| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * index.c |
| 4 | * code to create and destroy POSTGRES index relations |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/catalog/index.c |
| 12 | * |
| 13 | * |
| 14 | * INTERFACE ROUTINES |
| 15 | * index_create() - Create a cataloged index relation |
| 16 | * index_drop() - Removes index relation from catalogs |
| 17 | * BuildIndexInfo() - Prepare to insert index tuples |
| 18 | * FormIndexDatum() - Construct datum vector for one index tuple |
| 19 | * |
| 20 | *------------------------------------------------------------------------- |
| 21 | */ |
| 22 | #include "postgres.h" |
| 23 | |
| 24 | #include <unistd.h> |
| 25 | |
| 26 | #include "access/amapi.h" |
| 27 | #include "access/heapam.h" |
| 28 | #include "access/multixact.h" |
| 29 | #include "access/relscan.h" |
| 30 | #include "access/sysattr.h" |
| 31 | #include "access/tableam.h" |
| 32 | #include "access/transam.h" |
| 33 | #include "access/visibilitymap.h" |
| 34 | #include "access/xact.h" |
| 35 | #include "bootstrap/bootstrap.h" |
| 36 | #include "catalog/binary_upgrade.h" |
| 37 | #include "catalog/catalog.h" |
| 38 | #include "catalog/dependency.h" |
| 39 | #include "catalog/heap.h" |
| 40 | #include "catalog/index.h" |
| 41 | #include "catalog/objectaccess.h" |
| 42 | #include "catalog/partition.h" |
| 43 | #include "catalog/pg_am.h" |
| 44 | #include "catalog/pg_collation.h" |
| 45 | #include "catalog/pg_constraint.h" |
| 46 | #include "catalog/pg_description.h" |
| 47 | #include "catalog/pg_depend.h" |
| 48 | #include "catalog/pg_inherits.h" |
| 49 | #include "catalog/pg_operator.h" |
| 50 | #include "catalog/pg_opclass.h" |
| 51 | #include "catalog/pg_tablespace.h" |
| 52 | #include "catalog/pg_trigger.h" |
| 53 | #include "catalog/pg_type.h" |
| 54 | #include "catalog/storage.h" |
| 55 | #include "commands/event_trigger.h" |
| 56 | #include "commands/progress.h" |
| 57 | #include "commands/tablecmds.h" |
| 58 | #include "commands/trigger.h" |
| 59 | #include "executor/executor.h" |
| 60 | #include "miscadmin.h" |
| 61 | #include "nodes/makefuncs.h" |
| 62 | #include "nodes/nodeFuncs.h" |
| 63 | #include "optimizer/optimizer.h" |
| 64 | #include "parser/parser.h" |
| 65 | #include "pgstat.h" |
| 66 | #include "rewrite/rewriteManip.h" |
| 67 | #include "storage/bufmgr.h" |
| 68 | #include "storage/lmgr.h" |
| 69 | #include "storage/predicate.h" |
| 70 | #include "storage/procarray.h" |
| 71 | #include "storage/smgr.h" |
| 72 | #include "utils/builtins.h" |
| 73 | #include "utils/fmgroids.h" |
| 74 | #include "utils/guc.h" |
| 75 | #include "utils/inval.h" |
| 76 | #include "utils/lsyscache.h" |
| 77 | #include "utils/memutils.h" |
| 78 | #include "utils/pg_rusage.h" |
| 79 | #include "utils/syscache.h" |
| 80 | #include "utils/tuplesort.h" |
| 81 | #include "utils/snapmgr.h" |
| 82 | |
| 83 | |
| 84 | /* Potentially set by pg_upgrade_support functions */ |
| 85 | Oid binary_upgrade_next_index_pg_class_oid = InvalidOid; |
| 86 | |
| 87 | /* |
| 88 | * Pointer-free representation of variables used when reindexing system |
| 89 | * catalogs; we use this to propagate those values to parallel workers. |
| 90 | */ |
| 91 | typedef struct |
| 92 | { |
| 93 | Oid currentlyReindexedHeap; |
| 94 | Oid currentlyReindexedIndex; |
| 95 | int numPendingReindexedIndexes; |
| 96 | Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]; |
| 97 | } SerializedReindexState; |
| 98 | |
| 99 | /* non-export function prototypes */ |
| 100 | static bool relationHasPrimaryKey(Relation rel); |
| 101 | static TupleDesc ConstructTupleDescriptor(Relation heapRelation, |
| 102 | IndexInfo *indexInfo, |
| 103 | List *indexColNames, |
| 104 | Oid accessMethodObjectId, |
| 105 | Oid *collationObjectId, |
| 106 | Oid *classObjectId); |
| 107 | static void InitializeAttributeOids(Relation indexRelation, |
| 108 | int numatts, Oid indexoid); |
| 109 | static void AppendAttributeTuples(Relation indexRelation, int numatts); |
| 110 | static void UpdateIndexRelation(Oid indexoid, Oid heapoid, |
| 111 | Oid parentIndexId, |
| 112 | IndexInfo *indexInfo, |
| 113 | Oid *collationOids, |
| 114 | Oid *classOids, |
| 115 | int16 *coloptions, |
| 116 | bool primary, |
| 117 | bool isexclusion, |
| 118 | bool immediate, |
| 119 | bool isvalid, |
| 120 | bool isready); |
| 121 | static void index_update_stats(Relation rel, |
| 122 | bool hasindex, |
| 123 | double reltuples); |
| 124 | static void IndexCheckExclusion(Relation heapRelation, |
| 125 | Relation indexRelation, |
| 126 | IndexInfo *indexInfo); |
| 127 | static bool validate_index_callback(ItemPointer itemptr, void *opaque); |
| 128 | static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid); |
| 129 | static void SetReindexProcessing(Oid heapOid, Oid indexOid); |
| 130 | static void ResetReindexProcessing(void); |
| 131 | static void SetReindexPending(List *indexes); |
| 132 | static void RemoveReindexPending(Oid indexOid); |
| 133 | static void ResetReindexPending(void); |
| 134 | |
| 135 | |
| 136 | /* |
| 137 | * relationHasPrimaryKey |
| 138 | * See whether an existing relation has a primary key. |
| 139 | * |
| 140 | * Caller must have suitable lock on the relation. |
| 141 | * |
| 142 | * Note: we intentionally do not check indisvalid here; that's because this |
| 143 | * is used to enforce the rule that there can be only one indisprimary index, |
| 144 | * and we want that to be true even if said index is invalid. |
| 145 | */ |
| 146 | static bool |
| 147 | relationHasPrimaryKey(Relation rel) |
| 148 | { |
| 149 | bool result = false; |
| 150 | List *indexoidlist; |
| 151 | ListCell *indexoidscan; |
| 152 | |
| 153 | /* |
| 154 | * Get the list of index OIDs for the table from the relcache, and look up |
| 155 | * each one in the pg_index syscache until we find one marked primary key |
| 156 | * (hopefully there isn't more than one such). |
| 157 | */ |
| 158 | indexoidlist = RelationGetIndexList(rel); |
| 159 | |
| 160 | foreach(indexoidscan, indexoidlist) |
| 161 | { |
| 162 | Oid indexoid = lfirst_oid(indexoidscan); |
| 163 | HeapTuple indexTuple; |
| 164 | |
| 165 | indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid)); |
| 166 | if (!HeapTupleIsValid(indexTuple)) /* should not happen */ |
| 167 | elog(ERROR, "cache lookup failed for index %u" , indexoid); |
| 168 | result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary; |
| 169 | ReleaseSysCache(indexTuple); |
| 170 | if (result) |
| 171 | break; |
| 172 | } |
| 173 | |
| 174 | list_free(indexoidlist); |
| 175 | |
| 176 | return result; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * index_check_primary_key |
| 181 | * Apply special checks needed before creating a PRIMARY KEY index |
| 182 | * |
| 183 | * This processing used to be in DefineIndex(), but has been split out |
| 184 | * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX. |
| 185 | * |
| 186 | * We check for a pre-existing primary key, and that all columns of the index |
| 187 | * are simple column references (not expressions), and that all those |
| 188 | * columns are marked NOT NULL. If not, fail. |
| 189 | * |
| 190 | * We used to automatically change unmarked columns to NOT NULL here by doing |
| 191 | * our own local ALTER TABLE command. But that doesn't work well if we're |
| 192 | * executing one subcommand of an ALTER TABLE: the operations may not get |
| 193 | * performed in the right order overall. Now we expect that the parser |
| 194 | * inserted any required ALTER TABLE SET NOT NULL operations before trying |
| 195 | * to create a primary-key index. |
| 196 | * |
| 197 | * Caller had better have at least ShareLock on the table, else the not-null |
| 198 | * checking isn't trustworthy. |
| 199 | */ |
| 200 | void |
| 201 | index_check_primary_key(Relation heapRel, |
| 202 | IndexInfo *indexInfo, |
| 203 | bool is_alter_table, |
| 204 | IndexStmt *stmt) |
| 205 | { |
| 206 | int i; |
| 207 | |
| 208 | /* |
| 209 | * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't |
| 210 | * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we |
| 211 | * have faith that the parser rejected multiple pkey clauses; and CREATE |
| 212 | * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either. |
| 213 | */ |
| 214 | if ((is_alter_table || heapRel->rd_rel->relispartition) && |
| 215 | relationHasPrimaryKey(heapRel)) |
| 216 | { |
| 217 | ereport(ERROR, |
| 218 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
| 219 | errmsg("multiple primary keys for table \"%s\" are not allowed" , |
| 220 | RelationGetRelationName(heapRel)))); |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * Check that all of the attributes in a primary key are marked as not |
| 225 | * null. (We don't really expect to see that; it'd mean the parser messed |
| 226 | * up. But it seems wise to check anyway.) |
| 227 | */ |
| 228 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
| 229 | { |
| 230 | AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i]; |
| 231 | HeapTuple atttuple; |
| 232 | Form_pg_attribute attform; |
| 233 | |
| 234 | if (attnum == 0) |
| 235 | ereport(ERROR, |
| 236 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 237 | errmsg("primary keys cannot be expressions" ))); |
| 238 | |
| 239 | /* System attributes are never null, so no need to check */ |
| 240 | if (attnum < 0) |
| 241 | continue; |
| 242 | |
| 243 | atttuple = SearchSysCache2(ATTNUM, |
| 244 | ObjectIdGetDatum(RelationGetRelid(heapRel)), |
| 245 | Int16GetDatum(attnum)); |
| 246 | if (!HeapTupleIsValid(atttuple)) |
| 247 | elog(ERROR, "cache lookup failed for attribute %d of relation %u" , |
| 248 | attnum, RelationGetRelid(heapRel)); |
| 249 | attform = (Form_pg_attribute) GETSTRUCT(atttuple); |
| 250 | |
| 251 | if (!attform->attnotnull) |
| 252 | ereport(ERROR, |
| 253 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
| 254 | errmsg("primary key column \"%s\" is not marked NOT NULL" , |
| 255 | NameStr(attform->attname)))); |
| 256 | |
| 257 | ReleaseSysCache(atttuple); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * ConstructTupleDescriptor |
| 263 | * |
| 264 | * Build an index tuple descriptor for a new index |
| 265 | */ |
| 266 | static TupleDesc |
| 267 | ConstructTupleDescriptor(Relation heapRelation, |
| 268 | IndexInfo *indexInfo, |
| 269 | List *indexColNames, |
| 270 | Oid accessMethodObjectId, |
| 271 | Oid *collationObjectId, |
| 272 | Oid *classObjectId) |
| 273 | { |
| 274 | int numatts = indexInfo->ii_NumIndexAttrs; |
| 275 | int numkeyatts = indexInfo->ii_NumIndexKeyAttrs; |
| 276 | ListCell *colnames_item = list_head(indexColNames); |
| 277 | ListCell *indexpr_item = list_head(indexInfo->ii_Expressions); |
| 278 | IndexAmRoutine *amroutine; |
| 279 | TupleDesc heapTupDesc; |
| 280 | TupleDesc indexTupDesc; |
| 281 | int natts; /* #atts in heap rel --- for error checks */ |
| 282 | int i; |
| 283 | |
| 284 | /* We need access to the index AM's API struct */ |
| 285 | amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false); |
| 286 | |
| 287 | /* ... and to the table's tuple descriptor */ |
| 288 | heapTupDesc = RelationGetDescr(heapRelation); |
| 289 | natts = RelationGetForm(heapRelation)->relnatts; |
| 290 | |
| 291 | /* |
| 292 | * allocate the new tuple descriptor |
| 293 | */ |
| 294 | indexTupDesc = CreateTemplateTupleDesc(numatts); |
| 295 | |
| 296 | /* |
| 297 | * Fill in the pg_attribute row. |
| 298 | */ |
| 299 | for (i = 0; i < numatts; i++) |
| 300 | { |
| 301 | AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i]; |
| 302 | Form_pg_attribute to = TupleDescAttr(indexTupDesc, i); |
| 303 | HeapTuple tuple; |
| 304 | Form_pg_type typeTup; |
| 305 | Form_pg_opclass opclassTup; |
| 306 | Oid keyType; |
| 307 | |
| 308 | MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE); |
| 309 | to->attnum = i + 1; |
| 310 | to->attstattarget = -1; |
| 311 | to->attcacheoff = -1; |
| 312 | to->attislocal = true; |
| 313 | to->attcollation = (i < numkeyatts) ? |
| 314 | collationObjectId[i] : InvalidOid; |
| 315 | |
| 316 | /* |
| 317 | * For simple index columns, we copy some pg_attribute fields from the |
| 318 | * parent relation. For expressions we have to look at the expression |
| 319 | * result. |
| 320 | */ |
| 321 | if (atnum != 0) |
| 322 | { |
| 323 | /* Simple index column */ |
| 324 | const FormData_pg_attribute *from; |
| 325 | |
| 326 | Assert(atnum > 0); /* should've been caught above */ |
| 327 | |
| 328 | if (atnum > natts) /* safety check */ |
| 329 | elog(ERROR, "invalid column number %d" , atnum); |
| 330 | from = TupleDescAttr(heapTupDesc, |
| 331 | AttrNumberGetAttrOffset(atnum)); |
| 332 | |
| 333 | namecpy(&to->attname, &from->attname); |
| 334 | to->atttypid = from->atttypid; |
| 335 | to->attlen = from->attlen; |
| 336 | to->attndims = from->attndims; |
| 337 | to->atttypmod = from->atttypmod; |
| 338 | to->attbyval = from->attbyval; |
| 339 | to->attstorage = from->attstorage; |
| 340 | to->attalign = from->attalign; |
| 341 | } |
| 342 | else |
| 343 | { |
| 344 | /* Expressional index */ |
| 345 | Node *indexkey; |
| 346 | |
| 347 | if (indexpr_item == NULL) /* shouldn't happen */ |
| 348 | elog(ERROR, "too few entries in indexprs list" ); |
| 349 | indexkey = (Node *) lfirst(indexpr_item); |
| 350 | indexpr_item = lnext(indexpr_item); |
| 351 | |
| 352 | /* |
| 353 | * Lookup the expression type in pg_type for the type length etc. |
| 354 | */ |
| 355 | keyType = exprType(indexkey); |
| 356 | tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType)); |
| 357 | if (!HeapTupleIsValid(tuple)) |
| 358 | elog(ERROR, "cache lookup failed for type %u" , keyType); |
| 359 | typeTup = (Form_pg_type) GETSTRUCT(tuple); |
| 360 | |
| 361 | /* |
| 362 | * Assign some of the attributes values. Leave the rest. |
| 363 | */ |
| 364 | to->atttypid = keyType; |
| 365 | to->attlen = typeTup->typlen; |
| 366 | to->attbyval = typeTup->typbyval; |
| 367 | to->attstorage = typeTup->typstorage; |
| 368 | to->attalign = typeTup->typalign; |
| 369 | to->atttypmod = exprTypmod(indexkey); |
| 370 | |
| 371 | ReleaseSysCache(tuple); |
| 372 | |
| 373 | /* |
| 374 | * Make sure the expression yields a type that's safe to store in |
| 375 | * an index. We need this defense because we have index opclasses |
| 376 | * for pseudo-types such as "record", and the actually stored type |
| 377 | * had better be safe; eg, a named composite type is okay, an |
| 378 | * anonymous record type is not. The test is the same as for |
| 379 | * whether a table column is of a safe type (which is why we |
| 380 | * needn't check for the non-expression case). |
| 381 | */ |
| 382 | CheckAttributeType(NameStr(to->attname), |
| 383 | to->atttypid, to->attcollation, |
| 384 | NIL, 0); |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * We do not yet have the correct relation OID for the index, so just |
| 389 | * set it invalid for now. InitializeAttributeOids() will fix it |
| 390 | * later. |
| 391 | */ |
| 392 | to->attrelid = InvalidOid; |
| 393 | |
| 394 | /* |
| 395 | * Set the attribute name as specified by caller. |
| 396 | */ |
| 397 | if (colnames_item == NULL) /* shouldn't happen */ |
| 398 | elog(ERROR, "too few entries in colnames list" ); |
| 399 | namestrcpy(&to->attname, (const char *) lfirst(colnames_item)); |
| 400 | colnames_item = lnext(colnames_item); |
| 401 | |
| 402 | /* |
| 403 | * Check the opclass and index AM to see if either provides a keytype |
| 404 | * (overriding the attribute type). Opclass (if exists) takes |
| 405 | * precedence. |
| 406 | */ |
| 407 | keyType = amroutine->amkeytype; |
| 408 | |
| 409 | /* |
| 410 | * Code below is concerned to the opclasses which are not used with |
| 411 | * the included columns. |
| 412 | */ |
| 413 | if (i < indexInfo->ii_NumIndexKeyAttrs) |
| 414 | { |
| 415 | tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i])); |
| 416 | if (!HeapTupleIsValid(tuple)) |
| 417 | elog(ERROR, "cache lookup failed for opclass %u" , |
| 418 | classObjectId[i]); |
| 419 | opclassTup = (Form_pg_opclass) GETSTRUCT(tuple); |
| 420 | if (OidIsValid(opclassTup->opckeytype)) |
| 421 | keyType = opclassTup->opckeytype; |
| 422 | |
| 423 | /* |
| 424 | * If keytype is specified as ANYELEMENT, and opcintype is |
| 425 | * ANYARRAY, then the attribute type must be an array (else it'd |
| 426 | * not have matched this opclass); use its element type. |
| 427 | */ |
| 428 | if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID) |
| 429 | { |
| 430 | keyType = get_base_element_type(to->atttypid); |
| 431 | if (!OidIsValid(keyType)) |
| 432 | elog(ERROR, "could not get element type of array type %u" , |
| 433 | to->atttypid); |
| 434 | } |
| 435 | |
| 436 | ReleaseSysCache(tuple); |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * If a key type different from the heap value is specified, update |
| 441 | * the type-related fields in the index tupdesc. |
| 442 | */ |
| 443 | if (OidIsValid(keyType) && keyType != to->atttypid) |
| 444 | { |
| 445 | tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType)); |
| 446 | if (!HeapTupleIsValid(tuple)) |
| 447 | elog(ERROR, "cache lookup failed for type %u" , keyType); |
| 448 | typeTup = (Form_pg_type) GETSTRUCT(tuple); |
| 449 | |
| 450 | to->atttypid = keyType; |
| 451 | to->atttypmod = -1; |
| 452 | to->attlen = typeTup->typlen; |
| 453 | to->attbyval = typeTup->typbyval; |
| 454 | to->attalign = typeTup->typalign; |
| 455 | to->attstorage = typeTup->typstorage; |
| 456 | |
| 457 | ReleaseSysCache(tuple); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | pfree(amroutine); |
| 462 | |
| 463 | return indexTupDesc; |
| 464 | } |
| 465 | |
| 466 | /* ---------------------------------------------------------------- |
| 467 | * InitializeAttributeOids |
| 468 | * ---------------------------------------------------------------- |
| 469 | */ |
| 470 | static void |
| 471 | InitializeAttributeOids(Relation indexRelation, |
| 472 | int numatts, |
| 473 | Oid indexoid) |
| 474 | { |
| 475 | TupleDesc tupleDescriptor; |
| 476 | int i; |
| 477 | |
| 478 | tupleDescriptor = RelationGetDescr(indexRelation); |
| 479 | |
| 480 | for (i = 0; i < numatts; i += 1) |
| 481 | TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid; |
| 482 | } |
| 483 | |
| 484 | /* ---------------------------------------------------------------- |
| 485 | * AppendAttributeTuples |
| 486 | * ---------------------------------------------------------------- |
| 487 | */ |
| 488 | static void |
| 489 | AppendAttributeTuples(Relation indexRelation, int numatts) |
| 490 | { |
| 491 | Relation pg_attribute; |
| 492 | CatalogIndexState indstate; |
| 493 | TupleDesc indexTupDesc; |
| 494 | int i; |
| 495 | |
| 496 | /* |
| 497 | * open the attribute relation and its indexes |
| 498 | */ |
| 499 | pg_attribute = table_open(AttributeRelationId, RowExclusiveLock); |
| 500 | |
| 501 | indstate = CatalogOpenIndexes(pg_attribute); |
| 502 | |
| 503 | /* |
| 504 | * insert data from new index's tupdesc into pg_attribute |
| 505 | */ |
| 506 | indexTupDesc = RelationGetDescr(indexRelation); |
| 507 | |
| 508 | for (i = 0; i < numatts; i++) |
| 509 | { |
| 510 | Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i); |
| 511 | |
| 512 | Assert(attr->attnum == i + 1); |
| 513 | |
| 514 | InsertPgAttributeTuple(pg_attribute, attr, indstate); |
| 515 | } |
| 516 | |
| 517 | CatalogCloseIndexes(indstate); |
| 518 | |
| 519 | table_close(pg_attribute, RowExclusiveLock); |
| 520 | } |
| 521 | |
| 522 | /* ---------------------------------------------------------------- |
| 523 | * UpdateIndexRelation |
| 524 | * |
| 525 | * Construct and insert a new entry in the pg_index catalog |
