1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * index.c |
4 | * code to create and destroy POSTGRES index relations |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/catalog/index.c |
12 | * |
13 | * |
14 | * INTERFACE ROUTINES |
15 | * index_create() - Create a cataloged index relation |
16 | * index_drop() - Removes index relation from catalogs |
17 | * BuildIndexInfo() - Prepare to insert index tuples |
18 | * FormIndexDatum() - Construct datum vector for one index tuple |
19 | * |
20 | *------------------------------------------------------------------------- |
21 | */ |
22 | #include "postgres.h" |
23 | |
24 | #include <unistd.h> |
25 | |
26 | #include "access/amapi.h" |
27 | #include "access/heapam.h" |
28 | #include "access/multixact.h" |
29 | #include "access/relscan.h" |
30 | #include "access/sysattr.h" |
31 | #include "access/tableam.h" |
32 | #include "access/transam.h" |
33 | #include "access/visibilitymap.h" |
34 | #include "access/xact.h" |
35 | #include "bootstrap/bootstrap.h" |
36 | #include "catalog/binary_upgrade.h" |
37 | #include "catalog/catalog.h" |
38 | #include "catalog/dependency.h" |
39 | #include "catalog/heap.h" |
40 | #include "catalog/index.h" |
41 | #include "catalog/objectaccess.h" |
42 | #include "catalog/partition.h" |
43 | #include "catalog/pg_am.h" |
44 | #include "catalog/pg_collation.h" |
45 | #include "catalog/pg_constraint.h" |
46 | #include "catalog/pg_description.h" |
47 | #include "catalog/pg_depend.h" |
48 | #include "catalog/pg_inherits.h" |
49 | #include "catalog/pg_operator.h" |
50 | #include "catalog/pg_opclass.h" |
51 | #include "catalog/pg_tablespace.h" |
52 | #include "catalog/pg_trigger.h" |
53 | #include "catalog/pg_type.h" |
54 | #include "catalog/storage.h" |
55 | #include "commands/event_trigger.h" |
56 | #include "commands/progress.h" |
57 | #include "commands/tablecmds.h" |
58 | #include "commands/trigger.h" |
59 | #include "executor/executor.h" |
60 | #include "miscadmin.h" |
61 | #include "nodes/makefuncs.h" |
62 | #include "nodes/nodeFuncs.h" |
63 | #include "optimizer/optimizer.h" |
64 | #include "parser/parser.h" |
65 | #include "pgstat.h" |
66 | #include "rewrite/rewriteManip.h" |
67 | #include "storage/bufmgr.h" |
68 | #include "storage/lmgr.h" |
69 | #include "storage/predicate.h" |
70 | #include "storage/procarray.h" |
71 | #include "storage/smgr.h" |
72 | #include "utils/builtins.h" |
73 | #include "utils/fmgroids.h" |
74 | #include "utils/guc.h" |
75 | #include "utils/inval.h" |
76 | #include "utils/lsyscache.h" |
77 | #include "utils/memutils.h" |
78 | #include "utils/pg_rusage.h" |
79 | #include "utils/syscache.h" |
80 | #include "utils/tuplesort.h" |
81 | #include "utils/snapmgr.h" |
82 | |
83 | |
84 | /* Potentially set by pg_upgrade_support functions */ |
85 | Oid binary_upgrade_next_index_pg_class_oid = InvalidOid; |
86 | |
87 | /* |
88 | * Pointer-free representation of variables used when reindexing system |
89 | * catalogs; we use this to propagate those values to parallel workers. |
90 | */ |
91 | typedef struct |
92 | { |
93 | Oid currentlyReindexedHeap; |
94 | Oid currentlyReindexedIndex; |
95 | int numPendingReindexedIndexes; |
96 | Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]; |
97 | } SerializedReindexState; |
98 | |
99 | /* non-export function prototypes */ |
100 | static bool relationHasPrimaryKey(Relation rel); |
101 | static TupleDesc ConstructTupleDescriptor(Relation heapRelation, |
102 | IndexInfo *indexInfo, |
103 | List *indexColNames, |
104 | Oid accessMethodObjectId, |
105 | Oid *collationObjectId, |
106 | Oid *classObjectId); |
107 | static void InitializeAttributeOids(Relation indexRelation, |
108 | int numatts, Oid indexoid); |
109 | static void AppendAttributeTuples(Relation indexRelation, int numatts); |
110 | static void UpdateIndexRelation(Oid indexoid, Oid heapoid, |
111 | Oid parentIndexId, |
112 | IndexInfo *indexInfo, |
113 | Oid *collationOids, |
114 | Oid *classOids, |
115 | int16 *coloptions, |
116 | bool primary, |
117 | bool isexclusion, |
118 | bool immediate, |
119 | bool isvalid, |
120 | bool isready); |
121 | static void index_update_stats(Relation rel, |
122 | bool hasindex, |
123 | double reltuples); |
124 | static void IndexCheckExclusion(Relation heapRelation, |
125 | Relation indexRelation, |
126 | IndexInfo *indexInfo); |
127 | static bool validate_index_callback(ItemPointer itemptr, void *opaque); |
128 | static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid); |
129 | static void SetReindexProcessing(Oid heapOid, Oid indexOid); |
130 | static void ResetReindexProcessing(void); |
131 | static void SetReindexPending(List *indexes); |
132 | static void RemoveReindexPending(Oid indexOid); |
133 | static void ResetReindexPending(void); |
134 | |
135 | |
136 | /* |
137 | * relationHasPrimaryKey |
138 | * See whether an existing relation has a primary key. |
139 | * |
140 | * Caller must have suitable lock on the relation. |
141 | * |
142 | * Note: we intentionally do not check indisvalid here; that's because this |
143 | * is used to enforce the rule that there can be only one indisprimary index, |
144 | * and we want that to be true even if said index is invalid. |
145 | */ |
146 | static bool |
147 | relationHasPrimaryKey(Relation rel) |
148 | { |
149 | bool result = false; |
150 | List *indexoidlist; |
151 | ListCell *indexoidscan; |
152 | |
153 | /* |
154 | * Get the list of index OIDs for the table from the relcache, and look up |
155 | * each one in the pg_index syscache until we find one marked primary key |
156 | * (hopefully there isn't more than one such). |
157 | */ |
158 | indexoidlist = RelationGetIndexList(rel); |
159 | |
160 | foreach(indexoidscan, indexoidlist) |
161 | { |
162 | Oid indexoid = lfirst_oid(indexoidscan); |
163 | HeapTuple indexTuple; |
164 | |
165 | indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid)); |
166 | if (!HeapTupleIsValid(indexTuple)) /* should not happen */ |
167 | elog(ERROR, "cache lookup failed for index %u" , indexoid); |
168 | result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary; |
169 | ReleaseSysCache(indexTuple); |
170 | if (result) |
171 | break; |
172 | } |
173 | |
174 | list_free(indexoidlist); |
175 | |
176 | return result; |
177 | } |
178 | |
179 | /* |
180 | * index_check_primary_key |
181 | * Apply special checks needed before creating a PRIMARY KEY index |
182 | * |
183 | * This processing used to be in DefineIndex(), but has been split out |
184 | * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX. |
185 | * |
186 | * We check for a pre-existing primary key, and that all columns of the index |
187 | * are simple column references (not expressions), and that all those |
188 | * columns are marked NOT NULL. If not, fail. |
189 | * |
190 | * We used to automatically change unmarked columns to NOT NULL here by doing |
191 | * our own local ALTER TABLE command. But that doesn't work well if we're |
192 | * executing one subcommand of an ALTER TABLE: the operations may not get |
193 | * performed in the right order overall. Now we expect that the parser |
194 | * inserted any required ALTER TABLE SET NOT NULL operations before trying |
195 | * to create a primary-key index. |
196 | * |
197 | * Caller had better have at least ShareLock on the table, else the not-null |
198 | * checking isn't trustworthy. |
199 | */ |
200 | void |
201 | index_check_primary_key(Relation heapRel, |
202 | IndexInfo *indexInfo, |
203 | bool is_alter_table, |
204 | IndexStmt *stmt) |
205 | { |
206 | int i; |
207 | |
208 | /* |
209 | * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't |
210 | * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we |
211 | * have faith that the parser rejected multiple pkey clauses; and CREATE |
212 | * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either. |
213 | */ |
214 | if ((is_alter_table || heapRel->rd_rel->relispartition) && |
215 | relationHasPrimaryKey(heapRel)) |
216 | { |
217 | ereport(ERROR, |
218 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
219 | errmsg("multiple primary keys for table \"%s\" are not allowed" , |
220 | RelationGetRelationName(heapRel)))); |
221 | } |
222 | |
223 | /* |
224 | * Check that all of the attributes in a primary key are marked as not |
225 | * null. (We don't really expect to see that; it'd mean the parser messed |
226 | * up. But it seems wise to check anyway.) |
227 | */ |
228 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
229 | { |
230 | AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i]; |
231 | HeapTuple atttuple; |
232 | Form_pg_attribute attform; |
233 | |
234 | if (attnum == 0) |
235 | ereport(ERROR, |
236 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
237 | errmsg("primary keys cannot be expressions" ))); |
238 | |
239 | /* System attributes are never null, so no need to check */ |
240 | if (attnum < 0) |
241 | continue; |
242 | |
243 | atttuple = SearchSysCache2(ATTNUM, |
244 | ObjectIdGetDatum(RelationGetRelid(heapRel)), |
245 | Int16GetDatum(attnum)); |
246 | if (!HeapTupleIsValid(atttuple)) |
247 | elog(ERROR, "cache lookup failed for attribute %d of relation %u" , |
248 | attnum, RelationGetRelid(heapRel)); |
249 | attform = (Form_pg_attribute) GETSTRUCT(atttuple); |
250 | |
251 | if (!attform->attnotnull) |
252 | ereport(ERROR, |
253 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
254 | errmsg("primary key column \"%s\" is not marked NOT NULL" , |
255 | NameStr(attform->attname)))); |
256 | |
257 | ReleaseSysCache(atttuple); |
258 | } |
259 | } |
260 | |
261 | /* |
262 | * ConstructTupleDescriptor |
263 | * |
264 | * Build an index tuple descriptor for a new index |
265 | */ |
266 | static TupleDesc |
267 | ConstructTupleDescriptor(Relation heapRelation, |
268 | IndexInfo *indexInfo, |
269 | List *indexColNames, |
270 | Oid accessMethodObjectId, |
271 | Oid *collationObjectId, |
272 | Oid *classObjectId) |
273 | { |
274 | int numatts = indexInfo->ii_NumIndexAttrs; |
275 | int numkeyatts = indexInfo->ii_NumIndexKeyAttrs; |
276 | ListCell *colnames_item = list_head(indexColNames); |
277 | ListCell *indexpr_item = list_head(indexInfo->ii_Expressions); |
278 | IndexAmRoutine *amroutine; |
279 | TupleDesc heapTupDesc; |
280 | TupleDesc indexTupDesc; |
281 | int natts; /* #atts in heap rel --- for error checks */ |
282 | int i; |
283 | |
284 | /* We need access to the index AM's API struct */ |
285 | amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false); |
286 | |
287 | /* ... and to the table's tuple descriptor */ |
288 | heapTupDesc = RelationGetDescr(heapRelation); |
289 | natts = RelationGetForm(heapRelation)->relnatts; |
290 | |
291 | /* |
292 | * allocate the new tuple descriptor |
293 | */ |
294 | indexTupDesc = CreateTemplateTupleDesc(numatts); |
295 | |
296 | /* |
297 | * Fill in the pg_attribute row. |
298 | */ |
299 | for (i = 0; i < numatts; i++) |
300 | { |
301 | AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i]; |
302 | Form_pg_attribute to = TupleDescAttr(indexTupDesc, i); |
303 | HeapTuple tuple; |
304 | Form_pg_type typeTup; |
305 | Form_pg_opclass opclassTup; |
306 | Oid keyType; |
307 | |
308 | MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE); |
309 | to->attnum = i + 1; |
310 | to->attstattarget = -1; |
311 | to->attcacheoff = -1; |
312 | to->attislocal = true; |
313 | to->attcollation = (i < numkeyatts) ? |
314 | collationObjectId[i] : InvalidOid; |
315 | |
316 | /* |
317 | * For simple index columns, we copy some pg_attribute fields from the |
318 | * parent relation. For expressions we have to look at the expression |
319 | * result. |
320 | */ |
321 | if (atnum != 0) |
322 | { |
323 | /* Simple index column */ |
324 | const FormData_pg_attribute *from; |
325 | |
326 | Assert(atnum > 0); /* should've been caught above */ |
327 | |
328 | if (atnum > natts) /* safety check */ |
329 | elog(ERROR, "invalid column number %d" , atnum); |
330 | from = TupleDescAttr(heapTupDesc, |
331 | AttrNumberGetAttrOffset(atnum)); |
332 | |
333 | namecpy(&to->attname, &from->attname); |
334 | to->atttypid = from->atttypid; |
335 | to->attlen = from->attlen; |
336 | to->attndims = from->attndims; |
337 | to->atttypmod = from->atttypmod; |
338 | to->attbyval = from->attbyval; |
339 | to->attstorage = from->attstorage; |
340 | to->attalign = from->attalign; |
341 | } |
342 | else |
343 | { |
344 | /* Expressional index */ |
345 | Node *indexkey; |
346 | |
347 | if (indexpr_item == NULL) /* shouldn't happen */ |
348 | elog(ERROR, "too few entries in indexprs list" ); |
349 | indexkey = (Node *) lfirst(indexpr_item); |
350 | indexpr_item = lnext(indexpr_item); |
351 | |
352 | /* |
353 | * Lookup the expression type in pg_type for the type length etc. |
354 | */ |
355 | keyType = exprType(indexkey); |
356 | tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType)); |
357 | if (!HeapTupleIsValid(tuple)) |
358 | elog(ERROR, "cache lookup failed for type %u" , keyType); |
359 | typeTup = (Form_pg_type) GETSTRUCT(tuple); |
360 | |
361 | /* |
362 | * Assign some of the attributes values. Leave the rest. |
363 | */ |
364 | to->atttypid = keyType; |
365 | to->attlen = typeTup->typlen; |
366 | to->attbyval = typeTup->typbyval; |
367 | to->attstorage = typeTup->typstorage; |
368 | to->attalign = typeTup->typalign; |
369 | to->atttypmod = exprTypmod(indexkey); |
370 | |
371 | ReleaseSysCache(tuple); |
372 | |
373 | /* |
374 | * Make sure the expression yields a type that's safe to store in |
375 | * an index. We need this defense because we have index opclasses |
376 | * for pseudo-types such as "record", and the actually stored type |
377 | * had better be safe; eg, a named composite type is okay, an |
378 | * anonymous record type is not. The test is the same as for |
379 | * whether a table column is of a safe type (which is why we |
380 | * needn't check for the non-expression case). |
381 | */ |
382 | CheckAttributeType(NameStr(to->attname), |
383 | to->atttypid, to->attcollation, |
384 | NIL, 0); |
385 | } |
386 | |
387 | /* |
388 | * We do not yet have the correct relation OID for the index, so just |
389 | * set it invalid for now. InitializeAttributeOids() will fix it |
390 | * later. |
391 | */ |
392 | to->attrelid = InvalidOid; |
393 | |
394 | /* |
395 | * Set the attribute name as specified by caller. |
396 | */ |
397 | if (colnames_item == NULL) /* shouldn't happen */ |
398 | elog(ERROR, "too few entries in colnames list" ); |
399 | namestrcpy(&to->attname, (const char *) lfirst(colnames_item)); |
400 | colnames_item = lnext(colnames_item); |
401 | |
402 | /* |
403 | * Check the opclass and index AM to see if either provides a keytype |
404 | * (overriding the attribute type). Opclass (if exists) takes |
405 | * precedence. |
406 | */ |
407 | keyType = amroutine->amkeytype; |
408 | |
409 | /* |
410 | * Code below is concerned to the opclasses which are not used with |
411 | * the included columns. |
412 | */ |
413 | if (i < indexInfo->ii_NumIndexKeyAttrs) |
414 | { |
415 | tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i])); |
416 | if (!HeapTupleIsValid(tuple)) |
417 | elog(ERROR, "cache lookup failed for opclass %u" , |
418 | classObjectId[i]); |
419 | opclassTup = (Form_pg_opclass) GETSTRUCT(tuple); |
420 | if (OidIsValid(opclassTup->opckeytype)) |
421 | keyType = opclassTup->opckeytype; |
422 | |
423 | /* |
424 | * If keytype is specified as ANYELEMENT, and opcintype is |
425 | * ANYARRAY, then the attribute type must be an array (else it'd |
426 | * not have matched this opclass); use its element type. |
427 | */ |
428 | if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID) |
429 | { |
430 | keyType = get_base_element_type(to->atttypid); |
431 | if (!OidIsValid(keyType)) |
432 | elog(ERROR, "could not get element type of array type %u" , |
433 | to->atttypid); |
434 | } |
435 | |
436 | ReleaseSysCache(tuple); |
437 | } |
438 | |
439 | /* |
440 | * If a key type different from the heap value is specified, update |
441 | * the type-related fields in the index tupdesc. |
442 | */ |
443 | if (OidIsValid(keyType) && keyType != to->atttypid) |
444 | { |
445 | tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType)); |
446 | if (!HeapTupleIsValid(tuple)) |
447 | elog(ERROR, "cache lookup failed for type %u" , keyType); |
448 | typeTup = (Form_pg_type) GETSTRUCT(tuple); |
449 | |
450 | to->atttypid = keyType; |
451 | to->atttypmod = -1; |
452 | to->attlen = typeTup->typlen; |
453 | to->attbyval = typeTup->typbyval; |
454 | to->attalign = typeTup->typalign; |
455 | to->attstorage = typeTup->typstorage; |
456 | |
457 | ReleaseSysCache(tuple); |
458 | } |
459 | } |
460 | |
461 | pfree(amroutine); |
462 | |
463 | return indexTupDesc; |
464 | } |
465 | |
466 | /* ---------------------------------------------------------------- |
467 | * InitializeAttributeOids |
468 | * ---------------------------------------------------------------- |
469 | */ |
470 | static void |
471 | InitializeAttributeOids(Relation indexRelation, |
472 | int numatts, |
473 | Oid indexoid) |
474 | { |
475 | TupleDesc tupleDescriptor; |
476 | int i; |
477 | |
478 | tupleDescriptor = RelationGetDescr(indexRelation); |
479 | |
480 | for (i = 0; i < numatts; i += 1) |
481 | TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid; |
482 | } |
483 | |
484 | /* ---------------------------------------------------------------- |
485 | * AppendAttributeTuples |
486 | * ---------------------------------------------------------------- |
487 | */ |
488 | static void |
489 | AppendAttributeTuples(Relation indexRelation, int numatts) |
490 | { |
491 | Relation pg_attribute; |
492 | CatalogIndexState indstate; |
493 | TupleDesc indexTupDesc; |
494 | int i; |
495 | |
496 | /* |
497 | * open the attribute relation and its indexes |
498 | */ |
499 | pg_attribute = table_open(AttributeRelationId, RowExclusiveLock); |
500 | |
501 | indstate = CatalogOpenIndexes(pg_attribute); |
502 | |
503 | /* |
504 | * insert data from new index's tupdesc into pg_attribute |
505 | */ |
506 | indexTupDesc = RelationGetDescr(indexRelation); |
507 | |
508 | for (i = 0; i < numatts; i++) |
509 | { |
510 | Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i); |
511 | |
512 | Assert(attr->attnum == i + 1); |
513 | |
514 | InsertPgAttributeTuple(pg_attribute, attr, indstate); |
515 | } |
516 | |
517 | CatalogCloseIndexes(indstate); |
518 | |
519 | table_close(pg_attribute, RowExclusiveLock); |
520 | } |
521 | |
522 | /* ---------------------------------------------------------------- |
523 | * UpdateIndexRelation |
524 | * |
525 | * Construct and insert a new entry in the pg_index catalog |
526 | * ---------------------------------------------------------------- |
527 | */ |
