| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execMain.c |
| 4 | * top level executor interface routines |
| 5 | * |
| 6 | * INTERFACE ROUTINES |
| 7 | * ExecutorStart() |
| 8 | * ExecutorRun() |
| 9 | * ExecutorFinish() |
| 10 | * ExecutorEnd() |
| 11 | * |
| 12 | * These four procedures are the external interface to the executor. |
| 13 | * In each case, the query descriptor is required as an argument. |
| 14 | * |
| 15 | * ExecutorStart must be called at the beginning of execution of any |
| 16 | * query plan and ExecutorEnd must always be called at the end of |
| 17 | * execution of a plan (unless it is aborted due to error). |
| 18 | * |
| 19 | * ExecutorRun accepts direction and count arguments that specify whether |
| 20 | * the plan is to be executed forwards, backwards, and for how many tuples. |
| 21 | * In some cases ExecutorRun may be called multiple times to process all |
| 22 | * the tuples for a plan. It is also acceptable to stop short of executing |
| 23 | * the whole plan (but only if it is a SELECT). |
| 24 | * |
| 25 | * ExecutorFinish must be called after the final ExecutorRun call and |
| 26 | * before ExecutorEnd. This can be omitted only in case of EXPLAIN, |
| 27 | * which should also omit ExecutorRun. |
| 28 | * |
| 29 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 30 | * Portions Copyright (c) 1994, Regents of the University of California |
| 31 | * |
| 32 | * |
| 33 | * IDENTIFICATION |
| 34 | * src/backend/executor/execMain.c |
| 35 | * |
| 36 | *------------------------------------------------------------------------- |
| 37 | */ |
| 38 | #include "postgres.h" |
| 39 | |
| 40 | #include "access/heapam.h" |
| 41 | #include "access/htup_details.h" |
| 42 | #include "access/sysattr.h" |
| 43 | #include "access/tableam.h" |
| 44 | #include "access/transam.h" |
| 45 | #include "access/xact.h" |
| 46 | #include "catalog/namespace.h" |
| 47 | #include "catalog/pg_publication.h" |
| 48 | #include "commands/matview.h" |
| 49 | #include "commands/trigger.h" |
| 50 | #include "executor/execdebug.h" |
| 51 | #include "executor/nodeSubplan.h" |
| 52 | #include "foreign/fdwapi.h" |
| 53 | #include "jit/jit.h" |
| 54 | #include "mb/pg_wchar.h" |
| 55 | #include "miscadmin.h" |
| 56 | #include "parser/parsetree.h" |
| 57 | #include "storage/bufmgr.h" |
| 58 | #include "storage/lmgr.h" |
| 59 | #include "tcop/utility.h" |
| 60 | #include "utils/acl.h" |
| 61 | #include "utils/lsyscache.h" |
| 62 | #include "utils/memutils.h" |
| 63 | #include "utils/partcache.h" |
| 64 | #include "utils/rls.h" |
| 65 | #include "utils/ruleutils.h" |
| 66 | #include "utils/snapmgr.h" |
| 67 | |
| 68 | |
| 69 | /* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */ |
| 70 | ExecutorStart_hook_type ExecutorStart_hook = NULL; |
| 71 | ExecutorRun_hook_type ExecutorRun_hook = NULL; |
| 72 | ExecutorFinish_hook_type ExecutorFinish_hook = NULL; |
| 73 | ExecutorEnd_hook_type ExecutorEnd_hook = NULL; |
| 74 | |
| 75 | /* Hook for plugin to get control in ExecCheckRTPerms() */ |
| 76 | ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL; |
| 77 | |
| 78 | /* decls for local routines only used within this module */ |
| 79 | static void InitPlan(QueryDesc *queryDesc, int eflags); |
| 80 | static void CheckValidRowMarkRel(Relation rel, RowMarkType markType); |
| 81 | static void ExecPostprocessPlan(EState *estate); |
| 82 | static void ExecEndPlan(PlanState *planstate, EState *estate); |
| 83 | static void ExecutePlan(EState *estate, PlanState *planstate, |
| 84 | bool use_parallel_mode, |
| 85 | CmdType operation, |
| 86 | bool sendTuples, |
| 87 | uint64 numberTuples, |
| 88 | ScanDirection direction, |
| 89 | DestReceiver *dest, |
| 90 | bool execute_once); |
| 91 | static bool ExecCheckRTEPerms(RangeTblEntry *rte); |
| 92 | static bool ExecCheckRTEPermsModified(Oid relOid, Oid userid, |
| 93 | Bitmapset *modifiedCols, |
| 94 | AclMode requiredPerms); |
| 95 | static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt); |
