| 190 | * new tuple, and put it there. |
| 191 | */ |
| 192 | bool |
| 193 | btinsert(Relation rel, Datum *values, bool *isnull, |
| 194 | ItemPointer ht_ctid, Relation heapRel, |
| 195 | IndexUniqueCheck checkUnique, |
| 196 | IndexInfo *indexInfo) |
| 197 | { |
| 198 | bool result; |
| 199 | IndexTuple itup; |
| 200 | |
| 201 | /* generate an index tuple */ |
| 202 | itup = index_form_tuple(RelationGetDescr(rel), values, isnull); |
| 203 | itup->t_tid = *ht_ctid; |
| 204 | |
| 205 | result = _bt_doinsert(rel, itup, checkUnique, heapRel); |
| 206 | |
| 207 | pfree(itup); |
| 208 | |
| 209 | return result; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * btgettuple() -- Get the next tuple in the scan. |
| 214 | */ |
| 215 | bool |
| 216 | btgettuple(IndexScanDesc scan, ScanDirection dir) |
| 217 | { |
| 218 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 219 | bool res; |
| 220 | |
| 221 | /* btree indexes are never lossy */ |
| 222 | scan->xs_recheck = false; |
| 223 | |
| 224 | /* |
| 225 | * If we have any array keys, initialize them during first call for a |
| 226 | * scan. We can't do this in btrescan because we don't know the scan |
| 227 | * direction at that time. |
| 228 | */ |
| 229 | if (so->numArrayKeys && !BTScanPosIsValid(so->currPos)) |
| 230 | { |
| 231 | /* punt if we have any unsatisfiable array keys */ |
| 232 | if (so->numArrayKeys < 0) |
| 233 | return false; |
| 234 | |
| 235 | _bt_start_array_keys(scan, dir); |
| 236 | } |
| 237 | |
| 238 | /* This loop handles advancing to the next array elements, if any */ |
| 239 | do |
| 240 | { |
| 241 | /* |
| 242 | * If we've already initialized this scan, we can just advance it in |
| 243 | * the appropriate direction. If we haven't done so yet, we call |
| 244 | * _bt_first() to get the first item in the scan. |
| 245 | */ |
| 246 | if (!BTScanPosIsValid(so->currPos)) |
| 247 | res = _bt_first(scan, dir); |
| 248 | else |
| 249 | { |
| 250 | /* |
| 251 | * Check to see if we should kill the previously-fetched tuple. |
| 252 | */ |
| 253 | if (scan->kill_prior_tuple) |
| 254 | { |
| 255 | /* |
| 256 | * Yes, remember it for later. (We'll deal with all such |
| 257 | * tuples at once right before leaving the index page.) The |
| 258 | * test for numKilled overrun is not just paranoia: if the |
| 259 | * caller reverses direction in the indexscan then the same |
| 260 | * item might get entered multiple times. It's not worth |
| 261 | * trying to optimize that, so we don't detect it, but instead |
| 262 | * just forget any excess entries. |
| 263 | */ |
| 264 | if (so->killedItems == NULL) |
| 265 | so->killedItems = (int *) |
| 266 | palloc(MaxIndexTuplesPerPage * sizeof(int)); |
| 267 | if (so->numKilled < MaxIndexTuplesPerPage) |
| 268 | so->killedItems[so->numKilled++] = so->currPos.itemIndex; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Now continue the scan. |
| 273 | */ |
| 274 | res = _bt_next(scan, dir); |
| 275 | } |
| 276 | |
| 277 | /* If we have a tuple, return it ... */ |
| 278 | if (res) |
| 279 | break; |
| 280 | /* ... otherwise see if we have more array keys to deal with */ |
| 281 | } while (so->numArrayKeys && _bt_advance_array_keys(scan, dir)); |
| 282 | |
| 283 | return res; |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap |
| 288 | */ |
| 289 | int64 |
| 290 | btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm) |
| 291 | { |
| 292 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 293 | int64 ntids = 0; |
| 294 | ItemPointer heapTid; |
| 295 | |
| 296 | /* |
| 297 | * If we have any array keys, initialize them. |
| 298 | */ |
| 299 | if (so->numArrayKeys) |
| 300 | { |
| 301 | /* punt if we have any unsatisfiable array keys */ |
| 302 | if (so->numArrayKeys < 0) |
| 303 | return ntids; |
| 304 | |
| 305 | _bt_start_array_keys(scan, ForwardScanDirection); |
| 306 | } |
| 307 | |
| 308 | /* This loop handles advancing to the next array elements, if any */ |
| 309 | do |
| 310 | { |
| 311 | /* Fetch the first page & tuple */ |
| 312 | if (_bt_first(scan, ForwardScanDirection)) |
| 313 | { |
| 314 | /* Save tuple ID, and continue scanning */ |
| 315 | heapTid = &scan->xs_heaptid; |
| 316 | tbm_add_tuples(tbm, heapTid, 1, false); |
| 317 | ntids++; |
| 318 | |
| 319 | for (;;) |
| 320 | { |
| 321 | /* |
| 322 | * Advance to next tuple within page. This is the same as the |
| 323 | * easy case in _bt_next(). |
| 324 | */ |
| 325 | if (++so->currPos.itemIndex > so->currPos.lastItem) |
| 326 | { |
| 327 | /* let _bt_next do the heavy lifting */ |
| 328 | if (!_bt_next(scan, ForwardScanDirection)) |
| 329 | break; |
| 330 | } |
| 331 | |
| 332 | /* Save tuple ID, and continue scanning */ |
| 333 | heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid; |
| 334 | tbm_add_tuples(tbm, heapTid, 1, false); |
| 335 | ntids++; |
| 336 | } |
| 337 | } |
| 338 | /* Now see if we have more array keys to deal with */ |
| 339 | } while (so->numArrayKeys && _bt_advance_array_keys(scan, ForwardScanDirection)); |
| 340 | |
| 341 | return ntids; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * btbeginscan() -- start a scan on a btree index |
| 346 | */ |
| 347 | IndexScanDesc |
| 348 | btbeginscan(Relation rel, int nkeys, int norderbys) |
| 349 | { |
| 350 | IndexScanDesc scan; |
| 351 | BTScanOpaque so; |
| 352 | |
| 353 | /* no order by operators allowed */ |
| 354 | Assert(norderbys == 0); |
| 355 | |
| 356 | /* get the scan */ |
| 357 | scan = RelationGetIndexScan(rel, nkeys, norderbys); |
| 358 | |
| 359 | /* allocate private workspace */ |
| 360 | so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData)); |
| 361 | BTScanPosInvalidate(so->currPos); |
| 362 | BTScanPosInvalidate(so->markPos); |
| 363 | if (scan->numberOfKeys > 0) |
| 364 | so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData)); |
