1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * trigger.c |
4 | * PostgreSQL TRIGGERs support code. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * IDENTIFICATION |
10 | * src/backend/commands/trigger.c |
11 | * |
12 | *------------------------------------------------------------------------- |
13 | */ |
14 | #include "postgres.h" |
15 | |
16 | #include "access/genam.h" |
17 | #include "access/htup_details.h" |
18 | #include "access/relation.h" |
19 | #include "access/sysattr.h" |
20 | #include "access/table.h" |
21 | #include "access/tableam.h" |
22 | #include "access/xact.h" |
23 | #include "catalog/catalog.h" |
24 | #include "catalog/dependency.h" |
25 | #include "catalog/index.h" |
26 | #include "catalog/indexing.h" |
27 | #include "catalog/objectaccess.h" |
28 | #include "catalog/partition.h" |
29 | #include "catalog/pg_constraint.h" |
30 | #include "catalog/pg_inherits.h" |
31 | #include "catalog/pg_proc.h" |
32 | #include "catalog/pg_trigger.h" |
33 | #include "catalog/pg_type.h" |
34 | #include "commands/dbcommands.h" |
35 | #include "commands/defrem.h" |
36 | #include "commands/trigger.h" |
37 | #include "executor/executor.h" |
38 | #include "miscadmin.h" |
39 | #include "nodes/bitmapset.h" |
40 | #include "nodes/makefuncs.h" |
41 | #include "optimizer/optimizer.h" |
42 | #include "parser/parse_clause.h" |
43 | #include "parser/parse_collate.h" |
44 | #include "parser/parse_func.h" |
45 | #include "parser/parse_relation.h" |
46 | #include "parser/parsetree.h" |
47 | #include "partitioning/partdesc.h" |
48 | #include "pgstat.h" |
49 | #include "rewrite/rewriteManip.h" |
50 | #include "storage/bufmgr.h" |
51 | #include "storage/lmgr.h" |
52 | #include "tcop/utility.h" |
53 | #include "utils/acl.h" |
54 | #include "utils/builtins.h" |
55 | #include "utils/bytea.h" |
56 | #include "utils/fmgroids.h" |
57 | #include "utils/inval.h" |
58 | #include "utils/lsyscache.h" |
59 | #include "utils/memutils.h" |
60 | #include "utils/rel.h" |
61 | #include "utils/snapmgr.h" |
62 | #include "utils/syscache.h" |
63 | #include "utils/tuplestore.h" |
64 | |
65 | |
66 | /* GUC variables */ |
67 | int SessionReplicationRole = SESSION_REPLICATION_ROLE_ORIGIN; |
68 | |
69 | /* How many levels deep into trigger execution are we? */ |
70 | static int MyTriggerDepth = 0; |
71 | |
72 | /* |
73 | * Note that similar macros also exist in executor/execMain.c. There does not |
74 | * appear to be any good header to put them into, given the structures that |
75 | * they use, so we let them be duplicated. Be sure to update all if one needs |
76 | * to be changed, however. |
77 | */ |
78 | #define GetAllUpdatedColumns(relinfo, estate) \ |
79 | (bms_union(exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->updatedCols, \ |
80 | exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->extraUpdatedCols)) |
81 | |
82 | /* Local function prototypes */ |
83 | static void ConvertTriggerToFK(CreateTrigStmt *stmt, Oid funcoid); |
84 | static void SetTriggerFlags(TriggerDesc *trigdesc, Trigger *trigger); |
85 | static bool GetTupleForTrigger(EState *estate, |
86 | EPQState *epqstate, |
87 | ResultRelInfo *relinfo, |
88 | ItemPointer tid, |
89 | LockTupleMode lockmode, |
90 | TupleTableSlot *oldslot, |
91 | TupleTableSlot **newSlot); |
92 | static bool TriggerEnabled(EState *estate, ResultRelInfo *relinfo, |
93 | Trigger *trigger, TriggerEvent event, |
94 | Bitmapset *modifiedCols, |
95 | TupleTableSlot *oldslot, TupleTableSlot *newslot); |
96 | static HeapTuple ExecCallTriggerFunc(TriggerData *trigdata, |
97 | int tgindx, |
98 | FmgrInfo *finfo, |
99 | Instrumentation *instr, |
100 | MemoryContext per_tuple_context); |
101 | static void AfterTriggerSaveEvent(EState *estate, ResultRelInfo *relinfo, |
102 | int event, bool row_trigger, |
103 | TupleTableSlot *oldtup, TupleTableSlot *newtup, |
104 | List *recheckIndexes, Bitmapset *modifiedCols, |
105 | TransitionCaptureState *transition_capture); |
106 | static void AfterTriggerEnlargeQueryState(void); |
107 | static bool before_stmt_triggers_fired(Oid relid, CmdType cmdType); |
108 | |
109 | |
110 | /* |
111 | * Create a trigger. Returns the address of the created trigger. |
112 | * |
113 | * queryString is the source text of the CREATE TRIGGER command. |
114 | * This must be supplied if a whenClause is specified, else it can be NULL. |
115 | * |
116 | * relOid, if nonzero, is the relation on which the trigger should be |
117 | * created. If zero, the name provided in the statement will be looked up. |
118 | * |
119 | * refRelOid, if nonzero, is the relation to which the constraint trigger |
120 | * refers. If zero, the constraint relation name provided in the statement |
121 | * will be looked up as needed. |
122 | * |
123 | * constraintOid, if nonzero, says that this trigger is being created |
124 | * internally to implement that constraint. A suitable pg_depend entry will |
125 | * be made to link the trigger to that constraint. constraintOid is zero when |
126 | * executing a user-entered CREATE TRIGGER command. (For CREATE CONSTRAINT |
127 | * TRIGGER, we build a pg_constraint entry internally.) |
128 | * |
129 | * indexOid, if nonzero, is the OID of an index associated with the constraint. |
130 | * We do nothing with this except store it into pg_trigger.tgconstrindid; |
131 | * but when creating a trigger for a deferrable unique constraint on a |
132 | * partitioned table, its children are looked up. Note we don't cope with |
133 | * invalid indexes in that case. |
134 | * |
135 | * funcoid, if nonzero, is the OID of the function to invoke. When this is |
136 | * given, stmt->funcname is ignored. |
137 | * |
138 | * parentTriggerOid, if nonzero, is a trigger that begets this one; so that |
139 | * if that trigger is dropped, this one should be too. (This is passed as |
140 | * Invalid by most callers; it's set here when recursing on a partition.) |
141 | * |
142 | * If whenClause is passed, it is an already-transformed expression for |
143 | * WHEN. In this case, we ignore any that may come in stmt->whenClause. |
144 | * |
145 | * If isInternal is true then this is an internally-generated trigger. |
146 | * This argument sets the tgisinternal field of the pg_trigger entry, and |
147 | * if true causes us to modify the given trigger name to ensure uniqueness. |
148 | * |
149 | * When isInternal is not true we require ACL_TRIGGER permissions on the |
150 | * relation, as well as ACL_EXECUTE on the trigger function. For internal |
151 | * triggers the caller must apply any required permission checks. |
152 | * |
153 | * When called on partitioned tables, this function recurses to create the |
154 | * trigger on all the partitions, except if isInternal is true, in which |
155 | * case caller is expected to execute recursion on its own. |
156 | * |
157 | * Note: can return InvalidObjectAddress if we decided to not create a trigger |
158 | * at all, but a foreign-key constraint. This is a kluge for backwards |
159 | * compatibility. |
160 | */ |
161 | ObjectAddress |
162 | CreateTrigger(CreateTrigStmt *stmt, const char *queryString, |
163 | Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, |
164 | Oid funcoid, Oid parentTriggerOid, Node *whenClause, |
165 | bool isInternal, bool in_partition) |
166 | { |
167 | int16 tgtype; |
168 | int ncolumns; |
169 | int16 *columns; |
170 | int2vector *tgattr; |
171 | List *whenRtable; |
172 | char *qual; |
173 | Datum values[Natts_pg_trigger]; |
174 | bool nulls[Natts_pg_trigger]; |
175 | Relation rel; |
176 | AclResult aclresult; |
177 | Relation tgrel; |
178 | SysScanDesc tgscan; |
179 | ScanKeyData key; |
180 | Relation pgrel; |
181 | HeapTuple tuple; |
182 | Oid fargtypes[1]; /* dummy */ |
183 | Oid funcrettype; |
184 | Oid trigoid; |
185 | char internaltrigname[NAMEDATALEN]; |
186 | char *trigname; |
187 | Oid constrrelid = InvalidOid; |
188 | ObjectAddress myself, |
189 | referenced; |
190 | char *oldtablename = NULL; |
191 | char *newtablename = NULL; |
192 | bool partition_recurse; |
193 | |
194 | if (OidIsValid(relOid)) |
195 | rel = table_open(relOid, ShareRowExclusiveLock); |
196 | else |
197 | rel = table_openrv(stmt->relation, ShareRowExclusiveLock); |
198 | |
199 | /* |
200 | * Triggers must be on tables or views, and there are additional |
201 | * relation-type-specific restrictions. |
202 | */ |
203 | if (rel->rd_rel->relkind == RELKIND_RELATION) |
204 | { |
205 | /* Tables can't have INSTEAD OF triggers */ |
206 | if (stmt->timing != TRIGGER_TYPE_BEFORE && |
207 | stmt->timing != TRIGGER_TYPE_AFTER) |
208 | ereport(ERROR, |
209 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
210 | errmsg("\"%s\" is a table" , |
211 | RelationGetRelationName(rel)), |
212 | errdetail("Tables cannot have INSTEAD OF triggers." ))); |
213 | } |
214 | else if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) |
215 | { |
216 | /* Partitioned tables can't have INSTEAD OF triggers */ |
217 | if (stmt->timing != TRIGGER_TYPE_BEFORE && |
218 | stmt->timing != TRIGGER_TYPE_AFTER) |
219 | ereport(ERROR, |
220 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
221 | errmsg("\"%s\" is a table" , |
222 | RelationGetRelationName(rel)), |
223 | errdetail("Tables cannot have INSTEAD OF triggers." ))); |
224 | |
225 | /* |
226 | * FOR EACH ROW triggers have further restrictions |
227 | */ |
228 | if (stmt->row) |
229 | { |
230 | /* |
231 | * BEFORE triggers FOR EACH ROW are forbidden, because they would |
232 | * allow the user to direct the row to another partition, which |
233 | * isn't implemented in the executor. |
234 | */ |
235 | if (stmt->timing != TRIGGER_TYPE_AFTER) |
236 | ereport(ERROR, |
237 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
238 | errmsg("\"%s\" is a partitioned table" , |
239 | RelationGetRelationName(rel)), |
240 | errdetail("Partitioned tables cannot have BEFORE / FOR EACH ROW triggers." ))); |
241 | |
242 | /* |
243 | * Disallow use of transition tables. |
244 | * |
245 | * Note that we have another restriction about transition tables |
246 | * in partitions; search for 'has_superclass' below for an |
247 | * explanation. The check here is just to protect from the fact |
248 | * that if we allowed it here, the creation would succeed for a |
249 | * partitioned table with no partitions, but would be blocked by |
250 | * the other restriction when the first partition was created, |
251 | * which is very unfriendly behavior. |
252 | */ |
253 | if (stmt->transitionRels != NIL) |
254 | ereport(ERROR, |
255 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
256 | errmsg("\"%s\" is a partitioned table" , |
257 | RelationGetRelationName(rel)), |
258 | errdetail("Triggers on partitioned tables cannot have transition tables." ))); |
259 | } |
260 | } |
261 | else if (rel->rd_rel->relkind == RELKIND_VIEW) |
262 | { |
263 | /* |
264 | * Views can have INSTEAD OF triggers (which we check below are |
265 | * row-level), or statement-level BEFORE/AFTER triggers. |
266 | */ |
267 | if (stmt->timing != TRIGGER_TYPE_INSTEAD && stmt->row) |
268 | ereport(ERROR, |
269 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
270 | errmsg("\"%s\" is a view" , |
271 | RelationGetRelationName(rel)), |
272 | errdetail("Views cannot have row-level BEFORE or AFTER triggers." ))); |
273 | /* Disallow TRUNCATE triggers on VIEWs */ |
274 | if (TRIGGER_FOR_TRUNCATE(stmt->events)) |
275 | ereport(ERROR, |
276 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
277 | errmsg("\"%s\" is a view" , |
278 | RelationGetRelationName(rel)), |
279 | errdetail("Views cannot have TRUNCATE triggers." ))); |
280 | } |
281 | else if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE) |
282 | { |
283 | if (stmt->timing != TRIGGER_TYPE_BEFORE && |
284 | stmt->timing != TRIGGER_TYPE_AFTER) |
285 | ereport(ERROR, |
286 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
287 | errmsg("\"%s\" is a foreign table" , |
288 | RelationGetRelationName(rel)), |
289 | errdetail("Foreign tables cannot have INSTEAD OF triggers." ))); |
290 | |
291 | if (TRIGGER_FOR_TRUNCATE(stmt->events)) |
292 | ereport(ERROR, |
293 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
294 | errmsg("\"%s\" is a foreign table" , |
295 | RelationGetRelationName(rel)), |
296 | errdetail("Foreign tables cannot have TRUNCATE triggers." ))); |
297 | |
298 | /* |
299 | * We disallow constraint triggers to protect the assumption that |
300 | * triggers on FKs can't be deferred. See notes with AfterTriggers |
301 | * data structures, below. |
302 | */ |
303 | if (stmt->isconstraint) |
304 | ereport(ERROR, |
305 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
306 | errmsg("\"%s\" is a foreign table" , |
307 | RelationGetRelationName(rel)), |
308 | errdetail("Foreign tables cannot have constraint triggers." ))); |
309 | } |
310 | else |
311 | ereport(ERROR, |
312 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
313 | errmsg("\"%s\" is not a table or view" , |
314 | RelationGetRelationName(rel)))); |
315 | |
316 | if (!allowSystemTableMods && IsSystemRelation(rel)) |
317 | ereport(ERROR, |
318 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
319 | errmsg("permission denied: \"%s\" is a system catalog" , |
320 | RelationGetRelationName(rel)))); |
321 | |
322 | if (stmt->isconstraint) |
323 | { |
324 | /* |
325 | * We must take a lock on the target relation to protect against |
326 | * concurrent drop. It's not clear that AccessShareLock is strong |
327 | * enough, but we certainly need at least that much... otherwise, we |
328 | * might end up creating a pg_constraint entry referencing a |
329 | * nonexistent table. |
330 | */ |
331 | if (OidIsValid(refRelOid)) |
332 | { |
333 | LockRelationOid(refRelOid, AccessShareLock); |
334 | constrrelid = refRelOid; |
335 | } |
336 | else if (stmt->constrrel != NULL) |
337 | constrrelid = RangeVarGetRelid(stmt->constrrel, AccessShareLock, |
338 | false); |
339 | } |
340 | |
341 | /* permission checks */ |
342 | if (!isInternal) |
343 | { |
344 | aclresult = pg_class_aclcheck(RelationGetRelid(rel), GetUserId(), |
345 | ACL_TRIGGER); |
346 | if (aclresult != ACLCHECK_OK) |
347 | aclcheck_error(aclresult, get_relkind_objtype(rel->rd_rel->relkind), |
348 | RelationGetRelationName(rel)); |
349 | |
350 | if (OidIsValid(constrrelid)) |
351 | { |
352 | aclresult = pg_class_aclcheck(constrrelid, GetUserId(), |
353 | ACL_TRIGGER); |
354 | if (aclresult != ACLCHECK_OK) |
355 | aclcheck_error(aclresult, get_relkind_objtype(get_rel_relkind(constrrelid)), |
356 | get_rel_name(constrrelid)); |
357 | } |
358 | } |
359 | |
360 | /* |
361 | * When called on a partitioned table to create a FOR EACH ROW trigger |
362 | * that's not internal, we create one trigger for each partition, too. |
363 | * |
364 | * For that, we'd better hold lock on all of them ahead of time. |
365 | */ |
366 | partition_recurse = !isInternal && stmt->row && |
367 | rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE; |
368 | if (partition_recurse) |
369 | list_free(find_all_inheritors(RelationGetRelid(rel), |
370 | ShareRowExclusiveLock, NULL)); |
371 | |
372 | /* Compute tgtype */ |
373 | TRIGGER_CLEAR_TYPE(tgtype); |
374 | if (stmt->row) |
375 | TRIGGER_SETT_ROW(tgtype); |
376 | tgtype |= stmt->timing; |
377 | tgtype |= stmt->events; |
378 | |
379 | /* Disallow ROW-level TRUNCATE triggers */ |
380 | if (TRIGGER_FOR_ROW(tgtype) && TRIGGER_FOR_TRUNCATE(tgtype)) |
381 | ereport(ERROR, |
382 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
383 | errmsg("TRUNCATE FOR EACH ROW triggers are not supported" ))); |
384 | |
385 | /* INSTEAD triggers must be row-level, and can't have WHEN or columns */ |
386 | if (TRIGGER_FOR_INSTEAD(tgtype)) |
387 | { |
388 | if (!TRIGGER_FOR_ROW(tgtype)) |
389 | ereport(ERROR, |
390 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
391 | errmsg("INSTEAD OF triggers must be FOR EACH ROW" ))); |
392 | if (stmt->whenClause) |
393 | ereport(ERROR, |
394 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
395 | errmsg("INSTEAD OF triggers cannot have WHEN conditions" ))); |
396 | if (stmt->columns != NIL) |
397 | ereport(ERROR, |
398 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
399 | errmsg("INSTEAD OF triggers cannot have column lists" ))); |
400 | } |
401 | |
402 | /* |
403 | * We don't yet support naming ROW transition variables, but the parser |
404 | * recognizes the syntax so we can give a nicer message here. |
405 | * |
406 | * Per standard, REFERENCING TABLE names are only allowed on AFTER |
407 | * triggers. Per standard, REFERENCING ROW names are not allowed with FOR |
408 | * EACH STATEMENT. Per standard, each OLD/NEW, ROW/TABLE permutation is |
409 | * only allowed once. Per standard, OLD may not be specified when |
410 | * creating a trigger only for INSERT, and NEW may not be specified when |
411 | * creating a trigger only for DELETE. |
412 | * |
413 | * Notice that the standard allows an AFTER ... FOR EACH ROW trigger to |
414 | * reference both ROW and TABLE transition data. |
415 | */ |
416 | if (stmt->transitionRels != NIL) |
417 | { |
418 | List *varList = stmt->transitionRels; |
419 | ListCell *lc; |
420 | |
421 | foreach(lc, varList) |
422 | { |
423 | TriggerTransition *tt = lfirst_node(TriggerTransition, lc); |
424 | |
425 | if (!(tt->isTable)) |
426 | ereport(ERROR, |
427 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
428 | errmsg("ROW variable naming in the REFERENCING clause is not supported" ), |
429 | errhint("Use OLD TABLE or NEW TABLE for naming transition tables." ))); |
430 | |
431 | /* |
432 | * Because of the above test, we omit further ROW-related testing |
433 | * below. If we later allow naming OLD and NEW ROW variables, |
434 | * adjustments will be needed below. |
435 | */ |
436 | |
437 | if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE) |
438 | ereport(ERROR, |
439 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
440 | errmsg("\"%s\" is a foreign table" , |
441 | RelationGetRelationName(rel)), |
442 | errdetail("Triggers on foreign tables cannot have transition tables." ))); |
443 | |
444 | if (rel->rd_rel->relkind == RELKIND_VIEW) |
445 | ereport(ERROR, |
446 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
447 | errmsg("\"%s\" is a view" , |
448 | RelationGetRelationName(rel)), |
449 | errdetail("Triggers on views cannot have transition tables." ))); |
450 | |
451 | /* |
452 | * We currently don't allow row-level triggers with transition |
453 | * tables on partition or inheritance children. Such triggers |
454 | * would somehow need to see tuples converted to the format of the |
455 | * table they're attached to, and it's not clear which subset of |
456 | * tuples each child should see. See also the prohibitions in |
457 | * ATExecAttachPartition() and ATExecAddInherit(). |
458 | */ |
459 | if (TRIGGER_FOR_ROW(tgtype) && has_superclass(rel->rd_id)) |
460 | { |
461 | /* Use appropriate error message. */ |
462 | if (rel->rd_rel->relispartition) |
463 | ereport(ERROR, |
464 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
465 | errmsg("ROW triggers with transition tables are not supported on partitions" ))); |
466 | else |
467 | ereport(ERROR, |
468 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
469 | errmsg("ROW triggers with transition tables are not supported on inheritance children" ))); |
470 | } |
471 | |
472 | if (stmt->timing != TRIGGER_TYPE_AFTER) |
473 | ereport(ERROR, |
474 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
475 | errmsg("transition table name can only be specified for an AFTER trigger" ))); |
476 | |
477 | if (TRIGGER_FOR_TRUNCATE(tgtype)) |
478 | ereport(ERROR, |
479 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
480 | errmsg("TRUNCATE triggers with transition tables are not supported" ))); |
481 | |
482 | /* |
483 | * We currently don't allow multi-event triggers ("INSERT OR |
484 | * UPDATE") with transition tables, because it's not clear how to |
485 | * handle INSERT ... ON CONFLICT statements which can fire both |
486 | * INSERT and UPDATE triggers. We show the inserted tuples to |
487 | * INSERT triggers and the updated tuples to UPDATE triggers, but |
488 | * it's not yet clear what INSERT OR UPDATE trigger should see. |
489 | * This restriction could be lifted if we can decide on the right |
490 | * semantics in a later release. |
491 | */ |
492 | if (((TRIGGER_FOR_INSERT(tgtype) ? 1 : 0) + |
493 | (TRIGGER_FOR_UPDATE(tgtype) ? 1 : 0) + |
494 | (TRIGGER_FOR_DELETE(tgtype) ? 1 : 0)) != 1) |
495 | ereport(ERROR, |
496 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
497 | errmsg("transition tables cannot be specified for triggers with more than one event" ))); |
498 | |
499 | /* |
500 | * We currently don't allow column-specific triggers with |
501 | * transition tables. Per spec, that seems to require |
502 | * accumulating separate transition tables for each combination of |
503 | * columns, which is a lot of work for a rather marginal feature. |
504 | */ |
505 | if (stmt->columns != NIL) |
506 | ereport(ERROR, |
507 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
508 | errmsg("transition tables cannot be specified for triggers with column lists" ))); |
509 | |
510 | /* |
511 | * We disallow constraint triggers with transition tables, to |
512 | * protect the assumption that such triggers can't be deferred. |
513 | * See notes with AfterTriggers data structures, below. |
514 | * |
515 | * Currently this is enforced by the grammar, so just Assert here. |
516 | */ |
517 | Assert(!stmt->isconstraint); |
518 | |
519 | if (tt->isNew) |
520 | { |
521 | if (!(TRIGGER_FOR_INSERT(tgtype) || |
522 | TRIGGER_FOR_UPDATE(tgtype))) |
523 | ereport(ERROR, |
524 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
525 | errmsg("NEW TABLE can only be specified for an INSERT or UPDATE trigger" ))); |
526 | |
527 | if (newtablename != NULL) |
528 | ereport(ERROR, |
529 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
530 | errmsg("NEW TABLE cannot be specified multiple times" ))); |
531 | |
532 | newtablename = tt->name; |
533 | } |
534 | else |
535 | { |
536 | if (!(TRIGGER_FOR_DELETE(tgtype) || |
537 | TRIGGER_FOR_UPDATE(tgtype))) |
538 | ereport(ERROR, |
539 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
540 | errmsg("OLD TABLE can only be specified for a DELETE or UPDATE trigger" ))); |
541 | |
542 | if (oldtablename != NULL) |
543 | ereport(ERROR, |
544 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
545 | errmsg("OLD TABLE cannot be specified multiple times" ))); |
546 | |
547 | oldtablename = tt->name; |
548 | } |
549 | } |
550 | |
551 | if (newtablename != NULL && oldtablename != NULL && |
552 | strcmp(newtablename, oldtablename) == 0) |
553 | ereport(ERROR, |
554 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
555 | errmsg("OLD TABLE name and NEW TABLE name cannot be the same" ))); |
556 | } |
557 | |
558 | /* |
559 | * Parse the WHEN clause, if any and we weren't passed an already |
560 | * transformed one. |
561 | * |
562 | * Note that as a side effect, we fill whenRtable when parsing. If we got |
563 | * an already parsed clause, this does not occur, which is what we want -- |
564 | * no point in adding redundant dependencies below. |
565 | */ |
566 | if (!whenClause && stmt->whenClause) |
567 | { |
568 | ParseState *pstate; |
569 | RangeTblEntry *rte; |
570 | List *varList; |
571 | ListCell *lc; |
572 | |
573 | /* Set up a pstate to parse with */ |
574 | pstate = make_parsestate(NULL); |
575 | pstate->p_sourcetext = queryString; |
576 | |
577 | /* |
578 | * Set up RTEs for OLD and NEW references. |
579 | * |
580 | * 'OLD' must always have varno equal to 1 and 'NEW' equal to 2. |
581 | */ |
582 | rte = addRangeTableEntryForRelation(pstate, rel, |
583 | AccessShareLock, |
584 | makeAlias("old" , NIL), |
585 | false, false); |
586 | addRTEtoQuery(pstate, rte, false, true, true); |
587 | rte = addRangeTableEntryForRelation(pstate, rel, |
588 | AccessShareLock, |
589 | makeAlias("new" , NIL), |
590 | false, false); |
591 | addRTEtoQuery(pstate, rte, false, true, true); |
592 | |
593 | /* Transform expression. Copy to be sure we don't modify original */ |
594 | whenClause = transformWhereClause(pstate, |
595 | copyObject(stmt->whenClause), |
596 | EXPR_KIND_TRIGGER_WHEN, |
597 | "WHEN" ); |
598 | /* we have to fix its collations too */ |
599 | assign_expr_collations(pstate, whenClause); |
600 | |
601 | /* |
602 | * Check for disallowed references to OLD/NEW. |
603 | * |
604 | * NB: pull_var_clause is okay here only because we don't allow |
605 | * subselects in WHEN clauses; it would fail to examine the contents |
606 | * of subselects. |
607 | */ |
608 | varList = pull_var_clause(whenClause, 0); |
609 | foreach(lc, varList) |
610 | { |
611 | Var *var = (Var *) lfirst(lc); |
612 | |
613 | switch (var->varno) |
614 | { |
615 | case PRS2_OLD_VARNO: |
616 | if (!TRIGGER_FOR_ROW(tgtype)) |
617 | ereport(ERROR, |
618 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
619 | errmsg("statement trigger's WHEN condition cannot reference column values" ), |
620 | parser_errposition(pstate, var->location))); |
621 | if (TRIGGER_FOR_INSERT(tgtype)) |
622 | ereport(ERROR, |
623 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
624 | errmsg("INSERT trigger's WHEN condition cannot reference OLD values" ), |
625 | parser_errposition(pstate, var->location))); |
626 | /* system columns are okay here */ |
627 | break; |
628 | case PRS2_NEW_VARNO: |
629 | if (!TRIGGER_FOR_ROW(tgtype)) |
630 | ereport(ERROR, |
631 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
632 | errmsg("statement trigger's WHEN condition cannot reference column values" ), |
633 | parser_errposition(pstate, var->location))); |
634 | if (TRIGGER_FOR_DELETE(tgtype)) |
635 | ereport(ERROR, |
636 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
637 | errmsg("DELETE trigger's WHEN condition cannot reference NEW values" ), |
638 | parser_errposition(pstate, var->location))); |
639 | if (var->varattno < 0 && TRIGGER_FOR_BEFORE(tgtype)) |
640 | ereport(ERROR, |
641 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
642 | errmsg("BEFORE trigger's WHEN condition cannot reference NEW system columns" ), |
643 | parser_errposition(pstate, var->location))); |
644 | if (TRIGGER_FOR_BEFORE(tgtype) && |
645 | var->varattno == 0 && |
646 | RelationGetDescr(rel)->constr && |
647 | RelationGetDescr(rel)->constr->has_generated_stored) |
648 | ereport(ERROR, |
649 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
650 | errmsg("BEFORE trigger's WHEN condition cannot reference NEW generated columns" ), |
651 | errdetail("A whole-row reference is used and the table contains generated columns." ), |
652 | parser_errposition(pstate, var->location))); |
653 | if (TRIGGER_FOR_BEFORE(tgtype) && |
654 | var->varattno > 0 && |
655 | TupleDescAttr(RelationGetDescr(rel), var->varattno - 1)->attgenerated) |
656 | ereport(ERROR, |
657 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
658 | errmsg("BEFORE trigger's WHEN condition cannot reference NEW generated columns" ), |
659 | errdetail("Column \"%s\" is a generated column." , |
660 | NameStr(TupleDescAttr(RelationGetDescr(rel), var->varattno - 1)->attname)), |
661 | parser_errposition(pstate, var->location))); |
662 | break; |
663 | default: |
664 | /* can't happen without add_missing_from, so just elog */ |
665 | elog(ERROR, "trigger WHEN condition cannot contain references to other relations" ); |
666 | break; |
667 | } |
668 | } |
669 | |
670 | /* we'll need the rtable for recordDependencyOnExpr */ |
671 | whenRtable = pstate->p_rtable; |
672 | |
673 | qual = nodeToString(whenClause); |
674 | |
675 | free_parsestate(pstate); |
676 | } |
677 | else if (!whenClause) |
678 | { |
679 | whenClause = NULL; |
680 | whenRtable = NIL; |
681 | qual = NULL; |
682 | } |
683 | else |
684 | { |
685 | qual = nodeToString(whenClause); |
686 | whenRtable = NIL; |
687 | } |
688 | |
689 | /* |
690 | * Find and validate the trigger function. |
691 | */ |
692 | if (!OidIsValid(funcoid)) |
693 | funcoid = LookupFuncName(stmt->funcname, 0, fargtypes, false); |
694 | if (!isInternal) |
695 | { |
696 | aclresult = pg_proc_aclcheck(funcoid, GetUserId(), ACL_EXECUTE); |
697 | if (aclresult != ACLCHECK_OK) |
698 | aclcheck_error(aclresult, OBJECT_FUNCTION, |
699 | NameListToString(stmt->funcname)); |
700 | } |
701 | funcrettype = get_func_rettype(funcoid); |
702 | if (funcrettype != TRIGGEROID) |
703 | { |
704 | /* |
705 | * We allow OPAQUE just so we can load old dump files. When we see a |
706 | * trigger function declared OPAQUE, change it to TRIGGER. |
707 | */ |
708 | if (funcrettype == OPAQUEOID) |
709 | { |
710 | ereport(WARNING, |
711 | (errmsg("changing return type of function %s from %s to %s" , |
712 | NameListToString(stmt->funcname), |
