| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * vacuum.c |
| 4 | * The postgres vacuum cleaner. |
| 5 | * |
| 6 | * This file now includes only control and dispatch code for VACUUM and |
| 7 | * ANALYZE commands. Regular VACUUM is implemented in vacuumlazy.c, |
| 8 | * ANALYZE in analyze.c, and VACUUM FULL is a variant of CLUSTER, handled |
| 9 | * in cluster.c. |
| 10 | * |
| 11 | * |
| 12 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 13 | * Portions Copyright (c) 1994, Regents of the University of California |
| 14 | * |
| 15 | * |
| 16 | * IDENTIFICATION |
| 17 | * src/backend/commands/vacuum.c |
| 18 | * |
| 19 | *------------------------------------------------------------------------- |
| 20 | */ |
| 21 | #include "postgres.h" |
| 22 | |
| 23 | #include <math.h> |
| 24 | |
| 25 | #include "access/clog.h" |
| 26 | #include "access/commit_ts.h" |
| 27 | #include "access/genam.h" |
| 28 | #include "access/heapam.h" |
| 29 | #include "access/htup_details.h" |
| 30 | #include "access/multixact.h" |
| 31 | #include "access/tableam.h" |
| 32 | #include "access/transam.h" |
| 33 | #include "access/xact.h" |
| 34 | #include "catalog/namespace.h" |
| 35 | #include "catalog/pg_database.h" |
| 36 | #include "catalog/pg_inherits.h" |
| 37 | #include "catalog/pg_namespace.h" |
| 38 | #include "commands/cluster.h" |
| 39 | #include "commands/defrem.h" |
| 40 | #include "commands/vacuum.h" |
| 41 | #include "miscadmin.h" |
| 42 | #include "nodes/makefuncs.h" |
| 43 | #include "pgstat.h" |
| 44 | #include "postmaster/autovacuum.h" |
| 45 | #include "storage/bufmgr.h" |
| 46 | #include "storage/lmgr.h" |
| 47 | #include "storage/proc.h" |
| 48 | #include "storage/procarray.h" |
| 49 | #include "utils/acl.h" |
| 50 | #include "utils/fmgroids.h" |
| 51 | #include "utils/guc.h" |
| 52 | #include "utils/memutils.h" |
| 53 | #include "utils/snapmgr.h" |
| 54 | #include "utils/syscache.h" |
| 55 | |
| 56 | |
| 57 | /* |
| 58 | * GUC parameters |
| 59 | */ |
| 60 | int vacuum_freeze_min_age; |
| 61 | int vacuum_freeze_table_age; |
| 62 | int vacuum_multixact_freeze_min_age; |
| 63 | int vacuum_multixact_freeze_table_age; |
| 64 | |
| 65 | |
| 66 | /* A few variables that don't seem worth passing around as parameters */ |
| 67 | static MemoryContext vac_context = NULL; |
| 68 | static BufferAccessStrategy vac_strategy; |
| 69 | |
| 70 | |
| 71 | /* non-export function prototypes */ |
| 72 | static List *expand_vacuum_rel(VacuumRelation *vrel, int options); |
| 73 | static List *get_all_vacuum_rels(int options); |
| 74 | static void vac_truncate_clog(TransactionId frozenXID, |
| 75 | MultiXactId minMulti, |
| 76 | TransactionId lastSaneFrozenXid, |
| 77 | MultiXactId lastSaneMinMulti); |
| 78 | static bool vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params); |
| 79 | static VacOptTernaryValue get_vacopt_ternary_value(DefElem *def); |
| 80 | |
| 81 | /* |
| 82 | * Primary entry point for manual VACUUM and ANALYZE commands |
| 83 | * |
| 84 | * This is mainly a preparation wrapper for the real operations that will |
| 85 | * happen in vacuum(). |
| 86 | */ |
| 87 | void |
| 88 | ExecVacuum(ParseState *pstate, VacuumStmt *vacstmt, bool isTopLevel) |
| 89 | { |
| 90 | VacuumParams params; |
| 91 | bool verbose = false; |
| 92 | bool skip_locked = false; |
| 93 | bool analyze = false; |
| 94 | bool freeze = false; |
| 95 | bool full = false; |
| 96 | bool disable_page_skipping = false; |
| 97 | ListCell *lc; |
| 98 | |
| 99 | /* Set default value */ |
| 100 | params.index_cleanup = VACOPT_TERNARY_DEFAULT; |
| 101 | params.truncate = VACOPT_TERNARY_DEFAULT; |
| 102 | |
| 103 | /* Parse options list */ |
| 104 | foreach(lc, vacstmt->options) |
| 105 | { |
| 106 | DefElem *opt = (DefElem *) lfirst(lc); |
| 107 | |
| 108 | /* Parse common options for VACUUM and ANALYZE */ |
| 109 | if (strcmp(opt->defname, "verbose" ) == 0) |
| 110 | verbose = defGetBoolean(opt); |
| 111 | else if (strcmp(opt->defname, "skip_locked" ) == 0) |
| 112 | skip_locked = defGetBoolean(opt); |
| 113 | else if (!vacstmt->is_vacuumcmd) |
| 114 | ereport(ERROR, |
| 115 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 116 | errmsg("unrecognized ANALYZE option \"%s\"" , opt->defname), |
| 117 | parser_errposition(pstate, opt->location))); |
| 118 | |
| 119 | /* Parse options available on VACUUM */ |
| 120 | else if (strcmp(opt->defname, "analyze" ) == 0) |
| 121 | analyze = defGetBoolean(opt); |
| 122 | else if (strcmp(opt->defname, "freeze" ) == 0) |
| 123 | freeze = defGetBoolean(opt); |
| 124 | else if (strcmp(opt->defname, "full" ) == 0) |
| 125 | full = defGetBoolean(opt); |
| 126 | else if (strcmp(opt->defname, "disable_page_skipping" ) == 0) |
| 127 | disable_page_skipping = defGetBoolean(opt); |
| 128 | else if (strcmp(opt->defname, "index_cleanup" ) == 0) |
| 129 | params.index_cleanup = get_vacopt_ternary_value(opt); |
| 130 | else if (strcmp(opt->defname, "truncate" ) == 0) |
| 131 | params.truncate = get_vacopt_ternary_value(opt); |
| 132 | else |
| 133 | ereport(ERROR, |
| 134 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 135 | errmsg("unrecognized VACUUM option \"%s\"" , opt->defname), |
| 136 | parser_errposition(pstate, opt->location))); |
| 137 | } |
| 138 | |
| 139 | /* Set vacuum options */ |
| 140 | params.options = |
| 141 | (vacstmt->is_vacuumcmd ? VACOPT_VACUUM : VACOPT_ANALYZE) | |
| 142 | (verbose ? VACOPT_VERBOSE : 0) | |
| 143 | (skip_locked ? VACOPT_SKIP_LOCKED : 0) | |
| 144 | (analyze ? VACOPT_ANALYZE : 0) | |
| 145 | (freeze ? VACOPT_FREEZE : 0) | |
| 146 | (full ? VACOPT_FULL : 0) | |
| 147 | (disable_page_skipping ? VACOPT_DISABLE_PAGE_SKIPPING : 0); |
| 148 | |
| 149 | /* sanity checks on options */ |
| 150 | Assert(params.options & (VACOPT_VACUUM | VACOPT_ANALYZE)); |
| 151 | Assert((params.options & VACOPT_VACUUM) || |
| 152 | !(params.options & (VACOPT_FULL | VACOPT_FREEZE))); |
| 153 | Assert(!(params.options & VACOPT_SKIPTOAST)); |
| 154 | |
| 155 | /* |
| 156 | * Make sure VACOPT_ANALYZE is specified if any column lists are present. |
| 157 | */ |
| 158 | if (!(params.options & VACOPT_ANALYZE)) |
| 159 | { |
| 160 | ListCell *lc; |
| 161 | |
| 162 | foreach(lc, vacstmt->rels) |
| 163 | { |
| 164 | VacuumRelation *vrel = lfirst_node(VacuumRelation, lc); |
| 165 | |
| 166 | if (vrel->va_cols != NIL) |
| 167 | ereport(ERROR, |
| 168 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 169 | errmsg("ANALYZE option must be specified when a column list is provided" ))); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * All freeze ages are zero if the FREEZE option is given; otherwise pass |
| 175 | * them as -1 which means to use the default values. |
| 176 | */ |
| 177 | if (params.options & VACOPT_FREEZE) |
| 178 | { |
| 179 | params.freeze_min_age = 0; |
| 180 | params.freeze_table_age = 0; |
| 181 | params.multixact_freeze_min_age = 0; |
| 182 | params.multixact_freeze_table_age = 0; |
| 183 | } |
| 184 | else |
| 185 | { |
| 186 | params.freeze_min_age = -1; |
| 187 | params.freeze_table_age = -1; |
| 188 | params.multixact_freeze_min_age = -1; |
| 189 | params.multixact_freeze_table_age = -1; |
| 190 | } |
| 191 | |
| 192 | /* user-invoked vacuum is never "for wraparound" */ |
| 193 | params.is_wraparound = false; |
| 194 | |
| 195 | /* user-invoked vacuum never uses this parameter */ |
| 196 | params.log_min_duration = -1; |
| 197 | |
| 198 | /* Now go through the common routine */ |
| 199 | vacuum(vacstmt->rels, ¶ms, NULL, isTopLevel); |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Internal entry point for VACUUM and ANALYZE commands. |
| 204 | * |
| 205 | * relations, if not NIL, is a list of VacuumRelation to process; otherwise, |
| 206 | * we process all relevant tables in the database. For each VacuumRelation, |
| 207 | * if a valid OID is supplied, the table with that OID is what to process; |
| 208 | * otherwise, the VacuumRelation's RangeVar indicates what to process. |
| 209 | * |
| 210 | * params contains a set of parameters that can be used to customize the |
| 211 | * behavior. |
| 212 | * |
| 213 | * bstrategy is normally given as NULL, but in autovacuum it can be passed |
| 214 | * in to use the same buffer strategy object across multiple vacuum() calls. |
| 215 | * |
| 216 | * isTopLevel should be passed down from ProcessUtility. |
| 217 | * |
| 218 | * It is the caller's responsibility that all parameters are allocated in a |
| 219 | * memory context that will not disappear at transaction commit. |
| 220 | */ |
| 221 | void |
| 222 | vacuum(List *relations, VacuumParams *params, |
| 223 | BufferAccessStrategy bstrategy, bool isTopLevel) |
| 224 | { |
| 225 | static bool in_vacuum = false; |
| 226 | |
| 227 | const char *stmttype; |
| 228 | volatile bool in_outer_xact, |
| 229 | use_own_xacts; |
| 230 | |
| 231 | Assert(params != NULL); |
| 232 | |
| 233 | stmttype = (params->options & VACOPT_VACUUM) ? "VACUUM" : "ANALYZE" ; |
| 234 | |
| 235 | /* |
| 236 | * We cannot run VACUUM inside a user transaction block; if we were inside |
| 237 | * a transaction, then our commit- and start-transaction-command calls |
| 238 | * would not have the intended effect! There are numerous other subtle |
| 239 | * dependencies on this, too. |
| 240 | * |
| 241 | * ANALYZE (without VACUUM) can run either way. |
| 242 | */ |
| 243 | if (params->options & VACOPT_VACUUM) |
| 244 | { |
| 245 | PreventInTransactionBlock(isTopLevel, stmttype); |
| 246 | in_outer_xact = false; |
| 247 | } |
| 248 | else |
| 249 | in_outer_xact = IsInTransactionBlock(isTopLevel); |
| 250 | |
| 251 | /* |
| 252 | * Due to static variables vac_context, anl_context and vac_strategy, |
| 253 | * vacuum() is not reentrant. This matters when VACUUM FULL or ANALYZE |
| 254 | * calls a hostile index expression that itself calls ANALYZE. |
| 255 | */ |