| 365 | else |
| 366 | so->keyData = NULL; |
| 367 | |
| 368 | so->arrayKeyData = NULL; /* assume no array keys for now */ |
| 369 | so->numArrayKeys = 0; |
| 370 | so->arrayKeys = NULL; |
| 371 | so->arrayContext = NULL; |
| 372 | |
| 373 | so->killedItems = NULL; /* until needed */ |
| 374 | so->numKilled = 0; |
| 375 | |
| 376 | /* |
| 377 | * We don't know yet whether the scan will be index-only, so we do not |
| 378 | * allocate the tuple workspace arrays until btrescan. However, we set up |
| 379 | * scan->xs_itupdesc whether we'll need it or not, since that's so cheap. |
| 380 | */ |
| 381 | so->currTuples = so->markTuples = NULL; |
| 382 | |
| 383 | scan->xs_itupdesc = RelationGetDescr(rel); |
| 384 | |
| 385 | scan->opaque = so; |
| 386 | |
| 387 | return scan; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * btrescan() -- rescan an index relation |
| 392 | */ |
| 393 | void |
| 394 | btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys, |
| 395 | ScanKey orderbys, int norderbys) |
| 396 | { |
| 397 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 398 | |
| 399 | /* we aren't holding any read locks, but gotta drop the pins */ |
| 400 | if (BTScanPosIsValid(so->currPos)) |
| 401 | { |
| 402 | /* Before leaving current page, deal with any killed items */ |
| 403 | if (so->numKilled > 0) |
| 404 | _bt_killitems(scan); |
| 405 | BTScanPosUnpinIfPinned(so->currPos); |
| 406 | BTScanPosInvalidate(so->currPos); |
| 407 | } |
| 408 | |
| 409 | so->markItemIndex = -1; |
| 410 | so->arrayKeyCount = 0; |
| 411 | BTScanPosUnpinIfPinned(so->markPos); |
| 412 | BTScanPosInvalidate(so->markPos); |
| 413 | |
| 414 | /* |
| 415 | * Allocate tuple workspace arrays, if needed for an index-only scan and |
| 416 | * not already done in a previous rescan call. To save on palloc |
| 417 | * overhead, both workspaces are allocated as one palloc block; only this |
| 418 | * function and btendscan know that. |
| 419 | * |
| 420 | * NOTE: this data structure also makes it safe to return data from a |
| 421 | * "name" column, even though btree name_ops uses an underlying storage |
| 422 | * datatype of cstring. The risk there is that "name" is supposed to be |
| 423 | * padded to NAMEDATALEN, but the actual index tuple is probably shorter. |
| 424 | * However, since we only return data out of tuples sitting in the |
| 425 | * currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some |
| 426 | * data out of the markTuples array --- running off the end of memory for |
| 427 | * a SIGSEGV is not possible. Yeah, this is ugly as sin, but it beats |
| 428 | * adding special-case treatment for name_ops elsewhere. |
| 429 | */ |
| 430 | if (scan->xs_want_itup && so->currTuples == NULL) |
| 431 | { |
| 432 | so->currTuples = (char *) palloc(BLCKSZ * 2); |
| 433 | so->markTuples = so->currTuples + BLCKSZ; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Reset the scan keys. Note that keys ordering stuff moved to _bt_first. |
| 438 | * - vadim 05/05/97 |
| 439 | */ |
| 440 | if (scankey && scan->numberOfKeys > 0) |
| 441 | memmove(scan->keyData, |
| 442 | scankey, |
| 443 | scan->numberOfKeys * sizeof(ScanKeyData)); |
| 444 | so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */ |
| 445 | |
| 446 | /* If any keys are SK_SEARCHARRAY type, set up array-key info */ |
| 447 | _bt_preprocess_array_keys(scan); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * btendscan() -- close down a scan |
| 452 | */ |
| 453 | void |
| 454 | btendscan(IndexScanDesc scan) |
| 455 | { |
| 456 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 457 | |
| 458 | /* we aren't holding any read locks, but gotta drop the pins */ |
| 459 | if (BTScanPosIsValid(so->currPos)) |
| 460 | { |
| 461 | /* Before leaving current page, deal with any killed items */ |
| 462 | if (so->numKilled > 0) |
| 463 | _bt_killitems(scan); |
| 464 | BTScanPosUnpinIfPinned(so->currPos); |
| 465 | } |
| 466 | |
| 467 | so->markItemIndex = -1; |
| 468 | BTScanPosUnpinIfPinned(so->markPos); |
| 469 | |
| 470 | /* No need to invalidate positions, the RAM is about to be freed. */ |
| 471 | |
| 472 | /* Release storage */ |
| 473 | if (so->keyData != NULL) |
| 474 | pfree(so->keyData); |
| 475 | /* so->arrayKeyData and so->arrayKeys are in arrayContext */ |
| 476 | if (so->arrayContext != NULL) |
| 477 | MemoryContextDelete(so->arrayContext); |
| 478 | if (so->killedItems != NULL) |
| 479 | pfree(so->killedItems); |
| 480 | if (so->currTuples != NULL) |
| 481 | pfree(so->currTuples); |
| 482 | /* so->markTuples should not be pfree'd, see btrescan */ |
| 483 | pfree(so); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * btmarkpos() -- save current scan position |
| 488 | */ |
| 489 | void |
| 490 | btmarkpos(IndexScanDesc scan) |
| 491 | { |
| 492 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 493 | |
| 494 | /* There may be an old mark with a pin (but no lock). */ |
| 495 | BTScanPosUnpinIfPinned(so->markPos); |
| 496 | |
| 497 | /* |
| 498 | * Just record the current itemIndex. If we later step to next page |
| 499 | * before releasing the marked position, _bt_steppage makes a full copy of |
| 500 | * the currPos struct in markPos. If (as often happens) the mark is moved |
| 501 | * before we leave the page, we don't have to do that work. |
| 502 | */ |
| 503 | if (BTScanPosIsValid(so->currPos)) |
| 504 | so->markItemIndex = so->currPos.itemIndex; |
| 505 | else |
| 506 | { |
| 507 | BTScanPosInvalidate(so->markPos); |
| 508 | so->markItemIndex = -1; |
| 509 | } |
| 510 | |
| 511 | /* Also record the current positions of any array keys */ |
| 512 | if (so->numArrayKeys) |
| 513 | _bt_mark_array_keys(scan); |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * btrestrpos() -- restore scan to last saved position |