713 | "opaque" , "trigger" ))); |
714 | SetFunctionReturnType(funcoid, TRIGGEROID); |
715 | } |
716 | else |
717 | ereport(ERROR, |
718 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
719 | errmsg("function %s must return type %s" , |
720 | NameListToString(stmt->funcname), "trigger" ))); |
721 | } |
722 | |
723 | /* |
724 | * If the command is a user-entered CREATE CONSTRAINT TRIGGER command that |
725 | * references one of the built-in RI_FKey trigger functions, assume it is |
726 | * from a dump of a pre-7.3 foreign key constraint, and take steps to |
727 | * convert this legacy representation into a regular foreign key |
728 | * constraint. Ugly, but necessary for loading old dump files. |
729 | */ |
730 | if (stmt->isconstraint && !isInternal && |
731 | list_length(stmt->args) >= 6 && |
732 | (list_length(stmt->args) % 2) == 0 && |
733 | RI_FKey_trigger_type(funcoid) != RI_TRIGGER_NONE) |
734 | { |
735 | /* Keep lock on target rel until end of xact */ |
736 | table_close(rel, NoLock); |
737 | |
738 | ConvertTriggerToFK(stmt, funcoid); |
739 | |
740 | return InvalidObjectAddress; |
741 | } |
742 | |
743 | /* |
744 | * If it's a user-entered CREATE CONSTRAINT TRIGGER command, make a |
745 | * corresponding pg_constraint entry. |
746 | */ |
747 | if (stmt->isconstraint && !OidIsValid(constraintOid)) |
748 | { |
749 | /* Internal callers should have made their own constraints */ |
750 | Assert(!isInternal); |
751 | constraintOid = CreateConstraintEntry(stmt->trigname, |
752 | RelationGetNamespace(rel), |
753 | CONSTRAINT_TRIGGER, |
754 | stmt->deferrable, |
755 | stmt->initdeferred, |
756 | true, |
757 | InvalidOid, /* no parent */ |
758 | RelationGetRelid(rel), |
759 | NULL, /* no conkey */ |
760 | 0, |
761 | 0, |
762 | InvalidOid, /* no domain */ |
763 | InvalidOid, /* no index */ |
764 | InvalidOid, /* no foreign key */ |
765 | NULL, |
766 | NULL, |
767 | NULL, |
768 | NULL, |
769 | 0, |
770 | ' ', |
771 | ' ', |
772 | ' ', |
773 | NULL, /* no exclusion */ |
774 | NULL, /* no check constraint */ |
775 | NULL, |
776 | true, /* islocal */ |
777 | 0, /* inhcount */ |
778 | true, /* isnoinherit */ |
779 | isInternal); /* is_internal */ |
780 | } |
781 | |
782 | /* |
783 | * Generate the trigger's OID now, so that we can use it in the name if |
784 | * needed. |
785 | */ |
786 | tgrel = table_open(TriggerRelationId, RowExclusiveLock); |
787 | |
788 | trigoid = GetNewOidWithIndex(tgrel, TriggerOidIndexId, |
789 | Anum_pg_trigger_oid); |
790 | |
791 | /* |
792 | * If trigger is internally generated, modify the provided trigger name to |
793 | * ensure uniqueness by appending the trigger OID. (Callers will usually |
794 | * supply a simple constant trigger name in these cases.) |
795 | */ |
796 | if (isInternal) |
797 | { |
798 | snprintf(internaltrigname, sizeof(internaltrigname), |
799 | "%s_%u" , stmt->trigname, trigoid); |
800 | trigname = internaltrigname; |
801 | } |
802 | else |
803 | { |
804 | /* user-defined trigger; use the specified trigger name as-is */ |
805 | trigname = stmt->trigname; |
806 | } |
807 | |
808 | /* |
809 | * Scan pg_trigger for existing triggers on relation. We do this only to |
810 | * give a nice error message if there's already a trigger of the same |
811 | * name. (The unique index on tgrelid/tgname would complain anyway.) We |
812 | * can skip this for internally generated triggers, since the name |
813 | * modification above should be sufficient. |
814 | * |
815 | * NOTE that this is cool only because we have ShareRowExclusiveLock on |
816 | * the relation, so the trigger set won't be changing underneath us. |
817 | */ |
818 | if (!isInternal) |
819 | { |
820 | ScanKeyInit(&key, |
821 | Anum_pg_trigger_tgrelid, |
822 | BTEqualStrategyNumber, F_OIDEQ, |
823 | ObjectIdGetDatum(RelationGetRelid(rel))); |
824 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
825 | NULL, 1, &key); |
826 | while (HeapTupleIsValid(tuple = systable_getnext(tgscan))) |
827 | { |
828 | Form_pg_trigger pg_trigger = (Form_pg_trigger) GETSTRUCT(tuple); |
829 | |
830 | if (namestrcmp(&(pg_trigger->tgname), trigname) == 0) |
831 | ereport(ERROR, |
832 | (errcode(ERRCODE_DUPLICATE_OBJECT), |
833 | errmsg("trigger \"%s\" for relation \"%s\" already exists" , |
834 | trigname, RelationGetRelationName(rel)))); |
835 | } |
836 | systable_endscan(tgscan); |
837 | } |
838 | |
839 | /* |
840 | * Build the new pg_trigger tuple. |
841 | * |
842 | * When we're creating a trigger in a partition, we mark it as internal, |
843 | * even though we don't do the isInternal magic in this function. This |
844 | * makes the triggers in partitions identical to the ones in the |
845 | * partitioned tables, except that they are marked internal. |
846 | */ |
847 | memset(nulls, false, sizeof(nulls)); |
848 | |
849 | values[Anum_pg_trigger_oid - 1] = ObjectIdGetDatum(trigoid); |
850 | values[Anum_pg_trigger_tgrelid - 1] = ObjectIdGetDatum(RelationGetRelid(rel)); |
851 | values[Anum_pg_trigger_tgname - 1] = DirectFunctionCall1(namein, |
852 | CStringGetDatum(trigname)); |
853 | values[Anum_pg_trigger_tgfoid - 1] = ObjectIdGetDatum(funcoid); |
854 | values[Anum_pg_trigger_tgtype - 1] = Int16GetDatum(tgtype); |
855 | values[Anum_pg_trigger_tgenabled - 1] = CharGetDatum(TRIGGER_FIRES_ON_ORIGIN); |
856 | values[Anum_pg_trigger_tgisinternal - 1] = BoolGetDatum(isInternal || in_partition); |
857 | values[Anum_pg_trigger_tgconstrrelid - 1] = ObjectIdGetDatum(constrrelid); |
858 | values[Anum_pg_trigger_tgconstrindid - 1] = ObjectIdGetDatum(indexOid); |
859 | values[Anum_pg_trigger_tgconstraint - 1] = ObjectIdGetDatum(constraintOid); |
860 | values[Anum_pg_trigger_tgdeferrable - 1] = BoolGetDatum(stmt->deferrable); |
861 | values[Anum_pg_trigger_tginitdeferred - 1] = BoolGetDatum(stmt->initdeferred); |
862 | |
863 | if (stmt->args) |
864 | { |
865 | ListCell *le; |
866 | char *args; |
867 | int16 nargs = list_length(stmt->args); |
868 | int len = 0; |
869 | |
870 | foreach(le, stmt->args) |
871 | { |
872 | char *ar = strVal(lfirst(le)); |
873 | |
874 | len += strlen(ar) + 4; |
875 | for (; *ar; ar++) |
876 | { |
877 | if (*ar == '\\') |
878 | len++; |
879 | } |
880 | } |
881 | args = (char *) palloc(len + 1); |
882 | args[0] = '\0'; |
883 | foreach(le, stmt->args) |
884 | { |
885 | char *s = strVal(lfirst(le)); |
886 | char *d = args + strlen(args); |
887 | |
888 | while (*s) |
889 | { |
890 | if (*s == '\\') |
891 | *d++ = '\\'; |
892 | *d++ = *s++; |
893 | } |
894 | strcpy(d, "\\000" ); |
895 | } |
896 | values[Anum_pg_trigger_tgnargs - 1] = Int16GetDatum(nargs); |
897 | values[Anum_pg_trigger_tgargs - 1] = DirectFunctionCall1(byteain, |
898 | CStringGetDatum(args)); |
899 | } |
900 | else |
901 | { |
902 | values[Anum_pg_trigger_tgnargs - 1] = Int16GetDatum(0); |
903 | values[Anum_pg_trigger_tgargs - 1] = DirectFunctionCall1(byteain, |
904 | CStringGetDatum("" )); |
905 | } |
906 | |
907 | /* build column number array if it's a column-specific trigger */ |
908 | ncolumns = list_length(stmt->columns); |
909 | if (ncolumns == 0) |
910 | columns = NULL; |
911 | else |
912 | { |
913 | ListCell *cell; |
914 | int i = 0; |
915 | |
916 | columns = (int16 *) palloc(ncolumns * sizeof(int16)); |
917 | foreach(cell, stmt->columns) |
918 | { |
919 | char *name = strVal(lfirst(cell)); |
920 | int16 attnum; |
921 | int j; |
922 | |
923 | /* Lookup column name. System columns are not allowed */ |
924 | attnum = attnameAttNum(rel, name, false); |
925 | if (attnum == InvalidAttrNumber) |
926 | ereport(ERROR, |
927 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
928 | errmsg("column \"%s\" of relation \"%s\" does not exist" , |
929 | name, RelationGetRelationName(rel)))); |
930 | |
931 | /* Check for duplicates */ |
932 | for (j = i - 1; j >= 0; j--) |
933 | { |
934 | if (columns[j] == attnum) |
935 | ereport(ERROR, |
936 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
937 | errmsg("column \"%s\" specified more than once" , |
938 | name))); |
939 | } |
940 | |
941 | columns[i++] = attnum; |
942 | } |
943 | } |
944 | tgattr = buildint2vector(columns, ncolumns); |
945 | values[Anum_pg_trigger_tgattr - 1] = PointerGetDatum(tgattr); |
946 | |
947 | /* set tgqual if trigger has WHEN clause */ |
948 | if (qual) |
949 | values[Anum_pg_trigger_tgqual - 1] = CStringGetTextDatum(qual); |
950 | else |
951 | nulls[Anum_pg_trigger_tgqual - 1] = true; |
952 | |
953 | if (oldtablename) |
954 | values[Anum_pg_trigger_tgoldtable - 1] = DirectFunctionCall1(namein, |
955 | CStringGetDatum(oldtablename)); |
956 | else |
957 | nulls[Anum_pg_trigger_tgoldtable - 1] = true; |
958 | if (newtablename) |
959 | values[Anum_pg_trigger_tgnewtable - 1] = DirectFunctionCall1(namein, |
960 | CStringGetDatum(newtablename)); |
961 | else |
962 | nulls[Anum_pg_trigger_tgnewtable - 1] = true; |
963 | |
964 | tuple = heap_form_tuple(tgrel->rd_att, values, nulls); |
965 | |
966 | /* |
967 | * Insert tuple into pg_trigger. |
968 | */ |
969 | CatalogTupleInsert(tgrel, tuple); |
970 | |
971 | heap_freetuple(tuple); |
972 | table_close(tgrel, RowExclusiveLock); |
973 | |
974 | pfree(DatumGetPointer(values[Anum_pg_trigger_tgname - 1])); |
975 | pfree(DatumGetPointer(values[Anum_pg_trigger_tgargs - 1])); |
976 | pfree(DatumGetPointer(values[Anum_pg_trigger_tgattr - 1])); |
977 | if (oldtablename) |
978 | pfree(DatumGetPointer(values[Anum_pg_trigger_tgoldtable - 1])); |
979 | if (newtablename) |
980 | pfree(DatumGetPointer(values[Anum_pg_trigger_tgnewtable - 1])); |
981 | |
982 | /* |
983 | * Update relation's pg_class entry; if necessary; and if not, send an SI |
984 | * message to make other backends (and this one) rebuild relcache entries. |
985 | */ |
986 | pgrel = table_open(RelationRelationId, RowExclusiveLock); |
987 | tuple = SearchSysCacheCopy1(RELOID, |
988 | ObjectIdGetDatum(RelationGetRelid(rel))); |
989 | if (!HeapTupleIsValid(tuple)) |
990 | elog(ERROR, "cache lookup failed for relation %u" , |
991 | RelationGetRelid(rel)); |
992 | if (!((Form_pg_class) GETSTRUCT(tuple))->relhastriggers) |
993 | { |
994 | ((Form_pg_class) GETSTRUCT(tuple))->relhastriggers = true; |
995 | |
996 | CatalogTupleUpdate(pgrel, &tuple->t_self, tuple); |
997 | |
998 | CommandCounterIncrement(); |
999 | } |
1000 | else |
1001 | CacheInvalidateRelcacheByTuple(tuple); |
1002 | |
1003 | heap_freetuple(tuple); |
1004 | table_close(pgrel, RowExclusiveLock); |
1005 | |
1006 | /* |
1007 | * Record dependencies for trigger. Always place a normal dependency on |
1008 | * the function. |
1009 | */ |
1010 | myself.classId = TriggerRelationId; |
1011 | myself.objectId = trigoid; |
1012 | myself.objectSubId = 0; |
1013 | |
1014 | referenced.classId = ProcedureRelationId; |
1015 | referenced.objectId = funcoid; |
1016 | referenced.objectSubId = 0; |
1017 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
1018 | |
1019 | if (isInternal && OidIsValid(constraintOid)) |
1020 | { |
1021 | /* |
1022 | * Internally-generated trigger for a constraint, so make it an |
1023 | * internal dependency of the constraint. We can skip depending on |
1024 | * the relation(s), as there'll be an indirect dependency via the |
1025 | * constraint. |
1026 | */ |
1027 | referenced.classId = ConstraintRelationId; |
1028 | referenced.objectId = constraintOid; |
1029 | referenced.objectSubId = 0; |
1030 | recordDependencyOn(&myself, &referenced, DEPENDENCY_INTERNAL); |
1031 | } |
1032 | else |
1033 | { |
1034 | /* |
1035 | * User CREATE TRIGGER, so place dependencies. We make trigger be |
1036 | * auto-dropped if its relation is dropped or if the FK relation is |
1037 | * dropped. (Auto drop is compatible with our pre-7.3 behavior.) |
1038 | */ |
1039 | referenced.classId = RelationRelationId; |
1040 | referenced.objectId = RelationGetRelid(rel); |
1041 | referenced.objectSubId = 0; |
1042 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
1043 | |
1044 | if (OidIsValid(constrrelid)) |
1045 | { |
1046 | referenced.classId = RelationRelationId; |
1047 | referenced.objectId = constrrelid; |
1048 | referenced.objectSubId = 0; |
1049 | recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO); |
1050 | } |
1051 | /* Not possible to have an index dependency in this case */ |
1052 | Assert(!OidIsValid(indexOid)); |
1053 | |
1054 | /* |
1055 | * If it's a user-specified constraint trigger, make the constraint |
1056 | * internally dependent on the trigger instead of vice versa. |
1057 | */ |
1058 | if (OidIsValid(constraintOid)) |
1059 | { |
1060 | referenced.classId = ConstraintRelationId; |
1061 | referenced.objectId = constraintOid; |
1062 | referenced.objectSubId = 0; |
1063 | recordDependencyOn(&referenced, &myself, DEPENDENCY_INTERNAL); |
1064 | } |
1065 | |
1066 | /* |
1067 | * If it's a partition trigger, create the partition dependencies. |
1068 | */ |
1069 | if (OidIsValid(parentTriggerOid)) |
1070 | { |
1071 | ObjectAddressSet(referenced, TriggerRelationId, parentTriggerOid); |
1072 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI); |
1073 | ObjectAddressSet(referenced, RelationRelationId, RelationGetRelid(rel)); |
1074 | recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC); |
1075 | } |
1076 | } |
1077 | |
1078 | /* If column-specific trigger, add normal dependencies on columns */ |
1079 | if (columns != NULL) |
1080 | { |
1081 | int i; |
1082 | |
1083 | referenced.classId = RelationRelationId; |
1084 | referenced.objectId = RelationGetRelid(rel); |
1085 | for (i = 0; i < ncolumns; i++) |
1086 | { |
1087 | referenced.objectSubId = columns[i]; |
1088 | recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL); |
1089 | } |
1090 | } |
1091 | |
1092 | /* |
1093 | * If it has a WHEN clause, add dependencies on objects mentioned in the |
1094 | * expression (eg, functions, as well as any columns used). |
1095 | */ |
1096 | if (whenRtable != NIL) |
1097 | recordDependencyOnExpr(&myself, whenClause, whenRtable, |
1098 | DEPENDENCY_NORMAL); |
1099 | |
1100 | /* Post creation hook for new trigger */ |
1101 | InvokeObjectPostCreateHookArg(TriggerRelationId, trigoid, 0, |
1102 | isInternal); |
1103 | |
1104 | /* |
1105 | * Lastly, create the trigger on child relations, if needed. |
1106 | */ |
1107 | if (partition_recurse) |
1108 | { |
1109 | PartitionDesc partdesc = RelationGetPartitionDesc(rel); |
1110 | List *idxs = NIL; |
1111 | List *childTbls = NIL; |
1112 | ListCell *l; |
1113 | int i; |
1114 | MemoryContext oldcxt, |
1115 | perChildCxt; |
1116 | |
1117 | perChildCxt = AllocSetContextCreate(CurrentMemoryContext, |
1118 | "part trig clone" , |
1119 | ALLOCSET_SMALL_SIZES); |
1120 | |
1121 | /* |
1122 | * When a trigger is being created associated with an index, we'll |
1123 | * need to associate the trigger in each child partition with the |
1124 | * corresponding index on it. |
1125 | */ |
1126 | if (OidIsValid(indexOid)) |
1127 | { |
1128 | ListCell *l; |
1129 | List *idxs = NIL; |
1130 | |
1131 | idxs = find_inheritance_children(indexOid, ShareRowExclusiveLock); |
1132 | foreach(l, idxs) |
1133 | childTbls = lappend_oid(childTbls, |
1134 | IndexGetRelation(lfirst_oid(l), |
1135 | false)); |
1136 | } |
1137 | |
1138 | oldcxt = MemoryContextSwitchTo(perChildCxt); |
1139 | |
1140 | /* Iterate to create the trigger on each existing partition */ |
1141 | for (i = 0; i < partdesc->nparts; i++) |
1142 | { |
1143 | Oid indexOnChild = InvalidOid; |
1144 | ListCell *l2; |
1145 | CreateTrigStmt *childStmt; |
1146 | Relation childTbl; |
1147 | Node *qual; |
1148 | bool found_whole_row; |
1149 | |
1150 | childTbl = table_open(partdesc->oids[i], ShareRowExclusiveLock); |
1151 | |
1152 | /* Find which of the child indexes is the one on this partition */ |
1153 | if (OidIsValid(indexOid)) |
1154 | { |
1155 | forboth(l, idxs, l2, childTbls) |
1156 | { |
1157 | if (lfirst_oid(l2) == partdesc->oids[i]) |
1158 | { |
1159 | indexOnChild = lfirst_oid(l); |
1160 | break; |
1161 | } |
1162 | } |
1163 | if (!OidIsValid(indexOnChild)) |
1164 | elog(ERROR, "failed to find index matching index \"%s\" in partition \"%s\"" , |
1165 | get_rel_name(indexOid), |
1166 | get_rel_name(partdesc->oids[i])); |
1167 | } |
1168 | |
1169 | /* |
1170 | * Initialize our fabricated parse node by copying the original |
1171 | * one, then resetting fields that we pass separately. |
1172 | */ |
1173 | childStmt = (CreateTrigStmt *) copyObject(stmt); |
1174 | childStmt->funcname = NIL; |
1175 | childStmt->whenClause = NULL; |
1176 | |
1177 | /* If there is a WHEN clause, create a modified copy of it */ |
1178 | qual = copyObject(whenClause); |
1179 | qual = (Node *) |
1180 | map_partition_varattnos((List *) qual, PRS2_OLD_VARNO, |
1181 | childTbl, rel, |
1182 | &found_whole_row); |
1183 | if (found_whole_row) |
1184 | elog(ERROR, "unexpected whole-row reference found in trigger WHEN clause" ); |
1185 | qual = (Node *) |
1186 | map_partition_varattnos((List *) qual, PRS2_NEW_VARNO, |
1187 | childTbl, rel, |
1188 | &found_whole_row); |
1189 | if (found_whole_row) |
1190 | elog(ERROR, "unexpected whole-row reference found in trigger WHEN clause" ); |
1191 | |
1192 | CreateTrigger(childStmt, queryString, |
1193 | partdesc->oids[i], refRelOid, |
1194 | InvalidOid, indexOnChild, |
1195 | funcoid, trigoid, qual, |
1196 | isInternal, true); |
1197 | |
1198 | table_close(childTbl, NoLock); |
1199 | |
1200 | MemoryContextReset(perChildCxt); |
1201 | } |
1202 | |
1203 | MemoryContextSwitchTo(oldcxt); |
1204 | MemoryContextDelete(perChildCxt); |
1205 | list_free(idxs); |
1206 | list_free(childTbls); |
1207 | } |
1208 | |
1209 | /* Keep lock on target rel until end of xact */ |
1210 | table_close(rel, NoLock); |
1211 | |
1212 | return myself; |
1213 | } |
1214 | |
1215 | |
1216 | /* |
1217 | * Convert legacy (pre-7.3) CREATE CONSTRAINT TRIGGER commands into |
1218 | * full-fledged foreign key constraints. |
1219 | * |
1220 | * The conversion is complex because a pre-7.3 foreign key involved three |
1221 | * separate triggers, which were reported separately in dumps. While the |
1222 | * single trigger on the referencing table adds no new information, we need |
1223 | * to know the trigger functions of both of the triggers on the referenced |
1224 | * table to build the constraint declaration. Also, due to lack of proper |
1225 | * dependency checking pre-7.3, it is possible that the source database had |
1226 | * an incomplete set of triggers resulting in an only partially enforced |
1227 | * FK constraint. (This would happen if one of the tables had been dropped |
1228 | * and re-created, but only if the DB had been affected by a 7.0 pg_dump bug |
1229 | * that caused loss of tgconstrrelid information.) We choose to translate to |
1230 | * an FK constraint only when we've seen all three triggers of a set. This is |
1231 | * implemented by storing unmatched items in a list in TopMemoryContext. |
1232 | * We match triggers together by comparing the trigger arguments (which |
1233 | * include constraint name, table and column names, so should be good enough). |
1234 | */ |
1235 | typedef struct |
1236 | { |
1237 | List *args; /* list of (T_String) Values or NIL */ |
1238 | Oid funcoids[3]; /* OIDs of trigger functions */ |
1239 | /* The three function OIDs are stored in the order update, delete, child */ |
1240 | } OldTriggerInfo; |
1241 | |
1242 | static void |
1243 | ConvertTriggerToFK(CreateTrigStmt *stmt, Oid funcoid) |
1244 | { |
1245 | static List *info_list = NIL; |
1246 | |
1247 | static const char *const funcdescr[3] = { |
1248 | gettext_noop("Found referenced table's UPDATE trigger." ), |
1249 | gettext_noop("Found referenced table's DELETE trigger." ), |
1250 | gettext_noop("Found referencing table's trigger." ) |
1251 | }; |
1252 | |
1253 | char *constr_name; |
1254 | char *fk_table_name; |
1255 | char *pk_table_name; |
1256 | char fk_matchtype = FKCONSTR_MATCH_SIMPLE; |
1257 | List *fk_attrs = NIL; |
1258 | List *pk_attrs = NIL; |
1259 | StringInfoData buf; |
1260 | int funcnum; |
1261 | OldTriggerInfo *info = NULL; |
1262 | ListCell *l; |
1263 | int i; |
1264 | |
1265 | /* Parse out the trigger arguments */ |
1266 | constr_name = strVal(linitial(stmt->args)); |
1267 | fk_table_name = strVal(lsecond(stmt->args)); |
1268 | pk_table_name = strVal(lthird(stmt->args)); |
1269 | i = 0; |
1270 | foreach(l, stmt->args) |
1271 | { |
1272 | Value *arg = (Value *) lfirst(l); |
1273 | |
1274 | i++; |
1275 | if (i < 4) /* skip constraint and table names */ |
1276 | continue; |
1277 | if (i == 4) /* handle match type */ |
1278 | { |
1279 | if (strcmp(strVal(arg), "FULL" ) == 0) |
1280 | fk_matchtype = FKCONSTR_MATCH_FULL; |
1281 | else |
1282 | fk_matchtype = FKCONSTR_MATCH_SIMPLE; |
1283 | continue; |
1284 | } |
1285 | if (i % 2) |
1286 | fk_attrs = lappend(fk_attrs, arg); |
1287 | else |
1288 | pk_attrs = lappend(pk_attrs, arg); |
1289 | } |
1290 | |
1291 | /* Prepare description of constraint for use in messages */ |
1292 | initStringInfo(&buf); |
1293 | appendStringInfo(&buf, "FOREIGN KEY %s(" , |
1294 | quote_identifier(fk_table_name)); |
1295 | i = 0; |
1296 | foreach(l, fk_attrs) |
1297 | { |
1298 | Value *arg = (Value *) lfirst(l); |
1299 | |
1300 | if (i++ > 0) |
1301 | appendStringInfoChar(&buf, ','); |
1302 | appendStringInfoString(&buf, quote_identifier(strVal(arg))); |
1303 | } |
1304 | appendStringInfo(&buf, ") REFERENCES %s(" , |
1305 | quote_identifier(pk_table_name)); |
1306 | i = 0; |
1307 | foreach(l, pk_attrs) |
1308 | { |
1309 | Value *arg = (Value *) lfirst(l); |
1310 | |
1311 | if (i++ > 0) |
1312 | appendStringInfoChar(&buf, ','); |
1313 | appendStringInfoString(&buf, quote_identifier(strVal(arg))); |
1314 | } |
1315 | appendStringInfoChar(&buf, ')'); |
1316 | |
1317 | /* Identify class of trigger --- update, delete, or referencing-table */ |
1318 | switch (funcoid) |
1319 | { |
1320 | case F_RI_FKEY_CASCADE_UPD: |
1321 | case F_RI_FKEY_RESTRICT_UPD: |
1322 | case F_RI_FKEY_SETNULL_UPD: |
1323 | case F_RI_FKEY_SETDEFAULT_UPD: |
1324 | case F_RI_FKEY_NOACTION_UPD: |
1325 | funcnum = 0; |
1326 | break; |
1327 | |
1328 | case F_RI_FKEY_CASCADE_DEL: |
1329 | case F_RI_FKEY_RESTRICT_DEL: |
1330 | case F_RI_FKEY_SETNULL_DEL: |
1331 | case F_RI_FKEY_SETDEFAULT_DEL: |
1332 | case F_RI_FKEY_NOACTION_DEL: |
1333 | funcnum = 1; |
1334 | break; |
1335 | |
1336 | default: |
1337 | funcnum = 2; |
1338 | break; |
1339 | } |
1340 | |
1341 | /* See if we have a match to this trigger */ |
1342 | foreach(l, info_list) |
1343 | { |
1344 | info = (OldTriggerInfo *) lfirst(l); |
1345 | if (info->funcoids[funcnum] == InvalidOid && |
1346 | equal(info->args, stmt->args)) |
1347 | { |
1348 | info->funcoids[funcnum] = funcoid; |
1349 | break; |
1350 | } |
1351 | } |
1352 | |
1353 | if (l == NULL) |
1354 | { |
1355 | /* First trigger of set, so create a new list entry */ |
1356 | MemoryContext oldContext; |
1357 | |
1358 | ereport(NOTICE, |
1359 | (errmsg("ignoring incomplete trigger group for constraint \"%s\" %s" , |
1360 | constr_name, buf.data), |
1361 | errdetail_internal("%s" , _(funcdescr[funcnum])))); |
1362 | oldContext = MemoryContextSwitchTo(TopMemoryContext); |
1363 | info = (OldTriggerInfo *) palloc0(sizeof(OldTriggerInfo)); |
1364 | info->args = copyObject(stmt->args); |
1365 | info->funcoids[funcnum] = funcoid; |
1366 | info_list = lappend(info_list, info); |
1367 | MemoryContextSwitchTo(oldContext); |
1368 | } |
1369 | else if (info->funcoids[0] == InvalidOid || |
1370 | info->funcoids[1] == InvalidOid || |
1371 | info->funcoids[2] == InvalidOid) |
1372 | { |
1373 | /* Second trigger of set */ |
1374 | ereport(NOTICE, |
1375 | (errmsg("ignoring incomplete trigger group for constraint \"%s\" %s" , |
1376 | constr_name, buf.data), |
1377 | errdetail_internal("%s" , _(funcdescr[funcnum])))); |
1378 | } |
1379 | else |
1380 | { |
1381 | /* OK, we have a set, so make the FK constraint ALTER TABLE cmd */ |
1382 | AlterTableStmt *atstmt = makeNode(AlterTableStmt); |
1383 | AlterTableCmd *atcmd = makeNode(AlterTableCmd); |
1384 | Constraint *fkcon = makeNode(Constraint); |
1385 | PlannedStmt *wrapper = makeNode(PlannedStmt); |
1386 | |
1387 | ereport(NOTICE, |
1388 | (errmsg("converting trigger group into constraint \"%s\" %s" , |
1389 | constr_name, buf.data), |
1390 | errdetail_internal("%s" , _(funcdescr[funcnum])))); |
1391 | fkcon->contype = CONSTR_FOREIGN; |
1392 | fkcon->location = -1; |
1393 | if (funcnum == 2) |
1394 | { |
1395 | /* This trigger is on the FK table */ |
1396 | atstmt->relation = stmt->relation; |
1397 | if (stmt->constrrel) |
1398 | fkcon->pktable = stmt->constrrel; |
1399 | else |
1400 | { |
1401 | /* Work around ancient pg_dump bug that omitted constrrel */ |
1402 | fkcon->pktable = makeRangeVar(NULL, pk_table_name, -1); |
1403 | } |
1404 | } |
1405 | else |
1406 | { |
1407 | /* This trigger is on the PK table */ |
1408 | fkcon->pktable = stmt->relation; |
1409 | if (stmt->constrrel) |
1410 | atstmt->relation = stmt->constrrel; |
1411 | else |
1412 | { |
1413 | /* Work around ancient pg_dump bug that omitted constrrel */ |
1414 | atstmt->relation = makeRangeVar(NULL, fk_table_name, -1); |
1415 | } |
1416 | } |
1417 | atstmt->cmds = list_make1(atcmd); |
1418 | atstmt->relkind = OBJECT_TABLE; |
1419 | atcmd->subtype = AT_AddConstraint; |
1420 | atcmd->def = (Node *) fkcon; |
1421 | if (strcmp(constr_name, "<unnamed>" ) == 0) |
1422 | fkcon->conname = NULL; |
1423 | else |
1424 | fkcon->conname = constr_name; |
1425 | fkcon->fk_attrs = fk_attrs; |
1426 | fkcon->pk_attrs = pk_attrs; |
1427 | fkcon->fk_matchtype = fk_matchtype; |
1428 | switch (info->funcoids[0]) |
1429 | { |
1430 | case F_RI_FKEY_NOACTION_UPD: |
1431 | fkcon->fk_upd_action = FKCONSTR_ACTION_NOACTION; |
1432 | break; |
1433 | case F_RI_FKEY_CASCADE_UPD: |
1434 | fkcon->fk_upd_action = FKCONSTR_ACTION_CASCADE; |
1435 | break; |
1436 | case F_RI_FKEY_RESTRICT_UPD: |
1437 | fkcon->fk_upd_action = FKCONSTR_ACTION_RESTRICT; |
1438 | break; |
1439 | case F_RI_FKEY_SETNULL_UPD: |
1440 | fkcon->fk_upd_action = FKCONSTR_ACTION_SETNULL; |
1441 | break; |
1442 | case F_RI_FKEY_SETDEFAULT_UPD: |
1443 | fkcon->fk_upd_action = FKCONSTR_ACTION_SETDEFAULT; |
1444 | break; |
1445 | default: |
1446 | /* can't get here because of earlier checks */ |
1447 | elog(ERROR, "confused about RI update function" ); |
1448 | } |
1449 | switch (info->funcoids[1]) |
1450 | { |
1451 | case F_RI_FKEY_NOACTION_DEL: |
1452 | fkcon->fk_del_action = FKCONSTR_ACTION_NOACTION; |
1453 | break; |
1454 | case F_RI_FKEY_CASCADE_DEL: |
1455 | fkcon->fk_del_action = FKCONSTR_ACTION_CASCADE; |
1456 | break; |
1457 | case F_RI_FKEY_RESTRICT_DEL: |
1458 | fkcon->fk_del_action = FKCONSTR_ACTION_RESTRICT; |
1459 | break; |
1460 | case F_RI_FKEY_SETNULL_DEL: |
1461 | fkcon->fk_del_action = FKCONSTR_ACTION_SETNULL; |
1462 | break; |
1463 | case F_RI_FKEY_SETDEFAULT_DEL: |
1464 | fkcon->fk_del_action = FKCONSTR_ACTION_SETDEFAULT; |
1465 | break; |
1466 | default: |
1467 | /* can't get here because of earlier checks */ |
1468 | elog(ERROR, "confused about RI delete function" ); |
1469 | } |
1470 | fkcon->deferrable = stmt->deferrable; |
1471 | fkcon->initdeferred = stmt->initdeferred; |
1472 | fkcon->skip_validation = false; |
1473 | fkcon->initially_valid = true; |
1474 | |
1475 | /* finally, wrap it in a dummy PlannedStmt */ |
1476 | wrapper->commandType = CMD_UTILITY; |
1477 | wrapper->canSetTag = false; |
1478 | wrapper->utilityStmt = (Node *) atstmt; |
1479 | wrapper->stmt_location = -1; |
1480 | wrapper->stmt_len = -1; |
1481 | |
1482 | /* ... and execute it */ |
1483 | ProcessUtility(wrapper, |
1484 | "(generated ALTER TABLE ADD FOREIGN KEY command)" , |
1485 | PROCESS_UTILITY_SUBCOMMAND, NULL, NULL, |
1486 | None_Receiver, NULL); |
1487 | |
1488 | /* Remove the matched item from the list */ |
1489 | info_list = list_delete_ptr(info_list, info); |
1490 | pfree(info); |
1491 | /* We leak the copied args ... not worth worrying about */ |
1492 | } |
1493 | } |
1494 | |
1495 | /* |
1496 | * Guts of trigger deletion. |
1497 | */ |
1498 | void |
1499 | RemoveTriggerById(Oid trigOid) |
1500 | { |
1501 | Relation tgrel; |
1502 | SysScanDesc tgscan; |
1503 | ScanKeyData skey[1]; |
1504 | HeapTuple tup; |
1505 | Oid relid; |
1506 | Relation rel; |
1507 | |
1508 | tgrel = table_open(TriggerRelationId, RowExclusiveLock); |
1509 | |
1510 | /* |
1511 | * Find the trigger to delete. |
1512 | */ |
1513 | ScanKeyInit(&skey[0], |
1514 | Anum_pg_trigger_oid, |
1515 | BTEqualStrategyNumber, F_OIDEQ, |
1516 | ObjectIdGetDatum(trigOid)); |
1517 | |
1518 | tgscan = systable_beginscan(tgrel, TriggerOidIndexId, true, |
1519 | NULL, 1, skey); |
1520 | |
1521 | tup = systable_getnext(tgscan); |
1522 | if (!HeapTupleIsValid(tup)) |
1523 | elog(ERROR, "could not find tuple for trigger %u" , trigOid); |
1524 | |
1525 | /* |
1526 | * Open and exclusive-lock the relation the trigger belongs to. |
1527 | */ |