| 256 | if (in_vacuum) |
| 257 | ereport(ERROR, |
| 258 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 259 | errmsg("%s cannot be executed from VACUUM or ANALYZE" , |
| 260 | stmttype))); |
| 261 | |
| 262 | /* |
| 263 | * Sanity check DISABLE_PAGE_SKIPPING option. |
| 264 | */ |
| 265 | if ((params->options & VACOPT_FULL) != 0 && |
| 266 | (params->options & VACOPT_DISABLE_PAGE_SKIPPING) != 0) |
| 267 | ereport(ERROR, |
| 268 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 269 | errmsg("VACUUM option DISABLE_PAGE_SKIPPING cannot be used with FULL" ))); |
| 270 | |
| 271 | /* |
| 272 | * Send info about dead objects to the statistics collector, unless we are |
| 273 | * in autovacuum --- autovacuum.c does this for itself. |
| 274 | */ |
| 275 | if ((params->options & VACOPT_VACUUM) && !IsAutoVacuumWorkerProcess()) |
| 276 | pgstat_vacuum_stat(); |
| 277 | |
| 278 | /* |
| 279 | * Create special memory context for cross-transaction storage. |
| 280 | * |
| 281 | * Since it is a child of PortalContext, it will go away eventually even |
| 282 | * if we suffer an error; there's no need for special abort cleanup logic. |
| 283 | */ |
| 284 | vac_context = AllocSetContextCreate(PortalContext, |
| 285 | "Vacuum" , |
| 286 | ALLOCSET_DEFAULT_SIZES); |
| 287 | |
| 288 | /* |
| 289 | * If caller didn't give us a buffer strategy object, make one in the |
| 290 | * cross-transaction memory context. |
| 291 | */ |
| 292 | if (bstrategy == NULL) |
| 293 | { |
| 294 | MemoryContext old_context = MemoryContextSwitchTo(vac_context); |
| 295 | |
| 296 | bstrategy = GetAccessStrategy(BAS_VACUUM); |
| 297 | MemoryContextSwitchTo(old_context); |
| 298 | } |
| 299 | vac_strategy = bstrategy; |
| 300 | |
| 301 | /* |
| 302 | * Build list of relation(s) to process, putting any new data in |
| 303 | * vac_context for safekeeping. |
| 304 | */ |
| 305 | if (relations != NIL) |
| 306 | { |
| 307 | List *newrels = NIL; |
| 308 | ListCell *lc; |
| 309 | |
| 310 | foreach(lc, relations) |
| 311 | { |
| 312 | VacuumRelation *vrel = lfirst_node(VacuumRelation, lc); |
| 313 | List *sublist; |
| 314 | MemoryContext old_context; |
| 315 | |
| 316 | sublist = expand_vacuum_rel(vrel, params->options); |
| 317 | old_context = MemoryContextSwitchTo(vac_context); |
| 318 | newrels = list_concat(newrels, sublist); |
| 319 | MemoryContextSwitchTo(old_context); |
| 320 | } |
| 321 | relations = newrels; |
| 322 | } |
| 323 | else |
| 324 | relations = get_all_vacuum_rels(params->options); |
| 325 | |
| 326 | /* |
| 327 | * Decide whether we need to start/commit our own transactions. |
| 328 | * |
| 329 | * For VACUUM (with or without ANALYZE): always do so, so that we can |
| 330 | * release locks as soon as possible. (We could possibly use the outer |
| 331 | * transaction for a one-table VACUUM, but handling TOAST tables would be |
| 332 | * problematic.) |
| 333 | * |
| 334 | * For ANALYZE (no VACUUM): if inside a transaction block, we cannot |
| 335 | * start/commit our own transactions. Also, there's no need to do so if |
| 336 | * only processing one relation. For multiple relations when not within a |
| 337 | * transaction block, and also in an autovacuum worker, use own |
| 338 | * transactions so we can release locks sooner. |
| 339 | */ |
| 340 | if (params->options & VACOPT_VACUUM) |
| 341 | use_own_xacts = true; |
| 342 | else |
| 343 | { |
| 344 | Assert(params->options & VACOPT_ANALYZE); |
| 345 | if (IsAutoVacuumWorkerProcess()) |
| 346 | use_own_xacts = true; |
| 347 | else if (in_outer_xact) |
| 348 | use_own_xacts = false; |
| 349 | else if (list_length(relations) > 1) |
| 350 | use_own_xacts = true; |
| 351 | else |
| 352 | use_own_xacts = false; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * vacuum_rel expects to be entered with no transaction active; it will |
| 357 | * start and commit its own transaction. But we are called by an SQL |
| 358 | * command, and so we are executing inside a transaction already. We |
| 359 | * commit the transaction started in PostgresMain() here, and start |
| 360 | * another one before exiting to match the commit waiting for us back in |
| 361 | * PostgresMain(). |
| 362 | */ |
| 363 | if (use_own_xacts) |
| 364 | { |
| 365 | Assert(!in_outer_xact); |
| 366 | |
| 367 | /* ActiveSnapshot is not set by autovacuum */ |
| 368 | if (ActiveSnapshotSet()) |
| 369 | PopActiveSnapshot(); |
| 370 | |
| 371 | /* matches the StartTransaction in PostgresMain() */ |
| 372 | CommitTransactionCommand(); |
| 373 | } |
| 374 | |
| 375 | /* Turn vacuum cost accounting on or off, and set/clear in_vacuum */ |
| 376 | PG_TRY(); |
| 377 | { |
| 378 | ListCell *cur; |
| 379 | |
| 380 | in_vacuum = true; |
| 381 | VacuumCostActive = (VacuumCostDelay > 0); |
| 382 | VacuumCostBalance = 0; |
| 383 | VacuumPageHit = 0; |
| 384 | VacuumPageMiss = 0; |
| 385 | VacuumPageDirty = 0; |
| 386 | |
| 387 | /* |
| 388 | * Loop to process each selected relation. |
| 389 | */ |
| 390 | foreach(cur, relations) |
| 391 | { |
| 392 | VacuumRelation *vrel = lfirst_node(VacuumRelation, cur); |
| 393 | |
| 394 | if (params->options & VACOPT_VACUUM) |
| 395 | { |
| 396 | if (!vacuum_rel(vrel->oid, vrel->relation, params)) |
| 397 | continue; |
| 398 | } |
| 399 | |
| 400 | if (params->options & VACOPT_ANALYZE) |
| 401 | { |
| 402 | /* |
| 403 | * If using separate xacts, start one for analyze. Otherwise, |
| 404 | * we can use the outer transaction. |
| 405 | */ |
| 406 | if (use_own_xacts) |
| 407 | { |
| 408 | StartTransactionCommand(); |
| 409 | /* functions in indexes may want a snapshot set */ |
| 410 | PushActiveSnapshot(GetTransactionSnapshot()); |
| 411 | } |
| 412 | |
| 413 | analyze_rel(vrel->oid, vrel->relation, params, |
| 414 | vrel->va_cols, in_outer_xact, vac_strategy); |
| 415 | |
| 416 | if (use_own_xacts) |
| 417 | { |
| 418 | PopActiveSnapshot(); |
| 419 | CommitTransactionCommand(); |
| 420 | } |
| 421 | else |
| 422 | { |
| 423 | /* |
| 424 | * If we're not using separate xacts, better separate the |
| 425 | * ANALYZE actions with CCIs. This avoids trouble if user |
| 426 | * says "ANALYZE t, t". |
| 427 | */ |
| 428 | CommandCounterIncrement(); |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | PG_CATCH(); |
| 434 | { |
| 435 | in_vacuum = false; |
| 436 | VacuumCostActive = false; |
| 437 | PG_RE_THROW(); |
| 438 | } |
| 439 | PG_END_TRY(); |
| 440 | |
| 441 | in_vacuum = false; |
| 442 | VacuumCostActive = false; |
| 443 | |
| 444 | /* |
| 445 | * Finish up processing. |
| 446 | */ |
| 447 | if (use_own_xacts) |
| 448 | { |
| 449 | /* here, we are not in a transaction */ |
| 450 | |
| 451 | /* |
| 452 | * This matches the CommitTransaction waiting for us in |
| 453 | * PostgresMain(). |
| 454 | */ |
| 455 | StartTransactionCommand(); |
| 456 | } |
| 457 | |
| 458 | if ((params->options & VACOPT_VACUUM) && !IsAutoVacuumWorkerProcess()) |
| 459 | { |
| 460 | /* |
| 461 | * Update pg_database.datfrozenxid, and truncate pg_xact if possible. |
| 462 | * (autovacuum.c does this for itself.) |
| 463 | */ |
| 464 | vac_update_datfrozenxid(); |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * Clean up working storage --- note we must do this after |
| 469 | * StartTransactionCommand, else we might be trying to delete the active |
| 470 | * context! |
| 471 | */ |
| 472 | MemoryContextDelete(vac_context); |
| 473 | vac_context = NULL; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Check if a given relation can be safely vacuumed or analyzed. If the |
| 478 | * user is not the relation owner, issue a WARNING log message and return |
| 479 | * false to let the caller decide what to do with this relation. This |
| 480 | * routine is used to decide if a relation can be processed for VACUUM or |
| 481 | * ANALYZE. |
| 482 | */ |
| 483 | bool |
| 484 | vacuum_is_relation_owner(Oid relid, Form_pg_class reltuple, int options) |
| 485 | { |
| 486 | char *relname; |
| 487 | |
| 488 | Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0); |
| 489 | |
| 490 | /* |
| 491 | * Check permissions. |
| 492 | * |
| 493 | * We allow the user to vacuum or analyze a table if he is superuser, the |
| 494 | * table owner, or the database owner (but in the latter case, only if |
| 495 | * it's not a shared relation). pg_class_ownercheck includes the |
| 496 | * superuser case. |
| 497 | * |
| 498 | * Note we choose to treat permissions failure as a WARNING and keep |
| 499 | * trying to vacuum or analyze the rest of the DB --- is this appropriate? |
| 500 | */ |
| 501 | if (pg_class_ownercheck(relid, GetUserId()) || |
| 502 | (pg_database_ownercheck(MyDatabaseId, GetUserId()) && !reltuple->relisshared)) |
| 503 | return true; |
| 504 | |
| 505 | relname = NameStr(reltuple->relname); |
| 506 | |
| 507 | if ((options & VACOPT_VACUUM) != 0) |
| 508 | { |
| 509 | if (reltuple->relisshared) |
| 510 | ereport(WARNING, |
| 511 | (errmsg("skipping \"%s\" --- only superuser can vacuum it" , |
| 512 | relname))); |
| 513 | else if (reltuple->relnamespace == PG_CATALOG_NAMESPACE) |
| 514 | ereport(WARNING, |
| 515 | (errmsg("skipping \"%s\" --- only superuser or database owner can vacuum it" , |
| 516 | relname))); |
| 517 | else |
| 518 | ereport(WARNING, |
| 519 | (errmsg("skipping \"%s\" --- only table or database owner can vacuum it" , |
| 520 | relname))); |
| 521 | |
| 522 | /* |
| 523 | * For VACUUM ANALYZE, both logs could show up, but just generate |
| 524 | * information for VACUUM as that would be the first one to be |
| 525 | * processed. |
| 526 | */ |
| 527 | return false; |
| 528 | } |
| 529 | |
| 530 | if ((options & VACOPT_ANALYZE) != 0) |
| 531 | { |
| 532 | if (reltuple->relisshared) |
| 533 | ereport(WARNING, |
| 534 | (errmsg("skipping \"%s\" --- only superuser can analyze it" , |
| 535 | relname))); |
| 536 | else if (reltuple->relnamespace == PG_CATALOG_NAMESPACE) |