| 518 | */ |
| 519 | void |
| 520 | btrestrpos(IndexScanDesc scan) |
| 521 | { |
| 522 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 523 | |
| 524 | /* Restore the marked positions of any array keys */ |
| 525 | if (so->numArrayKeys) |
| 526 | _bt_restore_array_keys(scan); |
| 527 | |
| 528 | if (so->markItemIndex >= 0) |
| 529 | { |
| 530 | /* |
| 531 | * The scan has never moved to a new page since the last mark. Just |
| 532 | * restore the itemIndex. |
| 533 | * |
| 534 | * NB: In this case we can't count on anything in so->markPos to be |
| 535 | * accurate. |
| 536 | */ |
| 537 | so->currPos.itemIndex = so->markItemIndex; |
| 538 | } |
| 539 | else |
| 540 | { |
| 541 | /* |
| 542 | * The scan moved to a new page after last mark or restore, and we are |
| 543 | * now restoring to the marked page. We aren't holding any read |
| 544 | * locks, but if we're still holding the pin for the current position, |
| 545 | * we must drop it. |
| 546 | */ |
| 547 | if (BTScanPosIsValid(so->currPos)) |
| 548 | { |
| 549 | /* Before leaving current page, deal with any killed items */ |
| 550 | if (so->numKilled > 0) |
| 551 | _bt_killitems(scan); |
| 552 | BTScanPosUnpinIfPinned(so->currPos); |
| 553 | } |
| 554 | |
| 555 | if (BTScanPosIsValid(so->markPos)) |
| 556 | { |
| 557 | /* bump pin on mark buffer for assignment to current buffer */ |
| 558 | if (BTScanPosIsPinned(so->markPos)) |
| 559 | IncrBufferRefCount(so->markPos.buf); |
| 560 | memcpy(&so->currPos, &so->markPos, |
| 561 | offsetof(BTScanPosData, items[1]) + |
| 562 | so->markPos.lastItem * sizeof(BTScanPosItem)); |
| 563 | if (so->currTuples) |
| 564 | memcpy(so->currTuples, so->markTuples, |
| 565 | so->markPos.nextTupleOffset); |
| 566 | } |
| 567 | else |
| 568 | BTScanPosInvalidate(so->currPos); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * btestimateparallelscan -- estimate storage for BTParallelScanDescData |
| 574 | */ |
| 575 | Size |
| 576 | btestimateparallelscan(void) |
| 577 | { |
| 578 | return sizeof(BTParallelScanDescData); |
| 579 | } |
| 580 | |
| 581 | /* |
| 582 | * btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan |
| 583 | */ |
| 584 | void |
| 585 | btinitparallelscan(void *target) |
| 586 | { |
| 587 | BTParallelScanDesc bt_target = (BTParallelScanDesc) target; |
| 588 | |
| 589 | SpinLockInit(&bt_target->btps_mutex); |
| 590 | bt_target->btps_scanPage = InvalidBlockNumber; |
| 591 | bt_target->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED; |
| 592 | bt_target->btps_arrayKeyCount = 0; |
| 593 | ConditionVariableInit(&bt_target->btps_cv); |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * btparallelrescan() -- reset parallel scan |
| 598 | */ |
| 599 | void |
| 600 | btparallelrescan(IndexScanDesc scan) |
| 601 | { |
| 602 | BTParallelScanDesc btscan; |
| 603 | ParallelIndexScanDesc parallel_scan = scan->parallel_scan; |
| 604 | |
| 605 | Assert(parallel_scan); |
| 606 | |
| 607 | btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, |
| 608 | parallel_scan->ps_offset); |
| 609 | |
| 610 | /* |
| 611 | * In theory, we don't need to acquire the spinlock here, because there |
| 612 | * shouldn't be any other workers running at this point, but we do so for |
| 613 | * consistency. |
| 614 | */ |
| 615 | SpinLockAcquire(&btscan->btps_mutex); |
| 616 | btscan->btps_scanPage = InvalidBlockNumber; |
| 617 | btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED; |
| 618 | btscan->btps_arrayKeyCount = 0; |
| 619 | SpinLockRelease(&btscan->btps_mutex); |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * _bt_parallel_seize() -- Begin the process of advancing the scan to a new |
| 624 | * page. Other scans must wait until we call _bt_parallel_release() |
| 625 | * or _bt_parallel_done(). |
| 626 | * |
| 627 | * The return value is true if we successfully seized the scan and false |
| 628 | * if we did not. The latter case occurs if no pages remain for the current |
| 629 | * set of scankeys. |
| 630 | * |
| 631 | * If the return value is true, *pageno returns the next or current page |
| 632 | * of the scan (depending on the scan direction). An invalid block number |
| 633 | * means the scan hasn't yet started, and P_NONE means we've reached the end. |
| 634 | * The first time a participating process reaches the last page, it will return |
| 635 | * true and set *pageno to P_NONE; after that, further attempts to seize the |
| 636 | * scan will return false. |
| 637 | * |
| 638 | * Callers should ignore the value of pageno if the return value is false. |
| 639 | */ |
| 640 | bool |
| 641 | _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno) |
| 642 | { |
| 643 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 644 | BTPS_State pageStatus; |
| 645 | bool exit_loop = false; |
| 646 | bool status = true; |
| 647 | ParallelIndexScanDesc parallel_scan = scan->parallel_scan; |
| 648 | BTParallelScanDesc btscan; |
| 649 | |
| 650 | *pageno = P_NONE; |
| 651 | |
| 652 | btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, |
| 653 | parallel_scan->ps_offset); |
| 654 | |
| 655 | while (1) |
| 656 | { |
| 657 | SpinLockAcquire(&btscan->btps_mutex); |
| 658 | pageStatus = btscan->btps_pageStatus; |
| 659 | |
| 660 | if (so->arrayKeyCount < btscan->btps_arrayKeyCount) |
| 661 | { |
| 662 | /* Parallel scan has already advanced to a new set of scankeys. */ |
| 663 | status = false; |
| 664 | } |
| 665 | else if (pageStatus == BTPARALLEL_DONE) |
| 666 | { |
| 667 | /* |
| 668 | * We're done with this set of scankeys. This may be the end, or |
| 669 | * there could be more sets to try. |
| 670 | */ |
| 671 | status = false; |
| 672 | } |
| 673 | else if (pageStatus != BTPARALLEL_ADVANCING) |
| 674 | { |
| 675 | /* |