1528 | relid = ((Form_pg_trigger) GETSTRUCT(tup))->tgrelid; |
1529 | |
1530 | rel = table_open(relid, AccessExclusiveLock); |
1531 | |
1532 | if (rel->rd_rel->relkind != RELKIND_RELATION && |
1533 | rel->rd_rel->relkind != RELKIND_VIEW && |
1534 | rel->rd_rel->relkind != RELKIND_FOREIGN_TABLE && |
1535 | rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE) |
1536 | ereport(ERROR, |
1537 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
1538 | errmsg("\"%s\" is not a table, view, or foreign table" , |
1539 | RelationGetRelationName(rel)))); |
1540 | |
1541 | if (!allowSystemTableMods && IsSystemRelation(rel)) |
1542 | ereport(ERROR, |
1543 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
1544 | errmsg("permission denied: \"%s\" is a system catalog" , |
1545 | RelationGetRelationName(rel)))); |
1546 | |
1547 | /* |
1548 | * Delete the pg_trigger tuple. |
1549 | */ |
1550 | CatalogTupleDelete(tgrel, &tup->t_self); |
1551 | |
1552 | systable_endscan(tgscan); |
1553 | table_close(tgrel, RowExclusiveLock); |
1554 | |
1555 | /* |
1556 | * We do not bother to try to determine whether any other triggers remain, |
1557 | * which would be needed in order to decide whether it's safe to clear the |
1558 | * relation's relhastriggers. (In any case, there might be a concurrent |
1559 | * process adding new triggers.) Instead, just force a relcache inval to |
1560 | * make other backends (and this one too!) rebuild their relcache entries. |
1561 | * There's no great harm in leaving relhastriggers true even if there are |
1562 | * no triggers left. |
1563 | */ |
1564 | CacheInvalidateRelcache(rel); |
1565 | |
1566 | /* Keep lock on trigger's rel until end of xact */ |
1567 | table_close(rel, NoLock); |
1568 | } |
1569 | |
1570 | /* |
1571 | * get_trigger_oid - Look up a trigger by name to find its OID. |
1572 | * |
1573 | * If missing_ok is false, throw an error if trigger not found. If |
1574 | * true, just return InvalidOid. |
1575 | */ |
1576 | Oid |
1577 | get_trigger_oid(Oid relid, const char *trigname, bool missing_ok) |
1578 | { |
1579 | Relation tgrel; |
1580 | ScanKeyData skey[2]; |
1581 | SysScanDesc tgscan; |
1582 | HeapTuple tup; |
1583 | Oid oid; |
1584 | |
1585 | /* |
1586 | * Find the trigger, verify permissions, set up object address |
1587 | */ |
1588 | tgrel = table_open(TriggerRelationId, AccessShareLock); |
1589 | |
1590 | ScanKeyInit(&skey[0], |
1591 | Anum_pg_trigger_tgrelid, |
1592 | BTEqualStrategyNumber, F_OIDEQ, |
1593 | ObjectIdGetDatum(relid)); |
1594 | ScanKeyInit(&skey[1], |
1595 | Anum_pg_trigger_tgname, |
1596 | BTEqualStrategyNumber, F_NAMEEQ, |
1597 | CStringGetDatum(trigname)); |
1598 | |
1599 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
1600 | NULL, 2, skey); |
1601 | |
1602 | tup = systable_getnext(tgscan); |
1603 | |
1604 | if (!HeapTupleIsValid(tup)) |
1605 | { |
1606 | if (!missing_ok) |
1607 | ereport(ERROR, |
1608 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
1609 | errmsg("trigger \"%s\" for table \"%s\" does not exist" , |
1610 | trigname, get_rel_name(relid)))); |
1611 | oid = InvalidOid; |
1612 | } |
1613 | else |
1614 | { |
1615 | oid = ((Form_pg_trigger) GETSTRUCT(tup))->oid; |
1616 | } |
1617 | |
1618 | systable_endscan(tgscan); |
1619 | table_close(tgrel, AccessShareLock); |
1620 | return oid; |
1621 | } |
1622 | |
1623 | /* |
1624 | * Perform permissions and integrity checks before acquiring a relation lock. |
1625 | */ |
1626 | static void |
1627 | RangeVarCallbackForRenameTrigger(const RangeVar *rv, Oid relid, Oid oldrelid, |
1628 | void *arg) |
1629 | { |
1630 | HeapTuple tuple; |
1631 | Form_pg_class form; |
1632 | |
1633 | tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
1634 | if (!HeapTupleIsValid(tuple)) |
1635 | return; /* concurrently dropped */ |
1636 | form = (Form_pg_class) GETSTRUCT(tuple); |
1637 | |
1638 | /* only tables and views can have triggers */ |
1639 | if (form->relkind != RELKIND_RELATION && form->relkind != RELKIND_VIEW && |
1640 | form->relkind != RELKIND_FOREIGN_TABLE && |
1641 | form->relkind != RELKIND_PARTITIONED_TABLE) |
1642 | ereport(ERROR, |
1643 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
1644 | errmsg("\"%s\" is not a table, view, or foreign table" , |
1645 | rv->relname))); |
1646 | |
1647 | /* you must own the table to rename one of its triggers */ |
1648 | if (!pg_class_ownercheck(relid, GetUserId())) |
1649 | aclcheck_error(ACLCHECK_NOT_OWNER, get_relkind_objtype(get_rel_relkind(relid)), rv->relname); |
1650 | if (!allowSystemTableMods && IsSystemClass(relid, form)) |
1651 | ereport(ERROR, |
1652 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
1653 | errmsg("permission denied: \"%s\" is a system catalog" , |
1654 | rv->relname))); |
1655 | |
1656 | ReleaseSysCache(tuple); |
1657 | } |
1658 | |
1659 | /* |
1660 | * renametrig - changes the name of a trigger on a relation |
1661 | * |
1662 | * trigger name is changed in trigger catalog. |
1663 | * No record of the previous name is kept. |
1664 | * |
1665 | * get proper relrelation from relation catalog (if not arg) |
1666 | * scan trigger catalog |
1667 | * for name conflict (within rel) |
1668 | * for original trigger (if not arg) |
1669 | * modify tgname in trigger tuple |
1670 | * update row in catalog |
1671 | */ |
1672 | ObjectAddress |
1673 | renametrig(RenameStmt *stmt) |
1674 | { |
1675 | Oid tgoid; |
1676 | Relation targetrel; |
1677 | Relation tgrel; |
1678 | HeapTuple tuple; |
1679 | SysScanDesc tgscan; |
1680 | ScanKeyData key[2]; |
1681 | Oid relid; |
1682 | ObjectAddress address; |
1683 | |
1684 | /* |
1685 | * Look up name, check permissions, and acquire lock (which we will NOT |
1686 | * release until end of transaction). |
1687 | */ |
1688 | relid = RangeVarGetRelidExtended(stmt->relation, AccessExclusiveLock, |
1689 | 0, |
1690 | RangeVarCallbackForRenameTrigger, |
1691 | NULL); |
1692 | |
1693 | /* Have lock already, so just need to build relcache entry. */ |
1694 | targetrel = relation_open(relid, NoLock); |
1695 | |
1696 | /* |
1697 | * Scan pg_trigger twice for existing triggers on relation. We do this in |
1698 | * order to ensure a trigger does not exist with newname (The unique index |
1699 | * on tgrelid/tgname would complain anyway) and to ensure a trigger does |
1700 | * exist with oldname. |
1701 | * |
1702 | * NOTE that this is cool only because we have AccessExclusiveLock on the |
1703 | * relation, so the trigger set won't be changing underneath us. |
1704 | */ |
1705 | tgrel = table_open(TriggerRelationId, RowExclusiveLock); |
1706 | |
1707 | /* |
1708 | * First pass -- look for name conflict |
1709 | */ |
1710 | ScanKeyInit(&key[0], |
1711 | Anum_pg_trigger_tgrelid, |
1712 | BTEqualStrategyNumber, F_OIDEQ, |
1713 | ObjectIdGetDatum(relid)); |
1714 | ScanKeyInit(&key[1], |
1715 | Anum_pg_trigger_tgname, |
1716 | BTEqualStrategyNumber, F_NAMEEQ, |
1717 | PointerGetDatum(stmt->newname)); |
1718 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
1719 | NULL, 2, key); |
1720 | if (HeapTupleIsValid(tuple = systable_getnext(tgscan))) |
1721 | ereport(ERROR, |
1722 | (errcode(ERRCODE_DUPLICATE_OBJECT), |
1723 | errmsg("trigger \"%s\" for relation \"%s\" already exists" , |
1724 | stmt->newname, RelationGetRelationName(targetrel)))); |
1725 | systable_endscan(tgscan); |
1726 | |
1727 | /* |
1728 | * Second pass -- look for trigger existing with oldname and update |
1729 | */ |
1730 | ScanKeyInit(&key[0], |
1731 | Anum_pg_trigger_tgrelid, |
1732 | BTEqualStrategyNumber, F_OIDEQ, |
1733 | ObjectIdGetDatum(relid)); |
1734 | ScanKeyInit(&key[1], |
1735 | Anum_pg_trigger_tgname, |
1736 | BTEqualStrategyNumber, F_NAMEEQ, |
1737 | PointerGetDatum(stmt->subname)); |
1738 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
1739 | NULL, 2, key); |
1740 | if (HeapTupleIsValid(tuple = systable_getnext(tgscan))) |
1741 | { |
1742 | Form_pg_trigger trigform; |
1743 | |
1744 | /* |
1745 | * Update pg_trigger tuple with new tgname. |
1746 | */ |
1747 | tuple = heap_copytuple(tuple); /* need a modifiable copy */ |
1748 | trigform = (Form_pg_trigger) GETSTRUCT(tuple); |
1749 | tgoid = trigform->oid; |
1750 | |
1751 | namestrcpy(&trigform->tgname, |
1752 | stmt->newname); |
1753 | |
1754 | CatalogTupleUpdate(tgrel, &tuple->t_self, tuple); |
1755 | |
1756 | InvokeObjectPostAlterHook(TriggerRelationId, |
1757 | tgoid, 0); |
1758 | |
1759 | /* |
1760 | * Invalidate relation's relcache entry so that other backends (and |
1761 | * this one too!) are sent SI message to make them rebuild relcache |
1762 | * entries. (Ideally this should happen automatically...) |
1763 | */ |
1764 | CacheInvalidateRelcache(targetrel); |
1765 | } |
1766 | else |
1767 | { |
1768 | ereport(ERROR, |
1769 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
1770 | errmsg("trigger \"%s\" for table \"%s\" does not exist" , |
1771 | stmt->subname, RelationGetRelationName(targetrel)))); |
1772 | } |
1773 | |
1774 | ObjectAddressSet(address, TriggerRelationId, tgoid); |
1775 | |
1776 | systable_endscan(tgscan); |
1777 | |
1778 | table_close(tgrel, RowExclusiveLock); |
1779 | |
1780 | /* |
1781 | * Close rel, but keep exclusive lock! |
1782 | */ |
1783 | relation_close(targetrel, NoLock); |
1784 | |
1785 | return address; |
1786 | } |
1787 | |
1788 | |
1789 | /* |
1790 | * EnableDisableTrigger() |
1791 | * |
1792 | * Called by ALTER TABLE ENABLE/DISABLE [ REPLICA | ALWAYS ] TRIGGER |
1793 | * to change 'tgenabled' field for the specified trigger(s) |
1794 | * |
1795 | * rel: relation to process (caller must hold suitable lock on it) |
1796 | * tgname: trigger to process, or NULL to scan all triggers |
1797 | * fires_when: new value for tgenabled field. In addition to generic |
1798 | * enablement/disablement, this also defines when the trigger |
1799 | * should be fired in session replication roles. |
1800 | * skip_system: if true, skip "system" triggers (constraint triggers) |
1801 | * |
1802 | * Caller should have checked permissions for the table; here we also |
1803 | * enforce that superuser privilege is required to alter the state of |
1804 | * system triggers |
1805 | */ |
1806 | void |
1807 | EnableDisableTrigger(Relation rel, const char *tgname, |
1808 | char fires_when, bool skip_system, LOCKMODE lockmode) |
1809 | { |
1810 | Relation tgrel; |
1811 | int nkeys; |
1812 | ScanKeyData keys[2]; |
1813 | SysScanDesc tgscan; |
1814 | HeapTuple tuple; |
1815 | bool found; |
1816 | bool changed; |
1817 | |
1818 | /* Scan the relevant entries in pg_triggers */ |
1819 | tgrel = table_open(TriggerRelationId, RowExclusiveLock); |
1820 | |
1821 | ScanKeyInit(&keys[0], |
1822 | Anum_pg_trigger_tgrelid, |
1823 | BTEqualStrategyNumber, F_OIDEQ, |
1824 | ObjectIdGetDatum(RelationGetRelid(rel))); |
1825 | if (tgname) |
1826 | { |
1827 | ScanKeyInit(&keys[1], |
1828 | Anum_pg_trigger_tgname, |
1829 | BTEqualStrategyNumber, F_NAMEEQ, |
1830 | CStringGetDatum(tgname)); |
1831 | nkeys = 2; |
1832 | } |
1833 | else |
1834 | nkeys = 1; |
1835 | |
1836 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
1837 | NULL, nkeys, keys); |
1838 | |
1839 | found = changed = false; |
1840 | |
1841 | while (HeapTupleIsValid(tuple = systable_getnext(tgscan))) |
1842 | { |
1843 | Form_pg_trigger oldtrig = (Form_pg_trigger) GETSTRUCT(tuple); |
1844 | |
1845 | if (oldtrig->tgisinternal) |
1846 | { |
1847 | /* system trigger ... ok to process? */ |
1848 | if (skip_system) |
1849 | continue; |
1850 | if (!superuser()) |
1851 | ereport(ERROR, |
1852 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
1853 | errmsg("permission denied: \"%s\" is a system trigger" , |
1854 | NameStr(oldtrig->tgname)))); |
1855 | } |
1856 | |
1857 | found = true; |
1858 | |
1859 | if (oldtrig->tgenabled != fires_when) |
1860 | { |
1861 | /* need to change this one ... make a copy to scribble on */ |
1862 | HeapTuple newtup = heap_copytuple(tuple); |
1863 | Form_pg_trigger newtrig = (Form_pg_trigger) GETSTRUCT(newtup); |
1864 | |
1865 | newtrig->tgenabled = fires_when; |
1866 | |
1867 | CatalogTupleUpdate(tgrel, &newtup->t_self, newtup); |
1868 | |
1869 | heap_freetuple(newtup); |
1870 | |
1871 | /* |
1872 | * When altering FOR EACH ROW triggers on a partitioned table, do |
1873 | * the same on the partitions as well. |
1874 | */ |
1875 | if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE && |
1876 | (TRIGGER_FOR_ROW(oldtrig->tgtype))) |
1877 | { |
1878 | PartitionDesc partdesc = RelationGetPartitionDesc(rel); |
1879 | int i; |
1880 | |
1881 | for (i = 0; i < partdesc->nparts; i++) |
1882 | { |
1883 | Relation part; |
1884 | |
1885 | part = relation_open(partdesc->oids[i], lockmode); |
1886 | EnableDisableTrigger(part, NameStr(oldtrig->tgname), |
1887 | fires_when, skip_system, lockmode); |
1888 | table_close(part, NoLock); /* keep lock till commit */ |
1889 | } |
1890 | } |
1891 | |
1892 | changed = true; |
1893 | } |
1894 | |
1895 | InvokeObjectPostAlterHook(TriggerRelationId, |
1896 | oldtrig->oid, 0); |
1897 | } |
1898 | |
1899 | systable_endscan(tgscan); |
1900 | |
1901 | table_close(tgrel, RowExclusiveLock); |
1902 | |
1903 | if (tgname && !found) |
1904 | ereport(ERROR, |
1905 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
1906 | errmsg("trigger \"%s\" for table \"%s\" does not exist" , |
1907 | tgname, RelationGetRelationName(rel)))); |
1908 | |
1909 | /* |
1910 | * If we changed anything, broadcast a SI inval message to force each |
1911 | * backend (including our own!) to rebuild relation's relcache entry. |
1912 | * Otherwise they will fail to apply the change promptly. |
1913 | */ |
1914 | if (changed) |
1915 | CacheInvalidateRelcache(rel); |
1916 | } |
1917 | |
1918 | |
1919 | /* |
1920 | * Build trigger data to attach to the given relcache entry. |
1921 | * |
1922 | * Note that trigger data attached to a relcache entry must be stored in |
1923 | * CacheMemoryContext to ensure it survives as long as the relcache entry. |
1924 | * But we should be running in a less long-lived working context. To avoid |
1925 | * leaking cache memory if this routine fails partway through, we build a |
1926 | * temporary TriggerDesc in working memory and then copy the completed |
1927 | * structure into cache memory. |
1928 | */ |
1929 | void |
1930 | RelationBuildTriggers(Relation relation) |
1931 | { |
1932 | TriggerDesc *trigdesc; |
1933 | int numtrigs; |
1934 | int maxtrigs; |
1935 | Trigger *triggers; |
1936 | Relation tgrel; |
1937 | ScanKeyData skey; |
1938 | SysScanDesc tgscan; |
1939 | HeapTuple htup; |
1940 | MemoryContext oldContext; |
1941 | int i; |
1942 | |
1943 | /* |
1944 | * Allocate a working array to hold the triggers (the array is extended if |
1945 | * necessary) |
1946 | */ |
1947 | maxtrigs = 16; |
1948 | triggers = (Trigger *) palloc(maxtrigs * sizeof(Trigger)); |
1949 | numtrigs = 0; |
1950 | |
1951 | /* |
1952 | * Note: since we scan the triggers using TriggerRelidNameIndexId, we will |
1953 | * be reading the triggers in name order, except possibly during |
1954 | * emergency-recovery operations (ie, IgnoreSystemIndexes). This in turn |
1955 | * ensures that triggers will be fired in name order. |
1956 | */ |
1957 | ScanKeyInit(&skey, |
1958 | Anum_pg_trigger_tgrelid, |
1959 | BTEqualStrategyNumber, F_OIDEQ, |
1960 | ObjectIdGetDatum(RelationGetRelid(relation))); |
1961 | |
1962 | tgrel = table_open(TriggerRelationId, AccessShareLock); |
1963 | tgscan = systable_beginscan(tgrel, TriggerRelidNameIndexId, true, |
1964 | NULL, 1, &skey); |
1965 | |
1966 | while (HeapTupleIsValid(htup = systable_getnext(tgscan))) |
1967 | { |
1968 | Form_pg_trigger pg_trigger = (Form_pg_trigger) GETSTRUCT(htup); |
1969 | Trigger *build; |
1970 | Datum datum; |
1971 | bool isnull; |
1972 | |
1973 | if (numtrigs >= maxtrigs) |
1974 | { |
1975 | maxtrigs *= 2; |
1976 | triggers = (Trigger *) repalloc(triggers, maxtrigs * sizeof(Trigger)); |
1977 | } |
1978 | build = &(triggers[numtrigs]); |
1979 | |
1980 | build->tgoid = pg_trigger->oid; |
1981 | build->tgname = DatumGetCString(DirectFunctionCall1(nameout, |
1982 | NameGetDatum(&pg_trigger->tgname))); |
1983 | build->tgfoid = pg_trigger->tgfoid; |
1984 | build->tgtype = pg_trigger->tgtype; |
1985 | build->tgenabled = pg_trigger->tgenabled; |
1986 | build->tgisinternal = pg_trigger->tgisinternal; |
1987 | build->tgconstrrelid = pg_trigger->tgconstrrelid; |
1988 | build->tgconstrindid = pg_trigger->tgconstrindid; |
1989 | build->tgconstraint = pg_trigger->tgconstraint; |
1990 | build->tgdeferrable = pg_trigger->tgdeferrable; |
1991 | build->tginitdeferred = pg_trigger->tginitdeferred; |
1992 | build->tgnargs = pg_trigger->tgnargs; |
1993 | /* tgattr is first var-width field, so OK to access directly */ |
1994 | build->tgnattr = pg_trigger->tgattr.dim1; |
1995 | if (build->tgnattr > 0) |
1996 | { |
1997 | build->tgattr = (int16 *) palloc(build->tgnattr * sizeof(int16)); |
1998 | memcpy(build->tgattr, &(pg_trigger->tgattr.values), |
1999 | build->tgnattr * sizeof(int16)); |
2000 | } |
2001 | else |
2002 | build->tgattr = NULL; |
2003 | if (build->tgnargs > 0) |
2004 | { |
2005 | bytea *val; |
2006 | char *p; |
2007 | |
2008 | val = DatumGetByteaPP(fastgetattr(htup, |
2009 | Anum_pg_trigger_tgargs, |
2010 | tgrel->rd_att, &isnull)); |
2011 | if (isnull) |
2012 | elog(ERROR, "tgargs is null in trigger for relation \"%s\"" , |
2013 | RelationGetRelationName(relation)); |
2014 | p = (char *) VARDATA_ANY(val); |
2015 | build->tgargs = (char **) palloc(build->tgnargs * sizeof(char *)); |
2016 | for (i = 0; i < build->tgnargs; i++) |
2017 | { |
2018 | build->tgargs[i] = pstrdup(p); |
2019 | p += strlen(p) + 1; |
2020 | } |
2021 | } |
2022 | else |
2023 | build->tgargs = NULL; |
2024 | |
2025 | datum = fastgetattr(htup, Anum_pg_trigger_tgoldtable, |
2026 | tgrel->rd_att, &isnull); |
2027 | if (!isnull) |
2028 | build->tgoldtable = |
2029 | DatumGetCString(DirectFunctionCall1(nameout, datum)); |
2030 | else |
2031 | build->tgoldtable = NULL; |
2032 | |
2033 | datum = fastgetattr(htup, Anum_pg_trigger_tgnewtable, |
2034 | tgrel->rd_att, &isnull); |
2035 | if (!isnull) |
2036 | build->tgnewtable = |
2037 | DatumGetCString(DirectFunctionCall1(nameout, datum)); |
2038 | else |
2039 | build->tgnewtable = NULL; |
2040 | |
2041 | datum = fastgetattr(htup, Anum_pg_trigger_tgqual, |
2042 | tgrel->rd_att, &isnull); |
2043 | if (!isnull) |
2044 | build->tgqual = TextDatumGetCString(datum); |
2045 | else |
2046 | build->tgqual = NULL; |
2047 | |
2048 | numtrigs++; |
2049 | } |
2050 | |
2051 | systable_endscan(tgscan); |
2052 | table_close(tgrel, AccessShareLock); |
2053 | |
2054 | /* There might not be any triggers */ |
2055 | if (numtrigs == 0) |
2056 | { |
2057 | pfree(triggers); |
2058 | return; |
2059 | } |
2060 | |
2061 | /* Build trigdesc */ |
2062 | trigdesc = (TriggerDesc *) palloc0(sizeof(TriggerDesc)); |
2063 | trigdesc->triggers = triggers; |
2064 | trigdesc->numtriggers = numtrigs; |
2065 | for (i = 0; i < numtrigs; i++) |
2066 | SetTriggerFlags(trigdesc, &(triggers[i])); |
2067 | |
2068 | /* Copy completed trigdesc into cache storage */ |
2069 | oldContext = MemoryContextSwitchTo(CacheMemoryContext); |
2070 | relation->trigdesc = CopyTriggerDesc(trigdesc); |
2071 | MemoryContextSwitchTo(oldContext); |
2072 | |
2073 | /* Release working memory */ |
2074 | FreeTriggerDesc(trigdesc); |
2075 | } |
2076 | |
2077 | /* |
2078 | * Update the TriggerDesc's hint flags to include the specified trigger |
2079 | */ |
2080 | static void |
2081 | SetTriggerFlags(TriggerDesc *trigdesc, Trigger *trigger) |
2082 | { |
2083 | int16 tgtype = trigger->tgtype; |
2084 | |
2085 | trigdesc->trig_insert_before_row |= |
2086 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2087 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_INSERT); |
2088 | trigdesc->trig_insert_after_row |= |
2089 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2090 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_INSERT); |
2091 | trigdesc->trig_insert_instead_row |= |
2092 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2093 | TRIGGER_TYPE_INSTEAD, TRIGGER_TYPE_INSERT); |
2094 | trigdesc->trig_insert_before_statement |= |
2095 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2096 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_INSERT); |
2097 | trigdesc->trig_insert_after_statement |= |
2098 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2099 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_INSERT); |
2100 | trigdesc->trig_update_before_row |= |
2101 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2102 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_UPDATE); |
2103 | trigdesc->trig_update_after_row |= |
2104 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2105 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_UPDATE); |
2106 | trigdesc->trig_update_instead_row |= |
2107 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2108 | TRIGGER_TYPE_INSTEAD, TRIGGER_TYPE_UPDATE); |
2109 | trigdesc->trig_update_before_statement |= |
2110 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2111 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_UPDATE); |
2112 | trigdesc->trig_update_after_statement |= |
2113 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2114 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_UPDATE); |
2115 | trigdesc->trig_delete_before_row |= |
2116 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2117 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_DELETE); |
2118 | trigdesc->trig_delete_after_row |= |
2119 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2120 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_DELETE); |
2121 | trigdesc->trig_delete_instead_row |= |
2122 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_ROW, |
2123 | TRIGGER_TYPE_INSTEAD, TRIGGER_TYPE_DELETE); |
2124 | trigdesc->trig_delete_before_statement |= |
2125 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2126 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_DELETE); |
2127 | trigdesc->trig_delete_after_statement |= |
2128 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2129 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_DELETE); |
2130 | /* there are no row-level truncate triggers */ |
2131 | trigdesc->trig_truncate_before_statement |= |
2132 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2133 | TRIGGER_TYPE_BEFORE, TRIGGER_TYPE_TRUNCATE); |
2134 | trigdesc->trig_truncate_after_statement |= |
2135 | TRIGGER_TYPE_MATCHES(tgtype, TRIGGER_TYPE_STATEMENT, |
2136 | TRIGGER_TYPE_AFTER, TRIGGER_TYPE_TRUNCATE); |
2137 | |
2138 | trigdesc->trig_insert_new_table |= |
2139 | (TRIGGER_FOR_INSERT(tgtype) && |
2140 | TRIGGER_USES_TRANSITION_TABLE(trigger->tgnewtable)); |
2141 | trigdesc->trig_update_old_table |= |
2142 | (TRIGGER_FOR_UPDATE(tgtype) && |
2143 | TRIGGER_USES_TRANSITION_TABLE(trigger->tgoldtable)); |
2144 | trigdesc->trig_update_new_table |= |
2145 | (TRIGGER_FOR_UPDATE(tgtype) && |
2146 | TRIGGER_USES_TRANSITION_TABLE(trigger->tgnewtable)); |
2147 | trigdesc->trig_delete_old_table |= |
2148 | (TRIGGER_FOR_DELETE(tgtype) && |
2149 | TRIGGER_USES_TRANSITION_TABLE(trigger->tgoldtable)); |
2150 | } |
2151 | |
2152 | /* |
2153 | * Copy a TriggerDesc data structure. |
2154 | * |
2155 | * The copy is allocated in the current memory context. |
2156 | */ |
2157 | TriggerDesc * |
2158 | CopyTriggerDesc(TriggerDesc *trigdesc) |
2159 | { |
2160 | TriggerDesc *newdesc; |
2161 | Trigger *trigger; |
2162 | int i; |
2163 | |
2164 | if (trigdesc == NULL || trigdesc->numtriggers <= 0) |
2165 | return NULL; |
2166 | |
2167 | newdesc = (TriggerDesc *) palloc(sizeof(TriggerDesc)); |
2168 | memcpy(newdesc, trigdesc, sizeof(TriggerDesc)); |
2169 | |
2170 | trigger = (Trigger *) palloc(trigdesc->numtriggers * sizeof(Trigger)); |
2171 | memcpy(trigger, trigdesc->triggers, |
2172 | trigdesc->numtriggers * sizeof(Trigger)); |
2173 | newdesc->triggers = trigger; |
2174 | |
2175 | for (i = 0; i < trigdesc->numtriggers; i++) |
2176 | { |
2177 | trigger->tgname = pstrdup(trigger->tgname); |
2178 | if (trigger->tgnattr > 0) |
2179 | { |
2180 | int16 *newattr; |
2181 | |
2182 | newattr = (int16 *) palloc(trigger->tgnattr * sizeof(int16)); |
2183 | memcpy(newattr, trigger->tgattr, |
2184 | trigger->tgnattr * sizeof(int16)); |
2185 | trigger->tgattr = newattr; |
2186 | } |
2187 | if (trigger->tgnargs > 0) |
2188 | { |
2189 | char **newargs; |
2190 | int16 j; |
2191 | |
2192 | newargs = (char **) palloc(trigger->tgnargs * sizeof(char *)); |
2193 | for (j = 0; j < trigger->tgnargs; j++) |
2194 | newargs[j] = pstrdup(trigger->tgargs[j]); |
2195 | trigger->tgargs = newargs; |
2196 | } |
2197 | if (trigger->tgqual) |
2198 | trigger->tgqual = pstrdup(trigger->tgqual); |
2199 | if (trigger->tgoldtable) |
2200 | trigger->tgoldtable = pstrdup(trigger->tgoldtable); |
2201 | if (trigger->tgnewtable) |
2202 | trigger->tgnewtable = pstrdup(trigger->tgnewtable); |
2203 | trigger++; |
2204 | } |
2205 | |
2206 | return newdesc; |
2207 | } |
2208 | |
2209 | /* |
2210 | * Free a TriggerDesc data structure. |
2211 | */ |
2212 | void |
2213 | FreeTriggerDesc(TriggerDesc *trigdesc) |
2214 | { |
2215 | Trigger *trigger; |
2216 | int i; |
2217 | |
2218 | if (trigdesc == NULL) |
2219 | return; |
2220 | |
2221 | trigger = trigdesc->triggers; |
2222 | for (i = 0; i < trigdesc->numtriggers; i++) |
2223 | { |
2224 | pfree(trigger->tgname); |
2225 | if (trigger->tgnattr > 0) |
2226 | pfree(trigger->tgattr); |
2227 | if (trigger->tgnargs > 0) |
2228 | { |
2229 | while (--(trigger->tgnargs) >= 0) |
2230 | pfree(trigger->tgargs[trigger->tgnargs]); |
2231 | pfree(trigger->tgargs); |
2232 | } |
2233 | if (trigger->tgqual) |
2234 | pfree(trigger->tgqual); |
2235 | if (trigger->tgoldtable) |
2236 | pfree(trigger->tgoldtable); |
2237 | if (trigger->tgnewtable) |
2238 | pfree(trigger->tgnewtable); |
2239 | trigger++; |
2240 | } |
2241 | pfree(trigdesc->triggers); |
2242 | pfree(trigdesc); |
2243 | } |
2244 | |
2245 | /* |
2246 | * Compare two TriggerDesc structures for logical equality. |
2247 | */ |
2248 | #ifdef NOT_USED |
2249 | bool |
2250 | equalTriggerDescs(TriggerDesc *trigdesc1, TriggerDesc *trigdesc2) |
2251 | { |
2252 | int i, |
2253 | j; |
2254 | |
2255 | /* |
2256 | * We need not examine the hint flags, just the trigger array itself; if |
2257 | * we have the same triggers with the same types, the flags should match. |
2258 | * |
2259 | * As of 7.3 we assume trigger set ordering is significant in the |
2260 | * comparison; so we just compare corresponding slots of the two sets. |
2261 | * |
2262 | * Note: comparing the stringToNode forms of the WHEN clauses means that |
2263 | * parse column locations will affect the result. This is okay as long as |
2264 | * this function is only used for detecting exact equality, as for example |
2265 | * in checking for staleness of a cache entry. |
2266 | */ |
2267 | if (trigdesc1 != NULL) |
2268 | { |
2269 | if (trigdesc2 == NULL) |
2270 | return false; |
2271 | if (trigdesc1->numtriggers != trigdesc2->numtriggers) |
2272 | return false; |
2273 | for (i = 0; i < trigdesc1->numtriggers; i++) |
2274 | { |
2275 | Trigger *trig1 = trigdesc1->triggers + i; |
2276 | Trigger *trig2 = trigdesc2->triggers + i; |
2277 | |
2278 | if (trig1->tgoid != trig2->tgoid) |
2279 | return false; |
2280 | if (strcmp(trig1->tgname, trig2->tgname) != 0) |
2281 | return false; |
2282 | if (trig1->tgfoid != trig2->tgfoid) |
2283 | return false; |
2284 | if (trig1->tgtype != trig2->tgtype) |
2285 | return false; |
2286 | if (trig1->tgenabled != trig2->tgenabled) |
2287 | return false; |
2288 | if (trig1->tgisinternal != trig2->tgisinternal) |
2289 | return false; |
2290 | if (trig1->tgconstrrelid != trig2->tgconstrrelid) |
2291 | return false; |
2292 | if (trig1->tgconstrindid != trig2->tgconstrindid) |
2293 | return false; |
2294 | if (trig1->tgconstraint != trig2->tgconstraint) |
2295 | return false; |
2296 | if (trig1->tgdeferrable != trig2->tgdeferrable) |
2297 | return false; |
2298 | if (trig1->tginitdeferred != trig2->tginitdeferred) |
2299 | return false; |
2300 | if (trig1->tgnargs != trig2->tgnargs) |
2301 | return false; |
2302 | if (trig1->tgnattr != trig2->tgnattr) |
2303 | return false; |
2304 | if (trig1->tgnattr > 0 && |
2305 | memcmp(trig1->tgattr, trig2->tgattr, |
2306 | trig1->tgnattr * sizeof(int16)) != 0) |
2307 | return false; |
2308 | for (j = 0; j < trig1->tgnargs; j++) |
2309 | if (strcmp(trig1->tgargs[j], trig2->tgargs[j]) != 0) |
2310 | return false; |
2311 | if (trig1->tgqual == NULL && trig2->tgqual == NULL) |
2312 | /* ok */ ; |
2313 | else if (trig1->tgqual == NULL || trig2->tgqual == NULL) |
2314 | return false; |
2315 | else if (strcmp(trig1->tgqual, trig2->tgqual) != 0) |
2316 | return false; |
2317 | if (trig1->tgoldtable == NULL && trig2->tgoldtable == NULL) |