| 537 | ereport(WARNING, |
| 538 | (errmsg("skipping \"%s\" --- only superuser or database owner can analyze it" , |
| 539 | relname))); |
| 540 | else |
| 541 | ereport(WARNING, |
| 542 | (errmsg("skipping \"%s\" --- only table or database owner can analyze it" , |
| 543 | relname))); |
| 544 | } |
| 545 | |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | |
| 550 | /* |
| 551 | * vacuum_open_relation |
| 552 | * |
| 553 | * This routine is used for attempting to open and lock a relation which |
| 554 | * is going to be vacuumed or analyzed. If the relation cannot be opened |
| 555 | * or locked, a log is emitted if possible. |
| 556 | */ |
| 557 | Relation |
| 558 | vacuum_open_relation(Oid relid, RangeVar *relation, int options, |
| 559 | bool verbose, LOCKMODE lmode) |
| 560 | { |
| 561 | Relation onerel; |
| 562 | bool rel_lock = true; |
| 563 | int elevel; |
| 564 | |
| 565 | Assert((options & (VACOPT_VACUUM | VACOPT_ANALYZE)) != 0); |
| 566 | |
| 567 | /* |
| 568 | * Open the relation and get the appropriate lock on it. |
| 569 | * |
| 570 | * There's a race condition here: the relation may have gone away since |
| 571 | * the last time we saw it. If so, we don't need to vacuum or analyze it. |
| 572 | * |
| 573 | * If we've been asked not to wait for the relation lock, acquire it first |
| 574 | * in non-blocking mode, before calling try_relation_open(). |
| 575 | */ |
| 576 | if (!(options & VACOPT_SKIP_LOCKED)) |
| 577 | onerel = try_relation_open(relid, lmode); |
| 578 | else if (ConditionalLockRelationOid(relid, lmode)) |
| 579 | onerel = try_relation_open(relid, NoLock); |
| 580 | else |
| 581 | { |
| 582 | onerel = NULL; |
| 583 | rel_lock = false; |
| 584 | } |
| 585 | |
| 586 | /* if relation is opened, leave */ |
| 587 | if (onerel) |
| 588 | return onerel; |
| 589 | |
| 590 | /* |
| 591 | * Relation could not be opened, hence generate if possible a log |
| 592 | * informing on the situation. |
| 593 | * |
| 594 | * If the RangeVar is not defined, we do not have enough information to |
| 595 | * provide a meaningful log statement. Chances are that the caller has |
| 596 | * intentionally not provided this information so that this logging is |
| 597 | * skipped, anyway. |
| 598 | */ |
| 599 | if (relation == NULL) |
| 600 | return NULL; |
| 601 | |
| 602 | /* |
| 603 | * Determine the log level. |
| 604 | * |
| 605 | * For manual VACUUM or ANALYZE, we emit a WARNING to match the log |
| 606 | * statements in the permission checks; otherwise, only log if the caller |
| 607 | * so requested. |
| 608 | */ |
| 609 | if (!IsAutoVacuumWorkerProcess()) |
| 610 | elevel = WARNING; |
| 611 | else if (verbose) |
| 612 | elevel = LOG; |
| 613 | else |
| 614 | return NULL; |
| 615 | |
| 616 | if ((options & VACOPT_VACUUM) != 0) |
| 617 | { |
| 618 | if (!rel_lock) |
| 619 | ereport(elevel, |
| 620 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 621 | errmsg("skipping vacuum of \"%s\" --- lock not available" , |
| 622 | relation->relname))); |
| 623 | else |
| 624 | ereport(elevel, |
| 625 | (errcode(ERRCODE_UNDEFINED_TABLE), |
| 626 | errmsg("skipping vacuum of \"%s\" --- relation no longer exists" , |
| 627 | relation->relname))); |
| 628 | |
| 629 | /* |
| 630 | * For VACUUM ANALYZE, both logs could show up, but just generate |
| 631 | * information for VACUUM as that would be the first one to be |
| 632 | * processed. |
| 633 | */ |
| 634 | return NULL; |
| 635 | } |
| 636 | |
| 637 | if ((options & VACOPT_ANALYZE) != 0) |
| 638 | { |
| 639 | if (!rel_lock) |
| 640 | ereport(elevel, |
| 641 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 642 | errmsg("skipping analyze of \"%s\" --- lock not available" , |
| 643 | relation->relname))); |
| 644 | else |
| 645 | ereport(elevel, |
| 646 | (errcode(ERRCODE_UNDEFINED_TABLE), |
| 647 | errmsg("skipping analyze of \"%s\" --- relation no longer exists" , |
| 648 | relation->relname))); |
| 649 | } |
| 650 | |
| 651 | return NULL; |
| 652 | } |
| 653 | |
| 654 | |
| 655 | /* |
| 656 | * Given a VacuumRelation, fill in the table OID if it wasn't specified, |
| 657 | * and optionally add VacuumRelations for partitions of the table. |
| 658 | * |
| 659 | * If a VacuumRelation does not have an OID supplied and is a partitioned |
| 660 | * table, an extra entry will be added to the output for each partition. |
| 661 | * Presently, only autovacuum supplies OIDs when calling vacuum(), and |
| 662 | * it does not want us to expand partitioned tables. |
| 663 | * |
| 664 | * We take care not to modify the input data structure, but instead build |
| 665 | * new VacuumRelation(s) to return. (But note that they will reference |
| 666 | * unmodified parts of the input, eg column lists.) New data structures |
| 667 | * are made in vac_context. |
| 668 | */ |
| 669 | static List * |
| 670 | expand_vacuum_rel(VacuumRelation *vrel, int options) |
| 671 | { |
| 672 | List *vacrels = NIL; |
| 673 | MemoryContext oldcontext; |
| 674 | |
| 675 | /* If caller supplied OID, there's nothing we need do here. */ |
| 676 | if (OidIsValid(vrel->oid)) |
| 677 | { |
| 678 | oldcontext = MemoryContextSwitchTo(vac_context); |
| 679 | vacrels = lappend(vacrels, vrel); |
| 680 | MemoryContextSwitchTo(oldcontext); |
| 681 | } |
| 682 | else |
| 683 | { |
| 684 | /* Process a specific relation, and possibly partitions thereof */ |
| 685 | Oid relid; |
| 686 | HeapTuple tuple; |
| 687 | Form_pg_class classForm; |
| 688 | bool include_parts; |
| 689 | int rvr_opts; |
| 690 | |
| 691 | /* |
| 692 | * Since autovacuum workers supply OIDs when calling vacuum(), no |
| 693 | * autovacuum worker should reach this code. |
| 694 | */ |
| 695 | Assert(!IsAutoVacuumWorkerProcess()); |
| 696 | |
| 697 | /* |
| 698 | * We transiently take AccessShareLock to protect the syscache lookup |
| 699 | * below, as well as find_all_inheritors's expectation that the caller |
| 700 | * holds some lock on the starting relation. |
| 701 | */ |
| 702 | rvr_opts = (options & VACOPT_SKIP_LOCKED) ? RVR_SKIP_LOCKED : 0; |
| 703 | relid = RangeVarGetRelidExtended(vrel->relation, |
| 704 | AccessShareLock, |
| 705 | rvr_opts, |
| 706 | NULL, NULL); |
| 707 | |
| 708 | /* |
| 709 | * If the lock is unavailable, emit the same log statement that |
| 710 | * vacuum_rel() and analyze_rel() would. |
| 711 | */ |
| 712 | if (!OidIsValid(relid)) |
| 713 | { |
| 714 | if (options & VACOPT_VACUUM) |
| 715 | ereport(WARNING, |
| 716 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 717 | errmsg("skipping vacuum of \"%s\" --- lock not available" , |
| 718 | vrel->relation->relname))); |
| 719 | else |
| 720 | ereport(WARNING, |
| 721 | (errcode(ERRCODE_LOCK_NOT_AVAILABLE), |
| 722 | errmsg("skipping analyze of \"%s\" --- lock not available" , |
| 723 | vrel->relation->relname))); |
| 724 | return vacrels; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * To check whether the relation is a partitioned table and its |
| 729 | * ownership, fetch its syscache entry. |
| 730 | */ |
| 731 | tuple = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
| 732 | if (!HeapTupleIsValid(tuple)) |
| 733 | elog(ERROR, "cache lookup failed for relation %u" , relid); |
| 734 | classForm = (Form_pg_class) GETSTRUCT(tuple); |
| 735 | |
| 736 | /* |
| 737 | * Make a returnable VacuumRelation for this rel if user is a proper |
| 738 | * owner. |
| 739 | */ |
| 740 | if (vacuum_is_relation_owner(relid, classForm, options)) |
| 741 | { |
| 742 | oldcontext = MemoryContextSwitchTo(vac_context); |
| 743 | vacrels = lappend(vacrels, makeVacuumRelation(vrel->relation, |
| 744 | relid, |
| 745 | vrel->va_cols)); |
| 746 | MemoryContextSwitchTo(oldcontext); |
| 747 | } |
| 748 | |
| 749 | |
| 750 | include_parts = (classForm->relkind == RELKIND_PARTITIONED_TABLE); |
| 751 | ReleaseSysCache(tuple); |
| 752 | |
| 753 | /* |
| 754 | * If it is, make relation list entries for its partitions. Note that |
| 755 | * the list returned by find_all_inheritors() includes the passed-in |
| 756 | * OID, so we have to skip that. There's no point in taking locks on |
| 757 | * the individual partitions yet, and doing so would just add |
| 758 | * unnecessary deadlock risk. For this last reason we do not check |
| 759 | * yet the ownership of the partitions, which get added to the list to |
| 760 | * process. Ownership will be checked later on anyway. |
| 761 | */ |
| 762 | if (include_parts) |
| 763 | { |
| 764 | List *part_oids = find_all_inheritors(relid, NoLock, NULL); |
| 765 | ListCell *part_lc; |
| 766 | |
| 767 | foreach(part_lc, part_oids) |
| 768 | { |
| 769 | Oid part_oid = lfirst_oid(part_lc); |
| 770 | |
| 771 | if (part_oid == relid) |
| 772 | continue; /* ignore original table */ |
| 773 | |
| 774 | /* |
| 775 | * We omit a RangeVar since it wouldn't be appropriate to |
| 776 | * complain about failure to open one of these relations |
| 777 | * later. |
| 778 | */ |
| 779 | oldcontext = MemoryContextSwitchTo(vac_context); |
| 780 | vacrels = lappend(vacrels, makeVacuumRelation(NULL, |
| 781 | part_oid, |
| 782 | vrel->va_cols)); |
| 783 | MemoryContextSwitchTo(oldcontext); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Release lock again. This means that by the time we actually try to |
| 789 | * process the table, it might be gone or renamed. In the former case |
| 790 | * we'll silently ignore it; in the latter case we'll process it |
| 791 | * anyway, but we must beware that the RangeVar doesn't necessarily |
| 792 | * identify it anymore. This isn't ideal, perhaps, but there's little |
| 793 | * practical alternative, since we're typically going to commit this |
| 794 | * transaction and begin a new one between now and then. Moreover, |
| 795 | * holding locks on multiple relations would create significant risk |
| 796 | * of deadlock. |
| 797 | */ |
| 798 | UnlockRelationOid(relid, AccessShareLock); |