| 96 | static char *ExecBuildSlotValueDescription(Oid reloid, |
| 97 | TupleTableSlot *slot, |
| 98 | TupleDesc tupdesc, |
| 99 | Bitmapset *modifiedCols, |
| 100 | int maxfieldlen); |
| 101 | static void EvalPlanQualStart(EPQState *epqstate, Plan *planTree); |
| 102 | |
| 103 | /* |
| 104 | * Note that GetAllUpdatedColumns() also exists in commands/trigger.c. There does |
| 105 | * not appear to be any good header to put it into, given the structures that |
| 106 | * it uses, so we let them be duplicated. Be sure to update both if one needs |
| 107 | * to be changed, however. |
| 108 | */ |
| 109 | #define GetInsertedColumns(relinfo, estate) \ |
| 110 | (exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->insertedCols) |
| 111 | #define GetUpdatedColumns(relinfo, estate) \ |
| 112 | (exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->updatedCols) |
| 113 | #define GetAllUpdatedColumns(relinfo, estate) \ |
| 114 | (bms_union(exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->updatedCols, \ |
| 115 | exec_rt_fetch((relinfo)->ri_RangeTableIndex, estate)->extraUpdatedCols)) |
| 116 | |
| 117 | /* end of local decls */ |
| 118 | |
| 119 | |
| 120 | /* ---------------------------------------------------------------- |
| 121 | * ExecutorStart |
| 122 | * |
| 123 | * This routine must be called at the beginning of any execution of any |
| 124 | * query plan |
| 125 | * |
| 126 | * Takes a QueryDesc previously created by CreateQueryDesc (which is separate |
| 127 | * only because some places use QueryDescs for utility commands). The tupDesc |
| 128 | * field of the QueryDesc is filled in to describe the tuples that will be |
| 129 | * returned, and the internal fields (estate and planstate) are set up. |
| 130 | * |
| 131 | * eflags contains flag bits as described in executor.h. |
| 132 | * |
| 133 | * NB: the CurrentMemoryContext when this is called will become the parent |
| 134 | * of the per-query context used for this Executor invocation. |
| 135 | * |
| 136 | * We provide a function hook variable that lets loadable plugins |
| 137 | * get control when ExecutorStart is called. Such a plugin would |
| 138 | * normally call standard_ExecutorStart(). |
| 139 | * |
| 140 | * ---------------------------------------------------------------- |
| 141 | */ |
| 142 | void |
| 143 | ExecutorStart(QueryDesc *queryDesc, int eflags) |
| 144 | { |
| 145 | if (ExecutorStart_hook) |
| 146 | (*ExecutorStart_hook) (queryDesc, eflags); |
| 147 | else |
| 148 | standard_ExecutorStart(queryDesc, eflags); |
| 149 | } |
| 150 | |
| 151 | void |
| 152 | standard_ExecutorStart(QueryDesc *queryDesc, int eflags) |
| 153 | { |
| 154 | EState *estate; |
| 155 | MemoryContext oldcontext; |
| 156 | |
| 157 | /* sanity checks: queryDesc must not be started already */ |
| 158 | Assert(queryDesc != NULL); |
| 159 | Assert(queryDesc->estate == NULL); |
| 160 | |
| 161 | /* |
| 162 | * If the transaction is read-only, we need to check if any writes are |
| 163 | * planned to non-temporary tables. EXPLAIN is considered read-only. |
| 164 | * |
| 165 | * Don't allow writes in parallel mode. Supporting UPDATE and DELETE |
| 166 | * would require (a) storing the combocid hash in shared memory, rather |
| 167 | * than synchronizing it just once at the start of parallelism, and (b) an |
| 168 | * alternative to heap_update()'s reliance on xmax for mutual exclusion. |
| 169 | * INSERT may have no such troubles, but we forbid it to simplify the |
| 170 | * checks. |
| 171 | * |
| 172 | * We have lower-level defenses in CommandCounterIncrement and elsewhere |
| 173 | * against performing unsafe operations in parallel mode, but this gives a |
| 174 | * more user-friendly error message. |
| 175 | */ |
| 176 | if ((XactReadOnly || IsInParallelMode()) && |
| 177 | !(eflags & EXEC_FLAG_EXPLAIN_ONLY)) |
| 178 | ExecCheckXactReadOnly(queryDesc->plannedstmt); |
| 179 | |
| 180 | /* |
| 181 | * Build EState, switch into per-query memory context for startup. |
| 182 | */ |
| 183 | estate = CreateExecutorState(); |