| 676 | * We have successfully seized control of the scan for the purpose |
| 677 | * of advancing it to a new page! |
| 678 | */ |
| 679 | btscan->btps_pageStatus = BTPARALLEL_ADVANCING; |
| 680 | *pageno = btscan->btps_scanPage; |
| 681 | exit_loop = true; |
| 682 | } |
| 683 | SpinLockRelease(&btscan->btps_mutex); |
| 684 | if (exit_loop || !status) |
| 685 | break; |
| 686 | ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE); |
| 687 | } |
| 688 | ConditionVariableCancelSleep(); |
| 689 | |
| 690 | return status; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * _bt_parallel_release() -- Complete the process of advancing the scan to a |
| 695 | * new page. We now have the new value btps_scanPage; some other backend |
| 696 | * can now begin advancing the scan. |
| 697 | */ |
| 698 | void |
| 699 | _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page) |
| 700 | { |
| 701 | ParallelIndexScanDesc parallel_scan = scan->parallel_scan; |
| 702 | BTParallelScanDesc btscan; |
| 703 | |
| 704 | btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, |
| 705 | parallel_scan->ps_offset); |
| 706 | |
| 707 | SpinLockAcquire(&btscan->btps_mutex); |
| 708 | btscan->btps_scanPage = scan_page; |
| 709 | btscan->btps_pageStatus = BTPARALLEL_IDLE; |
| 710 | SpinLockRelease(&btscan->btps_mutex); |
| 711 | ConditionVariableSignal(&btscan->btps_cv); |
| 712 | } |
| 713 | |
| 714 | /* |
| 715 | * _bt_parallel_done() -- Mark the parallel scan as complete. |
| 716 | * |
| 717 | * When there are no pages left to scan, this function should be called to |
| 718 | * notify other workers. Otherwise, they might wait forever for the scan to |
| 719 | * advance to the next page. |
| 720 | */ |
| 721 | void |
| 722 | _bt_parallel_done(IndexScanDesc scan) |
| 723 | { |
| 724 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 725 | ParallelIndexScanDesc parallel_scan = scan->parallel_scan; |
| 726 | BTParallelScanDesc btscan; |
| 727 | bool status_changed = false; |
| 728 | |
| 729 | /* Do nothing, for non-parallel scans */ |
| 730 | if (parallel_scan == NULL) |
| 731 | return; |
| 732 | |
| 733 | btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, |
| 734 | parallel_scan->ps_offset); |
| 735 | |
| 736 | /* |
| 737 | * Mark the parallel scan as done for this combination of scan keys, |
| 738 | * unless some other process already did so. See also |
| 739 | * _bt_advance_array_keys. |
| 740 | */ |
| 741 | SpinLockAcquire(&btscan->btps_mutex); |
| 742 | if (so->arrayKeyCount >= btscan->btps_arrayKeyCount && |
| 743 | btscan->btps_pageStatus != BTPARALLEL_DONE) |
| 744 | { |
| 745 | btscan->btps_pageStatus = BTPARALLEL_DONE; |
| 746 | status_changed = true; |
| 747 | } |
| 748 | SpinLockRelease(&btscan->btps_mutex); |
| 749 | |
| 750 | /* wake up all the workers associated with this parallel scan */ |
| 751 | if (status_changed) |
| 752 | ConditionVariableBroadcast(&btscan->btps_cv); |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * _bt_parallel_advance_array_keys() -- Advances the parallel scan for array |
| 757 | * keys. |
| 758 | * |
| 759 | * Updates the count of array keys processed for both local and parallel |
| 760 | * scans. |
| 761 | */ |
| 762 | void |
| 763 | _bt_parallel_advance_array_keys(IndexScanDesc scan) |
| 764 | { |
| 765 | BTScanOpaque so = (BTScanOpaque) scan->opaque; |
| 766 | ParallelIndexScanDesc parallel_scan = scan->parallel_scan; |
| 767 | BTParallelScanDesc btscan; |
| 768 | |
| 769 | btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan, |
| 770 | parallel_scan->ps_offset); |
| 771 | |
| 772 | so->arrayKeyCount++; |
| 773 | SpinLockAcquire(&btscan->btps_mutex); |
| 774 | if (btscan->btps_pageStatus == BTPARALLEL_DONE) |
| 775 | { |
| 776 | btscan->btps_scanPage = InvalidBlockNumber; |
| 777 | btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED; |
| 778 | btscan->btps_arrayKeyCount++; |
| 779 | } |
| 780 | SpinLockRelease(&btscan->btps_mutex); |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * _bt_vacuum_needs_cleanup() -- Checks if index needs cleanup assuming that |
| 785 | * btbulkdelete() wasn't called. |
| 786 | */ |
| 787 | static bool |
| 788 | _bt_vacuum_needs_cleanup(IndexVacuumInfo *info) |
| 789 | { |
| 790 | Buffer metabuf; |
| 791 | Page metapg; |
| 792 | BTMetaPageData *metad; |
| 793 | bool result = false; |
| 794 | |
| 795 | metabuf = _bt_getbuf(info->index, BTREE_METAPAGE, BT_READ); |
| 796 | metapg = BufferGetPage(metabuf); |
| 797 | metad = BTPageGetMeta(metapg); |
| 798 | |
| 799 | if (metad->btm_version < BTREE_NOVAC_VERSION) |
| 800 | { |
| 801 | /* |
| 802 | * Do cleanup if metapage needs upgrade, because we don't have |
| 803 | * cleanup-related meta-information yet. |
| 804 | */ |
| 805 | result = true; |
| 806 | } |
| 807 | else if (TransactionIdIsValid(metad->btm_oldest_btpo_xact) && |
| 808 | TransactionIdPrecedes(metad->btm_oldest_btpo_xact, |
| 809 | RecentGlobalXmin)) |
| 810 | { |
| 811 | /* |
| 812 | * If oldest btpo.xact in the deleted pages is older than |
| 813 | * RecentGlobalXmin, then at least one deleted page can be recycled. |
| 814 | */ |
| 815 | result = true; |
| 816 | } |
| 817 | else |
| 818 | { |
| 819 | StdRdOptions *relopts; |
| 820 | float8 cleanup_scale_factor; |
| 821 | float8 prev_num_heap_tuples; |
| 822 | |
| 823 | /* |
| 824 | * If table receives enough insertions and no cleanup was performed, |
| 825 | * then index would appear have stale statistics. If scale factor is |
| 826 | * set, we avoid that by performing cleanup if the number of inserted |
| 827 | * tuples exceeds vacuum_cleanup_index_scale_factor fraction of |
| 828 | * original tuples count. |
| 829 | */ |
| 830 | relopts = (StdRdOptions *) info->index->rd_options; |
| 831 | cleanup_scale_factor = (relopts && |
| 832 | relopts->vacuum_cleanup_index_scale_factor >= 0) |