528 | static void |
529 | UpdateIndexRelation(Oid indexoid, |
530 | Oid heapoid, |
531 | Oid parentIndexId, |
532 | IndexInfo *indexInfo, |
533 | Oid *collationOids, |
534 | Oid *classOids, |
535 | int16 *coloptions, |
536 | bool primary, |
537 | bool isexclusion, |
538 | bool immediate, |
539 | bool isvalid, |
540 | bool isready) |
541 | { |
542 | int2vector *indkey; |
543 | oidvector *indcollation; |
544 | oidvector *indclass; |
545 | int2vector *indoption; |
546 | Datum exprsDatum; |
547 | Datum predDatum; |
548 | Datum values[Natts_pg_index]; |
549 | bool nulls[Natts_pg_index]; |
550 | Relation pg_index; |
551 | HeapTuple tuple; |
552 | int i; |
553 | |
554 | /* |
555 | * Copy the index key, opclass, and indoption info into arrays (should we |
556 | * make the caller pass them like this to start with?) |
557 | */ |
558 | indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs); |
559 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
560 | indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i]; |
561 | indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs); |
562 | indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs); |
563 | indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs); |
564 | |
565 | /* |
566 | * Convert the index expressions (if any) to a text datum |
567 | */ |
568 | if (indexInfo->ii_Expressions != NIL) |
569 | { |
570 | char *; |
571 | |
572 | exprsString = nodeToString(indexInfo->ii_Expressions); |
573 | exprsDatum = CStringGetTextDatum(exprsString); |
574 | pfree(exprsString); |
575 | } |
576 | else |
577 | exprsDatum = (Datum) 0; |
578 | |
579 | /* |
580 | * Convert the index predicate (if any) to a text datum. Note we convert |
581 | * implicit-AND format to normal explicit-AND for storage. |
582 | */ |
583 | if (indexInfo->ii_Predicate != NIL) |
584 | { |
585 | char *predString; |
586 | |
587 | predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate)); |
588 | predDatum = CStringGetTextDatum(predString); |
589 | pfree(predString); |
590 | } |
591 | else |
592 | predDatum = (Datum) 0; |
593 | |
594 | /* |
595 | * open the system catalog index relation |
596 | */ |
597 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
598 | |
599 | /* |
600 | * Build a pg_index tuple |
601 | */ |
602 | MemSet(nulls, false, sizeof(nulls)); |
603 | |
604 | values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid); |
605 | values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid); |
606 | values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs); |
607 | values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs); |
608 | values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique); |
609 | values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary); |
610 | values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion); |
611 | values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate); |
612 | values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false); |
613 | values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid); |
614 | values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false); |
615 | values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready); |
616 | values[Anum_pg_index_indislive - 1] = BoolGetDatum(true); |
617 | values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false); |
618 | values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey); |
619 | values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation); |
620 | values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass); |
621 | values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption); |
622 | values[Anum_pg_index_indexprs - 1] = exprsDatum; |
623 | if (exprsDatum == (Datum) 0) |
624 | nulls[Anum_pg_index_indexprs - 1] = true; |
625 | values[Anum_pg_index_indpred - 1] = predDatum; |
626 | if (predDatum == (Datum) 0) |
627 | nulls[Anum_pg_index_indpred - 1] = true; |
628 | |
629 | tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls); |
630 | |
631 | /* |
632 | * insert the tuple into the pg_index catalog |
633 | */ |
634 | CatalogTupleInsert(pg_index, tuple); |
635 | |
636 | /* |
637 | * close the relation and free the tuple |
638 | */ |
639 | table_close(pg_index, RowExclusiveLock); |
640 | heap_freetuple(tuple); |
641 | } |
642 | |
643 | |
644 | /* |
645 | * index_create |
646 | * |
647 | * heapRelation: table to build index on (suitably locked by caller) |
648 | * indexRelationName: what it say |
649 | * indexRelationId: normally, pass InvalidOid to let this routine |
650 | * generate an OID for the index. During bootstrap this may be |
651 | * nonzero to specify a preselected OID. |
652 | * parentIndexRelid: if creating an index partition, the OID of the |
653 | * parent index; otherwise InvalidOid. |
654 | * parentConstraintId: if creating a constraint on a partition, the OID |
655 | * of the constraint in the parent; otherwise InvalidOid. |
656 | * relFileNode: normally, pass InvalidOid to get new storage. May be |
657 | * nonzero to attach an existing valid build. |
658 | * indexInfo: same info executor uses to insert into the index |
659 | * indexColNames: column names to use for index (List of char *) |
660 | * accessMethodObjectId: OID of index AM to use |
661 | * tableSpaceId: OID of tablespace to use |
662 | * collationObjectId: array of collation OIDs, one per index column |
663 | * classObjectId: array of index opclass OIDs, one per index column |
664 | * coloptions: array of per-index-column indoption settings |
665 | * reloptions: AM-specific options |
666 | * flags: bitmask that can include any combination of these bits: |
667 | * INDEX_CREATE_IS_PRIMARY |
668 | * the index is a primary key |
669 | * INDEX_CREATE_ADD_CONSTRAINT: |
670 | * invoke index_constraint_create also |
671 | * INDEX_CREATE_SKIP_BUILD: |
672 | * skip the index_build() step for the moment; caller must do it |
673 | * later (typically via reindex_index()) |
674 | * INDEX_CREATE_CONCURRENT: |
675 | * do not lock the table against writers. The index will be |
676 | * marked "invalid" and the caller must take additional steps |
677 | * to fix it up. |
678 | * INDEX_CREATE_IF_NOT_EXISTS: |
679 | * do not throw an error if a relation with the same name |
680 | * already exists. |
681 | * INDEX_CREATE_PARTITIONED: |
682 | * create a partitioned index (table must be partitioned) |
683 | * constr_flags: flags passed to index_constraint_create |
684 | * (only if INDEX_CREATE_ADD_CONSTRAINT is set) |
685 | * allow_system_table_mods: allow table to be a system catalog |
686 | * is_internal: if true, post creation hook for new index |
687 | * constraintId: if not NULL, receives OID of created constraint |
688 | * |
689 | * Returns the OID of the created index. |
690 | */ |
691 | Oid |
692 | index_create(Relation heapRelation, |
693 | const char *indexRelationName, |
694 | Oid indexRelationId, |
695 | Oid parentIndexRelid, |
696 | Oid parentConstraintId, |
697 | Oid relFileNode, |
698 | IndexInfo *indexInfo, |
699 | List *indexColNames, |
700 | Oid accessMethodObjectId, |
701 | Oid tableSpaceId, |
702 | Oid *collationObjectId, |
703 | Oid *classObjectId, |
704 | int16 *coloptions, |
705 | Datum reloptions, |
706 | bits16 flags, |
707 | bits16 constr_flags, |
708 | bool allow_system_table_mods, |
709 | bool is_internal, |
710 | Oid *constraintId) |
711 | { |
712 | Oid heapRelationId = RelationGetRelid(heapRelation); |
713 | Relation pg_class; |
714 | Relation indexRelation; |
715 | TupleDesc indexTupDesc; |
716 | bool shared_relation; |
717 | bool mapped_relation; |
718 | bool is_exclusion; |
719 | Oid namespaceId; |
720 | int i; |
721 | char relpersistence; |
722 | bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0; |
723 | bool invalid = (flags & INDEX_CREATE_INVALID) != 0; |
724 | bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0; |
725 | bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0; |
726 | char relkind; |
727 | TransactionId relfrozenxid; |
728 | MultiXactId relminmxid; |
729 | |
730 | /* constraint flags can only be set when a constraint is requested */ |
731 | Assert((constr_flags == 0) || |
732 | ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)); |
733 | /* partitioned indexes must never be "built" by themselves */ |
734 | Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD)); |
735 | |
736 | relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX; |
737 | is_exclusion = (indexInfo->ii_ExclusionOps != NULL); |
738 | |
739 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
740 | |
741 | /* |
742 | * The index will be in the same namespace as its parent table, and is |
743 | * shared across databases if and only if the parent is. Likewise, it |
744 | * will use the relfilenode map if and only if the parent does; and it |
745 | * inherits the parent's relpersistence. |
746 | */ |
747 | namespaceId = RelationGetNamespace(heapRelation); |
748 | shared_relation = heapRelation->rd_rel->relisshared; |
749 | mapped_relation = RelationIsMapped(heapRelation); |
750 | relpersistence = heapRelation->rd_rel->relpersistence; |
751 | |
752 | /* |
753 | * check parameters |
754 | */ |
755 | if (indexInfo->ii_NumIndexAttrs < 1) |
756 | elog(ERROR, "must index at least one column" ); |
757 | |
758 | if (!allow_system_table_mods && |
759 | IsSystemRelation(heapRelation) && |
760 | IsNormalProcessingMode()) |
761 | ereport(ERROR, |
762 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
763 | errmsg("user-defined indexes on system catalog tables are not supported" ))); |
764 | |
765 | /* |
766 | * Btree text_pattern_ops uses text_eq as the equality operator, which is |
767 | * fine as long as the collation is deterministic; text_eq then reduces to |
768 | * bitwise equality and so it is semantically compatible with the other |
769 | * operators and functions in that opclass. But with a nondeterministic |
770 | * collation, text_eq could yield results that are incompatible with the |
771 | * actual behavior of the index (which is determined by the opclass's |
772 | * comparison function). We prevent such problems by refusing creation of |
773 | * an index with that opclass and a nondeterministic collation. |
774 | * |
775 | * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we |
776 | * find more cases, we might decide to create a real mechanism for marking |
777 | * opclasses as incompatible with nondeterminism; but for now, this small |
778 | * hack suffices. |
779 | * |
780 | * Another solution is to use a special operator, not text_eq, as the |
781 | * equality opclass member; but that is undesirable because it would |
782 | * prevent index usage in many queries that work fine today. |
783 | */ |
784 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
785 | { |
786 | Oid collation = collationObjectId[i]; |
787 | Oid opclass = classObjectId[i]; |
788 | |
789 | if (collation) |
790 | { |
791 | if ((opclass == TEXT_BTREE_PATTERN_OPS_OID || |
792 | opclass == VARCHAR_BTREE_PATTERN_OPS_OID || |
793 | opclass == BPCHAR_BTREE_PATTERN_OPS_OID) && |
794 | !get_collation_isdeterministic(collation)) |
795 | { |
796 | HeapTuple classtup; |
797 | |
798 | classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass)); |
799 | if (!HeapTupleIsValid(classtup)) |
800 | elog(ERROR, "cache lookup failed for operator class %u" , opclass); |
801 | ereport(ERROR, |
802 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
803 | errmsg("nondeterministic collations are not supported for operator class \"%s\"" , |
804 | NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname)))); |
805 | ReleaseSysCache(classtup); |
806 | } |
807 | } |
808 | } |
809 | |
810 | /* |
811 | * Concurrent index build on a system catalog is unsafe because we tend to |
812 | * release locks before committing in catalogs. |
813 | */ |
814 | if (concurrent && |
815 | IsCatalogRelation(heapRelation)) |
816 | ereport(ERROR, |
817 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
818 | errmsg("concurrent index creation on system catalog tables is not supported" ))); |
819 | |
820 | /* |
821 | * This case is currently not supported. There's no way to ask for it in |
822 | * the grammar with CREATE INDEX, but it can happen with REINDEX. |
823 | */ |
824 | if (concurrent && is_exclusion) |
825 | ereport(ERROR, |
826 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
827 | errmsg("concurrent index creation for exclusion constraints is not supported" ))); |
828 | |
829 | /* |
830 | * We cannot allow indexing a shared relation after initdb (because |
831 | * there's no way to make the entry in other databases' pg_class). |
832 | */ |
833 | if (shared_relation && !IsBootstrapProcessingMode()) |
834 | ereport(ERROR, |
835 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
836 | errmsg("shared indexes cannot be created after initdb" ))); |
837 | |
838 | /* |
839 | * Shared relations must be in pg_global, too (last-ditch check) |
840 | */ |
841 | if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID) |
842 | elog(ERROR, "shared relations must be placed in pg_global tablespace" ); |
843 | |
844 | /* |
845 | * Check for duplicate name (both as to the index, and as to the |
846 | * associated constraint if any). Such cases would fail on the relevant |
847 | * catalogs' unique indexes anyway, but we prefer to give a friendlier |
848 | * error message. |
849 | */ |
850 | if (get_relname_relid(indexRelationName, namespaceId)) |
851 | { |
852 | if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0) |
853 | { |
854 | ereport(NOTICE, |
855 | (errcode(ERRCODE_DUPLICATE_TABLE), |
856 | errmsg("relation \"%s\" already exists, skipping" , |
857 | indexRelationName))); |
858 | table_close(pg_class, RowExclusiveLock); |
859 | return InvalidOid; |
860 | } |
861 | |
862 | ereport(ERROR, |
863 | (errcode(ERRCODE_DUPLICATE_TABLE), |
864 | errmsg("relation \"%s\" already exists" , |
865 | indexRelationName))); |
866 | } |
867 | |
868 | if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 && |
869 | ConstraintNameIsUsed(CONSTRAINT_RELATION, heapRelationId, |
870 | indexRelationName)) |
871 | { |
872 | /* |
873 | * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the |
874 | * conflicting constraint is not an index. |
875 | */ |
876 | ereport(ERROR, |
877 | (errcode(ERRCODE_DUPLICATE_OBJECT), |
878 | errmsg("constraint \"%s\" for relation \"%s\" already exists" , |
879 | indexRelationName, RelationGetRelationName(heapRelation)))); |
880 | } |
881 | |
882 | /* |
883 | * construct tuple descriptor for index tuples |
884 | */ |
885 | indexTupDesc = ConstructTupleDescriptor(heapRelation, |
886 | indexInfo, |
887 | indexColNames, |
888 | accessMethodObjectId, |
889 | collationObjectId, |
890 | classObjectId); |
891 | |
892 | /* |
893 | * Allocate an OID for the index, unless we were told what to use. |
894 | * |
895 | * The OID will be the relfilenode as well, so make sure it doesn't |
896 | * collide with either pg_class OIDs or existing physical files. |
897 | */ |
898 | if (!OidIsValid(indexRelationId)) |
899 | { |
900 | /* Use binary-upgrade override for pg_class.oid/relfilenode? */ |
901 | if (IsBinaryUpgrade) |
902 | { |
903 | if (!OidIsValid(binary_upgrade_next_index_pg_class_oid)) |
904 | ereport(ERROR, |
905 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
906 | errmsg("pg_class index OID value not set when in binary upgrade mode" ))); |
907 | |
908 | indexRelationId = binary_upgrade_next_index_pg_class_oid; |
909 | binary_upgrade_next_index_pg_class_oid = InvalidOid; |
910 | } |
911 | else |
912 | { |
913 | indexRelationId = |
914 | GetNewRelFileNode(tableSpaceId, pg_class, relpersistence); |
915 | } |
916 | } |
917 | |
918 | /* |
919 | * create the index relation's relcache entry and, if necessary, the |
920 | * physical disk file. (If we fail further down, it's the smgr's |
921 | * responsibility to remove the disk file again, if any.) |
922 | */ |
923 | indexRelation = heap_create(indexRelationName, |
924 | namespaceId, |
925 | tableSpaceId, |
926 | indexRelationId, |
927 | relFileNode, |
928 | accessMethodObjectId, |
929 | indexTupDesc, |
930 | relkind, |
931 | relpersistence, |
932 | shared_relation, |
933 | mapped_relation, |
934 | allow_system_table_mods, |
935 | &relfrozenxid, |
936 | &relminmxid); |
937 | |
938 | Assert(relfrozenxid == InvalidTransactionId); |
939 | Assert(relminmxid == InvalidMultiXactId); |
940 | Assert(indexRelationId == RelationGetRelid(indexRelation)); |
941 | |
942 | /* |
943 | * Obtain exclusive lock on it. Although no other transactions can see it |
944 | * until we commit, this prevents deadlock-risk complaints from lock |
945 | * manager in cases such as CLUSTER. |
946 | */ |
947 | LockRelation(indexRelation, AccessExclusiveLock); |
948 | |
949 | /* |
950 | * Fill in fields of the index's pg_class entry that are not set correctly |
951 | * by heap_create. |
952 | * |
953 | * XXX should have a cleaner way to create cataloged indexes |
954 | */ |
955 | indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner; |
956 | indexRelation->rd_rel->relam = accessMethodObjectId; |
957 | indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid); |
958 | |
959 | /* |
960 | * store index's pg_class entry |
961 | */ |
962 | InsertPgClassTuple(pg_class, indexRelation, |
963 | RelationGetRelid(indexRelation), |
964 | (Datum) 0, |
965 | reloptions); |
966 | |
967 | /* done with pg_class */ |
968 | table_close(pg_class, RowExclusiveLock); |
969 | |
970 | /* |
971 | * now update the object id's of all the attribute tuple forms in the |
972 | * index relation's tuple descriptor |
973 | */ |
974 | InitializeAttributeOids(indexRelation, |
975 | indexInfo->ii_NumIndexAttrs, |
976 | indexRelationId); |
977 | |
978 | /* |
979 | * append ATTRIBUTE tuples for the index |
980 | */ |
981 | AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs); |
982 | |
983 | /* ---------------- |
984 | * update pg_index |
985 | * (append INDEX tuple) |
986 | * |
987 | * Note that this stows away a representation of "predicate". |
988 | * (Or, could define a rule to maintain the predicate) --Nels, Feb '92 |
989 | * ---------------- |
990 | */ |
991 | UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid, |
992 | indexInfo, |
993 | collationObjectId, classObjectId, coloptions, |
994 | isprimary, is_exclusion, |
995 | (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0, |
996 | !concurrent && !invalid, |
997 | !concurrent); |
998 | |
999 | /* |
1000 | * Register relcache invalidation on the indexes' heap relation, to |
1001 | * maintain consistency of its index list |
1002 | */ |
1003 | CacheInvalidateRelcache(heapRelation); |
1004 | |
1005 | /* update pg_inherits and the parent's relhassubclass, if needed */ |