| 799 | } |
| 800 | |
| 801 | return vacrels; |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * Construct a list of VacuumRelations for all vacuumable rels in |
| 806 | * the current database. The list is built in vac_context. |
| 807 | */ |
| 808 | static List * |
| 809 | get_all_vacuum_rels(int options) |
| 810 | { |
| 811 | List *vacrels = NIL; |
| 812 | Relation pgclass; |
| 813 | TableScanDesc scan; |
| 814 | HeapTuple tuple; |
| 815 | |
| 816 | pgclass = table_open(RelationRelationId, AccessShareLock); |
| 817 | |
| 818 | scan = table_beginscan_catalog(pgclass, 0, NULL); |
| 819 | |
| 820 | while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL) |
| 821 | { |
| 822 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(tuple); |
| 823 | MemoryContext oldcontext; |
| 824 | Oid relid = classForm->oid; |
| 825 | |
| 826 | /* check permissions of relation */ |
| 827 | if (!vacuum_is_relation_owner(relid, classForm, options)) |
| 828 | continue; |
| 829 | |
| 830 | /* |
| 831 | * We include partitioned tables here; depending on which operation is |
| 832 | * to be performed, caller will decide whether to process or ignore |
| 833 | * them. |
| 834 | */ |
| 835 | if (classForm->relkind != RELKIND_RELATION && |
| 836 | classForm->relkind != RELKIND_MATVIEW && |
| 837 | classForm->relkind != RELKIND_PARTITIONED_TABLE) |
| 838 | continue; |
| 839 | |
| 840 | /* |
| 841 | * Build VacuumRelation(s) specifying the table OIDs to be processed. |
| 842 | * We omit a RangeVar since it wouldn't be appropriate to complain |
| 843 | * about failure to open one of these relations later. |
| 844 | */ |
| 845 | oldcontext = MemoryContextSwitchTo(vac_context); |
| 846 | vacrels = lappend(vacrels, makeVacuumRelation(NULL, |
| 847 | relid, |
| 848 | NIL)); |
| 849 | MemoryContextSwitchTo(oldcontext); |
| 850 | } |
| 851 | |
| 852 | table_endscan(scan); |
| 853 | table_close(pgclass, AccessShareLock); |
| 854 | |
| 855 | return vacrels; |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * vacuum_set_xid_limits() -- compute oldest-Xmin and freeze cutoff points |
| 860 | * |
| 861 | * The output parameters are: |
| 862 | * - oldestXmin is the cutoff value used to distinguish whether tuples are |
| 863 | * DEAD or RECENTLY_DEAD (see HeapTupleSatisfiesVacuum). |
| 864 | * - freezeLimit is the Xid below which all Xids are replaced by |
| 865 | * FrozenTransactionId during vacuum. |
| 866 | * - xidFullScanLimit (computed from table_freeze_age parameter) |
| 867 | * represents a minimum Xid value; a table whose relfrozenxid is older than |
| 868 | * this will have a full-table vacuum applied to it, to freeze tuples across |
| 869 | * the whole table. Vacuuming a table younger than this value can use a |
| 870 | * partial scan. |
| 871 | * - multiXactCutoff is the value below which all MultiXactIds are removed from |
| 872 | * Xmax. |
| 873 | * - mxactFullScanLimit is a value against which a table's relminmxid value is |
| 874 | * compared to produce a full-table vacuum, as with xidFullScanLimit. |
| 875 | * |
| 876 | * xidFullScanLimit and mxactFullScanLimit can be passed as NULL if caller is |
| 877 | * not interested. |
| 878 | */ |
| 879 | void |
| 880 | vacuum_set_xid_limits(Relation rel, |
| 881 | int freeze_min_age, |
| 882 | int freeze_table_age, |
| 883 | int multixact_freeze_min_age, |
| 884 | int multixact_freeze_table_age, |
| 885 | TransactionId *oldestXmin, |
| 886 | TransactionId *freezeLimit, |
| 887 | TransactionId *xidFullScanLimit, |
| 888 | MultiXactId *multiXactCutoff, |
| 889 | MultiXactId *mxactFullScanLimit) |
| 890 | { |
| 891 | int freezemin; |
| 892 | int mxid_freezemin; |
| 893 | int effective_multixact_freeze_max_age; |
| 894 | TransactionId limit; |
| 895 | TransactionId safeLimit; |
| 896 | MultiXactId mxactLimit; |
| 897 | MultiXactId safeMxactLimit; |
| 898 | |
| 899 | /* |
| 900 | * We can always ignore processes running lazy vacuum. This is because we |
| 901 | * use these values only for deciding which tuples we must keep in the |
| 902 | * tables. Since lazy vacuum doesn't write its XID anywhere, it's safe to |
| 903 | * ignore it. In theory it could be problematic to ignore lazy vacuums in |
| 904 | * a full vacuum, but keep in mind that only one vacuum process can be |
| 905 | * working on a particular table at any time, and that each vacuum is |
| 906 | * always an independent transaction. |
| 907 | */ |
| 908 | *oldestXmin = |
| 909 | TransactionIdLimitedForOldSnapshots(GetOldestXmin(rel, PROCARRAY_FLAGS_VACUUM), rel); |
| 910 | |
| 911 | Assert(TransactionIdIsNormal(*oldestXmin)); |
| 912 | |
| 913 | /* |
| 914 | * Determine the minimum freeze age to use: as specified by the caller, or |
| 915 | * vacuum_freeze_min_age, but in any case not more than half |
| 916 | * autovacuum_freeze_max_age, so that autovacuums to prevent XID |
| 917 | * wraparound won't occur too frequently. |
| 918 | */ |
| 919 | freezemin = freeze_min_age; |
| 920 | if (freezemin < 0) |
| 921 | freezemin = vacuum_freeze_min_age; |
| 922 | freezemin = Min(freezemin, autovacuum_freeze_max_age / 2); |
| 923 | Assert(freezemin >= 0); |
| 924 | |
| 925 | /* |
| 926 | * Compute the cutoff XID, being careful not to generate a "permanent" XID |
| 927 | */ |
| 928 | limit = *oldestXmin - freezemin; |
| 929 | if (!TransactionIdIsNormal(limit)) |
| 930 | limit = FirstNormalTransactionId; |
| 931 | |
| 932 | /* |
| 933 | * If oldestXmin is very far back (in practice, more than |
| 934 | * autovacuum_freeze_max_age / 2 XIDs old), complain and force a minimum |
| 935 | * freeze age of zero. |
| 936 | */ |
| 937 | safeLimit = ReadNewTransactionId() - autovacuum_freeze_max_age; |
| 938 | if (!TransactionIdIsNormal(safeLimit)) |
| 939 | safeLimit = FirstNormalTransactionId; |
| 940 | |
| 941 | if (TransactionIdPrecedes(limit, safeLimit)) |
| 942 | { |
| 943 | ereport(WARNING, |
| 944 | (errmsg("oldest xmin is far in the past" ), |
| 945 | errhint("Close open transactions soon to avoid wraparound problems.\n" |
| 946 | "You might also need to commit or roll back old prepared transactions, or drop stale replication slots." ))); |
| 947 | limit = *oldestXmin; |
| 948 | } |
| 949 | |
| 950 | *freezeLimit = limit; |
| 951 | |
| 952 | /* |
| 953 | * Compute the multixact age for which freezing is urgent. This is |
| 954 | * normally autovacuum_multixact_freeze_max_age, but may be less if we are |
| 955 | * short of multixact member space. |
| 956 | */ |
| 957 | effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold(); |
| 958 | |
| 959 | /* |
| 960 | * Determine the minimum multixact freeze age to use: as specified by |
| 961 | * caller, or vacuum_multixact_freeze_min_age, but in any case not more |
| 962 | * than half effective_multixact_freeze_max_age, so that autovacuums to |
| 963 | * prevent MultiXact wraparound won't occur too frequently. |
| 964 | */ |
| 965 | mxid_freezemin = multixact_freeze_min_age; |
| 966 | if (mxid_freezemin < 0) |
| 967 | mxid_freezemin = vacuum_multixact_freeze_min_age; |
| 968 | mxid_freezemin = Min(mxid_freezemin, |
| 969 | effective_multixact_freeze_max_age / 2); |
| 970 | Assert(mxid_freezemin >= 0); |
| 971 | |
| 972 | /* compute the cutoff multi, being careful to generate a valid value */ |
| 973 | mxactLimit = GetOldestMultiXactId() - mxid_freezemin; |
| 974 | if (mxactLimit < FirstMultiXactId) |
| 975 | mxactLimit = FirstMultiXactId; |
| 976 | |
| 977 | safeMxactLimit = |
| 978 | ReadNextMultiXactId() - effective_multixact_freeze_max_age; |
| 979 | if (safeMxactLimit < FirstMultiXactId) |
| 980 | safeMxactLimit = FirstMultiXactId; |
| 981 | |
| 982 | if (MultiXactIdPrecedes(mxactLimit, safeMxactLimit)) |
| 983 | { |
| 984 | ereport(WARNING, |
| 985 | (errmsg("oldest multixact is far in the past" ), |
| 986 | errhint("Close open transactions with multixacts soon to avoid wraparound problems." ))); |
| 987 | mxactLimit = safeMxactLimit; |
| 988 | } |
| 989 | |
| 990 | *multiXactCutoff = mxactLimit; |
| 991 | |
| 992 | if (xidFullScanLimit != NULL) |
| 993 | { |
| 994 | int freezetable; |
| 995 | |
| 996 | Assert(mxactFullScanLimit != NULL); |
| 997 | |
| 998 | /* |
| 999 | * Determine the table freeze age to use: as specified by the caller, |
| 1000 | * or vacuum_freeze_table_age, but in any case not more than |
| 1001 | * autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly |
| 1002 | * VACUUM schedule, the nightly VACUUM gets a chance to freeze tuples |
| 1003 | * before anti-wraparound autovacuum is launched. |
| 1004 | */ |
| 1005 | freezetable = freeze_table_age; |
| 1006 | if (freezetable < 0) |
| 1007 | freezetable = vacuum_freeze_table_age; |
| 1008 | freezetable = Min(freezetable, autovacuum_freeze_max_age * 0.95); |
| 1009 | Assert(freezetable >= 0); |
| 1010 | |
| 1011 | /* |
| 1012 | * Compute XID limit causing a full-table vacuum, being careful not to |
| 1013 | * generate a "permanent" XID. |
| 1014 | */ |
| 1015 | limit = ReadNewTransactionId() - freezetable; |
| 1016 | if (!TransactionIdIsNormal(limit)) |
| 1017 | limit = FirstNormalTransactionId; |
| 1018 | |
| 1019 | *xidFullScanLimit = limit; |
| 1020 | |
| 1021 | /* |
| 1022 | * Similar to the above, determine the table freeze age to use for |
| 1023 | * multixacts: as specified by the caller, or |
| 1024 | * vacuum_multixact_freeze_table_age, but in any case not more than |
| 1025 | * autovacuum_multixact_freeze_table_age * 0.95, so that if you have |
| 1026 | * e.g. nightly VACUUM schedule, the nightly VACUUM gets a chance to |
| 1027 | * freeze multixacts before anti-wraparound autovacuum is launched. |
| 1028 | */ |
| 1029 | freezetable = multixact_freeze_table_age; |
| 1030 | if (freezetable < 0) |
| 1031 | freezetable = vacuum_multixact_freeze_table_age; |
| 1032 | freezetable = Min(freezetable, |
| 1033 | effective_multixact_freeze_max_age * 0.95); |