| 184 | queryDesc->estate = estate; |
| 185 | |
| 186 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 187 | |
| 188 | /* |
| 189 | * Fill in external parameters, if any, from queryDesc; and allocate |
| 190 | * workspace for internal parameters |
| 191 | */ |
| 192 | estate->es_param_list_info = queryDesc->params; |
| 193 | |
| 194 | if (queryDesc->plannedstmt->paramExecTypes != NIL) |
| 195 | { |
| 196 | int nParamExec; |
| 197 | |
| 198 | nParamExec = list_length(queryDesc->plannedstmt->paramExecTypes); |
| 199 | estate->es_param_exec_vals = (ParamExecData *) |
| 200 | palloc0(nParamExec * sizeof(ParamExecData)); |
| 201 | } |
| 202 | |
| 203 | estate->es_sourceText = queryDesc->sourceText; |
| 204 | |
| 205 | /* |
| 206 | * Fill in the query environment, if any, from queryDesc. |
| 207 | */ |
| 208 | estate->es_queryEnv = queryDesc->queryEnv; |
| 209 | |
| 210 | /* |
| 211 | * If non-read-only query, set the command ID to mark output tuples with |
| 212 | */ |
| 213 | switch (queryDesc->operation) |
| 214 | { |
| 215 | case CMD_SELECT: |
| 216 | |
| 217 | /* |
| 218 | * SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark |
| 219 | * tuples |
| 220 | */ |
| 221 | if (queryDesc->plannedstmt->rowMarks != NIL || |
| 222 | queryDesc->plannedstmt->hasModifyingCTE) |
| 223 | estate->es_output_cid = GetCurrentCommandId(true); |
| 224 | |
| 225 | /* |
| 226 | * A SELECT without modifying CTEs can't possibly queue triggers, |
| 227 | * so force skip-triggers mode. This is just a marginal efficiency |
| 228 | * hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't |
| 229 | * all that expensive, but we might as well do it. |
| 230 | */ |
| 231 | if (!queryDesc->plannedstmt->hasModifyingCTE) |
| 232 | eflags |= EXEC_FLAG_SKIP_TRIGGERS; |
| 233 | break; |
| 234 | |
| 235 | case CMD_INSERT: |
| 236 | case CMD_DELETE: |
| 237 | case CMD_UPDATE: |
| 238 | estate->es_output_cid = GetCurrentCommandId(true); |
| 239 | break; |
| 240 | |
| 241 | default: |
| 242 | elog(ERROR, "unrecognized operation code: %d" , |
| 243 | (int) queryDesc->operation); |
| 244 | break; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Copy other important information into the EState |
| 249 | */ |
| 250 | estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot); |
| 251 | estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot); |
| 252 | estate->es_top_eflags = eflags; |
| 253 | estate->es_instrument = queryDesc->instrument_options; |
| 254 | estate->es_jit_flags = queryDesc->plannedstmt->jitFlags; |
| 255 | |
| 256 | /* |
| 257 | * Set up an AFTER-trigger statement context, unless told not to, or |
| 258 | * unless it's EXPLAIN-only mode (when ExecutorFinish won't be called). |
| 259 | */ |
| 260 | if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY))) |
| 261 | AfterTriggerBeginQuery(); |
| 262 | |
| 263 | /* |
| 264 | * Initialize the plan state tree |
| 265 | */ |
| 266 | InitPlan(queryDesc, eflags); |
| 267 | |
| 268 | MemoryContextSwitchTo(oldcontext); |
| 269 | } |
| 270 | |
| 271 | /* ---------------------------------------------------------------- |
| 272 | * ExecutorRun |
| 273 | * |
| 274 | * This is the main routine of the executor module. It accepts |
| 275 | * the query descriptor from the traffic cop and executes the |
| 276 | * query plan. |
| 277 | * |
| 278 | * ExecutorStart must have been called already. |
| 279 | * |
| 280 | * If direction is NoMovementScanDirection then nothing is done |
| 281 | * except to start up/shut down the destination. Otherwise, |
| 282 | * we retrieve up to 'count' tuples in the specified direction. |
| 283 | * |
| 284 | * Note: count = 0 is interpreted as no portal limit, i.e., run to |
| 285 | * completion. Also note that the count limit is only applied to |
| 286 | * retrieved tuples, not for instance to those inserted/updated/deleted |
| 287 | * by a ModifyTable plan node. |
| 288 | * |
| 289 | * There is no return value, but output tuples (if any) are sent to |