| 833 | ? relopts->vacuum_cleanup_index_scale_factor |
| 834 | : vacuum_cleanup_index_scale_factor; |
| 835 | prev_num_heap_tuples = metad->btm_last_cleanup_num_heap_tuples; |
| 836 | |
| 837 | if (cleanup_scale_factor <= 0 || |
| 838 | prev_num_heap_tuples <= 0 || |
| 839 | (info->num_heap_tuples - prev_num_heap_tuples) / |
| 840 | prev_num_heap_tuples >= cleanup_scale_factor) |
| 841 | result = true; |
| 842 | } |
| 843 | |
| 844 | _bt_relbuf(info->index, metabuf); |
| 845 | return result; |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Bulk deletion of all index entries pointing to a set of heap tuples. |
| 850 | * The set of target tuples is specified via a callback routine that tells |
| 851 | * whether any given heap tuple (identified by ItemPointer) is being deleted. |
| 852 | * |
| 853 | * Result: a palloc'd struct containing statistical info for VACUUM displays. |
| 854 | */ |
| 855 | IndexBulkDeleteResult * |
| 856 | btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, |
| 857 | IndexBulkDeleteCallback callback, void *callback_state) |
| 858 | { |
| 859 | Relation rel = info->index; |
| 860 | BTCycleId cycleid; |
| 861 | |
| 862 | /* allocate stats if first time through, else re-use existing struct */ |
| 863 | if (stats == NULL) |
| 864 | stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult)); |
| 865 | |
| 866 | /* Establish the vacuum cycle ID to use for this scan */ |
| 867 | /* The ENSURE stuff ensures we clean up shared memory on failure */ |
| 868 | PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel)); |
| 869 | { |
| 870 | TransactionId oldestBtpoXact; |
| 871 | |
| 872 | cycleid = _bt_start_vacuum(rel); |
| 873 | |
| 874 | btvacuumscan(info, stats, callback, callback_state, cycleid, |
| 875 | &oldestBtpoXact); |
| 876 | |
| 877 | /* |
| 878 | * Update cleanup-related information in metapage. This information is |
| 879 | * used only for cleanup but keeping them up to date can avoid |
| 880 | * unnecessary cleanup even after bulkdelete. |
| 881 | */ |
| 882 | _bt_update_meta_cleanup_info(info->index, oldestBtpoXact, |
| 883 | info->num_heap_tuples); |
| 884 | } |
| 885 | PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel)); |
| 886 | _bt_end_vacuum(rel); |
| 887 | |
| 888 | return stats; |
| 889 | } |
| 890 | |
| 891 | /* |
| 892 | * Post-VACUUM cleanup. |
| 893 | * |
| 894 | * Result: a palloc'd struct containing statistical info for VACUUM displays. |
| 895 | */ |
| 896 | IndexBulkDeleteResult * |
| 897 | btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats) |
| 898 | { |
| 899 | /* No-op in ANALYZE ONLY mode */ |
| 900 | if (info->analyze_only) |
| 901 | return stats; |
| 902 | |
| 903 | /* |
| 904 | * If btbulkdelete was called, we need not do anything, just return the |
| 905 | * stats from the latest btbulkdelete call. If it wasn't called, we might |
| 906 | * still need to do a pass over the index, to recycle any newly-recyclable |
| 907 | * pages or to obtain index statistics. _bt_vacuum_needs_cleanup |
| 908 | * determines if either are needed. |
| 909 | * |
| 910 | * Since we aren't going to actually delete any leaf items, there's no |
| 911 | * need to go through all the vacuum-cycle-ID pushups. |
| 912 | */ |
| 913 | if (stats == NULL) |
| 914 | { |
| 915 | TransactionId oldestBtpoXact; |
| 916 | |
| 917 | /* Check if we need a cleanup */ |
| 918 | if (!_bt_vacuum_needs_cleanup(info)) |
| 919 | return NULL; |
| 920 | |
| 921 | stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult)); |
| 922 | btvacuumscan(info, stats, NULL, NULL, 0, &oldestBtpoXact); |
| 923 | |
| 924 | /* Update cleanup-related information in the metapage */ |
| 925 | _bt_update_meta_cleanup_info(info->index, oldestBtpoXact, |
| 926 | info->num_heap_tuples); |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * It's quite possible for us to be fooled by concurrent page splits into |
| 931 | * double-counting some index tuples, so disbelieve any total that exceeds |
| 932 | * the underlying heap's count ... if we know that accurately. Otherwise |
| 933 | * this might just make matters worse. |
| 934 | */ |
| 935 | if (!info->estimated_count) |
| 936 | { |
| 937 | if (stats->num_index_tuples > info->num_heap_tuples) |
| 938 | stats->num_index_tuples = info->num_heap_tuples; |
| 939 | } |
| 940 | |
| 941 | return stats; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * btvacuumscan --- scan the index for VACUUMing purposes |
| 946 | * |
| 947 | * This combines the functions of looking for leaf tuples that are deletable |
| 948 | * according to the vacuum callback, looking for empty pages that can be |
| 949 | * deleted, and looking for old deleted pages that can be recycled. Both |
| 950 | * btbulkdelete and btvacuumcleanup invoke this (the latter only if no |
| 951 | * btbulkdelete call occurred). |
| 952 | * |
| 953 | * The caller is responsible for initially allocating/zeroing a stats struct |
| 954 | * and for obtaining a vacuum cycle ID if necessary. |
| 955 | */ |
| 956 | static void |
| 957 | btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, |
| 958 | IndexBulkDeleteCallback callback, void *callback_state, |
| 959 | BTCycleId cycleid, TransactionId *oldestBtpoXact) |
| 960 | { |
| 961 | Relation rel = info->index; |
| 962 | BTVacState vstate; |
| 963 | BlockNumber num_pages; |
| 964 | BlockNumber blkno; |
| 965 | bool needLock; |
| 966 | |
| 967 | /* |
| 968 | * Reset counts that will be incremented during the scan; needed in case |
| 969 | * of multiple scans during a single VACUUM command |
| 970 | */ |
| 971 | stats->estimated_count = false; |
| 972 | stats->num_index_tuples = 0; |
| 973 | stats->pages_deleted = 0; |
| 974 | |
| 975 | /* Set up info to pass down to btvacuumpage */ |
| 976 | vstate.info = info; |