1006 | if (OidIsValid(parentIndexRelid)) |
1007 | { |
1008 | StoreSingleInheritance(indexRelationId, parentIndexRelid, 1); |
1009 | SetRelationHasSubclass(parentIndexRelid, true); |
1010 | } |
1011 | |
1012 | /* |
1013 | * Register constraint and dependencies for the index. |
1014 | * |
1015 | * If the index is from a CONSTRAINT clause, construct a pg_constraint |
1016 | * entry. The index will be linked to the constraint, which in turn is |
1017 | * linked to the table. If it's not a CONSTRAINT, we need to make a |
1018 | * dependency directly on the table. |
1019 | * |
1020 | * We don't need a dependency on the namespace, because there'll be an |
1021 | * indirect dependency via our parent table. |
1022 | * |
1023 | * During bootstrap we can't register any dependencies, and we don't try |
1024 | * to make a constraint either. |
1025 | */ |
1026 | if (!IsBootstrapProcessingMode()) |
1027 | { |
1028 | ObjectAddress myself, |
1029 | referenced; |
1030 | |
1031 | myself.classId = RelationRelationId; |
1032 | myself.objectId = indexRelationId; |
1033 | myself.objectSubId = 0; |
1034 | |
1035 | if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0) |
1036 | { |
1037 | char constraintType; |
1038 | ObjectAddress localaddr; |
1039 | |
1040 | if (isprimary) |
1041 | constraintType = CONSTRAINT_PRIMARY; |
1042 | else if (indexInfo->ii_Unique) |
1043 | constraintType = CONSTRAINT_UNIQUE; |
1044 | else if (is_exclusion) |
1045 | constraintType = CONSTRAINT_EXCLUSION; |
1046 | else |
1047 | { |
1048 | elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE" ); |
1049 | constraintType = 0; /* keep compiler quiet */ |
1050 | } |
1051 | |
1052 | localaddr = index_constraint_create(heapRelation, |
1053 | indexRelationId, |
1054 | parentConstraintId, |
1055 | indexInfo, |
1056 | indexRelationName, |
1057 | constraintType, |
1058 | constr_flags, |
1059 | allow_system_table_mods, |
1060 | is_internal); |
1061 | if (constraintId) |
1062 | *constraintId = localaddr.objectId; |
1063 | } |
1064 | else |
1065 | { |
1066 | bool have_simple_col = false; |
1067 | |
1068 | /* Create auto dependencies on simply-referenced columns */ |
1069 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
1070 | { |
1071 | if (indexInfo->ii_IndexAttrNumbers[i] != 0) |
1072 | { |
1073 | referenced.classId = RelationRelationId; |
1074 | referenced.objectId = heapRelationId; |
1075 | referenced.objectSubId = indexInfo->ii_IndexAttrNumbers[i]; |
1076 | |
1077 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
1078 | |
1079 | have_simple_col = true; |
1080 | } |
1081 | } |
1082 | |
1083 | /* |
1084 | * If there are no simply-referenced columns, give the index an |
1085 | * auto dependency on the whole table. In most cases, this will |
1086 | * be redundant, but it might not be if the index expressions and |
1087 | * predicate contain no Vars or only whole-row Vars. |
1088 | */ |
1089 | if (!have_simple_col) |
1090 | { |
1091 | referenced.classId = RelationRelationId; |
1092 | referenced.objectId = heapRelationId; |
1093 | referenced.objectSubId = 0; |
1094 | |
1095 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
1096 | } |
1097 | } |
1098 | |
1099 | /* |
1100 | * If this is an index partition, create partition dependencies on |
1101 | * both the parent index and the table. (Note: these must be *in |
1102 | * addition to*, not instead of, all other dependencies. Otherwise |
1103 | * we'll be short some dependencies after DETACH PARTITION.) |
1104 | */ |
1105 | if (OidIsValid(parentIndexRelid)) |
1106 | { |
1107 | referenced.classId = RelationRelationId; |
1108 | referenced.objectId = parentIndexRelid; |
1109 | referenced.objectSubId = 0; |
1110 | |
1111 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI); |
1112 | |
1113 | referenced.classId = RelationRelationId; |
1114 | referenced.objectId = heapRelationId; |
1115 | referenced.objectSubId = 0; |
1116 | |
1117 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC); |
1118 | } |
1119 | |
1120 | /* Store dependency on collations */ |
1121 | /* The default collation is pinned, so don't bother recording it */ |
1122 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
1123 | { |
1124 | if (OidIsValid(collationObjectId[i]) && |
1125 | collationObjectId[i] != DEFAULT_COLLATION_OID) |
1126 | { |
1127 | referenced.classId = CollationRelationId; |
1128 | referenced.objectId = collationObjectId[i]; |
1129 | referenced.objectSubId = 0; |
1130 | |
1131 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
1132 | } |
1133 | } |
1134 | |
1135 | /* Store dependency on operator classes */ |
1136 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
1137 | { |
1138 | referenced.classId = OperatorClassRelationId; |
1139 | referenced.objectId = classObjectId[i]; |
1140 | referenced.objectSubId = 0; |
1141 | |
1142 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
1143 | } |
1144 | |
1145 | /* Store dependencies on anything mentioned in index expressions */ |
1146 | if (indexInfo->ii_Expressions) |
1147 | { |
1148 | recordDependencyOnSingleRelExpr(&myself, |
1149 | (Node *) indexInfo->ii_Expressions, |
1150 | heapRelationId, |
1151 | DEPENDENCY_NORMAL, |
1152 | DEPENDENCY_AUTO, false); |
1153 | } |
1154 | |
1155 | /* Store dependencies on anything mentioned in predicate */ |
1156 | if (indexInfo->ii_Predicate) |
1157 | { |
1158 | recordDependencyOnSingleRelExpr(&myself, |
1159 | (Node *) indexInfo->ii_Predicate, |
1160 | heapRelationId, |
1161 | DEPENDENCY_NORMAL, |
1162 | DEPENDENCY_AUTO, false); |
1163 | } |
1164 | } |
1165 | else |
1166 | { |
1167 | /* Bootstrap mode - assert we weren't asked for constraint support */ |
1168 | Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0); |
1169 | } |
1170 | |
1171 | /* Post creation hook for new index */ |
1172 | InvokeObjectPostCreateHookArg(RelationRelationId, |
1173 | indexRelationId, 0, is_internal); |
1174 | |
1175 | /* |
1176 | * Advance the command counter so that we can see the newly-entered |
1177 | * catalog tuples for the index. |
1178 | */ |
1179 | CommandCounterIncrement(); |
1180 | |
1181 | /* |
1182 | * In bootstrap mode, we have to fill in the index strategy structure with |
1183 | * information from the catalogs. If we aren't bootstrapping, then the |
1184 | * relcache entry has already been rebuilt thanks to sinval update during |
1185 | * CommandCounterIncrement. |
1186 | */ |
1187 | if (IsBootstrapProcessingMode()) |
1188 | RelationInitIndexAccessInfo(indexRelation); |
1189 | else |
1190 | Assert(indexRelation->rd_indexcxt != NULL); |
1191 | |
1192 | indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs; |
1193 | |
1194 | /* |
1195 | * If this is bootstrap (initdb) time, then we don't actually fill in the |
1196 | * index yet. We'll be creating more indexes and classes later, so we |
1197 | * delay filling them in until just before we're done with bootstrapping. |
1198 | * Similarly, if the caller specified to skip the build then filling the |
1199 | * index is delayed till later (ALTER TABLE can save work in some cases |
1200 | * with this). Otherwise, we call the AM routine that constructs the |
1201 | * index. |
1202 | */ |
1203 | if (IsBootstrapProcessingMode()) |
1204 | { |
1205 | index_register(heapRelationId, indexRelationId, indexInfo); |
1206 | } |
1207 | else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0) |
1208 | { |
1209 | /* |
1210 | * Caller is responsible for filling the index later on. However, |
1211 | * we'd better make sure that the heap relation is correctly marked as |
1212 | * having an index. |
1213 | */ |
1214 | index_update_stats(heapRelation, |
1215 | true, |
1216 | -1.0); |
1217 | /* Make the above update visible */ |
1218 | CommandCounterIncrement(); |
1219 | } |
1220 | else |
1221 | { |
1222 | index_build(heapRelation, indexRelation, indexInfo, false, true); |
1223 | } |
1224 | |
1225 | /* |
1226 | * Close the index; but we keep the lock that we acquired above until end |
1227 | * of transaction. Closing the heap is caller's responsibility. |
1228 | */ |
1229 | index_close(indexRelation, NoLock); |
1230 | |
1231 | return indexRelationId; |
1232 | } |
1233 | |
1234 | /* |
1235 | * index_concurrently_create_copy |
1236 | * |
1237 | * Create concurrently an index based on the definition of the one provided by |
1238 | * caller. The index is inserted into catalogs and needs to be built later |
1239 | * on. This is called during concurrent reindex processing. |
1240 | */ |
1241 | Oid |
1242 | index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName) |
1243 | { |
1244 | Relation indexRelation; |
1245 | IndexInfo *oldInfo, |
1246 | *newInfo; |
1247 | Oid newIndexId = InvalidOid; |
1248 | HeapTuple indexTuple, |
1249 | classTuple; |
1250 | Datum indclassDatum, |
1251 | colOptionDatum, |
1252 | optionDatum; |
1253 | oidvector *indclass; |
1254 | int2vector *indcoloptions; |
1255 | bool isnull; |
1256 | List *indexColNames = NIL; |
1257 | List *indexExprs = NIL; |
1258 | List *indexPreds = NIL; |
1259 | |
1260 | indexRelation = index_open(oldIndexId, RowExclusiveLock); |
1261 | |
1262 | /* The new index needs some information from the old index */ |
1263 | oldInfo = BuildIndexInfo(indexRelation); |
1264 | |
1265 | /* |
1266 | * Concurrent build of an index with exclusion constraints is not |
1267 | * supported. |
1268 | */ |
1269 | if (oldInfo->ii_ExclusionOps != NULL) |
1270 | ereport(ERROR, |
1271 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1272 | errmsg("concurrent index creation for exclusion constraints is not supported" ))); |
1273 | |
1274 | /* Get the array of class and column options IDs from index info */ |
1275 | indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId)); |
1276 | if (!HeapTupleIsValid(indexTuple)) |
1277 | elog(ERROR, "cache lookup failed for index %u" , oldIndexId); |
1278 | indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
1279 | Anum_pg_index_indclass, &isnull); |
1280 | Assert(!isnull); |
1281 | indclass = (oidvector *) DatumGetPointer(indclassDatum); |
1282 | |
1283 | colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
1284 | Anum_pg_index_indoption, &isnull); |
1285 | Assert(!isnull); |
1286 | indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum); |
1287 | |
1288 | /* Fetch options of index if any */ |
1289 | classTuple = SearchSysCache1(RELOID, oldIndexId); |
1290 | if (!HeapTupleIsValid(classTuple)) |
1291 | elog(ERROR, "cache lookup failed for relation %u" , oldIndexId); |
1292 | optionDatum = SysCacheGetAttr(RELOID, classTuple, |
1293 | Anum_pg_class_reloptions, &isnull); |
1294 | |
1295 | /* |
1296 | * Fetch the list of expressions and predicates directly from the |
1297 | * catalogs. This cannot rely on the information from IndexInfo of the |
1298 | * old index as these have been flattened for the planner. |
1299 | */ |
1300 | if (oldInfo->ii_Expressions != NIL) |
1301 | { |
1302 | Datum exprDatum; |
1303 | char *exprString; |
1304 | |
1305 | exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
1306 | Anum_pg_index_indexprs, &isnull); |
1307 | Assert(!isnull); |
1308 | exprString = TextDatumGetCString(exprDatum); |
1309 | indexExprs = (List *) stringToNode(exprString); |
1310 | pfree(exprString); |
1311 | } |
1312 | if (oldInfo->ii_Predicate != NIL) |
1313 | { |
1314 | Datum predDatum; |
1315 | char *predString; |
1316 | |
1317 | predDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
1318 | Anum_pg_index_indpred, &isnull); |
1319 | Assert(!isnull); |
1320 | predString = TextDatumGetCString(predDatum); |
1321 | indexPreds = (List *) stringToNode(predString); |
1322 | |
1323 | /* Also convert to implicit-AND format */ |
1324 | indexPreds = make_ands_implicit((Expr *) indexPreds); |
1325 | pfree(predString); |
1326 | } |
1327 | |
1328 | /* |
1329 | * Build the index information for the new index. Note that rebuild of |
1330 | * indexes with exclusion constraints is not supported, hence there is no |
1331 | * need to fill all the ii_Exclusion* fields. |
1332 | */ |
1333 | newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs, |
1334 | oldInfo->ii_NumIndexKeyAttrs, |
1335 | oldInfo->ii_Am, |
1336 | indexExprs, |
1337 | indexPreds, |
1338 | oldInfo->ii_Unique, |
1339 | false, /* not ready for inserts */ |
1340 | true); |
1341 | |
1342 | /* |
1343 | * Extract the list of column names and the column numbers for the new |
1344 | * index information. All this information will be used for the index |
1345 | * creation. |
1346 | */ |
1347 | for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++) |
1348 | { |
1349 | TupleDesc indexTupDesc = RelationGetDescr(indexRelation); |
1350 | Form_pg_attribute att = TupleDescAttr(indexTupDesc, i); |
1351 | |
1352 | indexColNames = lappend(indexColNames, NameStr(att->attname)); |
1353 | newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i]; |
1354 | } |
1355 | |
1356 | /* |
1357 | * Now create the new index. |
1358 | * |
1359 | * For a partition index, we adjust the partition dependency later, to |
1360 | * ensure a consistent state at all times. That is why parentIndexRelid |
1361 | * is not set here. |
1362 | */ |
1363 | newIndexId = index_create(heapRelation, |
1364 | newName, |
1365 | InvalidOid, /* indexRelationId */ |
1366 | InvalidOid, /* parentIndexRelid */ |
1367 | InvalidOid, /* parentConstraintId */ |
1368 | InvalidOid, /* relFileNode */ |
1369 | newInfo, |
1370 | indexColNames, |
1371 | indexRelation->rd_rel->relam, |
1372 | indexRelation->rd_rel->reltablespace, |
1373 | indexRelation->rd_indcollation, |
1374 | indclass->values, |
1375 | indcoloptions->values, |
1376 | optionDatum, |
1377 | INDEX_CREATE_SKIP_BUILD | INDEX_CREATE_CONCURRENT, |
1378 | 0, |
1379 | true, /* allow table to be a system catalog? */ |
1380 | false, /* is_internal? */ |
1381 | NULL); |
1382 | |
1383 | /* Close the relations used and clean up */ |
1384 | index_close(indexRelation, NoLock); |
1385 | ReleaseSysCache(indexTuple); |
1386 | ReleaseSysCache(classTuple); |
1387 | |
1388 | return newIndexId; |
1389 | } |
1390 | |
1391 | /* |
1392 | * index_concurrently_build |
1393 | * |
1394 | * Build index for a concurrent operation. Low-level locks are taken when |
1395 | * this operation is performed to prevent only schema changes, but they need |
1396 | * to be kept until the end of the transaction performing this operation. |
1397 | * 'indexOid' refers to an index relation OID already created as part of |
1398 | * previous processing, and 'heapOid' refers to its parent heap relation. |
1399 | */ |
1400 | void |
1401 | index_concurrently_build(Oid heapRelationId, |
1402 | Oid indexRelationId) |
1403 | { |
1404 | Relation heapRel; |
1405 | Relation indexRelation; |
1406 | IndexInfo *indexInfo; |
1407 | |
1408 | /* This had better make sure that a snapshot is active */ |
1409 | Assert(ActiveSnapshotSet()); |
1410 | |
1411 | /* Open and lock the parent heap relation */ |
1412 | heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock); |
1413 | |
1414 | /* And the target index relation */ |
1415 | indexRelation = index_open(indexRelationId, RowExclusiveLock); |
1416 | |
1417 | /* |
1418 | * We have to re-build the IndexInfo struct, since it was lost in the |
1419 | * commit of the transaction where this concurrent index was created at |
1420 | * the catalog level. |
1421 | */ |
1422 | indexInfo = BuildIndexInfo(indexRelation); |
1423 | Assert(!indexInfo->ii_ReadyForInserts); |
1424 | indexInfo->ii_Concurrent = true; |
1425 | indexInfo->ii_BrokenHotChain = false; |
1426 | |
1427 | /* Now build the index */ |
1428 | index_build(heapRel, indexRelation, indexInfo, false, true); |
1429 | |
1430 | /* Close both the relations, but keep the locks */ |
1431 | table_close(heapRel, NoLock); |
1432 | index_close(indexRelation, NoLock); |
1433 | |
1434 | /* |
1435 | * Update the pg_index row to mark the index as ready for inserts. Once we |
1436 | * commit this transaction, any new transactions that open the table must |
1437 | * insert new entries into the index for insertions and non-HOT updates. |
1438 | */ |
1439 | index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY); |
1440 | } |
1441 | |
1442 | /* |
1443 | * index_concurrently_swap |
1444 | * |
1445 | * Swap name, dependencies, and constraints of the old index over to the new |
1446 | * index, while marking the old index as invalid and the new as valid. |
1447 | */ |
1448 | void |
1449 | index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName) |
1450 | { |
1451 | Relation pg_class, |
1452 | pg_index, |
1453 | pg_constraint, |
1454 | pg_trigger; |
1455 | Relation oldClassRel, |
1456 | newClassRel; |
1457 | HeapTuple oldClassTuple, |
1458 | newClassTuple; |
1459 | Form_pg_class oldClassForm, |
1460 | newClassForm; |
1461 | HeapTuple oldIndexTuple, |
1462 | newIndexTuple; |
1463 | Form_pg_index oldIndexForm, |
1464 | newIndexForm; |
1465 | Oid indexConstraintOid; |
1466 | List *constraintOids = NIL; |
1467 | ListCell *lc; |
1468 | |
1469 | /* |
1470 | * Take a necessary lock on the old and new index before swapping them. |
1471 | */ |
1472 | oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock); |
1473 | newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock); |
1474 | |
1475 | /* Now swap names and dependencies of those indexes */ |
1476 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
1477 | |
1478 | oldClassTuple = SearchSysCacheCopy1(RELOID, |
1479 | ObjectIdGetDatum(oldIndexId)); |
1480 | if (!HeapTupleIsValid(oldClassTuple)) |
1481 | elog(ERROR, "could not find tuple for relation %u" , oldIndexId); |
1482 | newClassTuple = SearchSysCacheCopy1(RELOID, |
1483 | ObjectIdGetDatum(newIndexId)); |
1484 | if (!HeapTupleIsValid(newClassTuple)) |
1485 | elog(ERROR, "could not find tuple for relation %u" , newIndexId); |
1486 | |
1487 | oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple); |
1488 | newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple); |
1489 | |
1490 | /* Swap the names */ |
1491 | namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname)); |
1492 | namestrcpy(&oldClassForm->relname, oldName); |
1493 | |
1494 | /* Copy partition flag to track inheritance properly */ |
1495 | newClassForm->relispartition = oldClassForm->relispartition; |
1496 | |
1497 | CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple); |
1498 | CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple); |
1499 | |
1500 | heap_freetuple(oldClassTuple); |
1501 | heap_freetuple(newClassTuple); |
1502 | |
1503 | /* Now swap index info */ |
1504 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
1505 | |
1506 | oldIndexTuple = SearchSysCacheCopy1(INDEXRELID, |
1507 | ObjectIdGetDatum(oldIndexId)); |
1508 | if (!HeapTupleIsValid(oldIndexTuple)) |