| 290 | * the destination receiver specified in the QueryDesc; and the number |
| 291 | * of tuples processed at the top level can be found in |
| 292 | * estate->es_processed. |
| 293 | * |
| 294 | * We provide a function hook variable that lets loadable plugins |
| 295 | * get control when ExecutorRun is called. Such a plugin would |
| 296 | * normally call standard_ExecutorRun(). |
| 297 | * |
| 298 | * ---------------------------------------------------------------- |
| 299 | */ |
| 300 | void |
| 301 | ExecutorRun(QueryDesc *queryDesc, |
| 302 | ScanDirection direction, uint64 count, |
| 303 | bool execute_once) |
| 304 | { |
| 305 | if (ExecutorRun_hook) |
| 306 | (*ExecutorRun_hook) (queryDesc, direction, count, execute_once); |
| 307 | else |
| 308 | standard_ExecutorRun(queryDesc, direction, count, execute_once); |
| 309 | } |
| 310 | |
| 311 | void |
| 312 | standard_ExecutorRun(QueryDesc *queryDesc, |
| 313 | ScanDirection direction, uint64 count, bool execute_once) |
| 314 | { |
| 315 | EState *estate; |
| 316 | CmdType operation; |
| 317 | DestReceiver *dest; |
| 318 | bool sendTuples; |
| 319 | MemoryContext oldcontext; |
| 320 | |
| 321 | /* sanity checks */ |
| 322 | Assert(queryDesc != NULL); |
| 323 | |
| 324 | estate = queryDesc->estate; |
| 325 | |
| 326 | Assert(estate != NULL); |
| 327 | Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); |
| 328 | |
| 329 | /* |
| 330 | * Switch into per-query memory context |
| 331 | */ |
| 332 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 333 | |
| 334 | /* Allow instrumentation of Executor overall runtime */ |
| 335 | if (queryDesc->totaltime) |
| 336 | InstrStartNode(queryDesc->totaltime); |
| 337 | |
| 338 | /* |
| 339 | * extract information from the query descriptor and the query feature. |
| 340 | */ |
| 341 | operation = queryDesc->operation; |
| 342 | dest = queryDesc->dest; |
| 343 | |
| 344 | /* |
| 345 | * startup tuple receiver, if we will be emitting tuples |
| 346 | */ |
| 347 | estate->es_processed = 0; |
| 348 | |
| 349 | sendTuples = (operation == CMD_SELECT || |
| 350 | queryDesc->plannedstmt->hasReturning); |
| 351 | |
| 352 | if (sendTuples) |
| 353 | dest->rStartup(dest, operation, queryDesc->tupDesc); |
| 354 | |
| 355 | /* |
| 356 | * run plan |
| 357 | */ |
| 358 | if (!ScanDirectionIsNoMovement(direction)) |
| 359 | { |
| 360 | if (execute_once && queryDesc->already_executed) |
| 361 | elog(ERROR, "can't re-execute query flagged for single execution" ); |
| 362 | queryDesc->already_executed = true; |
| 363 | |
| 364 | ExecutePlan(estate, |
| 365 | queryDesc->planstate, |
| 366 | queryDesc->plannedstmt->parallelModeNeeded, |
| 367 | operation, |
| 368 | sendTuples, |
| 369 | count, |
| 370 | direction, |
| 371 | dest, |
| 372 | execute_once); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * shutdown tuple receiver, if we started it |
| 377 | */ |
| 378 | if (sendTuples) |
| 379 | dest->rShutdown(dest); |
| 380 | |
| 381 | if (queryDesc->totaltime) |
| 382 | InstrStopNode(queryDesc->totaltime, estate->es_processed); |
| 383 | |
| 384 | MemoryContextSwitchTo(oldcontext); |
| 385 | } |
| 386 | |
| 387 | /* ---------------------------------------------------------------- |
| 388 | * ExecutorFinish |
| 389 | * |
| 390 | * This routine must be called after the last ExecutorRun call. |
| 391 | * It performs cleanup such as firing AFTER triggers. It is |
| 392 | * separate from ExecutorEnd because EXPLAIN ANALYZE needs to |
| 393 | * include these actions in the total runtime. |
| 394 | * |
| 395 | * We provide a function hook variable that lets loadable plugins |
| 396 | * get control when ExecutorFinish is called. Such a plugin would |
| 397 | * normally call standard_ExecutorFinish(). |
| 398 | * |
| 399 | * ---------------------------------------------------------------- |
| 400 | */ |
| 401 | void |
| 402 | ExecutorFinish(QueryDesc *queryDesc) |
| 403 | { |
| 404 | if (ExecutorFinish_hook) |
| 405 | (*ExecutorFinish_hook) (queryDesc); |
| 406 | else |
| 407 | standard_ExecutorFinish(queryDesc); |