| 977 | vstate.stats = stats; |
| 978 | vstate.callback = callback; |
| 979 | vstate.callback_state = callback_state; |
| 980 | vstate.cycleid = cycleid; |
| 981 | vstate.lastBlockVacuumed = BTREE_METAPAGE; /* Initialise at first block */ |
| 982 | vstate.lastBlockLocked = BTREE_METAPAGE; |
| 983 | vstate.totFreePages = 0; |
| 984 | vstate.oldestBtpoXact = InvalidTransactionId; |
| 985 | |
| 986 | /* Create a temporary memory context to run _bt_pagedel in */ |
| 987 | vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext, |
| 988 | "_bt_pagedel" , |
| 989 | ALLOCSET_DEFAULT_SIZES); |
| 990 | |
| 991 | /* |
| 992 | * The outer loop iterates over all index pages except the metapage, in |
| 993 | * physical order (we hope the kernel will cooperate in providing |
| 994 | * read-ahead for speed). It is critical that we visit all leaf pages, |
| 995 | * including ones added after we start the scan, else we might fail to |
| 996 | * delete some deletable tuples. Hence, we must repeatedly check the |
| 997 | * relation length. We must acquire the relation-extension lock while |
| 998 | * doing so to avoid a race condition: if someone else is extending the |
| 999 | * relation, there is a window where bufmgr/smgr have created a new |
| 1000 | * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If |
| 1001 | * we manage to scan such a page here, we'll improperly assume it can be |
| 1002 | * recycled. Taking the lock synchronizes things enough to prevent a |
| 1003 | * problem: either num_pages won't include the new page, or _bt_getbuf |
| 1004 | * already has write lock on the buffer and it will be fully initialized |
| 1005 | * before we can examine it. (See also vacuumlazy.c, which has the same |
| 1006 | * issue.) Also, we need not worry if a page is added immediately after |
| 1007 | * we look; the page splitting code already has write-lock on the left |
| 1008 | * page before it adds a right page, so we must already have processed any |
| 1009 | * tuples due to be moved into such a page. |
| 1010 | * |
| 1011 | * We can skip locking for new or temp relations, however, since no one |
| 1012 | * else could be accessing them. |
| 1013 | */ |
| 1014 | needLock = !RELATION_IS_LOCAL(rel); |
| 1015 | |
| 1016 | blkno = BTREE_METAPAGE + 1; |
| 1017 | for (;;) |
| 1018 | { |
| 1019 | /* Get the current relation length */ |
| 1020 | if (needLock) |
| 1021 | LockRelationForExtension(rel, ExclusiveLock); |
| 1022 | num_pages = RelationGetNumberOfBlocks(rel); |
| 1023 | if (needLock) |
| 1024 | UnlockRelationForExtension(rel, ExclusiveLock); |
| 1025 | |
| 1026 | if (info->report_progress) |
| 1027 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL, |
| 1028 | num_pages); |
| 1029 | |
| 1030 | /* Quit if we've scanned the whole relation */ |
| 1031 | if (blkno >= num_pages) |
| 1032 | break; |
| 1033 | /* Iterate over pages, then loop back to recheck length */ |
| 1034 | for (; blkno < num_pages; blkno++) |
| 1035 | { |
| 1036 | btvacuumpage(&vstate, blkno, blkno); |
| 1037 | if (info->report_progress) |
| 1038 | pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE, |
| 1039 | blkno); |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * Check to see if we need to issue one final WAL record for this index, |
| 1045 | * which may be needed for correctness on a hot standby node when non-MVCC |
| 1046 | * index scans could take place. |
| 1047 | * |
| 1048 | * If the WAL is replayed in hot standby, the replay process needs to get |
| 1049 | * cleanup locks on all index leaf pages, just as we've been doing here. |
| 1050 | * However, we won't issue any WAL records about pages that have no items |
| 1051 | * to be deleted. For pages between pages we've vacuumed, the replay code |
| 1052 | * will take locks under the direction of the lastBlockVacuumed fields in |
| 1053 | * the XLOG_BTREE_VACUUM WAL records. To cover pages after the last one |
| 1054 | * we vacuum, we need to issue a dummy XLOG_BTREE_VACUUM WAL record |
| 1055 | * against the last leaf page in the index, if that one wasn't vacuumed. |
| 1056 | */ |
| 1057 | if (XLogStandbyInfoActive() && |
| 1058 | vstate.lastBlockVacuumed < vstate.lastBlockLocked) |
| 1059 | { |
| 1060 | Buffer buf; |
| 1061 | |
| 1062 | /* |
| 1063 | * The page should be valid, but we can't use _bt_getbuf() because we |
| 1064 | * want to use a nondefault buffer access strategy. Since we aren't |
| 1065 | * going to delete any items, getting cleanup lock again is probably |
| 1066 | * overkill, but for consistency do that anyway. |
| 1067 | */ |
| 1068 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, vstate.lastBlockLocked, |
| 1069 | RBM_NORMAL, info->strategy); |
| 1070 | LockBufferForCleanup(buf); |
| 1071 | _bt_checkpage(rel, buf); |
| 1072 | _bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed); |
| 1073 | _bt_relbuf(rel, buf); |
| 1074 | } |
| 1075 | |
| 1076 | MemoryContextDelete(vstate.pagedelcontext); |
| 1077 | |
| 1078 | /* |
| 1079 | * If we found any recyclable pages (and recorded them in the FSM), then |
| 1080 | * forcibly update the upper-level FSM pages to ensure that searchers can |
| 1081 | * find them. It's possible that the pages were also found during |
| 1082 | * previous scans and so this is a waste of time, but it's cheap enough |
| 1083 | * relative to scanning the index that it shouldn't matter much, and |
| 1084 | * making sure that free pages are available sooner not later seems |
| 1085 | * worthwhile. |
| 1086 | * |
| 1087 | * Note that if no recyclable pages exist, we don't bother vacuuming the |
| 1088 | * FSM at all. |
| 1089 | */ |
| 1090 | if (vstate.totFreePages > 0) |
| 1091 | IndexFreeSpaceMapVacuum(rel); |
| 1092 | |
| 1093 | /* update statistics */ |
| 1094 | stats->num_pages = num_pages; |