| 526 | * ---------------------------------------------------------------- |
| 527 | */ |
| 528 | static void |
| 529 | UpdateIndexRelation(Oid indexoid, |
| 530 | Oid heapoid, |
| 531 | Oid parentIndexId, |
| 532 | IndexInfo *indexInfo, |
| 533 | Oid *collationOids, |
| 534 | Oid *classOids, |
| 535 | int16 *coloptions, |
| 536 | bool primary, |
| 537 | bool isexclusion, |
| 538 | bool immediate, |
| 539 | bool isvalid, |
| 540 | bool isready) |
| 541 | { |
| 542 | int2vector *indkey; |
| 543 | oidvector *indcollation; |
| 544 | oidvector *indclass; |
| 545 | int2vector *indoption; |
| 546 | Datum exprsDatum; |
| 547 | Datum predDatum; |
| 548 | Datum values[Natts_pg_index]; |
| 549 | bool nulls[Natts_pg_index]; |
| 550 | Relation pg_index; |
| 551 | HeapTuple tuple; |
| 552 | int i; |
| 553 | |
| 554 | /* |
| 555 | * Copy the index key, opclass, and indoption info into arrays (should we |
| 556 | * make the caller pass them like this to start with?) |
| 557 | */ |
| 558 | indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs); |
| 559 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
| 560 | indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i]; |
| 561 | indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs); |
| 562 | indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs); |
| 563 | indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs); |
| 564 | |
| 565 | /* |
| 566 | * Convert the index expressions (if any) to a text datum |
| 567 | */ |
| 568 | if (indexInfo->ii_Expressions != NIL) |
| 569 | { |
| 570 | char *; |
| 571 | |
| 572 | exprsString = nodeToString(indexInfo->ii_Expressions); |
| 573 | exprsDatum = CStringGetTextDatum(exprsString); |
| 574 | pfree(exprsString); |
| 575 | } |
| 576 | else |
| 577 | exprsDatum = (Datum) 0; |
| 578 | |
| 579 | /* |
| 580 | * Convert the index predicate (if any) to a text datum. Note we convert |
| 581 | * implicit-AND format to normal explicit-AND for storage. |
| 582 | */ |
| 583 | if (indexInfo->ii_Predicate != NIL) |
| 584 | { |
| 585 | char *predString; |
| 586 | |
| 587 | predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate)); |
| 588 | predDatum = CStringGetTextDatum(predString); |
| 589 | pfree(predString); |
| 590 | } |
| 591 | else |
| 592 | predDatum = (Datum) 0; |
| 593 | |
| 594 | /* |
| 595 | * open the system catalog index relation |
| 596 | */ |
| 597 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 598 | |
| 599 | /* |
| 600 | * Build a pg_index tuple |
| 601 | */ |
| 602 | MemSet(nulls, false, sizeof(nulls)); |
| 603 | |
| 604 | values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid); |
| 605 | values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid); |
| 606 | values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs); |
| 607 | values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs); |
| 608 | values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique); |
| 609 | values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary); |
| 610 | values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion); |
| 611 | values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate); |
| 612 | values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false); |
| 613 | values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid); |
| 614 | values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false); |
| 615 | values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready); |
| 616 | values[Anum_pg_index_indislive - 1] = BoolGetDatum(true); |
| 617 | values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false); |
| 618 | values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey); |
| 619 | values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation); |
| 620 | values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass); |
| 621 | values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption); |
| 622 | values[Anum_pg_index_indexprs - 1] = exprsDatum; |
| 623 | if (exprsDatum == (Datum) 0) |
| 624 | nulls[Anum_pg_index_indexprs - 1] = true; |
| 625 | values[Anum_pg_index_indpred - 1] = predDatum; |
| 626 | if (predDatum == (Datum) 0) |
| 627 | nulls[Anum_pg_index_indpred - 1] = true; |
| 628 | |
| 629 | tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls); |
| 630 | |
| 631 | /* |
| 632 | * insert the tuple into the pg_index catalog |
| 633 | */ |
| 634 | CatalogTupleInsert(pg_index, tuple); |
| 635 | |
| 636 | /* |
| 637 | * close the relation and free the tuple |
| 638 | */ |
| 639 | table_close(pg_index, RowExclusiveLock); |
| 640 | heap_freetuple(tuple); |
| 641 | } |
| 642 | |
| 643 | |
| 644 | /* |
| 645 | * index_create |
| 646 | * |
| 647 | * heapRelation: table to build index on (suitably locked by caller) |
| 648 | * indexRelationName: what it say |
| 649 | * indexRelationId: normally, pass InvalidOid to let this routine |
| 650 | * generate an OID for the index. During bootstrap this may be |
| 651 | * nonzero to specify a preselected OID. |
| 652 | * parentIndexRelid: if creating an index partition, the OID of the |
| 653 | * parent index; otherwise InvalidOid. |
| 654 | * parentConstraintId: if creating a constraint on a partition, the OID |
| 655 | * of the constraint in the parent; otherwise InvalidOid. |
| 656 | * relFileNode: normally, pass InvalidOid to get new storage. May be |
| 657 | * nonzero to attach an existing valid build. |
| 658 | * indexInfo: same info executor uses to insert into the index |
| 659 | * indexColNames: column names to use for index (List of char *) |
| 660 | * accessMethodObjectId: OID of index AM to use |
| 661 | * tableSpaceId: OID of tablespace to use |
| 662 | * collationObjectId: array of collation OIDs, one per index column |
| 663 | * classObjectId: array of index opclass OIDs, one per index column |
| 664 | * coloptions: array of per-index-column indoption settings |
| 665 | * reloptions: AM-specific options |
| 666 | * flags: bitmask that can include any combination of these bits: |
| 667 | * INDEX_CREATE_IS_PRIMARY |
| 668 | * the index is a primary key |
| 669 | * INDEX_CREATE_ADD_CONSTRAINT: |
| 670 | * invoke index_constraint_create also |
| 671 | * INDEX_CREATE_SKIP_BUILD: |
| 672 | * skip the index_build() step for the moment; caller must do it |
| 673 | * later (typically via reindex_index()) |
| 674 | * INDEX_CREATE_CONCURRENT: |
| 675 | * do not lock the table against writers. The index will be |
| 676 | * marked "invalid" and the caller must take additional steps |
| 677 | * to fix it up. |
| 678 | * INDEX_CREATE_IF_NOT_EXISTS: |
| 679 | * do not throw an error if a relation with the same name |
| 680 | * already exists. |
| 681 | * INDEX_CREATE_PARTITIONED: |
| 682 | * create a partitioned index (table must be partitioned) |
| 683 | * constr_flags: flags passed to index_constraint_create |
| 684 | * (only if INDEX_CREATE_ADD_CONSTRAINT is set) |
| 685 | * allow_system_table_mods: allow table to be a system catalog |
| 686 | * is_internal: if true, post creation hook for new index |
| 687 | * constraintId: if not NULL, receives OID of created constraint |
| 688 | * |
| 689 | * Returns the OID of the created index. |
| 690 | */ |
| 691 | Oid |
| 692 | index_create(Relation heapRelation, |
| 693 | const char *indexRelationName, |
| 694 | Oid indexRelationId, |
| 695 | Oid parentIndexRelid, |
| 696 | Oid parentConstraintId, |
| 697 | Oid relFileNode, |
| 698 | IndexInfo *indexInfo, |
| 699 | List *indexColNames, |
| 700 | Oid accessMethodObjectId, |
| 701 | Oid tableSpaceId, |
| 702 | Oid *collationObjectId, |
| 703 | Oid *classObjectId, |
| 704 | int16 *coloptions, |
| 705 | Datum reloptions, |
| 706 | bits16 flags, |
| 707 | bits16 constr_flags, |
| 708 | bool allow_system_table_mods, |
| 709 | bool is_internal, |
| 710 | Oid *constraintId) |
| 711 | { |
| 712 | Oid heapRelationId = RelationGetRelid(heapRelation); |
| 713 | Relation pg_class; |
| 714 | Relation indexRelation; |
| 715 | TupleDesc indexTupDesc; |
| 716 | bool shared_relation; |
| 717 | bool mapped_relation; |
| 718 | bool is_exclusion; |
| 719 | Oid namespaceId; |
| 720 | int i; |
| 721 | char relpersistence; |
| 722 | bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0; |
| 723 | bool invalid = (flags & INDEX_CREATE_INVALID) != 0; |
| 724 | bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0; |
| 725 | bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0; |
| 726 | char relkind; |
| 727 | TransactionId relfrozenxid; |
| 728 | MultiXactId relminmxid; |
| 729 | |
| 730 | /* constraint flags can only be set when a constraint is requested */ |
| 731 | Assert((constr_flags == 0) || |
| 732 | ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)); |
| 733 | /* partitioned indexes must never be "built" by themselves */ |
| 734 | Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD)); |
| 735 | |
| 736 | relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX; |
| 737 | is_exclusion = (indexInfo->ii_ExclusionOps != NULL); |
| 738 | |
| 739 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
| 740 | |
| 741 | /* |
| 742 | * The index will be in the same namespace as its parent table, and is |
| 743 | * shared across databases if and only if the parent is. Likewise, it |
| 744 | * will use the relfilenode map if and only if the parent does; and it |
| 745 | * inherits the parent's relpersistence. |
| 746 | */ |
| 747 | namespaceId = RelationGetNamespace(heapRelation); |
| 748 | shared_relation = heapRelation->rd_rel->relisshared; |
| 749 | mapped_relation = RelationIsMapped(heapRelation); |
| 750 | relpersistence = heapRelation->rd_rel->relpersistence; |
| 751 | |
| 752 | /* |
| 753 | * check parameters |
| 754 | */ |
| 755 | if (indexInfo->ii_NumIndexAttrs < 1) |
| 756 | elog(ERROR, "must index at least one column" ); |
| 757 | |
| 758 | if (!allow_system_table_mods && |
| 759 | IsSystemRelation(heapRelation) && |
| 760 | IsNormalProcessingMode()) |
| 761 | ereport(ERROR, |
| 762 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 763 | errmsg("user-defined indexes on system catalog tables are not supported" ))); |
| 764 | |
| 765 | /* |
| 766 | * Btree text_pattern_ops uses text_eq as the equality operator, which is |
| 767 | * fine as long as the collation is deterministic; text_eq then reduces to |
| 768 | * bitwise equality and so it is semantically compatible with the other |
| 769 | * operators and functions in that opclass. But with a nondeterministic |
| 770 | * collation, text_eq could yield results that are incompatible with the |
| 771 | * actual behavior of the index (which is determined by the opclass's |
| 772 | * comparison function). We prevent such problems by refusing creation of |
| 773 | * an index with that opclass and a nondeterministic collation. |
| 774 | * |
| 775 | * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we |
| 776 | * find more cases, we might decide to create a real mechanism for marking |
| 777 | * opclasses as incompatible with nondeterminism; but for now, this small |
| 778 | * hack suffices. |
| 779 | * |
| 780 | * Another solution is to use a special operator, not text_eq, as the |
| 781 | * equality opclass member; but that is undesirable because it would |
| 782 | * prevent index usage in many queries that work fine today. |
| 783 | */ |
| 784 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
| 785 | { |
| 786 | Oid collation = collationObjectId[i]; |
| 787 | Oid opclass = classObjectId[i]; |
| 788 | |
| 789 | if (collation) |
| 790 | { |
| 791 | if ((opclass == TEXT_BTREE_PATTERN_OPS_OID || |
| 792 | opclass == VARCHAR_BTREE_PATTERN_OPS_OID || |
| 793 | opclass == BPCHAR_BTREE_PATTERN_OPS_OID) && |
| 794 | !get_collation_isdeterministic(collation)) |
| 795 | { |
| 796 | HeapTuple classtup; |
| 797 | |
| 798 | classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass)); |
| 799 | if (!HeapTupleIsValid(classtup)) |
| 800 | elog(ERROR, "cache lookup failed for operator class %u" , opclass); |
| 801 | ereport(ERROR, |
| 802 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 803 | errmsg("nondeterministic collations are not supported for operator class \"%s\"" , |
| 804 | NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname)))); |
| 805 | ReleaseSysCache(classtup); |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | * Concurrent index build on a system catalog is unsafe because we tend to |
| 812 | * release locks before committing in catalogs. |
| 813 | */ |
| 814 | if (concurrent && |
| 815 | IsCatalogRelation(heapRelation)) |
| 816 | ereport(ERROR, |
| 817 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 818 | errmsg("concurrent index creation on system catalog tables is not supported" ))); |
| 819 | |
| 820 | /* |
| 821 | * This case is currently not supported. There's no way to ask for it in |
| 822 | * the grammar with CREATE INDEX, but it can happen with REINDEX. |
| 823 | */ |
| 824 | if (concurrent && is_exclusion) |
| 825 | ereport(ERROR, |
| 826 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 827 | errmsg("concurrent index creation for exclusion constraints is not supported" ))); |
| 828 | |
| 829 | /* |
| 830 | * We cannot allow indexing a shared relation after initdb (because |
| 831 | * there's no way to make the entry in other databases' pg_class). |
| 832 | */ |
| 833 | if (shared_relation && !IsBootstrapProcessingMode()) |
| 834 | ereport(ERROR, |
| 835 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 836 | errmsg("shared indexes cannot be created after initdb" ))); |
| 837 | |
| 838 | /* |
| 839 | * Shared relations must be in pg_global, too (last-ditch check) |
| 840 | */ |
| 841 | if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID) |
| 842 | elog(ERROR, "shared relations must be placed in pg_global tablespace" ); |
| 843 | |
| 844 | /* |
| 845 | * Check for duplicate name (both as to the index, and as to the |
| 846 | * associated constraint if any). Such cases would fail on the relevant |
| 847 | * catalogs' unique indexes anyway, but we prefer to give a friendlier |
| 848 | * error message. |
| 849 | */ |
| 850 | if (get_relname_relid(indexRelationName, namespaceId)) |
| 851 | { |
| 852 | if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0) |
| 853 | { |
| 854 | ereport(NOTICE, |
| 855 | (errcode(ERRCODE_DUPLICATE_TABLE), |
| 856 | errmsg("relation \"%s\" already exists, skipping" , |
| 857 | indexRelationName))); |
| 858 | table_close(pg_class, RowExclusiveLock); |
| 859 | return InvalidOid; |
| 860 | } |
| 861 | |
| 862 | ereport(ERROR, |
| 863 | (errcode(ERRCODE_DUPLICATE_TABLE), |
| 864 | errmsg("relation \"%s\" already exists" , |
| 865 | indexRelationName))); |
| 866 | } |
| 867 | |
| 868 | if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 && |
| 869 | ConstraintNameIsUsed(CONSTRAINT_RELATION, heapRelationId, |
| 870 | indexRelationName)) |
| 871 | { |
| 872 | /* |
| 873 | * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the |
| 874 | * conflicting constraint is not an index. |
| 875 | */ |
| 876 | ereport(ERROR, |
| 877 | (errcode(ERRCODE_DUPLICATE_OBJECT), |
| 878 | errmsg("constraint \"%s\" for relation \"%s\" already exists" , |
| 879 | indexRelationName, RelationGetRelationName(heapRelation)))); |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * construct tuple descriptor for index tuples |
| 884 | */ |
| 885 | indexTupDesc = ConstructTupleDescriptor(heapRelation, |
| 886 | indexInfo, |
| 887 | indexColNames, |
| 888 | accessMethodObjectId, |
| 889 | collationObjectId, |
| 890 | classObjectId); |
| 891 | |
| 892 | /* |
| 893 | * Allocate an OID for the index, unless we were told what to use. |
| 894 | * |
| 895 | * The OID will be the relfilenode as well, so make sure it doesn't |
| 896 | * collide with either pg_class OIDs or existing physical files. |
| 897 | */ |
| 898 | if (!OidIsValid(indexRelationId)) |
| 899 | { |
| 900 | /* Use binary-upgrade override for pg_class.oid/relfilenode? */ |
| 901 | if (IsBinaryUpgrade) |
| 902 | { |
| 903 | if (!OidIsValid(binary_upgrade_next_index_pg_class_oid)) |
| 904 | ereport(ERROR, |
| 905 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 906 | errmsg("pg_class index OID value not set when in binary upgrade mode" ))); |
| 907 | |
| 908 | indexRelationId = binary_upgrade_next_index_pg_class_oid; |
| 909 | binary_upgrade_next_index_pg_class_oid = InvalidOid; |
| 910 | } |
| 911 | else |
| 912 | { |
| 913 | indexRelationId = |
| 914 | GetNewRelFileNode(tableSpaceId, pg_class, relpersistence); |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * create the index relation's relcache entry and, if necessary, the |
| 920 | * physical disk file. (If we fail further down, it's the smgr's |
| 921 | * responsibility to remove the disk file again, if any.) |
| 922 | */ |
| 923 | indexRelation = heap_create(indexRelationName, |
| 924 | namespaceId, |
| 925 | tableSpaceId, |
| 926 | indexRelationId, |
| 927 | relFileNode, |
| 928 | accessMethodObjectId, |
| 929 | indexTupDesc, |
| 930 | relkind, |
| 931 | relpersistence, |
| 932 | shared_relation, |
| 933 | mapped_relation, |
| 934 | allow_system_table_mods, |
| 935 | &relfrozenxid, |
| 936 | &relminmxid); |
| 937 | |
| 938 | Assert(relfrozenxid == InvalidTransactionId); |
| 939 | Assert(relminmxid == InvalidMultiXactId); |
| 940 | Assert(indexRelationId == RelationGetRelid(indexRelation)); |
| 941 | |
| 942 | /* |
| 943 | * Obtain exclusive lock on it. Although no other transactions can see it |
| 944 | * until we commit, this prevents deadlock-risk complaints from lock |
| 945 | * manager in cases such as CLUSTER. |
| 946 | */ |
| 947 | LockRelation(indexRelation, AccessExclusiveLock); |
| 948 | |
| 949 | /* |
| 950 | * Fill in fields of the index's pg_class entry that are not set correctly |
| 951 | * by heap_create. |
| 952 | * |
| 953 | * XXX should have a cleaner way to create cataloged indexes |
| 954 | */ |
| 955 | indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner; |
| 956 | indexRelation->rd_rel->relam = accessMethodObjectId; |
| 957 | indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid); |
| 958 | |
| 959 | /* |
| 960 | * store index's pg_class entry |
| 961 | */ |
| 962 | InsertPgClassTuple(pg_class, indexRelation, |
| 963 | RelationGetRelid(indexRelation), |
| 964 | (Datum) 0, |
| 965 | reloptions); |
| 966 | |
| 967 | /* done with pg_class */ |
| 968 | table_close(pg_class, RowExclusiveLock); |
| 969 | |
| 970 | /* |
| 971 | * now update the object id's of all the attribute tuple forms in the |
| 972 | * index relation's tuple descriptor |
| 973 | */ |
| 974 | InitializeAttributeOids(indexRelation, |
| 975 | indexInfo->ii_NumIndexAttrs, |
| 976 | indexRelationId); |
| 977 | |
| 978 | /* |
| 979 | * append ATTRIBUTE tuples for the index |
| 980 | */ |
| 981 | AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs); |
| 982 | |
| 983 | /* ---------------- |
| 984 | * update pg_index |
| 985 | * (append INDEX tuple) |
| 986 | * |
| 987 | * Note that this stows away a representation of "predicate". |
| 988 | * (Or, could define a rule to maintain the predicate) --Nels, Feb '92 |
| 989 | * ---------------- |
| 990 | */ |
| 991 | UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid, |
| 992 | indexInfo, |
| 993 | collationObjectId, classObjectId, coloptions, |
| 994 | isprimary, is_exclusion, |
| 995 | (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0, |
| 996 | !concurrent && !invalid, |
| 997 | !concurrent); |
| 998 | |
| 999 | /* |
| 1000 | * Register relcache invalidation on the indexes' heap relation, to |
| 1001 | * maintain consistency of its index list |
| 1002 | */ |
| 1003 | CacheInvalidateRelcache(heapRelation); |
| 1004 | |