| 1034 | Assert(freezetable >= 0); |
| 1035 | |
| 1036 | /* |
| 1037 | * Compute MultiXact limit causing a full-table vacuum, being careful |
| 1038 | * to generate a valid MultiXact value. |
| 1039 | */ |
| 1040 | mxactLimit = ReadNextMultiXactId() - freezetable; |
| 1041 | if (mxactLimit < FirstMultiXactId) |
| 1042 | mxactLimit = FirstMultiXactId; |
| 1043 | |
| 1044 | *mxactFullScanLimit = mxactLimit; |
| 1045 | } |
| 1046 | else |
| 1047 | { |
| 1048 | Assert(mxactFullScanLimit == NULL); |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | /* |
| 1053 | * vac_estimate_reltuples() -- estimate the new value for pg_class.reltuples |
| 1054 | * |
| 1055 | * If we scanned the whole relation then we should just use the count of |
| 1056 | * live tuples seen; but if we did not, we should not blindly extrapolate |
| 1057 | * from that number, since VACUUM may have scanned a quite nonrandom |
| 1058 | * subset of the table. When we have only partial information, we take |
| 1059 | * the old value of pg_class.reltuples as a measurement of the |
| 1060 | * tuple density in the unscanned pages. |
| 1061 | * |
| 1062 | * Note: scanned_tuples should count only *live* tuples, since |
| 1063 | * pg_class.reltuples is defined that way. |
| 1064 | */ |
| 1065 | double |
| 1066 | vac_estimate_reltuples(Relation relation, |
| 1067 | BlockNumber total_pages, |
| 1068 | BlockNumber scanned_pages, |
| 1069 | double scanned_tuples) |
| 1070 | { |
| 1071 | BlockNumber old_rel_pages = relation->rd_rel->relpages; |
| 1072 | double old_rel_tuples = relation->rd_rel->reltuples; |
| 1073 | double old_density; |
| 1074 | double unscanned_pages; |
| 1075 | double total_tuples; |
| 1076 | |
| 1077 | /* If we did scan the whole table, just use the count as-is */ |
| 1078 | if (scanned_pages >= total_pages) |
| 1079 | return scanned_tuples; |
| 1080 | |
| 1081 | /* |
| 1082 | * If scanned_pages is zero but total_pages isn't, keep the existing value |
| 1083 | * of reltuples. (Note: callers should avoid updating the pg_class |
| 1084 | * statistics in this situation, since no new information has been |
| 1085 | * provided.) |
| 1086 | */ |
| 1087 | if (scanned_pages == 0) |
| 1088 | return old_rel_tuples; |
| 1089 | |
| 1090 | /* |
| 1091 | * If old value of relpages is zero, old density is indeterminate; we |
| 1092 | * can't do much except scale up scanned_tuples to match total_pages. |
| 1093 | */ |
| 1094 | if (old_rel_pages == 0) |
| 1095 | return floor((scanned_tuples / scanned_pages) * total_pages + 0.5); |
| 1096 | |
| 1097 | /* |
| 1098 | * Okay, we've covered the corner cases. The normal calculation is to |
| 1099 | * convert the old measurement to a density (tuples per page), then |
| 1100 | * estimate the number of tuples in the unscanned pages using that figure, |
| 1101 | * and finally add on the number of tuples in the scanned pages. |
| 1102 | */ |
| 1103 | old_density = old_rel_tuples / old_rel_pages; |
| 1104 | unscanned_pages = (double) total_pages - (double) scanned_pages; |
| 1105 | total_tuples = old_density * unscanned_pages + scanned_tuples; |
| 1106 | return floor(total_tuples + 0.5); |
| 1107 | } |
| 1108 | |
| 1109 | |
| 1110 | /* |
| 1111 | * vac_update_relstats() -- update statistics for one relation |
| 1112 | * |
| 1113 | * Update the whole-relation statistics that are kept in its pg_class |
| 1114 | * row. There are additional stats that will be updated if we are |
| 1115 | * doing ANALYZE, but we always update these stats. This routine works |
| 1116 | * for both index and heap relation entries in pg_class. |
| 1117 | * |
| 1118 | * We violate transaction semantics here by overwriting the rel's |
| 1119 | * existing pg_class tuple with the new values. This is reasonably |
| 1120 | * safe as long as we're sure that the new values are correct whether or |
| 1121 | * not this transaction commits. The reason for doing this is that if |
| 1122 | * we updated these tuples in the usual way, vacuuming pg_class itself |
| 1123 | * wouldn't work very well --- by the time we got done with a vacuum |
| 1124 | * cycle, most of the tuples in pg_class would've been obsoleted. Of |
| 1125 | * course, this only works for fixed-size not-null columns, but these are. |
| 1126 | * |
| 1127 | * Another reason for doing it this way is that when we are in a lazy |
| 1128 | * VACUUM and have PROC_IN_VACUUM set, we mustn't do any regular updates. |
| 1129 | * Somebody vacuuming pg_class might think they could delete a tuple |
| 1130 | * marked with xmin = our xid. |
| 1131 | * |
| 1132 | * In addition to fundamentally nontransactional statistics such as |
| 1133 | * relpages and relallvisible, we try to maintain certain lazily-updated |
| 1134 | * DDL flags such as relhasindex, by clearing them if no longer correct. |
| 1135 | * It's safe to do this in VACUUM, which can't run in parallel with |
| 1136 | * CREATE INDEX/RULE/TRIGGER and can't be part of a transaction block. |
| 1137 | * However, it's *not* safe to do it in an ANALYZE that's within an |
| 1138 | * outer transaction, because for example the current transaction might |
| 1139 | * have dropped the last index; then we'd think relhasindex should be |
| 1140 | * cleared, but if the transaction later rolls back this would be wrong. |
| 1141 | * So we refrain from updating the DDL flags if we're inside an outer |
| 1142 | * transaction. This is OK since postponing the flag maintenance is |
| 1143 | * always allowable. |
| 1144 | * |
| 1145 | * Note: num_tuples should count only *live* tuples, since |
| 1146 | * pg_class.reltuples is defined that way. |
| 1147 | * |
| 1148 | * This routine is shared by VACUUM and ANALYZE. |
| 1149 | */ |
| 1150 | void |
| 1151 | vac_update_relstats(Relation relation, |
| 1152 | BlockNumber num_pages, double num_tuples, |
| 1153 | BlockNumber num_all_visible_pages, |
| 1154 | bool hasindex, TransactionId frozenxid, |
| 1155 | MultiXactId minmulti, |
| 1156 | bool in_outer_xact) |
| 1157 | { |
| 1158 | Oid relid = RelationGetRelid(relation); |
| 1159 | Relation rd; |
| 1160 | HeapTuple ctup; |
| 1161 | Form_pg_class pgcform; |
| 1162 | bool dirty; |
| 1163 | |
| 1164 | rd = table_open(RelationRelationId, RowExclusiveLock); |
| 1165 | |
| 1166 | /* Fetch a copy of the tuple to scribble on */ |
| 1167 | ctup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid)); |
| 1168 | if (!HeapTupleIsValid(ctup)) |
| 1169 | elog(ERROR, "pg_class entry for relid %u vanished during vacuuming" , |
| 1170 | relid); |
| 1171 | pgcform = (Form_pg_class) GETSTRUCT(ctup); |
| 1172 | |
| 1173 | /* Apply statistical updates, if any, to copied tuple */ |
| 1174 | |
| 1175 | dirty = false; |
| 1176 | if (pgcform->relpages != (int32) num_pages) |
| 1177 | { |
| 1178 | pgcform->relpages = (int32) num_pages; |
| 1179 | dirty = true; |
| 1180 | } |
| 1181 | if (pgcform->reltuples != (float4) num_tuples) |
| 1182 | { |
| 1183 | pgcform->reltuples = (float4) num_tuples; |
| 1184 | dirty = true; |
| 1185 | } |
| 1186 | if (pgcform->relallvisible != (int32) num_all_visible_pages) |
| 1187 | { |
| 1188 | pgcform->relallvisible = (int32) num_all_visible_pages; |
| 1189 | dirty = true; |
| 1190 | } |
| 1191 | |
| 1192 | /* Apply DDL updates, but not inside an outer transaction (see above) */ |
| 1193 | |
| 1194 | if (!in_outer_xact) |
| 1195 | { |
| 1196 | /* |
| 1197 | * If we didn't find any indexes, reset relhasindex. |
| 1198 | */ |
| 1199 | if (pgcform->relhasindex && !hasindex) |
| 1200 | { |
| 1201 | pgcform->relhasindex = false; |
| 1202 | dirty = true; |
| 1203 | } |
| 1204 | |
| 1205 | /* We also clear relhasrules and relhastriggers if needed */ |
| 1206 | if (pgcform->relhasrules && relation->rd_rules == NULL) |
| 1207 | { |
| 1208 | pgcform->relhasrules = false; |
| 1209 | dirty = true; |
| 1210 | } |
| 1211 | if (pgcform->relhastriggers && relation->trigdesc == NULL) |
| 1212 | { |
| 1213 | pgcform->relhastriggers = false; |
| 1214 | dirty = true; |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Update relfrozenxid, unless caller passed InvalidTransactionId |
| 1220 | * indicating it has no new data. |
| 1221 | * |
| 1222 | * Ordinarily, we don't let relfrozenxid go backwards: if things are |
| 1223 | * working correctly, the only way the new frozenxid could be older would |
| 1224 | * be if a previous VACUUM was done with a tighter freeze_min_age, in |
| 1225 | * which case we don't want to forget the work it already did. However, |
| 1226 | * if the stored relfrozenxid is "in the future", then it must be corrupt |
| 1227 | * and it seems best to overwrite it with the cutoff we used this time. |
| 1228 | * This should match vac_update_datfrozenxid() concerning what we consider |
| 1229 | * to be "in the future". |
| 1230 | */ |
| 1231 | if (TransactionIdIsNormal(frozenxid) && |
| 1232 | pgcform->relfrozenxid != frozenxid && |
| 1233 | (TransactionIdPrecedes(pgcform->relfrozenxid, frozenxid) || |
| 1234 | TransactionIdPrecedes(ReadNewTransactionId(), |
| 1235 | pgcform->relfrozenxid))) |
| 1236 | { |
| 1237 | pgcform->relfrozenxid = frozenxid; |
| 1238 | dirty = true; |
| 1239 | } |
| 1240 | |
| 1241 | /* Similarly for relminmxid */ |
| 1242 | if (MultiXactIdIsValid(minmulti) && |
| 1243 | pgcform->relminmxid != minmulti && |
| 1244 | (MultiXactIdPrecedes(pgcform->relminmxid, minmulti) || |
| 1245 | MultiXactIdPrecedes(ReadNextMultiXactId(), pgcform->relminmxid))) |
| 1246 | { |
| 1247 | pgcform->relminmxid = minmulti; |
| 1248 | dirty = true; |
| 1249 | } |
| 1250 | |
| 1251 | /* If anything changed, write out the tuple. */ |
| 1252 | if (dirty) |
| 1253 | heap_inplace_update(rd, ctup); |
| 1254 | |
| 1255 | table_close(rd, RowExclusiveLock); |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | /* |
| 1260 | * vac_update_datfrozenxid() -- update pg_database.datfrozenxid for our DB |
| 1261 | * |