| 1095 | stats->pages_free = vstate.totFreePages; |
| 1096 | |
| 1097 | if (oldestBtpoXact) |
| 1098 | *oldestBtpoXact = vstate.oldestBtpoXact; |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * btvacuumpage --- VACUUM one page |
| 1103 | * |
| 1104 | * This processes a single page for btvacuumscan(). In some cases we |
| 1105 | * must go back and re-examine previously-scanned pages; this routine |
| 1106 | * recurses when necessary to handle that case. |
| 1107 | * |
| 1108 | * blkno is the page to process. orig_blkno is the highest block number |
| 1109 | * reached by the outer btvacuumscan loop (the same as blkno, unless we |
| 1110 | * are recursing to re-examine a previous page). |
| 1111 | */ |
| 1112 | static void |
| 1113 | btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno) |
| 1114 | { |
| 1115 | IndexVacuumInfo *info = vstate->info; |
| 1116 | IndexBulkDeleteResult *stats = vstate->stats; |
| 1117 | IndexBulkDeleteCallback callback = vstate->callback; |
| 1118 | void *callback_state = vstate->callback_state; |
| 1119 | Relation rel = info->index; |
| 1120 | bool delete_now; |
| 1121 | BlockNumber recurse_to; |
| 1122 | Buffer buf; |
| 1123 | Page page; |
| 1124 | BTPageOpaque opaque = NULL; |
| 1125 | |
| 1126 | restart: |
| 1127 | delete_now = false; |
| 1128 | recurse_to = P_NONE; |
| 1129 | |
| 1130 | /* call vacuum_delay_point while not holding any buffer lock */ |
| 1131 | vacuum_delay_point(); |
| 1132 | |
| 1133 | /* |
| 1134 | * We can't use _bt_getbuf() here because it always applies |
| 1135 | * _bt_checkpage(), which will barf on an all-zero page. We want to |
| 1136 | * recycle all-zero pages, not fail. Also, we want to use a nondefault |
| 1137 | * buffer access strategy. |
| 1138 | */ |
| 1139 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, |
| 1140 | info->strategy); |
| 1141 | LockBuffer(buf, BT_READ); |
| 1142 | page = BufferGetPage(buf); |
| 1143 | if (!PageIsNew(page)) |
| 1144 | { |
| 1145 | _bt_checkpage(rel, buf); |
| 1146 | opaque = (BTPageOpaque) PageGetSpecialPointer(page); |
| 1147 | } |
| 1148 | |
| 1149 | /* |
| 1150 | * If we are recursing, the only case we want to do anything with is a |
| 1151 | * live leaf page having the current vacuum cycle ID. Any other state |
| 1152 | * implies we already saw the page (eg, deleted it as being empty). |
| 1153 | */ |
| 1154 | if (blkno != orig_blkno) |
| 1155 | { |
| 1156 | if (_bt_page_recyclable(page) || |
| 1157 | P_IGNORE(opaque) || |
| 1158 | !P_ISLEAF(opaque) || |
| 1159 | opaque->btpo_cycleid != vstate->cycleid) |
| 1160 | { |
| 1161 | _bt_relbuf(rel, buf); |
| 1162 | return; |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | /* Page is valid, see what to do with it */ |
| 1167 | if (_bt_page_recyclable(page)) |
| 1168 | { |
| 1169 | /* Okay to recycle this page */ |
| 1170 | RecordFreeIndexPage(rel, blkno); |
| 1171 | vstate->totFreePages++; |
| 1172 | stats->pages_deleted++; |
| 1173 | } |
| 1174 | else if (P_ISDELETED(opaque)) |
| 1175 | { |
| 1176 | /* Already deleted, but can't recycle yet */ |
| 1177 | stats->pages_deleted++; |
| 1178 | |
| 1179 | /* Update the oldest btpo.xact */ |
| 1180 | if (!TransactionIdIsValid(vstate->oldestBtpoXact) || |
| 1181 | TransactionIdPrecedes(opaque->btpo.xact, vstate->oldestBtpoXact)) |
| 1182 | vstate->oldestBtpoXact = opaque->btpo.xact; |
| 1183 | } |
| 1184 | else if (P_ISHALFDEAD(opaque)) |
| 1185 | { |
| 1186 | /* Half-dead, try to delete */ |
| 1187 | delete_now = true; |
| 1188 | } |
| 1189 | else if (P_ISLEAF(opaque)) |
| 1190 | { |
| 1191 | OffsetNumber deletable[MaxOffsetNumber]; |
| 1192 | int ndeletable; |
| 1193 | OffsetNumber offnum, |
| 1194 | minoff, |
| 1195 | maxoff; |
| 1196 | |
| 1197 | /* |
| 1198 | * Trade in the initial read lock for a super-exclusive write lock on |
| 1199 | * this page. We must get such a lock on every leaf page over the |
| 1200 | * course of the vacuum scan, whether or not it actually contains any |
| 1201 | * deletable tuples --- see nbtree/README. |
| 1202 | */ |
| 1203 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 1204 | LockBufferForCleanup(buf); |
| 1205 | |
| 1206 | /* |
| 1207 | * Remember highest leaf page number we've taken cleanup lock on; see |
| 1208 | * notes in btvacuumscan |
| 1209 | */ |
| 1210 | if (blkno > vstate->lastBlockLocked) |
| 1211 | vstate->lastBlockLocked = blkno; |
| 1212 | |
| 1213 | /* |
| 1214 | * Check whether we need to recurse back to earlier pages. What we |
| 1215 | * are concerned about is a page split that happened since we started |
| 1216 | * the vacuum scan. If the split moved some tuples to a lower page |
| 1217 | * then we might have missed 'em. If so, set up for tail recursion. |
| 1218 | * (Must do this before possibly clearing btpo_cycleid below!) |
| 1219 | */ |
| 1220 | if (vstate->cycleid != 0 && |
| 1221 | opaque->btpo_cycleid == vstate->cycleid && |
| 1222 | !(opaque->btpo_flags & BTP_SPLIT_END) && |
| 1223 | !P_RIGHTMOST(opaque) && |
| 1224 | opaque->btpo_next < orig_blkno) |
| 1225 | recurse_to = opaque->btpo_next; |
| 1226 | |
| 1227 | /* |
| 1228 | * Scan over all items to see which ones need deleted according to the |
| 1229 | * callback function. |
| 1230 | */ |
| 1231 | ndeletable = 0; |
| 1232 | minoff = P_FIRSTDATAKEY(opaque); |
| 1233 | maxoff = PageGetMaxOffsetNumber(page); |
| 1234 | if (callback) |
| 1235 | { |
| 1236 | for (offnum = minoff; |
| 1237 | offnum <= maxoff; |
| 1238 | offnum = OffsetNumberNext(offnum)) |
| 1239 | { |
| 1240 | IndexTuple itup; |
| 1241 | ItemPointer htup; |
| 1242 | |
| 1243 | itup = (IndexTuple) PageGetItem(page, |
| 1244 | PageGetItemId(page, offnum)); |
| 1245 | htup = &(itup->t_tid); |
| 1246 | |
| 1247 | /* |
| 1248 | * During Hot Standby we currently assume that |