2318 | /* ok */ ; |
2319 | else if (trig1->tgoldtable == NULL || trig2->tgoldtable == NULL) |
2320 | return false; |
2321 | else if (strcmp(trig1->tgoldtable, trig2->tgoldtable) != 0) |
2322 | return false; |
2323 | if (trig1->tgnewtable == NULL && trig2->tgnewtable == NULL) |
2324 | /* ok */ ; |
2325 | else if (trig1->tgnewtable == NULL || trig2->tgnewtable == NULL) |
2326 | return false; |
2327 | else if (strcmp(trig1->tgnewtable, trig2->tgnewtable) != 0) |
2328 | return false; |
2329 | } |
2330 | } |
2331 | else if (trigdesc2 != NULL) |
2332 | return false; |
2333 | return true; |
2334 | } |
2335 | #endif /* NOT_USED */ |
2336 | |
2337 | /* |
2338 | * Check if there is a row-level trigger with transition tables that prevents |
2339 | * a table from becoming an inheritance child or partition. Return the name |
2340 | * of the first such incompatible trigger, or NULL if there is none. |
2341 | */ |
2342 | const char * |
2343 | FindTriggerIncompatibleWithInheritance(TriggerDesc *trigdesc) |
2344 | { |
2345 | if (trigdesc != NULL) |
2346 | { |
2347 | int i; |
2348 | |
2349 | for (i = 0; i < trigdesc->numtriggers; ++i) |
2350 | { |
2351 | Trigger *trigger = &trigdesc->triggers[i]; |
2352 | |
2353 | if (trigger->tgoldtable != NULL || trigger->tgnewtable != NULL) |
2354 | return trigger->tgname; |
2355 | } |
2356 | } |
2357 | |
2358 | return NULL; |
2359 | } |
2360 | |
2361 | /* |
2362 | * Call a trigger function. |
2363 | * |
2364 | * trigdata: trigger descriptor. |
2365 | * tgindx: trigger's index in finfo and instr arrays. |
2366 | * finfo: array of cached trigger function call information. |
2367 | * instr: optional array of EXPLAIN ANALYZE instrumentation state. |
2368 | * per_tuple_context: memory context to execute the function in. |
2369 | * |
2370 | * Returns the tuple (or NULL) as returned by the function. |
2371 | */ |
2372 | static HeapTuple |
2373 | ExecCallTriggerFunc(TriggerData *trigdata, |
2374 | int tgindx, |
2375 | FmgrInfo *finfo, |
2376 | Instrumentation *instr, |
2377 | MemoryContext per_tuple_context) |
2378 | { |
2379 | LOCAL_FCINFO(fcinfo, 0); |
2380 | PgStat_FunctionCallUsage fcusage; |
2381 | Datum result; |
2382 | MemoryContext oldContext; |
2383 | |
2384 | /* |
2385 | * Protect against code paths that may fail to initialize transition table |
2386 | * info. |
2387 | */ |
2388 | Assert(((TRIGGER_FIRED_BY_INSERT(trigdata->tg_event) || |
2389 | TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event) || |
2390 | TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)) && |
2391 | TRIGGER_FIRED_AFTER(trigdata->tg_event) && |
2392 | !(trigdata->tg_event & AFTER_TRIGGER_DEFERRABLE) && |
2393 | !(trigdata->tg_event & AFTER_TRIGGER_INITDEFERRED)) || |
2394 | (trigdata->tg_oldtable == NULL && trigdata->tg_newtable == NULL)); |
2395 | |
2396 | finfo += tgindx; |
2397 | |
2398 | /* |
2399 | * We cache fmgr lookup info, to avoid making the lookup again on each |
2400 | * call. |
2401 | */ |
2402 | if (finfo->fn_oid == InvalidOid) |
2403 | fmgr_info(trigdata->tg_trigger->tgfoid, finfo); |
2404 | |
2405 | Assert(finfo->fn_oid == trigdata->tg_trigger->tgfoid); |
2406 | |
2407 | /* |
2408 | * If doing EXPLAIN ANALYZE, start charging time to this trigger. |
2409 | */ |
2410 | if (instr) |
2411 | InstrStartNode(instr + tgindx); |
2412 | |
2413 | /* |
2414 | * Do the function evaluation in the per-tuple memory context, so that |
2415 | * leaked memory will be reclaimed once per tuple. Note in particular that |
2416 | * any new tuple created by the trigger function will live till the end of |
2417 | * the tuple cycle. |
2418 | */ |
2419 | oldContext = MemoryContextSwitchTo(per_tuple_context); |
2420 | |
2421 | /* |
2422 | * Call the function, passing no arguments but setting a context. |
2423 | */ |
2424 | InitFunctionCallInfoData(*fcinfo, finfo, 0, |
2425 | InvalidOid, (Node *) trigdata, NULL); |
2426 | |
2427 | pgstat_init_function_usage(fcinfo, &fcusage); |
2428 | |
2429 | MyTriggerDepth++; |
2430 | PG_TRY(); |
2431 | { |
2432 | result = FunctionCallInvoke(fcinfo); |
2433 | } |
2434 | PG_CATCH(); |
2435 | { |
2436 | MyTriggerDepth--; |
2437 | PG_RE_THROW(); |
2438 | } |
2439 | PG_END_TRY(); |
2440 | MyTriggerDepth--; |
2441 | |
2442 | pgstat_end_function_usage(&fcusage, true); |
2443 | |
2444 | MemoryContextSwitchTo(oldContext); |
2445 | |
2446 | /* |
2447 | * Trigger protocol allows function to return a null pointer, but NOT to |
2448 | * set the isnull result flag. |
2449 | */ |
2450 | if (fcinfo->isnull) |
2451 | ereport(ERROR, |
2452 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
2453 | errmsg("trigger function %u returned null value" , |
2454 | fcinfo->flinfo->fn_oid))); |
2455 | |
2456 | /* |
2457 | * If doing EXPLAIN ANALYZE, stop charging time to this trigger, and count |
2458 | * one "tuple returned" (really the number of firings). |
2459 | */ |
2460 | if (instr) |
2461 | InstrStopNode(instr + tgindx, 1); |
2462 | |
2463 | return (HeapTuple) DatumGetPointer(result); |
2464 | } |
2465 | |
2466 | void |
2467 | ExecBSInsertTriggers(EState *estate, ResultRelInfo *relinfo) |
2468 | { |
2469 | TriggerDesc *trigdesc; |
2470 | int i; |
2471 | TriggerData LocTriggerData; |
2472 | |
2473 | trigdesc = relinfo->ri_TrigDesc; |
2474 | |
2475 | if (trigdesc == NULL) |
2476 | return; |
2477 | if (!trigdesc->trig_insert_before_statement) |
2478 | return; |
2479 | |
2480 | /* no-op if we already fired BS triggers in this context */ |
2481 | if (before_stmt_triggers_fired(RelationGetRelid(relinfo->ri_RelationDesc), |
2482 | CMD_INSERT)) |
2483 | return; |
2484 | |
2485 | LocTriggerData.type = T_TriggerData; |
2486 | LocTriggerData.tg_event = TRIGGER_EVENT_INSERT | |
2487 | TRIGGER_EVENT_BEFORE; |
2488 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2489 | LocTriggerData.tg_trigtuple = NULL; |
2490 | LocTriggerData.tg_newtuple = NULL; |
2491 | LocTriggerData.tg_trigslot = NULL; |
2492 | LocTriggerData.tg_newslot = NULL; |
2493 | LocTriggerData.tg_oldtable = NULL; |
2494 | LocTriggerData.tg_newtable = NULL; |
2495 | for (i = 0; i < trigdesc->numtriggers; i++) |
2496 | { |
2497 | Trigger *trigger = &trigdesc->triggers[i]; |
2498 | HeapTuple newtuple; |
2499 | |
2500 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2501 | TRIGGER_TYPE_STATEMENT, |
2502 | TRIGGER_TYPE_BEFORE, |
2503 | TRIGGER_TYPE_INSERT)) |
2504 | continue; |
2505 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2506 | NULL, NULL, NULL)) |
2507 | continue; |
2508 | |
2509 | LocTriggerData.tg_trigger = trigger; |
2510 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2511 | i, |
2512 | relinfo->ri_TrigFunctions, |
2513 | relinfo->ri_TrigInstrument, |
2514 | GetPerTupleMemoryContext(estate)); |
2515 | |
2516 | if (newtuple) |
2517 | ereport(ERROR, |
2518 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
2519 | errmsg("BEFORE STATEMENT trigger cannot return a value" ))); |
2520 | } |
2521 | } |
2522 | |
2523 | void |
2524 | ExecASInsertTriggers(EState *estate, ResultRelInfo *relinfo, |
2525 | TransitionCaptureState *transition_capture) |
2526 | { |
2527 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2528 | |
2529 | if (trigdesc && trigdesc->trig_insert_after_statement) |
2530 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_INSERT, |
2531 | false, NULL, NULL, NIL, NULL, transition_capture); |
2532 | } |
2533 | |
2534 | bool |
2535 | ExecBRInsertTriggers(EState *estate, ResultRelInfo *relinfo, |
2536 | TupleTableSlot *slot) |
2537 | { |
2538 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2539 | HeapTuple newtuple = false; |
2540 | bool should_free; |
2541 | TriggerData LocTriggerData; |
2542 | int i; |
2543 | |
2544 | LocTriggerData.type = T_TriggerData; |
2545 | LocTriggerData.tg_event = TRIGGER_EVENT_INSERT | |
2546 | TRIGGER_EVENT_ROW | |
2547 | TRIGGER_EVENT_BEFORE; |
2548 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2549 | LocTriggerData.tg_trigtuple = NULL; |
2550 | LocTriggerData.tg_newtuple = NULL; |
2551 | LocTriggerData.tg_trigslot = NULL; |
2552 | LocTriggerData.tg_newslot = NULL; |
2553 | LocTriggerData.tg_oldtable = NULL; |
2554 | LocTriggerData.tg_newtable = NULL; |
2555 | for (i = 0; i < trigdesc->numtriggers; i++) |
2556 | { |
2557 | Trigger *trigger = &trigdesc->triggers[i]; |
2558 | HeapTuple oldtuple; |
2559 | |
2560 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2561 | TRIGGER_TYPE_ROW, |
2562 | TRIGGER_TYPE_BEFORE, |
2563 | TRIGGER_TYPE_INSERT)) |
2564 | continue; |
2565 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2566 | NULL, NULL, slot)) |
2567 | continue; |
2568 | |
2569 | if (!newtuple) |
2570 | newtuple = ExecFetchSlotHeapTuple(slot, true, &should_free); |
2571 | |
2572 | LocTriggerData.tg_trigslot = slot; |
2573 | LocTriggerData.tg_trigtuple = oldtuple = newtuple; |
2574 | LocTriggerData.tg_trigger = trigger; |
2575 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2576 | i, |
2577 | relinfo->ri_TrigFunctions, |
2578 | relinfo->ri_TrigInstrument, |
2579 | GetPerTupleMemoryContext(estate)); |
2580 | if (newtuple == NULL) |
2581 | { |
2582 | if (should_free) |
2583 | heap_freetuple(oldtuple); |
2584 | return false; /* "do nothing" */ |
2585 | } |
2586 | else if (newtuple != oldtuple) |
2587 | { |
2588 | ExecForceStoreHeapTuple(newtuple, slot, false); |
2589 | |
2590 | if (should_free) |
2591 | heap_freetuple(oldtuple); |
2592 | |
2593 | /* signal tuple should be re-fetched if used */ |
2594 | newtuple = NULL; |
2595 | } |
2596 | } |
2597 | |
2598 | return true; |
2599 | } |
2600 | |
2601 | void |
2602 | ExecARInsertTriggers(EState *estate, ResultRelInfo *relinfo, |
2603 | TupleTableSlot *slot, List *recheckIndexes, |
2604 | TransitionCaptureState *transition_capture) |
2605 | { |
2606 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2607 | |
2608 | if ((trigdesc && trigdesc->trig_insert_after_row) || |
2609 | (transition_capture && transition_capture->tcs_insert_new_table)) |
2610 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_INSERT, |
2611 | true, NULL, slot, |
2612 | recheckIndexes, NULL, |
2613 | transition_capture); |
2614 | } |
2615 | |
2616 | bool |
2617 | ExecIRInsertTriggers(EState *estate, ResultRelInfo *relinfo, |
2618 | TupleTableSlot *slot) |
2619 | { |
2620 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2621 | HeapTuple newtuple = NULL; |
2622 | bool should_free; |
2623 | TriggerData LocTriggerData; |
2624 | int i; |
2625 | |
2626 | LocTriggerData.type = T_TriggerData; |
2627 | LocTriggerData.tg_event = TRIGGER_EVENT_INSERT | |
2628 | TRIGGER_EVENT_ROW | |
2629 | TRIGGER_EVENT_INSTEAD; |
2630 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2631 | LocTriggerData.tg_trigtuple = NULL; |
2632 | LocTriggerData.tg_newtuple = NULL; |
2633 | LocTriggerData.tg_trigslot = NULL; |
2634 | LocTriggerData.tg_newslot = NULL; |
2635 | LocTriggerData.tg_oldtable = NULL; |
2636 | LocTriggerData.tg_newtable = NULL; |
2637 | for (i = 0; i < trigdesc->numtriggers; i++) |
2638 | { |
2639 | Trigger *trigger = &trigdesc->triggers[i]; |
2640 | HeapTuple oldtuple; |
2641 | |
2642 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2643 | TRIGGER_TYPE_ROW, |
2644 | TRIGGER_TYPE_INSTEAD, |
2645 | TRIGGER_TYPE_INSERT)) |
2646 | continue; |
2647 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2648 | NULL, NULL, slot)) |
2649 | continue; |
2650 | |
2651 | if (!newtuple) |
2652 | newtuple = ExecFetchSlotHeapTuple(slot, true, &should_free); |
2653 | |
2654 | LocTriggerData.tg_trigslot = slot; |
2655 | LocTriggerData.tg_trigtuple = oldtuple = newtuple; |
2656 | LocTriggerData.tg_trigger = trigger; |
2657 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2658 | i, |
2659 | relinfo->ri_TrigFunctions, |
2660 | relinfo->ri_TrigInstrument, |
2661 | GetPerTupleMemoryContext(estate)); |
2662 | if (newtuple == NULL) |
2663 | { |
2664 | if (should_free) |
2665 | heap_freetuple(oldtuple); |
2666 | return false; /* "do nothing" */ |
2667 | } |
2668 | else if (newtuple != oldtuple) |
2669 | { |
2670 | ExecForceStoreHeapTuple(newtuple, slot, false); |
2671 | |
2672 | if (should_free) |
2673 | heap_freetuple(oldtuple); |
2674 | |
2675 | /* signal tuple should be re-fetched if used */ |
2676 | newtuple = NULL; |
2677 | } |
2678 | } |
2679 | |
2680 | return true; |
2681 | } |
2682 | |
2683 | void |
2684 | ExecBSDeleteTriggers(EState *estate, ResultRelInfo *relinfo) |
2685 | { |
2686 | TriggerDesc *trigdesc; |
2687 | int i; |
2688 | TriggerData LocTriggerData; |
2689 | |
2690 | trigdesc = relinfo->ri_TrigDesc; |
2691 | |
2692 | if (trigdesc == NULL) |
2693 | return; |
2694 | if (!trigdesc->trig_delete_before_statement) |
2695 | return; |
2696 | |
2697 | /* no-op if we already fired BS triggers in this context */ |
2698 | if (before_stmt_triggers_fired(RelationGetRelid(relinfo->ri_RelationDesc), |
2699 | CMD_DELETE)) |
2700 | return; |
2701 | |
2702 | LocTriggerData.type = T_TriggerData; |
2703 | LocTriggerData.tg_event = TRIGGER_EVENT_DELETE | |
2704 | TRIGGER_EVENT_BEFORE; |
2705 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2706 | LocTriggerData.tg_trigtuple = NULL; |
2707 | LocTriggerData.tg_newtuple = NULL; |
2708 | LocTriggerData.tg_trigslot = NULL; |
2709 | LocTriggerData.tg_newslot = NULL; |
2710 | LocTriggerData.tg_oldtable = NULL; |
2711 | LocTriggerData.tg_newtable = NULL; |
2712 | for (i = 0; i < trigdesc->numtriggers; i++) |
2713 | { |
2714 | Trigger *trigger = &trigdesc->triggers[i]; |
2715 | HeapTuple newtuple; |
2716 | |
2717 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2718 | TRIGGER_TYPE_STATEMENT, |
2719 | TRIGGER_TYPE_BEFORE, |
2720 | TRIGGER_TYPE_DELETE)) |
2721 | continue; |
2722 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2723 | NULL, NULL, NULL)) |
2724 | continue; |
2725 | |
2726 | LocTriggerData.tg_trigger = trigger; |
2727 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2728 | i, |
2729 | relinfo->ri_TrigFunctions, |
2730 | relinfo->ri_TrigInstrument, |
2731 | GetPerTupleMemoryContext(estate)); |
2732 | |
2733 | if (newtuple) |
2734 | ereport(ERROR, |
2735 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
2736 | errmsg("BEFORE STATEMENT trigger cannot return a value" ))); |
2737 | } |
2738 | } |
2739 | |
2740 | void |
2741 | ExecASDeleteTriggers(EState *estate, ResultRelInfo *relinfo, |
2742 | TransitionCaptureState *transition_capture) |
2743 | { |
2744 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2745 | |
2746 | if (trigdesc && trigdesc->trig_delete_after_statement) |
2747 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_DELETE, |
2748 | false, NULL, NULL, NIL, NULL, transition_capture); |
2749 | } |
2750 | |
2751 | /* |
2752 | * Execute BEFORE ROW DELETE triggers. |
2753 | * |
2754 | * True indicates caller can proceed with the delete. False indicates caller |
2755 | * need to suppress the delete and additionally if requested, we need to pass |
2756 | * back the concurrently updated tuple if any. |
2757 | */ |
2758 | bool |
2759 | ExecBRDeleteTriggers(EState *estate, EPQState *epqstate, |
2760 | ResultRelInfo *relinfo, |
2761 | ItemPointer tupleid, |
2762 | HeapTuple fdw_trigtuple, |
2763 | TupleTableSlot **epqslot) |
2764 | { |
2765 | TupleTableSlot *slot = ExecGetTriggerOldSlot(estate, relinfo); |
2766 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2767 | bool result = true; |
2768 | TriggerData LocTriggerData; |
2769 | HeapTuple trigtuple; |
2770 | bool should_free = false; |
2771 | int i; |
2772 | |
2773 | Assert(HeapTupleIsValid(fdw_trigtuple) ^ ItemPointerIsValid(tupleid)); |
2774 | if (fdw_trigtuple == NULL) |
2775 | { |
2776 | TupleTableSlot *newSlot; |
2777 | |
2778 | if (!GetTupleForTrigger(estate, epqstate, relinfo, tupleid, |
2779 | LockTupleExclusive, slot, &newSlot)) |
2780 | return false; |
2781 | |
2782 | /* |
2783 | * If the tuple was concurrently updated and the caller of this |
2784 | * function requested for the updated tuple, skip the trigger |
2785 | * execution. |
2786 | */ |
2787 | if (newSlot != NULL && epqslot != NULL) |
2788 | { |
2789 | *epqslot = newSlot; |
2790 | return false; |
2791 | } |
2792 | |
2793 | trigtuple = ExecFetchSlotHeapTuple(slot, true, &should_free); |
2794 | |
2795 | } |
2796 | else |
2797 | { |
2798 | trigtuple = fdw_trigtuple; |
2799 | ExecForceStoreHeapTuple(trigtuple, slot, false); |
2800 | } |
2801 | |
2802 | LocTriggerData.type = T_TriggerData; |
2803 | LocTriggerData.tg_event = TRIGGER_EVENT_DELETE | |
2804 | TRIGGER_EVENT_ROW | |
2805 | TRIGGER_EVENT_BEFORE; |
2806 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2807 | LocTriggerData.tg_trigtuple = NULL; |
2808 | LocTriggerData.tg_newtuple = NULL; |
2809 | LocTriggerData.tg_trigslot = NULL; |
2810 | LocTriggerData.tg_newslot = NULL; |
2811 | LocTriggerData.tg_oldtable = NULL; |
2812 | LocTriggerData.tg_newtable = NULL; |
2813 | for (i = 0; i < trigdesc->numtriggers; i++) |
2814 | { |
2815 | HeapTuple newtuple; |
2816 | Trigger *trigger = &trigdesc->triggers[i]; |
2817 | |
2818 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2819 | TRIGGER_TYPE_ROW, |
2820 | TRIGGER_TYPE_BEFORE, |
2821 | TRIGGER_TYPE_DELETE)) |
2822 | continue; |
2823 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2824 | NULL, slot, NULL)) |
2825 | continue; |
2826 | |
2827 | LocTriggerData.tg_trigslot = slot; |
2828 | LocTriggerData.tg_trigtuple = trigtuple; |
2829 | LocTriggerData.tg_trigger = trigger; |
2830 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2831 | i, |
2832 | relinfo->ri_TrigFunctions, |
2833 | relinfo->ri_TrigInstrument, |
2834 | GetPerTupleMemoryContext(estate)); |
2835 | if (newtuple == NULL) |
2836 | { |
2837 | result = false; /* tell caller to suppress delete */ |
2838 | break; |
2839 | } |
2840 | if (newtuple != trigtuple) |
2841 | heap_freetuple(newtuple); |
2842 | } |
2843 | if (should_free) |
2844 | heap_freetuple(trigtuple); |
2845 | |
2846 | return result; |
2847 | } |
2848 | |
2849 | void |
2850 | ExecARDeleteTriggers(EState *estate, ResultRelInfo *relinfo, |
2851 | ItemPointer tupleid, |
2852 | HeapTuple fdw_trigtuple, |
2853 | TransitionCaptureState *transition_capture) |
2854 | { |
2855 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2856 | TupleTableSlot *slot = ExecGetTriggerOldSlot(estate, relinfo); |
2857 | |
2858 | if ((trigdesc && trigdesc->trig_delete_after_row) || |
2859 | (transition_capture && transition_capture->tcs_delete_old_table)) |
2860 | { |
2861 | Assert(HeapTupleIsValid(fdw_trigtuple) ^ ItemPointerIsValid(tupleid)); |
2862 | if (fdw_trigtuple == NULL) |
2863 | GetTupleForTrigger(estate, |
2864 | NULL, |
2865 | relinfo, |
2866 | tupleid, |
2867 | LockTupleExclusive, |
2868 | slot, |
2869 | NULL); |
2870 | else |
2871 | ExecForceStoreHeapTuple(fdw_trigtuple, slot, false); |
2872 | |
2873 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_DELETE, |
2874 | true, slot, NULL, NIL, NULL, |
2875 | transition_capture); |
2876 | } |
2877 | } |
2878 | |
2879 | bool |
2880 | ExecIRDeleteTriggers(EState *estate, ResultRelInfo *relinfo, |
2881 | HeapTuple trigtuple) |
2882 | { |
2883 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2884 | TupleTableSlot *slot = ExecGetTriggerOldSlot(estate, relinfo); |
2885 | TriggerData LocTriggerData; |
2886 | int i; |
2887 | |
2888 | LocTriggerData.type = T_TriggerData; |
2889 | LocTriggerData.tg_event = TRIGGER_EVENT_DELETE | |
2890 | TRIGGER_EVENT_ROW | |
2891 | TRIGGER_EVENT_INSTEAD; |
2892 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2893 | LocTriggerData.tg_trigtuple = NULL; |
2894 | LocTriggerData.tg_newtuple = NULL; |
2895 | LocTriggerData.tg_trigslot = NULL; |
2896 | LocTriggerData.tg_newslot = NULL; |
2897 | LocTriggerData.tg_oldtable = NULL; |
2898 | LocTriggerData.tg_newtable = NULL; |
2899 | |
2900 | ExecForceStoreHeapTuple(trigtuple, slot, false); |
2901 | |
2902 | for (i = 0; i < trigdesc->numtriggers; i++) |
2903 | { |
2904 | HeapTuple rettuple; |
2905 | Trigger *trigger = &trigdesc->triggers[i]; |
2906 | |
2907 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2908 | TRIGGER_TYPE_ROW, |
2909 | TRIGGER_TYPE_INSTEAD, |
2910 | TRIGGER_TYPE_DELETE)) |
2911 | continue; |
2912 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2913 | NULL, slot, NULL)) |
2914 | continue; |
2915 | |
2916 | LocTriggerData.tg_trigslot = slot; |
2917 | LocTriggerData.tg_trigtuple = trigtuple; |
2918 | LocTriggerData.tg_trigger = trigger; |
2919 | rettuple = ExecCallTriggerFunc(&LocTriggerData, |
2920 | i, |
2921 | relinfo->ri_TrigFunctions, |
2922 | relinfo->ri_TrigInstrument, |
2923 | GetPerTupleMemoryContext(estate)); |
2924 | if (rettuple == NULL) |
2925 | return false; /* Delete was suppressed */ |
2926 | if (rettuple != trigtuple) |
2927 | heap_freetuple(rettuple); |
2928 | } |
2929 | return true; |
2930 | } |
2931 | |
2932 | void |
2933 | ExecBSUpdateTriggers(EState *estate, ResultRelInfo *relinfo) |
2934 | { |
2935 | TriggerDesc *trigdesc; |
2936 | int i; |
2937 | TriggerData LocTriggerData; |
2938 | Bitmapset *updatedCols; |
2939 | |
2940 | trigdesc = relinfo->ri_TrigDesc; |
2941 | |
2942 | if (trigdesc == NULL) |
2943 | return; |
2944 | if (!trigdesc->trig_update_before_statement) |
2945 | return; |
2946 | |
2947 | /* no-op if we already fired BS triggers in this context */ |
2948 | if (before_stmt_triggers_fired(RelationGetRelid(relinfo->ri_RelationDesc), |
2949 | CMD_UPDATE)) |
2950 | return; |
2951 | |
2952 | updatedCols = GetAllUpdatedColumns(relinfo, estate); |
2953 | |
2954 | LocTriggerData.type = T_TriggerData; |
2955 | LocTriggerData.tg_event = TRIGGER_EVENT_UPDATE | |
2956 | TRIGGER_EVENT_BEFORE; |
2957 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
2958 | LocTriggerData.tg_trigtuple = NULL; |
2959 | LocTriggerData.tg_newtuple = NULL; |
2960 | LocTriggerData.tg_trigslot = NULL; |
2961 | LocTriggerData.tg_newslot = NULL; |
2962 | LocTriggerData.tg_oldtable = NULL; |
2963 | LocTriggerData.tg_newtable = NULL; |
2964 | for (i = 0; i < trigdesc->numtriggers; i++) |
2965 | { |
2966 | Trigger *trigger = &trigdesc->triggers[i]; |
2967 | HeapTuple newtuple; |
2968 | |
2969 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
2970 | TRIGGER_TYPE_STATEMENT, |
2971 | TRIGGER_TYPE_BEFORE, |
2972 | TRIGGER_TYPE_UPDATE)) |
2973 | continue; |
2974 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
2975 | updatedCols, NULL, NULL)) |
2976 | continue; |
2977 | |
2978 | LocTriggerData.tg_trigger = trigger; |
2979 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
2980 | i, |
2981 | relinfo->ri_TrigFunctions, |
2982 | relinfo->ri_TrigInstrument, |
2983 | GetPerTupleMemoryContext(estate)); |
2984 | |
2985 | if (newtuple) |
2986 | ereport(ERROR, |
2987 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
2988 | errmsg("BEFORE STATEMENT trigger cannot return a value" ))); |
2989 | } |
2990 | } |
2991 | |
2992 | void |
2993 | ExecASUpdateTriggers(EState *estate, ResultRelInfo *relinfo, |
2994 | TransitionCaptureState *transition_capture) |
2995 | { |
2996 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
2997 | |
2998 | if (trigdesc && trigdesc->trig_update_after_statement) |
2999 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_UPDATE, |
3000 | false, NULL, NULL, NIL, |
3001 | GetAllUpdatedColumns(relinfo, estate), |
3002 | transition_capture); |
3003 | } |
3004 | |
3005 | bool |
3006 | ExecBRUpdateTriggers(EState *estate, EPQState *epqstate, |
3007 | ResultRelInfo *relinfo, |
3008 | ItemPointer tupleid, |
3009 | HeapTuple fdw_trigtuple, |
3010 | TupleTableSlot *newslot) |
3011 | { |
3012 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
3013 | TupleTableSlot *oldslot = ExecGetTriggerOldSlot(estate, relinfo); |
3014 | HeapTuple newtuple = NULL; |
3015 | HeapTuple trigtuple; |
3016 | bool should_free_trig = false; |
3017 | bool should_free_new = false; |
3018 | TriggerData LocTriggerData; |
3019 | int i; |
3020 | Bitmapset *updatedCols; |
3021 | LockTupleMode lockmode; |
3022 | |
3023 | /* Determine lock mode to use */ |
3024 | lockmode = ExecUpdateLockMode(estate, relinfo); |
3025 | |
3026 | Assert(HeapTupleIsValid(fdw_trigtuple) ^ ItemPointerIsValid(tupleid)); |
3027 | if (fdw_trigtuple == NULL) |
3028 | { |
3029 | TupleTableSlot *newSlot = NULL; |
3030 | |
3031 | /* get a copy of the on-disk tuple we are planning to update */ |
3032 | if (!GetTupleForTrigger(estate, epqstate, relinfo, tupleid, |
3033 | lockmode, oldslot, &newSlot)) |
3034 | return false; /* cancel the update action */ |
3035 | |
3036 | /* |
3037 | * In READ COMMITTED isolation level it's possible that target tuple |
3038 | * was changed due to concurrent update. In that case we have a raw |
3039 | * subplan output tuple in newSlot, and need to run it through the |
3040 | * junk filter to produce an insertable tuple. |
3041 | * |
3042 | * Caution: more than likely, the passed-in slot is the same as the |
3043 | * junkfilter's output slot, so we are clobbering the original value |
3044 | * of slottuple by doing the filtering. This is OK since neither we |
3045 | * nor our caller have any more interest in the prior contents of that |
3046 | * slot. |
3047 | */ |
3048 | if (newSlot != NULL) |
3049 | { |
3050 | TupleTableSlot *slot = ExecFilterJunk(relinfo->ri_junkFilter, newSlot); |
3051 | |
3052 | ExecCopySlot(newslot, slot); |
3053 | } |
3054 | |
3055 | trigtuple = ExecFetchSlotHeapTuple(oldslot, true, &should_free_trig); |
3056 | } |
3057 | else |
3058 | { |
3059 | ExecForceStoreHeapTuple(fdw_trigtuple, oldslot, false); |
3060 | trigtuple = fdw_trigtuple; |
3061 | } |
3062 | |
3063 | LocTriggerData.type = T_TriggerData; |
3064 | LocTriggerData.tg_event = TRIGGER_EVENT_UPDATE | |
3065 | TRIGGER_EVENT_ROW | |
3066 | TRIGGER_EVENT_BEFORE; |
3067 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
3068 | LocTriggerData.tg_oldtable = NULL; |
3069 | LocTriggerData.tg_newtable = NULL; |
3070 | updatedCols = GetAllUpdatedColumns(relinfo, estate); |
3071 | for (i = 0; i < trigdesc->numtriggers; i++) |
3072 | { |
3073 | Trigger *trigger = &trigdesc->triggers[i]; |
3074 | HeapTuple oldtuple; |
3075 | |
3076 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
3077 | TRIGGER_TYPE_ROW, |
3078 | TRIGGER_TYPE_BEFORE, |
3079 | TRIGGER_TYPE_UPDATE)) |
3080 | continue; |
3081 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
3082 | updatedCols, oldslot, newslot)) |
3083 | continue; |
3084 | |
3085 | if (!newtuple) |
3086 | newtuple = ExecFetchSlotHeapTuple(newslot, true, &should_free_new); |
3087 | |
3088 | LocTriggerData.tg_trigslot = oldslot; |
3089 | LocTriggerData.tg_trigtuple = trigtuple; |
3090 | LocTriggerData.tg_newtuple = oldtuple = newtuple; |
3091 | LocTriggerData.tg_newslot = newslot; |
3092 | LocTriggerData.tg_trigger = trigger; |
3093 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
3094 | i, |
3095 | relinfo->ri_TrigFunctions, |
3096 | relinfo->ri_TrigInstrument, |
3097 | GetPerTupleMemoryContext(estate)); |
3098 | |
3099 | if (newtuple == NULL) |
3100 | { |
3101 | if (should_free_trig) |
3102 | heap_freetuple(trigtuple); |
3103 | if (should_free_new) |
3104 | heap_freetuple(oldtuple); |
3105 | return false; /* "do nothing" */ |
3106 | } |
3107 | else if (newtuple != oldtuple) |
3108 | { |
3109 | ExecForceStoreHeapTuple(newtuple, newslot, false); |
3110 | |
3111 | /* |
3112 | * If the tuple returned by the trigger / being stored, is the old |
3113 | * row version, and the heap tuple passed to the trigger was |
3114 | * allocated locally, materialize the slot. Otherwise we might |
3115 | * free it while still referenced by the slot. |
3116 | */ |
3117 | if (should_free_trig && newtuple == trigtuple) |
3118 | ExecMaterializeSlot(newslot); |
3119 | |
3120 | if (should_free_new) |
3121 | heap_freetuple(oldtuple); |
3122 | |
3123 | /* signal tuple should be re-fetched if used */ |
3124 | newtuple = NULL; |
3125 | } |
3126 | } |
3127 | if (should_free_trig) |
3128 | heap_freetuple(trigtuple); |
3129 | |
3130 | return true; |
3131 | } |
3132 | |
3133 | void |
3134 | ExecARUpdateTriggers(EState *estate, ResultRelInfo *relinfo, |
3135 | ItemPointer tupleid, |
3136 | HeapTuple fdw_trigtuple, |
3137 | TupleTableSlot *newslot, |
3138 | List *recheckIndexes, |
3139 | TransitionCaptureState *transition_capture) |
3140 | { |
3141 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
3142 | TupleTableSlot *oldslot = ExecGetTriggerOldSlot(estate, relinfo); |
3143 | |
3144 | ExecClearTuple(oldslot); |
3145 | |
3146 | if ((trigdesc && trigdesc->trig_update_after_row) || |
3147 | (transition_capture && |
3148 | (transition_capture->tcs_update_old_table || |
3149 | transition_capture->tcs_update_new_table))) |
3150 | { |
3151 | /* |
3152 | * Note: if the UPDATE is converted into a DELETE+INSERT as part of |
3153 | * update-partition-key operation, then this function is also called |
3154 | * separately for DELETE and INSERT to capture transition table rows. |