| 1262 | * Update pg_database's datfrozenxid entry for our database to be the |
| 1263 | * minimum of the pg_class.relfrozenxid values. |
| 1264 | * |
| 1265 | * Similarly, update our datminmxid to be the minimum of the |
| 1266 | * pg_class.relminmxid values. |
| 1267 | * |
| 1268 | * If we are able to advance either pg_database value, also try to |
| 1269 | * truncate pg_xact and pg_multixact. |
| 1270 | * |
| 1271 | * We violate transaction semantics here by overwriting the database's |
| 1272 | * existing pg_database tuple with the new values. This is reasonably |
| 1273 | * safe since the new values are correct whether or not this transaction |
| 1274 | * commits. As with vac_update_relstats, this avoids leaving dead tuples |
| 1275 | * behind after a VACUUM. |
| 1276 | */ |
| 1277 | void |
| 1278 | vac_update_datfrozenxid(void) |
| 1279 | { |
| 1280 | HeapTuple tuple; |
| 1281 | Form_pg_database dbform; |
| 1282 | Relation relation; |
| 1283 | SysScanDesc scan; |
| 1284 | HeapTuple classTup; |
| 1285 | TransactionId newFrozenXid; |
| 1286 | MultiXactId newMinMulti; |
| 1287 | TransactionId lastSaneFrozenXid; |
| 1288 | MultiXactId lastSaneMinMulti; |
| 1289 | bool bogus = false; |
| 1290 | bool dirty = false; |
| 1291 | |
| 1292 | /* |
| 1293 | * Initialize the "min" calculation with GetOldestXmin, which is a |
| 1294 | * reasonable approximation to the minimum relfrozenxid for not-yet- |
| 1295 | * committed pg_class entries for new tables; see AddNewRelationTuple(). |
| 1296 | * So we cannot produce a wrong minimum by starting with this. |
| 1297 | */ |
| 1298 | newFrozenXid = GetOldestXmin(NULL, PROCARRAY_FLAGS_VACUUM); |
| 1299 | |
| 1300 | /* |
| 1301 | * Similarly, initialize the MultiXact "min" with the value that would be |
| 1302 | * used on pg_class for new tables. See AddNewRelationTuple(). |
| 1303 | */ |
| 1304 | newMinMulti = GetOldestMultiXactId(); |
| 1305 | |
| 1306 | /* |
| 1307 | * Identify the latest relfrozenxid and relminmxid values that we could |
| 1308 | * validly see during the scan. These are conservative values, but it's |
| 1309 | * not really worth trying to be more exact. |
| 1310 | */ |
| 1311 | lastSaneFrozenXid = ReadNewTransactionId(); |
| 1312 | lastSaneMinMulti = ReadNextMultiXactId(); |
| 1313 | |
| 1314 | /* |
| 1315 | * We must seqscan pg_class to find the minimum Xid, because there is no |
| 1316 | * index that can help us here. |
| 1317 | */ |
| 1318 | relation = table_open(RelationRelationId, AccessShareLock); |
| 1319 | |
| 1320 | scan = systable_beginscan(relation, InvalidOid, false, |
| 1321 | NULL, 0, NULL); |
| 1322 | |
| 1323 | while ((classTup = systable_getnext(scan)) != NULL) |
| 1324 | { |
| 1325 | Form_pg_class classForm = (Form_pg_class) GETSTRUCT(classTup); |
| 1326 | |
| 1327 | /* |
| 1328 | * Only consider relations able to hold unfrozen XIDs (anything else |
| 1329 | * should have InvalidTransactionId in relfrozenxid anyway). |
| 1330 | */ |
| 1331 | if (classForm->relkind != RELKIND_RELATION && |
| 1332 | classForm->relkind != RELKIND_MATVIEW && |
| 1333 | classForm->relkind != RELKIND_TOASTVALUE) |
| 1334 | { |
| 1335 | Assert(!TransactionIdIsValid(classForm->relfrozenxid)); |
| 1336 | Assert(!MultiXactIdIsValid(classForm->relminmxid)); |
| 1337 | continue; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * Some table AMs might not need per-relation xid / multixid horizons. |
| 1342 | * It therefore seems reasonable to allow relfrozenxid and relminmxid |
| 1343 | * to not be set (i.e. set to their respective Invalid*Id) |
| 1344 | * independently. Thus validate and compute horizon for each only if |
| 1345 | * set. |
| 1346 | * |
| 1347 | * If things are working properly, no relation should have a |
| 1348 | * relfrozenxid or relminmxid that is "in the future". However, such |
| 1349 | * cases have been known to arise due to bugs in pg_upgrade. If we |
| 1350 | * see any entries that are "in the future", chicken out and don't do |
| 1351 | * anything. This ensures we won't truncate clog & multixact SLRUs |
| 1352 | * before those relations have been scanned and cleaned up. |
| 1353 | */ |
| 1354 | |
| 1355 | if (TransactionIdIsValid(classForm->relfrozenxid)) |
| 1356 | { |
| 1357 | Assert(TransactionIdIsNormal(classForm->relfrozenxid)); |
| 1358 | |
| 1359 | /* check for values in the future */ |
| 1360 | if (TransactionIdPrecedes(lastSaneFrozenXid, classForm->relfrozenxid)) |
| 1361 | { |
| 1362 | bogus = true; |
| 1363 | break; |
| 1364 | } |
| 1365 | |
| 1366 | /* determine new horizon */ |
| 1367 | if (TransactionIdPrecedes(classForm->relfrozenxid, newFrozenXid)) |
| 1368 | newFrozenXid = classForm->relfrozenxid; |
| 1369 | } |
| 1370 | |
| 1371 | if (MultiXactIdIsValid(classForm->relminmxid)) |
| 1372 | { |
| 1373 | /* check for values in the future */ |
| 1374 | if (MultiXactIdPrecedes(lastSaneMinMulti, classForm->relminmxid)) |
| 1375 | { |
| 1376 | bogus = true; |
| 1377 | break; |
| 1378 | } |
| 1379 | |
| 1380 | /* determine new horizon */ |
| 1381 | if (MultiXactIdPrecedes(classForm->relminmxid, newMinMulti)) |
| 1382 | newMinMulti = classForm->relminmxid; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | /* we're done with pg_class */ |
| 1387 | systable_endscan(scan); |
| 1388 | table_close(relation, AccessShareLock); |
| 1389 | |
| 1390 | /* chicken out if bogus data found */ |
| 1391 | if (bogus) |
| 1392 | return; |
| 1393 | |
| 1394 | Assert(TransactionIdIsNormal(newFrozenXid)); |
| 1395 | Assert(MultiXactIdIsValid(newMinMulti)); |
| 1396 | |
| 1397 | /* Now fetch the pg_database tuple we need to update. */ |
| 1398 | relation = table_open(DatabaseRelationId, RowExclusiveLock); |
| 1399 | |
| 1400 | /* Fetch a copy of the tuple to scribble on */ |
| 1401 | tuple = SearchSysCacheCopy1(DATABASEOID, ObjectIdGetDatum(MyDatabaseId)); |
| 1402 | if (!HeapTupleIsValid(tuple)) |
| 1403 | elog(ERROR, "could not find tuple for database %u" , MyDatabaseId); |
| 1404 | dbform = (Form_pg_database) GETSTRUCT(tuple); |
| 1405 | |
| 1406 | /* |
| 1407 | * As in vac_update_relstats(), we ordinarily don't want to let |
| 1408 | * datfrozenxid go backward; but if it's "in the future" then it must be |
| 1409 | * corrupt and it seems best to overwrite it. |
| 1410 | */ |
| 1411 | if (dbform->datfrozenxid != newFrozenXid && |
| 1412 | (TransactionIdPrecedes(dbform->datfrozenxid, newFrozenXid) || |
| 1413 | TransactionIdPrecedes(lastSaneFrozenXid, dbform->datfrozenxid))) |
| 1414 | { |
| 1415 | dbform->datfrozenxid = newFrozenXid; |
| 1416 | dirty = true; |
| 1417 | } |
| 1418 | else |
| 1419 | newFrozenXid = dbform->datfrozenxid; |
| 1420 | |
| 1421 | /* Ditto for datminmxid */ |
| 1422 | if (dbform->datminmxid != newMinMulti && |
| 1423 | (MultiXactIdPrecedes(dbform->datminmxid, newMinMulti) || |
| 1424 | MultiXactIdPrecedes(lastSaneMinMulti, dbform->datminmxid))) |
| 1425 | { |
| 1426 | dbform->datminmxid = newMinMulti; |
| 1427 | dirty = true; |
| 1428 | } |
| 1429 | else |
| 1430 | newMinMulti = dbform->datminmxid; |
| 1431 | |
| 1432 | if (dirty) |
| 1433 | heap_inplace_update(relation, tuple); |
| 1434 | |
| 1435 | heap_freetuple(tuple); |
| 1436 | table_close(relation, RowExclusiveLock); |
| 1437 | |
| 1438 | /* |
| 1439 | * If we were able to advance datfrozenxid or datminmxid, see if we can |
| 1440 | * truncate pg_xact and/or pg_multixact. Also do it if the shared |
| 1441 | * XID-wrap-limit info is stale, since this action will update that too. |
| 1442 | */ |
| 1443 | if (dirty || ForceTransactionIdLimitUpdate()) |
| 1444 | vac_truncate_clog(newFrozenXid, newMinMulti, |
| 1445 | lastSaneFrozenXid, lastSaneMinMulti); |
| 1446 | } |
| 1447 | |
| 1448 | |
| 1449 | /* |
| 1450 | * vac_truncate_clog() -- attempt to truncate the commit log |
| 1451 | * |
| 1452 | * Scan pg_database to determine the system-wide oldest datfrozenxid, |
| 1453 | * and use it to truncate the transaction commit log (pg_xact). |
| 1454 | * Also update the XID wrap limit info maintained by varsup.c. |
| 1455 | * Likewise for datminmxid. |
| 1456 | * |
| 1457 | * The passed frozenXID and minMulti are the updated values for my own |
| 1458 | * pg_database entry. They're used to initialize the "min" calculations. |
| 1459 | * The caller also passes the "last sane" XID and MXID, since it has |
| 1460 | * those at hand already. |
| 1461 | * |
| 1462 | * This routine is only invoked when we've managed to change our |
| 1463 | * DB's datfrozenxid/datminmxid values, or we found that the shared |
| 1464 | * XID-wrap-limit info is stale. |
| 1465 | */ |
| 1466 | static void |
| 1467 | vac_truncate_clog(TransactionId frozenXID, |
| 1468 | MultiXactId minMulti, |
| 1469 | TransactionId lastSaneFrozenXid, |
| 1470 | MultiXactId lastSaneMinMulti) |
| 1471 | { |
| 1472 | TransactionId nextXID = ReadNewTransactionId(); |
| 1473 | Relation relation; |
| 1474 | TableScanDesc scan; |
| 1475 | HeapTuple tuple; |
| 1476 | Oid oldestxid_datoid; |
| 1477 | Oid minmulti_datoid; |
| 1478 | bool bogus = false; |
| 1479 | bool frozenAlreadyWrapped = false; |
| 1480 | |
| 1481 | /* init oldest datoids to sync with my frozenXID/minMulti values */ |
| 1482 | oldestxid_datoid = MyDatabaseId; |
| 1483 | minmulti_datoid = MyDatabaseId; |
| 1484 | |
| 1485 | /* |
| 1486 | * Scan pg_database to compute the minimum datfrozenxid/datminmxid |
| 1487 | * |
| 1488 | * Since vac_update_datfrozenxid updates datfrozenxid/datminmxid in-place, |
| 1489 | * the values could change while we look at them. Fetch each one just |
| 1490 | * once to ensure sane behavior of the comparison logic. (Here, as in |
| 1491 | * many other places, we assume that fetching or updating an XID in shared |
| 1492 | * storage is atomic.) |
| 1493 | * |
| 1494 | * Note: we need not worry about a race condition with new entries being |
| 1495 | * inserted by CREATE DATABASE. Any such entry will have a copy of some |