| 408 | } |
| 409 | |
| 410 | void |
| 411 | standard_ExecutorFinish(QueryDesc *queryDesc) |
| 412 | { |
| 413 | EState *estate; |
| 414 | MemoryContext oldcontext; |
| 415 | |
| 416 | /* sanity checks */ |
| 417 | Assert(queryDesc != NULL); |
| 418 | |
| 419 | estate = queryDesc->estate; |
| 420 | |
| 421 | Assert(estate != NULL); |
| 422 | Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); |
| 423 | |
| 424 | /* This should be run once and only once per Executor instance */ |
| 425 | Assert(!estate->es_finished); |
| 426 | |
| 427 | /* Switch into per-query memory context */ |
| 428 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 429 | |
| 430 | /* Allow instrumentation of Executor overall runtime */ |
| 431 | if (queryDesc->totaltime) |
| 432 | InstrStartNode(queryDesc->totaltime); |
| 433 | |
| 434 | /* Run ModifyTable nodes to completion */ |
| 435 | ExecPostprocessPlan(estate); |
| 436 | |
| 437 | /* Execute queued AFTER triggers, unless told not to */ |
| 438 | if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS)) |
| 439 | AfterTriggerEndQuery(estate); |
| 440 | |
| 441 | if (queryDesc->totaltime) |
| 442 | InstrStopNode(queryDesc->totaltime, 0); |
| 443 | |
| 444 | MemoryContextSwitchTo(oldcontext); |
| 445 | |
| 446 | estate->es_finished = true; |
| 447 | } |
| 448 | |
| 449 | /* ---------------------------------------------------------------- |
| 450 | * ExecutorEnd |
| 451 | * |
| 452 | * This routine must be called at the end of execution of any |
| 453 | * query plan |
| 454 | * |
| 455 | * We provide a function hook variable that lets loadable plugins |
| 456 | * get control when ExecutorEnd is called. Such a plugin would |
| 457 | * normally call standard_ExecutorEnd(). |
| 458 | * |
| 459 | * ---------------------------------------------------------------- |
| 460 | */ |
| 461 | void |
| 462 | ExecutorEnd(QueryDesc *queryDesc) |
| 463 | { |
| 464 | if (ExecutorEnd_hook) |
| 465 | (*ExecutorEnd_hook) (queryDesc); |
| 466 | else |
| 467 | standard_ExecutorEnd(queryDesc); |
| 468 | } |
| 469 | |
| 470 | void |
| 471 | standard_ExecutorEnd(QueryDesc *queryDesc) |
| 472 | { |
| 473 | EState *estate; |
| 474 | MemoryContext oldcontext; |
| 475 | |
| 476 | /* sanity checks */ |
| 477 | Assert(queryDesc != NULL); |
| 478 | |
| 479 | estate = queryDesc->estate; |
| 480 | |
| 481 | Assert(estate != NULL); |
| 482 | |
| 483 | /* |
| 484 | * Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This |
| 485 | * Assert is needed because ExecutorFinish is new as of 9.1, and callers |
| 486 | * might forget to call it. |
| 487 | */ |
| 488 | Assert(estate->es_finished || |
| 489 | (estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY)); |
| 490 | |
| 491 | /* |
| 492 | * Switch into per-query memory context to run ExecEndPlan |
| 493 | */ |
| 494 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 495 | |
| 496 | ExecEndPlan(queryDesc->planstate, estate); |
| 497 | |
| 498 | /* do away with our snapshots */ |
| 499 | UnregisterSnapshot(estate->es_snapshot); |
| 500 | UnregisterSnapshot(estate->es_crosscheck_snapshot); |
| 501 | |
| 502 | /* |
| 503 | * Must switch out of context before destroying it |
| 504 | */ |
| 505 | MemoryContextSwitchTo(oldcontext); |
| 506 | |
| 507 | /* |
| 508 | * Release EState and per-query memory context. This should release |
| 509 | * everything the executor has allocated. |
| 510 | */ |
| 511 | FreeExecutorState(estate); |
| 512 | |
| 513 | /* Reset queryDesc fields that no longer point to anything */ |
| 514 | queryDesc->tupDesc = NULL; |
| 515 | queryDesc->estate = NULL; |
| 516 | queryDesc->planstate = NULL; |
| 517 | queryDesc->totaltime = NULL; |
| 518 | } |
| 519 | |
| 520 | /* ---------------------------------------------------------------- |
| 521 | * ExecutorRewind |
| 522 | * |
| 523 | * This routine may be called on an open queryDesc to rewind it |
| 524 | * to the start. |
| 525 | * ---------------------------------------------------------------- |
| 526 | */ |
| 527 | void |