1509 | elog(ERROR, "could not find tuple for relation %u" , oldIndexId); |
1510 | newIndexTuple = SearchSysCacheCopy1(INDEXRELID, |
1511 | ObjectIdGetDatum(newIndexId)); |
1512 | if (!HeapTupleIsValid(newIndexTuple)) |
1513 | elog(ERROR, "could not find tuple for relation %u" , newIndexId); |
1514 | |
1515 | oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple); |
1516 | newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple); |
1517 | |
1518 | /* |
1519 | * Copy constraint flags from the old index. This is safe because the old |
1520 | * index guaranteed uniqueness. |
1521 | */ |
1522 | newIndexForm->indisprimary = oldIndexForm->indisprimary; |
1523 | oldIndexForm->indisprimary = false; |
1524 | newIndexForm->indisexclusion = oldIndexForm->indisexclusion; |
1525 | oldIndexForm->indisexclusion = false; |
1526 | newIndexForm->indimmediate = oldIndexForm->indimmediate; |
1527 | oldIndexForm->indimmediate = true; |
1528 | |
1529 | /* Mark old index as valid and new as invalid as index_set_state_flags */ |
1530 | newIndexForm->indisvalid = true; |
1531 | oldIndexForm->indisvalid = false; |
1532 | oldIndexForm->indisclustered = false; |
1533 | |
1534 | CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple); |
1535 | CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple); |
1536 | |
1537 | heap_freetuple(oldIndexTuple); |
1538 | heap_freetuple(newIndexTuple); |
1539 | |
1540 | /* |
1541 | * Move constraints and triggers over to the new index |
1542 | */ |
1543 | |
1544 | constraintOids = get_index_ref_constraints(oldIndexId); |
1545 | |
1546 | indexConstraintOid = get_index_constraint(oldIndexId); |
1547 | |
1548 | if (OidIsValid(indexConstraintOid)) |
1549 | constraintOids = lappend_oid(constraintOids, indexConstraintOid); |
1550 | |
1551 | pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock); |
1552 | pg_trigger = table_open(TriggerRelationId, RowExclusiveLock); |
1553 | |
1554 | foreach(lc, constraintOids) |
1555 | { |
1556 | HeapTuple constraintTuple, |
1557 | triggerTuple; |
1558 | Form_pg_constraint conForm; |
1559 | ScanKeyData key[1]; |
1560 | SysScanDesc scan; |
1561 | Oid constraintOid = lfirst_oid(lc); |
1562 | |
1563 | /* Move the constraint from the old to the new index */ |
1564 | constraintTuple = SearchSysCacheCopy1(CONSTROID, |
1565 | ObjectIdGetDatum(constraintOid)); |
1566 | if (!HeapTupleIsValid(constraintTuple)) |
1567 | elog(ERROR, "could not find tuple for constraint %u" , constraintOid); |
1568 | |
1569 | conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple)); |
1570 | |
1571 | if (conForm->conindid == oldIndexId) |
1572 | { |
1573 | conForm->conindid = newIndexId; |
1574 | |
1575 | CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple); |
1576 | } |
1577 | |
1578 | heap_freetuple(constraintTuple); |
1579 | |
1580 | /* Search for trigger records */ |
1581 | ScanKeyInit(&key[0], |
1582 | Anum_pg_trigger_tgconstraint, |
1583 | BTEqualStrategyNumber, F_OIDEQ, |
1584 | ObjectIdGetDatum(constraintOid)); |
1585 | |
1586 | scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true, |
1587 | NULL, 1, key); |
1588 | |
1589 | while (HeapTupleIsValid((triggerTuple = systable_getnext(scan)))) |
1590 | { |
1591 | Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple); |
1592 | |
1593 | if (tgForm->tgconstrindid != oldIndexId) |
1594 | continue; |
1595 | |
1596 | /* Make a modifiable copy */ |
1597 | triggerTuple = heap_copytuple(triggerTuple); |
1598 | tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple); |
1599 | |
1600 | tgForm->tgconstrindid = newIndexId; |
1601 | |
1602 | CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple); |
1603 | |
1604 | heap_freetuple(triggerTuple); |
1605 | } |
1606 | |
1607 | systable_endscan(scan); |
1608 | } |
1609 | |
1610 | /* |
1611 | * Move comment if any |
1612 | */ |
1613 | { |
1614 | Relation description; |
1615 | ScanKeyData skey[3]; |
1616 | SysScanDesc sd; |
1617 | HeapTuple tuple; |
1618 | Datum values[Natts_pg_description] = {0}; |
1619 | bool nulls[Natts_pg_description] = {0}; |
1620 | bool replaces[Natts_pg_description] = {0}; |
1621 | |
1622 | values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId); |
1623 | replaces[Anum_pg_description_objoid - 1] = true; |
1624 | |
1625 | ScanKeyInit(&skey[0], |
1626 | Anum_pg_description_objoid, |
1627 | BTEqualStrategyNumber, F_OIDEQ, |
1628 | ObjectIdGetDatum(oldIndexId)); |
1629 | ScanKeyInit(&skey[1], |
1630 | Anum_pg_description_classoid, |
1631 | BTEqualStrategyNumber, F_OIDEQ, |
1632 | ObjectIdGetDatum(RelationRelationId)); |
1633 | ScanKeyInit(&skey[2], |
1634 | Anum_pg_description_objsubid, |
1635 | BTEqualStrategyNumber, F_INT4EQ, |
1636 | Int32GetDatum(0)); |
1637 | |
1638 | description = table_open(DescriptionRelationId, RowExclusiveLock); |
1639 | |
1640 | sd = systable_beginscan(description, DescriptionObjIndexId, true, |
1641 | NULL, 3, skey); |
1642 | |
1643 | while ((tuple = systable_getnext(sd)) != NULL) |
1644 | { |
1645 | tuple = heap_modify_tuple(tuple, RelationGetDescr(description), |
1646 | values, nulls, replaces); |
1647 | CatalogTupleUpdate(description, &tuple->t_self, tuple); |
1648 | |
1649 | break; /* Assume there can be only one match */ |
1650 | } |
1651 | |
1652 | systable_endscan(sd); |
1653 | table_close(description, NoLock); |
1654 | } |
1655 | |
1656 | /* |
1657 | * Swap inheritance relationship with parent index |
1658 | */ |
1659 | if (get_rel_relispartition(oldIndexId)) |
1660 | { |
1661 | List *ancestors = get_partition_ancestors(oldIndexId); |
1662 | Oid parentIndexRelid = linitial_oid(ancestors); |
1663 | |
1664 | DeleteInheritsTuple(oldIndexId, parentIndexRelid); |
1665 | StoreSingleInheritance(newIndexId, parentIndexRelid, 1); |
1666 | |
1667 | list_free(ancestors); |
1668 | } |
1669 | |
1670 | /* |
1671 | * Move all dependencies of and on the old index to the new one |
1672 | */ |
1673 | changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId); |
1674 | changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId); |
1675 | |
1676 | /* |
1677 | * Copy over statistics from old to new index |
1678 | */ |
1679 | { |
1680 | PgStat_StatTabEntry *tabentry; |
1681 | |
1682 | tabentry = pgstat_fetch_stat_tabentry(oldIndexId); |
1683 | if (tabentry) |
1684 | { |
1685 | if (newClassRel->pgstat_info) |
1686 | { |
1687 | newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans; |
1688 | newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned; |
1689 | newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched; |
1690 | newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched; |
1691 | newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit; |
1692 | |
1693 | /* |
1694 | * The data will be sent by the next pgstat_report_stat() |
1695 | * call. |
1696 | */ |
1697 | } |
1698 | } |
1699 | } |
1700 | |
1701 | /* Close relations */ |
1702 | table_close(pg_class, RowExclusiveLock); |
1703 | table_close(pg_index, RowExclusiveLock); |
1704 | table_close(pg_constraint, RowExclusiveLock); |
1705 | table_close(pg_trigger, RowExclusiveLock); |
1706 | |
1707 | /* The lock taken previously is not released until the end of transaction */ |
1708 | relation_close(oldClassRel, NoLock); |
1709 | relation_close(newClassRel, NoLock); |
1710 | } |
1711 | |
1712 | /* |
1713 | * index_concurrently_set_dead |
1714 | * |
1715 | * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX |
1716 | * CONCURRENTLY before actually dropping the index. After calling this |
1717 | * function, the index is seen by all the backends as dead. Low-level locks |
1718 | * taken here are kept until the end of the transaction calling this function. |
1719 | */ |
1720 | void |
1721 | index_concurrently_set_dead(Oid heapId, Oid indexId) |
1722 | { |
1723 | Relation userHeapRelation; |
1724 | Relation userIndexRelation; |
1725 | |
1726 | /* |
1727 | * No more predicate locks will be acquired on this index, and we're about |
1728 | * to stop doing inserts into the index which could show conflicts with |
1729 | * existing predicate locks, so now is the time to move them to the heap |
1730 | * relation. |
1731 | */ |
1732 | userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
1733 | userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock); |
1734 | TransferPredicateLocksToHeapRelation(userIndexRelation); |
1735 | |
1736 | /* |
1737 | * Now we are sure that nobody uses the index for queries; they just might |
1738 | * have it open for updating it. So now we can unset indisready and |
1739 | * indislive, then wait till nobody could be using it at all anymore. |
1740 | */ |
1741 | index_set_state_flags(indexId, INDEX_DROP_SET_DEAD); |
1742 | |
1743 | /* |
1744 | * Invalidate the relcache for the table, so that after this commit all |
1745 | * sessions will refresh the table's index list. Forgetting just the |
1746 | * index's relcache entry is not enough. |
1747 | */ |
1748 | CacheInvalidateRelcache(userHeapRelation); |
1749 | |
1750 | /* |
1751 | * Close the relations again, though still holding session lock. |
1752 | */ |
1753 | table_close(userHeapRelation, NoLock); |
1754 | index_close(userIndexRelation, NoLock); |
1755 | } |
1756 | |
1757 | /* |
1758 | * index_constraint_create |
1759 | * |
1760 | * Set up a constraint associated with an index. Return the new constraint's |
1761 | * address. |
1762 | * |
1763 | * heapRelation: table owning the index (must be suitably locked by caller) |
1764 | * indexRelationId: OID of the index |
1765 | * parentConstraintId: if constraint is on a partition, the OID of the |
1766 | * constraint in the parent. |
1767 | * indexInfo: same info executor uses to insert into the index |
1768 | * constraintName: what it say (generally, should match name of index) |
1769 | * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or |
1770 | * CONSTRAINT_EXCLUSION |
1771 | * flags: bitmask that can include any combination of these bits: |
1772 | * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY |
1773 | * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE |
1774 | * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED |
1775 | * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row |
1776 | * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies |
1777 | * of index on table's columns |
1778 | * allow_system_table_mods: allow table to be a system catalog |
1779 | * is_internal: index is constructed due to internal process |
1780 | */ |
1781 | ObjectAddress |
1782 | index_constraint_create(Relation heapRelation, |
1783 | Oid indexRelationId, |
1784 | Oid parentConstraintId, |
1785 | IndexInfo *indexInfo, |
1786 | const char *constraintName, |
1787 | char constraintType, |
1788 | bits16 constr_flags, |
1789 | bool allow_system_table_mods, |
1790 | bool is_internal) |
1791 | { |
1792 | Oid namespaceId = RelationGetNamespace(heapRelation); |
1793 | ObjectAddress myself, |
1794 | idxaddr; |
1795 | Oid conOid; |
1796 | bool deferrable; |
1797 | bool initdeferred; |
1798 | bool mark_as_primary; |
1799 | bool islocal; |
1800 | bool noinherit; |
1801 | int inhcount; |
1802 | |
1803 | deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0; |
1804 | initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0; |
1805 | mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0; |
1806 | |
1807 | /* constraint creation support doesn't work while bootstrapping */ |
1808 | Assert(!IsBootstrapProcessingMode()); |
1809 | |
1810 | /* enforce system-table restriction */ |
1811 | if (!allow_system_table_mods && |
1812 | IsSystemRelation(heapRelation) && |
1813 | IsNormalProcessingMode()) |
1814 | ereport(ERROR, |
1815 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1816 | errmsg("user-defined indexes on system catalog tables are not supported" ))); |
1817 | |
1818 | /* primary/unique constraints shouldn't have any expressions */ |
1819 | if (indexInfo->ii_Expressions && |
1820 | constraintType != CONSTRAINT_EXCLUSION) |
1821 | elog(ERROR, "constraints cannot have index expressions" ); |
1822 | |
1823 | /* |
1824 | * If we're manufacturing a constraint for a pre-existing index, we need |
1825 | * to get rid of the existing auto dependencies for the index (the ones |
1826 | * that index_create() would have made instead of calling this function). |
1827 | * |
1828 | * Note: this code would not necessarily do the right thing if the index |
1829 | * has any expressions or predicate, but we'd never be turning such an |
1830 | * index into a UNIQUE or PRIMARY KEY constraint. |
1831 | */ |
1832 | if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS) |
1833 | deleteDependencyRecordsForClass(RelationRelationId, indexRelationId, |
1834 | RelationRelationId, DEPENDENCY_AUTO); |
1835 | |
1836 | if (OidIsValid(parentConstraintId)) |
1837 | { |
1838 | islocal = false; |
1839 | inhcount = 1; |
1840 | noinherit = false; |
1841 | } |
1842 | else |
1843 | { |
1844 | islocal = true; |
1845 | inhcount = 0; |
1846 | noinherit = true; |
1847 | } |
1848 | |
1849 | /* |
1850 | * Construct a pg_constraint entry. |
1851 | */ |
1852 | conOid = CreateConstraintEntry(constraintName, |
1853 | namespaceId, |
1854 | constraintType, |
1855 | deferrable, |
1856 | initdeferred, |
1857 | true, |
1858 | parentConstraintId, |
1859 | RelationGetRelid(heapRelation), |
1860 | indexInfo->ii_IndexAttrNumbers, |
1861 | indexInfo->ii_NumIndexKeyAttrs, |
1862 | indexInfo->ii_NumIndexAttrs, |
1863 | InvalidOid, /* no domain */ |
1864 | indexRelationId, /* index OID */ |
1865 | InvalidOid, /* no foreign key */ |
1866 | NULL, |
1867 | NULL, |
1868 | NULL, |
1869 | NULL, |
1870 | 0, |
1871 | ' ', |
1872 | ' ', |
1873 | ' ', |
1874 | indexInfo->ii_ExclusionOps, |
1875 | NULL, /* no check constraint */ |
1876 | NULL, |
1877 | islocal, |
1878 | inhcount, |
1879 | noinherit, |
1880 | is_internal); |
1881 | |
1882 | /* |
1883 | * Register the index as internally dependent on the constraint. |
1884 | * |
1885 | * Note that the constraint has a dependency on the table, so we don't |
1886 | * need (or want) any direct dependency from the index to the table. |
1887 | */ |
1888 | ObjectAddressSet(myself, ConstraintRelationId, conOid); |
1889 | ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId); |
1890 | recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL); |
1891 | |
1892 | /* |
1893 | * Also, if this is a constraint on a partition, give it partition-type |
1894 | * dependencies on the parent constraint as well as the table. |
1895 | */ |
1896 | if (OidIsValid(parentConstraintId)) |
1897 | { |
1898 | ObjectAddress referenced; |
1899 | |
1900 | ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId); |
1901 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI); |
1902 | ObjectAddressSet(referenced, RelationRelationId, |
1903 | RelationGetRelid(heapRelation)); |
1904 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC); |
1905 | } |
1906 | |
1907 | /* |
1908 | * If the constraint is deferrable, create the deferred uniqueness |
1909 | * checking trigger. (The trigger will be given an internal dependency on |
1910 | * the constraint by CreateTrigger.) |
1911 | */ |
1912 | if (deferrable) |
1913 | { |
1914 | CreateTrigStmt *trigger; |
1915 | |
1916 | trigger = makeNode(CreateTrigStmt); |
1917 | trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ? |
1918 | "PK_ConstraintTrigger" : |
1919 | "Unique_ConstraintTrigger" ; |
1920 | trigger->relation = NULL; |
1921 | trigger->funcname = SystemFuncName("unique_key_recheck" ); |
1922 | trigger->args = NIL; |
1923 | trigger->row = true; |
1924 | trigger->timing = TRIGGER_TYPE_AFTER; |
1925 | trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE; |
1926 | trigger->columns = NIL; |
1927 | trigger->whenClause = NULL; |
1928 | trigger->isconstraint = true; |
1929 | trigger->deferrable = true; |
1930 | trigger->initdeferred = initdeferred; |
1931 | trigger->constrrel = NULL; |
1932 | |
1933 | (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation), |
1934 | InvalidOid, conOid, indexRelationId, InvalidOid, |
1935 | InvalidOid, NULL, true, false); |
1936 | } |
1937 | |
1938 | /* |
1939 | * If needed, mark the index as primary and/or deferred in pg_index. |
1940 | * |
1941 | * Note: When making an existing index into a constraint, caller must have |
1942 | * a table lock that prevents concurrent table updates; otherwise, there |
1943 | * is a risk that concurrent readers of the table will miss seeing this |
1944 | * index at all. |
1945 | */ |
1946 | if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) && |
1947 | (mark_as_primary || deferrable)) |
1948 | { |
1949 | Relation pg_index; |
1950 | HeapTuple indexTuple; |
1951 | Form_pg_index indexForm; |
1952 | bool dirty = false; |
1953 | |
1954 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
1955 | |
1956 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
1957 | ObjectIdGetDatum(indexRelationId)); |
1958 | if (!HeapTupleIsValid(indexTuple)) |
1959 | elog(ERROR, "cache lookup failed for index %u" , indexRelationId); |
1960 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
1961 | |
1962 | if (mark_as_primary && !indexForm->indisprimary) |
1963 | { |
1964 | indexForm->indisprimary = true; |
1965 | dirty = true; |
1966 | } |
1967 | |
1968 | if (deferrable && indexForm->indimmediate) |
1969 | { |
1970 | indexForm->indimmediate = false; |
1971 | dirty = true; |
1972 | } |
1973 | |
1974 | if (dirty) |
1975 | { |
1976 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
1977 | |
1978 | InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0, |
1979 | InvalidOid, is_internal); |
1980 | } |
1981 | |
1982 | heap_freetuple(indexTuple); |
1983 | table_close(pg_index, RowExclusiveLock); |
1984 | } |
1985 | |
1986 | return myself; |
1987 | } |
1988 | |
1989 | /* |
1990 | * index_drop |
1991 | * |
1992 | * NOTE: this routine should now only be called through performDeletion(), |
1993 | * else associated dependencies won't be cleaned up. |
1994 | * |
1995 | * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is |
1996 | * false but concurrent_lock_mode is true, then do a normal DROP INDEX but |
1997 | * take a lock for CONCURRENTLY processing. That is used as part of REINDEX |
1998 | * CONCURRENTLY. |
1999 | */ |
2000 | void |
2001 | index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode) |
2002 | { |
2003 | Oid heapId; |
2004 | Relation userHeapRelation; |
2005 | Relation userIndexRelation; |
2006 | Relation indexRelation; |
2007 | HeapTuple tuple; |
2008 | bool hasexprs; |
2009 | LockRelId heaprelid, |
2010 | indexrelid; |
2011 | LOCKTAG heaplocktag; |
2012 | LOCKMODE lockmode; |
2013 | |
2014 | /* |
2015 | * To drop an index safely, we must grab exclusive lock on its parent |
2016 | * table. Exclusive lock on the index alone is insufficient because |