| 1496 | * existing DB's datfrozenxid, and that source DB cannot be ours because |
| 1497 | * of the interlock against copying a DB containing an active backend. |
| 1498 | * Hence the new entry will not reduce the minimum. Also, if two VACUUMs |
| 1499 | * concurrently modify the datfrozenxid's of different databases, the |
| 1500 | * worst possible outcome is that pg_xact is not truncated as aggressively |
| 1501 | * as it could be. |
| 1502 | */ |
| 1503 | relation = table_open(DatabaseRelationId, AccessShareLock); |
| 1504 | |
| 1505 | scan = table_beginscan_catalog(relation, 0, NULL); |
| 1506 | |
| 1507 | while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL) |
| 1508 | { |
| 1509 | volatile FormData_pg_database *dbform = (Form_pg_database) GETSTRUCT(tuple); |
| 1510 | TransactionId datfrozenxid = dbform->datfrozenxid; |
| 1511 | TransactionId datminmxid = dbform->datminmxid; |
| 1512 | |
| 1513 | Assert(TransactionIdIsNormal(datfrozenxid)); |
| 1514 | Assert(MultiXactIdIsValid(datminmxid)); |
| 1515 | |
| 1516 | /* |
| 1517 | * If things are working properly, no database should have a |
| 1518 | * datfrozenxid or datminmxid that is "in the future". However, such |
| 1519 | * cases have been known to arise due to bugs in pg_upgrade. If we |
| 1520 | * see any entries that are "in the future", chicken out and don't do |
| 1521 | * anything. This ensures we won't truncate clog before those |
| 1522 | * databases have been scanned and cleaned up. (We will issue the |
| 1523 | * "already wrapped" warning if appropriate, though.) |
| 1524 | */ |
| 1525 | if (TransactionIdPrecedes(lastSaneFrozenXid, datfrozenxid) || |
| 1526 | MultiXactIdPrecedes(lastSaneMinMulti, datminmxid)) |
| 1527 | bogus = true; |
| 1528 | |
| 1529 | if (TransactionIdPrecedes(nextXID, datfrozenxid)) |
| 1530 | frozenAlreadyWrapped = true; |
| 1531 | else if (TransactionIdPrecedes(datfrozenxid, frozenXID)) |
| 1532 | { |
| 1533 | frozenXID = datfrozenxid; |
| 1534 | oldestxid_datoid = dbform->oid; |
| 1535 | } |
| 1536 | |
| 1537 | if (MultiXactIdPrecedes(datminmxid, minMulti)) |
| 1538 | { |
| 1539 | minMulti = datminmxid; |
| 1540 | minmulti_datoid = dbform->oid; |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | table_endscan(scan); |
| 1545 | |
| 1546 | table_close(relation, AccessShareLock); |
| 1547 | |
| 1548 | /* |
| 1549 | * Do not truncate CLOG if we seem to have suffered wraparound already; |
| 1550 | * the computed minimum XID might be bogus. This case should now be |
| 1551 | * impossible due to the defenses in GetNewTransactionId, but we keep the |
| 1552 | * test anyway. |
| 1553 | */ |
| 1554 | if (frozenAlreadyWrapped) |
| 1555 | { |
| 1556 | ereport(WARNING, |
| 1557 | (errmsg("some databases have not been vacuumed in over 2 billion transactions" ), |
| 1558 | errdetail("You might have already suffered transaction-wraparound data loss." ))); |
| 1559 | return; |
| 1560 | } |
| 1561 | |
| 1562 | /* chicken out if data is bogus in any other way */ |
| 1563 | if (bogus) |
| 1564 | return; |
| 1565 | |
| 1566 | /* |
| 1567 | * Advance the oldest value for commit timestamps before truncating, so |
| 1568 | * that if a user requests a timestamp for a transaction we're truncating |
| 1569 | * away right after this point, they get NULL instead of an ugly "file not |
| 1570 | * found" error from slru.c. This doesn't matter for xact/multixact |
| 1571 | * because they are not subject to arbitrary lookups from users. |
| 1572 | */ |
| 1573 | AdvanceOldestCommitTsXid(frozenXID); |
| 1574 | |
| 1575 | /* |
| 1576 | * Truncate CLOG, multixact and CommitTs to the oldest computed value. |
| 1577 | */ |
| 1578 | TruncateCLOG(frozenXID, oldestxid_datoid); |
| 1579 | TruncateCommitTs(frozenXID); |
| 1580 | TruncateMultiXact(minMulti, minmulti_datoid); |
| 1581 | |
| 1582 | /* |
| 1583 | * Update the wrap limit for GetNewTransactionId and creation of new |
| 1584 | * MultiXactIds. Note: these functions will also signal the postmaster |
| 1585 | * for an(other) autovac cycle if needed. XXX should we avoid possibly |
| 1586 | * signalling twice? |
| 1587 | */ |
| 1588 | SetTransactionIdLimit(frozenXID, oldestxid_datoid); |
| 1589 | SetMultiXactIdLimit(minMulti, minmulti_datoid, false); |
| 1590 | } |
| 1591 | |
| 1592 | |
| 1593 | /* |
| 1594 | * vacuum_rel() -- vacuum one heap relation |
| 1595 | * |
| 1596 | * relid identifies the relation to vacuum. If relation is supplied, |
| 1597 | * use the name therein for reporting any failure to open/lock the rel; |
| 1598 | * do not use it once we've successfully opened the rel, since it might |
| 1599 | * be stale. |
| 1600 | * |
| 1601 | * Returns true if it's okay to proceed with a requested ANALYZE |
| 1602 | * operation on this table. |
| 1603 | * |
| 1604 | * Doing one heap at a time incurs extra overhead, since we need to |
| 1605 | * check that the heap exists again just before we vacuum it. The |
| 1606 | * reason that we do this is so that vacuuming can be spread across |
| 1607 | * many small transactions. Otherwise, two-phase locking would require |
| 1608 | * us to lock the entire database during one pass of the vacuum cleaner. |
| 1609 | * |
| 1610 | * At entry and exit, we are not inside a transaction. |
| 1611 | */ |
| 1612 | static bool |
| 1613 | vacuum_rel(Oid relid, RangeVar *relation, VacuumParams *params) |
| 1614 | { |
| 1615 | LOCKMODE lmode; |
| 1616 | Relation onerel; |
| 1617 | LockRelId onerelid; |
| 1618 | Oid toast_relid; |
| 1619 | Oid save_userid; |
| 1620 | int save_sec_context; |
| 1621 | int save_nestlevel; |
| 1622 | |
| 1623 | Assert(params != NULL); |
| 1624 | |
| 1625 | /* Begin a transaction for vacuuming this relation */ |
| 1626 | StartTransactionCommand(); |
| 1627 | |
| 1628 | /* |
| 1629 | * Functions in indexes may want a snapshot set. Also, setting a snapshot |
| 1630 | * ensures that RecentGlobalXmin is kept truly recent. |
| 1631 | */ |
| 1632 | PushActiveSnapshot(GetTransactionSnapshot()); |
| 1633 | |
| 1634 | if (!(params->options & VACOPT_FULL)) |
| 1635 | { |
| 1636 | /* |
| 1637 | * In lazy vacuum, we can set the PROC_IN_VACUUM flag, which lets |
| 1638 | * other concurrent VACUUMs know that they can ignore this one while |
| 1639 | * determining their OldestXmin. (The reason we don't set it during a |
| 1640 | * full VACUUM is exactly that we may have to run user-defined |
| 1641 | * functions for functional indexes, and we want to make sure that if |
| 1642 | * they use the snapshot set above, any tuples it requires can't get |
| 1643 | * removed from other tables. An index function that depends on the |
| 1644 | * contents of other tables is arguably broken, but we won't break it |
| 1645 | * here by violating transaction semantics.) |
| 1646 | * |
| 1647 | * We also set the VACUUM_FOR_WRAPAROUND flag, which is passed down by |
| 1648 | * autovacuum; it's used to avoid canceling a vacuum that was invoked |
| 1649 | * in an emergency. |
| 1650 | * |
| 1651 | * Note: these flags remain set until CommitTransaction or |
| 1652 | * AbortTransaction. We don't want to clear them until we reset |
| 1653 | * MyPgXact->xid/xmin, else OldestXmin might appear to go backwards, |
| 1654 | * which is probably Not Good. |
| 1655 | */ |
| 1656 | LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); |
| 1657 | MyPgXact->vacuumFlags |= PROC_IN_VACUUM; |
| 1658 | if (params->is_wraparound) |
| 1659 | MyPgXact->vacuumFlags |= PROC_VACUUM_FOR_WRAPAROUND; |
| 1660 | LWLockRelease(ProcArrayLock); |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * Check for user-requested abort. Note we want this to be inside a |
| 1665 | * transaction, so xact.c doesn't issue useless WARNING. |
| 1666 | */ |
| 1667 | CHECK_FOR_INTERRUPTS(); |
| 1668 | |
| 1669 | /* |
| 1670 | * Determine the type of lock we want --- hard exclusive lock for a FULL |
| 1671 | * vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either |
| 1672 | * way, we can be sure that no other backend is vacuuming the same table. |
| 1673 | */ |
| 1674 | lmode = (params->options & VACOPT_FULL) ? |
| 1675 | AccessExclusiveLock : ShareUpdateExclusiveLock; |
| 1676 | |
| 1677 | /* open the relation and get the appropriate lock on it */ |
| 1678 | onerel = vacuum_open_relation(relid, relation, params->options, |
| 1679 | params->log_min_duration >= 0, lmode); |
| 1680 | |
| 1681 | /* leave if relation could not be opened or locked */ |
| 1682 | if (!onerel) |
| 1683 | { |
| 1684 | PopActiveSnapshot(); |
| 1685 | CommitTransactionCommand(); |
| 1686 | return false; |
| 1687 | } |
| 1688 | |
| 1689 | /* |
| 1690 | * Check if relation needs to be skipped based on ownership. This check |
| 1691 | * happens also when building the relation list to vacuum for a manual |
| 1692 | * operation, and needs to be done additionally here as VACUUM could |
| 1693 | * happen across multiple transactions where relation ownership could have |
| 1694 | * changed in-between. Make sure to only generate logs for VACUUM in this |
| 1695 | * case. |
| 1696 | */ |
| 1697 | if (!vacuum_is_relation_owner(RelationGetRelid(onerel), |
| 1698 | onerel->rd_rel, |
| 1699 | params->options & VACOPT_VACUUM)) |
| 1700 | { |
| 1701 | relation_close(onerel, lmode); |
| 1702 | PopActiveSnapshot(); |
| 1703 | CommitTransactionCommand(); |
| 1704 | return false; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * Check that it's of a vacuumable relkind. |
| 1709 | */ |
| 1710 | if (onerel->rd_rel->relkind != RELKIND_RELATION && |
| 1711 | onerel->rd_rel->relkind != RELKIND_MATVIEW && |
| 1712 | onerel->rd_rel->relkind != RELKIND_TOASTVALUE && |
| 1713 | onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE) |
| 1714 | { |
| 1715 | ereport(WARNING, |
| 1716 | (errmsg("skipping \"%s\" --- cannot vacuum non-tables or special system tables" , |