| 528 | ExecutorRewind(QueryDesc *queryDesc) |
| 529 | { |
| 530 | EState *estate; |
| 531 | MemoryContext oldcontext; |
| 532 | |
| 533 | /* sanity checks */ |
| 534 | Assert(queryDesc != NULL); |
| 535 | |
| 536 | estate = queryDesc->estate; |
| 537 | |
| 538 | Assert(estate != NULL); |
| 539 | |
| 540 | /* It's probably not sensible to rescan updating queries */ |
| 541 | Assert(queryDesc->operation == CMD_SELECT); |
| 542 | |
| 543 | /* |
| 544 | * Switch into per-query memory context |
| 545 | */ |
| 546 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 547 | |
| 548 | /* |
| 549 | * rescan plan |
| 550 | */ |
| 551 | ExecReScan(queryDesc->planstate); |
| 552 | |
| 553 | MemoryContextSwitchTo(oldcontext); |
| 554 | } |
| 555 | |
| 556 | |
| 557 | /* |
| 558 | * ExecCheckRTPerms |
| 559 | * Check access permissions for all relations listed in a range table. |
| 560 | * |
| 561 | * Returns true if permissions are adequate. Otherwise, throws an appropriate |
| 562 | * error if ereport_on_violation is true, or simply returns false otherwise. |
| 563 | * |
| 564 | * Note that this does NOT address row level security policies (aka: RLS). If |
| 565 | * rows will be returned to the user as a result of this permission check |
| 566 | * passing, then RLS also needs to be consulted (and check_enable_rls()). |
| 567 | * |
| 568 | * See rewrite/rowsecurity.c. |
| 569 | */ |
| 570 | bool |
| 571 | ExecCheckRTPerms(List *rangeTable, bool ereport_on_violation) |
| 572 | { |
| 573 | ListCell *l; |
| 574 | bool result = true; |
| 575 | |
| 576 | foreach(l, rangeTable) |
| 577 | { |
| 578 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(l); |
| 579 | |
| 580 | result = ExecCheckRTEPerms(rte); |
| 581 | if (!result) |
| 582 | { |
| 583 | Assert(rte->rtekind == RTE_RELATION); |
| 584 | if (ereport_on_violation) |
| 585 | aclcheck_error(ACLCHECK_NO_PRIV, get_relkind_objtype(get_rel_relkind(rte->relid)), |
| 586 | get_rel_name(rte->relid)); |
| 587 | return false; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | if (ExecutorCheckPerms_hook) |
| 592 | result = (*ExecutorCheckPerms_hook) (rangeTable, |
| 593 | ereport_on_violation); |
| 594 | return result; |
| 595 | } |
| 596 | |
| 597 | /* |
| 598 | * ExecCheckRTEPerms |
| 599 | * Check access permissions for a single RTE. |
| 600 | */ |
| 601 | static bool |
| 602 | ExecCheckRTEPerms(RangeTblEntry *rte) |
| 603 | { |
| 604 | AclMode requiredPerms; |
| 605 | AclMode relPerms; |
| 606 | AclMode remainingPerms; |
| 607 | Oid relOid; |
| 608 | Oid userid; |
| 609 | |
| 610 | /* |
| 611 | * Only plain-relation RTEs need to be checked here. Function RTEs are |
| 612 | * checked when the function is prepared for execution. Join, subquery, |
| 613 | * and special RTEs need no checks. |
| 614 | */ |
| 615 | if (rte->rtekind != RTE_RELATION) |
| 616 | return true; |
| 617 | |
| 618 | /* |
| 619 | * No work if requiredPerms is empty. |
| 620 | */ |
| 621 | requiredPerms = rte->requiredPerms; |
| 622 | if (requiredPerms == 0) |
| 623 | return true; |
| 624 | |
| 625 | relOid = rte->relid; |
| 626 | |
| 627 | /* |
| 628 | * userid to check as: current user unless we have a setuid indication. |
| 629 | * |
| 630 | * Note: GetUserId() is presently fast enough that there's no harm in |
| 631 | * calling it separately for each RTE. If that stops being true, we could |
| 632 | * call it once in ExecCheckRTPerms and pass the userid down from there. |
| 633 | * But for now, no need for the extra clutter. |
| 634 | */ |
| 635 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
| 636 | |
| 637 | /* |
| 638 | * We must have *all* the requiredPerms bits, but some of the bits can be |
| 639 | * satisfied from column-level rather than relation-level permissions. |
| 640 | * First, remove any bits that are satisfied by relation permissions. |
| 641 | */ |
| 642 | relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL); |
| 643 | remainingPerms = requiredPerms & ~relPerms; |
| 644 | if (remainingPerms != 0) |
| 645 | { |