3155 | * In such case, either old tuple or new tuple can be NULL. |
3156 | */ |
3157 | if (fdw_trigtuple == NULL && ItemPointerIsValid(tupleid)) |
3158 | GetTupleForTrigger(estate, |
3159 | NULL, |
3160 | relinfo, |
3161 | tupleid, |
3162 | LockTupleExclusive, |
3163 | oldslot, |
3164 | NULL); |
3165 | else if (fdw_trigtuple != NULL) |
3166 | ExecForceStoreHeapTuple(fdw_trigtuple, oldslot, false); |
3167 | |
3168 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_UPDATE, |
3169 | true, oldslot, newslot, recheckIndexes, |
3170 | GetAllUpdatedColumns(relinfo, estate), |
3171 | transition_capture); |
3172 | } |
3173 | } |
3174 | |
3175 | bool |
3176 | ExecIRUpdateTriggers(EState *estate, ResultRelInfo *relinfo, |
3177 | HeapTuple trigtuple, TupleTableSlot *newslot) |
3178 | { |
3179 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
3180 | TupleTableSlot *oldslot = ExecGetTriggerOldSlot(estate, relinfo); |
3181 | HeapTuple newtuple = false; |
3182 | bool should_free; |
3183 | TriggerData LocTriggerData; |
3184 | int i; |
3185 | |
3186 | LocTriggerData.type = T_TriggerData; |
3187 | LocTriggerData.tg_event = TRIGGER_EVENT_UPDATE | |
3188 | TRIGGER_EVENT_ROW | |
3189 | TRIGGER_EVENT_INSTEAD; |
3190 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
3191 | LocTriggerData.tg_oldtable = NULL; |
3192 | LocTriggerData.tg_newtable = NULL; |
3193 | |
3194 | ExecForceStoreHeapTuple(trigtuple, oldslot, false); |
3195 | |
3196 | for (i = 0; i < trigdesc->numtriggers; i++) |
3197 | { |
3198 | Trigger *trigger = &trigdesc->triggers[i]; |
3199 | HeapTuple oldtuple; |
3200 | |
3201 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
3202 | TRIGGER_TYPE_ROW, |
3203 | TRIGGER_TYPE_INSTEAD, |
3204 | TRIGGER_TYPE_UPDATE)) |
3205 | continue; |
3206 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
3207 | NULL, oldslot, newslot)) |
3208 | continue; |
3209 | |
3210 | if (!newtuple) |
3211 | newtuple = ExecFetchSlotHeapTuple(newslot, true, &should_free); |
3212 | |
3213 | LocTriggerData.tg_trigslot = oldslot; |
3214 | LocTriggerData.tg_trigtuple = trigtuple; |
3215 | LocTriggerData.tg_newslot = newslot; |
3216 | LocTriggerData.tg_newtuple = oldtuple = newtuple; |
3217 | |
3218 | LocTriggerData.tg_trigger = trigger; |
3219 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
3220 | i, |
3221 | relinfo->ri_TrigFunctions, |
3222 | relinfo->ri_TrigInstrument, |
3223 | GetPerTupleMemoryContext(estate)); |
3224 | if (newtuple == NULL) |
3225 | { |
3226 | return false; /* "do nothing" */ |
3227 | } |
3228 | else if (newtuple != oldtuple) |
3229 | { |
3230 | ExecForceStoreHeapTuple(newtuple, newslot, false); |
3231 | |
3232 | if (should_free) |
3233 | heap_freetuple(oldtuple); |
3234 | |
3235 | /* signal tuple should be re-fetched if used */ |
3236 | newtuple = NULL; |
3237 | } |
3238 | } |
3239 | |
3240 | return true; |
3241 | } |
3242 | |
3243 | void |
3244 | ExecBSTruncateTriggers(EState *estate, ResultRelInfo *relinfo) |
3245 | { |
3246 | TriggerDesc *trigdesc; |
3247 | int i; |
3248 | TriggerData LocTriggerData; |
3249 | |
3250 | trigdesc = relinfo->ri_TrigDesc; |
3251 | |
3252 | if (trigdesc == NULL) |
3253 | return; |
3254 | if (!trigdesc->trig_truncate_before_statement) |
3255 | return; |
3256 | |
3257 | LocTriggerData.type = T_TriggerData; |
3258 | LocTriggerData.tg_event = TRIGGER_EVENT_TRUNCATE | |
3259 | TRIGGER_EVENT_BEFORE; |
3260 | LocTriggerData.tg_relation = relinfo->ri_RelationDesc; |
3261 | LocTriggerData.tg_trigtuple = NULL; |
3262 | LocTriggerData.tg_newtuple = NULL; |
3263 | LocTriggerData.tg_trigslot = NULL; |
3264 | LocTriggerData.tg_newslot = NULL; |
3265 | LocTriggerData.tg_oldtable = NULL; |
3266 | LocTriggerData.tg_newtable = NULL; |
3267 | |
3268 | for (i = 0; i < trigdesc->numtriggers; i++) |
3269 | { |
3270 | Trigger *trigger = &trigdesc->triggers[i]; |
3271 | HeapTuple newtuple; |
3272 | |
3273 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
3274 | TRIGGER_TYPE_STATEMENT, |
3275 | TRIGGER_TYPE_BEFORE, |
3276 | TRIGGER_TYPE_TRUNCATE)) |
3277 | continue; |
3278 | if (!TriggerEnabled(estate, relinfo, trigger, LocTriggerData.tg_event, |
3279 | NULL, NULL, NULL)) |
3280 | continue; |
3281 | |
3282 | LocTriggerData.tg_trigger = trigger; |
3283 | newtuple = ExecCallTriggerFunc(&LocTriggerData, |
3284 | i, |
3285 | relinfo->ri_TrigFunctions, |
3286 | relinfo->ri_TrigInstrument, |
3287 | GetPerTupleMemoryContext(estate)); |
3288 | |
3289 | if (newtuple) |
3290 | ereport(ERROR, |
3291 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
3292 | errmsg("BEFORE STATEMENT trigger cannot return a value" ))); |
3293 | } |
3294 | } |
3295 | |
3296 | void |
3297 | ExecASTruncateTriggers(EState *estate, ResultRelInfo *relinfo) |
3298 | { |
3299 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
3300 | |
3301 | if (trigdesc && trigdesc->trig_truncate_after_statement) |
3302 | AfterTriggerSaveEvent(estate, relinfo, TRIGGER_EVENT_TRUNCATE, |
3303 | false, NULL, NULL, NIL, NULL, NULL); |
3304 | } |
3305 | |
3306 | |
3307 | static bool |
3308 | GetTupleForTrigger(EState *estate, |
3309 | EPQState *epqstate, |
3310 | ResultRelInfo *relinfo, |
3311 | ItemPointer tid, |
3312 | LockTupleMode lockmode, |
3313 | TupleTableSlot *oldslot, |
3314 | TupleTableSlot **newSlot) |
3315 | { |
3316 | Relation relation = relinfo->ri_RelationDesc; |
3317 | |
3318 | if (newSlot != NULL) |
3319 | { |
3320 | TM_Result test; |
3321 | TM_FailureData tmfd; |
3322 | int lockflags = 0; |
3323 | |
3324 | *newSlot = NULL; |
3325 | |
3326 | /* caller must pass an epqstate if EvalPlanQual is possible */ |
3327 | Assert(epqstate != NULL); |
3328 | |
3329 | /* |
3330 | * lock tuple for update |
3331 | */ |
3332 | if (!IsolationUsesXactSnapshot()) |
3333 | lockflags |= TUPLE_LOCK_FLAG_FIND_LAST_VERSION; |
3334 | test = table_tuple_lock(relation, tid, estate->es_snapshot, oldslot, |
3335 | estate->es_output_cid, |
3336 | lockmode, LockWaitBlock, |
3337 | lockflags, |
3338 | &tmfd); |
3339 | |
3340 | switch (test) |
3341 | { |
3342 | case TM_SelfModified: |
3343 | |
3344 | /* |
3345 | * The target tuple was already updated or deleted by the |
3346 | * current command, or by a later command in the current |
3347 | * transaction. We ignore the tuple in the former case, and |
3348 | * throw error in the latter case, for the same reasons |
3349 | * enumerated in ExecUpdate and ExecDelete in |
3350 | * nodeModifyTable.c. |
3351 | */ |
3352 | if (tmfd.cmax != estate->es_output_cid) |
3353 | ereport(ERROR, |
3354 | (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), |
3355 | errmsg("tuple to be updated was already modified by an operation triggered by the current command" ), |
3356 | errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows." ))); |
3357 | |
3358 | /* treat it as deleted; do not process */ |
3359 | return false; |
3360 | |
3361 | case TM_Ok: |
3362 | if (tmfd.traversed) |
3363 | { |
3364 | TupleTableSlot *epqslot; |
3365 | |
3366 | epqslot = EvalPlanQual(epqstate, |
3367 | relation, |
3368 | relinfo->ri_RangeTableIndex, |
3369 | oldslot); |
3370 | |
3371 | /* |
3372 | * If PlanQual failed for updated tuple - we must not |
3373 | * process this tuple! |
3374 | */ |
3375 | if (TupIsNull(epqslot)) |
3376 | return false; |
3377 | |
3378 | *newSlot = epqslot; |
3379 | } |
3380 | break; |
3381 | |
3382 | case TM_Updated: |
3383 | if (IsolationUsesXactSnapshot()) |
3384 | ereport(ERROR, |
3385 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
3386 | errmsg("could not serialize access due to concurrent update" ))); |
3387 | elog(ERROR, "unexpected table_tuple_lock status: %u" , test); |
3388 | break; |
3389 | |
3390 | case TM_Deleted: |
3391 | if (IsolationUsesXactSnapshot()) |
3392 | ereport(ERROR, |
3393 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
3394 | errmsg("could not serialize access due to concurrent delete" ))); |
3395 | /* tuple was deleted */ |
3396 | return false; |
3397 | |
3398 | case TM_Invisible: |
3399 | elog(ERROR, "attempted to lock invisible tuple" ); |
3400 | break; |
3401 | |
3402 | default: |
3403 | elog(ERROR, "unrecognized table_tuple_lock status: %u" , test); |
3404 | return false; /* keep compiler quiet */ |
3405 | } |
3406 | } |
3407 | else |
3408 | { |
3409 | /* |
3410 | * We expect the tuple to be present, thus very simple error handling |
3411 | * suffices. |
3412 | */ |
3413 | if (!table_tuple_fetch_row_version(relation, tid, SnapshotAny, |
3414 | oldslot)) |
3415 | elog(ERROR, "failed to fetch tuple for trigger" ); |
3416 | } |
3417 | |
3418 | return true; |
3419 | } |
3420 | |
3421 | /* |
3422 | * Is trigger enabled to fire? |
3423 | */ |
3424 | static bool |
3425 | TriggerEnabled(EState *estate, ResultRelInfo *relinfo, |
3426 | Trigger *trigger, TriggerEvent event, |
3427 | Bitmapset *modifiedCols, |
3428 | TupleTableSlot *oldslot, TupleTableSlot *newslot) |
3429 | { |
3430 | /* Check replication-role-dependent enable state */ |
3431 | if (SessionReplicationRole == SESSION_REPLICATION_ROLE_REPLICA) |
3432 | { |
3433 | if (trigger->tgenabled == TRIGGER_FIRES_ON_ORIGIN || |
3434 | trigger->tgenabled == TRIGGER_DISABLED) |
3435 | return false; |
3436 | } |
3437 | else /* ORIGIN or LOCAL role */ |
3438 | { |
3439 | if (trigger->tgenabled == TRIGGER_FIRES_ON_REPLICA || |
3440 | trigger->tgenabled == TRIGGER_DISABLED) |
3441 | return false; |
3442 | } |
3443 | |
3444 | /* |
3445 | * Check for column-specific trigger (only possible for UPDATE, and in |
3446 | * fact we *must* ignore tgattr for other event types) |
3447 | */ |
3448 | if (trigger->tgnattr > 0 && TRIGGER_FIRED_BY_UPDATE(event)) |
3449 | { |
3450 | int i; |
3451 | bool modified; |
3452 | |
3453 | modified = false; |
3454 | for (i = 0; i < trigger->tgnattr; i++) |
3455 | { |
3456 | if (bms_is_member(trigger->tgattr[i] - FirstLowInvalidHeapAttributeNumber, |
3457 | modifiedCols)) |
3458 | { |
3459 | modified = true; |
3460 | break; |
3461 | } |
3462 | } |
3463 | if (!modified) |
3464 | return false; |
3465 | } |
3466 | |
3467 | /* Check for WHEN clause */ |
3468 | if (trigger->tgqual) |
3469 | { |
3470 | ExprState **predicate; |
3471 | ExprContext *econtext; |
3472 | MemoryContext oldContext; |
3473 | int i; |
3474 | |
3475 | Assert(estate != NULL); |
3476 | |
3477 | /* |
3478 | * trigger is an element of relinfo->ri_TrigDesc->triggers[]; find the |
3479 | * matching element of relinfo->ri_TrigWhenExprs[] |
3480 | */ |
3481 | i = trigger - relinfo->ri_TrigDesc->triggers; |
3482 | predicate = &relinfo->ri_TrigWhenExprs[i]; |
3483 | |
3484 | /* |
3485 | * If first time through for this WHEN expression, build expression |
3486 | * nodetrees for it. Keep them in the per-query memory context so |
3487 | * they'll survive throughout the query. |
3488 | */ |
3489 | if (*predicate == NULL) |
3490 | { |
3491 | Node *tgqual; |
3492 | |
3493 | oldContext = MemoryContextSwitchTo(estate->es_query_cxt); |
3494 | tgqual = stringToNode(trigger->tgqual); |
3495 | /* Change references to OLD and NEW to INNER_VAR and OUTER_VAR */ |
3496 | ChangeVarNodes(tgqual, PRS2_OLD_VARNO, INNER_VAR, 0); |
3497 | ChangeVarNodes(tgqual, PRS2_NEW_VARNO, OUTER_VAR, 0); |
3498 | /* ExecPrepareQual wants implicit-AND form */ |
3499 | tgqual = (Node *) make_ands_implicit((Expr *) tgqual); |
3500 | *predicate = ExecPrepareQual((List *) tgqual, estate); |
3501 | MemoryContextSwitchTo(oldContext); |
3502 | } |
3503 | |
3504 | /* |
3505 | * We will use the EState's per-tuple context for evaluating WHEN |
3506 | * expressions (creating it if it's not already there). |
3507 | */ |
3508 | econtext = GetPerTupleExprContext(estate); |
3509 | |
3510 | /* |
3511 | * Finally evaluate the expression, making the old and/or new tuples |
3512 | * available as INNER_VAR/OUTER_VAR respectively. |
3513 | */ |
3514 | econtext->ecxt_innertuple = oldslot; |
3515 | econtext->ecxt_outertuple = newslot; |
3516 | if (!ExecQual(*predicate, econtext)) |
3517 | return false; |
3518 | } |
3519 | |
3520 | return true; |
3521 | } |
3522 | |
3523 | |
3524 | /* ---------- |
3525 | * After-trigger stuff |
3526 | * |
3527 | * The AfterTriggersData struct holds data about pending AFTER trigger events |
3528 | * during the current transaction tree. (BEFORE triggers are fired |
3529 | * immediately so we don't need any persistent state about them.) The struct |
3530 | * and most of its subsidiary data are kept in TopTransactionContext; however |
3531 | * some data that can be discarded sooner appears in the CurTransactionContext |
3532 | * of the relevant subtransaction. Also, the individual event records are |
3533 | * kept in a separate sub-context of TopTransactionContext. This is done |
3534 | * mainly so that it's easy to tell from a memory context dump how much space |
3535 | * is being eaten by trigger events. |
3536 | * |
3537 | * Because the list of pending events can grow large, we go to some |
3538 | * considerable effort to minimize per-event memory consumption. The event |
3539 | * records are grouped into chunks and common data for similar events in the |
3540 | * same chunk is only stored once. |
3541 | * |
3542 | * XXX We need to be able to save the per-event data in a file if it grows too |
3543 | * large. |
3544 | * ---------- |
3545 | */ |
3546 | |
3547 | /* Per-trigger SET CONSTRAINT status */ |
3548 | typedef struct SetConstraintTriggerData |
3549 | { |
3550 | Oid sct_tgoid; |
3551 | bool sct_tgisdeferred; |
3552 | } SetConstraintTriggerData; |
3553 | |
3554 | typedef struct SetConstraintTriggerData *SetConstraintTrigger; |
3555 | |
3556 | /* |
3557 | * SET CONSTRAINT intra-transaction status. |
3558 | * |
3559 | * We make this a single palloc'd object so it can be copied and freed easily. |
3560 | * |
3561 | * all_isset and all_isdeferred are used to keep track |
3562 | * of SET CONSTRAINTS ALL {DEFERRED, IMMEDIATE}. |
3563 | * |
3564 | * trigstates[] stores per-trigger tgisdeferred settings. |
3565 | */ |
3566 | typedef struct SetConstraintStateData |
3567 | { |
3568 | bool all_isset; |
3569 | bool all_isdeferred; |
3570 | int numstates; /* number of trigstates[] entries in use */ |
3571 | int numalloc; /* allocated size of trigstates[] */ |
3572 | SetConstraintTriggerData trigstates[FLEXIBLE_ARRAY_MEMBER]; |
3573 | } SetConstraintStateData; |
3574 | |
3575 | typedef SetConstraintStateData *SetConstraintState; |
3576 | |
3577 | |
3578 | /* |
3579 | * Per-trigger-event data |
3580 | * |
3581 | * The actual per-event data, AfterTriggerEventData, includes DONE/IN_PROGRESS |
3582 | * status bits and up to two tuple CTIDs. Each event record also has an |
3583 | * associated AfterTriggerSharedData that is shared across all instances of |
3584 | * similar events within a "chunk". |
3585 | * |
3586 | * For row-level triggers, we arrange not to waste storage on unneeded ctid |
3587 | * fields. Updates of regular tables use two; inserts and deletes of regular |
3588 | * tables use one; foreign tables always use zero and save the tuple(s) to a |
3589 | * tuplestore. AFTER_TRIGGER_FDW_FETCH directs AfterTriggerExecute() to |
3590 | * retrieve a fresh tuple or pair of tuples from that tuplestore, while |
3591 | * AFTER_TRIGGER_FDW_REUSE directs it to use the most-recently-retrieved |
3592 | * tuple(s). This permits storing tuples once regardless of the number of |
3593 | * row-level triggers on a foreign table. |
3594 | * |
3595 | * Note that we need triggers on foreign tables to be fired in exactly the |
3596 | * order they were queued, so that the tuples come out of the tuplestore in |
3597 | * the right order. To ensure that, we forbid deferrable (constraint) |
3598 | * triggers on foreign tables. This also ensures that such triggers do not |
3599 | * get deferred into outer trigger query levels, meaning that it's okay to |
3600 | * destroy the tuplestore at the end of the query level. |
3601 | * |
3602 | * Statement-level triggers always bear AFTER_TRIGGER_1CTID, though they |
3603 | * require no ctid field. We lack the flag bit space to neatly represent that |
3604 | * distinct case, and it seems unlikely to be worth much trouble. |
3605 | * |
3606 | * Note: ats_firing_id is initially zero and is set to something else when |
3607 | * AFTER_TRIGGER_IN_PROGRESS is set. It indicates which trigger firing |
3608 | * cycle the trigger will be fired in (or was fired in, if DONE is set). |
3609 | * Although this is mutable state, we can keep it in AfterTriggerSharedData |
3610 | * because all instances of the same type of event in a given event list will |
3611 | * be fired at the same time, if they were queued between the same firing |
3612 | * cycles. So we need only ensure that ats_firing_id is zero when attaching |
3613 | * a new event to an existing AfterTriggerSharedData record. |
3614 | */ |
3615 | typedef uint32 TriggerFlags; |
3616 | |
3617 | #define AFTER_TRIGGER_OFFSET 0x0FFFFFFF /* must be low-order bits */ |
3618 | #define AFTER_TRIGGER_DONE 0x10000000 |
3619 | #define AFTER_TRIGGER_IN_PROGRESS 0x20000000 |
3620 | /* bits describing the size and tuple sources of this event */ |
3621 | #define AFTER_TRIGGER_FDW_REUSE 0x00000000 |
3622 | #define AFTER_TRIGGER_FDW_FETCH 0x80000000 |
3623 | #define AFTER_TRIGGER_1CTID 0x40000000 |
3624 | #define AFTER_TRIGGER_2CTID 0xC0000000 |
3625 | #define AFTER_TRIGGER_TUP_BITS 0xC0000000 |
3626 | |
3627 | typedef struct AfterTriggerSharedData *AfterTriggerShared; |
3628 | |
3629 | typedef struct AfterTriggerSharedData |
3630 | { |
3631 | TriggerEvent ats_event; /* event type indicator, see trigger.h */ |
3632 | Oid ats_tgoid; /* the trigger's ID */ |
3633 | Oid ats_relid; /* the relation it's on */ |
3634 | CommandId ats_firing_id; /* ID for firing cycle */ |
3635 | struct AfterTriggersTableData *ats_table; /* transition table access */ |
3636 | } AfterTriggerSharedData; |
3637 | |
3638 | typedef struct AfterTriggerEventData *AfterTriggerEvent; |
3639 | |
3640 | typedef struct AfterTriggerEventData |
3641 | { |
3642 | TriggerFlags ate_flags; /* status bits and offset to shared data */ |
3643 | ItemPointerData ate_ctid1; /* inserted, deleted, or old updated tuple */ |
3644 | ItemPointerData ate_ctid2; /* new updated tuple */ |
3645 | } AfterTriggerEventData; |
3646 | |
3647 | /* AfterTriggerEventData, minus ate_ctid2 */ |
3648 | typedef struct AfterTriggerEventDataOneCtid |
3649 | { |
3650 | TriggerFlags ate_flags; /* status bits and offset to shared data */ |
3651 | ItemPointerData ate_ctid1; /* inserted, deleted, or old updated tuple */ |
3652 | } AfterTriggerEventDataOneCtid; |
3653 | |
3654 | /* AfterTriggerEventData, minus ate_ctid1 and ate_ctid2 */ |
3655 | typedef struct AfterTriggerEventDataZeroCtids |
3656 | { |
3657 | TriggerFlags ate_flags; /* status bits and offset to shared data */ |
3658 | } AfterTriggerEventDataZeroCtids; |
3659 | |
3660 | #define SizeofTriggerEvent(evt) \ |
3661 | (((evt)->ate_flags & AFTER_TRIGGER_TUP_BITS) == AFTER_TRIGGER_2CTID ? \ |
3662 | sizeof(AfterTriggerEventData) : \ |
3663 | ((evt)->ate_flags & AFTER_TRIGGER_TUP_BITS) == AFTER_TRIGGER_1CTID ? \ |
3664 | sizeof(AfterTriggerEventDataOneCtid) : \ |
3665 | sizeof(AfterTriggerEventDataZeroCtids)) |
3666 | |
3667 | #define GetTriggerSharedData(evt) \ |
3668 | ((AfterTriggerShared) ((char *) (evt) + ((evt)->ate_flags & AFTER_TRIGGER_OFFSET))) |
3669 | |
3670 | /* |
3671 | * To avoid palloc overhead, we keep trigger events in arrays in successively- |
3672 | * larger chunks (a slightly more sophisticated version of an expansible |
3673 | * array). The space between CHUNK_DATA_START and freeptr is occupied by |
3674 | * AfterTriggerEventData records; the space between endfree and endptr is |
3675 | * occupied by AfterTriggerSharedData records. |
3676 | */ |
3677 | typedef struct AfterTriggerEventChunk |
3678 | { |
3679 | struct AfterTriggerEventChunk *next; /* list link */ |
3680 | char *freeptr; /* start of free space in chunk */ |
3681 | char *endfree; /* end of free space in chunk */ |
3682 | char *endptr; /* end of chunk */ |
3683 | /* event data follows here */ |
3684 | } AfterTriggerEventChunk; |
3685 | |
3686 | #define CHUNK_DATA_START(cptr) ((char *) (cptr) + MAXALIGN(sizeof(AfterTriggerEventChunk))) |
3687 | |
3688 | /* A list of events */ |
3689 | typedef struct AfterTriggerEventList |
3690 | { |
3691 | AfterTriggerEventChunk *head; |
3692 | AfterTriggerEventChunk *tail; |
3693 | char *tailfree; /* freeptr of tail chunk */ |
3694 | } AfterTriggerEventList; |
3695 | |
3696 | /* Macros to help in iterating over a list of events */ |
3697 | #define for_each_chunk(cptr, evtlist) \ |
3698 | for (cptr = (evtlist).head; cptr != NULL; cptr = cptr->next) |
3699 | #define for_each_event(eptr, cptr) \ |
3700 | for (eptr = (AfterTriggerEvent) CHUNK_DATA_START(cptr); \ |
3701 | (char *) eptr < (cptr)->freeptr; \ |
3702 | eptr = (AfterTriggerEvent) (((char *) eptr) + SizeofTriggerEvent(eptr))) |
3703 | /* Use this if no special per-chunk processing is needed */ |
3704 | #define for_each_event_chunk(eptr, cptr, evtlist) \ |
3705 | for_each_chunk(cptr, evtlist) for_each_event(eptr, cptr) |
3706 | |
3707 | /* Macros for iterating from a start point that might not be list start */ |
3708 | #define for_each_chunk_from(cptr) \ |
3709 | for (; cptr != NULL; cptr = cptr->next) |
3710 | #define for_each_event_from(eptr, cptr) \ |
3711 | for (; \ |
3712 | (char *) eptr < (cptr)->freeptr; \ |
3713 | eptr = (AfterTriggerEvent) (((char *) eptr) + SizeofTriggerEvent(eptr))) |
3714 | |
3715 | |
3716 | /* |
3717 | * All per-transaction data for the AFTER TRIGGERS module. |
3718 | * |
3719 | * AfterTriggersData has the following fields: |
3720 | * |
3721 | * firing_counter is incremented for each call of afterTriggerInvokeEvents. |
3722 | * We mark firable events with the current firing cycle's ID so that we can |
3723 | * tell which ones to work on. This ensures sane behavior if a trigger |
3724 | * function chooses to do SET CONSTRAINTS: the inner SET CONSTRAINTS will |
3725 | * only fire those events that weren't already scheduled for firing. |
3726 | * |
3727 | * state keeps track of the transaction-local effects of SET CONSTRAINTS. |
3728 | * This is saved and restored across failed subtransactions. |
3729 | * |
3730 | * events is the current list of deferred events. This is global across |
3731 | * all subtransactions of the current transaction. In a subtransaction |
3732 | * abort, we know that the events added by the subtransaction are at the |
3733 | * end of the list, so it is relatively easy to discard them. The event |
3734 | * list chunks themselves are stored in event_cxt. |
3735 | * |
3736 | * query_depth is the current depth of nested AfterTriggerBeginQuery calls |
3737 | * (-1 when the stack is empty). |
3738 | * |
3739 | * query_stack[query_depth] is the per-query-level data, including these fields: |
3740 | * |
3741 | * events is a list of AFTER trigger events queued by the current query. |
3742 | * None of these are valid until the matching AfterTriggerEndQuery call |
3743 | * occurs. At that point we fire immediate-mode triggers, and append any |
3744 | * deferred events to the main events list. |
3745 | * |
3746 | * fdw_tuplestore is a tuplestore containing the foreign-table tuples |
3747 | * needed by events queued by the current query. (Note: we use just one |
3748 | * tuplestore even though more than one foreign table might be involved. |
3749 | * This is okay because tuplestores don't really care what's in the tuples |
3750 | * they store; but it's possible that someday it'd break.) |
3751 | * |
3752 | * tables is a List of AfterTriggersTableData structs for target tables |
3753 | * of the current query (see below). |
3754 | * |
3755 | * maxquerydepth is just the allocated length of query_stack. |
3756 | * |
3757 | * trans_stack holds per-subtransaction data, including these fields: |
3758 | * |
3759 | * state is NULL or a pointer to a saved copy of the SET CONSTRAINTS |
3760 | * state data. Each subtransaction level that modifies that state first |
3761 | * saves a copy, which we use to restore the state if we abort. |
3762 | * |
3763 | * events is a copy of the events head/tail pointers, |
3764 | * which we use to restore those values during subtransaction abort. |
3765 | * |
3766 | * query_depth is the subtransaction-start-time value of query_depth, |
3767 | * which we similarly use to clean up at subtransaction abort. |
3768 | * |
3769 | * firing_counter is the subtransaction-start-time value of firing_counter. |
3770 | * We use this to recognize which deferred triggers were fired (or marked |
3771 | * for firing) within an aborted subtransaction. |
3772 | * |
3773 | * We use GetCurrentTransactionNestLevel() to determine the correct array |
3774 | * index in trans_stack. maxtransdepth is the number of allocated entries in |
3775 | * trans_stack. (By not keeping our own stack pointer, we can avoid trouble |
3776 | * in cases where errors during subxact abort cause multiple invocations |
3777 | * of AfterTriggerEndSubXact() at the same nesting depth.) |
3778 | * |
3779 | * We create an AfterTriggersTableData struct for each target table of the |
3780 | * current query, and each operation mode (INSERT/UPDATE/DELETE), that has |
3781 | * either transition tables or statement-level triggers. This is used to |
3782 | * hold the relevant transition tables, as well as info tracking whether |
3783 | * we already queued the statement triggers. (We use that info to prevent |
3784 | * firing the same statement triggers more than once per statement, or really |
3785 | * once per transition table set.) These structs, along with the transition |
3786 | * table tuplestores, live in the (sub)transaction's CurTransactionContext. |
3787 | * That's sufficient lifespan because we don't allow transition tables to be |
3788 | * used by deferrable triggers, so they only need to survive until |
3789 | * AfterTriggerEndQuery. |
3790 | */ |
3791 | typedef struct AfterTriggersQueryData AfterTriggersQueryData; |
3792 | typedef struct AfterTriggersTransData AfterTriggersTransData; |
3793 | typedef struct AfterTriggersTableData AfterTriggersTableData; |
3794 | |
3795 | typedef struct AfterTriggersData |
3796 | { |
3797 | CommandId firing_counter; /* next firing ID to assign */ |
3798 | SetConstraintState state; /* the active S C state */ |
3799 | AfterTriggerEventList events; /* deferred-event list */ |
3800 | MemoryContext event_cxt; /* memory context for events, if any */ |
3801 | |
3802 | /* per-query-level data: */ |
3803 | AfterTriggersQueryData *query_stack; /* array of structs shown below */ |
3804 | int query_depth; /* current index in above array */ |
3805 | int maxquerydepth; /* allocated len of above array */ |
3806 | |
3807 | /* per-subtransaction-level data: */ |
3808 | AfterTriggersTransData *trans_stack; /* array of structs shown below */ |
3809 | int maxtransdepth; /* allocated len of above array */ |
3810 | } AfterTriggersData; |
3811 | |
3812 | struct AfterTriggersQueryData |
3813 | { |
3814 | AfterTriggerEventList events; /* events pending from this query */ |
3815 | Tuplestorestate *fdw_tuplestore; /* foreign tuples for said events */ |
3816 | List *tables; /* list of AfterTriggersTableData, see below */ |
3817 | }; |
3818 | |
3819 | struct AfterTriggersTransData |
3820 | { |
3821 | /* these fields are just for resetting at subtrans abort: */ |
3822 | SetConstraintState state; /* saved S C state, or NULL if not yet saved */ |
3823 | AfterTriggerEventList events; /* saved list pointer */ |
3824 | int query_depth; /* saved query_depth */ |
3825 | CommandId firing_counter; /* saved firing_counter */ |
3826 | }; |
3827 | |
3828 | struct AfterTriggersTableData |
3829 | { |
3830 | /* relid + cmdType form the lookup key for these structs: */ |
3831 | Oid relid; /* target table's OID */ |
3832 | CmdType cmdType; /* event type, CMD_INSERT/UPDATE/DELETE */ |
3833 | bool closed; /* true when no longer OK to add tuples */ |
3834 | bool before_trig_done; /* did we already queue BS triggers? */ |
3835 | bool after_trig_done; /* did we already queue AS triggers? */ |
3836 | AfterTriggerEventList after_trig_events; /* if so, saved list pointer */ |
3837 | Tuplestorestate *old_tuplestore; /* "old" transition table, if any */ |
3838 | Tuplestorestate *new_tuplestore; /* "new" transition table, if any */ |
3839 | TupleTableSlot *storeslot; /* for converting to tuplestore's format */ |
3840 | }; |
3841 | |
3842 | static AfterTriggersData afterTriggers; |
3843 | |
3844 | static void AfterTriggerExecute(EState *estate, |
3845 | AfterTriggerEvent event, |
3846 | ResultRelInfo *relInfo, |
3847 | TriggerDesc *trigdesc, |
3848 | FmgrInfo *finfo, |
3849 | Instrumentation *instr, |
3850 | MemoryContext per_tuple_context, |
3851 | TupleTableSlot *trig_tuple_slot1, |
3852 | TupleTableSlot *trig_tuple_slot2); |
3853 | static AfterTriggersTableData *GetAfterTriggersTableData(Oid relid, |