| 1005 | /* update pg_inherits and the parent's relhassubclass, if needed */ |
| 1006 | if (OidIsValid(parentIndexRelid)) |
| 1007 | { |
| 1008 | StoreSingleInheritance(indexRelationId, parentIndexRelid, 1); |
| 1009 | SetRelationHasSubclass(parentIndexRelid, true); |
| 1010 | } |
| 1011 | |
| 1012 | /* |
| 1013 | * Register constraint and dependencies for the index. |
| 1014 | * |
| 1015 | * If the index is from a CONSTRAINT clause, construct a pg_constraint |
| 1016 | * entry. The index will be linked to the constraint, which in turn is |
| 1017 | * linked to the table. If it's not a CONSTRAINT, we need to make a |
| 1018 | * dependency directly on the table. |
| 1019 | * |
| 1020 | * We don't need a dependency on the namespace, because there'll be an |
| 1021 | * indirect dependency via our parent table. |
| 1022 | * |
| 1023 | * During bootstrap we can't register any dependencies, and we don't try |
| 1024 | * to make a constraint either. |
| 1025 | */ |
| 1026 | if (!IsBootstrapProcessingMode()) |
| 1027 | { |
| 1028 | ObjectAddress myself, |
| 1029 | referenced; |
| 1030 | |
| 1031 | myself.classId = RelationRelationId; |
| 1032 | myself.objectId = indexRelationId; |
| 1033 | myself.objectSubId = 0; |
| 1034 | |
| 1035 | if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0) |
| 1036 | { |
| 1037 | char constraintType; |
| 1038 | ObjectAddress localaddr; |
| 1039 | |
| 1040 | if (isprimary) |
| 1041 | constraintType = CONSTRAINT_PRIMARY; |
| 1042 | else if (indexInfo->ii_Unique) |
| 1043 | constraintType = CONSTRAINT_UNIQUE; |
| 1044 | else if (is_exclusion) |
| 1045 | constraintType = CONSTRAINT_EXCLUSION; |
| 1046 | else |
| 1047 | { |
| 1048 | elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE" ); |
| 1049 | constraintType = 0; /* keep compiler quiet */ |
| 1050 | } |
| 1051 | |
| 1052 | localaddr = index_constraint_create(heapRelation, |
| 1053 | indexRelationId, |
| 1054 | parentConstraintId, |
| 1055 | indexInfo, |
| 1056 | indexRelationName, |
| 1057 | constraintType, |
| 1058 | constr_flags, |
| 1059 | allow_system_table_mods, |
| 1060 | is_internal); |
| 1061 | if (constraintId) |
| 1062 | *constraintId = localaddr.objectId; |
| 1063 | } |
| 1064 | else |
| 1065 | { |
| 1066 | bool have_simple_col = false; |
| 1067 | |
| 1068 | /* Create auto dependencies on simply-referenced columns */ |
| 1069 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
| 1070 | { |
| 1071 | if (indexInfo->ii_IndexAttrNumbers[i] != 0) |
| 1072 | { |
| 1073 | referenced.classId = RelationRelationId; |
| 1074 | referenced.objectId = heapRelationId; |
| 1075 | referenced.objectSubId = indexInfo->ii_IndexAttrNumbers[i]; |
| 1076 | |
| 1077 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
| 1078 | |
| 1079 | have_simple_col = true; |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | /* |
| 1084 | * If there are no simply-referenced columns, give the index an |
| 1085 | * auto dependency on the whole table. In most cases, this will |
| 1086 | * be redundant, but it might not be if the index expressions and |
| 1087 | * predicate contain no Vars or only whole-row Vars. |
| 1088 | */ |
| 1089 | if (!have_simple_col) |
| 1090 | { |
| 1091 | referenced.classId = RelationRelationId; |
| 1092 | referenced.objectId = heapRelationId; |
| 1093 | referenced.objectSubId = 0; |
| 1094 | |
| 1095 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | /* |
| 1100 | * If this is an index partition, create partition dependencies on |
| 1101 | * both the parent index and the table. (Note: these must be *in |
| 1102 | * addition to*, not instead of, all other dependencies. Otherwise |
| 1103 | * we'll be short some dependencies after DETACH PARTITION.) |
| 1104 | */ |
| 1105 | if (OidIsValid(parentIndexRelid)) |
| 1106 | { |
| 1107 | referenced.classId = RelationRelationId; |
| 1108 | referenced.objectId = parentIndexRelid; |
| 1109 | referenced.objectSubId = 0; |
| 1110 | |
| 1111 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI); |
| 1112 | |
| 1113 | referenced.classId = RelationRelationId; |
| 1114 | referenced.objectId = heapRelationId; |
| 1115 | referenced.objectSubId = 0; |
| 1116 | |
| 1117 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC); |
| 1118 | } |
| 1119 | |
| 1120 | /* Store dependency on collations */ |
| 1121 | /* The default collation is pinned, so don't bother recording it */ |
| 1122 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
| 1123 | { |
| 1124 | if (OidIsValid(collationObjectId[i]) && |
| 1125 | collationObjectId[i] != DEFAULT_COLLATION_OID) |
| 1126 | { |
| 1127 | referenced.classId = CollationRelationId; |
| 1128 | referenced.objectId = collationObjectId[i]; |
| 1129 | referenced.objectSubId = 0; |
| 1130 | |
| 1131 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | /* Store dependency on operator classes */ |
| 1136 | for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++) |
| 1137 | { |
| 1138 | referenced.classId = OperatorClassRelationId; |
| 1139 | referenced.objectId = classObjectId[i]; |
| 1140 | referenced.objectSubId = 0; |
| 1141 | |
| 1142 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
| 1143 | } |
| 1144 | |
| 1145 | /* Store dependencies on anything mentioned in index expressions */ |
| 1146 | if (indexInfo->ii_Expressions) |
| 1147 | { |
| 1148 | recordDependencyOnSingleRelExpr(&myself, |
| 1149 | (Node *) indexInfo->ii_Expressions, |
| 1150 | heapRelationId, |
| 1151 | DEPENDENCY_NORMAL, |
| 1152 | DEPENDENCY_AUTO, false); |
| 1153 | } |
| 1154 | |
| 1155 | /* Store dependencies on anything mentioned in predicate */ |
| 1156 | if (indexInfo->ii_Predicate) |
| 1157 | { |
| 1158 | recordDependencyOnSingleRelExpr(&myself, |
| 1159 | (Node *) indexInfo->ii_Predicate, |
| 1160 | heapRelationId, |
| 1161 | DEPENDENCY_NORMAL, |
| 1162 | DEPENDENCY_AUTO, false); |
| 1163 | } |
| 1164 | } |
| 1165 | else |
| 1166 | { |
| 1167 | /* Bootstrap mode - assert we weren't asked for constraint support */ |
| 1168 | Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0); |
| 1169 | } |
| 1170 | |
| 1171 | /* Post creation hook for new index */ |
| 1172 | InvokeObjectPostCreateHookArg(RelationRelationId, |
| 1173 | indexRelationId, 0, is_internal); |
| 1174 | |
| 1175 | /* |
| 1176 | * Advance the command counter so that we can see the newly-entered |
| 1177 | * catalog tuples for the index. |
| 1178 | */ |
| 1179 | CommandCounterIncrement(); |
| 1180 | |
| 1181 | /* |
| 1182 | * In bootstrap mode, we have to fill in the index strategy structure with |
| 1183 | * information from the catalogs. If we aren't bootstrapping, then the |
| 1184 | * relcache entry has already been rebuilt thanks to sinval update during |
| 1185 | * CommandCounterIncrement. |
| 1186 | */ |
| 1187 | if (IsBootstrapProcessingMode()) |
| 1188 | RelationInitIndexAccessInfo(indexRelation); |
| 1189 | else |
| 1190 | Assert(indexRelation->rd_indexcxt != NULL); |
| 1191 | |
| 1192 | indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs; |
| 1193 | |
| 1194 | /* |
| 1195 | * If this is bootstrap (initdb) time, then we don't actually fill in the |
| 1196 | * index yet. We'll be creating more indexes and classes later, so we |
| 1197 | * delay filling them in until just before we're done with bootstrapping. |
| 1198 | * Similarly, if the caller specified to skip the build then filling the |
| 1199 | * index is delayed till later (ALTER TABLE can save work in some cases |
| 1200 | * with this). Otherwise, we call the AM routine that constructs the |
| 1201 | * index. |
| 1202 | */ |
| 1203 | if (IsBootstrapProcessingMode()) |
| 1204 | { |
| 1205 | index_register(heapRelationId, indexRelationId, indexInfo); |
| 1206 | } |
| 1207 | else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0) |
| 1208 | { |
| 1209 | /* |
| 1210 | * Caller is responsible for filling the index later on. However, |
| 1211 | * we'd better make sure that the heap relation is correctly marked as |
| 1212 | * having an index. |
| 1213 | */ |
| 1214 | index_update_stats(heapRelation, |
| 1215 | true, |
| 1216 | -1.0); |
| 1217 | /* Make the above update visible */ |
| 1218 | CommandCounterIncrement(); |
| 1219 | } |
| 1220 | else |
| 1221 | { |
| 1222 | index_build(heapRelation, indexRelation, indexInfo, false, true); |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * Close the index; but we keep the lock that we acquired above until end |
| 1227 | * of transaction. Closing the heap is caller's responsibility. |
| 1228 | */ |
| 1229 | index_close(indexRelation, NoLock); |
| 1230 | |
| 1231 | return indexRelationId; |
| 1232 | } |
| 1233 | |
| 1234 | /* |
| 1235 | * index_concurrently_create_copy |
| 1236 | * |
| 1237 | * Create concurrently an index based on the definition of the one provided by |
| 1238 | * caller. The index is inserted into catalogs and needs to be built later |
| 1239 | * on. This is called during concurrent reindex processing. |
| 1240 | */ |
| 1241 | Oid |
| 1242 | index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName) |
| 1243 | { |
| 1244 | Relation indexRelation; |
| 1245 | IndexInfo *oldInfo, |
| 1246 | *newInfo; |
| 1247 | Oid newIndexId = InvalidOid; |
| 1248 | HeapTuple indexTuple, |
| 1249 | classTuple; |
| 1250 | Datum indclassDatum, |
| 1251 | colOptionDatum, |
| 1252 | optionDatum; |
| 1253 | oidvector *indclass; |
| 1254 | int2vector *indcoloptions; |
| 1255 | bool isnull; |
| 1256 | List *indexColNames = NIL; |
| 1257 | List *indexExprs = NIL; |
| 1258 | List *indexPreds = NIL; |
| 1259 | |
| 1260 | indexRelation = index_open(oldIndexId, RowExclusiveLock); |
| 1261 | |
| 1262 | /* The new index needs some information from the old index */ |
| 1263 | oldInfo = BuildIndexInfo(indexRelation); |
| 1264 | |
| 1265 | /* |
| 1266 | * Concurrent build of an index with exclusion constraints is not |
| 1267 | * supported. |
| 1268 | */ |
| 1269 | if (oldInfo->ii_ExclusionOps != NULL) |
| 1270 | ereport(ERROR, |
| 1271 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1272 | errmsg("concurrent index creation for exclusion constraints is not supported" ))); |
| 1273 | |
| 1274 | /* Get the array of class and column options IDs from index info */ |
| 1275 | indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId)); |
| 1276 | if (!HeapTupleIsValid(indexTuple)) |
| 1277 | elog(ERROR, "cache lookup failed for index %u" , oldIndexId); |
| 1278 | indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
| 1279 | Anum_pg_index_indclass, &isnull); |
| 1280 | Assert(!isnull); |
| 1281 | indclass = (oidvector *) DatumGetPointer(indclassDatum); |
| 1282 | |
| 1283 | colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
| 1284 | Anum_pg_index_indoption, &isnull); |
| 1285 | Assert(!isnull); |
| 1286 | indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum); |
| 1287 | |
| 1288 | /* Fetch options of index if any */ |
| 1289 | classTuple = SearchSysCache1(RELOID, oldIndexId); |
| 1290 | if (!HeapTupleIsValid(classTuple)) |
| 1291 | elog(ERROR, "cache lookup failed for relation %u" , oldIndexId); |
| 1292 | optionDatum = SysCacheGetAttr(RELOID, classTuple, |
| 1293 | Anum_pg_class_reloptions, &isnull); |
| 1294 | |
| 1295 | /* |
| 1296 | * Fetch the list of expressions and predicates directly from the |
| 1297 | * catalogs. This cannot rely on the information from IndexInfo of the |
| 1298 | * old index as these have been flattened for the planner. |
| 1299 | */ |
| 1300 | if (oldInfo->ii_Expressions != NIL) |
| 1301 | { |
| 1302 | Datum exprDatum; |
| 1303 | char *exprString; |
| 1304 | |
| 1305 | exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
| 1306 | Anum_pg_index_indexprs, &isnull); |
| 1307 | Assert(!isnull); |
| 1308 | exprString = TextDatumGetCString(exprDatum); |
| 1309 | indexExprs = (List *) stringToNode(exprString); |
| 1310 | pfree(exprString); |
| 1311 | } |
| 1312 | if (oldInfo->ii_Predicate != NIL) |
| 1313 | { |
| 1314 | Datum predDatum; |
| 1315 | char *predString; |
| 1316 | |
| 1317 | predDatum = SysCacheGetAttr(INDEXRELID, indexTuple, |
| 1318 | Anum_pg_index_indpred, &isnull); |
| 1319 | Assert(!isnull); |
| 1320 | predString = TextDatumGetCString(predDatum); |
| 1321 | indexPreds = (List *) stringToNode(predString); |
| 1322 | |
| 1323 | /* Also convert to implicit-AND format */ |
| 1324 | indexPreds = make_ands_implicit((Expr *) indexPreds); |
| 1325 | pfree(predString); |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * Build the index information for the new index. Note that rebuild of |
| 1330 | * indexes with exclusion constraints is not supported, hence there is no |
| 1331 | * need to fill all the ii_Exclusion* fields. |
| 1332 | */ |
| 1333 | newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs, |
| 1334 | oldInfo->ii_NumIndexKeyAttrs, |
| 1335 | oldInfo->ii_Am, |
| 1336 | indexExprs, |
| 1337 | indexPreds, |
| 1338 | oldInfo->ii_Unique, |
| 1339 | false, /* not ready for inserts */ |
| 1340 | true); |
| 1341 | |
| 1342 | /* |
| 1343 | * Extract the list of column names and the column numbers for the new |
| 1344 | * index information. All this information will be used for the index |
| 1345 | * creation. |
| 1346 | */ |
| 1347 | for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++) |
| 1348 | { |
| 1349 | TupleDesc indexTupDesc = RelationGetDescr(indexRelation); |
| 1350 | Form_pg_attribute att = TupleDescAttr(indexTupDesc, i); |
| 1351 | |
| 1352 | indexColNames = lappend(indexColNames, NameStr(att->attname)); |
| 1353 | newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i]; |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * Now create the new index. |
| 1358 | * |
| 1359 | * For a partition index, we adjust the partition dependency later, to |
| 1360 | * ensure a consistent state at all times. That is why parentIndexRelid |
| 1361 | * is not set here. |
| 1362 | */ |
| 1363 | newIndexId = index_create(heapRelation, |
| 1364 | newName, |
| 1365 | InvalidOid, /* indexRelationId */ |
| 1366 | InvalidOid, /* parentIndexRelid */ |
| 1367 | InvalidOid, /* parentConstraintId */ |
| 1368 | InvalidOid, /* relFileNode */ |
| 1369 | newInfo, |
| 1370 | indexColNames, |
| 1371 | indexRelation->rd_rel->relam, |
| 1372 | indexRelation->rd_rel->reltablespace, |
| 1373 | indexRelation->rd_indcollation, |
| 1374 | indclass->values, |
| 1375 | indcoloptions->values, |
| 1376 | optionDatum, |
| 1377 | INDEX_CREATE_SKIP_BUILD | INDEX_CREATE_CONCURRENT, |
| 1378 | 0, |
| 1379 | true, /* allow table to be a system catalog? */ |
| 1380 | false, /* is_internal? */ |
| 1381 | NULL); |
| 1382 | |
| 1383 | /* Close the relations used and clean up */ |
| 1384 | index_close(indexRelation, NoLock); |
| 1385 | ReleaseSysCache(indexTuple); |
| 1386 | ReleaseSysCache(classTuple); |
| 1387 | |
| 1388 | return newIndexId; |
| 1389 | } |
| 1390 | |
| 1391 | /* |
| 1392 | * index_concurrently_build |
| 1393 | * |
| 1394 | * Build index for a concurrent operation. Low-level locks are taken when |
| 1395 | * this operation is performed to prevent only schema changes, but they need |
| 1396 | * to be kept until the end of the transaction performing this operation. |
| 1397 | * 'indexOid' refers to an index relation OID already created as part of |
| 1398 | * previous processing, and 'heapOid' refers to its parent heap relation. |
| 1399 | */ |
| 1400 | void |
| 1401 | index_concurrently_build(Oid heapRelationId, |
| 1402 | Oid indexRelationId) |
| 1403 | { |
| 1404 | Relation heapRel; |
| 1405 | Relation indexRelation; |
| 1406 | IndexInfo *indexInfo; |
| 1407 | |
| 1408 | /* This had better make sure that a snapshot is active */ |
| 1409 | Assert(ActiveSnapshotSet()); |
| 1410 | |
| 1411 | /* Open and lock the parent heap relation */ |
| 1412 | heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock); |
| 1413 | |
| 1414 | /* And the target index relation */ |
| 1415 | indexRelation = index_open(indexRelationId, RowExclusiveLock); |
| 1416 | |
| 1417 | /* |
| 1418 | * We have to re-build the IndexInfo struct, since it was lost in the |
| 1419 | * commit of the transaction where this concurrent index was created at |
| 1420 | * the catalog level. |
| 1421 | */ |
| 1422 | indexInfo = BuildIndexInfo(indexRelation); |
| 1423 | Assert(!indexInfo->ii_ReadyForInserts); |
| 1424 | indexInfo->ii_Concurrent = true; |
| 1425 | indexInfo->ii_BrokenHotChain = false; |
| 1426 | |
| 1427 | /* Now build the index */ |
| 1428 | index_build(heapRel, indexRelation, indexInfo, false, true); |
| 1429 | |
| 1430 | /* Close both the relations, but keep the locks */ |
| 1431 | table_close(heapRel, NoLock); |
| 1432 | index_close(indexRelation, NoLock); |
| 1433 | |
| 1434 | /* |
| 1435 | * Update the pg_index row to mark the index as ready for inserts. Once we |
| 1436 | * commit this transaction, any new transactions that open the table must |
| 1437 | * insert new entries into the index for insertions and non-HOT updates. |
| 1438 | */ |
| 1439 | index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY); |
| 1440 | } |
| 1441 | |
| 1442 | /* |
| 1443 | * index_concurrently_swap |
| 1444 | * |
| 1445 | * Swap name, dependencies, and constraints of the old index over to the new |
| 1446 | * index, while marking the old index as invalid and the new as valid. |
| 1447 | */ |
| 1448 | void |
| 1449 | index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName) |
| 1450 | { |
| 1451 | Relation pg_class, |
| 1452 | pg_index, |
| 1453 | pg_constraint, |
| 1454 | pg_trigger; |
| 1455 | Relation oldClassRel, |
| 1456 | newClassRel; |
| 1457 | HeapTuple oldClassTuple, |
| 1458 | newClassTuple; |
| 1459 | Form_pg_class oldClassForm, |
| 1460 | newClassForm; |
| 1461 | HeapTuple oldIndexTuple, |
| 1462 | newIndexTuple; |
| 1463 | Form_pg_index oldIndexForm, |
| 1464 | newIndexForm; |
| 1465 | Oid indexConstraintOid; |
| 1466 | List *constraintOids = NIL; |
| 1467 | ListCell *lc; |
| 1468 | |
| 1469 | /* |
| 1470 | * Take a necessary lock on the old and new index before swapping them. |
| 1471 | */ |
| 1472 | oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock); |
| 1473 | newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock); |
| 1474 | |
| 1475 | /* Now swap names and dependencies of those indexes */ |
| 1476 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
| 1477 | |
| 1478 | oldClassTuple = SearchSysCacheCopy1(RELOID, |
| 1479 | ObjectIdGetDatum(oldIndexId)); |
| 1480 | if (!HeapTupleIsValid(oldClassTuple)) |
| 1481 | elog(ERROR, "could not find tuple for relation %u" , oldIndexId); |
| 1482 | newClassTuple = SearchSysCacheCopy1(RELOID, |
| 1483 | ObjectIdGetDatum(newIndexId)); |
| 1484 | if (!HeapTupleIsValid(newClassTuple)) |
| 1485 | elog(ERROR, "could not find tuple for relation %u" , newIndexId); |
| 1486 | |
| 1487 | oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple); |
| 1488 | newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple); |
| 1489 | |
| 1490 | /* Swap the names */ |
| 1491 | namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname)); |
| 1492 | namestrcpy(&oldClassForm->relname, oldName); |
| 1493 | |
| 1494 | /* Copy partition flag to track inheritance properly */ |
| 1495 | newClassForm->relispartition = oldClassForm->relispartition; |
| 1496 | |
| 1497 | CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple); |
| 1498 | CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple); |
| 1499 | |
| 1500 | heap_freetuple(oldClassTuple); |
| 1501 | heap_freetuple(newClassTuple); |
| 1502 | |
| 1503 | /* Now swap index info */ |
| 1504 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 1505 | |
| 1506 | oldIndexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 1507 | ObjectIdGetDatum(oldIndexId)); |
| 1508 | if (!HeapTupleIsValid(oldIndexTuple)) |