| 646 | int col = -1; |
| 647 | |
| 648 | /* |
| 649 | * If we lack any permissions that exist only as relation permissions, |
| 650 | * we can fail straight away. |
| 651 | */ |
| 652 | if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE)) |
| 653 | return false; |
| 654 | |
| 655 | /* |
| 656 | * Check to see if we have the needed privileges at column level. |
| 657 | * |
| 658 | * Note: failures just report a table-level error; it would be nicer |
| 659 | * to report a column-level error if we have some but not all of the |
| 660 | * column privileges. |
| 661 | */ |
| 662 | if (remainingPerms & ACL_SELECT) |
| 663 | { |
| 664 | /* |
| 665 | * When the query doesn't explicitly reference any columns (for |
| 666 | * example, SELECT COUNT(*) FROM table), allow the query if we |
| 667 | * have SELECT on any column of the rel, as per SQL spec. |
| 668 | */ |
| 669 | if (bms_is_empty(rte->selectedCols)) |
| 670 | { |
| 671 | if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT, |
| 672 | ACLMASK_ANY) != ACLCHECK_OK) |
| 673 | return false; |
| 674 | } |
| 675 | |
| 676 | while ((col = bms_next_member(rte->selectedCols, col)) >= 0) |
| 677 | { |
| 678 | /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */ |
| 679 | AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber; |
| 680 | |
| 681 | if (attno == InvalidAttrNumber) |
| 682 | { |
| 683 | /* Whole-row reference, must have priv on all cols */ |
| 684 | if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT, |
| 685 | ACLMASK_ALL) != ACLCHECK_OK) |
| 686 | return false; |
| 687 | } |
| 688 | else |
| 689 | { |
| 690 | if (pg_attribute_aclcheck(relOid, attno, userid, |
| 691 | ACL_SELECT) != ACLCHECK_OK) |
| 692 | return false; |
| 693 | } |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * Basically the same for the mod columns, for both INSERT and UPDATE |
| 699 | * privilege as specified by remainingPerms. |
| 700 | */ |
| 701 | if (remainingPerms & ACL_INSERT && !ExecCheckRTEPermsModified(relOid, |
| 702 | userid, |
| 703 | rte->insertedCols, |
| 704 | ACL_INSERT)) |
| 705 | return false; |
| 706 | |
| 707 | if (remainingPerms & ACL_UPDATE && !ExecCheckRTEPermsModified(relOid, |
| 708 | userid, |
| 709 | rte->updatedCols, |
| 710 | ACL_UPDATE)) |
| 711 | return false; |
| 712 | } |
| 713 | return true; |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * ExecCheckRTEPermsModified |
| 718 | * Check INSERT or UPDATE access permissions for a single RTE (these |
| 719 | * are processed uniformly). |
| 720 | */ |
| 721 | static bool |
| 722 | ExecCheckRTEPermsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols, |
| 723 | AclMode requiredPerms) |
| 724 | { |
| 725 | int col = -1; |
| 726 | |
| 727 | /* |
| 728 | * When the query doesn't explicitly update any columns, allow the query |
| 729 | * if we have permission on any column of the rel. This is to handle |
| 730 | * SELECT FOR UPDATE as well as possible corner cases in UPDATE. |
| 731 | */ |
| 732 | if (bms_is_empty(modifiedCols)) |
| 733 | { |
| 734 | if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms, |
| 735 | ACLMASK_ANY) != ACLCHECK_OK) |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | while ((col = bms_next_member(modifiedCols, col)) >= 0) |
| 740 | { |
| 741 | /* bit #s are offset by FirstLowInvalidHeapAttributeNumber */ |
| 742 | AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber; |
| 743 | |
| 744 | if (attno == InvalidAttrNumber) |
| 745 | { |
| 746 | /* whole-row reference can't happen here */ |
| 747 | elog(ERROR, "whole-row update is not implemented" ); |
| 748 | } |
| 749 | else |
| 750 | { |
| 751 | if (pg_attribute_aclcheck(relOid, attno, userid, |
| 752 | requiredPerms) != ACLCHECK_OK) |
| 753 | return false; |
| 754 | } |
| 755 | } |
| 756 | return true; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * Check that the query does not imply any writes to non-temp tables; |
| 761 | * unless we're in parallel mode, in which case don't even allow writes |
| 762 | * to temp tables. |