2017 | * another backend might be about to execute a query on the parent table. |
2018 | * If it relies on a previously cached list of index OIDs, then it could |
2019 | * attempt to access the just-dropped index. We must therefore take a |
2020 | * table lock strong enough to prevent all queries on the table from |
2021 | * proceeding until we commit and send out a shared-cache-inval notice |
2022 | * that will make them update their index lists. |
2023 | * |
2024 | * In the concurrent case we avoid this requirement by disabling index use |
2025 | * in multiple steps and waiting out any transactions that might be using |
2026 | * the index, so we don't need exclusive lock on the parent table. Instead |
2027 | * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't |
2028 | * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get |
2029 | * AccessExclusiveLock on the index below, once we're sure nobody else is |
2030 | * using it.) |
2031 | */ |
2032 | heapId = IndexGetRelation(indexId, false); |
2033 | lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock; |
2034 | userHeapRelation = table_open(heapId, lockmode); |
2035 | userIndexRelation = index_open(indexId, lockmode); |
2036 | |
2037 | /* |
2038 | * We might still have open queries using it in our own session, which the |
2039 | * above locking won't prevent, so test explicitly. |
2040 | */ |
2041 | CheckTableNotInUse(userIndexRelation, "DROP INDEX" ); |
2042 | |
2043 | /* |
2044 | * Drop Index Concurrently is more or less the reverse process of Create |
2045 | * Index Concurrently. |
2046 | * |
2047 | * First we unset indisvalid so queries starting afterwards don't use the |
2048 | * index to answer queries anymore. We have to keep indisready = true so |
2049 | * transactions that are still scanning the index can continue to see |
2050 | * valid index contents. For instance, if they are using READ COMMITTED |
2051 | * mode, and another transaction makes changes and commits, they need to |
2052 | * see those new tuples in the index. |
2053 | * |
2054 | * After all transactions that could possibly have used the index for |
2055 | * queries end, we can unset indisready and indislive, then wait till |
2056 | * nobody could be touching it anymore. (Note: we need indislive because |
2057 | * this state must be distinct from the initial state during CREATE INDEX |
2058 | * CONCURRENTLY, which has indislive true while indisready and indisvalid |
2059 | * are false. That's because in that state, transactions must examine the |
2060 | * index for HOT-safety decisions, while in this state we don't want them |
2061 | * to open it at all.) |
2062 | * |
2063 | * Since all predicate locks on the index are about to be made invalid, we |
2064 | * must promote them to predicate locks on the heap. In the |
2065 | * non-concurrent case we can just do that now. In the concurrent case |
2066 | * it's a bit trickier. The predicate locks must be moved when there are |
2067 | * no index scans in progress on the index and no more can subsequently |
2068 | * start, so that no new predicate locks can be made on the index. Also, |
2069 | * they must be moved before heap inserts stop maintaining the index, else |
2070 | * the conflict with the predicate lock on the index gap could be missed |
2071 | * before the lock on the heap relation is in place to detect a conflict |
2072 | * based on the heap tuple insert. |
2073 | */ |
2074 | if (concurrent) |
2075 | { |
2076 | /* |
2077 | * We must commit our transaction in order to make the first pg_index |
2078 | * state update visible to other sessions. If the DROP machinery has |
2079 | * already performed any other actions (removal of other objects, |
2080 | * pg_depend entries, etc), the commit would make those actions |
2081 | * permanent, which would leave us with inconsistent catalog state if |
2082 | * we fail partway through the following sequence. Since DROP INDEX |
2083 | * CONCURRENTLY is restricted to dropping just one index that has no |
2084 | * dependencies, we should get here before anything's been done --- |
2085 | * but let's check that to be sure. We can verify that the current |
2086 | * transaction has not executed any transactional updates by checking |
2087 | * that no XID has been assigned. |
2088 | */ |
2089 | if (GetTopTransactionIdIfAny() != InvalidTransactionId) |
2090 | ereport(ERROR, |
2091 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
2092 | errmsg("DROP INDEX CONCURRENTLY must be first action in transaction" ))); |
2093 | |
2094 | /* |
2095 | * Mark index invalid by updating its pg_index entry |
2096 | */ |
2097 | index_set_state_flags(indexId, INDEX_DROP_CLEAR_VALID); |
2098 | |
2099 | /* |
2100 | * Invalidate the relcache for the table, so that after this commit |
2101 | * all sessions will refresh any cached plans that might reference the |
2102 | * index. |
2103 | */ |
2104 | CacheInvalidateRelcache(userHeapRelation); |
2105 | |
2106 | /* save lockrelid and locktag for below, then close but keep locks */ |
2107 | heaprelid = userHeapRelation->rd_lockInfo.lockRelId; |
2108 | SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId); |
2109 | indexrelid = userIndexRelation->rd_lockInfo.lockRelId; |
2110 | |
2111 | table_close(userHeapRelation, NoLock); |
2112 | index_close(userIndexRelation, NoLock); |
2113 | |
2114 | /* |
2115 | * We must commit our current transaction so that the indisvalid |
2116 | * update becomes visible to other transactions; then start another. |
2117 | * Note that any previously-built data structures are lost in the |
2118 | * commit. The only data we keep past here are the relation IDs. |
2119 | * |
2120 | * Before committing, get a session-level lock on the table, to ensure |
2121 | * that neither it nor the index can be dropped before we finish. This |
2122 | * cannot block, even if someone else is waiting for access, because |
2123 | * we already have the same lock within our transaction. |
2124 | */ |
2125 | LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock); |
2126 | LockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock); |
2127 | |
2128 | PopActiveSnapshot(); |
2129 | CommitTransactionCommand(); |
2130 | StartTransactionCommand(); |
2131 | |
2132 | /* |
2133 | * Now we must wait until no running transaction could be using the |
2134 | * index for a query. Use AccessExclusiveLock here to check for |
2135 | * running transactions that hold locks of any kind on the table. Note |
2136 | * we do not need to worry about xacts that open the table for reading |
2137 | * after this point; they will see the index as invalid when they open |
2138 | * the relation. |
2139 | * |
2140 | * Note: the reason we use actual lock acquisition here, rather than |
2141 | * just checking the ProcArray and sleeping, is that deadlock is |
2142 | * possible if one of the transactions in question is blocked trying |
2143 | * to acquire an exclusive lock on our table. The lock code will |
2144 | * detect deadlock and error out properly. |
2145 | */ |
2146 | WaitForLockers(heaplocktag, AccessExclusiveLock, true); |
2147 | |
2148 | /* Finish invalidation of index and mark it as dead */ |
2149 | index_concurrently_set_dead(heapId, indexId); |
2150 | |
2151 | /* |
2152 | * Again, commit the transaction to make the pg_index update visible |
2153 | * to other sessions. |
2154 | */ |
2155 | CommitTransactionCommand(); |
2156 | StartTransactionCommand(); |
2157 | |
2158 | /* |
2159 | * Wait till every transaction that saw the old index state has |
2160 | * finished. |
2161 | */ |
2162 | WaitForLockers(heaplocktag, AccessExclusiveLock, true); |
2163 | |
2164 | /* |
2165 | * Re-open relations to allow us to complete our actions. |
2166 | * |
2167 | * At this point, nothing should be accessing the index, but lets |
2168 | * leave nothing to chance and grab AccessExclusiveLock on the index |
2169 | * before the physical deletion. |
2170 | */ |
2171 | userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
2172 | userIndexRelation = index_open(indexId, AccessExclusiveLock); |
2173 | } |
2174 | else |
2175 | { |
2176 | /* Not concurrent, so just transfer predicate locks and we're good */ |
2177 | TransferPredicateLocksToHeapRelation(userIndexRelation); |
2178 | } |
2179 | |
2180 | /* |
2181 | * Schedule physical removal of the files (if any) |
2182 | */ |
2183 | if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX) |
2184 | RelationDropStorage(userIndexRelation); |
2185 | |
2186 | /* |
2187 | * Close and flush the index's relcache entry, to ensure relcache doesn't |
2188 | * try to rebuild it while we're deleting catalog entries. We keep the |
2189 | * lock though. |
2190 | */ |
2191 | index_close(userIndexRelation, NoLock); |
2192 | |
2193 | RelationForgetRelation(indexId); |
2194 | |
2195 | /* |
2196 | * fix INDEX relation, and check for expressional index |
2197 | */ |
2198 | indexRelation = table_open(IndexRelationId, RowExclusiveLock); |
2199 | |
2200 | tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId)); |
2201 | if (!HeapTupleIsValid(tuple)) |
2202 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
2203 | |
2204 | hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs, |
2205 | RelationGetDescr(indexRelation)); |
2206 | |
2207 | CatalogTupleDelete(indexRelation, &tuple->t_self); |
2208 | |
2209 | ReleaseSysCache(tuple); |
2210 | table_close(indexRelation, RowExclusiveLock); |
2211 | |
2212 | /* |
2213 | * if it has any expression columns, we might have stored statistics about |
2214 | * them. |
2215 | */ |
2216 | if (hasexprs) |
2217 | RemoveStatistics(indexId, 0); |
2218 | |
2219 | /* |
2220 | * fix ATTRIBUTE relation |
2221 | */ |
2222 | DeleteAttributeTuples(indexId); |
2223 | |
2224 | /* |
2225 | * fix RELATION relation |
2226 | */ |
2227 | DeleteRelationTuple(indexId); |
2228 | |
2229 | /* |
2230 | * fix INHERITS relation |
2231 | */ |
2232 | DeleteInheritsTuple(indexId, InvalidOid); |
2233 | |
2234 | /* |
2235 | * We are presently too lazy to attempt to compute the new correct value |
2236 | * of relhasindex (the next VACUUM will fix it if necessary). So there is |
2237 | * no need to update the pg_class tuple for the owning relation. But we |
2238 | * must send out a shared-cache-inval notice on the owning relation to |
2239 | * ensure other backends update their relcache lists of indexes. (In the |
2240 | * concurrent case, this is redundant but harmless.) |
2241 | */ |
2242 | CacheInvalidateRelcache(userHeapRelation); |
2243 | |
2244 | /* |
2245 | * Close owning rel, but keep lock |
2246 | */ |
2247 | table_close(userHeapRelation, NoLock); |
2248 | |
2249 | /* |
2250 | * Release the session locks before we go. |
2251 | */ |
2252 | if (concurrent) |
2253 | { |
2254 | UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock); |
2255 | UnlockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock); |
2256 | } |
2257 | } |
2258 | |
2259 | /* ---------------------------------------------------------------- |
2260 | * index_build support |
2261 | * ---------------------------------------------------------------- |
2262 | */ |
2263 | |
2264 | /* ---------------- |
2265 | * BuildIndexInfo |
2266 | * Construct an IndexInfo record for an open index |
2267 | * |
2268 | * IndexInfo stores the information about the index that's needed by |
2269 | * FormIndexDatum, which is used for both index_build() and later insertion |
2270 | * of individual index tuples. Normally we build an IndexInfo for an index |
2271 | * just once per command, and then use it for (potentially) many tuples. |
2272 | * ---------------- |
2273 | */ |
2274 | IndexInfo * |
2275 | BuildIndexInfo(Relation index) |
2276 | { |
2277 | IndexInfo *ii = makeNode(IndexInfo); |
2278 | Form_pg_index indexStruct = index->rd_index; |
2279 | int i; |
2280 | int numAtts; |
2281 | |
2282 | /* check the number of keys, and copy attr numbers into the IndexInfo */ |
2283 | numAtts = indexStruct->indnatts; |
2284 | if (numAtts < 1 || numAtts > INDEX_MAX_KEYS) |
2285 | elog(ERROR, "invalid indnatts %d for index %u" , |
2286 | numAtts, RelationGetRelid(index)); |
2287 | ii->ii_NumIndexAttrs = numAtts; |
2288 | ii->ii_NumIndexKeyAttrs = indexStruct->indnkeyatts; |
2289 | Assert(ii->ii_NumIndexKeyAttrs != 0); |
2290 | Assert(ii->ii_NumIndexKeyAttrs <= ii->ii_NumIndexAttrs); |
2291 | |
2292 | for (i = 0; i < numAtts; i++) |
2293 | ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i]; |
2294 | |
2295 | /* fetch any expressions needed for expressional indexes */ |
2296 | ii->ii_Expressions = RelationGetIndexExpressions(index); |
2297 | ii->ii_ExpressionsState = NIL; |
2298 | |
2299 | /* fetch index predicate if any */ |
2300 | ii->ii_Predicate = RelationGetIndexPredicate(index); |
2301 | ii->ii_PredicateState = NULL; |
2302 | |
2303 | /* fetch exclusion constraint info if any */ |
2304 | if (indexStruct->indisexclusion) |
2305 | { |
2306 | RelationGetExclusionInfo(index, |
2307 | &ii->ii_ExclusionOps, |
2308 | &ii->ii_ExclusionProcs, |
2309 | &ii->ii_ExclusionStrats); |
2310 | } |
2311 | else |
2312 | { |
2313 | ii->ii_ExclusionOps = NULL; |
2314 | ii->ii_ExclusionProcs = NULL; |
2315 | ii->ii_ExclusionStrats = NULL; |
2316 | } |
2317 | |
2318 | /* other info */ |
2319 | ii->ii_Unique = indexStruct->indisunique; |
2320 | ii->ii_ReadyForInserts = indexStruct->indisready; |
2321 | /* assume not doing speculative insertion for now */ |
2322 | ii->ii_UniqueOps = NULL; |
2323 | ii->ii_UniqueProcs = NULL; |
2324 | ii->ii_UniqueStrats = NULL; |
2325 | |
2326 | /* initialize index-build state to default */ |
2327 | ii->ii_Concurrent = false; |
2328 | ii->ii_BrokenHotChain = false; |
2329 | ii->ii_ParallelWorkers = 0; |
2330 | |
2331 | /* set up for possible use by index AM */ |
2332 | ii->ii_Am = index->rd_rel->relam; |
2333 | ii->ii_AmCache = NULL; |
2334 | ii->ii_Context = CurrentMemoryContext; |
2335 | |
2336 | return ii; |
2337 | } |
2338 | |
2339 | /* |
2340 | * CompareIndexInfo |
2341 | * Return whether the properties of two indexes (in different tables) |
2342 | * indicate that they have the "same" definitions. |
2343 | * |
2344 | * Note: passing collations and opfamilies separately is a kludge. Adding |
2345 | * them to IndexInfo may result in better coding here and elsewhere. |
2346 | * |
2347 | * Use convert_tuples_by_name_map(index2, index1) to build the attmap. |
2348 | */ |
2349 | bool |
2350 | CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, |
2351 | Oid *collations1, Oid *collations2, |
2352 | Oid *opfamilies1, Oid *opfamilies2, |
2353 | AttrNumber *attmap, int maplen) |
2354 | { |
2355 | int i; |
2356 | |
2357 | if (info1->ii_Unique != info2->ii_Unique) |
2358 | return false; |
2359 | |
2360 | /* indexes are only equivalent if they have the same access method */ |
2361 | if (info1->ii_Am != info2->ii_Am) |
2362 | return false; |
2363 | |
2364 | /* and same number of attributes */ |
2365 | if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs) |
2366 | return false; |
2367 | |
2368 | /* and same number of key attributes */ |
2369 | if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs) |
2370 | return false; |
2371 | |
2372 | /* |
2373 | * and columns match through the attribute map (actual attribute numbers |
2374 | * might differ!) Note that this implies that index columns that are |
2375 | * expressions appear in the same positions. We will next compare the |
2376 | * expressions themselves. |
2377 | */ |
2378 | for (i = 0; i < info1->ii_NumIndexAttrs; i++) |
2379 | { |
2380 | if (maplen < info2->ii_IndexAttrNumbers[i]) |
2381 | elog(ERROR, "incorrect attribute map" ); |
2382 | |
2383 | /* ignore expressions at this stage */ |
2384 | if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) && |
2385 | (attmap[info2->ii_IndexAttrNumbers[i] - 1] != |
2386 | info1->ii_IndexAttrNumbers[i])) |
2387 | return false; |
2388 | |
2389 | /* collation and opfamily is not valid for including columns */ |
2390 | if (i >= info1->ii_NumIndexKeyAttrs) |
2391 | continue; |
2392 | |
2393 | if (collations1[i] != collations2[i]) |
2394 | return false; |
2395 | if (opfamilies1[i] != opfamilies2[i]) |
2396 | return false; |
2397 | } |
2398 | |
2399 | /* |
2400 | * For expression indexes: either both are expression indexes, or neither |
2401 | * is; if they are, make sure the expressions match. |
2402 | */ |
2403 | if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL)) |
2404 | return false; |
2405 | if (info1->ii_Expressions != NIL) |
2406 | { |
2407 | bool found_whole_row; |
2408 | Node *mapped; |
2409 | |
2410 | mapped = map_variable_attnos((Node *) info2->ii_Expressions, |
2411 | 1, 0, attmap, maplen, |
2412 | InvalidOid, &found_whole_row); |
2413 | if (found_whole_row) |
2414 | { |
2415 | /* |
2416 | * we could throw an error here, but seems out of scope for this |
2417 | * routine. |
2418 | */ |
2419 | return false; |
2420 | } |
2421 | |
2422 | if (!equal(info1->ii_Expressions, mapped)) |
2423 | return false; |
2424 | } |
2425 | |
2426 | /* Partial index predicates must be identical, if they exist */ |
2427 | if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL)) |
2428 | return false; |
2429 | if (info1->ii_Predicate != NULL) |
2430 | { |
2431 | bool found_whole_row; |
2432 | Node *mapped; |
2433 | |
2434 | mapped = map_variable_attnos((Node *) info2->ii_Predicate, |
2435 | 1, 0, attmap, maplen, |
2436 | InvalidOid, &found_whole_row); |
2437 | if (found_whole_row) |
2438 | { |
2439 | /* |
2440 | * we could throw an error here, but seems out of scope for this |
2441 | * routine. |
2442 | */ |
2443 | return false; |
2444 | } |
2445 | if (!equal(info1->ii_Predicate, mapped)) |
2446 | return false; |
2447 | } |
2448 | |
2449 | /* No support currently for comparing exclusion indexes. */ |
2450 | if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL) |
2451 | return false; |
2452 | |
2453 | return true; |
2454 | } |
2455 | |
2456 | /* ---------------- |
2457 | * BuildSpeculativeIndexInfo |
2458 | * Add extra state to IndexInfo record |
2459 | * |
2460 | * For unique indexes, we usually don't want to add info to the IndexInfo for |
2461 | * checking uniqueness, since the B-Tree AM handles that directly. However, |
2462 | * in the case of speculative insertion, additional support is required. |
2463 | * |
2464 | * Do this processing here rather than in BuildIndexInfo() to not incur the |
2465 | * overhead in the common non-speculative cases. |
2466 | * ---------------- |
2467 | */ |
2468 | void |
2469 | BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii) |
2470 | { |
2471 | int indnkeyatts; |
2472 | int i; |
2473 | |
2474 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index); |
2475 | |
2476 | /* |
2477 | * fetch info for checking unique indexes |