| 1717 | RelationGetRelationName(onerel)))); |
| 1718 | relation_close(onerel, lmode); |
| 1719 | PopActiveSnapshot(); |
| 1720 | CommitTransactionCommand(); |
| 1721 | return false; |
| 1722 | } |
| 1723 | |
| 1724 | /* |
| 1725 | * Silently ignore tables that are temp tables of other backends --- |
| 1726 | * trying to vacuum these will lead to great unhappiness, since their |
| 1727 | * contents are probably not up-to-date on disk. (We don't throw a |
| 1728 | * warning here; it would just lead to chatter during a database-wide |
| 1729 | * VACUUM.) |
| 1730 | */ |
| 1731 | if (RELATION_IS_OTHER_TEMP(onerel)) |
| 1732 | { |
| 1733 | relation_close(onerel, lmode); |
| 1734 | PopActiveSnapshot(); |
| 1735 | CommitTransactionCommand(); |
| 1736 | return false; |
| 1737 | } |
| 1738 | |
| 1739 | /* |
| 1740 | * Silently ignore partitioned tables as there is no work to be done. The |
| 1741 | * useful work is on their child partitions, which have been queued up for |
| 1742 | * us separately. |
| 1743 | */ |
| 1744 | if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE) |
| 1745 | { |
| 1746 | relation_close(onerel, lmode); |
| 1747 | PopActiveSnapshot(); |
| 1748 | CommitTransactionCommand(); |
| 1749 | /* It's OK to proceed with ANALYZE on this table */ |
| 1750 | return true; |
| 1751 | } |
| 1752 | |
| 1753 | /* |
| 1754 | * Get a session-level lock too. This will protect our access to the |
| 1755 | * relation across multiple transactions, so that we can vacuum the |
| 1756 | * relation's TOAST table (if any) secure in the knowledge that no one is |
| 1757 | * deleting the parent relation. |
| 1758 | * |
| 1759 | * NOTE: this cannot block, even if someone else is waiting for access, |
| 1760 | * because the lock manager knows that both lock requests are from the |
| 1761 | * same process. |
| 1762 | */ |
| 1763 | onerelid = onerel->rd_lockInfo.lockRelId; |
| 1764 | LockRelationIdForSession(&onerelid, lmode); |
| 1765 | |
| 1766 | /* Set index cleanup option based on reloptions if not yet */ |
| 1767 | if (params->index_cleanup == VACOPT_TERNARY_DEFAULT) |
| 1768 | { |
| 1769 | if (onerel->rd_options == NULL || |
| 1770 | ((StdRdOptions *) onerel->rd_options)->vacuum_index_cleanup) |
| 1771 | params->index_cleanup = VACOPT_TERNARY_ENABLED; |
| 1772 | else |
| 1773 | params->index_cleanup = VACOPT_TERNARY_DISABLED; |
| 1774 | } |
| 1775 | |
| 1776 | /* Set truncate option based on reloptions if not yet */ |
| 1777 | if (params->truncate == VACOPT_TERNARY_DEFAULT) |
| 1778 | { |
| 1779 | if (onerel->rd_options == NULL || |
| 1780 | ((StdRdOptions *) onerel->rd_options)->vacuum_truncate) |
| 1781 | params->truncate = VACOPT_TERNARY_ENABLED; |
| 1782 | else |
| 1783 | params->truncate = VACOPT_TERNARY_DISABLED; |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * Remember the relation's TOAST relation for later, if the caller asked |
| 1788 | * us to process it. In VACUUM FULL, though, the toast table is |
| 1789 | * automatically rebuilt by cluster_rel so we shouldn't recurse to it. |
| 1790 | */ |
| 1791 | if (!(params->options & VACOPT_SKIPTOAST) && !(params->options & VACOPT_FULL)) |
| 1792 | toast_relid = onerel->rd_rel->reltoastrelid; |
| 1793 | else |
| 1794 | toast_relid = InvalidOid; |
| 1795 | |
| 1796 | /* |
| 1797 | * Switch to the table owner's userid, so that any index functions are run |
| 1798 | * as that user. Also lock down security-restricted operations and |
| 1799 | * arrange to make GUC variable changes local to this command. (This is |
| 1800 | * unnecessary, but harmless, for lazy VACUUM.) |
| 1801 | */ |
| 1802 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
| 1803 | SetUserIdAndSecContext(onerel->rd_rel->relowner, |
| 1804 | save_sec_context | SECURITY_RESTRICTED_OPERATION); |
| 1805 | save_nestlevel = NewGUCNestLevel(); |
| 1806 | |
| 1807 | /* |
| 1808 | * Do the actual work --- either FULL or "lazy" vacuum |
| 1809 | */ |
| 1810 | if (params->options & VACOPT_FULL) |
| 1811 | { |
| 1812 | int cluster_options = 0; |
| 1813 | |
| 1814 | /* close relation before vacuuming, but hold lock until commit */ |
| 1815 | relation_close(onerel, NoLock); |
| 1816 | onerel = NULL; |
| 1817 | |
| 1818 | if ((params->options & VACOPT_VERBOSE) != 0) |
| 1819 | cluster_options |= CLUOPT_VERBOSE; |
| 1820 | |
| 1821 | /* VACUUM FULL is now a variant of CLUSTER; see cluster.c */ |
| 1822 | cluster_rel(relid, InvalidOid, cluster_options); |
| 1823 | } |
| 1824 | else |
| 1825 | table_relation_vacuum(onerel, params, vac_strategy); |
| 1826 | |
| 1827 | /* Roll back any GUC changes executed by index functions */ |
| 1828 | AtEOXact_GUC(false, save_nestlevel); |
| 1829 | |
| 1830 | /* Restore userid and security context */ |
| 1831 | SetUserIdAndSecContext(save_userid, save_sec_context); |
| 1832 | |
| 1833 | /* all done with this class, but hold lock until commit */ |
| 1834 | if (onerel) |
| 1835 | relation_close(onerel, NoLock); |
| 1836 | |
| 1837 | /* |
| 1838 | * Complete the transaction and free all temporary memory used. |
| 1839 | */ |
| 1840 | PopActiveSnapshot(); |
| 1841 | CommitTransactionCommand(); |
| 1842 | |
| 1843 | /* |
| 1844 | * If the relation has a secondary toast rel, vacuum that too while we |
| 1845 | * still hold the session lock on the master table. Note however that |
| 1846 | * "analyze" will not get done on the toast table. This is good, because |
| 1847 | * the toaster always uses hardcoded index access and statistics are |
| 1848 | * totally unimportant for toast relations. |
| 1849 | */ |
| 1850 | if (toast_relid != InvalidOid) |
| 1851 | vacuum_rel(toast_relid, NULL, params); |
| 1852 | |
| 1853 | /* |
| 1854 | * Now release the session-level lock on the master table. |
| 1855 | */ |
| 1856 | UnlockRelationIdForSession(&onerelid, lmode); |
| 1857 | |
| 1858 | /* Report that we really did it. */ |
| 1859 | return true; |
| 1860 | } |
| 1861 | |
| 1862 | |
| 1863 | /* |
| 1864 | * Open all the vacuumable indexes of the given relation, obtaining the |
| 1865 | * specified kind of lock on each. Return an array of Relation pointers for |
| 1866 | * the indexes into *Irel, and the number of indexes into *nindexes. |
| 1867 | * |
| 1868 | * We consider an index vacuumable if it is marked insertable (indisready). |
| 1869 | * If it isn't, probably a CREATE INDEX CONCURRENTLY command failed early in |
| 1870 | * execution, and what we have is too corrupt to be processable. We will |
| 1871 | * vacuum even if the index isn't indisvalid; this is important because in a |
| 1872 | * unique index, uniqueness checks will be performed anyway and had better not |
| 1873 | * hit dangling index pointers. |
| 1874 | */ |
| 1875 | void |
| 1876 | vac_open_indexes(Relation relation, LOCKMODE lockmode, |
| 1877 | int *nindexes, Relation **Irel) |
| 1878 | { |
| 1879 | List *indexoidlist; |
| 1880 | ListCell *indexoidscan; |
| 1881 | int i; |
| 1882 | |
| 1883 | Assert(lockmode != NoLock); |
| 1884 | |
| 1885 | indexoidlist = RelationGetIndexList(relation); |
| 1886 | |
| 1887 | /* allocate enough memory for all indexes */ |
| 1888 | i = list_length(indexoidlist); |
| 1889 | |
| 1890 | if (i > 0) |
| 1891 | *Irel = (Relation *) palloc(i * sizeof(Relation)); |
| 1892 | else |
| 1893 | *Irel = NULL; |
| 1894 | |
| 1895 | /* collect just the ready indexes */ |
| 1896 | i = 0; |
| 1897 | foreach(indexoidscan, indexoidlist) |
| 1898 | { |
| 1899 | Oid indexoid = lfirst_oid(indexoidscan); |
| 1900 | Relation indrel; |
| 1901 | |
| 1902 | indrel = index_open(indexoid, lockmode); |
| 1903 | if (indrel->rd_index->indisready) |
| 1904 | (*Irel)[i++] = indrel; |
| 1905 | else |
| 1906 | index_close(indrel, lockmode); |
| 1907 | } |
| 1908 | |
| 1909 | *nindexes = i; |
| 1910 | |
| 1911 | list_free(indexoidlist); |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * Release the resources acquired by vac_open_indexes. Optionally release |
| 1916 | * the locks (say NoLock to keep 'em). |
| 1917 | */ |
| 1918 | void |
| 1919 | vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode) |
| 1920 | { |
| 1921 | if (Irel == NULL) |
| 1922 | return; |
| 1923 | |
| 1924 | while (nindexes--) |
| 1925 | { |
| 1926 | Relation ind = Irel[nindexes]; |
| 1927 | |
| 1928 | index_close(ind, lockmode); |
| 1929 | } |
| 1930 | pfree(Irel); |
| 1931 | } |
| 1932 | |
| 1933 | /* |
| 1934 | * vacuum_delay_point --- check for interrupts and cost-based delay. |
| 1935 | * |
| 1936 | * This should be called in each major loop of VACUUM processing, |
| 1937 | * typically once per page processed. |
| 1938 | */ |
| 1939 | void |
| 1940 | vacuum_delay_point(void) |
| 1941 | { |
| 1942 | /* Always check for interrupts */ |
| 1943 | CHECK_FOR_INTERRUPTS(); |
| 1944 | |
| 1945 | /* Nap if appropriate */ |
| 1946 | if (VacuumCostActive && !InterruptPending && |
| 1947 | VacuumCostBalance >= VacuumCostLimit) |
| 1948 | { |
| 1949 | double msec; |
| 1950 | |
| 1951 | msec = VacuumCostDelay * VacuumCostBalance / VacuumCostLimit; |
| 1952 | if (msec > VacuumCostDelay * 4) |
| 1953 | msec = VacuumCostDelay * 4; |
| 1954 | |
| 1955 | pg_usleep((long) (msec * 1000)); |
| 1956 | |
| 1957 | VacuumCostBalance = 0; |
| 1958 | |
| 1959 | /* update balance values for workers */ |
| 1960 | AutoVacuumUpdateDelay(); |
| 1961 | |
| 1962 | /* Might have gotten an interrupt while sleeping */ |
| 1963 | CHECK_FOR_INTERRUPTS(); |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | /* |
| 1968 | * A wrapper function of defGetBoolean(). |
| 1969 | * |
| 1970 | * This function returns VACOPT_TERNARY_ENABLED and VACOPT_TERNARY_DISABLED |
| 1971 | * instead of true and false. |
| 1972 | */ |
| 1973 | static VacOptTernaryValue |
| 1974 | get_vacopt_ternary_value(DefElem *def) |
| 1975 | { |
| 1976 | return defGetBoolean(def) ? VACOPT_TERNARY_ENABLED : VACOPT_TERNARY_DISABLED; |
| 1977 | } |
| 1978 | |