3854 | CmdType cmdType); |
3855 | static void AfterTriggerFreeQuery(AfterTriggersQueryData *qs); |
3856 | static SetConstraintState SetConstraintStateCreate(int numalloc); |
3857 | static SetConstraintState SetConstraintStateCopy(SetConstraintState state); |
3858 | static SetConstraintState SetConstraintStateAddItem(SetConstraintState state, |
3859 | Oid tgoid, bool tgisdeferred); |
3860 | static void cancel_prior_stmt_triggers(Oid relid, CmdType cmdType, int tgevent); |
3861 | |
3862 | |
3863 | /* |
3864 | * Get the FDW tuplestore for the current trigger query level, creating it |
3865 | * if necessary. |
3866 | */ |
3867 | static Tuplestorestate * |
3868 | GetCurrentFDWTuplestore(void) |
3869 | { |
3870 | Tuplestorestate *ret; |
3871 | |
3872 | ret = afterTriggers.query_stack[afterTriggers.query_depth].fdw_tuplestore; |
3873 | if (ret == NULL) |
3874 | { |
3875 | MemoryContext oldcxt; |
3876 | ResourceOwner saveResourceOwner; |
3877 | |
3878 | /* |
3879 | * Make the tuplestore valid until end of subtransaction. We really |
3880 | * only need it until AfterTriggerEndQuery(). |
3881 | */ |
3882 | oldcxt = MemoryContextSwitchTo(CurTransactionContext); |
3883 | saveResourceOwner = CurrentResourceOwner; |
3884 | CurrentResourceOwner = CurTransactionResourceOwner; |
3885 | |
3886 | ret = tuplestore_begin_heap(false, false, work_mem); |
3887 | |
3888 | CurrentResourceOwner = saveResourceOwner; |
3889 | MemoryContextSwitchTo(oldcxt); |
3890 | |
3891 | afterTriggers.query_stack[afterTriggers.query_depth].fdw_tuplestore = ret; |
3892 | } |
3893 | |
3894 | return ret; |
3895 | } |
3896 | |
3897 | /* ---------- |
3898 | * afterTriggerCheckState() |
3899 | * |
3900 | * Returns true if the trigger event is actually in state DEFERRED. |
3901 | * ---------- |
3902 | */ |
3903 | static bool |
3904 | afterTriggerCheckState(AfterTriggerShared evtshared) |
3905 | { |
3906 | Oid tgoid = evtshared->ats_tgoid; |
3907 | SetConstraintState state = afterTriggers.state; |
3908 | int i; |
3909 | |
3910 | /* |
3911 | * For not-deferrable triggers (i.e. normal AFTER ROW triggers and |
3912 | * constraints declared NOT DEFERRABLE), the state is always false. |
3913 | */ |
3914 | if ((evtshared->ats_event & AFTER_TRIGGER_DEFERRABLE) == 0) |
3915 | return false; |
3916 | |
3917 | /* |
3918 | * If constraint state exists, SET CONSTRAINTS might have been executed |
3919 | * either for this trigger or for all triggers. |
3920 | */ |
3921 | if (state != NULL) |
3922 | { |
3923 | /* Check for SET CONSTRAINTS for this specific trigger. */ |
3924 | for (i = 0; i < state->numstates; i++) |
3925 | { |
3926 | if (state->trigstates[i].sct_tgoid == tgoid) |
3927 | return state->trigstates[i].sct_tgisdeferred; |
3928 | } |
3929 | |
3930 | /* Check for SET CONSTRAINTS ALL. */ |
3931 | if (state->all_isset) |
3932 | return state->all_isdeferred; |
3933 | } |
3934 | |
3935 | /* |
3936 | * Otherwise return the default state for the trigger. |
3937 | */ |
3938 | return ((evtshared->ats_event & AFTER_TRIGGER_INITDEFERRED) != 0); |
3939 | } |
3940 | |
3941 | |
3942 | /* ---------- |
3943 | * afterTriggerAddEvent() |
3944 | * |
3945 | * Add a new trigger event to the specified queue. |
3946 | * The passed-in event data is copied. |
3947 | * ---------- |
3948 | */ |
3949 | static void |
3950 | afterTriggerAddEvent(AfterTriggerEventList *events, |
3951 | AfterTriggerEvent event, AfterTriggerShared evtshared) |
3952 | { |
3953 | Size eventsize = SizeofTriggerEvent(event); |
3954 | Size needed = eventsize + sizeof(AfterTriggerSharedData); |
3955 | AfterTriggerEventChunk *chunk; |
3956 | AfterTriggerShared newshared; |
3957 | AfterTriggerEvent newevent; |
3958 | |
3959 | /* |
3960 | * If empty list or not enough room in the tail chunk, make a new chunk. |
3961 | * We assume here that a new shared record will always be needed. |
3962 | */ |
3963 | chunk = events->tail; |
3964 | if (chunk == NULL || |
3965 | chunk->endfree - chunk->freeptr < needed) |
3966 | { |
3967 | Size chunksize; |
3968 | |
3969 | /* Create event context if we didn't already */ |
3970 | if (afterTriggers.event_cxt == NULL) |
3971 | afterTriggers.event_cxt = |
3972 | AllocSetContextCreate(TopTransactionContext, |
3973 | "AfterTriggerEvents" , |
3974 | ALLOCSET_DEFAULT_SIZES); |
3975 | |
3976 | /* |
3977 | * Chunk size starts at 1KB and is allowed to increase up to 1MB. |
3978 | * These numbers are fairly arbitrary, though there is a hard limit at |
3979 | * AFTER_TRIGGER_OFFSET; else we couldn't link event records to their |
3980 | * shared records using the available space in ate_flags. Another |
3981 | * constraint is that if the chunk size gets too huge, the search loop |
3982 | * below would get slow given a (not too common) usage pattern with |
3983 | * many distinct event types in a chunk. Therefore, we double the |
3984 | * preceding chunk size only if there weren't too many shared records |
3985 | * in the preceding chunk; otherwise we halve it. This gives us some |
3986 | * ability to adapt to the actual usage pattern of the current query |
3987 | * while still having large chunk sizes in typical usage. All chunk |
3988 | * sizes used should be MAXALIGN multiples, to ensure that the shared |
3989 | * records will be aligned safely. |
3990 | */ |
3991 | #define MIN_CHUNK_SIZE 1024 |
3992 | #define MAX_CHUNK_SIZE (1024*1024) |
3993 | |
3994 | #if MAX_CHUNK_SIZE > (AFTER_TRIGGER_OFFSET+1) |
3995 | #error MAX_CHUNK_SIZE must not exceed AFTER_TRIGGER_OFFSET |
3996 | #endif |
3997 | |
3998 | if (chunk == NULL) |
3999 | chunksize = MIN_CHUNK_SIZE; |
4000 | else |
4001 | { |
4002 | /* preceding chunk size... */ |
4003 | chunksize = chunk->endptr - (char *) chunk; |
4004 | /* check number of shared records in preceding chunk */ |
4005 | if ((chunk->endptr - chunk->endfree) <= |
4006 | (100 * sizeof(AfterTriggerSharedData))) |
4007 | chunksize *= 2; /* okay, double it */ |
4008 | else |
4009 | chunksize /= 2; /* too many shared records */ |
4010 | chunksize = Min(chunksize, MAX_CHUNK_SIZE); |
4011 | } |
4012 | chunk = MemoryContextAlloc(afterTriggers.event_cxt, chunksize); |
4013 | chunk->next = NULL; |
4014 | chunk->freeptr = CHUNK_DATA_START(chunk); |
4015 | chunk->endptr = chunk->endfree = (char *) chunk + chunksize; |
4016 | Assert(chunk->endfree - chunk->freeptr >= needed); |
4017 | |
4018 | if (events->head == NULL) |
4019 | events->head = chunk; |
4020 | else |
4021 | events->tail->next = chunk; |
4022 | events->tail = chunk; |
4023 | /* events->tailfree is now out of sync, but we'll fix it below */ |
4024 | } |
4025 | |
4026 | /* |
4027 | * Try to locate a matching shared-data record already in the chunk. If |
4028 | * none, make a new one. |
4029 | */ |
4030 | for (newshared = ((AfterTriggerShared) chunk->endptr) - 1; |
4031 | (char *) newshared >= chunk->endfree; |
4032 | newshared--) |
4033 | { |
4034 | if (newshared->ats_tgoid == evtshared->ats_tgoid && |
4035 | newshared->ats_relid == evtshared->ats_relid && |
4036 | newshared->ats_event == evtshared->ats_event && |
4037 | newshared->ats_table == evtshared->ats_table && |
4038 | newshared->ats_firing_id == 0) |
4039 | break; |
4040 | } |
4041 | if ((char *) newshared < chunk->endfree) |
4042 | { |
4043 | *newshared = *evtshared; |
4044 | newshared->ats_firing_id = 0; /* just to be sure */ |
4045 | chunk->endfree = (char *) newshared; |
4046 | } |
4047 | |
4048 | /* Insert the data */ |
4049 | newevent = (AfterTriggerEvent) chunk->freeptr; |
4050 | memcpy(newevent, event, eventsize); |
4051 | /* ... and link the new event to its shared record */ |
4052 | newevent->ate_flags &= ~AFTER_TRIGGER_OFFSET; |
4053 | newevent->ate_flags |= (char *) newshared - (char *) newevent; |
4054 | |
4055 | chunk->freeptr += eventsize; |
4056 | events->tailfree = chunk->freeptr; |
4057 | } |
4058 | |
4059 | /* ---------- |
4060 | * afterTriggerFreeEventList() |
4061 | * |
4062 | * Free all the event storage in the given list. |
4063 | * ---------- |
4064 | */ |
4065 | static void |
4066 | afterTriggerFreeEventList(AfterTriggerEventList *events) |
4067 | { |
4068 | AfterTriggerEventChunk *chunk; |
4069 | |
4070 | while ((chunk = events->head) != NULL) |
4071 | { |
4072 | events->head = chunk->next; |
4073 | pfree(chunk); |
4074 | } |
4075 | events->tail = NULL; |
4076 | events->tailfree = NULL; |
4077 | } |
4078 | |
4079 | /* ---------- |
4080 | * afterTriggerRestoreEventList() |
4081 | * |
4082 | * Restore an event list to its prior length, removing all the events |
4083 | * added since it had the value old_events. |
4084 | * ---------- |
4085 | */ |
4086 | static void |
4087 | afterTriggerRestoreEventList(AfterTriggerEventList *events, |
4088 | const AfterTriggerEventList *old_events) |
4089 | { |
4090 | AfterTriggerEventChunk *chunk; |
4091 | AfterTriggerEventChunk *next_chunk; |
4092 | |
4093 | if (old_events->tail == NULL) |
4094 | { |
4095 | /* restoring to a completely empty state, so free everything */ |
4096 | afterTriggerFreeEventList(events); |
4097 | } |
4098 | else |
4099 | { |
4100 | *events = *old_events; |
4101 | /* free any chunks after the last one we want to keep */ |
4102 | for (chunk = events->tail->next; chunk != NULL; chunk = next_chunk) |
4103 | { |
4104 | next_chunk = chunk->next; |
4105 | pfree(chunk); |
4106 | } |
4107 | /* and clean up the tail chunk to be the right length */ |
4108 | events->tail->next = NULL; |
4109 | events->tail->freeptr = events->tailfree; |
4110 | |
4111 | /* |
4112 | * We don't make any effort to remove now-unused shared data records. |
4113 | * They might still be useful, anyway. |
4114 | */ |
4115 | } |
4116 | } |
4117 | |
4118 | /* ---------- |
4119 | * afterTriggerDeleteHeadEventChunk() |
4120 | * |
4121 | * Remove the first chunk of events from the query level's event list. |
4122 | * Keep any event list pointers elsewhere in the query level's data |
4123 | * structures in sync. |
4124 | * ---------- |
4125 | */ |
4126 | static void |
4127 | afterTriggerDeleteHeadEventChunk(AfterTriggersQueryData *qs) |
4128 | { |
4129 | AfterTriggerEventChunk *target = qs->events.head; |
4130 | ListCell *lc; |
4131 | |
4132 | Assert(target && target->next); |
4133 | |
4134 | /* |
4135 | * First, update any pointers in the per-table data, so that they won't be |
4136 | * dangling. Resetting obsoleted pointers to NULL will make |
4137 | * cancel_prior_stmt_triggers start from the list head, which is fine. |
4138 | */ |
4139 | foreach(lc, qs->tables) |
4140 | { |
4141 | AfterTriggersTableData *table = (AfterTriggersTableData *) lfirst(lc); |
4142 | |
4143 | if (table->after_trig_done && |
4144 | table->after_trig_events.tail == target) |
4145 | { |
4146 | table->after_trig_events.head = NULL; |
4147 | table->after_trig_events.tail = NULL; |
4148 | table->after_trig_events.tailfree = NULL; |
4149 | } |
4150 | } |
4151 | |
4152 | /* Now we can flush the head chunk */ |
4153 | qs->events.head = target->next; |
4154 | pfree(target); |
4155 | } |
4156 | |
4157 | |
4158 | /* ---------- |
4159 | * AfterTriggerExecute() |
4160 | * |
4161 | * Fetch the required tuples back from the heap and fire one |
4162 | * single trigger function. |
4163 | * |
4164 | * Frequently, this will be fired many times in a row for triggers of |
4165 | * a single relation. Therefore, we cache the open relation and provide |
4166 | * fmgr lookup cache space at the caller level. (For triggers fired at |
4167 | * the end of a query, we can even piggyback on the executor's state.) |
4168 | * |
4169 | * event: event currently being fired. |
4170 | * rel: open relation for event. |
4171 | * trigdesc: working copy of rel's trigger info. |
4172 | * finfo: array of fmgr lookup cache entries (one per trigger in trigdesc). |
4173 | * instr: array of EXPLAIN ANALYZE instrumentation nodes (one per trigger), |
4174 | * or NULL if no instrumentation is wanted. |
4175 | * per_tuple_context: memory context to call trigger function in. |
4176 | * trig_tuple_slot1: scratch slot for tg_trigtuple (foreign tables only) |
4177 | * trig_tuple_slot2: scratch slot for tg_newtuple (foreign tables only) |
4178 | * ---------- |
4179 | */ |
4180 | static void |
4181 | AfterTriggerExecute(EState *estate, |
4182 | AfterTriggerEvent event, |
4183 | ResultRelInfo *relInfo, |
4184 | TriggerDesc *trigdesc, |
4185 | FmgrInfo *finfo, Instrumentation *instr, |
4186 | MemoryContext per_tuple_context, |
4187 | TupleTableSlot *trig_tuple_slot1, |
4188 | TupleTableSlot *trig_tuple_slot2) |
4189 | { |
4190 | Relation rel = relInfo->ri_RelationDesc; |
4191 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
4192 | Oid tgoid = evtshared->ats_tgoid; |
4193 | TriggerData LocTriggerData; |
4194 | HeapTuple rettuple; |
4195 | int tgindx; |
4196 | bool should_free_trig = false; |
4197 | bool should_free_new = false; |
4198 | |
4199 | /* |
4200 | * Locate trigger in trigdesc. |
4201 | */ |
4202 | LocTriggerData.tg_trigger = NULL; |
4203 | LocTriggerData.tg_trigslot = NULL; |
4204 | LocTriggerData.tg_newslot = NULL; |
4205 | |
4206 | for (tgindx = 0; tgindx < trigdesc->numtriggers; tgindx++) |
4207 | { |
4208 | if (trigdesc->triggers[tgindx].tgoid == tgoid) |
4209 | { |
4210 | LocTriggerData.tg_trigger = &(trigdesc->triggers[tgindx]); |
4211 | break; |
4212 | } |
4213 | } |
4214 | if (LocTriggerData.tg_trigger == NULL) |
4215 | elog(ERROR, "could not find trigger %u" , tgoid); |
4216 | |
4217 | /* |
4218 | * If doing EXPLAIN ANALYZE, start charging time to this trigger. We want |
4219 | * to include time spent re-fetching tuples in the trigger cost. |
4220 | */ |
4221 | if (instr) |
4222 | InstrStartNode(instr + tgindx); |
4223 | |
4224 | /* |
4225 | * Fetch the required tuple(s). |
4226 | */ |
4227 | switch (event->ate_flags & AFTER_TRIGGER_TUP_BITS) |
4228 | { |
4229 | case AFTER_TRIGGER_FDW_FETCH: |
4230 | { |
4231 | Tuplestorestate *fdw_tuplestore = GetCurrentFDWTuplestore(); |
4232 | |
4233 | if (!tuplestore_gettupleslot(fdw_tuplestore, true, false, |
4234 | trig_tuple_slot1)) |
4235 | elog(ERROR, "failed to fetch tuple1 for AFTER trigger" ); |
4236 | |
4237 | if ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) == |
4238 | TRIGGER_EVENT_UPDATE && |
4239 | !tuplestore_gettupleslot(fdw_tuplestore, true, false, |
4240 | trig_tuple_slot2)) |
4241 | elog(ERROR, "failed to fetch tuple2 for AFTER trigger" ); |
4242 | } |
4243 | /* fall through */ |
4244 | case AFTER_TRIGGER_FDW_REUSE: |
4245 | |
4246 | /* |
4247 | * Store tuple in the slot so that tg_trigtuple does not reference |
4248 | * tuplestore memory. (It is formally possible for the trigger |
4249 | * function to queue trigger events that add to the same |
4250 | * tuplestore, which can push other tuples out of memory.) The |
4251 | * distinction is academic, because we start with a minimal tuple |
4252 | * that is stored as a heap tuple, constructed in different memory |
4253 | * context, in the slot anyway. |
4254 | */ |
4255 | LocTriggerData.tg_trigslot = trig_tuple_slot1; |
4256 | LocTriggerData.tg_trigtuple = |
4257 | ExecFetchSlotHeapTuple(trig_tuple_slot1, true, &should_free_trig); |
4258 | |
4259 | LocTriggerData.tg_newslot = trig_tuple_slot2; |
4260 | LocTriggerData.tg_newtuple = |
4261 | ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) == |
4262 | TRIGGER_EVENT_UPDATE) ? |
4263 | ExecFetchSlotHeapTuple(trig_tuple_slot2, true, &should_free_new) : NULL; |
4264 | |
4265 | break; |
4266 | |
4267 | default: |
4268 | if (ItemPointerIsValid(&(event->ate_ctid1))) |
4269 | { |
4270 | LocTriggerData.tg_trigslot = ExecGetTriggerOldSlot(estate, relInfo); |
4271 | |
4272 | if (!table_tuple_fetch_row_version(rel, &(event->ate_ctid1), |
4273 | SnapshotAny, |
4274 | LocTriggerData.tg_trigslot)) |
4275 | elog(ERROR, "failed to fetch tuple1 for AFTER trigger" ); |
4276 | LocTriggerData.tg_trigtuple = |
4277 | ExecFetchSlotHeapTuple(LocTriggerData.tg_trigslot, false, &should_free_trig); |
4278 | } |
4279 | else |
4280 | { |
4281 | LocTriggerData.tg_trigtuple = NULL; |
4282 | } |
4283 | |
4284 | /* don't touch ctid2 if not there */ |
4285 | if ((event->ate_flags & AFTER_TRIGGER_TUP_BITS) == |
4286 | AFTER_TRIGGER_2CTID && |
4287 | ItemPointerIsValid(&(event->ate_ctid2))) |
4288 | { |
4289 | LocTriggerData.tg_newslot = ExecGetTriggerNewSlot(estate, relInfo); |
4290 | |
4291 | if (!table_tuple_fetch_row_version(rel, &(event->ate_ctid2), |
4292 | SnapshotAny, |
4293 | LocTriggerData.tg_newslot)) |
4294 | elog(ERROR, "failed to fetch tuple2 for AFTER trigger" ); |
4295 | LocTriggerData.tg_newtuple = |
4296 | ExecFetchSlotHeapTuple(LocTriggerData.tg_newslot, false, &should_free_new); |
4297 | } |
4298 | else |
4299 | { |
4300 | LocTriggerData.tg_newtuple = NULL; |
4301 | } |
4302 | } |
4303 | |
4304 | /* |
4305 | * Set up the tuplestore information to let the trigger have access to |
4306 | * transition tables. When we first make a transition table available to |
4307 | * a trigger, mark it "closed" so that it cannot change anymore. If any |
4308 | * additional events of the same type get queued in the current trigger |
4309 | * query level, they'll go into new transition tables. |
4310 | */ |
4311 | LocTriggerData.tg_oldtable = LocTriggerData.tg_newtable = NULL; |
4312 | if (evtshared->ats_table) |
4313 | { |
4314 | if (LocTriggerData.tg_trigger->tgoldtable) |
4315 | { |
4316 | LocTriggerData.tg_oldtable = evtshared->ats_table->old_tuplestore; |
4317 | evtshared->ats_table->closed = true; |
4318 | } |
4319 | |
4320 | if (LocTriggerData.tg_trigger->tgnewtable) |
4321 | { |
4322 | LocTriggerData.tg_newtable = evtshared->ats_table->new_tuplestore; |
4323 | evtshared->ats_table->closed = true; |
4324 | } |
4325 | } |
4326 | |
4327 | /* |
4328 | * Setup the remaining trigger information |
4329 | */ |
4330 | LocTriggerData.type = T_TriggerData; |
4331 | LocTriggerData.tg_event = |
4332 | evtshared->ats_event & (TRIGGER_EVENT_OPMASK | TRIGGER_EVENT_ROW); |
4333 | LocTriggerData.tg_relation = rel; |
4334 | |
4335 | MemoryContextReset(per_tuple_context); |
4336 | |
4337 | /* |
4338 | * Call the trigger and throw away any possibly returned updated tuple. |
4339 | * (Don't let ExecCallTriggerFunc measure EXPLAIN time.) |
4340 | */ |
4341 | rettuple = ExecCallTriggerFunc(&LocTriggerData, |
4342 | tgindx, |
4343 | finfo, |
4344 | NULL, |
4345 | per_tuple_context); |
4346 | if (rettuple != NULL && |
4347 | rettuple != LocTriggerData.tg_trigtuple && |
4348 | rettuple != LocTriggerData.tg_newtuple) |
4349 | heap_freetuple(rettuple); |
4350 | |
4351 | /* |
4352 | * Release resources |
4353 | */ |
4354 | if (should_free_trig) |
4355 | heap_freetuple(LocTriggerData.tg_trigtuple); |
4356 | if (should_free_new) |
4357 | heap_freetuple(LocTriggerData.tg_newtuple); |
4358 | |
4359 | if (LocTriggerData.tg_trigslot) |
4360 | ExecClearTuple(LocTriggerData.tg_trigslot); |
4361 | if (LocTriggerData.tg_newslot) |
4362 | ExecClearTuple(LocTriggerData.tg_newslot); |
4363 | |
4364 | /* |
4365 | * If doing EXPLAIN ANALYZE, stop charging time to this trigger, and count |
4366 | * one "tuple returned" (really the number of firings). |
4367 | */ |
4368 | if (instr) |
4369 | InstrStopNode(instr + tgindx, 1); |
4370 | } |
4371 | |
4372 | |
4373 | /* |
4374 | * afterTriggerMarkEvents() |
4375 | * |
4376 | * Scan the given event list for not yet invoked events. Mark the ones |
4377 | * that can be invoked now with the current firing ID. |
4378 | * |
4379 | * If move_list isn't NULL, events that are not to be invoked now are |
4380 | * transferred to move_list. |
4381 | * |
4382 | * When immediate_only is true, do not invoke currently-deferred triggers. |
4383 | * (This will be false only at main transaction exit.) |
4384 | * |
4385 | * Returns true if any invokable events were found. |
4386 | */ |
4387 | static bool |
4388 | afterTriggerMarkEvents(AfterTriggerEventList *events, |
4389 | AfterTriggerEventList *move_list, |
4390 | bool immediate_only) |
4391 | { |
4392 | bool found = false; |
4393 | AfterTriggerEvent event; |
4394 | AfterTriggerEventChunk *chunk; |
4395 | |
4396 | for_each_event_chunk(event, chunk, *events) |
4397 | { |
4398 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
4399 | bool defer_it = false; |
4400 | |
4401 | if (!(event->ate_flags & |
4402 | (AFTER_TRIGGER_DONE | AFTER_TRIGGER_IN_PROGRESS))) |
4403 | { |
4404 | /* |
4405 | * This trigger hasn't been called or scheduled yet. Check if we |
4406 | * should call it now. |
4407 | */ |
4408 | if (immediate_only && afterTriggerCheckState(evtshared)) |
4409 | { |
4410 | defer_it = true; |
4411 | } |
4412 | else |
4413 | { |
4414 | /* |
4415 | * Mark it as to be fired in this firing cycle. |
4416 | */ |
4417 | evtshared->ats_firing_id = afterTriggers.firing_counter; |
4418 | event->ate_flags |= AFTER_TRIGGER_IN_PROGRESS; |
4419 | found = true; |
4420 | } |
4421 | } |
4422 | |
4423 | /* |
4424 | * If it's deferred, move it to move_list, if requested. |
4425 | */ |
4426 | if (defer_it && move_list != NULL) |
4427 | { |
4428 | /* add it to move_list */ |
4429 | afterTriggerAddEvent(move_list, event, evtshared); |
4430 | /* mark original copy "done" so we don't do it again */ |
4431 | event->ate_flags |= AFTER_TRIGGER_DONE; |
4432 | } |
4433 | } |
4434 | |
4435 | return found; |
4436 | } |
4437 | |
4438 | /* |
4439 | * afterTriggerInvokeEvents() |
4440 | * |
4441 | * Scan the given event list for events that are marked as to be fired |
4442 | * in the current firing cycle, and fire them. |
4443 | * |
4444 | * If estate isn't NULL, we use its result relation info to avoid repeated |
4445 | * openings and closing of trigger target relations. If it is NULL, we |
4446 | * make one locally to cache the info in case there are multiple trigger |
4447 | * events per rel. |
4448 | * |
4449 | * When delete_ok is true, it's safe to delete fully-processed events. |
4450 | * (We are not very tense about that: we simply reset a chunk to be empty |
4451 | * if all its events got fired. The objective here is just to avoid useless |
4452 | * rescanning of events when a trigger queues new events during transaction |
4453 | * end, so it's not necessary to worry much about the case where only |
4454 | * some events are fired.) |
4455 | * |
4456 | * Returns true if no unfired events remain in the list (this allows us |
4457 | * to avoid repeating afterTriggerMarkEvents). |
4458 | */ |
4459 | static bool |
4460 | afterTriggerInvokeEvents(AfterTriggerEventList *events, |
4461 | CommandId firing_id, |
4462 | EState *estate, |
4463 | bool delete_ok) |
4464 | { |
4465 | bool all_fired = true; |
4466 | AfterTriggerEventChunk *chunk; |
4467 | MemoryContext per_tuple_context; |
4468 | bool local_estate = false; |
4469 | ResultRelInfo *rInfo = NULL; |
4470 | Relation rel = NULL; |
4471 | TriggerDesc *trigdesc = NULL; |
4472 | FmgrInfo *finfo = NULL; |
4473 | Instrumentation *instr = NULL; |
4474 | TupleTableSlot *slot1 = NULL, |
4475 | *slot2 = NULL; |
4476 | |
4477 | /* Make a local EState if need be */ |
4478 | if (estate == NULL) |
4479 | { |
4480 | estate = CreateExecutorState(); |
4481 | local_estate = true; |
4482 | } |
4483 | |
4484 | /* Make a per-tuple memory context for trigger function calls */ |
4485 | per_tuple_context = |
4486 | AllocSetContextCreate(CurrentMemoryContext, |
4487 | "AfterTriggerTupleContext" , |
4488 | ALLOCSET_DEFAULT_SIZES); |
4489 | |
4490 | for_each_chunk(chunk, *events) |
4491 | { |
4492 | AfterTriggerEvent event; |
4493 | bool all_fired_in_chunk = true; |
4494 | |
4495 | for_each_event(event, chunk) |
4496 | { |
4497 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
4498 | |
4499 | /* |
4500 | * Is it one for me to fire? |
4501 | */ |
4502 | if ((event->ate_flags & AFTER_TRIGGER_IN_PROGRESS) && |
4503 | evtshared->ats_firing_id == firing_id) |
4504 | { |
4505 | /* |
4506 | * So let's fire it... but first, find the correct relation if |
4507 | * this is not the same relation as before. |
4508 | */ |
4509 | if (rel == NULL || RelationGetRelid(rel) != evtshared->ats_relid) |
4510 | { |
4511 | rInfo = ExecGetTriggerResultRel(estate, evtshared->ats_relid); |
4512 | rel = rInfo->ri_RelationDesc; |
4513 | trigdesc = rInfo->ri_TrigDesc; |
4514 | finfo = rInfo->ri_TrigFunctions; |
4515 | instr = rInfo->ri_TrigInstrument; |
4516 | if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE) |
4517 | { |
4518 | if (slot1 != NULL) |
4519 | { |
4520 | ExecDropSingleTupleTableSlot(slot1); |
4521 | ExecDropSingleTupleTableSlot(slot2); |
4522 | } |
4523 | slot1 = MakeSingleTupleTableSlot(rel->rd_att, |
4524 | &TTSOpsMinimalTuple); |
4525 | slot2 = MakeSingleTupleTableSlot(rel->rd_att, |
4526 | &TTSOpsMinimalTuple); |
4527 | } |
4528 | if (trigdesc == NULL) /* should not happen */ |
4529 | elog(ERROR, "relation %u has no triggers" , |
4530 | evtshared->ats_relid); |
4531 | } |
4532 | |
4533 | /* |
4534 | * Fire it. Note that the AFTER_TRIGGER_IN_PROGRESS flag is |
4535 | * still set, so recursive examinations of the event list |
4536 | * won't try to re-fire it. |
4537 | */ |
4538 | AfterTriggerExecute(estate, event, rInfo, trigdesc, finfo, instr, |
4539 | per_tuple_context, slot1, slot2); |
4540 | |
4541 | /* |
4542 | * Mark the event as done. |
4543 | */ |
4544 | event->ate_flags &= ~AFTER_TRIGGER_IN_PROGRESS; |
4545 | event->ate_flags |= AFTER_TRIGGER_DONE; |
4546 | } |
4547 | else if (!(event->ate_flags & AFTER_TRIGGER_DONE)) |
4548 | { |
4549 | /* something remains to be done */ |
4550 | all_fired = all_fired_in_chunk = false; |
4551 | } |
4552 | } |
4553 | |
4554 | /* Clear the chunk if delete_ok and nothing left of interest */ |
4555 | if (delete_ok && all_fired_in_chunk) |
4556 | { |
4557 | chunk->freeptr = CHUNK_DATA_START(chunk); |
4558 | chunk->endfree = chunk->endptr; |
4559 | |
4560 | /* |
4561 | * If it's last chunk, must sync event list's tailfree too. Note |
4562 | * that delete_ok must NOT be passed as true if there could be |
4563 | * additional AfterTriggerEventList values pointing at this event |
4564 | * list, since we'd fail to fix their copies of tailfree. |
4565 | */ |
4566 | if (chunk == events->tail) |
4567 | events->tailfree = chunk->freeptr; |
4568 | } |
4569 | } |
4570 | if (slot1 != NULL) |
4571 | { |
4572 | ExecDropSingleTupleTableSlot(slot1); |
4573 | ExecDropSingleTupleTableSlot(slot2); |
4574 | } |
4575 | |
4576 | /* Release working resources */ |
4577 | MemoryContextDelete(per_tuple_context); |
4578 | |
4579 | if (local_estate) |
4580 | { |
4581 | ExecCleanUpTriggerState(estate); |
4582 | ExecResetTupleTable(estate->es_tupleTable, false); |
4583 | FreeExecutorState(estate); |
4584 | } |
4585 | |
4586 | return all_fired; |
4587 | } |
4588 | |
4589 | |
4590 | /* |
4591 | * GetAfterTriggersTableData |
4592 | * |
4593 | * Find or create an AfterTriggersTableData struct for the specified |
4594 | * trigger event (relation + operation type). Ignore existing structs |
4595 | * marked "closed"; we don't want to put any additional tuples into them, |
4596 | * nor change their stmt-triggers-fired state. |
4597 | * |
4598 | * Note: the AfterTriggersTableData list is allocated in the current |
4599 | * (sub)transaction's CurTransactionContext. This is OK because |
4600 | * we don't need it to live past AfterTriggerEndQuery. |
4601 | */ |
4602 | static AfterTriggersTableData * |
4603 | GetAfterTriggersTableData(Oid relid, CmdType cmdType) |
4604 | { |
4605 | AfterTriggersTableData *table; |
4606 | AfterTriggersQueryData *qs; |
4607 | MemoryContext oldcxt; |
4608 | ListCell *lc; |
4609 | |
4610 | /* Caller should have ensured query_depth is OK. */ |
4611 | Assert(afterTriggers.query_depth >= 0 && |
4612 | afterTriggers.query_depth < afterTriggers.maxquerydepth); |
4613 | qs = &afterTriggers.query_stack[afterTriggers.query_depth]; |
4614 | |
4615 | foreach(lc, qs->tables) |
4616 | { |
4617 | table = (AfterTriggersTableData *) lfirst(lc); |
4618 | if (table->relid == relid && table->cmdType == cmdType && |
4619 | !table->closed) |
4620 | return table; |
4621 | } |
4622 | |
4623 | oldcxt = MemoryContextSwitchTo(CurTransactionContext); |
4624 | |
4625 | table = (AfterTriggersTableData *) palloc0(sizeof(AfterTriggersTableData)); |
4626 | table->relid = relid; |
4627 | table->cmdType = cmdType; |
4628 | qs->tables = lappend(qs->tables, table); |
4629 | |
4630 | MemoryContextSwitchTo(oldcxt); |
4631 | |
4632 | return table; |
4633 | } |
4634 | |
4635 | |
4636 | /* |
4637 | * MakeTransitionCaptureState |
4638 | * |
4639 | * Make a TransitionCaptureState object for the given TriggerDesc, target |
4640 | * relation, and operation type. The TCS object holds all the state needed |
4641 | * to decide whether to capture tuples in transition tables. |
4642 | * |
4643 | * If there are no triggers in 'trigdesc' that request relevant transition |
4644 | * tables, then return NULL. |
4645 | * |