2478 | */ |
2479 | Assert(ii->ii_Unique); |
2480 | |
2481 | if (index->rd_rel->relam != BTREE_AM_OID) |
2482 | elog(ERROR, "unexpected non-btree speculative unique index" ); |
2483 | |
2484 | ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
2485 | ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
2486 | ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts); |
2487 | |
2488 | /* |
2489 | * We have to look up the operator's strategy number. This provides a |
2490 | * cross-check that the operator does match the index. |
2491 | */ |
2492 | /* We need the func OIDs and strategy numbers too */ |
2493 | for (i = 0; i < indnkeyatts; i++) |
2494 | { |
2495 | ii->ii_UniqueStrats[i] = BTEqualStrategyNumber; |
2496 | ii->ii_UniqueOps[i] = |
2497 | get_opfamily_member(index->rd_opfamily[i], |
2498 | index->rd_opcintype[i], |
2499 | index->rd_opcintype[i], |
2500 | ii->ii_UniqueStrats[i]); |
2501 | if (!OidIsValid(ii->ii_UniqueOps[i])) |
2502 | elog(ERROR, "missing operator %d(%u,%u) in opfamily %u" , |
2503 | ii->ii_UniqueStrats[i], index->rd_opcintype[i], |
2504 | index->rd_opcintype[i], index->rd_opfamily[i]); |
2505 | ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]); |
2506 | } |
2507 | } |
2508 | |
2509 | /* ---------------- |
2510 | * FormIndexDatum |
2511 | * Construct values[] and isnull[] arrays for a new index tuple. |
2512 | * |
2513 | * indexInfo Info about the index |
2514 | * slot Heap tuple for which we must prepare an index entry |
2515 | * estate executor state for evaluating any index expressions |
2516 | * values Array of index Datums (output area) |
2517 | * isnull Array of is-null indicators (output area) |
2518 | * |
2519 | * When there are no index expressions, estate may be NULL. Otherwise it |
2520 | * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr |
2521 | * context must point to the heap tuple passed in. |
2522 | * |
2523 | * Notice we don't actually call index_form_tuple() here; we just prepare |
2524 | * its input arrays values[] and isnull[]. This is because the index AM |
2525 | * may wish to alter the data before storage. |
2526 | * ---------------- |
2527 | */ |
2528 | void |
2529 | FormIndexDatum(IndexInfo *indexInfo, |
2530 | TupleTableSlot *slot, |
2531 | EState *estate, |
2532 | Datum *values, |
2533 | bool *isnull) |
2534 | { |
2535 | ListCell *indexpr_item; |
2536 | int i; |
2537 | |
2538 | if (indexInfo->ii_Expressions != NIL && |
2539 | indexInfo->ii_ExpressionsState == NIL) |
2540 | { |
2541 | /* First time through, set up expression evaluation state */ |
2542 | indexInfo->ii_ExpressionsState = |
2543 | ExecPrepareExprList(indexInfo->ii_Expressions, estate); |
2544 | /* Check caller has set up context correctly */ |
2545 | Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot); |
2546 | } |
2547 | indexpr_item = list_head(indexInfo->ii_ExpressionsState); |
2548 | |
2549 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
2550 | { |
2551 | int keycol = indexInfo->ii_IndexAttrNumbers[i]; |
2552 | Datum iDatum; |
2553 | bool isNull; |
2554 | |
2555 | if (keycol < 0) |
2556 | iDatum = slot_getsysattr(slot, keycol, &isNull); |
2557 | else if (keycol != 0) |
2558 | { |
2559 | /* |
2560 | * Plain index column; get the value we need directly from the |
2561 | * heap tuple. |
2562 | */ |
2563 | iDatum = slot_getattr(slot, keycol, &isNull); |
2564 | } |
2565 | else |
2566 | { |
2567 | /* |
2568 | * Index expression --- need to evaluate it. |
2569 | */ |
2570 | if (indexpr_item == NULL) |
2571 | elog(ERROR, "wrong number of index expressions" ); |
2572 | iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item), |
2573 | GetPerTupleExprContext(estate), |
2574 | &isNull); |
2575 | indexpr_item = lnext(indexpr_item); |
2576 | } |
2577 | values[i] = iDatum; |
2578 | isnull[i] = isNull; |
2579 | } |
2580 | |
2581 | if (indexpr_item != NULL) |
2582 | elog(ERROR, "wrong number of index expressions" ); |
2583 | } |
2584 | |
2585 | |
2586 | /* |
2587 | * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX |
2588 | * |
2589 | * This routine updates the pg_class row of either an index or its parent |
2590 | * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed |
2591 | * to ensure we can do all the necessary work in just one update. |
2592 | * |
2593 | * hasindex: set relhasindex to this value |
2594 | * reltuples: if >= 0, set reltuples to this value; else no change |
2595 | * |
2596 | * If reltuples >= 0, relpages and relallvisible are also updated (using |
2597 | * RelationGetNumberOfBlocks() and visibilitymap_count()). |
2598 | * |
2599 | * NOTE: an important side-effect of this operation is that an SI invalidation |
2600 | * message is sent out to all backends --- including me --- causing relcache |
2601 | * entries to be flushed or updated with the new data. This must happen even |
2602 | * if we find that no change is needed in the pg_class row. When updating |
2603 | * a heap entry, this ensures that other backends find out about the new |
2604 | * index. When updating an index, it's important because some index AMs |
2605 | * expect a relcache flush to occur after REINDEX. |
2606 | */ |
2607 | static void |
2608 | index_update_stats(Relation rel, |
2609 | bool hasindex, |
2610 | double reltuples) |
2611 | { |
2612 | Oid relid = RelationGetRelid(rel); |
2613 | Relation pg_class; |
2614 | HeapTuple tuple; |
2615 | Form_pg_class rd_rel; |
2616 | bool dirty; |
2617 | |
2618 | /* |
2619 | * We always update the pg_class row using a non-transactional, |
2620 | * overwrite-in-place update. There are several reasons for this: |
2621 | * |
2622 | * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work. |
2623 | * |
2624 | * 2. We could be reindexing pg_class itself, in which case we can't move |
2625 | * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might |
2626 | * not know about all the indexes yet (see reindex_relation). |
2627 | * |
2628 | * 3. Because we execute CREATE INDEX with just share lock on the parent |
2629 | * rel (to allow concurrent index creations), an ordinary update could |
2630 | * suffer a tuple-concurrently-updated failure against another CREATE |
2631 | * INDEX committing at about the same time. We can avoid that by having |
2632 | * them both do nontransactional updates (we assume they will both be |
2633 | * trying to change the pg_class row to the same thing, so it doesn't |
2634 | * matter which goes first). |
2635 | * |
2636 | * It is safe to use a non-transactional update even though our |
2637 | * transaction could still fail before committing. Setting relhasindex |
2638 | * true is safe even if there are no indexes (VACUUM will eventually fix |
2639 | * it). And of course the new relpages and reltuples counts are correct |
2640 | * regardless. However, we don't want to change relpages (or |
2641 | * relallvisible) if the caller isn't providing an updated reltuples |
2642 | * count, because that would bollix the reltuples/relpages ratio which is |
2643 | * what's really important. |
2644 | */ |
2645 | |
2646 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
2647 | |
2648 | /* |
2649 | * Make a copy of the tuple to update. Normally we use the syscache, but |
2650 | * we can't rely on that during bootstrap or while reindexing pg_class |
2651 | * itself. |
2652 | */ |
2653 | if (IsBootstrapProcessingMode() || |
2654 | ReindexIsProcessingHeap(RelationRelationId)) |
2655 | { |
2656 | /* don't assume syscache will work */ |
2657 | TableScanDesc pg_class_scan; |
2658 | ScanKeyData key[1]; |
2659 | |
2660 | ScanKeyInit(&key[0], |
2661 | Anum_pg_class_oid, |
2662 | BTEqualStrategyNumber, F_OIDEQ, |
2663 | ObjectIdGetDatum(relid)); |
2664 | |
2665 | pg_class_scan = table_beginscan_catalog(pg_class, 1, key); |
2666 | tuple = heap_getnext(pg_class_scan, ForwardScanDirection); |
2667 | tuple = heap_copytuple(tuple); |
2668 | table_endscan(pg_class_scan); |
2669 | } |
2670 | else |
2671 | { |
2672 | /* normal case, use syscache */ |
2673 | tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
2674 | } |
2675 | |
2676 | if (!HeapTupleIsValid(tuple)) |
2677 | elog(ERROR, "could not find tuple for relation %u" , relid); |
2678 | rd_rel = (Form_pg_class) GETSTRUCT(tuple); |
2679 | |
2680 | /* Should this be a more comprehensive test? */ |
2681 | Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX); |
2682 | |
2683 | /* Apply required updates, if any, to copied tuple */ |
2684 | |
2685 | dirty = false; |
2686 | if (rd_rel->relhasindex != hasindex) |
2687 | { |
2688 | rd_rel->relhasindex = hasindex; |
2689 | dirty = true; |
2690 | } |
2691 | |
2692 | if (reltuples >= 0) |
2693 | { |
2694 | BlockNumber relpages = RelationGetNumberOfBlocks(rel); |
2695 | BlockNumber relallvisible; |
2696 | |
2697 | if (rd_rel->relkind != RELKIND_INDEX) |
2698 | visibilitymap_count(rel, &relallvisible, NULL); |
2699 | else /* don't bother for indexes */ |
2700 | relallvisible = 0; |
2701 | |
2702 | if (rd_rel->relpages != (int32) relpages) |
2703 | { |
2704 | rd_rel->relpages = (int32) relpages; |
2705 | dirty = true; |
2706 | } |
2707 | if (rd_rel->reltuples != (float4) reltuples) |
2708 | { |
2709 | rd_rel->reltuples = (float4) reltuples; |
2710 | dirty = true; |
2711 | } |
2712 | if (rd_rel->relallvisible != (int32) relallvisible) |
2713 | { |
2714 | rd_rel->relallvisible = (int32) relallvisible; |
2715 | dirty = true; |
2716 | } |
2717 | } |
2718 | |
2719 | /* |
2720 | * If anything changed, write out the tuple |
2721 | */ |
2722 | if (dirty) |
2723 | { |
2724 | heap_inplace_update(pg_class, tuple); |
2725 | /* the above sends a cache inval message */ |
2726 | } |
2727 | else |
2728 | { |
2729 | /* no need to change tuple, but force relcache inval anyway */ |
2730 | CacheInvalidateRelcacheByTuple(tuple); |
2731 | } |
2732 | |
2733 | heap_freetuple(tuple); |
2734 | |
2735 | table_close(pg_class, RowExclusiveLock); |
2736 | } |
2737 | |
2738 | |
2739 | /* |
2740 | * index_build - invoke access-method-specific index build procedure |
2741 | * |
2742 | * On entry, the index's catalog entries are valid, and its physical disk |
2743 | * file has been created but is empty. We call the AM-specific build |
2744 | * procedure to fill in the index contents. We then update the pg_class |
2745 | * entries of the index and heap relation as needed, using statistics |
2746 | * returned by ambuild as well as data passed by the caller. |
2747 | * |
2748 | * isreindex indicates we are recreating a previously-existing index. |
2749 | * parallel indicates if parallelism may be useful. |
2750 | * |
2751 | * Note: before Postgres 8.2, the passed-in heap and index Relations |
2752 | * were automatically closed by this routine. This is no longer the case. |
2753 | * The caller opened 'em, and the caller should close 'em. |
2754 | */ |
2755 | void |
2756 | index_build(Relation heapRelation, |
2757 | Relation indexRelation, |
2758 | IndexInfo *indexInfo, |
2759 | bool isreindex, |
2760 | bool parallel) |
2761 | { |
2762 | IndexBuildResult *stats; |
2763 | Oid save_userid; |
2764 | int save_sec_context; |
2765 | int save_nestlevel; |
2766 | |
2767 | /* |
2768 | * sanity checks |
2769 | */ |
2770 | Assert(RelationIsValid(indexRelation)); |
2771 | Assert(PointerIsValid(indexRelation->rd_indam)); |
2772 | Assert(PointerIsValid(indexRelation->rd_indam->ambuild)); |
2773 | Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty)); |
2774 | |
2775 | /* |
2776 | * Determine worker process details for parallel CREATE INDEX. Currently, |
2777 | * only btree has support for parallel builds. |
2778 | * |
2779 | * Note that planner considers parallel safety for us. |
2780 | */ |
2781 | if (parallel && IsNormalProcessingMode() && |
2782 | indexRelation->rd_rel->relam == BTREE_AM_OID) |
2783 | indexInfo->ii_ParallelWorkers = |
2784 | plan_create_index_workers(RelationGetRelid(heapRelation), |
2785 | RelationGetRelid(indexRelation)); |
2786 | |
2787 | if (indexInfo->ii_ParallelWorkers == 0) |
2788 | ereport(DEBUG1, |
2789 | (errmsg("building index \"%s\" on table \"%s\" serially" , |
2790 | RelationGetRelationName(indexRelation), |
2791 | RelationGetRelationName(heapRelation)))); |
2792 | else |
2793 | ereport(DEBUG1, |
2794 | (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker" , |
2795 | "building index \"%s\" on table \"%s\" with request for %d parallel workers" , |
2796 | indexInfo->ii_ParallelWorkers, |
2797 | RelationGetRelationName(indexRelation), |
2798 | RelationGetRelationName(heapRelation), |
2799 | indexInfo->ii_ParallelWorkers))); |
2800 | |
2801 | /* |
2802 | * Switch to the table owner's userid, so that any index functions are run |
2803 | * as that user. Also lock down security-restricted operations and |
2804 | * arrange to make GUC variable changes local to this command. |
2805 | */ |
2806 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
2807 | SetUserIdAndSecContext(heapRelation->rd_rel->relowner, |
2808 | save_sec_context | SECURITY_RESTRICTED_OPERATION); |
2809 | save_nestlevel = NewGUCNestLevel(); |
2810 | |
2811 | /* Set up initial progress report status */ |
2812 | { |
2813 | const int index[] = { |
2814 | PROGRESS_CREATEIDX_PHASE, |
2815 | PROGRESS_CREATEIDX_SUBPHASE, |
2816 | PROGRESS_CREATEIDX_TUPLES_DONE, |
2817 | PROGRESS_CREATEIDX_TUPLES_TOTAL, |
2818 | PROGRESS_SCAN_BLOCKS_DONE, |
2819 | PROGRESS_SCAN_BLOCKS_TOTAL |
2820 | }; |
2821 | const int64 val[] = { |
2822 | PROGRESS_CREATEIDX_PHASE_BUILD, |
2823 | PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE, |
2824 | 0, 0, 0, 0 |
2825 | }; |
2826 | |
2827 | pgstat_progress_update_multi_param(6, index, val); |
2828 | } |
2829 | |
2830 | /* |
2831 | * Call the access method's build procedure |
2832 | */ |
2833 | stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation, |
2834 | indexInfo); |
2835 | Assert(PointerIsValid(stats)); |
2836 | |
2837 | /* |
2838 | * If this is an unlogged index, we may need to write out an init fork for |
2839 | * it -- but we must first check whether one already exists. If, for |
2840 | * example, an unlogged relation is truncated in the transaction that |
2841 | * created it, or truncated twice in a subsequent transaction, the |
2842 | * relfilenode won't change, and nothing needs to be done here. |
2843 | */ |
2844 | if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED && |
2845 | !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM)) |
2846 | { |
2847 | RelationOpenSmgr(indexRelation); |
2848 | smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false); |
2849 | indexRelation->rd_indam->ambuildempty(indexRelation); |
2850 | } |
2851 | |
2852 | /* |
2853 | * If we found any potentially broken HOT chains, mark the index as not |
2854 | * being usable until the current transaction is below the event horizon. |
2855 | * See src/backend/access/heap/README.HOT for discussion. Also set this |
2856 | * if early pruning/vacuuming is enabled for the heap relation. While it |
2857 | * might become safe to use the index earlier based on actual cleanup |
2858 | * activity and other active transactions, the test for that would be much |
2859 | * more complex and would require some form of blocking, so keep it simple |
2860 | * and fast by just using the current transaction. |
2861 | * |
2862 | * However, when reindexing an existing index, we should do nothing here. |
2863 | * Any HOT chains that are broken with respect to the index must predate |
2864 | * the index's original creation, so there is no need to change the |
2865 | * index's usability horizon. Moreover, we *must not* try to change the |
2866 | * index's pg_index entry while reindexing pg_index itself, and this |
2867 | * optimization nicely prevents that. The more complex rules needed for a |
2868 | * reindex are handled separately after this function returns. |
2869 | * |
2870 | * We also need not set indcheckxmin during a concurrent index build, |
2871 | * because we won't set indisvalid true until all transactions that care |
2872 | * about the broken HOT chains or early pruning/vacuuming are gone. |
2873 | * |
2874 | * Therefore, this code path can only be taken during non-concurrent |
2875 | * CREATE INDEX. Thus the fact that heap_update will set the pg_index |
2876 | * tuple's xmin doesn't matter, because that tuple was created in the |
2877 | * current transaction anyway. That also means we don't need to worry |
2878 | * about any concurrent readers of the tuple; no other transaction can see |
2879 | * it yet. |
2880 | */ |
2881 | if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) && |
2882 | !isreindex && |
2883 | !indexInfo->ii_Concurrent) |
2884 | { |
2885 | Oid indexId = RelationGetRelid(indexRelation); |
2886 | Relation pg_index; |
2887 | HeapTuple indexTuple; |
2888 | Form_pg_index indexForm; |
2889 | |
2890 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
2891 | |
2892 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
2893 | ObjectIdGetDatum(indexId)); |
2894 | if (!HeapTupleIsValid(indexTuple)) |
2895 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
2896 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
2897 | |
2898 | /* If it's a new index, indcheckxmin shouldn't be set ... */ |
2899 | Assert(!indexForm->indcheckxmin); |
2900 | |
2901 | indexForm->indcheckxmin = true; |
2902 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
2903 | |
2904 | heap_freetuple(indexTuple); |
2905 | table_close(pg_index, RowExclusiveLock); |
2906 | } |
2907 | |
2908 | /* |
2909 | * Update heap and index pg_class rows |
2910 | */ |
2911 | index_update_stats(heapRelation, |
2912 | true, |
2913 | stats->heap_tuples); |
2914 | |
2915 | index_update_stats(indexRelation, |
2916 | false, |
2917 | stats->index_tuples); |
2918 | |
2919 | /* Make the updated catalog row versions visible */ |
2920 | CommandCounterIncrement(); |
2921 | |
2922 | /* |
2923 | * If it's for an exclusion constraint, make a second pass over the heap |
2924 | * to verify that the constraint is satisfied. We must not do this until |
2925 | * the index is fully valid. (Broken HOT chains shouldn't matter, though; |
2926 | * see comments for IndexCheckExclusion.) |
2927 | */ |
2928 | if (indexInfo->ii_ExclusionOps != NULL) |
2929 | IndexCheckExclusion(heapRelation, indexRelation, indexInfo); |
2930 | |
2931 | /* Roll back any GUC changes executed by index functions */ |
2932 | AtEOXact_GUC(false, save_nestlevel); |
2933 | |
2934 | /* Restore userid and security context */ |
2935 | SetUserIdAndSecContext(save_userid, save_sec_context); |
2936 | } |
2937 | |
2938 | /* |
2939 | * IndexCheckExclusion - verify that a new exclusion constraint is satisfied |
2940 | * |
2941 | * When creating an exclusion constraint, we first build the index normally |