| 1509 | elog(ERROR, "could not find tuple for relation %u" , oldIndexId); |
| 1510 | newIndexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 1511 | ObjectIdGetDatum(newIndexId)); |
| 1512 | if (!HeapTupleIsValid(newIndexTuple)) |
| 1513 | elog(ERROR, "could not find tuple for relation %u" , newIndexId); |
| 1514 | |
| 1515 | oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple); |
| 1516 | newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple); |
| 1517 | |
| 1518 | /* |
| 1519 | * Copy constraint flags from the old index. This is safe because the old |
| 1520 | * index guaranteed uniqueness. |
| 1521 | */ |
| 1522 | newIndexForm->indisprimary = oldIndexForm->indisprimary; |
| 1523 | oldIndexForm->indisprimary = false; |
| 1524 | newIndexForm->indisexclusion = oldIndexForm->indisexclusion; |
| 1525 | oldIndexForm->indisexclusion = false; |
| 1526 | newIndexForm->indimmediate = oldIndexForm->indimmediate; |
| 1527 | oldIndexForm->indimmediate = true; |
| 1528 | |
| 1529 | /* Mark old index as valid and new as invalid as index_set_state_flags */ |
| 1530 | newIndexForm->indisvalid = true; |
| 1531 | oldIndexForm->indisvalid = false; |
| 1532 | oldIndexForm->indisclustered = false; |
| 1533 | |
| 1534 | CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple); |
| 1535 | CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple); |
| 1536 | |
| 1537 | heap_freetuple(oldIndexTuple); |
| 1538 | heap_freetuple(newIndexTuple); |
| 1539 | |
| 1540 | /* |
| 1541 | * Move constraints and triggers over to the new index |
| 1542 | */ |
| 1543 | |
| 1544 | constraintOids = get_index_ref_constraints(oldIndexId); |
| 1545 | |
| 1546 | indexConstraintOid = get_index_constraint(oldIndexId); |
| 1547 | |
| 1548 | if (OidIsValid(indexConstraintOid)) |
| 1549 | constraintOids = lappend_oid(constraintOids, indexConstraintOid); |
| 1550 | |
| 1551 | pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock); |
| 1552 | pg_trigger = table_open(TriggerRelationId, RowExclusiveLock); |
| 1553 | |
| 1554 | foreach(lc, constraintOids) |
| 1555 | { |
| 1556 | HeapTuple constraintTuple, |
| 1557 | triggerTuple; |
| 1558 | Form_pg_constraint conForm; |
| 1559 | ScanKeyData key[1]; |
| 1560 | SysScanDesc scan; |
| 1561 | Oid constraintOid = lfirst_oid(lc); |
| 1562 | |
| 1563 | /* Move the constraint from the old to the new index */ |
| 1564 | constraintTuple = SearchSysCacheCopy1(CONSTROID, |
| 1565 | ObjectIdGetDatum(constraintOid)); |
| 1566 | if (!HeapTupleIsValid(constraintTuple)) |
| 1567 | elog(ERROR, "could not find tuple for constraint %u" , constraintOid); |
| 1568 | |
| 1569 | conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple)); |
| 1570 | |
| 1571 | if (conForm->conindid == oldIndexId) |
| 1572 | { |
| 1573 | conForm->conindid = newIndexId; |
| 1574 | |
| 1575 | CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple); |
| 1576 | } |
| 1577 | |
| 1578 | heap_freetuple(constraintTuple); |
| 1579 | |
| 1580 | /* Search for trigger records */ |
| 1581 | ScanKeyInit(&key[0], |
| 1582 | Anum_pg_trigger_tgconstraint, |
| 1583 | BTEqualStrategyNumber, F_OIDEQ, |
| 1584 | ObjectIdGetDatum(constraintOid)); |
| 1585 | |
| 1586 | scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true, |
| 1587 | NULL, 1, key); |
| 1588 | |
| 1589 | while (HeapTupleIsValid((triggerTuple = systable_getnext(scan)))) |
| 1590 | { |
| 1591 | Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple); |
| 1592 | |
| 1593 | if (tgForm->tgconstrindid != oldIndexId) |
| 1594 | continue; |
| 1595 | |
| 1596 | /* Make a modifiable copy */ |
| 1597 | triggerTuple = heap_copytuple(triggerTuple); |
| 1598 | tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple); |
| 1599 | |
| 1600 | tgForm->tgconstrindid = newIndexId; |
| 1601 | |
| 1602 | CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple); |
| 1603 | |
| 1604 | heap_freetuple(triggerTuple); |
| 1605 | } |
| 1606 | |
| 1607 | systable_endscan(scan); |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Move comment if any |
| 1612 | */ |
| 1613 | { |
| 1614 | Relation description; |
| 1615 | ScanKeyData skey[3]; |
| 1616 | SysScanDesc sd; |
| 1617 | HeapTuple tuple; |
| 1618 | Datum values[Natts_pg_description] = {0}; |
| 1619 | bool nulls[Natts_pg_description] = {0}; |
| 1620 | bool replaces[Natts_pg_description] = {0}; |
| 1621 | |
| 1622 | values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId); |
| 1623 | replaces[Anum_pg_description_objoid - 1] = true; |
| 1624 | |
| 1625 | ScanKeyInit(&skey[0], |
| 1626 | Anum_pg_description_objoid, |
| 1627 | BTEqualStrategyNumber, F_OIDEQ, |
| 1628 | ObjectIdGetDatum(oldIndexId)); |
| 1629 | ScanKeyInit(&skey[1], |
| 1630 | Anum_pg_description_classoid, |
| 1631 | BTEqualStrategyNumber, F_OIDEQ, |
| 1632 | ObjectIdGetDatum(RelationRelationId)); |
| 1633 | ScanKeyInit(&skey[2], |
| 1634 | Anum_pg_description_objsubid, |
| 1635 | BTEqualStrategyNumber, F_INT4EQ, |
| 1636 | Int32GetDatum(0)); |
| 1637 | |
| 1638 | description = table_open(DescriptionRelationId, RowExclusiveLock); |
| 1639 | |
| 1640 | sd = systable_beginscan(description, DescriptionObjIndexId, true, |
| 1641 | NULL, 3, skey); |
| 1642 | |
| 1643 | while ((tuple = systable_getnext(sd)) != NULL) |
| 1644 | { |
| 1645 | tuple = heap_modify_tuple(tuple, RelationGetDescr(description), |
| 1646 | values, nulls, replaces); |
| 1647 | CatalogTupleUpdate(description, &tuple->t_self, tuple); |
| 1648 | |
| 1649 | break; /* Assume there can be only one match */ |
| 1650 | } |
| 1651 | |
| 1652 | systable_endscan(sd); |
| 1653 | table_close(description, NoLock); |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Swap inheritance relationship with parent index |
| 1658 | */ |
| 1659 | if (get_rel_relispartition(oldIndexId)) |
| 1660 | { |
| 1661 | List *ancestors = get_partition_ancestors(oldIndexId); |
| 1662 | Oid parentIndexRelid = linitial_oid(ancestors); |
| 1663 | |
| 1664 | DeleteInheritsTuple(oldIndexId, parentIndexRelid); |
| 1665 | StoreSingleInheritance(newIndexId, parentIndexRelid, 1); |
| 1666 | |
| 1667 | list_free(ancestors); |
| 1668 | } |
| 1669 | |
| 1670 | /* |
| 1671 | * Move all dependencies of and on the old index to the new one |
| 1672 | */ |
| 1673 | changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId); |
| 1674 | changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId); |
| 1675 | |
| 1676 | /* |
| 1677 | * Copy over statistics from old to new index |
| 1678 | */ |
| 1679 | { |
| 1680 | PgStat_StatTabEntry *tabentry; |
| 1681 | |
| 1682 | tabentry = pgstat_fetch_stat_tabentry(oldIndexId); |
| 1683 | if (tabentry) |
| 1684 | { |
| 1685 | if (newClassRel->pgstat_info) |
| 1686 | { |
| 1687 | newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans; |
| 1688 | newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned; |
| 1689 | newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched; |
| 1690 | newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched; |
| 1691 | newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit; |
| 1692 | |
| 1693 | /* |
| 1694 | * The data will be sent by the next pgstat_report_stat() |
| 1695 | * call. |
| 1696 | */ |
| 1697 | } |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | /* Close relations */ |
| 1702 | table_close(pg_class, RowExclusiveLock); |
| 1703 | table_close(pg_index, RowExclusiveLock); |
| 1704 | table_close(pg_constraint, RowExclusiveLock); |
| 1705 | table_close(pg_trigger, RowExclusiveLock); |
| 1706 | |
| 1707 | /* The lock taken previously is not released until the end of transaction */ |
| 1708 | relation_close(oldClassRel, NoLock); |
| 1709 | relation_close(newClassRel, NoLock); |
| 1710 | } |
| 1711 | |
| 1712 | /* |
| 1713 | * index_concurrently_set_dead |
| 1714 | * |
| 1715 | * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX |
| 1716 | * CONCURRENTLY before actually dropping the index. After calling this |
| 1717 | * function, the index is seen by all the backends as dead. Low-level locks |
| 1718 | * taken here are kept until the end of the transaction calling this function. |
| 1719 | */ |
| 1720 | void |
| 1721 | index_concurrently_set_dead(Oid heapId, Oid indexId) |
| 1722 | { |
| 1723 | Relation userHeapRelation; |
| 1724 | Relation userIndexRelation; |
| 1725 | |
| 1726 | /* |
| 1727 | * No more predicate locks will be acquired on this index, and we're about |
| 1728 | * to stop doing inserts into the index which could show conflicts with |
| 1729 | * existing predicate locks, so now is the time to move them to the heap |
| 1730 | * relation. |
| 1731 | */ |
| 1732 | userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
| 1733 | userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock); |
| 1734 | TransferPredicateLocksToHeapRelation(userIndexRelation); |
| 1735 | |
| 1736 | /* |
| 1737 | * Now we are sure that nobody uses the index for queries; they just might |
| 1738 | * have it open for updating it. So now we can unset indisready and |
| 1739 | * indislive, then wait till nobody could be using it at all anymore. |
| 1740 | */ |
| 1741 | index_set_state_flags(indexId, INDEX_DROP_SET_DEAD); |
| 1742 | |
| 1743 | /* |
| 1744 | * Invalidate the relcache for the table, so that after this commit all |
| 1745 | * sessions will refresh the table's index list. Forgetting just the |
| 1746 | * index's relcache entry is not enough. |
| 1747 | */ |
| 1748 | CacheInvalidateRelcache(userHeapRelation); |
| 1749 | |
| 1750 | /* |
| 1751 | * Close the relations again, though still holding session lock. |
| 1752 | */ |
| 1753 | table_close(userHeapRelation, NoLock); |
| 1754 | index_close(userIndexRelation, NoLock); |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * index_constraint_create |
| 1759 | * |
| 1760 | * Set up a constraint associated with an index. Return the new constraint's |
| 1761 | * address. |
| 1762 | * |
| 1763 | * heapRelation: table owning the index (must be suitably locked by caller) |
| 1764 | * indexRelationId: OID of the index |
| 1765 | * parentConstraintId: if constraint is on a partition, the OID of the |
| 1766 | * constraint in the parent. |
| 1767 | * indexInfo: same info executor uses to insert into the index |
| 1768 | * constraintName: what it say (generally, should match name of index) |
| 1769 | * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or |
| 1770 | * CONSTRAINT_EXCLUSION |
| 1771 | * flags: bitmask that can include any combination of these bits: |
| 1772 | * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY |
| 1773 | * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE |
| 1774 | * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED |
| 1775 | * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row |
| 1776 | * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies |
| 1777 | * of index on table's columns |
| 1778 | * allow_system_table_mods: allow table to be a system catalog |
| 1779 | * is_internal: index is constructed due to internal process |
| 1780 | */ |
| 1781 | ObjectAddress |
| 1782 | index_constraint_create(Relation heapRelation, |
| 1783 | Oid indexRelationId, |
| 1784 | Oid parentConstraintId, |
| 1785 | IndexInfo *indexInfo, |
| 1786 | const char *constraintName, |
| 1787 | char constraintType, |
| 1788 | bits16 constr_flags, |
| 1789 | bool allow_system_table_mods, |
| 1790 | bool is_internal) |
| 1791 | { |
| 1792 | Oid namespaceId = RelationGetNamespace(heapRelation); |
| 1793 | ObjectAddress myself, |
| 1794 | idxaddr; |
| 1795 | Oid conOid; |
| 1796 | bool deferrable; |
| 1797 | bool initdeferred; |
| 1798 | bool mark_as_primary; |
| 1799 | bool islocal; |
| 1800 | bool noinherit; |
| 1801 | int inhcount; |
| 1802 | |
| 1803 | deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0; |
| 1804 | initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0; |
| 1805 | mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0; |
| 1806 | |
| 1807 | /* constraint creation support doesn't work while bootstrapping */ |
| 1808 | Assert(!IsBootstrapProcessingMode()); |
| 1809 | |
| 1810 | /* enforce system-table restriction */ |
| 1811 | if (!allow_system_table_mods && |
| 1812 | IsSystemRelation(heapRelation) && |
| 1813 | IsNormalProcessingMode()) |
| 1814 | ereport(ERROR, |
| 1815 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1816 | errmsg("user-defined indexes on system catalog tables are not supported" ))); |
| 1817 | |
| 1818 | /* primary/unique constraints shouldn't have any expressions */ |
| 1819 | if (indexInfo->ii_Expressions && |
| 1820 | constraintType != CONSTRAINT_EXCLUSION) |
| 1821 | elog(ERROR, "constraints cannot have index expressions" ); |
| 1822 | |
| 1823 | /* |
| 1824 | * If we're manufacturing a constraint for a pre-existing index, we need |
| 1825 | * to get rid of the existing auto dependencies for the index (the ones |
| 1826 | * that index_create() would have made instead of calling this function). |
| 1827 | * |
| 1828 | * Note: this code would not necessarily do the right thing if the index |
| 1829 | * has any expressions or predicate, but we'd never be turning such an |
| 1830 | * index into a UNIQUE or PRIMARY KEY constraint. |
| 1831 | */ |
| 1832 | if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS) |
| 1833 | deleteDependencyRecordsForClass(RelationRelationId, indexRelationId, |
| 1834 | RelationRelationId, DEPENDENCY_AUTO); |
| 1835 | |
| 1836 | if (OidIsValid(parentConstraintId)) |
| 1837 | { |
| 1838 | islocal = false; |
| 1839 | inhcount = 1; |
| 1840 | noinherit = false; |
| 1841 | } |
| 1842 | else |
| 1843 | { |
| 1844 | islocal = true; |
| 1845 | inhcount = 0; |
| 1846 | noinherit = true; |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * Construct a pg_constraint entry. |
| 1851 | */ |
| 1852 | conOid = CreateConstraintEntry(constraintName, |
| 1853 | namespaceId, |
| 1854 | constraintType, |
| 1855 | deferrable, |
| 1856 | initdeferred, |
| 1857 | true, |
| 1858 | parentConstraintId, |
| 1859 | RelationGetRelid(heapRelation), |
| 1860 | indexInfo->ii_IndexAttrNumbers, |
| 1861 | indexInfo->ii_NumIndexKeyAttrs, |
| 1862 | indexInfo->ii_NumIndexAttrs, |
| 1863 | InvalidOid, /* no domain */ |
| 1864 | indexRelationId, /* index OID */ |
| 1865 | InvalidOid, /* no foreign key */ |
| 1866 | NULL, |
| 1867 | NULL, |
| 1868 | NULL, |
| 1869 | NULL, |
| 1870 | 0, |
| 1871 | ' ', |
| 1872 | ' ', |
| 1873 | ' ', |
| 1874 | indexInfo->ii_ExclusionOps, |
| 1875 | NULL, /* no check constraint */ |
| 1876 | NULL, |
| 1877 | islocal, |
| 1878 | inhcount, |
| 1879 | noinherit, |
| 1880 | is_internal); |
| 1881 | |
| 1882 | /* |
| 1883 | * Register the index as internally dependent on the constraint. |
| 1884 | * |
| 1885 | * Note that the constraint has a dependency on the table, so we don't |
| 1886 | * need (or want) any direct dependency from the index to the table. |
| 1887 | */ |
| 1888 | ObjectAddressSet(myself, ConstraintRelationId, conOid); |
| 1889 | ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId); |
| 1890 | recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL); |
| 1891 | |
| 1892 | /* |
| 1893 | * Also, if this is a constraint on a partition, give it partition-type |
| 1894 | * dependencies on the parent constraint as well as the table. |
| 1895 | */ |
| 1896 | if (OidIsValid(parentConstraintId)) |
| 1897 | { |
| 1898 | ObjectAddress referenced; |
| 1899 | |
| 1900 | ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId); |
| 1901 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI); |
| 1902 | ObjectAddressSet(referenced, RelationRelationId, |
| 1903 | RelationGetRelid(heapRelation)); |
| 1904 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC); |
| 1905 | } |
| 1906 | |
| 1907 | /* |
| 1908 | * If the constraint is deferrable, create the deferred uniqueness |
| 1909 | * checking trigger. (The trigger will be given an internal dependency on |
| 1910 | * the constraint by CreateTrigger.) |
| 1911 | */ |
| 1912 | if (deferrable) |
| 1913 | { |
| 1914 | CreateTrigStmt *trigger; |
| 1915 | |
| 1916 | trigger = makeNode(CreateTrigStmt); |
| 1917 | trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ? |
| 1918 | "PK_ConstraintTrigger" : |
| 1919 | "Unique_ConstraintTrigger" ; |
| 1920 | trigger->relation = NULL; |
| 1921 | trigger->funcname = SystemFuncName("unique_key_recheck" ); |
| 1922 | trigger->args = NIL; |
| 1923 | trigger->row = true; |
| 1924 | trigger->timing = TRIGGER_TYPE_AFTER; |
| 1925 | trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE; |
| 1926 | trigger->columns = NIL; |
| 1927 | trigger->whenClause = NULL; |
| 1928 | trigger->isconstraint = true; |
| 1929 | trigger->deferrable = true; |
| 1930 | trigger->initdeferred = initdeferred; |
| 1931 | trigger->constrrel = NULL; |
| 1932 | |
| 1933 | (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation), |
| 1934 | InvalidOid, conOid, indexRelationId, InvalidOid, |
| 1935 | InvalidOid, NULL, true, false); |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * If needed, mark the index as primary and/or deferred in pg_index. |
| 1940 | * |
| 1941 | * Note: When making an existing index into a constraint, caller must have |
| 1942 | * a table lock that prevents concurrent table updates; otherwise, there |
| 1943 | * is a risk that concurrent readers of the table will miss seeing this |
| 1944 | * index at all. |
| 1945 | */ |
| 1946 | if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) && |
| 1947 | (mark_as_primary || deferrable)) |
| 1948 | { |
| 1949 | Relation pg_index; |
| 1950 | HeapTuple indexTuple; |
| 1951 | Form_pg_index indexForm; |
| 1952 | bool dirty = false; |
| 1953 | |
| 1954 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 1955 | |
| 1956 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 1957 | ObjectIdGetDatum(indexRelationId)); |
| 1958 | if (!HeapTupleIsValid(indexTuple)) |
| 1959 | elog(ERROR, "cache lookup failed for index %u" , indexRelationId); |
| 1960 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
| 1961 | |
| 1962 | if (mark_as_primary && !indexForm->indisprimary) |
| 1963 | { |
| 1964 | indexForm->indisprimary = true; |
| 1965 | dirty = true; |
| 1966 | } |
| 1967 | |
| 1968 | if (deferrable && indexForm->indimmediate) |
| 1969 | { |
| 1970 | indexForm->indimmediate = false; |
| 1971 | dirty = true; |
| 1972 | } |
| 1973 | |
| 1974 | if (dirty) |
| 1975 | { |
| 1976 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
| 1977 | |
| 1978 | InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0, |
| 1979 | InvalidOid, is_internal); |
| 1980 | } |
| 1981 | |
| 1982 | heap_freetuple(indexTuple); |
| 1983 | table_close(pg_index, RowExclusiveLock); |
| 1984 | } |
| 1985 | |
| 1986 | return myself; |
| 1987 | } |
| 1988 | |
| 1989 | /* |
| 1990 | * index_drop |
| 1991 | * |
| 1992 | * NOTE: this routine should now only be called through performDeletion(), |
| 1993 | * else associated dependencies won't be cleaned up. |
| 1994 | * |
| 1995 | * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is |
| 1996 | * false but concurrent_lock_mode is true, then do a normal DROP INDEX but |
| 1997 | * take a lock for CONCURRENTLY processing. That is used as part of REINDEX |
| 1998 | * CONCURRENTLY. |
| 1999 | */ |
| 2000 | void |
| 2001 | index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode) |
| 2002 | { |
| 2003 | Oid heapId; |
| 2004 | Relation userHeapRelation; |
| 2005 | Relation userIndexRelation; |
| 2006 | Relation indexRelation; |
| 2007 | HeapTuple tuple; |
| 2008 | bool hasexprs; |
| 2009 | LockRelId heaprelid, |
| 2010 | indexrelid; |
| 2011 | LOCKTAG heaplocktag; |
| 2012 | LOCKMODE lockmode; |
| 2013 | |
| 2014 | /* |
| 2015 | * To drop an index safely, we must grab exclusive lock on its parent |