4646 | * The resulting object can be passed to the ExecAR* functions. The caller |
4647 | * should set tcs_map or tcs_original_insert_tuple as appropriate when dealing |
4648 | * with child tables. |
4649 | * |
4650 | * Note that we copy the flags from a parent table into this struct (rather |
4651 | * than subsequently using the relation's TriggerDesc directly) so that we can |
4652 | * use it to control collection of transition tuples from child tables. |
4653 | * |
4654 | * Per SQL spec, all operations of the same kind (INSERT/UPDATE/DELETE) |
4655 | * on the same table during one query should share one transition table. |
4656 | * Therefore, the Tuplestores are owned by an AfterTriggersTableData struct |
4657 | * looked up using the table OID + CmdType, and are merely referenced by |
4658 | * the TransitionCaptureState objects we hand out to callers. |
4659 | */ |
4660 | TransitionCaptureState * |
4661 | MakeTransitionCaptureState(TriggerDesc *trigdesc, Oid relid, CmdType cmdType) |
4662 | { |
4663 | TransitionCaptureState *state; |
4664 | bool need_old, |
4665 | need_new; |
4666 | AfterTriggersTableData *table; |
4667 | MemoryContext oldcxt; |
4668 | ResourceOwner saveResourceOwner; |
4669 | |
4670 | if (trigdesc == NULL) |
4671 | return NULL; |
4672 | |
4673 | /* Detect which table(s) we need. */ |
4674 | switch (cmdType) |
4675 | { |
4676 | case CMD_INSERT: |
4677 | need_old = false; |
4678 | need_new = trigdesc->trig_insert_new_table; |
4679 | break; |
4680 | case CMD_UPDATE: |
4681 | need_old = trigdesc->trig_update_old_table; |
4682 | need_new = trigdesc->trig_update_new_table; |
4683 | break; |
4684 | case CMD_DELETE: |
4685 | need_old = trigdesc->trig_delete_old_table; |
4686 | need_new = false; |
4687 | break; |
4688 | default: |
4689 | elog(ERROR, "unexpected CmdType: %d" , (int) cmdType); |
4690 | need_old = need_new = false; /* keep compiler quiet */ |
4691 | break; |
4692 | } |
4693 | if (!need_old && !need_new) |
4694 | return NULL; |
4695 | |
4696 | /* Check state, like AfterTriggerSaveEvent. */ |
4697 | if (afterTriggers.query_depth < 0) |
4698 | elog(ERROR, "MakeTransitionCaptureState() called outside of query" ); |
4699 | |
4700 | /* Be sure we have enough space to record events at this query depth. */ |
4701 | if (afterTriggers.query_depth >= afterTriggers.maxquerydepth) |
4702 | AfterTriggerEnlargeQueryState(); |
4703 | |
4704 | /* |
4705 | * Find or create an AfterTriggersTableData struct to hold the |
4706 | * tuplestore(s). If there's a matching struct but it's marked closed, |
4707 | * ignore it; we need a newer one. |
4708 | * |
4709 | * Note: the AfterTriggersTableData list, as well as the tuplestores, are |
4710 | * allocated in the current (sub)transaction's CurTransactionContext, and |
4711 | * the tuplestores are managed by the (sub)transaction's resource owner. |
4712 | * This is sufficient lifespan because we do not allow triggers using |
4713 | * transition tables to be deferrable; they will be fired during |
4714 | * AfterTriggerEndQuery, after which it's okay to delete the data. |
4715 | */ |
4716 | table = GetAfterTriggersTableData(relid, cmdType); |
4717 | |
4718 | /* Now create required tuplestore(s), if we don't have them already. */ |
4719 | oldcxt = MemoryContextSwitchTo(CurTransactionContext); |
4720 | saveResourceOwner = CurrentResourceOwner; |
4721 | CurrentResourceOwner = CurTransactionResourceOwner; |
4722 | |
4723 | if (need_old && table->old_tuplestore == NULL) |
4724 | table->old_tuplestore = tuplestore_begin_heap(false, false, work_mem); |
4725 | if (need_new && table->new_tuplestore == NULL) |
4726 | table->new_tuplestore = tuplestore_begin_heap(false, false, work_mem); |
4727 | |
4728 | CurrentResourceOwner = saveResourceOwner; |
4729 | MemoryContextSwitchTo(oldcxt); |
4730 | |
4731 | /* Now build the TransitionCaptureState struct, in caller's context */ |
4732 | state = (TransitionCaptureState *) palloc0(sizeof(TransitionCaptureState)); |
4733 | state->tcs_delete_old_table = trigdesc->trig_delete_old_table; |
4734 | state->tcs_update_old_table = trigdesc->trig_update_old_table; |
4735 | state->tcs_update_new_table = trigdesc->trig_update_new_table; |
4736 | state->tcs_insert_new_table = trigdesc->trig_insert_new_table; |
4737 | state->tcs_private = table; |
4738 | |
4739 | return state; |
4740 | } |
4741 | |
4742 | |
4743 | /* ---------- |
4744 | * AfterTriggerBeginXact() |
4745 | * |
4746 | * Called at transaction start (either BEGIN or implicit for single |
4747 | * statement outside of transaction block). |
4748 | * ---------- |
4749 | */ |
4750 | void |
4751 | AfterTriggerBeginXact(void) |
4752 | { |
4753 | /* |
4754 | * Initialize after-trigger state structure to empty |
4755 | */ |
4756 | afterTriggers.firing_counter = (CommandId) 1; /* mustn't be 0 */ |
4757 | afterTriggers.query_depth = -1; |
4758 | |
4759 | /* |
4760 | * Verify that there is no leftover state remaining. If these assertions |
4761 | * trip, it means that AfterTriggerEndXact wasn't called or didn't clean |
4762 | * up properly. |
4763 | */ |
4764 | Assert(afterTriggers.state == NULL); |
4765 | Assert(afterTriggers.query_stack == NULL); |
4766 | Assert(afterTriggers.maxquerydepth == 0); |
4767 | Assert(afterTriggers.event_cxt == NULL); |
4768 | Assert(afterTriggers.events.head == NULL); |
4769 | Assert(afterTriggers.trans_stack == NULL); |
4770 | Assert(afterTriggers.maxtransdepth == 0); |
4771 | } |
4772 | |
4773 | |
4774 | /* ---------- |
4775 | * AfterTriggerBeginQuery() |
4776 | * |
4777 | * Called just before we start processing a single query within a |
4778 | * transaction (or subtransaction). Most of the real work gets deferred |
4779 | * until somebody actually tries to queue a trigger event. |
4780 | * ---------- |
4781 | */ |
4782 | void |
4783 | AfterTriggerBeginQuery(void) |
4784 | { |
4785 | /* Increase the query stack depth */ |
4786 | afterTriggers.query_depth++; |
4787 | } |
4788 | |
4789 | |
4790 | /* ---------- |
4791 | * AfterTriggerEndQuery() |
4792 | * |
4793 | * Called after one query has been completely processed. At this time |
4794 | * we invoke all AFTER IMMEDIATE trigger events queued by the query, and |
4795 | * transfer deferred trigger events to the global deferred-trigger list. |
4796 | * |
4797 | * Note that this must be called BEFORE closing down the executor |
4798 | * with ExecutorEnd, because we make use of the EState's info about |
4799 | * target relations. Normally it is called from ExecutorFinish. |
4800 | * ---------- |
4801 | */ |
4802 | void |
4803 | AfterTriggerEndQuery(EState *estate) |
4804 | { |
4805 | AfterTriggersQueryData *qs; |
4806 | |
4807 | /* Must be inside a query, too */ |
4808 | Assert(afterTriggers.query_depth >= 0); |
4809 | |
4810 | /* |
4811 | * If we never even got as far as initializing the event stack, there |
4812 | * certainly won't be any events, so exit quickly. |
4813 | */ |
4814 | if (afterTriggers.query_depth >= afterTriggers.maxquerydepth) |
4815 | { |
4816 | afterTriggers.query_depth--; |
4817 | return; |
4818 | } |
4819 | |
4820 | /* |
4821 | * Process all immediate-mode triggers queued by the query, and move the |
4822 | * deferred ones to the main list of deferred events. |
4823 | * |
4824 | * Notice that we decide which ones will be fired, and put the deferred |
4825 | * ones on the main list, before anything is actually fired. This ensures |
4826 | * reasonably sane behavior if a trigger function does SET CONSTRAINTS ... |
4827 | * IMMEDIATE: all events we have decided to defer will be available for it |
4828 | * to fire. |
4829 | * |
4830 | * We loop in case a trigger queues more events at the same query level. |
4831 | * Ordinary trigger functions, including all PL/pgSQL trigger functions, |
4832 | * will instead fire any triggers in a dedicated query level. Foreign key |
4833 | * enforcement triggers do add to the current query level, thanks to their |
4834 | * passing fire_triggers = false to SPI_execute_snapshot(). Other |
4835 | * C-language triggers might do likewise. |
4836 | * |
4837 | * If we find no firable events, we don't have to increment |
4838 | * firing_counter. |
4839 | */ |
4840 | qs = &afterTriggers.query_stack[afterTriggers.query_depth]; |
4841 | |
4842 | for (;;) |
4843 | { |
4844 | if (afterTriggerMarkEvents(&qs->events, &afterTriggers.events, true)) |
4845 | { |
4846 | CommandId firing_id = afterTriggers.firing_counter++; |
4847 | AfterTriggerEventChunk *oldtail = qs->events.tail; |
4848 | |
4849 | if (afterTriggerInvokeEvents(&qs->events, firing_id, estate, false)) |
4850 | break; /* all fired */ |
4851 | |
4852 | /* |
4853 | * Firing a trigger could result in query_stack being repalloc'd, |
4854 | * so we must recalculate qs after each afterTriggerInvokeEvents |
4855 | * call. Furthermore, it's unsafe to pass delete_ok = true here, |
4856 | * because that could cause afterTriggerInvokeEvents to try to |
4857 | * access qs->events after the stack has been repalloc'd. |
4858 | */ |
4859 | qs = &afterTriggers.query_stack[afterTriggers.query_depth]; |
4860 | |
4861 | /* |
4862 | * We'll need to scan the events list again. To reduce the cost |
4863 | * of doing so, get rid of completely-fired chunks. We know that |
4864 | * all events were marked IN_PROGRESS or DONE at the conclusion of |
4865 | * afterTriggerMarkEvents, so any still-interesting events must |
4866 | * have been added after that, and so must be in the chunk that |
4867 | * was then the tail chunk, or in later chunks. So, zap all |
4868 | * chunks before oldtail. This is approximately the same set of |
4869 | * events we would have gotten rid of by passing delete_ok = true. |
4870 | */ |
4871 | Assert(oldtail != NULL); |
4872 | while (qs->events.head != oldtail) |
4873 | afterTriggerDeleteHeadEventChunk(qs); |
4874 | } |
4875 | else |
4876 | break; |
4877 | } |
4878 | |
4879 | /* Release query-level-local storage, including tuplestores if any */ |
4880 | AfterTriggerFreeQuery(&afterTriggers.query_stack[afterTriggers.query_depth]); |
4881 | |
4882 | afterTriggers.query_depth--; |
4883 | } |
4884 | |
4885 | |
4886 | /* |
4887 | * AfterTriggerFreeQuery |
4888 | * Release subsidiary storage for a trigger query level. |
4889 | * This includes closing down tuplestores. |
4890 | * Note: it's important for this to be safe if interrupted by an error |
4891 | * and then called again for the same query level. |
4892 | */ |
4893 | static void |
4894 | AfterTriggerFreeQuery(AfterTriggersQueryData *qs) |
4895 | { |
4896 | Tuplestorestate *ts; |
4897 | List *tables; |
4898 | ListCell *lc; |
4899 | |
4900 | /* Drop the trigger events */ |
4901 | afterTriggerFreeEventList(&qs->events); |
4902 | |
4903 | /* Drop FDW tuplestore if any */ |
4904 | ts = qs->fdw_tuplestore; |
4905 | qs->fdw_tuplestore = NULL; |
4906 | if (ts) |
4907 | tuplestore_end(ts); |
4908 | |
4909 | /* Release per-table subsidiary storage */ |
4910 | tables = qs->tables; |
4911 | foreach(lc, tables) |
4912 | { |
4913 | AfterTriggersTableData *table = (AfterTriggersTableData *) lfirst(lc); |
4914 | |
4915 | ts = table->old_tuplestore; |
4916 | table->old_tuplestore = NULL; |
4917 | if (ts) |
4918 | tuplestore_end(ts); |
4919 | ts = table->new_tuplestore; |
4920 | table->new_tuplestore = NULL; |
4921 | if (ts) |
4922 | tuplestore_end(ts); |
4923 | } |
4924 | |
4925 | /* |
4926 | * Now free the AfterTriggersTableData structs and list cells. Reset list |
4927 | * pointer first; if list_free_deep somehow gets an error, better to leak |
4928 | * that storage than have an infinite loop. |
4929 | */ |
4930 | qs->tables = NIL; |
4931 | list_free_deep(tables); |
4932 | } |
4933 | |
4934 | |
4935 | /* ---------- |
4936 | * AfterTriggerFireDeferred() |
4937 | * |
4938 | * Called just before the current transaction is committed. At this |
4939 | * time we invoke all pending DEFERRED triggers. |
4940 | * |
4941 | * It is possible for other modules to queue additional deferred triggers |
4942 | * during pre-commit processing; therefore xact.c may have to call this |
4943 | * multiple times. |
4944 | * ---------- |
4945 | */ |
4946 | void |
4947 | AfterTriggerFireDeferred(void) |
4948 | { |
4949 | AfterTriggerEventList *events; |
4950 | bool snap_pushed = false; |
4951 | |
4952 | /* Must not be inside a query */ |
4953 | Assert(afterTriggers.query_depth == -1); |
4954 | |
4955 | /* |
4956 | * If there are any triggers to fire, make sure we have set a snapshot for |
4957 | * them to use. (Since PortalRunUtility doesn't set a snap for COMMIT, we |
4958 | * can't assume ActiveSnapshot is valid on entry.) |
4959 | */ |
4960 | events = &afterTriggers.events; |
4961 | if (events->head != NULL) |
4962 | { |
4963 | PushActiveSnapshot(GetTransactionSnapshot()); |
4964 | snap_pushed = true; |
4965 | } |
4966 | |
4967 | /* |
4968 | * Run all the remaining triggers. Loop until they are all gone, in case |
4969 | * some trigger queues more for us to do. |
4970 | */ |
4971 | while (afterTriggerMarkEvents(events, NULL, false)) |
4972 | { |
4973 | CommandId firing_id = afterTriggers.firing_counter++; |
4974 | |
4975 | if (afterTriggerInvokeEvents(events, firing_id, NULL, true)) |
4976 | break; /* all fired */ |
4977 | } |
4978 | |
4979 | /* |
4980 | * We don't bother freeing the event list, since it will go away anyway |
4981 | * (and more efficiently than via pfree) in AfterTriggerEndXact. |
4982 | */ |
4983 | |
4984 | if (snap_pushed) |
4985 | PopActiveSnapshot(); |
4986 | } |
4987 | |
4988 | |
4989 | /* ---------- |
4990 | * AfterTriggerEndXact() |
4991 | * |
4992 | * The current transaction is finishing. |
4993 | * |
4994 | * Any unfired triggers are canceled so we simply throw |
4995 | * away anything we know. |
4996 | * |
4997 | * Note: it is possible for this to be called repeatedly in case of |
4998 | * error during transaction abort; therefore, do not complain if |
4999 | * already closed down. |
5000 | * ---------- |
5001 | */ |
5002 | void |
5003 | AfterTriggerEndXact(bool isCommit) |
5004 | { |
5005 | /* |
5006 | * Forget the pending-events list. |
5007 | * |
5008 | * Since all the info is in TopTransactionContext or children thereof, we |
5009 | * don't really need to do anything to reclaim memory. However, the |
5010 | * pending-events list could be large, and so it's useful to discard it as |
5011 | * soon as possible --- especially if we are aborting because we ran out |
5012 | * of memory for the list! |
5013 | */ |
5014 | if (afterTriggers.event_cxt) |
5015 | { |
5016 | MemoryContextDelete(afterTriggers.event_cxt); |
5017 | afterTriggers.event_cxt = NULL; |
5018 | afterTriggers.events.head = NULL; |
5019 | afterTriggers.events.tail = NULL; |
5020 | afterTriggers.events.tailfree = NULL; |
5021 | } |
5022 | |
5023 | /* |
5024 | * Forget any subtransaction state as well. Since this can't be very |
5025 | * large, we let the eventual reset of TopTransactionContext free the |
5026 | * memory instead of doing it here. |
5027 | */ |
5028 | afterTriggers.trans_stack = NULL; |
5029 | afterTriggers.maxtransdepth = 0; |
5030 | |
5031 | |
5032 | /* |
5033 | * Forget the query stack and constraint-related state information. As |
5034 | * with the subtransaction state information, we don't bother freeing the |
5035 | * memory here. |
5036 | */ |
5037 | afterTriggers.query_stack = NULL; |
5038 | afterTriggers.maxquerydepth = 0; |
5039 | afterTriggers.state = NULL; |
5040 | |
5041 | /* No more afterTriggers manipulation until next transaction starts. */ |
5042 | afterTriggers.query_depth = -1; |
5043 | } |
5044 | |
5045 | /* |
5046 | * AfterTriggerBeginSubXact() |
5047 | * |
5048 | * Start a subtransaction. |
5049 | */ |
5050 | void |
5051 | AfterTriggerBeginSubXact(void) |
5052 | { |
5053 | int my_level = GetCurrentTransactionNestLevel(); |
5054 | |
5055 | /* |
5056 | * Allocate more space in the trans_stack if needed. (Note: because the |
5057 | * minimum nest level of a subtransaction is 2, we waste the first couple |
5058 | * entries of the array; not worth the notational effort to avoid it.) |
5059 | */ |
5060 | while (my_level >= afterTriggers.maxtransdepth) |
5061 | { |
5062 | if (afterTriggers.maxtransdepth == 0) |
5063 | { |
5064 | /* Arbitrarily initialize for max of 8 subtransaction levels */ |
5065 | afterTriggers.trans_stack = (AfterTriggersTransData *) |
5066 | MemoryContextAlloc(TopTransactionContext, |
5067 | 8 * sizeof(AfterTriggersTransData)); |
5068 | afterTriggers.maxtransdepth = 8; |
5069 | } |
5070 | else |
5071 | { |
5072 | /* repalloc will keep the stack in the same context */ |
5073 | int new_alloc = afterTriggers.maxtransdepth * 2; |
5074 | |
5075 | afterTriggers.trans_stack = (AfterTriggersTransData *) |
5076 | repalloc(afterTriggers.trans_stack, |
5077 | new_alloc * sizeof(AfterTriggersTransData)); |
5078 | afterTriggers.maxtransdepth = new_alloc; |
5079 | } |
5080 | } |
5081 | |
5082 | /* |
5083 | * Push the current information into the stack. The SET CONSTRAINTS state |
5084 | * is not saved until/unless changed. Likewise, we don't make a |
5085 | * per-subtransaction event context until needed. |
5086 | */ |
5087 | afterTriggers.trans_stack[my_level].state = NULL; |
5088 | afterTriggers.trans_stack[my_level].events = afterTriggers.events; |
5089 | afterTriggers.trans_stack[my_level].query_depth = afterTriggers.query_depth; |
5090 | afterTriggers.trans_stack[my_level].firing_counter = afterTriggers.firing_counter; |
5091 | } |
5092 | |
5093 | /* |
5094 | * AfterTriggerEndSubXact() |
5095 | * |
5096 | * The current subtransaction is ending. |
5097 | */ |
5098 | void |
5099 | AfterTriggerEndSubXact(bool isCommit) |
5100 | { |
5101 | int my_level = GetCurrentTransactionNestLevel(); |
5102 | SetConstraintState state; |
5103 | AfterTriggerEvent event; |
5104 | AfterTriggerEventChunk *chunk; |
5105 | CommandId subxact_firing_id; |
5106 | |
5107 | /* |
5108 | * Pop the prior state if needed. |
5109 | */ |
5110 | if (isCommit) |
5111 | { |
5112 | Assert(my_level < afterTriggers.maxtransdepth); |
5113 | /* If we saved a prior state, we don't need it anymore */ |
5114 | state = afterTriggers.trans_stack[my_level].state; |
5115 | if (state != NULL) |
5116 | pfree(state); |
5117 | /* this avoids double pfree if error later: */ |
5118 | afterTriggers.trans_stack[my_level].state = NULL; |
5119 | Assert(afterTriggers.query_depth == |
5120 | afterTriggers.trans_stack[my_level].query_depth); |
5121 | } |
5122 | else |
5123 | { |
5124 | /* |
5125 | * Aborting. It is possible subxact start failed before calling |
5126 | * AfterTriggerBeginSubXact, in which case we mustn't risk touching |
5127 | * trans_stack levels that aren't there. |
5128 | */ |
5129 | if (my_level >= afterTriggers.maxtransdepth) |
5130 | return; |
5131 | |
5132 | /* |
5133 | * Release query-level storage for queries being aborted, and restore |
5134 | * query_depth to its pre-subxact value. This assumes that a |
5135 | * subtransaction will not add events to query levels started in a |
5136 | * earlier transaction state. |
5137 | */ |
5138 | while (afterTriggers.query_depth > afterTriggers.trans_stack[my_level].query_depth) |
5139 | { |
5140 | if (afterTriggers.query_depth < afterTriggers.maxquerydepth) |
5141 | AfterTriggerFreeQuery(&afterTriggers.query_stack[afterTriggers.query_depth]); |
5142 | afterTriggers.query_depth--; |
5143 | } |
5144 | Assert(afterTriggers.query_depth == |
5145 | afterTriggers.trans_stack[my_level].query_depth); |
5146 | |
5147 | /* |
5148 | * Restore the global deferred-event list to its former length, |
5149 | * discarding any events queued by the subxact. |
5150 | */ |
5151 | afterTriggerRestoreEventList(&afterTriggers.events, |
5152 | &afterTriggers.trans_stack[my_level].events); |
5153 | |
5154 | /* |
5155 | * Restore the trigger state. If the saved state is NULL, then this |
5156 | * subxact didn't save it, so it doesn't need restoring. |
5157 | */ |
5158 | state = afterTriggers.trans_stack[my_level].state; |
5159 | if (state != NULL) |
5160 | { |
5161 | pfree(afterTriggers.state); |
5162 | afterTriggers.state = state; |
5163 | } |
5164 | /* this avoids double pfree if error later: */ |
5165 | afterTriggers.trans_stack[my_level].state = NULL; |
5166 | |
5167 | /* |
5168 | * Scan for any remaining deferred events that were marked DONE or IN |
5169 | * PROGRESS by this subxact or a child, and un-mark them. We can |
5170 | * recognize such events because they have a firing ID greater than or |
5171 | * equal to the firing_counter value we saved at subtransaction start. |
5172 | * (This essentially assumes that the current subxact includes all |
5173 | * subxacts started after it.) |
5174 | */ |
5175 | subxact_firing_id = afterTriggers.trans_stack[my_level].firing_counter; |
5176 | for_each_event_chunk(event, chunk, afterTriggers.events) |
5177 | { |
5178 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
5179 | |
5180 | if (event->ate_flags & |
5181 | (AFTER_TRIGGER_DONE | AFTER_TRIGGER_IN_PROGRESS)) |
5182 | { |
5183 | if (evtshared->ats_firing_id >= subxact_firing_id) |
5184 | event->ate_flags &= |
5185 | ~(AFTER_TRIGGER_DONE | AFTER_TRIGGER_IN_PROGRESS); |
5186 | } |
5187 | } |
5188 | } |
5189 | } |
5190 | |
5191 | /* ---------- |
5192 | * AfterTriggerEnlargeQueryState() |
5193 | * |
5194 | * Prepare the necessary state so that we can record AFTER trigger events |
5195 | * queued by a query. It is allowed to have nested queries within a |
5196 | * (sub)transaction, so we need to have separate state for each query |
5197 | * nesting level. |
5198 | * ---------- |
5199 | */ |
5200 | static void |
5201 | AfterTriggerEnlargeQueryState(void) |
5202 | { |
5203 | int init_depth = afterTriggers.maxquerydepth; |
5204 | |
5205 | Assert(afterTriggers.query_depth >= afterTriggers.maxquerydepth); |
5206 | |
5207 | if (afterTriggers.maxquerydepth == 0) |
5208 | { |
5209 | int new_alloc = Max(afterTriggers.query_depth + 1, 8); |
5210 | |
5211 | afterTriggers.query_stack = (AfterTriggersQueryData *) |
5212 | MemoryContextAlloc(TopTransactionContext, |
5213 | new_alloc * sizeof(AfterTriggersQueryData)); |
5214 | afterTriggers.maxquerydepth = new_alloc; |
5215 | } |
5216 | else |
5217 | { |
5218 | /* repalloc will keep the stack in the same context */ |
5219 | int old_alloc = afterTriggers.maxquerydepth; |
5220 | int new_alloc = Max(afterTriggers.query_depth + 1, |
5221 | old_alloc * 2); |
5222 | |
5223 | afterTriggers.query_stack = (AfterTriggersQueryData *) |
5224 | repalloc(afterTriggers.query_stack, |
5225 | new_alloc * sizeof(AfterTriggersQueryData)); |
5226 | afterTriggers.maxquerydepth = new_alloc; |
5227 | } |
5228 | |
5229 | /* Initialize new array entries to empty */ |
5230 | while (init_depth < afterTriggers.maxquerydepth) |
5231 | { |
5232 | AfterTriggersQueryData *qs = &afterTriggers.query_stack[init_depth]; |
5233 | |
5234 | qs->events.head = NULL; |
5235 | qs->events.tail = NULL; |
5236 | qs->events.tailfree = NULL; |
5237 | qs->fdw_tuplestore = NULL; |
5238 | qs->tables = NIL; |
5239 | |
5240 | ++init_depth; |
5241 | } |
5242 | } |
5243 | |
5244 | /* |
5245 | * Create an empty SetConstraintState with room for numalloc trigstates |
5246 | */ |
5247 | static SetConstraintState |
5248 | SetConstraintStateCreate(int numalloc) |
5249 | { |
5250 | SetConstraintState state; |
5251 | |
5252 | /* Behave sanely with numalloc == 0 */ |
5253 | if (numalloc <= 0) |
5254 | numalloc = 1; |
5255 | |
5256 | /* |
5257 | * We assume that zeroing will correctly initialize the state values. |
5258 | */ |
5259 | state = (SetConstraintState) |
5260 | MemoryContextAllocZero(TopTransactionContext, |
5261 | offsetof(SetConstraintStateData, trigstates) + |
5262 | numalloc * sizeof(SetConstraintTriggerData)); |
5263 | |
5264 | state->numalloc = numalloc; |
5265 | |
5266 | return state; |
5267 | } |
5268 | |
5269 | /* |
5270 | * Copy a SetConstraintState |
5271 | */ |
5272 | static SetConstraintState |
5273 | SetConstraintStateCopy(SetConstraintState origstate) |
5274 | { |
5275 | SetConstraintState state; |
5276 | |
5277 | state = SetConstraintStateCreate(origstate->numstates); |
5278 | |
5279 | state->all_isset = origstate->all_isset; |
5280 | state->all_isdeferred = origstate->all_isdeferred; |
5281 | state->numstates = origstate->numstates; |
5282 | memcpy(state->trigstates, origstate->trigstates, |
5283 | origstate->numstates * sizeof(SetConstraintTriggerData)); |
5284 | |
5285 | return state; |
5286 | } |
5287 | |
5288 | /* |
5289 | * Add a per-trigger item to a SetConstraintState. Returns possibly-changed |
5290 | * pointer to the state object (it will change if we have to repalloc). |
5291 | */ |
5292 | static SetConstraintState |
5293 | SetConstraintStateAddItem(SetConstraintState state, |
5294 | Oid tgoid, bool tgisdeferred) |
5295 | { |
5296 | if (state->numstates >= state->numalloc) |
5297 | { |
5298 | int newalloc = state->numalloc * 2; |
5299 | |
5300 | newalloc = Max(newalloc, 8); /* in case original has size 0 */ |
5301 | state = (SetConstraintState) |
5302 | repalloc(state, |
5303 | offsetof(SetConstraintStateData, trigstates) + |
5304 | newalloc * sizeof(SetConstraintTriggerData)); |
5305 | state->numalloc = newalloc; |
5306 | Assert(state->numstates < state->numalloc); |
5307 | } |
5308 | |
5309 | state->trigstates[state->numstates].sct_tgoid = tgoid; |
5310 | state->trigstates[state->numstates].sct_tgisdeferred = tgisdeferred; |
5311 | state->numstates++; |
5312 | |
5313 | return state; |
5314 | } |
5315 | |
5316 | /* ---------- |
5317 | * AfterTriggerSetState() |
5318 | * |
5319 | * Execute the SET CONSTRAINTS ... utility command. |
5320 | * ---------- |
5321 | */ |
5322 | void |
5323 | AfterTriggerSetState(ConstraintsSetStmt *stmt) |
5324 | { |
5325 | int my_level = GetCurrentTransactionNestLevel(); |
5326 | |
5327 | /* If we haven't already done so, initialize our state. */ |
5328 | if (afterTriggers.state == NULL) |
5329 | afterTriggers.state = SetConstraintStateCreate(8); |
5330 | |
5331 | /* |
5332 | * If in a subtransaction, and we didn't save the current state already, |
5333 | * save it so it can be restored if the subtransaction aborts. |
5334 | */ |
5335 | if (my_level > 1 && |
5336 | afterTriggers.trans_stack[my_level].state == NULL) |
5337 | { |
5338 | afterTriggers.trans_stack[my_level].state = |
5339 | SetConstraintStateCopy(afterTriggers.state); |
5340 | } |
5341 | |
5342 | /* |
5343 | * Handle SET CONSTRAINTS ALL ... |
5344 | */ |
5345 | if (stmt->constraints == NIL) |
5346 | { |
5347 | /* |
5348 | * Forget any previous SET CONSTRAINTS commands in this transaction. |
5349 | */ |
5350 | afterTriggers.state->numstates = 0; |
5351 | |
5352 | /* |
5353 | * Set the per-transaction ALL state to known. |
5354 | */ |
5355 | afterTriggers.state->all_isset = true; |
5356 | afterTriggers.state->all_isdeferred = stmt->deferred; |
5357 | } |
5358 | else |
5359 | { |
5360 | Relation conrel; |
5361 | Relation tgrel; |
5362 | List *conoidlist = NIL; |
5363 | List *tgoidlist = NIL; |
5364 | ListCell *lc; |
5365 | |
5366 | /* |
5367 | * Handle SET CONSTRAINTS constraint-name [, ...] |
5368 | * |
5369 | * First, identify all the named constraints and make a list of their |
5370 | * OIDs. Since, unlike the SQL spec, we allow multiple constraints of |
5371 | * the same name within a schema, the specifications are not |
5372 | * necessarily unique. Our strategy is to target all matching |
5373 | * constraints within the first search-path schema that has any |
5374 | * matches, but disregard matches in schemas beyond the first match. |
5375 | * (This is a bit odd but it's the historical behavior.) |
5376 | * |
5377 | * A constraint in a partitioned table may have corresponding |
5378 | * constraints in the partitions. Grab those too. |
5379 | */ |
5380 | conrel = table_open(ConstraintRelationId, AccessShareLock); |
5381 | |
5382 | foreach(lc, stmt->constraints) |
5383 | { |
5384 | RangeVar *constraint = lfirst(lc); |
5385 | bool found; |
5386 | List *namespacelist; |
5387 | ListCell *nslc; |
5388 | |
5389 | if (constraint->catalogname) |
5390 | { |
5391 | if (strcmp(constraint->catalogname, get_database_name(MyDatabaseId)) != 0) |
5392 | ereport(ERROR, |
5393 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
5394 | errmsg("cross-database references are not implemented: \"%s.%s.%s\"" , |
5395 | constraint->catalogname, constraint->schemaname, |
5396 | constraint->relname))); |
5397 | } |
5398 | |
5399 | /* |
5400 | * If we're given the schema name with the constraint, look only |
5401 | * in that schema. If given a bare constraint name, use the |
5402 | * search path to find the first matching constraint. |
5403 | */ |
5404 | if (constraint->schemaname) |
5405 | { |
5406 | Oid namespaceId = LookupExplicitNamespace(constraint->schemaname, |
5407 | false); |
5408 | |
5409 | namespacelist = list_make1_oid(namespaceId); |
5410 | } |
5411 | else |
5412 | { |