2942 | * and then rescan the heap to check for conflicts. We assume that we only |
2943 | * need to validate tuples that are live according to an up-to-date snapshot, |
2944 | * and that these were correctly indexed even in the presence of broken HOT |
2945 | * chains. This should be OK since we are holding at least ShareLock on the |
2946 | * table, meaning there can be no uncommitted updates from other transactions. |
2947 | * (Note: that wouldn't necessarily work for system catalogs, since many |
2948 | * operations release write lock early on the system catalogs.) |
2949 | */ |
2950 | static void |
2951 | IndexCheckExclusion(Relation heapRelation, |
2952 | Relation indexRelation, |
2953 | IndexInfo *indexInfo) |
2954 | { |
2955 | TableScanDesc scan; |
2956 | Datum values[INDEX_MAX_KEYS]; |
2957 | bool isnull[INDEX_MAX_KEYS]; |
2958 | ExprState *predicate; |
2959 | TupleTableSlot *slot; |
2960 | EState *estate; |
2961 | ExprContext *econtext; |
2962 | Snapshot snapshot; |
2963 | |
2964 | /* |
2965 | * If we are reindexing the target index, mark it as no longer being |
2966 | * reindexed, to forestall an Assert in index_beginscan when we try to use |
2967 | * the index for probes. This is OK because the index is now fully valid. |
2968 | */ |
2969 | if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation))) |
2970 | ResetReindexProcessing(); |
2971 | |
2972 | /* |
2973 | * Need an EState for evaluation of index expressions and partial-index |
2974 | * predicates. Also a slot to hold the current tuple. |
2975 | */ |
2976 | estate = CreateExecutorState(); |
2977 | econtext = GetPerTupleExprContext(estate); |
2978 | slot = table_slot_create(heapRelation, NULL); |
2979 | |
2980 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
2981 | econtext->ecxt_scantuple = slot; |
2982 | |
2983 | /* Set up execution state for predicate, if any. */ |
2984 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
2985 | |
2986 | /* |
2987 | * Scan all live tuples in the base relation. |
2988 | */ |
2989 | snapshot = RegisterSnapshot(GetLatestSnapshot()); |
2990 | scan = table_beginscan_strat(heapRelation, /* relation */ |
2991 | snapshot, /* snapshot */ |
2992 | 0, /* number of keys */ |
2993 | NULL, /* scan key */ |
2994 | true, /* buffer access strategy OK */ |
2995 | true); /* syncscan OK */ |
2996 | |
2997 | while (table_scan_getnextslot(scan, ForwardScanDirection, slot)) |
2998 | { |
2999 | CHECK_FOR_INTERRUPTS(); |
3000 | |
3001 | /* |
3002 | * In a partial index, ignore tuples that don't satisfy the predicate. |
3003 | */ |
3004 | if (predicate != NULL) |
3005 | { |
3006 | if (!ExecQual(predicate, econtext)) |
3007 | continue; |
3008 | } |
3009 | |
3010 | /* |
3011 | * Extract index column values, including computing expressions. |
3012 | */ |
3013 | FormIndexDatum(indexInfo, |
3014 | slot, |
3015 | estate, |
3016 | values, |
3017 | isnull); |
3018 | |
3019 | /* |
3020 | * Check that this tuple has no conflicts. |
3021 | */ |
3022 | check_exclusion_constraint(heapRelation, |
3023 | indexRelation, indexInfo, |
3024 | &(slot->tts_tid), values, isnull, |
3025 | estate, true); |
3026 | |
3027 | MemoryContextReset(econtext->ecxt_per_tuple_memory); |
3028 | } |
3029 | |
3030 | table_endscan(scan); |
3031 | UnregisterSnapshot(snapshot); |
3032 | |
3033 | ExecDropSingleTupleTableSlot(slot); |
3034 | |
3035 | FreeExecutorState(estate); |
3036 | |
3037 | /* These may have been pointing to the now-gone estate */ |
3038 | indexInfo->ii_ExpressionsState = NIL; |
3039 | indexInfo->ii_PredicateState = NULL; |
3040 | } |
3041 | |
3042 | |
3043 | /* |
3044 | * validate_index - support code for concurrent index builds |
3045 | * |
3046 | * We do a concurrent index build by first inserting the catalog entry for the |
3047 | * index via index_create(), marking it not indisready and not indisvalid. |
3048 | * Then we commit our transaction and start a new one, then we wait for all |
3049 | * transactions that could have been modifying the table to terminate. Now |
3050 | * we know that any subsequently-started transactions will see the index and |
3051 | * honor its constraints on HOT updates; so while existing HOT-chains might |
3052 | * be broken with respect to the index, no currently live tuple will have an |
3053 | * incompatible HOT update done to it. We now build the index normally via |
3054 | * index_build(), while holding a weak lock that allows concurrent |
3055 | * insert/update/delete. Also, we index only tuples that are valid |
3056 | * as of the start of the scan (see table_index_build_scan), whereas a normal |
3057 | * build takes care to include recently-dead tuples. This is OK because |
3058 | * we won't mark the index valid until all transactions that might be able |
3059 | * to see those tuples are gone. The reason for doing that is to avoid |
3060 | * bogus unique-index failures due to concurrent UPDATEs (we might see |
3061 | * different versions of the same row as being valid when we pass over them, |
3062 | * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that |
3063 | * does not contain any tuples added to the table while we built the index. |
3064 | * |
3065 | * Next, we mark the index "indisready" (but still not "indisvalid") and |
3066 | * commit the second transaction and start a third. Again we wait for all |
3067 | * transactions that could have been modifying the table to terminate. Now |
3068 | * we know that any subsequently-started transactions will see the index and |
3069 | * insert their new tuples into it. We then take a new reference snapshot |
3070 | * which is passed to validate_index(). Any tuples that are valid according |
3071 | * to this snap, but are not in the index, must be added to the index. |
3072 | * (Any tuples committed live after the snap will be inserted into the |
3073 | * index by their originating transaction. Any tuples committed dead before |
3074 | * the snap need not be indexed, because we will wait out all transactions |
3075 | * that might care about them before we mark the index valid.) |
3076 | * |
3077 | * validate_index() works by first gathering all the TIDs currently in the |
3078 | * index, using a bulkdelete callback that just stores the TIDs and doesn't |
3079 | * ever say "delete it". (This should be faster than a plain indexscan; |
3080 | * also, not all index AMs support full-index indexscan.) Then we sort the |
3081 | * TIDs, and finally scan the table doing a "merge join" against the TID list |
3082 | * to see which tuples are missing from the index. Thus we will ensure that |
3083 | * all tuples valid according to the reference snapshot are in the index. |
3084 | * |
3085 | * Building a unique index this way is tricky: we might try to insert a |
3086 | * tuple that is already dead or is in process of being deleted, and we |
3087 | * mustn't have a uniqueness failure against an updated version of the same |
3088 | * row. We could try to check the tuple to see if it's already dead and tell |
3089 | * index_insert() not to do the uniqueness check, but that still leaves us |
3090 | * with a race condition against an in-progress update. To handle that, |
3091 | * we expect the index AM to recheck liveness of the to-be-inserted tuple |
3092 | * before it declares a uniqueness error. |
3093 | * |
3094 | * After completing validate_index(), we wait until all transactions that |
3095 | * were alive at the time of the reference snapshot are gone; this is |
3096 | * necessary to be sure there are none left with a transaction snapshot |
3097 | * older than the reference (and hence possibly able to see tuples we did |
3098 | * not index). Then we mark the index "indisvalid" and commit. Subsequent |
3099 | * transactions will be able to use it for queries. |
3100 | * |
3101 | * Doing two full table scans is a brute-force strategy. We could try to be |
3102 | * cleverer, eg storing new tuples in a special area of the table (perhaps |
3103 | * making the table append-only by setting use_fsm). However that would |
3104 | * add yet more locking issues. |
3105 | */ |
3106 | void |
3107 | validate_index(Oid heapId, Oid indexId, Snapshot snapshot) |
3108 | { |
3109 | Relation heapRelation, |
3110 | indexRelation; |
3111 | IndexInfo *indexInfo; |
3112 | IndexVacuumInfo ivinfo; |
3113 | ValidateIndexState state; |
3114 | Oid save_userid; |
3115 | int save_sec_context; |
3116 | int save_nestlevel; |
3117 | |
3118 | { |
3119 | const int index[] = { |
3120 | PROGRESS_CREATEIDX_PHASE, |
3121 | PROGRESS_CREATEIDX_TUPLES_DONE, |
3122 | PROGRESS_CREATEIDX_TUPLES_TOTAL, |
3123 | PROGRESS_SCAN_BLOCKS_DONE, |
3124 | PROGRESS_SCAN_BLOCKS_TOTAL |
3125 | }; |
3126 | const int64 val[] = { |
3127 | PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN, |
3128 | 0, 0, 0, 0 |
3129 | }; |
3130 | |
3131 | pgstat_progress_update_multi_param(5, index, val); |
3132 | } |
3133 | |
3134 | /* Open and lock the parent heap relation */ |
3135 | heapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
3136 | /* And the target index relation */ |
3137 | indexRelation = index_open(indexId, RowExclusiveLock); |
3138 | |
3139 | /* |
3140 | * Fetch info needed for index_insert. (You might think this should be |
3141 | * passed in from DefineIndex, but its copy is long gone due to having |
3142 | * been built in a previous transaction.) |
3143 | */ |
3144 | indexInfo = BuildIndexInfo(indexRelation); |
3145 | |
3146 | /* mark build is concurrent just for consistency */ |
3147 | indexInfo->ii_Concurrent = true; |
3148 | |
3149 | /* |
3150 | * Switch to the table owner's userid, so that any index functions are run |
3151 | * as that user. Also lock down security-restricted operations and |
3152 | * arrange to make GUC variable changes local to this command. |
3153 | */ |
3154 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
3155 | SetUserIdAndSecContext(heapRelation->rd_rel->relowner, |
3156 | save_sec_context | SECURITY_RESTRICTED_OPERATION); |
3157 | save_nestlevel = NewGUCNestLevel(); |
3158 | |
3159 | /* |
3160 | * Scan the index and gather up all the TIDs into a tuplesort object. |
3161 | */ |
3162 | ivinfo.index = indexRelation; |
3163 | ivinfo.analyze_only = false; |
3164 | ivinfo.report_progress = true; |
3165 | ivinfo.estimated_count = true; |
3166 | ivinfo.message_level = DEBUG2; |
3167 | ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples; |
3168 | ivinfo.strategy = NULL; |
3169 | |
3170 | /* |
3171 | * Encode TIDs as int8 values for the sort, rather than directly sorting |
3172 | * item pointers. This can be significantly faster, primarily because TID |
3173 | * is a pass-by-reference type on all platforms, whereas int8 is |
3174 | * pass-by-value on most platforms. |
3175 | */ |
3176 | state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator, |
3177 | InvalidOid, false, |
3178 | maintenance_work_mem, |
3179 | NULL, false); |
3180 | state.htups = state.itups = state.tups_inserted = 0; |
3181 | |
3182 | /* ambulkdelete updates progress metrics */ |
3183 | (void) index_bulk_delete(&ivinfo, NULL, |
3184 | validate_index_callback, (void *) &state); |
3185 | |
3186 | /* Execute the sort */ |
3187 | { |
3188 | const int index[] = { |
3189 | PROGRESS_CREATEIDX_PHASE, |
3190 | PROGRESS_SCAN_BLOCKS_DONE, |
3191 | PROGRESS_SCAN_BLOCKS_TOTAL |
3192 | }; |
3193 | const int64 val[] = { |
3194 | PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT, |
3195 | 0, 0 |
3196 | }; |
3197 | |
3198 | pgstat_progress_update_multi_param(3, index, val); |
3199 | } |
3200 | tuplesort_performsort(state.tuplesort); |
3201 | |
3202 | /* |
3203 | * Now scan the heap and "merge" it with the index |
3204 | */ |
3205 | pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE, |
3206 | PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN); |
3207 | table_index_validate_scan(heapRelation, |
3208 | indexRelation, |
3209 | indexInfo, |
3210 | snapshot, |
3211 | &state); |
3212 | |
3213 | /* Done with tuplesort object */ |
3214 | tuplesort_end(state.tuplesort); |
3215 | |
3216 | elog(DEBUG2, |
3217 | "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples" , |
3218 | state.htups, state.itups, state.tups_inserted); |
3219 | |
3220 | /* Roll back any GUC changes executed by index functions */ |
3221 | AtEOXact_GUC(false, save_nestlevel); |
3222 | |
3223 | /* Restore userid and security context */ |
3224 | SetUserIdAndSecContext(save_userid, save_sec_context); |
3225 | |
3226 | /* Close rels, but keep locks */ |
3227 | index_close(indexRelation, NoLock); |
3228 | table_close(heapRelation, NoLock); |
3229 | } |
3230 | |
3231 | /* |
3232 | * validate_index_callback - bulkdelete callback to collect the index TIDs |
3233 | */ |
3234 | static bool |
3235 | validate_index_callback(ItemPointer itemptr, void *opaque) |
3236 | { |
3237 | ValidateIndexState *state = (ValidateIndexState *) opaque; |
3238 | int64 encoded = itemptr_encode(itemptr); |
3239 | |
3240 | tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false); |
3241 | state->itups += 1; |
3242 | return false; /* never actually delete anything */ |
3243 | } |
3244 | |
3245 | /* |
3246 | * index_set_state_flags - adjust pg_index state flags |
3247 | * |
3248 | * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index |
3249 | * flags that denote the index's state. Because the update is not |
3250 | * transactional and will not roll back on error, this must only be used as |
3251 | * the last step in a transaction that has not made any transactional catalog |
3252 | * updates! |
3253 | * |
3254 | * Note that heap_inplace_update does send a cache inval message for the |
3255 | * tuple, so other sessions will hear about the update as soon as we commit. |
3256 | * |
3257 | * NB: In releases prior to PostgreSQL 9.4, the use of a non-transactional |
3258 | * update here would have been unsafe; now that MVCC rules apply even for |
3259 | * system catalog scans, we could potentially use a transactional update here |
3260 | * instead. |
3261 | */ |
3262 | void |
3263 | index_set_state_flags(Oid indexId, IndexStateFlagsAction action) |
3264 | { |
3265 | Relation pg_index; |
3266 | HeapTuple indexTuple; |
3267 | Form_pg_index indexForm; |
3268 | |
3269 | /* Assert that current xact hasn't done any transactional updates */ |
3270 | Assert(GetTopTransactionIdIfAny() == InvalidTransactionId); |
3271 | |
3272 | /* Open pg_index and fetch a writable copy of the index's tuple */ |
3273 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
3274 | |
3275 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
3276 | ObjectIdGetDatum(indexId)); |
3277 | if (!HeapTupleIsValid(indexTuple)) |
3278 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
3279 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
3280 | |
3281 | /* Perform the requested state change on the copy */ |
3282 | switch (action) |
3283 | { |
3284 | case INDEX_CREATE_SET_READY: |
3285 | /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */ |
3286 | Assert(indexForm->indislive); |
3287 | Assert(!indexForm->indisready); |
3288 | Assert(!indexForm->indisvalid); |
3289 | indexForm->indisready = true; |
3290 | break; |
3291 | case INDEX_CREATE_SET_VALID: |
3292 | /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */ |
3293 | Assert(indexForm->indislive); |
3294 | Assert(indexForm->indisready); |
3295 | Assert(!indexForm->indisvalid); |
3296 | indexForm->indisvalid = true; |
3297 | break; |
3298 | case INDEX_DROP_CLEAR_VALID: |
3299 | |
3300 | /* |
3301 | * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence |
3302 | * |
3303 | * If indisready == true we leave it set so the index still gets |
3304 | * maintained by active transactions. We only need to ensure that |
3305 | * indisvalid is false. (We don't assert that either is initially |
3306 | * true, though, since we want to be able to retry a DROP INDEX |
3307 | * CONCURRENTLY that failed partway through.) |
3308 | * |
3309 | * Note: the CLUSTER logic assumes that indisclustered cannot be |
3310 | * set on any invalid index, so clear that flag too. |
3311 | */ |
3312 | indexForm->indisvalid = false; |
3313 | indexForm->indisclustered = false; |
3314 | break; |
3315 | case INDEX_DROP_SET_DEAD: |
3316 | |
3317 | /* |
3318 | * Clear indisready/indislive during DROP INDEX CONCURRENTLY |
3319 | * |
3320 | * We clear both indisready and indislive, because we not only |
3321 | * want to stop updates, we want to prevent sessions from touching |
3322 | * the index at all. |
3323 | */ |
3324 | Assert(!indexForm->indisvalid); |
3325 | indexForm->indisready = false; |
3326 | indexForm->indislive = false; |
3327 | break; |
3328 | } |
3329 | |
3330 | /* ... and write it back in-place */ |
3331 | heap_inplace_update(pg_index, indexTuple); |
3332 | |
3333 | table_close(pg_index, RowExclusiveLock); |
3334 | } |
3335 | |
3336 | |
3337 | /* |
3338 | * IndexGetRelation: given an index's relation OID, get the OID of the |
3339 | * relation it is an index on. Uses the system cache. |
3340 | */ |
3341 | Oid |
3342 | IndexGetRelation(Oid indexId, bool missing_ok) |
3343 | { |
3344 | HeapTuple tuple; |
3345 | Form_pg_index index; |
3346 | Oid result; |
3347 | |
3348 | tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId)); |
3349 | if (!HeapTupleIsValid(tuple)) |
3350 | { |
3351 | if (missing_ok) |
3352 | return InvalidOid; |
3353 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
3354 | } |
3355 | index = (Form_pg_index) GETSTRUCT(tuple); |
3356 | Assert(index->indexrelid == indexId); |
3357 | |
3358 | result = index->indrelid; |
3359 | ReleaseSysCache(tuple); |
3360 | return result; |
3361 | } |
3362 | |
3363 | /* |
3364 | * reindex_index - This routine is used to recreate a single index |
3365 | */ |
3366 | void |
3367 | reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, |
3368 | int options) |
3369 | { |
3370 | Relation iRel, |
3371 | heapRelation; |
3372 | Oid heapId; |
3373 | IndexInfo *indexInfo; |
3374 | volatile bool skipped_constraint = false; |
3375 | PGRUsage ru0; |
3376 | bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0; |
3377 | |
3378 | pg_rusage_init(&ru0); |
3379 | |
3380 | /* |
3381 | * Open and lock the parent heap relation. ShareLock is sufficient since |
3382 | * we only need to be sure no schema or data changes are going on. |
3383 | */ |
3384 | heapId = IndexGetRelation(indexId, false); |
3385 | heapRelation = table_open(heapId, ShareLock); |
3386 | |
3387 | if (progress) |
3388 | { |
3389 | pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX, |
3390 | heapId); |
3391 | pgstat_progress_update_param(PROGRESS_CREATEIDX_COMMAND, |
3392 | PROGRESS_CREATEIDX_COMMAND_REINDEX); |
3393 | pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID, |
3394 | indexId); |
3395 | } |
3396 | |
3397 | /* |