| 2016 | * table. Exclusive lock on the index alone is insufficient because |
| 2017 | * another backend might be about to execute a query on the parent table. |
| 2018 | * If it relies on a previously cached list of index OIDs, then it could |
| 2019 | * attempt to access the just-dropped index. We must therefore take a |
| 2020 | * table lock strong enough to prevent all queries on the table from |
| 2021 | * proceeding until we commit and send out a shared-cache-inval notice |
| 2022 | * that will make them update their index lists. |
| 2023 | * |
| 2024 | * In the concurrent case we avoid this requirement by disabling index use |
| 2025 | * in multiple steps and waiting out any transactions that might be using |
| 2026 | * the index, so we don't need exclusive lock on the parent table. Instead |
| 2027 | * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't |
| 2028 | * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get |
| 2029 | * AccessExclusiveLock on the index below, once we're sure nobody else is |
| 2030 | * using it.) |
| 2031 | */ |
| 2032 | heapId = IndexGetRelation(indexId, false); |
| 2033 | lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock; |
| 2034 | userHeapRelation = table_open(heapId, lockmode); |
| 2035 | userIndexRelation = index_open(indexId, lockmode); |
| 2036 | |
| 2037 | /* |
| 2038 | * We might still have open queries using it in our own session, which the |
| 2039 | * above locking won't prevent, so test explicitly. |
| 2040 | */ |
| 2041 | CheckTableNotInUse(userIndexRelation, "DROP INDEX" ); |
| 2042 | |
| 2043 | /* |
| 2044 | * Drop Index Concurrently is more or less the reverse process of Create |
| 2045 | * Index Concurrently. |
| 2046 | * |
| 2047 | * First we unset indisvalid so queries starting afterwards don't use the |
| 2048 | * index to answer queries anymore. We have to keep indisready = true so |
| 2049 | * transactions that are still scanning the index can continue to see |
| 2050 | * valid index contents. For instance, if they are using READ COMMITTED |
| 2051 | * mode, and another transaction makes changes and commits, they need to |
| 2052 | * see those new tuples in the index. |
| 2053 | * |
| 2054 | * After all transactions that could possibly have used the index for |
| 2055 | * queries end, we can unset indisready and indislive, then wait till |
| 2056 | * nobody could be touching it anymore. (Note: we need indislive because |
| 2057 | * this state must be distinct from the initial state during CREATE INDEX |
| 2058 | * CONCURRENTLY, which has indislive true while indisready and indisvalid |
| 2059 | * are false. That's because in that state, transactions must examine the |
| 2060 | * index for HOT-safety decisions, while in this state we don't want them |
| 2061 | * to open it at all.) |
| 2062 | * |
| 2063 | * Since all predicate locks on the index are about to be made invalid, we |
| 2064 | * must promote them to predicate locks on the heap. In the |
| 2065 | * non-concurrent case we can just do that now. In the concurrent case |
| 2066 | * it's a bit trickier. The predicate locks must be moved when there are |
| 2067 | * no index scans in progress on the index and no more can subsequently |
| 2068 | * start, so that no new predicate locks can be made on the index. Also, |
| 2069 | * they must be moved before heap inserts stop maintaining the index, else |
| 2070 | * the conflict with the predicate lock on the index gap could be missed |
| 2071 | * before the lock on the heap relation is in place to detect a conflict |
| 2072 | * based on the heap tuple insert. |
| 2073 | */ |
| 2074 | if (concurrent) |
| 2075 | { |
| 2076 | /* |
| 2077 | * We must commit our transaction in order to make the first pg_index |
| 2078 | * state update visible to other sessions. If the DROP machinery has |
| 2079 | * already performed any other actions (removal of other objects, |
| 2080 | * pg_depend entries, etc), the commit would make those actions |
| 2081 | * permanent, which would leave us with inconsistent catalog state if |
| 2082 | * we fail partway through the following sequence. Since DROP INDEX |
| 2083 | * CONCURRENTLY is restricted to dropping just one index that has no |
| 2084 | * dependencies, we should get here before anything's been done --- |
| 2085 | * but let's check that to be sure. We can verify that the current |
| 2086 | * transaction has not executed any transactional updates by checking |
| 2087 | * that no XID has been assigned. |
| 2088 | */ |
| 2089 | if (GetTopTransactionIdIfAny() != InvalidTransactionId) |
| 2090 | ereport(ERROR, |
| 2091 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2092 | errmsg("DROP INDEX CONCURRENTLY must be first action in transaction" ))); |
| 2093 | |
| 2094 | /* |
| 2095 | * Mark index invalid by updating its pg_index entry |
| 2096 | */ |
| 2097 | index_set_state_flags(indexId, INDEX_DROP_CLEAR_VALID); |
| 2098 | |
| 2099 | /* |
| 2100 | * Invalidate the relcache for the table, so that after this commit |
| 2101 | * all sessions will refresh any cached plans that might reference the |
| 2102 | * index. |
| 2103 | */ |
| 2104 | CacheInvalidateRelcache(userHeapRelation); |
| 2105 | |
| 2106 | /* save lockrelid and locktag for below, then close but keep locks */ |
| 2107 | heaprelid = userHeapRelation->rd_lockInfo.lockRelId; |
| 2108 | SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId); |
| 2109 | indexrelid = userIndexRelation->rd_lockInfo.lockRelId; |
| 2110 | |
| 2111 | table_close(userHeapRelation, NoLock); |
| 2112 | index_close(userIndexRelation, NoLock); |
| 2113 | |
| 2114 | /* |
| 2115 | * We must commit our current transaction so that the indisvalid |
| 2116 | * update becomes visible to other transactions; then start another. |
| 2117 | * Note that any previously-built data structures are lost in the |
| 2118 | * commit. The only data we keep past here are the relation IDs. |
| 2119 | * |
| 2120 | * Before committing, get a session-level lock on the table, to ensure |
| 2121 | * that neither it nor the index can be dropped before we finish. This |
| 2122 | * cannot block, even if someone else is waiting for access, because |
| 2123 | * we already have the same lock within our transaction. |
| 2124 | */ |
| 2125 | LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock); |
| 2126 | LockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock); |
| 2127 | |
| 2128 | PopActiveSnapshot(); |
| 2129 | CommitTransactionCommand(); |
| 2130 | StartTransactionCommand(); |
| 2131 | |
| 2132 | /* |
| 2133 | * Now we must wait until no running transaction could be using the |
| 2134 | * index for a query. Use AccessExclusiveLock here to check for |
| 2135 | * running transactions that hold locks of any kind on the table. Note |
| 2136 | * we do not need to worry about xacts that open the table for reading |
| 2137 | * after this point; they will see the index as invalid when they open |
| 2138 | * the relation. |
| 2139 | * |
| 2140 | * Note: the reason we use actual lock acquisition here, rather than |
| 2141 | * just checking the ProcArray and sleeping, is that deadlock is |
| 2142 | * possible if one of the transactions in question is blocked trying |
| 2143 | * to acquire an exclusive lock on our table. The lock code will |
| 2144 | * detect deadlock and error out properly. |
| 2145 | */ |
| 2146 | WaitForLockers(heaplocktag, AccessExclusiveLock, true); |
| 2147 | |
| 2148 | /* Finish invalidation of index and mark it as dead */ |
| 2149 | index_concurrently_set_dead(heapId, indexId); |
| 2150 | |
| 2151 | /* |
| 2152 | * Again, commit the transaction to make the pg_index update visible |
| 2153 | * to other sessions. |
| 2154 | */ |
| 2155 | CommitTransactionCommand(); |
| 2156 | StartTransactionCommand(); |
| 2157 | |
| 2158 | /* |
| 2159 | * Wait till every transaction that saw the old index state has |
| 2160 | * finished. |
| 2161 | */ |
| 2162 | WaitForLockers(heaplocktag, AccessExclusiveLock, true); |
| 2163 | |
| 2164 | /* |
| 2165 | * Re-open relations to allow us to complete our actions. |
| 2166 | * |
| 2167 | * At this point, nothing should be accessing the index, but lets |
| 2168 | * leave nothing to chance and grab AccessExclusiveLock on the index |
| 2169 | * before the physical deletion. |
| 2170 | */ |
| 2171 | userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
| 2172 | userIndexRelation = index_open(indexId, AccessExclusiveLock); |
| 2173 | } |
| 2174 | else |
| 2175 | { |
| 2176 | /* Not concurrent, so just transfer predicate locks and we're good */ |
| 2177 | TransferPredicateLocksToHeapRelation(userIndexRelation); |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * Schedule physical removal of the files (if any) |
| 2182 | */ |
| 2183 | if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX) |
| 2184 | RelationDropStorage(userIndexRelation); |
| 2185 | |
| 2186 | /* |
| 2187 | * Close and flush the index's relcache entry, to ensure relcache doesn't |
| 2188 | * try to rebuild it while we're deleting catalog entries. We keep the |
| 2189 | * lock though. |
| 2190 | */ |
| 2191 | index_close(userIndexRelation, NoLock); |
| 2192 | |
| 2193 | RelationForgetRelation(indexId); |
| 2194 | |
| 2195 | /* |
| 2196 | * fix INDEX relation, and check for expressional index |
| 2197 | */ |
| 2198 | indexRelation = table_open(IndexRelationId, RowExclusiveLock); |
| 2199 | |
| 2200 | tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId)); |
| 2201 | if (!HeapTupleIsValid(tuple)) |
| 2202 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
| 2203 | |
| 2204 | hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs, |
| 2205 | RelationGetDescr(indexRelation)); |
| 2206 | |
| 2207 | CatalogTupleDelete(indexRelation, &tuple->t_self); |
| 2208 | |
| 2209 | ReleaseSysCache(tuple); |
| 2210 | table_close(indexRelation, RowExclusiveLock); |
| 2211 | |
| 2212 | /* |
| 2213 | * if it has any expression columns, we might have stored statistics about |
| 2214 | * them. |
| 2215 | */ |
| 2216 | if (hasexprs) |
| 2217 | RemoveStatistics(indexId, 0); |
| 2218 | |
| 2219 | /* |
| 2220 | * fix ATTRIBUTE relation |
| 2221 | */ |
| 2222 | DeleteAttributeTuples(indexId); |
| 2223 | |
| 2224 | /* |
| 2225 | * fix RELATION relation |
| 2226 | */ |
| 2227 | DeleteRelationTuple(indexId); |
| 2228 | |
| 2229 | /* |
| 2230 | * fix INHERITS relation |
| 2231 | */ |
| 2232 | DeleteInheritsTuple(indexId, InvalidOid); |
| 2233 | |
| 2234 | /* |
| 2235 | * We are presently too lazy to attempt to compute the new correct value |
| 2236 | * of relhasindex (the next VACUUM will fix it if necessary). So there is |
| 2237 | * no need to update the pg_class tuple for the owning relation. But we |
| 2238 | * must send out a shared-cache-inval notice on the owning relation to |
| 2239 | * ensure other backends update their relcache lists of indexes. (In the |
| 2240 | * concurrent case, this is redundant but harmless.) |
| 2241 | */ |
| 2242 | CacheInvalidateRelcache(userHeapRelation); |
| 2243 | |
| 2244 | /* |
| 2245 | * Close owning rel, but keep lock |
| 2246 | */ |
| 2247 | table_close(userHeapRelation, NoLock); |
| 2248 | |
| 2249 | /* |
| 2250 | * Release the session locks before we go. |
| 2251 | */ |
| 2252 | if (concurrent) |
| 2253 | { |
| 2254 | UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock); |
| 2255 | UnlockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock); |
| 2256 | } |
| 2257 | } |
| 2258 | |
| 2259 | /* ---------------------------------------------------------------- |
| 2260 | * index_build support |
| 2261 | * ---------------------------------------------------------------- |
| 2262 | */ |
| 2263 | |
| 2264 | /* ---------------- |
| 2265 | * BuildIndexInfo |
| 2266 | * Construct an IndexInfo record for an open index |
| 2267 | * |
| 2268 | * IndexInfo stores the information about the index that's needed by |
| 2269 | * FormIndexDatum, which is used for both index_build() and later insertion |
| 2270 | * of individual index tuples. Normally we build an IndexInfo for an index |
| 2271 | * just once per command, and then use it for (potentially) many tuples. |
| 2272 | * ---------------- |
| 2273 | */ |
| 2274 | IndexInfo * |
| 2275 | BuildIndexInfo(Relation index) |
| 2276 | { |
| 2277 | IndexInfo *ii = makeNode(IndexInfo); |
| 2278 | Form_pg_index indexStruct = index->rd_index; |
| 2279 | int i; |
| 2280 | int numAtts; |
| 2281 | |
| 2282 | /* check the number of keys, and copy attr numbers into the IndexInfo */ |
| 2283 | numAtts = indexStruct->indnatts; |
| 2284 | if (numAtts < 1 || numAtts > INDEX_MAX_KEYS) |
| 2285 | elog(ERROR, "invalid indnatts %d for index %u" , |
| 2286 | numAtts, RelationGetRelid(index)); |
| 2287 | ii->ii_NumIndexAttrs = numAtts; |
| 2288 | ii->ii_NumIndexKeyAttrs = indexStruct->indnkeyatts; |
| 2289 | Assert(ii->ii_NumIndexKeyAttrs != 0); |
| 2290 | Assert(ii->ii_NumIndexKeyAttrs <= ii->ii_NumIndexAttrs); |
| 2291 | |
| 2292 | for (i = 0; i < numAtts; i++) |
| 2293 | ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i]; |
| 2294 | |
| 2295 | /* fetch any expressions needed for expressional indexes */ |
| 2296 | ii->ii_Expressions = RelationGetIndexExpressions(index); |
| 2297 | ii->ii_ExpressionsState = NIL; |
| 2298 | |
| 2299 | /* fetch index predicate if any */ |
| 2300 | ii->ii_Predicate = RelationGetIndexPredicate(index); |
| 2301 | ii->ii_PredicateState = NULL; |
| 2302 | |
| 2303 | /* fetch exclusion constraint info if any */ |
| 2304 | if (indexStruct->indisexclusion) |
| 2305 | { |
| 2306 | RelationGetExclusionInfo(index, |
| 2307 | &ii->ii_ExclusionOps, |
| 2308 | &ii->ii_ExclusionProcs, |
| 2309 | &ii->ii_ExclusionStrats); |
| 2310 | } |
| 2311 | else |
| 2312 | { |
| 2313 | ii->ii_ExclusionOps = NULL; |
| 2314 | ii->ii_ExclusionProcs = NULL; |
| 2315 | ii->ii_ExclusionStrats = NULL; |
| 2316 | } |
| 2317 | |
| 2318 | /* other info */ |
| 2319 | ii->ii_Unique = indexStruct->indisunique; |
| 2320 | ii->ii_ReadyForInserts = indexStruct->indisready; |
| 2321 | /* assume not doing speculative insertion for now */ |
| 2322 | ii->ii_UniqueOps = NULL; |
| 2323 | ii->ii_UniqueProcs = NULL; |
| 2324 | ii->ii_UniqueStrats = NULL; |
| 2325 | |
| 2326 | /* initialize index-build state to default */ |
| 2327 | ii->ii_Concurrent = false; |
| 2328 | ii->ii_BrokenHotChain = false; |
| 2329 | ii->ii_ParallelWorkers = 0; |
| 2330 | |
| 2331 | /* set up for possible use by index AM */ |
| 2332 | ii->ii_Am = index->rd_rel->relam; |
| 2333 | ii->ii_AmCache = NULL; |
| 2334 | ii->ii_Context = CurrentMemoryContext; |
| 2335 | |
| 2336 | return ii; |
| 2337 | } |
| 2338 | |
| 2339 | /* |
| 2340 | * CompareIndexInfo |
| 2341 | * Return whether the properties of two indexes (in different tables) |
| 2342 | * indicate that they have the "same" definitions. |
| 2343 | * |
| 2344 | * Note: passing collations and opfamilies separately is a kludge. Adding |
| 2345 | * them to IndexInfo may result in better coding here and elsewhere. |
| 2346 | * |
| 2347 | * Use convert_tuples_by_name_map(index2, index1) to build the attmap. |
| 2348 | */ |
| 2349 | bool |
| 2350 | CompareIndexInfo(IndexInfo *info1, IndexInfo *info2, |
| 2351 | Oid *collations1, Oid *collations2, |
| 2352 | Oid *opfamilies1, Oid *opfamilies2, |
| 2353 | AttrNumber *attmap, int maplen) |
| 2354 | { |
| 2355 | int i; |
| 2356 | |
| 2357 | if (info1->ii_Unique != info2->ii_Unique) |
| 2358 | return false; |
| 2359 | |
| 2360 | /* indexes are only equivalent if they have the same access method */ |
| 2361 | if (info1->ii_Am != info2->ii_Am) |
| 2362 | return false; |
| 2363 | |
| 2364 | /* and same number of attributes */ |
| 2365 | if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs) |
| 2366 | return false; |
| 2367 | |
| 2368 | /* and same number of key attributes */ |
| 2369 | if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs) |
| 2370 | return false; |
| 2371 | |
| 2372 | /* |
| 2373 | * and columns match through the attribute map (actual attribute numbers |
| 2374 | * might differ!) Note that this implies that index columns that are |
| 2375 | * expressions appear in the same positions. We will next compare the |
| 2376 | * expressions themselves. |
| 2377 | */ |
| 2378 | for (i = 0; i < info1->ii_NumIndexAttrs; i++) |
| 2379 | { |
| 2380 | if (maplen < info2->ii_IndexAttrNumbers[i]) |
| 2381 | elog(ERROR, "incorrect attribute map" ); |
| 2382 | |
| 2383 | /* ignore expressions at this stage */ |
| 2384 | if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) && |
| 2385 | (attmap[info2->ii_IndexAttrNumbers[i] - 1] != |
| 2386 | info1->ii_IndexAttrNumbers[i])) |
| 2387 | return false; |
| 2388 | |
| 2389 | /* collation and opfamily is not valid for including columns */ |
| 2390 | if (i >= info1->ii_NumIndexKeyAttrs) |
| 2391 | continue; |
| 2392 | |
| 2393 | if (collations1[i] != collations2[i]) |
| 2394 | return false; |
| 2395 | if (opfamilies1[i] != opfamilies2[i]) |
| 2396 | return false; |
| 2397 | } |
| 2398 | |
| 2399 | /* |
| 2400 | * For expression indexes: either both are expression indexes, or neither |
| 2401 | * is; if they are, make sure the expressions match. |
| 2402 | */ |
| 2403 | if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL)) |
| 2404 | return false; |
| 2405 | if (info1->ii_Expressions != NIL) |
| 2406 | { |
| 2407 | bool found_whole_row; |
| 2408 | Node *mapped; |
| 2409 | |
| 2410 | mapped = map_variable_attnos((Node *) info2->ii_Expressions, |
| 2411 | 1, 0, attmap, maplen, |
| 2412 | InvalidOid, &found_whole_row); |
| 2413 | if (found_whole_row) |
| 2414 | { |
| 2415 | /* |
| 2416 | * we could throw an error here, but seems out of scope for this |
| 2417 | * routine. |
| 2418 | */ |
| 2419 | return false; |
| 2420 | } |
| 2421 | |
| 2422 | if (!equal(info1->ii_Expressions, mapped)) |
| 2423 | return false; |
| 2424 | } |
| 2425 | |
| 2426 | /* Partial index predicates must be identical, if they exist */ |
| 2427 | if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL)) |
| 2428 | return false; |
| 2429 | if (info1->ii_Predicate != NULL) |
| 2430 | { |
| 2431 | bool found_whole_row; |
| 2432 | Node *mapped; |
| 2433 | |
| 2434 | mapped = map_variable_attnos((Node *) info2->ii_Predicate, |
| 2435 | 1, 0, attmap, maplen, |
| 2436 | InvalidOid, &found_whole_row); |
| 2437 | if (found_whole_row) |
| 2438 | { |
| 2439 | /* |
| 2440 | * we could throw an error here, but seems out of scope for this |
| 2441 | * routine. |
| 2442 | */ |
| 2443 | return false; |
| 2444 | } |
| 2445 | if (!equal(info1->ii_Predicate, mapped)) |
| 2446 | return false; |
| 2447 | } |
| 2448 | |
| 2449 | /* No support currently for comparing exclusion indexes. */ |
| 2450 | if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL) |
| 2451 | return false; |
| 2452 | |
| 2453 | return true; |
| 2454 | } |
| 2455 | |
| 2456 | /* ---------------- |
| 2457 | * BuildSpeculativeIndexInfo |
| 2458 | * Add extra state to IndexInfo record |
| 2459 | * |
| 2460 | * For unique indexes, we usually don't want to add info to the IndexInfo for |
| 2461 | * checking uniqueness, since the B-Tree AM handles that directly. However, |
| 2462 | * in the case of speculative insertion, additional support is required. |
| 2463 | * |
| 2464 | * Do this processing here rather than in BuildIndexInfo() to not incur the |
| 2465 | * overhead in the common non-speculative cases. |
| 2466 | * ---------------- |
| 2467 | */ |
| 2468 | void |
| 2469 | BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii) |
| 2470 | { |
| 2471 | int indnkeyatts; |
| 2472 | int i; |
| 2473 | |
| 2474 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index); |
| 2475 | |
| 2476 | /* |
| 2477 | * fetch info for checking unique indexes |