5413 | namespacelist = fetch_search_path(true); |
5414 | } |
5415 | |
5416 | found = false; |
5417 | foreach(nslc, namespacelist) |
5418 | { |
5419 | Oid namespaceId = lfirst_oid(nslc); |
5420 | SysScanDesc conscan; |
5421 | ScanKeyData skey[2]; |
5422 | HeapTuple tup; |
5423 | |
5424 | ScanKeyInit(&skey[0], |
5425 | Anum_pg_constraint_conname, |
5426 | BTEqualStrategyNumber, F_NAMEEQ, |
5427 | CStringGetDatum(constraint->relname)); |
5428 | ScanKeyInit(&skey[1], |
5429 | Anum_pg_constraint_connamespace, |
5430 | BTEqualStrategyNumber, F_OIDEQ, |
5431 | ObjectIdGetDatum(namespaceId)); |
5432 | |
5433 | conscan = systable_beginscan(conrel, ConstraintNameNspIndexId, |
5434 | true, NULL, 2, skey); |
5435 | |
5436 | while (HeapTupleIsValid(tup = systable_getnext(conscan))) |
5437 | { |
5438 | Form_pg_constraint con = (Form_pg_constraint) GETSTRUCT(tup); |
5439 | |
5440 | if (con->condeferrable) |
5441 | conoidlist = lappend_oid(conoidlist, con->oid); |
5442 | else if (stmt->deferred) |
5443 | ereport(ERROR, |
5444 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
5445 | errmsg("constraint \"%s\" is not deferrable" , |
5446 | constraint->relname))); |
5447 | found = true; |
5448 | } |
5449 | |
5450 | systable_endscan(conscan); |
5451 | |
5452 | /* |
5453 | * Once we've found a matching constraint we do not search |
5454 | * later parts of the search path. |
5455 | */ |
5456 | if (found) |
5457 | break; |
5458 | } |
5459 | |
5460 | list_free(namespacelist); |
5461 | |
5462 | /* |
5463 | * Not found ? |
5464 | */ |
5465 | if (!found) |
5466 | ereport(ERROR, |
5467 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
5468 | errmsg("constraint \"%s\" does not exist" , |
5469 | constraint->relname))); |
5470 | } |
5471 | |
5472 | /* |
5473 | * Scan for any possible descendants of the constraints. We append |
5474 | * whatever we find to the same list that we're scanning; this has the |
5475 | * effect that we create new scans for those, too, so if there are |
5476 | * further descendents, we'll also catch them. |
5477 | */ |
5478 | foreach(lc, conoidlist) |
5479 | { |
5480 | Oid parent = lfirst_oid(lc); |
5481 | ScanKeyData key; |
5482 | SysScanDesc scan; |
5483 | HeapTuple tuple; |
5484 | |
5485 | ScanKeyInit(&key, |
5486 | Anum_pg_constraint_conparentid, |
5487 | BTEqualStrategyNumber, F_OIDEQ, |
5488 | ObjectIdGetDatum(parent)); |
5489 | |
5490 | scan = systable_beginscan(conrel, ConstraintParentIndexId, true, NULL, 1, &key); |
5491 | |
5492 | while (HeapTupleIsValid(tuple = systable_getnext(scan))) |
5493 | { |
5494 | Form_pg_constraint con = (Form_pg_constraint) GETSTRUCT(tuple); |
5495 | |
5496 | conoidlist = lappend_oid(conoidlist, con->oid); |
5497 | } |
5498 | |
5499 | systable_endscan(scan); |
5500 | } |
5501 | |
5502 | table_close(conrel, AccessShareLock); |
5503 | |
5504 | /* |
5505 | * Now, locate the trigger(s) implementing each of these constraints, |
5506 | * and make a list of their OIDs. |
5507 | */ |
5508 | tgrel = table_open(TriggerRelationId, AccessShareLock); |
5509 | |
5510 | foreach(lc, conoidlist) |
5511 | { |
5512 | Oid conoid = lfirst_oid(lc); |
5513 | bool found; |
5514 | ScanKeyData skey; |
5515 | SysScanDesc tgscan; |
5516 | HeapTuple htup; |
5517 | |
5518 | found = false; |
5519 | |
5520 | ScanKeyInit(&skey, |
5521 | Anum_pg_trigger_tgconstraint, |
5522 | BTEqualStrategyNumber, F_OIDEQ, |
5523 | ObjectIdGetDatum(conoid)); |
5524 | |
5525 | tgscan = systable_beginscan(tgrel, TriggerConstraintIndexId, true, |
5526 | NULL, 1, &skey); |
5527 | |
5528 | while (HeapTupleIsValid(htup = systable_getnext(tgscan))) |
5529 | { |
5530 | Form_pg_trigger pg_trigger = (Form_pg_trigger) GETSTRUCT(htup); |
5531 | |
5532 | /* |
5533 | * Silently skip triggers that are marked as non-deferrable in |
5534 | * pg_trigger. This is not an error condition, since a |
5535 | * deferrable RI constraint may have some non-deferrable |
5536 | * actions. |
5537 | */ |
5538 | if (pg_trigger->tgdeferrable) |
5539 | tgoidlist = lappend_oid(tgoidlist, pg_trigger->oid); |
5540 | |
5541 | found = true; |
5542 | } |
5543 | |
5544 | systable_endscan(tgscan); |
5545 | |
5546 | /* Safety check: a deferrable constraint should have triggers */ |
5547 | if (!found) |
5548 | elog(ERROR, "no triggers found for constraint with OID %u" , |
5549 | conoid); |
5550 | } |
5551 | |
5552 | table_close(tgrel, AccessShareLock); |
5553 | |
5554 | /* |
5555 | * Now we can set the trigger states of individual triggers for this |
5556 | * xact. |
5557 | */ |
5558 | foreach(lc, tgoidlist) |
5559 | { |
5560 | Oid tgoid = lfirst_oid(lc); |
5561 | SetConstraintState state = afterTriggers.state; |
5562 | bool found = false; |
5563 | int i; |
5564 | |
5565 | for (i = 0; i < state->numstates; i++) |
5566 | { |
5567 | if (state->trigstates[i].sct_tgoid == tgoid) |
5568 | { |
5569 | state->trigstates[i].sct_tgisdeferred = stmt->deferred; |
5570 | found = true; |
5571 | break; |
5572 | } |
5573 | } |
5574 | if (!found) |
5575 | { |
5576 | afterTriggers.state = |
5577 | SetConstraintStateAddItem(state, tgoid, stmt->deferred); |
5578 | } |
5579 | } |
5580 | } |
5581 | |
5582 | /* |
5583 | * SQL99 requires that when a constraint is set to IMMEDIATE, any deferred |
5584 | * checks against that constraint must be made when the SET CONSTRAINTS |
5585 | * command is executed -- i.e. the effects of the SET CONSTRAINTS command |
5586 | * apply retroactively. We've updated the constraints state, so scan the |
5587 | * list of previously deferred events to fire any that have now become |
5588 | * immediate. |
5589 | * |
5590 | * Obviously, if this was SET ... DEFERRED then it can't have converted |
5591 | * any unfired events to immediate, so we need do nothing in that case. |
5592 | */ |
5593 | if (!stmt->deferred) |
5594 | { |
5595 | AfterTriggerEventList *events = &afterTriggers.events; |
5596 | bool snapshot_set = false; |
5597 | |
5598 | while (afterTriggerMarkEvents(events, NULL, true)) |
5599 | { |
5600 | CommandId firing_id = afterTriggers.firing_counter++; |
5601 | |
5602 | /* |
5603 | * Make sure a snapshot has been established in case trigger |
5604 | * functions need one. Note that we avoid setting a snapshot if |
5605 | * we don't find at least one trigger that has to be fired now. |
5606 | * This is so that BEGIN; SET CONSTRAINTS ...; SET TRANSACTION |
5607 | * ISOLATION LEVEL SERIALIZABLE; ... works properly. (If we are |
5608 | * at the start of a transaction it's not possible for any trigger |
5609 | * events to be queued yet.) |
5610 | */ |
5611 | if (!snapshot_set) |
5612 | { |
5613 | PushActiveSnapshot(GetTransactionSnapshot()); |
5614 | snapshot_set = true; |
5615 | } |
5616 | |
5617 | /* |
5618 | * We can delete fired events if we are at top transaction level, |
5619 | * but we'd better not if inside a subtransaction, since the |
5620 | * subtransaction could later get rolled back. |
5621 | */ |
5622 | if (afterTriggerInvokeEvents(events, firing_id, NULL, |
5623 | !IsSubTransaction())) |
5624 | break; /* all fired */ |
5625 | } |
5626 | |
5627 | if (snapshot_set) |
5628 | PopActiveSnapshot(); |
5629 | } |
5630 | } |
5631 | |
5632 | /* ---------- |
5633 | * AfterTriggerPendingOnRel() |
5634 | * Test to see if there are any pending after-trigger events for rel. |
5635 | * |
5636 | * This is used by TRUNCATE, CLUSTER, ALTER TABLE, etc to detect whether |
5637 | * it is unsafe to perform major surgery on a relation. Note that only |
5638 | * local pending events are examined. We assume that having exclusive lock |
5639 | * on a rel guarantees there are no unserviced events in other backends --- |
5640 | * but having a lock does not prevent there being such events in our own. |
5641 | * |
5642 | * In some scenarios it'd be reasonable to remove pending events (more |
5643 | * specifically, mark them DONE by the current subxact) but without a lot |
5644 | * of knowledge of the trigger semantics we can't do this in general. |
5645 | * ---------- |
5646 | */ |
5647 | bool |
5648 | AfterTriggerPendingOnRel(Oid relid) |
5649 | { |
5650 | AfterTriggerEvent event; |
5651 | AfterTriggerEventChunk *chunk; |
5652 | int depth; |
5653 | |
5654 | /* Scan queued events */ |
5655 | for_each_event_chunk(event, chunk, afterTriggers.events) |
5656 | { |
5657 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
5658 | |
5659 | /* |
5660 | * We can ignore completed events. (Even if a DONE flag is rolled |
5661 | * back by subxact abort, it's OK because the effects of the TRUNCATE |
5662 | * or whatever must get rolled back too.) |
5663 | */ |
5664 | if (event->ate_flags & AFTER_TRIGGER_DONE) |
5665 | continue; |
5666 | |
5667 | if (evtshared->ats_relid == relid) |
5668 | return true; |
5669 | } |
5670 | |
5671 | /* |
5672 | * Also scan events queued by incomplete queries. This could only matter |
5673 | * if TRUNCATE/etc is executed by a function or trigger within an updating |
5674 | * query on the same relation, which is pretty perverse, but let's check. |
5675 | */ |
5676 | for (depth = 0; depth <= afterTriggers.query_depth && depth < afterTriggers.maxquerydepth; depth++) |
5677 | { |
5678 | for_each_event_chunk(event, chunk, afterTriggers.query_stack[depth].events) |
5679 | { |
5680 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
5681 | |
5682 | if (event->ate_flags & AFTER_TRIGGER_DONE) |
5683 | continue; |
5684 | |
5685 | if (evtshared->ats_relid == relid) |
5686 | return true; |
5687 | } |
5688 | } |
5689 | |
5690 | return false; |
5691 | } |
5692 | |
5693 | |
5694 | /* ---------- |
5695 | * AfterTriggerSaveEvent() |
5696 | * |
5697 | * Called by ExecA[RS]...Triggers() to queue up the triggers that should |
5698 | * be fired for an event. |
5699 | * |
5700 | * NOTE: this is called whenever there are any triggers associated with |
5701 | * the event (even if they are disabled). This function decides which |
5702 | * triggers actually need to be queued. It is also called after each row, |
5703 | * even if there are no triggers for that event, if there are any AFTER |
5704 | * STATEMENT triggers for the statement which use transition tables, so that |
5705 | * the transition tuplestores can be built. Furthermore, if the transition |
5706 | * capture is happening for UPDATEd rows being moved to another partition due |
5707 | * to the partition-key being changed, then this function is called once when |
5708 | * the row is deleted (to capture OLD row), and once when the row is inserted |
5709 | * into another partition (to capture NEW row). This is done separately because |
5710 | * DELETE and INSERT happen on different tables. |
5711 | * |
5712 | * Transition tuplestores are built now, rather than when events are pulled |
5713 | * off of the queue because AFTER ROW triggers are allowed to select from the |
5714 | * transition tables for the statement. |
5715 | * ---------- |
5716 | */ |
5717 | static void |
5718 | AfterTriggerSaveEvent(EState *estate, ResultRelInfo *relinfo, |
5719 | int event, bool row_trigger, |
5720 | TupleTableSlot *oldslot, TupleTableSlot *newslot, |
5721 | List *recheckIndexes, Bitmapset *modifiedCols, |
5722 | TransitionCaptureState *transition_capture) |
5723 | { |
5724 | Relation rel = relinfo->ri_RelationDesc; |
5725 | TriggerDesc *trigdesc = relinfo->ri_TrigDesc; |
5726 | AfterTriggerEventData new_event; |
5727 | AfterTriggerSharedData new_shared; |
5728 | char relkind = rel->rd_rel->relkind; |
5729 | int tgtype_event; |
5730 | int tgtype_level; |
5731 | int i; |
5732 | Tuplestorestate *fdw_tuplestore = NULL; |
5733 | |
5734 | /* |
5735 | * Check state. We use a normal test not Assert because it is possible to |
5736 | * reach here in the wrong state given misconfigured RI triggers, in |
5737 | * particular deferring a cascade action trigger. |
5738 | */ |
5739 | if (afterTriggers.query_depth < 0) |
5740 | elog(ERROR, "AfterTriggerSaveEvent() called outside of query" ); |
5741 | |
5742 | /* Be sure we have enough space to record events at this query depth. */ |
5743 | if (afterTriggers.query_depth >= afterTriggers.maxquerydepth) |
5744 | AfterTriggerEnlargeQueryState(); |
5745 | |
5746 | /* |
5747 | * If the directly named relation has any triggers with transition tables, |
5748 | * then we need to capture transition tuples. |
5749 | */ |
5750 | if (row_trigger && transition_capture != NULL) |
5751 | { |
5752 | TupleTableSlot *original_insert_tuple = transition_capture->tcs_original_insert_tuple; |
5753 | TupleConversionMap *map = transition_capture->tcs_map; |
5754 | bool delete_old_table = transition_capture->tcs_delete_old_table; |
5755 | bool update_old_table = transition_capture->tcs_update_old_table; |
5756 | bool update_new_table = transition_capture->tcs_update_new_table; |
5757 | bool insert_new_table = transition_capture->tcs_insert_new_table; |
5758 | |
5759 | /* |
5760 | * For INSERT events NEW should be non-NULL, for DELETE events OLD |
5761 | * should be non-NULL, whereas for UPDATE events normally both OLD and |
5762 | * NEW are non-NULL. But for UPDATE events fired for capturing |
5763 | * transition tuples during UPDATE partition-key row movement, OLD is |
5764 | * NULL when the event is for a row being inserted, whereas NEW is |
5765 | * NULL when the event is for a row being deleted. |
5766 | */ |
5767 | Assert(!(event == TRIGGER_EVENT_DELETE && delete_old_table && |
5768 | TupIsNull(oldslot))); |
5769 | Assert(!(event == TRIGGER_EVENT_INSERT && insert_new_table && |
5770 | TupIsNull(newslot))); |
5771 | |
5772 | if (!TupIsNull(oldslot) && |
5773 | ((event == TRIGGER_EVENT_DELETE && delete_old_table) || |
5774 | (event == TRIGGER_EVENT_UPDATE && update_old_table))) |
5775 | { |
5776 | Tuplestorestate *old_tuplestore; |
5777 | |
5778 | old_tuplestore = transition_capture->tcs_private->old_tuplestore; |
5779 | |
5780 | if (map != NULL) |
5781 | { |
5782 | TupleTableSlot *storeslot; |
5783 | |
5784 | storeslot = transition_capture->tcs_private->storeslot; |
5785 | if (!storeslot) |
5786 | { |
5787 | storeslot = ExecAllocTableSlot(&estate->es_tupleTable, |
5788 | map->outdesc, |
5789 | &TTSOpsVirtual); |
5790 | transition_capture->tcs_private->storeslot = storeslot; |
5791 | } |
5792 | |
5793 | execute_attr_map_slot(map->attrMap, oldslot, storeslot); |
5794 | tuplestore_puttupleslot(old_tuplestore, storeslot); |
5795 | } |
5796 | else |
5797 | tuplestore_puttupleslot(old_tuplestore, oldslot); |
5798 | } |
5799 | if (!TupIsNull(newslot) && |
5800 | ((event == TRIGGER_EVENT_INSERT && insert_new_table) || |
5801 | (event == TRIGGER_EVENT_UPDATE && update_new_table))) |
5802 | { |
5803 | Tuplestorestate *new_tuplestore; |
5804 | |
5805 | new_tuplestore = transition_capture->tcs_private->new_tuplestore; |
5806 | |
5807 | if (original_insert_tuple != NULL) |
5808 | tuplestore_puttupleslot(new_tuplestore, |
5809 | original_insert_tuple); |
5810 | else if (map != NULL) |
5811 | { |
5812 | TupleTableSlot *storeslot; |
5813 | |
5814 | storeslot = transition_capture->tcs_private->storeslot; |
5815 | |
5816 | if (!storeslot) |
5817 | { |
5818 | storeslot = ExecAllocTableSlot(&estate->es_tupleTable, |
5819 | map->outdesc, |
5820 | &TTSOpsVirtual); |
5821 | transition_capture->tcs_private->storeslot = storeslot; |
5822 | } |
5823 | |
5824 | execute_attr_map_slot(map->attrMap, newslot, storeslot); |
5825 | tuplestore_puttupleslot(new_tuplestore, storeslot); |
5826 | } |
5827 | else |
5828 | tuplestore_puttupleslot(new_tuplestore, newslot); |
5829 | } |
5830 | |
5831 | /* |
5832 | * If transition tables are the only reason we're here, return. As |
5833 | * mentioned above, we can also be here during update tuple routing in |
5834 | * presence of transition tables, in which case this function is |
5835 | * called separately for oldtup and newtup, so we expect exactly one |
5836 | * of them to be NULL. |
5837 | */ |
5838 | if (trigdesc == NULL || |
5839 | (event == TRIGGER_EVENT_DELETE && !trigdesc->trig_delete_after_row) || |
5840 | (event == TRIGGER_EVENT_INSERT && !trigdesc->trig_insert_after_row) || |
5841 | (event == TRIGGER_EVENT_UPDATE && !trigdesc->trig_update_after_row) || |
5842 | (event == TRIGGER_EVENT_UPDATE && (TupIsNull(oldslot) ^ TupIsNull(newslot)))) |
5843 | return; |
5844 | } |
5845 | |
5846 | /* |
5847 | * Validate the event code and collect the associated tuple CTIDs. |
5848 | * |
5849 | * The event code will be used both as a bitmask and an array offset, so |
5850 | * validation is important to make sure we don't walk off the edge of our |
5851 | * arrays. |
5852 | * |
5853 | * Also, if we're considering statement-level triggers, check whether we |
5854 | * already queued a set of them for this event, and cancel the prior set |
5855 | * if so. This preserves the behavior that statement-level triggers fire |
5856 | * just once per statement and fire after row-level triggers. |
5857 | */ |
5858 | switch (event) |
5859 | { |
5860 | case TRIGGER_EVENT_INSERT: |
5861 | tgtype_event = TRIGGER_TYPE_INSERT; |
5862 | if (row_trigger) |
5863 | { |
5864 | Assert(oldslot == NULL); |
5865 | Assert(newslot != NULL); |
5866 | ItemPointerCopy(&(newslot->tts_tid), &(new_event.ate_ctid1)); |
5867 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5868 | } |
5869 | else |
5870 | { |
5871 | Assert(oldslot == NULL); |
5872 | Assert(newslot == NULL); |
5873 | ItemPointerSetInvalid(&(new_event.ate_ctid1)); |
5874 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5875 | cancel_prior_stmt_triggers(RelationGetRelid(rel), |
5876 | CMD_INSERT, event); |
5877 | } |
5878 | break; |
5879 | case TRIGGER_EVENT_DELETE: |
5880 | tgtype_event = TRIGGER_TYPE_DELETE; |
5881 | if (row_trigger) |
5882 | { |
5883 | Assert(oldslot != NULL); |
5884 | Assert(newslot == NULL); |
5885 | ItemPointerCopy(&(oldslot->tts_tid), &(new_event.ate_ctid1)); |
5886 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5887 | } |
5888 | else |
5889 | { |
5890 | Assert(oldslot == NULL); |
5891 | Assert(newslot == NULL); |
5892 | ItemPointerSetInvalid(&(new_event.ate_ctid1)); |
5893 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5894 | cancel_prior_stmt_triggers(RelationGetRelid(rel), |
5895 | CMD_DELETE, event); |
5896 | } |
5897 | break; |
5898 | case TRIGGER_EVENT_UPDATE: |
5899 | tgtype_event = TRIGGER_TYPE_UPDATE; |
5900 | if (row_trigger) |
5901 | { |
5902 | Assert(oldslot != NULL); |
5903 | Assert(newslot != NULL); |
5904 | ItemPointerCopy(&(oldslot->tts_tid), &(new_event.ate_ctid1)); |
5905 | ItemPointerCopy(&(newslot->tts_tid), &(new_event.ate_ctid2)); |
5906 | } |
5907 | else |
5908 | { |
5909 | Assert(oldslot == NULL); |
5910 | Assert(newslot == NULL); |
5911 | ItemPointerSetInvalid(&(new_event.ate_ctid1)); |
5912 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5913 | cancel_prior_stmt_triggers(RelationGetRelid(rel), |
5914 | CMD_UPDATE, event); |
5915 | } |
5916 | break; |
5917 | case TRIGGER_EVENT_TRUNCATE: |
5918 | tgtype_event = TRIGGER_TYPE_TRUNCATE; |
5919 | Assert(oldslot == NULL); |
5920 | Assert(newslot == NULL); |
5921 | ItemPointerSetInvalid(&(new_event.ate_ctid1)); |
5922 | ItemPointerSetInvalid(&(new_event.ate_ctid2)); |
5923 | break; |
5924 | default: |
5925 | elog(ERROR, "invalid after-trigger event code: %d" , event); |
5926 | tgtype_event = 0; /* keep compiler quiet */ |
5927 | break; |
5928 | } |
5929 | |
5930 | if (!(relkind == RELKIND_FOREIGN_TABLE && row_trigger)) |
5931 | new_event.ate_flags = (row_trigger && event == TRIGGER_EVENT_UPDATE) ? |
5932 | AFTER_TRIGGER_2CTID : AFTER_TRIGGER_1CTID; |
5933 | /* else, we'll initialize ate_flags for each trigger */ |
5934 | |
5935 | tgtype_level = (row_trigger ? TRIGGER_TYPE_ROW : TRIGGER_TYPE_STATEMENT); |
5936 | |
5937 | for (i = 0; i < trigdesc->numtriggers; i++) |
5938 | { |
5939 | Trigger *trigger = &trigdesc->triggers[i]; |
5940 | |
5941 | if (!TRIGGER_TYPE_MATCHES(trigger->tgtype, |
5942 | tgtype_level, |
5943 | TRIGGER_TYPE_AFTER, |
5944 | tgtype_event)) |
5945 | continue; |
5946 | if (!TriggerEnabled(estate, relinfo, trigger, event, |
5947 | modifiedCols, oldslot, newslot)) |
5948 | continue; |
5949 | |
5950 | if (relkind == RELKIND_FOREIGN_TABLE && row_trigger) |
5951 | { |
5952 | if (fdw_tuplestore == NULL) |
5953 | { |
5954 | fdw_tuplestore = GetCurrentFDWTuplestore(); |
5955 | new_event.ate_flags = AFTER_TRIGGER_FDW_FETCH; |
5956 | } |
5957 | else |
5958 | /* subsequent event for the same tuple */ |
5959 | new_event.ate_flags = AFTER_TRIGGER_FDW_REUSE; |
5960 | } |
5961 | |
5962 | /* |
5963 | * If the trigger is a foreign key enforcement trigger, there are |
5964 | * certain cases where we can skip queueing the event because we can |
5965 | * tell by inspection that the FK constraint will still pass. |
5966 | */ |
5967 | if (TRIGGER_FIRED_BY_UPDATE(event) || TRIGGER_FIRED_BY_DELETE(event)) |
5968 | { |
5969 | switch (RI_FKey_trigger_type(trigger->tgfoid)) |
5970 | { |
5971 | case RI_TRIGGER_PK: |
5972 | /* Update or delete on trigger's PK table */ |
5973 | if (!RI_FKey_pk_upd_check_required(trigger, rel, |
5974 | oldslot, newslot)) |
5975 | { |
5976 | /* skip queuing this event */ |
5977 | continue; |
5978 | } |
5979 | break; |
5980 | |
5981 | case RI_TRIGGER_FK: |
5982 | /* Update on trigger's FK table */ |
5983 | if (!RI_FKey_fk_upd_check_required(trigger, rel, |
5984 | oldslot, newslot)) |
5985 | { |
5986 | /* skip queuing this event */ |
5987 | continue; |
5988 | } |
5989 | break; |
5990 | |
5991 | case RI_TRIGGER_NONE: |
5992 | /* Not an FK trigger */ |
5993 | break; |
5994 | } |
5995 | } |
5996 | |
5997 | /* |
5998 | * If the trigger is a deferred unique constraint check trigger, only |
5999 | * queue it if the unique constraint was potentially violated, which |
6000 | * we know from index insertion time. |
6001 | */ |
6002 | if (trigger->tgfoid == F_UNIQUE_KEY_RECHECK) |
6003 | { |
6004 | if (!list_member_oid(recheckIndexes, trigger->tgconstrindid)) |
6005 | continue; /* Uniqueness definitely not violated */ |
6006 | } |
6007 | |
6008 | /* |
6009 | * Fill in event structure and add it to the current query's queue. |
6010 | * Note we set ats_table to NULL whenever this trigger doesn't use |
6011 | * transition tables, to improve sharability of the shared event data. |
6012 | */ |
6013 | new_shared.ats_event = |
6014 | (event & TRIGGER_EVENT_OPMASK) | |
6015 | (row_trigger ? TRIGGER_EVENT_ROW : 0) | |
6016 | (trigger->tgdeferrable ? AFTER_TRIGGER_DEFERRABLE : 0) | |
6017 | (trigger->tginitdeferred ? AFTER_TRIGGER_INITDEFERRED : 0); |
6018 | new_shared.ats_tgoid = trigger->tgoid; |
6019 | new_shared.ats_relid = RelationGetRelid(rel); |
6020 | new_shared.ats_firing_id = 0; |
6021 | if ((trigger->tgoldtable || trigger->tgnewtable) && |
6022 | transition_capture != NULL) |
6023 | new_shared.ats_table = transition_capture->tcs_private; |
6024 | else |
6025 | new_shared.ats_table = NULL; |
6026 | |
6027 | afterTriggerAddEvent(&afterTriggers.query_stack[afterTriggers.query_depth].events, |
6028 | &new_event, &new_shared); |
6029 | } |
6030 | |
6031 | /* |
6032 | * Finally, spool any foreign tuple(s). The tuplestore squashes them to |
6033 | * minimal tuples, so this loses any system columns. The executor lost |
6034 | * those columns before us, for an unrelated reason, so this is fine. |
6035 | */ |
6036 | if (fdw_tuplestore) |
6037 | { |
6038 | if (oldslot != NULL) |
6039 | tuplestore_puttupleslot(fdw_tuplestore, oldslot); |
6040 | if (newslot != NULL) |
6041 | tuplestore_puttupleslot(fdw_tuplestore, newslot); |
6042 | } |
6043 | } |
6044 | |
6045 | /* |
6046 | * Detect whether we already queued BEFORE STATEMENT triggers for the given |
6047 | * relation + operation, and set the flag so the next call will report "true". |
6048 | */ |
6049 | static bool |
6050 | before_stmt_triggers_fired(Oid relid, CmdType cmdType) |
6051 | { |
6052 | bool result; |
6053 | AfterTriggersTableData *table; |
6054 | |
6055 | /* Check state, like AfterTriggerSaveEvent. */ |
6056 | if (afterTriggers.query_depth < 0) |
6057 | elog(ERROR, "before_stmt_triggers_fired() called outside of query" ); |
6058 | |
6059 | /* Be sure we have enough space to record events at this query depth. */ |
6060 | if (afterTriggers.query_depth >= afterTriggers.maxquerydepth) |
6061 | AfterTriggerEnlargeQueryState(); |
6062 | |
6063 | /* |
6064 | * We keep this state in the AfterTriggersTableData that also holds |
6065 | * transition tables for the relation + operation. In this way, if we are |
6066 | * forced to make a new set of transition tables because more tuples get |
6067 | * entered after we've already fired triggers, we will allow a new set of |
6068 | * statement triggers to get queued. |
6069 | */ |
6070 | table = GetAfterTriggersTableData(relid, cmdType); |
6071 | result = table->before_trig_done; |
6072 | table->before_trig_done = true; |
6073 | return result; |
6074 | } |
6075 | |
6076 | /* |
6077 | * If we previously queued a set of AFTER STATEMENT triggers for the given |
6078 | * relation + operation, and they've not been fired yet, cancel them. The |
6079 | * caller will queue a fresh set that's after any row-level triggers that may |
6080 | * have been queued by the current sub-statement, preserving (as much as |
6081 | * possible) the property that AFTER ROW triggers fire before AFTER STATEMENT |
6082 | * triggers, and that the latter only fire once. This deals with the |
6083 | * situation where several FK enforcement triggers sequentially queue triggers |
6084 | * for the same table into the same trigger query level. We can't fully |
6085 | * prevent odd behavior though: if there are AFTER ROW triggers taking |
6086 | * transition tables, we don't want to change the transition tables once the |
6087 | * first such trigger has seen them. In such a case, any additional events |
6088 | * will result in creating new transition tables and allowing new firings of |
6089 | * statement triggers. |
6090 | * |
6091 | * This also saves the current event list location so that a later invocation |
6092 | * of this function can cheaply find the triggers we're about to queue and |
6093 | * cancel them. |
6094 | */ |
6095 | static void |
6096 | cancel_prior_stmt_triggers(Oid relid, CmdType cmdType, int tgevent) |
6097 | { |
6098 | AfterTriggersTableData *table; |
6099 | AfterTriggersQueryData *qs = &afterTriggers.query_stack[afterTriggers.query_depth]; |
6100 | |
6101 | /* |
6102 | * We keep this state in the AfterTriggersTableData that also holds |
6103 | * transition tables for the relation + operation. In this way, if we are |
6104 | * forced to make a new set of transition tables because more tuples get |
6105 | * entered after we've already fired triggers, we will allow a new set of |
6106 | * statement triggers to get queued without canceling the old ones. |
6107 | */ |
6108 | table = GetAfterTriggersTableData(relid, cmdType); |
6109 | |
6110 | if (table->after_trig_done) |
6111 | { |
6112 | /* |
6113 | * We want to start scanning from the tail location that existed just |
6114 | * before we inserted any statement triggers. But the events list |
6115 | * might've been entirely empty then, in which case scan from the |
6116 | * current head. |
6117 | */ |
6118 | AfterTriggerEvent event; |
6119 | AfterTriggerEventChunk *chunk; |
6120 | |
6121 | if (table->after_trig_events.tail) |
6122 | { |
6123 | chunk = table->after_trig_events.tail; |
6124 | event = (AfterTriggerEvent) table->after_trig_events.tailfree; |
6125 | } |
6126 | else |
6127 | { |
6128 | chunk = qs->events.head; |
6129 | event = NULL; |
6130 | } |
6131 | |
6132 | for_each_chunk_from(chunk) |
6133 | { |
6134 | if (event == NULL) |
6135 | event = (AfterTriggerEvent) CHUNK_DATA_START(chunk); |
6136 | for_each_event_from(event, chunk) |
6137 | { |
6138 | AfterTriggerShared evtshared = GetTriggerSharedData(event); |
6139 | |
6140 | /* |
6141 | * Exit loop when we reach events that aren't AS triggers for |
6142 | * the target relation. |
6143 | */ |
6144 | if (evtshared->ats_relid != relid) |
6145 | goto done; |
6146 | if ((evtshared->ats_event & TRIGGER_EVENT_OPMASK) != tgevent) |
6147 | goto done; |
6148 | if (!TRIGGER_FIRED_FOR_STATEMENT(evtshared->ats_event)) |
6149 | goto done; |
6150 | if (!TRIGGER_FIRED_AFTER(evtshared->ats_event)) |
6151 | goto done; |
6152 | /* OK, mark it DONE */ |
6153 | event->ate_flags &= ~AFTER_TRIGGER_IN_PROGRESS; |
6154 | event->ate_flags |= AFTER_TRIGGER_DONE; |
6155 | } |
6156 | /* signal we must reinitialize event ptr for next chunk */ |
6157 | event = NULL; |
6158 | } |
6159 | } |
6160 | done: |
6161 | |
6162 | /* In any case, save current insertion point for next time */ |
6163 | table->after_trig_done = true; |
6164 | table->after_trig_events = qs->events; |
6165 | } |
6166 | |
6167 | /* |
6168 | * SQL function pg_trigger_depth() |
6169 | */ |
6170 | Datum |
6171 | pg_trigger_depth(PG_FUNCTION_ARGS) |
6172 | { |
6173 | PG_RETURN_INT32(MyTriggerDepth); |
6174 | } |
6175 | |