3398 | * Open the target index relation and get an exclusive lock on it, to |
3399 | * ensure that no one else is touching this particular index. |
3400 | */ |
3401 | iRel = index_open(indexId, AccessExclusiveLock); |
3402 | |
3403 | if (progress) |
3404 | pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID, |
3405 | iRel->rd_rel->relam); |
3406 | |
3407 | /* |
3408 | * The case of reindexing partitioned tables and indexes is handled |
3409 | * differently by upper layers, so this case shouldn't arise. |
3410 | */ |
3411 | if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) |
3412 | elog(ERROR, "unsupported relation kind for index \"%s\"" , |
3413 | RelationGetRelationName(iRel)); |
3414 | |
3415 | /* |
3416 | * Don't allow reindex on temp tables of other backends ... their local |
3417 | * buffer manager is not going to cope. |
3418 | */ |
3419 | if (RELATION_IS_OTHER_TEMP(iRel)) |
3420 | ereport(ERROR, |
3421 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3422 | errmsg("cannot reindex temporary tables of other sessions" ))); |
3423 | |
3424 | /* |
3425 | * Also check for active uses of the index in the current transaction; we |
3426 | * don't want to reindex underneath an open indexscan. |
3427 | */ |
3428 | CheckTableNotInUse(iRel, "REINDEX INDEX" ); |
3429 | |
3430 | /* |
3431 | * All predicate locks on the index are about to be made invalid. Promote |
3432 | * them to relation locks on the heap. |
3433 | */ |
3434 | TransferPredicateLocksToHeapRelation(iRel); |
3435 | |
3436 | /* Fetch info needed for index_build */ |
3437 | indexInfo = BuildIndexInfo(iRel); |
3438 | |
3439 | /* If requested, skip checking uniqueness/exclusion constraints */ |
3440 | if (skip_constraint_checks) |
3441 | { |
3442 | if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL) |
3443 | skipped_constraint = true; |
3444 | indexInfo->ii_Unique = false; |
3445 | indexInfo->ii_ExclusionOps = NULL; |
3446 | indexInfo->ii_ExclusionProcs = NULL; |
3447 | indexInfo->ii_ExclusionStrats = NULL; |
3448 | } |
3449 | |
3450 | /* ensure SetReindexProcessing state isn't leaked */ |
3451 | PG_TRY(); |
3452 | { |
3453 | /* Suppress use of the target index while rebuilding it */ |
3454 | SetReindexProcessing(heapId, indexId); |
3455 | |
3456 | /* Create a new physical relation for the index */ |
3457 | RelationSetNewRelfilenode(iRel, persistence); |
3458 | |
3459 | /* Initialize the index and rebuild */ |
3460 | /* Note: we do not need to re-establish pkey setting */ |
3461 | index_build(heapRelation, iRel, indexInfo, true, true); |
3462 | } |
3463 | PG_CATCH(); |
3464 | { |
3465 | /* Make sure flag gets cleared on error exit */ |
3466 | ResetReindexProcessing(); |
3467 | PG_RE_THROW(); |
3468 | } |
3469 | PG_END_TRY(); |
3470 | ResetReindexProcessing(); |
3471 | |
3472 | /* |
3473 | * If the index is marked invalid/not-ready/dead (ie, it's from a failed |
3474 | * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway), |
3475 | * and we didn't skip a uniqueness check, we can now mark it valid. This |
3476 | * allows REINDEX to be used to clean up in such cases. |
3477 | * |
3478 | * We can also reset indcheckxmin, because we have now done a |
3479 | * non-concurrent index build, *except* in the case where index_build |
3480 | * found some still-broken HOT chains. If it did, and we don't have to |
3481 | * change any of the other flags, we just leave indcheckxmin alone (note |
3482 | * that index_build won't have changed it, because this is a reindex). |
3483 | * This is okay and desirable because not updating the tuple leaves the |
3484 | * index's usability horizon (recorded as the tuple's xmin value) the same |
3485 | * as it was. |
3486 | * |
3487 | * But, if the index was invalid/not-ready/dead and there were broken HOT |
3488 | * chains, we had better force indcheckxmin true, because the normal |
3489 | * argument that the HOT chains couldn't conflict with the index is |
3490 | * suspect for an invalid index. (A conflict is definitely possible if |
3491 | * the index was dead. It probably shouldn't happen otherwise, but let's |
3492 | * be conservative.) In this case advancing the usability horizon is |
3493 | * appropriate. |
3494 | * |
3495 | * Another reason for avoiding unnecessary updates here is that while |
3496 | * reindexing pg_index itself, we must not try to update tuples in it. |
3497 | * pg_index's indexes should always have these flags in their clean state, |
3498 | * so that won't happen. |
3499 | * |
3500 | * If early pruning/vacuuming is enabled for the heap relation, the |
3501 | * usability horizon must be advanced to the current transaction on every |
3502 | * build or rebuild. pg_index is OK in this regard because catalog tables |
3503 | * are not subject to early cleanup. |
3504 | */ |
3505 | if (!skipped_constraint) |
3506 | { |
3507 | Relation pg_index; |
3508 | HeapTuple indexTuple; |
3509 | Form_pg_index indexForm; |
3510 | bool index_bad; |
3511 | bool early_pruning_enabled = EarlyPruningEnabled(heapRelation); |
3512 | |
3513 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
3514 | |
3515 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
3516 | ObjectIdGetDatum(indexId)); |
3517 | if (!HeapTupleIsValid(indexTuple)) |
3518 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
3519 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
3520 | |
3521 | index_bad = (!indexForm->indisvalid || |
3522 | !indexForm->indisready || |
3523 | !indexForm->indislive); |
3524 | if (index_bad || |
3525 | (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) || |
3526 | early_pruning_enabled) |
3527 | { |
3528 | if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled) |
3529 | indexForm->indcheckxmin = false; |
3530 | else if (index_bad || early_pruning_enabled) |
3531 | indexForm->indcheckxmin = true; |
3532 | indexForm->indisvalid = true; |
3533 | indexForm->indisready = true; |
3534 | indexForm->indislive = true; |
3535 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
3536 | |
3537 | /* |
3538 | * Invalidate the relcache for the table, so that after we commit |
3539 | * all sessions will refresh the table's index list. This ensures |
3540 | * that if anyone misses seeing the pg_index row during this |
3541 | * update, they'll refresh their list before attempting any update |
3542 | * on the table. |
3543 | */ |
3544 | CacheInvalidateRelcache(heapRelation); |
3545 | } |
3546 | |
3547 | table_close(pg_index, RowExclusiveLock); |
3548 | } |
3549 | |
3550 | /* Log what we did */ |
3551 | if (options & REINDEXOPT_VERBOSE) |
3552 | ereport(INFO, |
3553 | (errmsg("index \"%s\" was reindexed" , |
3554 | get_rel_name(indexId)), |
3555 | errdetail_internal("%s" , |
3556 | pg_rusage_show(&ru0)))); |
3557 | |
3558 | if (progress) |
3559 | pgstat_progress_end_command(); |
3560 | |
3561 | /* Close rels, but keep locks */ |
3562 | index_close(iRel, NoLock); |
3563 | table_close(heapRelation, NoLock); |
3564 | } |
3565 | |
3566 | /* |
3567 | * reindex_relation - This routine is used to recreate all indexes |
3568 | * of a relation (and optionally its toast relation too, if any). |
3569 | * |
3570 | * "flags" is a bitmask that can include any combination of these bits: |
3571 | * |
3572 | * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any). |
3573 | * |
3574 | * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely |
3575 | * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its |
3576 | * indexes are inconsistent with it. This makes things tricky if the relation |
3577 | * is a system catalog that we might consult during the reindexing. To deal |
3578 | * with that case, we mark all of the indexes as pending rebuild so that they |
3579 | * won't be trusted until rebuilt. The caller is required to call us *without* |
3580 | * having made the rebuilt table visible by doing CommandCounterIncrement; |
3581 | * we'll do CCI after having collected the index list. (This way we can still |
3582 | * use catalog indexes while collecting the list.) |
3583 | * |
3584 | * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion |
3585 | * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or |
3586 | * CLUSTER on a system catalog must omit this flag. REINDEX should be used to |
3587 | * rebuild an index if constraint inconsistency is suspected. For optimal |
3588 | * performance, other callers should include the flag only after transforming |
3589 | * the data in a manner that risks a change in constraint validity. |
3590 | * |
3591 | * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the |
3592 | * rebuilt indexes to unlogged. |
3593 | * |
3594 | * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the |
3595 | * rebuilt indexes to permanent. |
3596 | * |
3597 | * Returns true if any indexes were rebuilt (including toast table's index |
3598 | * when relevant). Note that a CommandCounterIncrement will occur after each |
3599 | * index rebuild. |
3600 | */ |
3601 | bool |
3602 | reindex_relation(Oid relid, int flags, int options) |
3603 | { |
3604 | Relation rel; |
3605 | Oid toast_relid; |
3606 | List *indexIds; |
3607 | bool result; |
3608 | int i; |
3609 | |
3610 | /* |
3611 | * Open and lock the relation. ShareLock is sufficient since we only need |
3612 | * to prevent schema and data changes in it. The lock level used here |
3613 | * should match ReindexTable(). |
3614 | */ |
3615 | rel = table_open(relid, ShareLock); |
3616 | |
3617 | /* |
3618 | * This may be useful when implemented someday; but that day is not today. |
3619 | * For now, avoid erroring out when called in a multi-table context |
3620 | * (REINDEX SCHEMA) and happen to come across a partitioned table. The |
3621 | * partitions may be reindexed on their own anyway. |
3622 | */ |
3623 | if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) |
3624 | { |
3625 | ereport(WARNING, |
3626 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3627 | errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"" , |
3628 | RelationGetRelationName(rel)))); |
3629 | table_close(rel, ShareLock); |
3630 | return false; |
3631 | } |
3632 | |
3633 | toast_relid = rel->rd_rel->reltoastrelid; |
3634 | |
3635 | /* |
3636 | * Get the list of index OIDs for this relation. (We trust to the |
3637 | * relcache to get this with a sequential scan if ignoring system |
3638 | * indexes.) |
3639 | */ |
3640 | indexIds = RelationGetIndexList(rel); |
3641 | |
3642 | PG_TRY(); |
3643 | { |
3644 | ListCell *indexId; |
3645 | char persistence; |
3646 | |
3647 | if (flags & REINDEX_REL_SUPPRESS_INDEX_USE) |
3648 | { |
3649 | /* Suppress use of all the indexes until they are rebuilt */ |
3650 | SetReindexPending(indexIds); |
3651 | |
3652 | /* |
3653 | * Make the new heap contents visible --- now things might be |
3654 | * inconsistent! |
3655 | */ |
3656 | CommandCounterIncrement(); |
3657 | } |
3658 | |
3659 | /* |
3660 | * Compute persistence of indexes: same as that of owning rel, unless |
3661 | * caller specified otherwise. |
3662 | */ |
3663 | if (flags & REINDEX_REL_FORCE_INDEXES_UNLOGGED) |
3664 | persistence = RELPERSISTENCE_UNLOGGED; |
3665 | else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT) |
3666 | persistence = RELPERSISTENCE_PERMANENT; |
3667 | else |
3668 | persistence = rel->rd_rel->relpersistence; |
3669 | |
3670 | /* Reindex all the indexes. */ |
3671 | i = 1; |
3672 | foreach(indexId, indexIds) |
3673 | { |
3674 | Oid indexOid = lfirst_oid(indexId); |
3675 | |
3676 | reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS), |
3677 | persistence, options); |
3678 | |
3679 | CommandCounterIncrement(); |
3680 | |
3681 | /* Index should no longer be in the pending list */ |
3682 | Assert(!ReindexIsProcessingIndex(indexOid)); |
3683 | |
3684 | /* Set index rebuild count */ |
3685 | pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT, |
3686 | i); |
3687 | i++; |
3688 | } |
3689 | } |
3690 | PG_CATCH(); |
3691 | { |
3692 | /* Make sure list gets cleared on error exit */ |
3693 | ResetReindexPending(); |
3694 | PG_RE_THROW(); |
3695 | } |
3696 | PG_END_TRY(); |
3697 | ResetReindexPending(); |
3698 | |
3699 | /* |
3700 | * Close rel, but continue to hold the lock. |
3701 | */ |
3702 | table_close(rel, NoLock); |
3703 | |
3704 | result = (indexIds != NIL); |
3705 | |
3706 | /* |
3707 | * If the relation has a secondary toast rel, reindex that too while we |
3708 | * still hold the lock on the master table. |
3709 | */ |
3710 | if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid)) |
3711 | result |= reindex_relation(toast_relid, flags, options); |
3712 | |
3713 | return result; |
3714 | } |
3715 | |
3716 | |
3717 | /* ---------------------------------------------------------------- |
3718 | * System index reindexing support |
3719 | * |
3720 | * When we are busy reindexing a system index, this code provides support |
3721 | * for preventing catalog lookups from using that index. We also make use |
3722 | * of this to catch attempted uses of user indexes during reindexing of |
3723 | * those indexes. This information is propagated to parallel workers; |
3724 | * attempting to change it during a parallel operation is not permitted. |
3725 | * ---------------------------------------------------------------- |
3726 | */ |
3727 | |
3728 | static Oid currentlyReindexedHeap = InvalidOid; |
3729 | static Oid currentlyReindexedIndex = InvalidOid; |
3730 | static List *pendingReindexedIndexes = NIL; |
3731 | |
3732 | /* |
3733 | * ReindexIsProcessingHeap |
3734 | * True if heap specified by OID is currently being reindexed. |
3735 | */ |
3736 | bool |
3737 | ReindexIsProcessingHeap(Oid heapOid) |
3738 | { |
3739 | return heapOid == currentlyReindexedHeap; |
3740 | } |
3741 | |
3742 | /* |
3743 | * ReindexIsCurrentlyProcessingIndex |
3744 | * True if index specified by OID is currently being reindexed. |
3745 | */ |
3746 | static bool |
3747 | ReindexIsCurrentlyProcessingIndex(Oid indexOid) |
3748 | { |
3749 | return indexOid == currentlyReindexedIndex; |
3750 | } |
3751 | |
3752 | /* |
3753 | * ReindexIsProcessingIndex |
3754 | * True if index specified by OID is currently being reindexed, |
3755 | * or should be treated as invalid because it is awaiting reindex. |
3756 | */ |
3757 | bool |
3758 | ReindexIsProcessingIndex(Oid indexOid) |
3759 | { |
3760 | return indexOid == currentlyReindexedIndex || |
3761 | list_member_oid(pendingReindexedIndexes, indexOid); |
3762 | } |
3763 | |
3764 | /* |
3765 | * SetReindexProcessing |
3766 | * Set flag that specified heap/index are being reindexed. |
3767 | * |
3768 | * NB: caller must use a PG_TRY block to ensure ResetReindexProcessing is done. |
3769 | */ |
3770 | static void |
3771 | SetReindexProcessing(Oid heapOid, Oid indexOid) |
3772 | { |
3773 | Assert(OidIsValid(heapOid) && OidIsValid(indexOid)); |
3774 | /* Reindexing is not re-entrant. */ |
3775 | if (OidIsValid(currentlyReindexedHeap)) |
3776 | elog(ERROR, "cannot reindex while reindexing" ); |
3777 | currentlyReindexedHeap = heapOid; |
3778 | currentlyReindexedIndex = indexOid; |
3779 | /* Index is no longer "pending" reindex. */ |
3780 | RemoveReindexPending(indexOid); |
3781 | } |
3782 | |
3783 | /* |
3784 | * ResetReindexProcessing |
3785 | * Unset reindexing status. |
3786 | */ |
3787 | static void |
3788 | ResetReindexProcessing(void) |
3789 | { |
3790 | /* This may be called in leader error path */ |
3791 | currentlyReindexedHeap = InvalidOid; |
3792 | currentlyReindexedIndex = InvalidOid; |
3793 | } |
3794 | |
3795 | /* |
3796 | * SetReindexPending |
3797 | * Mark the given indexes as pending reindex. |
3798 | * |
3799 | * NB: caller must use a PG_TRY block to ensure ResetReindexPending is done. |
3800 | * Also, we assume that the current memory context stays valid throughout. |
3801 | */ |
3802 | static void |
3803 | SetReindexPending(List *indexes) |
3804 | { |
3805 | /* Reindexing is not re-entrant. */ |
3806 | if (pendingReindexedIndexes) |
3807 | elog(ERROR, "cannot reindex while reindexing" ); |
3808 | if (IsInParallelMode()) |
3809 | elog(ERROR, "cannot modify reindex state during a parallel operation" ); |
3810 | pendingReindexedIndexes = list_copy(indexes); |
3811 | } |
3812 | |
3813 | /* |
3814 | * RemoveReindexPending |
3815 | * Remove the given index from the pending list. |
3816 | */ |
3817 | static void |
3818 | RemoveReindexPending(Oid indexOid) |
3819 | { |
3820 | if (IsInParallelMode()) |
3821 | elog(ERROR, "cannot modify reindex state during a parallel operation" ); |
3822 | pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes, |
3823 | indexOid); |
3824 | } |
3825 | |
3826 | /* |
3827 | * ResetReindexPending |
3828 | * Unset reindex-pending status. |
3829 | */ |
3830 | static void |
3831 | ResetReindexPending(void) |
3832 | { |
3833 | /* This may be called in leader error path */ |
3834 | pendingReindexedIndexes = NIL; |
3835 | } |
3836 | |
3837 | /* |
3838 | * EstimateReindexStateSpace |
3839 | * Estimate space needed to pass reindex state to parallel workers. |
3840 | */ |
3841 | Size |
3842 | EstimateReindexStateSpace(void) |
3843 | { |
3844 | return offsetof(SerializedReindexState, pendingReindexedIndexes) |
3845 | + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes)); |
3846 | } |
3847 | |
3848 | /* |
3849 | * SerializeReindexState |
3850 | * Serialize reindex state for parallel workers. |
3851 | */ |
3852 | void |
3853 | SerializeReindexState(Size maxsize, char *start_address) |
3854 | { |
3855 | SerializedReindexState *sistate = (SerializedReindexState *) start_address; |
3856 | int c = 0; |
3857 | ListCell *lc; |
3858 | |
3859 | sistate->currentlyReindexedHeap = currentlyReindexedHeap; |
3860 | sistate->currentlyReindexedIndex = currentlyReindexedIndex; |
3861 | sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes); |
3862 | foreach(lc, pendingReindexedIndexes) |
3863 | sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc); |
3864 | } |
3865 | |
3866 | /* |
3867 | * RestoreReindexState |
3868 | * Restore reindex state in a parallel worker. |
3869 | */ |
3870 | void |
3871 | RestoreReindexState(void *reindexstate) |
3872 | { |
3873 | SerializedReindexState *sistate = (SerializedReindexState *) reindexstate; |
3874 | int c = 0; |
3875 | MemoryContext oldcontext; |
3876 | |
3877 | currentlyReindexedHeap = sistate->currentlyReindexedHeap; |
3878 | currentlyReindexedIndex = sistate->currentlyReindexedIndex; |
3879 | |
3880 | Assert(pendingReindexedIndexes == NIL); |
3881 | oldcontext = MemoryContextSwitchTo(TopMemoryContext); |
3882 | for (c = 0; c < sistate->numPendingReindexedIndexes; ++c) |
3883 | pendingReindexedIndexes = |
3884 | lappend_oid(pendingReindexedIndexes, |
3885 | sistate->pendingReindexedIndexes[c]); |
3886 | MemoryContextSwitchTo(oldcontext); |
3887 | } |
3888 | |