| 2478 | */ |
| 2479 | Assert(ii->ii_Unique); |
| 2480 | |
| 2481 | if (index->rd_rel->relam != BTREE_AM_OID) |
| 2482 | elog(ERROR, "unexpected non-btree speculative unique index" ); |
| 2483 | |
| 2484 | ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 2485 | ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts); |
| 2486 | ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts); |
| 2487 | |
| 2488 | /* |
| 2489 | * We have to look up the operator's strategy number. This provides a |
| 2490 | * cross-check that the operator does match the index. |
| 2491 | */ |
| 2492 | /* We need the func OIDs and strategy numbers too */ |
| 2493 | for (i = 0; i < indnkeyatts; i++) |
| 2494 | { |
| 2495 | ii->ii_UniqueStrats[i] = BTEqualStrategyNumber; |
| 2496 | ii->ii_UniqueOps[i] = |
| 2497 | get_opfamily_member(index->rd_opfamily[i], |
| 2498 | index->rd_opcintype[i], |
| 2499 | index->rd_opcintype[i], |
| 2500 | ii->ii_UniqueStrats[i]); |
| 2501 | if (!OidIsValid(ii->ii_UniqueOps[i])) |
| 2502 | elog(ERROR, "missing operator %d(%u,%u) in opfamily %u" , |
| 2503 | ii->ii_UniqueStrats[i], index->rd_opcintype[i], |
| 2504 | index->rd_opcintype[i], index->rd_opfamily[i]); |
| 2505 | ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]); |
| 2506 | } |
| 2507 | } |
| 2508 | |
| 2509 | /* ---------------- |
| 2510 | * FormIndexDatum |
| 2511 | * Construct values[] and isnull[] arrays for a new index tuple. |
| 2512 | * |
| 2513 | * indexInfo Info about the index |
| 2514 | * slot Heap tuple for which we must prepare an index entry |
| 2515 | * estate executor state for evaluating any index expressions |
| 2516 | * values Array of index Datums (output area) |
| 2517 | * isnull Array of is-null indicators (output area) |
| 2518 | * |
| 2519 | * When there are no index expressions, estate may be NULL. Otherwise it |
| 2520 | * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr |
| 2521 | * context must point to the heap tuple passed in. |
| 2522 | * |
| 2523 | * Notice we don't actually call index_form_tuple() here; we just prepare |
| 2524 | * its input arrays values[] and isnull[]. This is because the index AM |
| 2525 | * may wish to alter the data before storage. |
| 2526 | * ---------------- |
| 2527 | */ |
| 2528 | void |
| 2529 | FormIndexDatum(IndexInfo *indexInfo, |
| 2530 | TupleTableSlot *slot, |
| 2531 | EState *estate, |
| 2532 | Datum *values, |
| 2533 | bool *isnull) |
| 2534 | { |
| 2535 | ListCell *indexpr_item; |
| 2536 | int i; |
| 2537 | |
| 2538 | if (indexInfo->ii_Expressions != NIL && |
| 2539 | indexInfo->ii_ExpressionsState == NIL) |
| 2540 | { |
| 2541 | /* First time through, set up expression evaluation state */ |
| 2542 | indexInfo->ii_ExpressionsState = |
| 2543 | ExecPrepareExprList(indexInfo->ii_Expressions, estate); |
| 2544 | /* Check caller has set up context correctly */ |
| 2545 | Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot); |
| 2546 | } |
| 2547 | indexpr_item = list_head(indexInfo->ii_ExpressionsState); |
| 2548 | |
| 2549 | for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++) |
| 2550 | { |
| 2551 | int keycol = indexInfo->ii_IndexAttrNumbers[i]; |
| 2552 | Datum iDatum; |
| 2553 | bool isNull; |
| 2554 | |
| 2555 | if (keycol < 0) |
| 2556 | iDatum = slot_getsysattr(slot, keycol, &isNull); |
| 2557 | else if (keycol != 0) |
| 2558 | { |
| 2559 | /* |
| 2560 | * Plain index column; get the value we need directly from the |
| 2561 | * heap tuple. |
| 2562 | */ |
| 2563 | iDatum = slot_getattr(slot, keycol, &isNull); |
| 2564 | } |
| 2565 | else |
| 2566 | { |
| 2567 | /* |
| 2568 | * Index expression --- need to evaluate it. |
| 2569 | */ |
| 2570 | if (indexpr_item == NULL) |
| 2571 | elog(ERROR, "wrong number of index expressions" ); |
| 2572 | iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item), |
| 2573 | GetPerTupleExprContext(estate), |
| 2574 | &isNull); |
| 2575 | indexpr_item = lnext(indexpr_item); |
| 2576 | } |
| 2577 | values[i] = iDatum; |
| 2578 | isnull[i] = isNull; |
| 2579 | } |
| 2580 | |
| 2581 | if (indexpr_item != NULL) |
| 2582 | elog(ERROR, "wrong number of index expressions" ); |
| 2583 | } |
| 2584 | |
| 2585 | |
| 2586 | /* |
| 2587 | * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX |
| 2588 | * |
| 2589 | * This routine updates the pg_class row of either an index or its parent |
| 2590 | * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed |
| 2591 | * to ensure we can do all the necessary work in just one update. |
| 2592 | * |
| 2593 | * hasindex: set relhasindex to this value |
| 2594 | * reltuples: if >= 0, set reltuples to this value; else no change |
| 2595 | * |
| 2596 | * If reltuples >= 0, relpages and relallvisible are also updated (using |
| 2597 | * RelationGetNumberOfBlocks() and visibilitymap_count()). |
| 2598 | * |
| 2599 | * NOTE: an important side-effect of this operation is that an SI invalidation |
| 2600 | * message is sent out to all backends --- including me --- causing relcache |
| 2601 | * entries to be flushed or updated with the new data. This must happen even |
| 2602 | * if we find that no change is needed in the pg_class row. When updating |
| 2603 | * a heap entry, this ensures that other backends find out about the new |
| 2604 | * index. When updating an index, it's important because some index AMs |
| 2605 | * expect a relcache flush to occur after REINDEX. |
| 2606 | */ |
| 2607 | static void |
| 2608 | index_update_stats(Relation rel, |
| 2609 | bool hasindex, |
| 2610 | double reltuples) |
| 2611 | { |
| 2612 | Oid relid = RelationGetRelid(rel); |
| 2613 | Relation pg_class; |
| 2614 | HeapTuple tuple; |
| 2615 | Form_pg_class rd_rel; |
| 2616 | bool dirty; |
| 2617 | |
| 2618 | /* |
| 2619 | * We always update the pg_class row using a non-transactional, |
| 2620 | * overwrite-in-place update. There are several reasons for this: |
| 2621 | * |
| 2622 | * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work. |
| 2623 | * |
| 2624 | * 2. We could be reindexing pg_class itself, in which case we can't move |
| 2625 | * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might |
| 2626 | * not know about all the indexes yet (see reindex_relation). |
| 2627 | * |
| 2628 | * 3. Because we execute CREATE INDEX with just share lock on the parent |
| 2629 | * rel (to allow concurrent index creations), an ordinary update could |
| 2630 | * suffer a tuple-concurrently-updated failure against another CREATE |
| 2631 | * INDEX committing at about the same time. We can avoid that by having |
| 2632 | * them both do nontransactional updates (we assume they will both be |
| 2633 | * trying to change the pg_class row to the same thing, so it doesn't |
| 2634 | * matter which goes first). |
| 2635 | * |
| 2636 | * It is safe to use a non-transactional update even though our |
| 2637 | * transaction could still fail before committing. Setting relhasindex |
| 2638 | * true is safe even if there are no indexes (VACUUM will eventually fix |
| 2639 | * it). And of course the new relpages and reltuples counts are correct |
| 2640 | * regardless. However, we don't want to change relpages (or |
| 2641 | * relallvisible) if the caller isn't providing an updated reltuples |
| 2642 | * count, because that would bollix the reltuples/relpages ratio which is |
| 2643 | * what's really important. |
| 2644 | */ |
| 2645 | |
| 2646 | pg_class = table_open(RelationRelationId, RowExclusiveLock); |
| 2647 | |
| 2648 | /* |
| 2649 | * Make a copy of the tuple to update. Normally we use the syscache, but |
| 2650 | * we can't rely on that during bootstrap or while reindexing pg_class |
| 2651 | * itself. |
| 2652 | */ |
| 2653 | if (IsBootstrapProcessingMode() || |
| 2654 | ReindexIsProcessingHeap(RelationRelationId)) |
| 2655 | { |
| 2656 | /* don't assume syscache will work */ |
| 2657 | TableScanDesc pg_class_scan; |
| 2658 | ScanKeyData key[1]; |
| 2659 | |
| 2660 | ScanKeyInit(&key[0], |
| 2661 | Anum_pg_class_oid, |
| 2662 | BTEqualStrategyNumber, F_OIDEQ, |
| 2663 | ObjectIdGetDatum(relid)); |
| 2664 | |
| 2665 | pg_class_scan = table_beginscan_catalog(pg_class, 1, key); |
| 2666 | tuple = heap_getnext(pg_class_scan, ForwardScanDirection); |
| 2667 | tuple = heap_copytuple(tuple); |
| 2668 | table_endscan(pg_class_scan); |
| 2669 | } |
| 2670 | else |
| 2671 | { |
| 2672 | /* normal case, use syscache */ |
| 2673 | tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
| 2674 | } |
| 2675 | |
| 2676 | if (!HeapTupleIsValid(tuple)) |
| 2677 | elog(ERROR, "could not find tuple for relation %u" , relid); |
| 2678 | rd_rel = (Form_pg_class) GETSTRUCT(tuple); |
| 2679 | |
| 2680 | /* Should this be a more comprehensive test? */ |
| 2681 | Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX); |
| 2682 | |
| 2683 | /* Apply required updates, if any, to copied tuple */ |
| 2684 | |
| 2685 | dirty = false; |
| 2686 | if (rd_rel->relhasindex != hasindex) |
| 2687 | { |
| 2688 | rd_rel->relhasindex = hasindex; |
| 2689 | dirty = true; |
| 2690 | } |
| 2691 | |
| 2692 | if (reltuples >= 0) |
| 2693 | { |
| 2694 | BlockNumber relpages = RelationGetNumberOfBlocks(rel); |
| 2695 | BlockNumber relallvisible; |
| 2696 | |
| 2697 | if (rd_rel->relkind != RELKIND_INDEX) |
| 2698 | visibilitymap_count(rel, &relallvisible, NULL); |
| 2699 | else /* don't bother for indexes */ |
| 2700 | relallvisible = 0; |
| 2701 | |
| 2702 | if (rd_rel->relpages != (int32) relpages) |
| 2703 | { |
| 2704 | rd_rel->relpages = (int32) relpages; |
| 2705 | dirty = true; |
| 2706 | } |
| 2707 | if (rd_rel->reltuples != (float4) reltuples) |
| 2708 | { |
| 2709 | rd_rel->reltuples = (float4) reltuples; |
| 2710 | dirty = true; |
| 2711 | } |
| 2712 | if (rd_rel->relallvisible != (int32) relallvisible) |
| 2713 | { |
| 2714 | rd_rel->relallvisible = (int32) relallvisible; |
| 2715 | dirty = true; |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | /* |
| 2720 | * If anything changed, write out the tuple |
| 2721 | */ |
| 2722 | if (dirty) |
| 2723 | { |
| 2724 | heap_inplace_update(pg_class, tuple); |
| 2725 | /* the above sends a cache inval message */ |
| 2726 | } |
| 2727 | else |
| 2728 | { |
| 2729 | /* no need to change tuple, but force relcache inval anyway */ |
| 2730 | CacheInvalidateRelcacheByTuple(tuple); |
| 2731 | } |
| 2732 | |
| 2733 | heap_freetuple(tuple); |
| 2734 | |
| 2735 | table_close(pg_class, RowExclusiveLock); |
| 2736 | } |
| 2737 | |
| 2738 | |
| 2739 | /* |
| 2740 | * index_build - invoke access-method-specific index build procedure |
| 2741 | * |
| 2742 | * On entry, the index's catalog entries are valid, and its physical disk |
| 2743 | * file has been created but is empty. We call the AM-specific build |
| 2744 | * procedure to fill in the index contents. We then update the pg_class |
| 2745 | * entries of the index and heap relation as needed, using statistics |
| 2746 | * returned by ambuild as well as data passed by the caller. |
| 2747 | * |
| 2748 | * isreindex indicates we are recreating a previously-existing index. |
| 2749 | * parallel indicates if parallelism may be useful. |
| 2750 | * |
| 2751 | * Note: before Postgres 8.2, the passed-in heap and index Relations |
| 2752 | * were automatically closed by this routine. This is no longer the case. |
| 2753 | * The caller opened 'em, and the caller should close 'em. |
| 2754 | */ |
| 2755 | void |
| 2756 | index_build(Relation heapRelation, |
| 2757 | Relation indexRelation, |
| 2758 | IndexInfo *indexInfo, |
| 2759 | bool isreindex, |
| 2760 | bool parallel) |
| 2761 | { |
| 2762 | IndexBuildResult *stats; |
| 2763 | Oid save_userid; |
| 2764 | int save_sec_context; |
| 2765 | int save_nestlevel; |
| 2766 | |
| 2767 | /* |
| 2768 | * sanity checks |
| 2769 | */ |
| 2770 | Assert(RelationIsValid(indexRelation)); |
| 2771 | Assert(PointerIsValid(indexRelation->rd_indam)); |
| 2772 | Assert(PointerIsValid(indexRelation->rd_indam->ambuild)); |
| 2773 | Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty)); |
| 2774 | |
| 2775 | /* |
| 2776 | * Determine worker process details for parallel CREATE INDEX. Currently, |
| 2777 | * only btree has support for parallel builds. |
| 2778 | * |
| 2779 | * Note that planner considers parallel safety for us. |
| 2780 | */ |
| 2781 | if (parallel && IsNormalProcessingMode() && |
| 2782 | indexRelation->rd_rel->relam == BTREE_AM_OID) |
| 2783 | indexInfo->ii_ParallelWorkers = |
| 2784 | plan_create_index_workers(RelationGetRelid(heapRelation), |
| 2785 | RelationGetRelid(indexRelation)); |
| 2786 | |
| 2787 | if (indexInfo->ii_ParallelWorkers == 0) |
| 2788 | ereport(DEBUG1, |
| 2789 | (errmsg("building index \"%s\" on table \"%s\" serially" , |
| 2790 | RelationGetRelationName(indexRelation), |
| 2791 | RelationGetRelationName(heapRelation)))); |
| 2792 | else |
| 2793 | ereport(DEBUG1, |
| 2794 | (errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker" , |
| 2795 | "building index \"%s\" on table \"%s\" with request for %d parallel workers" , |
| 2796 | indexInfo->ii_ParallelWorkers, |
| 2797 | RelationGetRelationName(indexRelation), |
| 2798 | RelationGetRelationName(heapRelation), |
| 2799 | indexInfo->ii_ParallelWorkers))); |
| 2800 | |
| 2801 | /* |
| 2802 | * Switch to the table owner's userid, so that any index functions are run |
| 2803 | * as that user. Also lock down security-restricted operations and |
| 2804 | * arrange to make GUC variable changes local to this command. |
| 2805 | */ |
| 2806 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
| 2807 | SetUserIdAndSecContext(heapRelation->rd_rel->relowner, |
| 2808 | save_sec_context | SECURITY_RESTRICTED_OPERATION); |
| 2809 | save_nestlevel = NewGUCNestLevel(); |
| 2810 | |
| 2811 | /* Set up initial progress report status */ |
| 2812 | { |
| 2813 | const int index[] = { |
| 2814 | PROGRESS_CREATEIDX_PHASE, |
| 2815 | PROGRESS_CREATEIDX_SUBPHASE, |
| 2816 | PROGRESS_CREATEIDX_TUPLES_DONE, |
| 2817 | PROGRESS_CREATEIDX_TUPLES_TOTAL, |
| 2818 | PROGRESS_SCAN_BLOCKS_DONE, |
| 2819 | PROGRESS_SCAN_BLOCKS_TOTAL |
| 2820 | }; |
| 2821 | const int64 val[] = { |
| 2822 | PROGRESS_CREATEIDX_PHASE_BUILD, |
| 2823 | PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE, |
| 2824 | 0, 0, 0, 0 |
| 2825 | }; |
| 2826 | |
| 2827 | pgstat_progress_update_multi_param(6, index, val); |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * Call the access method's build procedure |
| 2832 | */ |
| 2833 | stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation, |
| 2834 | indexInfo); |
| 2835 | Assert(PointerIsValid(stats)); |
| 2836 | |
| 2837 | /* |
| 2838 | * If this is an unlogged index, we may need to write out an init fork for |
| 2839 | * it -- but we must first check whether one already exists. If, for |
| 2840 | * example, an unlogged relation is truncated in the transaction that |
| 2841 | * created it, or truncated twice in a subsequent transaction, the |
| 2842 | * relfilenode won't change, and nothing needs to be done here. |
| 2843 | */ |
| 2844 | if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED && |
| 2845 | !smgrexists(indexRelation->rd_smgr, INIT_FORKNUM)) |
| 2846 | { |
| 2847 | RelationOpenSmgr(indexRelation); |
| 2848 | smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false); |
| 2849 | indexRelation->rd_indam->ambuildempty(indexRelation); |
| 2850 | } |
| 2851 | |
| 2852 | /* |
| 2853 | * If we found any potentially broken HOT chains, mark the index as not |
| 2854 | * being usable until the current transaction is below the event horizon. |
| 2855 | * See src/backend/access/heap/README.HOT for discussion. Also set this |
| 2856 | * if early pruning/vacuuming is enabled for the heap relation. While it |
| 2857 | * might become safe to use the index earlier based on actual cleanup |
| 2858 | * activity and other active transactions, the test for that would be much |
| 2859 | * more complex and would require some form of blocking, so keep it simple |
| 2860 | * and fast by just using the current transaction. |
| 2861 | * |
| 2862 | * However, when reindexing an existing index, we should do nothing here. |
| 2863 | * Any HOT chains that are broken with respect to the index must predate |
| 2864 | * the index's original creation, so there is no need to change the |
| 2865 | * index's usability horizon. Moreover, we *must not* try to change the |
| 2866 | * index's pg_index entry while reindexing pg_index itself, and this |
| 2867 | * optimization nicely prevents that. The more complex rules needed for a |
| 2868 | * reindex are handled separately after this function returns. |
| 2869 | * |
| 2870 | * We also need not set indcheckxmin during a concurrent index build, |
| 2871 | * because we won't set indisvalid true until all transactions that care |
| 2872 | * about the broken HOT chains or early pruning/vacuuming are gone. |
| 2873 | * |
| 2874 | * Therefore, this code path can only be taken during non-concurrent |
| 2875 | * CREATE INDEX. Thus the fact that heap_update will set the pg_index |
| 2876 | * tuple's xmin doesn't matter, because that tuple was created in the |
| 2877 | * current transaction anyway. That also means we don't need to worry |
| 2878 | * about any concurrent readers of the tuple; no other transaction can see |
| 2879 | * it yet. |
| 2880 | */ |
| 2881 | if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) && |
| 2882 | !isreindex && |
| 2883 | !indexInfo->ii_Concurrent) |
| 2884 | { |
| 2885 | Oid indexId = RelationGetRelid(indexRelation); |
| 2886 | Relation pg_index; |
| 2887 | HeapTuple indexTuple; |
| 2888 | Form_pg_index indexForm; |
| 2889 | |
| 2890 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 2891 | |
| 2892 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 2893 | ObjectIdGetDatum(indexId)); |
| 2894 | if (!HeapTupleIsValid(indexTuple)) |
| 2895 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
| 2896 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
| 2897 | |
| 2898 | /* If it's a new index, indcheckxmin shouldn't be set ... */ |
| 2899 | Assert(!indexForm->indcheckxmin); |
| 2900 | |
| 2901 | indexForm->indcheckxmin = true; |
| 2902 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
| 2903 | |
| 2904 | heap_freetuple(indexTuple); |
| 2905 | table_close(pg_index, RowExclusiveLock); |
| 2906 | } |
| 2907 | |
| 2908 | /* |
| 2909 | * Update heap and index pg_class rows |
| 2910 | */ |
| 2911 | index_update_stats(heapRelation, |
| 2912 | true, |
| 2913 | stats->heap_tuples); |
| 2914 | |
| 2915 | index_update_stats(indexRelation, |
| 2916 | false, |
| 2917 | stats->index_tuples); |
| 2918 | |
| 2919 | /* Make the updated catalog row versions visible */ |
| 2920 | CommandCounterIncrement(); |
| 2921 | |
| 2922 | /* |
| 2923 | * If it's for an exclusion constraint, make a second pass over the heap |
| 2924 | * to verify that the constraint is satisfied. We must not do this until |
| 2925 | * the index is fully valid. (Broken HOT chains shouldn't matter, though; |
| 2926 | * see comments for IndexCheckExclusion.) |
| 2927 | */ |
| 2928 | if (indexInfo->ii_ExclusionOps != NULL) |
| 2929 | IndexCheckExclusion(heapRelation, indexRelation, indexInfo); |
| 2930 | |
| 2931 | /* Roll back any GUC changes executed by index functions */ |
| 2932 | AtEOXact_GUC(false, save_nestlevel); |
| 2933 | |
| 2934 | /* Restore userid and security context */ |
| 2935 | SetUserIdAndSecContext(save_userid, save_sec_context); |
| 2936 | } |
| 2937 | |
| 2938 | /* |
| 2939 | * IndexCheckExclusion - verify that a new exclusion constraint is satisfied |
| 2940 | * |
| 2941 | * When creating an exclusion constraint, we first build the index normally |