| 1249 | * XLOG_BTREE_VACUUM records do not produce conflicts. That is |
| 1250 | * only true as long as the callback function depends only |
| 1251 | * upon whether the index tuple refers to heap tuples removed |
| 1252 | * in the initial heap scan. When vacuum starts it derives a |
| 1253 | * value of OldestXmin. Backends taking later snapshots could |
| 1254 | * have a RecentGlobalXmin with a later xid than the vacuum's |
| 1255 | * OldestXmin, so it is possible that row versions deleted |
| 1256 | * after OldestXmin could be marked as killed by other |
| 1257 | * backends. The callback function *could* look at the index |
| 1258 | * tuple state in isolation and decide to delete the index |
| 1259 | * tuple, though currently it does not. If it ever did, we |
| 1260 | * would need to reconsider whether XLOG_BTREE_VACUUM records |
| 1261 | * should cause conflicts. If they did cause conflicts they |
| 1262 | * would be fairly harsh conflicts, since we haven't yet |
| 1263 | * worked out a way to pass a useful value for |
| 1264 | * latestRemovedXid on the XLOG_BTREE_VACUUM records. This |
| 1265 | * applies to *any* type of index that marks index tuples as |
| 1266 | * killed. |
| 1267 | */ |
| 1268 | if (callback(htup, callback_state)) |
| 1269 | deletable[ndeletable++] = offnum; |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | /* |
| 1274 | * Apply any needed deletes. We issue just one _bt_delitems_vacuum() |
| 1275 | * call per page, so as to minimize WAL traffic. |
| 1276 | */ |
| 1277 | if (ndeletable > 0) |
| 1278 | { |
| 1279 | /* |
| 1280 | * Notice that the issued XLOG_BTREE_VACUUM WAL record includes |
| 1281 | * all information to the replay code to allow it to get a cleanup |
| 1282 | * lock on all pages between the previous lastBlockVacuumed and |
| 1283 | * this page. This ensures that WAL replay locks all leaf pages at |
| 1284 | * some point, which is important should non-MVCC scans be |
| 1285 | * requested. This is currently unused on standby, but we record |
| 1286 | * it anyway, so that the WAL contains the required information. |
| 1287 | * |
| 1288 | * Since we can visit leaf pages out-of-order when recursing, |
| 1289 | * replay might end up locking such pages an extra time, but it |
| 1290 | * doesn't seem worth the amount of bookkeeping it'd take to avoid |
| 1291 | * that. |
| 1292 | */ |
| 1293 | _bt_delitems_vacuum(rel, buf, deletable, ndeletable, |
| 1294 | vstate->lastBlockVacuumed); |
| 1295 | |
| 1296 | /* |
| 1297 | * Remember highest leaf page number we've issued a |
| 1298 | * XLOG_BTREE_VACUUM WAL record for. |
| 1299 | */ |
| 1300 | if (blkno > vstate->lastBlockVacuumed) |
| 1301 | vstate->lastBlockVacuumed = blkno; |
| 1302 | |
| 1303 | stats->tuples_removed += ndeletable; |
| 1304 | /* must recompute maxoff */ |
| 1305 | maxoff = PageGetMaxOffsetNumber(page); |
| 1306 | } |
| 1307 | else |
| 1308 | { |
| 1309 | /* |
| 1310 | * If the page has been split during this vacuum cycle, it seems |
| 1311 | * worth expending a write to clear btpo_cycleid even if we don't |
| 1312 | * have any deletions to do. (If we do, _bt_delitems_vacuum takes |
| 1313 | * care of this.) This ensures we won't process the page again. |
| 1314 | * |
| 1315 | * We treat this like a hint-bit update because there's no need to |
| 1316 | * WAL-log it. |
| 1317 | */ |
| 1318 | if (vstate->cycleid != 0 && |
| 1319 | opaque->btpo_cycleid == vstate->cycleid) |
| 1320 | { |
| 1321 | opaque->btpo_cycleid = 0; |
| 1322 | MarkBufferDirtyHint(buf, true); |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | /* |
| 1327 | * If it's now empty, try to delete; else count the live tuples. We |
| 1328 | * don't delete when recursing, though, to avoid putting entries into |
| 1329 | * freePages out-of-order (doesn't seem worth any extra code to handle |
| 1330 | * the case). |
| 1331 | */ |
| 1332 | if (minoff > maxoff) |
| 1333 | delete_now = (blkno == orig_blkno); |
| 1334 | else |
| 1335 | stats->num_index_tuples += maxoff - minoff + 1; |
| 1336 | } |
| 1337 | |
| 1338 | if (delete_now) |
| 1339 | { |
| 1340 | MemoryContext oldcontext; |
| 1341 | int ndel; |
| 1342 | |
| 1343 | /* Run pagedel in a temp context to avoid memory leakage */ |
| 1344 | MemoryContextReset(vstate->pagedelcontext); |
| 1345 | oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext); |
| 1346 | |
| 1347 | ndel = _bt_pagedel(rel, buf); |
| 1348 | |
| 1349 | /* count only this page, else may double-count parent */ |
| 1350 | if (ndel) |
| 1351 | { |
| 1352 | stats->pages_deleted++; |
| 1353 | if (!TransactionIdIsValid(vstate->oldestBtpoXact) || |
| 1354 | TransactionIdPrecedes(opaque->btpo.xact, vstate->oldestBtpoXact)) |
| 1355 | vstate->oldestBtpoXact = opaque->btpo.xact; |
| 1356 | } |
| 1357 | |
| 1358 | MemoryContextSwitchTo(oldcontext); |
| 1359 | /* pagedel released buffer, so we shouldn't */ |
| 1360 | } |
| 1361 | else |
| 1362 | _bt_relbuf(rel, buf); |
| 1363 | |
| 1364 | /* |
| 1365 | * This is really tail recursion, but if the compiler is too stupid to |
| 1366 | * optimize it as such, we'd eat an uncomfortably large amount of stack |
| 1367 | * space per recursion level (due to the deletable[] array). A failure is |
| 1368 | * improbable since the number of levels isn't likely to be large ... but |
| 1369 | * just in case, let's hand-optimize into a loop. |
| 1370 | */ |
| 1371 | if (recurse_to != P_NONE) |
| 1372 | { |
| 1373 | blkno = recurse_to; |
| 1374 | goto restart; |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | /* |
| 1379 | * btcanreturn() -- Check whether btree indexes support index-only scans. |
| 1380 | * |
| 1381 | * btrees always do, so this is trivial. |
| 1382 | */ |
| 1383 | bool |
| 1384 | btcanreturn(Relation index, int attno) |
| 1385 | { |
| 1386 | return true; |
| 1387 | } |
| 1388 | |