| 2942 | * and then rescan the heap to check for conflicts. We assume that we only |
| 2943 | * need to validate tuples that are live according to an up-to-date snapshot, |
| 2944 | * and that these were correctly indexed even in the presence of broken HOT |
| 2945 | * chains. This should be OK since we are holding at least ShareLock on the |
| 2946 | * table, meaning there can be no uncommitted updates from other transactions. |
| 2947 | * (Note: that wouldn't necessarily work for system catalogs, since many |
| 2948 | * operations release write lock early on the system catalogs.) |
| 2949 | */ |
| 2950 | static void |
| 2951 | IndexCheckExclusion(Relation heapRelation, |
| 2952 | Relation indexRelation, |
| 2953 | IndexInfo *indexInfo) |
| 2954 | { |
| 2955 | TableScanDesc scan; |
| 2956 | Datum values[INDEX_MAX_KEYS]; |
| 2957 | bool isnull[INDEX_MAX_KEYS]; |
| 2958 | ExprState *predicate; |
| 2959 | TupleTableSlot *slot; |
| 2960 | EState *estate; |
| 2961 | ExprContext *econtext; |
| 2962 | Snapshot snapshot; |
| 2963 | |
| 2964 | /* |
| 2965 | * If we are reindexing the target index, mark it as no longer being |
| 2966 | * reindexed, to forestall an Assert in index_beginscan when we try to use |
| 2967 | * the index for probes. This is OK because the index is now fully valid. |
| 2968 | */ |
| 2969 | if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation))) |
| 2970 | ResetReindexProcessing(); |
| 2971 | |
| 2972 | /* |
| 2973 | * Need an EState for evaluation of index expressions and partial-index |
| 2974 | * predicates. Also a slot to hold the current tuple. |
| 2975 | */ |
| 2976 | estate = CreateExecutorState(); |
| 2977 | econtext = GetPerTupleExprContext(estate); |
| 2978 | slot = table_slot_create(heapRelation, NULL); |
| 2979 | |
| 2980 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 2981 | econtext->ecxt_scantuple = slot; |
| 2982 | |
| 2983 | /* Set up execution state for predicate, if any. */ |
| 2984 | predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate); |
| 2985 | |
| 2986 | /* |
| 2987 | * Scan all live tuples in the base relation. |
| 2988 | */ |
| 2989 | snapshot = RegisterSnapshot(GetLatestSnapshot()); |
| 2990 | scan = table_beginscan_strat(heapRelation, /* relation */ |
| 2991 | snapshot, /* snapshot */ |
| 2992 | 0, /* number of keys */ |
| 2993 | NULL, /* scan key */ |
| 2994 | true, /* buffer access strategy OK */ |
| 2995 | true); /* syncscan OK */ |
| 2996 | |
| 2997 | while (table_scan_getnextslot(scan, ForwardScanDirection, slot)) |
| 2998 | { |
| 2999 | CHECK_FOR_INTERRUPTS(); |
| 3000 | |
| 3001 | /* |
| 3002 | * In a partial index, ignore tuples that don't satisfy the predicate. |
| 3003 | */ |
| 3004 | if (predicate != NULL) |
| 3005 | { |
| 3006 | if (!ExecQual(predicate, econtext)) |
| 3007 | continue; |
| 3008 | } |
| 3009 | |
| 3010 | /* |
| 3011 | * Extract index column values, including computing expressions. |
| 3012 | */ |
| 3013 | FormIndexDatum(indexInfo, |
| 3014 | slot, |
| 3015 | estate, |
| 3016 | values, |
| 3017 | isnull); |
| 3018 | |
| 3019 | /* |
| 3020 | * Check that this tuple has no conflicts. |
| 3021 | */ |
| 3022 | check_exclusion_constraint(heapRelation, |
| 3023 | indexRelation, indexInfo, |
| 3024 | &(slot->tts_tid), values, isnull, |
| 3025 | estate, true); |
| 3026 | |
| 3027 | MemoryContextReset(econtext->ecxt_per_tuple_memory); |
| 3028 | } |
| 3029 | |
| 3030 | table_endscan(scan); |
| 3031 | UnregisterSnapshot(snapshot); |
| 3032 | |
| 3033 | ExecDropSingleTupleTableSlot(slot); |
| 3034 | |
| 3035 | FreeExecutorState(estate); |
| 3036 | |
| 3037 | /* These may have been pointing to the now-gone estate */ |
| 3038 | indexInfo->ii_ExpressionsState = NIL; |
| 3039 | indexInfo->ii_PredicateState = NULL; |
| 3040 | } |
| 3041 | |
| 3042 | |
| 3043 | /* |
| 3044 | * validate_index - support code for concurrent index builds |
| 3045 | * |
| 3046 | * We do a concurrent index build by first inserting the catalog entry for the |
| 3047 | * index via index_create(), marking it not indisready and not indisvalid. |
| 3048 | * Then we commit our transaction and start a new one, then we wait for all |
| 3049 | * transactions that could have been modifying the table to terminate. Now |
| 3050 | * we know that any subsequently-started transactions will see the index and |
| 3051 | * honor its constraints on HOT updates; so while existing HOT-chains might |
| 3052 | * be broken with respect to the index, no currently live tuple will have an |
| 3053 | * incompatible HOT update done to it. We now build the index normally via |
| 3054 | * index_build(), while holding a weak lock that allows concurrent |
| 3055 | * insert/update/delete. Also, we index only tuples that are valid |
| 3056 | * as of the start of the scan (see table_index_build_scan), whereas a normal |
| 3057 | * build takes care to include recently-dead tuples. This is OK because |
| 3058 | * we won't mark the index valid until all transactions that might be able |
| 3059 | * to see those tuples are gone. The reason for doing that is to avoid |
| 3060 | * bogus unique-index failures due to concurrent UPDATEs (we might see |
| 3061 | * different versions of the same row as being valid when we pass over them, |
| 3062 | * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that |
| 3063 | * does not contain any tuples added to the table while we built the index. |
| 3064 | * |
| 3065 | * Next, we mark the index "indisready" (but still not "indisvalid") and |
| 3066 | * commit the second transaction and start a third. Again we wait for all |
| 3067 | * transactions that could have been modifying the table to terminate. Now |
| 3068 | * we know that any subsequently-started transactions will see the index and |
| 3069 | * insert their new tuples into it. We then take a new reference snapshot |
| 3070 | * which is passed to validate_index(). Any tuples that are valid according |
| 3071 | * to this snap, but are not in the index, must be added to the index. |
| 3072 | * (Any tuples committed live after the snap will be inserted into the |
| 3073 | * index by their originating transaction. Any tuples committed dead before |
| 3074 | * the snap need not be indexed, because we will wait out all transactions |
| 3075 | * that might care about them before we mark the index valid.) |
| 3076 | * |
| 3077 | * validate_index() works by first gathering all the TIDs currently in the |
| 3078 | * index, using a bulkdelete callback that just stores the TIDs and doesn't |
| 3079 | * ever say "delete it". (This should be faster than a plain indexscan; |
| 3080 | * also, not all index AMs support full-index indexscan.) Then we sort the |
| 3081 | * TIDs, and finally scan the table doing a "merge join" against the TID list |
| 3082 | * to see which tuples are missing from the index. Thus we will ensure that |
| 3083 | * all tuples valid according to the reference snapshot are in the index. |
| 3084 | * |
| 3085 | * Building a unique index this way is tricky: we might try to insert a |
| 3086 | * tuple that is already dead or is in process of being deleted, and we |
| 3087 | * mustn't have a uniqueness failure against an updated version of the same |
| 3088 | * row. We could try to check the tuple to see if it's already dead and tell |
| 3089 | * index_insert() not to do the uniqueness check, but that still leaves us |
| 3090 | * with a race condition against an in-progress update. To handle that, |
| 3091 | * we expect the index AM to recheck liveness of the to-be-inserted tuple |
| 3092 | * before it declares a uniqueness error. |
| 3093 | * |
| 3094 | * After completing validate_index(), we wait until all transactions that |
| 3095 | * were alive at the time of the reference snapshot are gone; this is |
| 3096 | * necessary to be sure there are none left with a transaction snapshot |
| 3097 | * older than the reference (and hence possibly able to see tuples we did |
| 3098 | * not index). Then we mark the index "indisvalid" and commit. Subsequent |
| 3099 | * transactions will be able to use it for queries. |
| 3100 | * |
| 3101 | * Doing two full table scans is a brute-force strategy. We could try to be |
| 3102 | * cleverer, eg storing new tuples in a special area of the table (perhaps |
| 3103 | * making the table append-only by setting use_fsm). However that would |
| 3104 | * add yet more locking issues. |
| 3105 | */ |
| 3106 | void |
| 3107 | validate_index(Oid heapId, Oid indexId, Snapshot snapshot) |
| 3108 | { |
| 3109 | Relation heapRelation, |
| 3110 | indexRelation; |
| 3111 | IndexInfo *indexInfo; |
| 3112 | IndexVacuumInfo ivinfo; |
| 3113 | ValidateIndexState state; |
| 3114 | Oid save_userid; |
| 3115 | int save_sec_context; |
| 3116 | int save_nestlevel; |
| 3117 | |
| 3118 | { |
| 3119 | const int index[] = { |
| 3120 | PROGRESS_CREATEIDX_PHASE, |
| 3121 | PROGRESS_CREATEIDX_TUPLES_DONE, |
| 3122 | PROGRESS_CREATEIDX_TUPLES_TOTAL, |
| 3123 | PROGRESS_SCAN_BLOCKS_DONE, |
| 3124 | PROGRESS_SCAN_BLOCKS_TOTAL |
| 3125 | }; |
| 3126 | const int64 val[] = { |
| 3127 | PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN, |
| 3128 | 0, 0, 0, 0 |
| 3129 | }; |
| 3130 | |
| 3131 | pgstat_progress_update_multi_param(5, index, val); |
| 3132 | } |
| 3133 | |
| 3134 | /* Open and lock the parent heap relation */ |
| 3135 | heapRelation = table_open(heapId, ShareUpdateExclusiveLock); |
| 3136 | /* And the target index relation */ |
| 3137 | indexRelation = index_open(indexId, RowExclusiveLock); |
| 3138 | |
| 3139 | /* |
| 3140 | * Fetch info needed for index_insert. (You might think this should be |
| 3141 | * passed in from DefineIndex, but its copy is long gone due to having |
| 3142 | * been built in a previous transaction.) |
| 3143 | */ |
| 3144 | indexInfo = BuildIndexInfo(indexRelation); |
| 3145 | |
| 3146 | /* mark build is concurrent just for consistency */ |
| 3147 | indexInfo->ii_Concurrent = true; |
| 3148 | |
| 3149 | /* |
| 3150 | * Switch to the table owner's userid, so that any index functions are run |
| 3151 | * as that user. Also lock down security-restricted operations and |
| 3152 | * arrange to make GUC variable changes local to this command. |
| 3153 | */ |
| 3154 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
| 3155 | SetUserIdAndSecContext(heapRelation->rd_rel->relowner, |
| 3156 | save_sec_context | SECURITY_RESTRICTED_OPERATION); |
| 3157 | save_nestlevel = NewGUCNestLevel(); |
| 3158 | |
| 3159 | /* |
| 3160 | * Scan the index and gather up all the TIDs into a tuplesort object. |
| 3161 | */ |
| 3162 | ivinfo.index = indexRelation; |
| 3163 | ivinfo.analyze_only = false; |
| 3164 | ivinfo.report_progress = true; |
| 3165 | ivinfo.estimated_count = true; |
| 3166 | ivinfo.message_level = DEBUG2; |
| 3167 | ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples; |
| 3168 | ivinfo.strategy = NULL; |
| 3169 | |
| 3170 | /* |
| 3171 | * Encode TIDs as int8 values for the sort, rather than directly sorting |
| 3172 | * item pointers. This can be significantly faster, primarily because TID |
| 3173 | * is a pass-by-reference type on all platforms, whereas int8 is |
| 3174 | * pass-by-value on most platforms. |
| 3175 | */ |
| 3176 | state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator, |
| 3177 | InvalidOid, false, |
| 3178 | maintenance_work_mem, |
| 3179 | NULL, false); |
| 3180 | state.htups = state.itups = state.tups_inserted = 0; |
| 3181 | |
| 3182 | /* ambulkdelete updates progress metrics */ |
| 3183 | (void) index_bulk_delete(&ivinfo, NULL, |
| 3184 | validate_index_callback, (void *) &state); |
| 3185 | |
| 3186 | /* Execute the sort */ |
| 3187 | { |
| 3188 | const int index[] = { |
| 3189 | PROGRESS_CREATEIDX_PHASE, |
| 3190 | PROGRESS_SCAN_BLOCKS_DONE, |
| 3191 | PROGRESS_SCAN_BLOCKS_TOTAL |
| 3192 | }; |
| 3193 | const int64 val[] = { |
| 3194 | PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT, |
| 3195 | 0, 0 |
| 3196 | }; |
| 3197 | |
| 3198 | pgstat_progress_update_multi_param(3, index, val); |
| 3199 | } |
| 3200 | tuplesort_performsort(state.tuplesort); |
| 3201 | |
| 3202 | /* |
| 3203 | * Now scan the heap and "merge" it with the index |
| 3204 | */ |
| 3205 | pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE, |
| 3206 | PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN); |
| 3207 | table_index_validate_scan(heapRelation, |
| 3208 | indexRelation, |
| 3209 | indexInfo, |
| 3210 | snapshot, |
| 3211 | &state); |
| 3212 | |
| 3213 | /* Done with tuplesort object */ |
| 3214 | tuplesort_end(state.tuplesort); |
| 3215 | |
| 3216 | elog(DEBUG2, |
| 3217 | "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples" , |
| 3218 | state.htups, state.itups, state.tups_inserted); |
| 3219 | |
| 3220 | /* Roll back any GUC changes executed by index functions */ |
| 3221 | AtEOXact_GUC(false, save_nestlevel); |
| 3222 | |
| 3223 | /* Restore userid and security context */ |
| 3224 | SetUserIdAndSecContext(save_userid, save_sec_context); |
| 3225 | |
| 3226 | /* Close rels, but keep locks */ |
| 3227 | index_close(indexRelation, NoLock); |
| 3228 | table_close(heapRelation, NoLock); |
| 3229 | } |
| 3230 | |
| 3231 | /* |
| 3232 | * validate_index_callback - bulkdelete callback to collect the index TIDs |
| 3233 | */ |
| 3234 | static bool |
| 3235 | validate_index_callback(ItemPointer itemptr, void *opaque) |
| 3236 | { |
| 3237 | ValidateIndexState *state = (ValidateIndexState *) opaque; |
| 3238 | int64 encoded = itemptr_encode(itemptr); |
| 3239 | |
| 3240 | tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false); |
| 3241 | state->itups += 1; |
| 3242 | return false; /* never actually delete anything */ |
| 3243 | } |
| 3244 | |
| 3245 | /* |
| 3246 | * index_set_state_flags - adjust pg_index state flags |
| 3247 | * |
| 3248 | * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index |
| 3249 | * flags that denote the index's state. Because the update is not |
| 3250 | * transactional and will not roll back on error, this must only be used as |
| 3251 | * the last step in a transaction that has not made any transactional catalog |
| 3252 | * updates! |
| 3253 | * |
| 3254 | * Note that heap_inplace_update does send a cache inval message for the |
| 3255 | * tuple, so other sessions will hear about the update as soon as we commit. |
| 3256 | * |
| 3257 | * NB: In releases prior to PostgreSQL 9.4, the use of a non-transactional |
| 3258 | * update here would have been unsafe; now that MVCC rules apply even for |
| 3259 | * system catalog scans, we could potentially use a transactional update here |
| 3260 | * instead. |
| 3261 | */ |
| 3262 | void |
| 3263 | index_set_state_flags(Oid indexId, IndexStateFlagsAction action) |
| 3264 | { |
| 3265 | Relation pg_index; |
| 3266 | HeapTuple indexTuple; |
| 3267 | Form_pg_index indexForm; |
| 3268 | |
| 3269 | /* Assert that current xact hasn't done any transactional updates */ |
| 3270 | Assert(GetTopTransactionIdIfAny() == InvalidTransactionId); |
| 3271 | |
| 3272 | /* Open pg_index and fetch a writable copy of the index's tuple */ |
| 3273 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 3274 | |
| 3275 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 3276 | ObjectIdGetDatum(indexId)); |
| 3277 | if (!HeapTupleIsValid(indexTuple)) |
| 3278 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
| 3279 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
| 3280 | |
| 3281 | /* Perform the requested state change on the copy */ |
| 3282 | switch (action) |
| 3283 | { |
| 3284 | case INDEX_CREATE_SET_READY: |
| 3285 | /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */ |
| 3286 | Assert(indexForm->indislive); |
| 3287 | Assert(!indexForm->indisready); |
| 3288 | Assert(!indexForm->indisvalid); |
| 3289 | indexForm->indisready = true; |
| 3290 | break; |
| 3291 | case INDEX_CREATE_SET_VALID: |
| 3292 | /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */ |
| 3293 | Assert(indexForm->indislive); |
| 3294 | Assert(indexForm->indisready); |
| 3295 | Assert(!indexForm->indisvalid); |
| 3296 | indexForm->indisvalid = true; |
| 3297 | break; |
| 3298 | case INDEX_DROP_CLEAR_VALID: |
| 3299 | |
| 3300 | /* |
| 3301 | * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence |
| 3302 | * |
| 3303 | * If indisready == true we leave it set so the index still gets |
| 3304 | * maintained by active transactions. We only need to ensure that |
| 3305 | * indisvalid is false. (We don't assert that either is initially |
| 3306 | * true, though, since we want to be able to retry a DROP INDEX |
| 3307 | * CONCURRENTLY that failed partway through.) |
| 3308 | * |
| 3309 | * Note: the CLUSTER logic assumes that indisclustered cannot be |
| 3310 | * set on any invalid index, so clear that flag too. |
| 3311 | */ |
| 3312 | indexForm->indisvalid = false; |
| 3313 | indexForm->indisclustered = false; |
| 3314 | break; |
| 3315 | case INDEX_DROP_SET_DEAD: |
| 3316 | |
| 3317 | /* |
| 3318 | * Clear indisready/indislive during DROP INDEX CONCURRENTLY |
| 3319 | * |
| 3320 | * We clear both indisready and indislive, because we not only |
| 3321 | * want to stop updates, we want to prevent sessions from touching |
| 3322 | * the index at all. |
| 3323 | */ |
| 3324 | Assert(!indexForm->indisvalid); |
| 3325 | indexForm->indisready = false; |
| 3326 | indexForm->indislive = false; |
| 3327 | break; |
| 3328 | } |
| 3329 | |
| 3330 | /* ... and write it back in-place */ |
| 3331 | heap_inplace_update(pg_index, indexTuple); |
| 3332 | |
| 3333 | table_close(pg_index, RowExclusiveLock); |
| 3334 | } |
| 3335 | |
| 3336 | |
| 3337 | /* |
| 3338 | * IndexGetRelation: given an index's relation OID, get the OID of the |
| 3339 | * relation it is an index on. Uses the system cache. |
| 3340 | */ |
| 3341 | Oid |
| 3342 | IndexGetRelation(Oid indexId, bool missing_ok) |
| 3343 | { |
| 3344 | HeapTuple tuple; |
| 3345 | Form_pg_index index; |
| 3346 | Oid result; |
| 3347 | |
| 3348 | tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId)); |
| 3349 | if (!HeapTupleIsValid(tuple)) |
| 3350 | { |
| 3351 | if (missing_ok) |
| 3352 | return InvalidOid; |
| 3353 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
| 3354 | } |
| 3355 | index = (Form_pg_index) GETSTRUCT(tuple); |
| 3356 | Assert(index->indexrelid == indexId); |
| 3357 | |
| 3358 | result = index->indrelid; |
| 3359 | ReleaseSysCache(tuple); |
| 3360 | return result; |
| 3361 | } |
| 3362 | |
| 3363 | /* |
| 3364 | * reindex_index - This routine is used to recreate a single index |
| 3365 | */ |
| 3366 | void |
| 3367 | reindex_index(Oid indexId, bool skip_constraint_checks, char persistence, |
| 3368 | int options) |
| 3369 | { |
| 3370 | Relation iRel, |
| 3371 | heapRelation; |
| 3372 | Oid heapId; |
| 3373 | IndexInfo *indexInfo; |
| 3374 | volatile bool skipped_constraint = false; |
| 3375 | PGRUsage ru0; |
| 3376 | bool progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0; |
| 3377 | |
| 3378 | pg_rusage_init(&ru0); |
| 3379 | |
| 3380 | /* |
| 3381 | * Open and lock the parent heap relation. ShareLock is sufficient since |
| 3382 | * we only need to be sure no schema or data changes are going on. |
| 3383 | */ |
| 3384 | heapId = IndexGetRelation(indexId, false); |
| 3385 | heapRelation = table_open(heapId, ShareLock); |
| 3386 | |
| 3387 | if (progress) |
| 3388 | { |
| 3389 | pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX, |
| 3390 | heapId); |
| 3391 | pgstat_progress_update_param(PROGRESS_CREATEIDX_COMMAND, |
| 3392 | PROGRESS_CREATEIDX_COMMAND_REINDEX); |
| 3393 | pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID, |
| 3394 | indexId); |
| 3395 | } |
| 3396 | |
| 3397 | /* |
| 3398 | * Open the target index relation and get an exclusive lock on it, to |
| 3399 | * ensure that no one else is touching this particular index. |
| 3400 | */ |
| 3401 | iRel = index_open(indexId, AccessExclusiveLock); |
| 3402 | |
| 3403 | if (progress) |
| 3404 | pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID, |
| 3405 | iRel->rd_rel->relam); |
| 3406 | |
| 3407 | /* |
| 3408 | * The case of reindexing partitioned tables and indexes is handled |
| 3409 | * differently by upper layers, so this case shouldn't arise. |
| 3410 | */ |
| 3411 | if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX) |
| 3412 | elog(ERROR, "unsupported relation kind for index \"%s\"" , |
| 3413 | RelationGetRelationName(iRel)); |
| 3414 | |
| 3415 | /* |
| 3416 | * Don't allow reindex on temp tables of other backends ... their local |
| 3417 | * buffer manager is not going to cope. |
| 3418 | */ |
| 3419 | if (RELATION_IS_OTHER_TEMP(iRel)) |
| 3420 | ereport(ERROR, |
| 3421 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3422 | errmsg("cannot reindex temporary tables of other sessions" ))); |
| 3423 | |
| 3424 | /* |
| 3425 | * Also check for active uses of the index in the current transaction; we |
| 3426 | * don't want to reindex underneath an open indexscan. |
| 3427 | */ |
| 3428 | CheckTableNotInUse(iRel, "REINDEX INDEX" ); |
| 3429 | |
| 3430 | /* |
| 3431 | * All predicate locks on the index are about to be made invalid. Promote |
| 3432 | * them to relation locks on the heap. |
| 3433 | */ |
| 3434 | TransferPredicateLocksToHeapRelation(iRel); |
| 3435 | |
| 3436 | /* Fetch info needed for index_build */ |
| 3437 | indexInfo = BuildIndexInfo(iRel); |
| 3438 | |
| 3439 | /* If requested, skip checking uniqueness/exclusion constraints */ |
| 3440 | if (skip_constraint_checks) |
| 3441 | { |
| 3442 | if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL) |
| 3443 | skipped_constraint = true; |
| 3444 | indexInfo->ii_Unique = false; |
| 3445 | indexInfo->ii_ExclusionOps = NULL; |
| 3446 | indexInfo->ii_ExclusionProcs = NULL; |
| 3447 | indexInfo->ii_ExclusionStrats = NULL; |
| 3448 | } |
| 3449 | |
| 3450 | /* ensure SetReindexProcessing state isn't leaked */ |
| 3451 | PG_TRY(); |
| 3452 | { |
| 3453 | /* Suppress use of the target index while rebuilding it */ |
| 3454 | SetReindexProcessing(heapId, indexId); |
| 3455 | |
| 3456 | /* Create a new physical relation for the index */ |
| 3457 | RelationSetNewRelfilenode(iRel, persistence); |
| 3458 | |
| 3459 | /* Initialize the index and rebuild */ |
| 3460 | /* Note: we do not need to re-establish pkey setting */ |
| 3461 | index_build(heapRelation, iRel, indexInfo, true, true); |
| 3462 | } |
| 3463 | PG_CATCH(); |
| 3464 | { |
| 3465 | /* Make sure flag gets cleared on error exit */ |
| 3466 | ResetReindexProcessing(); |
| 3467 | PG_RE_THROW(); |
| 3468 | } |
| 3469 | PG_END_TRY(); |
| 3470 | ResetReindexProcessing(); |
| 3471 | |
| 3472 | /* |
| 3473 | * If the index is marked invalid/not-ready/dead (ie, it's from a failed |
| 3474 | * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway), |
| 3475 | * and we didn't skip a uniqueness check, we can now mark it valid. This |
| 3476 | * allows REINDEX to be used to clean up in such cases. |
| 3477 | * |
| 3478 | * We can also reset indcheckxmin, because we have now done a |
| 3479 | * non-concurrent index build, *except* in the case where index_build |
| 3480 | * found some still-broken HOT chains. If it did, and we don't have to |
| 3481 | * change any of the other flags, we just leave indcheckxmin alone (note |
| 3482 | * that index_build won't have changed it, because this is a reindex). |
| 3483 | * This is okay and desirable because not updating the tuple leaves the |
| 3484 | * index's usability horizon (recorded as the tuple's xmin value) the same |
| 3485 | * as it was. |
| 3486 | * |
| 3487 | * But, if the index was invalid/not-ready/dead and there were broken HOT |
| 3488 | * chains, we had better force indcheckxmin true, because the normal |
| 3489 | * argument that the HOT chains couldn't conflict with the index is |
| 3490 | * suspect for an invalid index. (A conflict is definitely possible if |
| 3491 | * the index was dead. It probably shouldn't happen otherwise, but let's |
| 3492 | * be conservative.) In this case advancing the usability horizon is |
| 3493 | * appropriate. |
| 3494 | * |
| 3495 | * Another reason for avoiding unnecessary updates here is that while |
| 3496 | * reindexing pg_index itself, we must not try to update tuples in it. |
| 3497 | * pg_index's indexes should always have these flags in their clean state, |
| 3498 | * so that won't happen. |
| 3499 | * |
| 3500 | * If early pruning/vacuuming is enabled for the heap relation, the |
| 3501 | * usability horizon must be advanced to the current transaction on every |
| 3502 | * build or rebuild. pg_index is OK in this regard because catalog tables |
| 3503 | * are not subject to early cleanup. |
| 3504 | */ |
| 3505 | if (!skipped_constraint) |
| 3506 | { |
| 3507 | Relation pg_index; |
| 3508 | HeapTuple indexTuple; |
| 3509 | Form_pg_index indexForm; |
| 3510 | bool index_bad; |
| 3511 | bool early_pruning_enabled = EarlyPruningEnabled(heapRelation); |
| 3512 | |
| 3513 | pg_index = table_open(IndexRelationId, RowExclusiveLock); |
| 3514 | |
| 3515 | indexTuple = SearchSysCacheCopy1(INDEXRELID, |
| 3516 | ObjectIdGetDatum(indexId)); |
| 3517 | if (!HeapTupleIsValid(indexTuple)) |
| 3518 | elog(ERROR, "cache lookup failed for index %u" , indexId); |
| 3519 | indexForm = (Form_pg_index) GETSTRUCT(indexTuple); |
| 3520 | |
| 3521 | index_bad = (!indexForm->indisvalid || |
| 3522 | !indexForm->indisready || |
| 3523 | !indexForm->indislive); |
| 3524 | if (index_bad || |
| 3525 | (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) || |
| 3526 | early_pruning_enabled) |
| 3527 | { |
| 3528 | if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled) |
| 3529 | indexForm->indcheckxmin = false; |
| 3530 | else if (index_bad || early_pruning_enabled) |
| 3531 | indexForm->indcheckxmin = true; |
| 3532 | indexForm->indisvalid = true; |
| 3533 | indexForm->indisready = true; |
| 3534 | indexForm->indislive = true; |
| 3535 | CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); |
| 3536 | |
| 3537 | /* |
| 3538 | * Invalidate the relcache for the table, so that after we commit |
| 3539 | * all sessions will refresh the table's index list. This ensures |
| 3540 | * that if anyone misses seeing the pg_index row during this |
| 3541 | * update, they'll refresh their list before attempting any update |
| 3542 | * on the table. |
| 3543 | */ |
| 3544 | CacheInvalidateRelcache(heapRelation); |
| 3545 | } |
| 3546 | |
| 3547 | table_close(pg_index, RowExclusiveLock); |
| 3548 | } |
| 3549 | |
| 3550 | /* Log what we did */ |
| 3551 | if (options & REINDEXOPT_VERBOSE) |
| 3552 | ereport(INFO, |
| 3553 | (errmsg("index \"%s\" was reindexed" , |
| 3554 | get_rel_name(indexId)), |
| 3555 | errdetail_internal("%s" , |
| 3556 | pg_rusage_show(&ru0)))); |
| 3557 | |
| 3558 | if (progress) |
| 3559 | pgstat_progress_end_command(); |
| 3560 | |
| 3561 | /* Close rels, but keep locks */ |
| 3562 | index_close(iRel, NoLock); |
| 3563 | table_close(heapRelation, NoLock); |
| 3564 | } |
| 3565 | |
| 3566 | /* |
| 3567 | * reindex_relation - This routine is used to recreate all indexes |
| 3568 | * of a relation (and optionally its toast relation too, if any). |
| 3569 | * |
| 3570 | * "flags" is a bitmask that can include any combination of these bits: |
| 3571 | * |
| 3572 | * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any). |
| 3573 | * |
| 3574 | * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely |
| 3575 | * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its |
| 3576 | * indexes are inconsistent with it. This makes things tricky if the relation |
| 3577 | * is a system catalog that we might consult during the reindexing. To deal |
| 3578 | * with that case, we mark all of the indexes as pending rebuild so that they |
| 3579 | * won't be trusted until rebuilt. The caller is required to call us *without* |
| 3580 | * having made the rebuilt table visible by doing CommandCounterIncrement; |
| 3581 | * we'll do CCI after having collected the index list. (This way we can still |
| 3582 | * use catalog indexes while collecting the list.) |
| 3583 | * |
| 3584 | * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion |
| 3585 | * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or |
| 3586 | * CLUSTER on a system catalog must omit this flag. REINDEX should be used to |
| 3587 | * rebuild an index if constraint inconsistency is suspected. For optimal |
| 3588 | * performance, other callers should include the flag only after transforming |
| 3589 | * the data in a manner that risks a change in constraint validity. |
| 3590 | * |
| 3591 | * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the |
| 3592 | * rebuilt indexes to unlogged. |
| 3593 | * |
| 3594 | * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the |
| 3595 | * rebuilt indexes to permanent. |
| 3596 | * |
| 3597 | * Returns true if any indexes were rebuilt (including toast table's index |
| 3598 | * when relevant). Note that a CommandCounterIncrement will occur after each |
| 3599 | * index rebuild. |
| 3600 | */ |
| 3601 | bool |
| 3602 | reindex_relation(Oid relid, int flags, int options) |
| 3603 | { |
| 3604 | Relation rel; |
| 3605 | Oid toast_relid; |
| 3606 | List *indexIds; |
| 3607 | bool result; |
| 3608 | int i; |
| 3609 | |
| 3610 | /* |
| 3611 | * Open and lock the relation. ShareLock is sufficient since we only need |
| 3612 | * to prevent schema and data changes in it. The lock level used here |
| 3613 | * should match ReindexTable(). |
| 3614 | */ |
| 3615 | rel = table_open(relid, ShareLock); |
| 3616 | |
| 3617 | /* |
| 3618 | * This may be useful when implemented someday; but that day is not today. |
| 3619 | * For now, avoid erroring out when called in a multi-table context |
| 3620 | * (REINDEX SCHEMA) and happen to come across a partitioned table. The |
| 3621 | * partitions may be reindexed on their own anyway. |
| 3622 | */ |
| 3623 | if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) |
| 3624 | { |
| 3625 | ereport(WARNING, |
| 3626 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3627 | errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"" , |
| 3628 | RelationGetRelationName(rel)))); |
| 3629 | table_close(rel, ShareLock); |
| 3630 | return false; |
| 3631 | } |
| 3632 | |
| 3633 | toast_relid = rel->rd_rel->reltoastrelid; |
| 3634 | |
| 3635 | /* |
| 3636 | * Get the list of index OIDs for this relation. (We trust to the |
| 3637 | * relcache to get this with a sequential scan if ignoring system |
| 3638 | * indexes.) |
| 3639 | */ |
| 3640 | indexIds = RelationGetIndexList(rel); |
| 3641 | |
| 3642 | PG_TRY(); |
| 3643 | { |
| 3644 | ListCell *indexId; |
| 3645 | char persistence; |
| 3646 | |
| 3647 | if (flags & REINDEX_REL_SUPPRESS_INDEX_USE) |
| 3648 | { |
| 3649 | /* Suppress use of all the indexes until they are rebuilt */ |
| 3650 | SetReindexPending(indexIds); |
| 3651 | |
| 3652 | /* |
| 3653 | * Make the new heap contents visible --- now things might be |
| 3654 | * inconsistent! |
| 3655 | */ |
| 3656 | CommandCounterIncrement(); |
| 3657 | } |
| 3658 | |
| 3659 | /* |
| 3660 | * Compute persistence of indexes: same as that of owning rel, unless |
| 3661 | * caller specified otherwise. |
| 3662 | */ |
| 3663 | if (flags & REINDEX_REL_FORCE_INDEXES_UNLOGGED) |
| 3664 | persistence = RELPERSISTENCE_UNLOGGED; |
| 3665 | else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT) |
| 3666 | persistence = RELPERSISTENCE_PERMANENT; |
| 3667 | else |
| 3668 | persistence = rel->rd_rel->relpersistence; |
| 3669 | |
| 3670 | /* Reindex all the indexes. */ |
| 3671 | i = 1; |
| 3672 | foreach(indexId, indexIds) |
| 3673 | { |
| 3674 | Oid indexOid = lfirst_oid(indexId); |
| 3675 | |
| 3676 | reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS), |
| 3677 | persistence, options); |
| 3678 | |
| 3679 | CommandCounterIncrement(); |
| 3680 | |
| 3681 | /* Index should no longer be in the pending list */ |
| 3682 | Assert(!ReindexIsProcessingIndex(indexOid)); |
| 3683 | |
| 3684 | /* Set index rebuild count */ |
| 3685 | pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT, |
| 3686 | i); |
| 3687 | i++; |
| 3688 | } |
| 3689 | } |
| 3690 | PG_CATCH(); |
| 3691 | { |
| 3692 | /* Make sure list gets cleared on error exit */ |
| 3693 | ResetReindexPending(); |
| 3694 | PG_RE_THROW(); |
| 3695 | } |
| 3696 | PG_END_TRY(); |
| 3697 | ResetReindexPending(); |
| 3698 | |
| 3699 | /* |
| 3700 | * Close rel, but continue to hold the lock. |
| 3701 | */ |
| 3702 | table_close(rel, NoLock); |
| 3703 | |
| 3704 | result = (indexIds != NIL); |
| 3705 | |
| 3706 | /* |
| 3707 | * If the relation has a secondary toast rel, reindex that too while we |
| 3708 | * still hold the lock on the master table. |
| 3709 | */ |
| 3710 | if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid)) |
| 3711 | result |= reindex_relation(toast_relid, flags, options); |
| 3712 | |
| 3713 | return result; |
| 3714 | } |
| 3715 | |
| 3716 | |
| 3717 | /* ---------------------------------------------------------------- |
| 3718 | * System index reindexing support |
| 3719 | * |
| 3720 | * When we are busy reindexing a system index, this code provides support |
| 3721 | * for preventing catalog lookups from using that index. We also make use |
| 3722 | * of this to catch attempted uses of user indexes during reindexing of |
| 3723 | * those indexes. This information is propagated to parallel workers; |
| 3724 | * attempting to change it during a parallel operation is not permitted. |
| 3725 | * ---------------------------------------------------------------- |
| 3726 | */ |
| 3727 | |
| 3728 | static Oid currentlyReindexedHeap = InvalidOid; |
| 3729 | static Oid currentlyReindexedIndex = InvalidOid; |
| 3730 | static List *pendingReindexedIndexes = NIL; |
| 3731 | |
| 3732 | /* |
| 3733 | * ReindexIsProcessingHeap |
| 3734 | * True if heap specified by OID is currently being reindexed. |
| 3735 | */ |
| 3736 | bool |
| 3737 | ReindexIsProcessingHeap(Oid heapOid) |
| 3738 | { |
| 3739 | return heapOid == currentlyReindexedHeap; |
| 3740 | } |
| 3741 | |
| 3742 | /* |
| 3743 | * ReindexIsCurrentlyProcessingIndex |
| 3744 | * True if index specified by OID is currently being reindexed. |
| 3745 | */ |
| 3746 | static bool |
| 3747 | ReindexIsCurrentlyProcessingIndex(Oid indexOid) |
| 3748 | { |
| 3749 | return indexOid == currentlyReindexedIndex; |
| 3750 | } |
| 3751 | |
| 3752 | /* |
| 3753 | * ReindexIsProcessingIndex |
| 3754 | * True if index specified by OID is currently being reindexed, |
| 3755 | * or should be treated as invalid because it is awaiting reindex. |
| 3756 | */ |
| 3757 | bool |
| 3758 | ReindexIsProcessingIndex(Oid indexOid) |
| 3759 | { |
| 3760 | return indexOid == currentlyReindexedIndex || |
| 3761 | list_member_oid(pendingReindexedIndexes, indexOid); |
| 3762 | } |
| 3763 | |
| 3764 | /* |
| 3765 | * SetReindexProcessing |
| 3766 | * Set flag that specified heap/index are being reindexed. |
| 3767 | * |
| 3768 | * NB: caller must use a PG_TRY block to ensure ResetReindexProcessing is done. |
| 3769 | */ |
| 3770 | static void |
| 3771 | SetReindexProcessing(Oid heapOid, Oid indexOid) |
| 3772 | { |
| 3773 | Assert(OidIsValid(heapOid) && OidIsValid(indexOid)); |
| 3774 | /* Reindexing is not re-entrant. */ |
| 3775 | if (OidIsValid(currentlyReindexedHeap)) |
| 3776 | elog(ERROR, "cannot reindex while reindexing" ); |
| 3777 | currentlyReindexedHeap = heapOid; |
| 3778 | currentlyReindexedIndex = indexOid; |
| 3779 | /* Index is no longer "pending" reindex. */ |
| 3780 | RemoveReindexPending(indexOid); |
| 3781 | } |
| 3782 | |
| 3783 | /* |
| 3784 | * ResetReindexProcessing |
| 3785 | * Unset reindexing status. |
| 3786 | */ |
| 3787 | static void |
| 3788 | ResetReindexProcessing(void) |
| 3789 | { |
| 3790 | /* This may be called in leader error path */ |
| 3791 | currentlyReindexedHeap = InvalidOid; |
| 3792 | currentlyReindexedIndex = InvalidOid; |
| 3793 | } |
| 3794 | |
| 3795 | /* |
| 3796 | * SetReindexPending |
| 3797 | * Mark the given indexes as pending reindex. |
| 3798 | * |
| 3799 | * NB: caller must use a PG_TRY block to ensure ResetReindexPending is done. |
| 3800 | * Also, we assume that the current memory context stays valid throughout. |
| 3801 | */ |
| 3802 | static void |
| 3803 | SetReindexPending(List *indexes) |
| 3804 | { |
| 3805 | /* Reindexing is not re-entrant. */ |
| 3806 | if (pendingReindexedIndexes) |
| 3807 | elog(ERROR, "cannot reindex while reindexing" ); |
| 3808 | if (IsInParallelMode()) |
| 3809 | elog(ERROR, "cannot modify reindex state during a parallel operation" ); |
| 3810 | pendingReindexedIndexes = list_copy(indexes); |
| 3811 | } |
| 3812 | |
| 3813 | /* |
| 3814 | * RemoveReindexPending |
| 3815 | * Remove the given index from the pending list. |
| 3816 | */ |
| 3817 | static void |
| 3818 | RemoveReindexPending(Oid indexOid) |
| 3819 | { |
| 3820 | if (IsInParallelMode()) |
| 3821 | elog(ERROR, "cannot modify reindex state during a parallel operation" ); |
| 3822 | pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes, |
| 3823 | indexOid); |
| 3824 | } |
| 3825 | |
| 3826 | /* |
| 3827 | * ResetReindexPending |
| 3828 | * Unset reindex-pending status. |
| 3829 | */ |
| 3830 | static void |
| 3831 | ResetReindexPending(void) |
| 3832 | { |
| 3833 | /* This may be called in leader error path */ |
| 3834 | pendingReindexedIndexes = NIL; |
| 3835 | } |
| 3836 | |
| 3837 | /* |
| 3838 | * EstimateReindexStateSpace |
| 3839 | * Estimate space needed to pass reindex state to parallel workers. |
| 3840 | */ |
| 3841 | Size |
| 3842 | EstimateReindexStateSpace(void) |
| 3843 | { |
| 3844 | return offsetof(SerializedReindexState, pendingReindexedIndexes) |
| 3845 | + mul_size(sizeof(Oid), list_length(pendingReindexedIndexes)); |
| 3846 | } |
| 3847 | |
| 3848 | /* |
| 3849 | * SerializeReindexState |
| 3850 | * Serialize reindex state for parallel workers. |
| 3851 | */ |
| 3852 | void |
| 3853 | SerializeReindexState(Size maxsize, char *start_address) |
| 3854 | { |
| 3855 | SerializedReindexState *sistate = (SerializedReindexState *) start_address; |
| 3856 | int c = 0; |
| 3857 | ListCell *lc; |
| 3858 | |
| 3859 | sistate->currentlyReindexedHeap = currentlyReindexedHeap; |
| 3860 | sistate->currentlyReindexedIndex = currentlyReindexedIndex; |
| 3861 | sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes); |
| 3862 | foreach(lc, pendingReindexedIndexes) |
| 3863 | sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc); |
| 3864 | } |
| 3865 | |
| 3866 | /* |
| 3867 | * RestoreReindexState |
| 3868 | * Restore reindex state in a parallel worker. |
| 3869 | */ |
| 3870 | void |
| 3871 | RestoreReindexState(void *reindexstate) |
| 3872 | { |
| 3873 | SerializedReindexState *sistate = (SerializedReindexState *) reindexstate; |
| 3874 | int c = 0; |
| 3875 | MemoryContext oldcontext; |
| 3876 | |
| 3877 | currentlyReindexedHeap = sistate->currentlyReindexedHeap; |
| 3878 | currentlyReindexedIndex = sistate->currentlyReindexedIndex; |
| 3879 | |
| 3880 | Assert(pendingReindexedIndexes == NIL); |
| 3881 | oldcontext = MemoryContextSwitchTo(TopMemoryContext); |
| 3882 | for (c = 0; c < sistate->numPendingReindexedIndexes; ++c) |
| 3883 | pendingReindexedIndexes = |
| 3884 | lappend_oid(pendingReindexedIndexes, |
| 3885 | sistate->pendingReindexedIndexes[c]); |
| 3886 | MemoryContextSwitchTo(oldcontext); |
| 3887 | } |
| 3888 | |