| 763 | * |
| 764 | * Note: in a Hot Standby this would need to reject writes to temp |
| 765 | * tables just as we do in parallel mode; but an HS standby can't have created |
| 766 | * any temp tables in the first place, so no need to check that. |
| 767 | */ |
| 768 | static void |
| 769 | ExecCheckXactReadOnly(PlannedStmt *plannedstmt) |
| 770 | { |
| 771 | ListCell *l; |
| 772 | |
| 773 | /* |
| 774 | * Fail if write permissions are requested in parallel mode for table |
| 775 | * (temp or non-temp), otherwise fail for any non-temp table. |
| 776 | */ |
| 777 | foreach(l, plannedstmt->rtable) |
| 778 | { |
| 779 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(l); |
| 780 | |
| 781 | if (rte->rtekind != RTE_RELATION) |
| 782 | continue; |
| 783 | |
| 784 | if ((rte->requiredPerms & (~ACL_SELECT)) == 0) |
| 785 | continue; |
| 786 | |
| 787 | if (isTempNamespace(get_rel_namespace(rte->relid))) |
| 788 | continue; |
| 789 | |
| 790 | PreventCommandIfReadOnly(CreateCommandTag((Node *) plannedstmt)); |
| 791 | } |
| 792 | |
| 793 | if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE) |
| 794 | PreventCommandIfParallelMode(CreateCommandTag((Node *) plannedstmt)); |
| 795 | } |
| 796 | |
| 797 | |
| 798 | /* ---------------------------------------------------------------- |
| 799 | * InitPlan |
| 800 | * |
| 801 | * Initializes the query plan: open files, allocate storage |
| 802 | * and start up the rule manager |
| 803 | * ---------------------------------------------------------------- |
| 804 | */ |
| 805 | static void |
| 806 | InitPlan(QueryDesc *queryDesc, int eflags) |
| 807 | { |
| 808 | CmdType operation = queryDesc->operation; |
| 809 | PlannedStmt *plannedstmt = queryDesc->plannedstmt; |
| 810 | Plan *plan = plannedstmt->planTree; |
| 811 | List *rangeTable = plannedstmt->rtable; |
| 812 | EState *estate = queryDesc->estate; |
| 813 | PlanState *planstate; |
| 814 | TupleDesc tupType; |
| 815 | ListCell *l; |
| 816 | int i; |
| 817 | |
| 818 | /* |
| 819 | * Do permissions checks |
| 820 | */ |
| 821 | ExecCheckRTPerms(rangeTable, true); |
| 822 | |
| 823 | /* |
| 824 | * initialize the node's execution state |
| 825 | */ |
| 826 | ExecInitRangeTable(estate, rangeTable); |
| 827 | |
| 828 | estate->es_plannedstmt = plannedstmt; |
| 829 | |
| 830 | /* |
| 831 | * Initialize ResultRelInfo data structures, and open the result rels. |
| 832 | */ |
| 833 | if (plannedstmt->resultRelations) |
| 834 | { |
| 835 | List *resultRelations = plannedstmt->resultRelations; |
| 836 | int numResultRelations = list_length(resultRelations); |
| 837 | ResultRelInfo *resultRelInfos; |
| 838 | ResultRelInfo *resultRelInfo; |
| 839 | |
| 840 | resultRelInfos = (ResultRelInfo *) |
| 841 | palloc(numResultRelations * sizeof(ResultRelInfo)); |
| 842 | resultRelInfo = resultRelInfos; |
| 843 | foreach(l, resultRelations) |
| 844 | { |
| 845 | Index resultRelationIndex = lfirst_int(l); |
| 846 | Relation resultRelation; |
| 847 | |
| 848 | resultRelation = ExecGetRangeTableRelation(estate, |
| 849 | resultRelationIndex); |
| 850 | InitResultRelInfo(resultRelInfo, |
| 851 | resultRelation, |
| 852 | resultRelationIndex, |
| 853 | NULL, |
| 854 | estate->es_instrument); |
| 855 | resultRelInfo++; |
| 856 | } |
| 857 | estate->es_result_relations = resultRelInfos; |
| 858 | estate->es_num_result_relations = numResultRelations; |
| 859 | |
| 860 | /* es_result_relation_info is NULL except when within ModifyTable */ |
| 861 | estate->es_result_relation_info = NULL; |
| 862 | |
| 863 | /* |
| 864 | * In the partitioned result relation case, also build ResultRelInfos |
| 865 | * for all the partitioned table roots, because we will need them to |
| 866 | * fire statement-level triggers, if any. |
| 867 | */ |
| 868 | if (plannedstmt->rootResultRelations) |
| 869 | { |
| 870 | int num_roots = list_length(plannedstmt->rootResultRelations); |
| 871 | |
| 872 | resultRelInfos = (ResultRelInfo *) |
| 873 | palloc(num_roots * sizeof(ResultRelInfo)); |
| 874 | resultRelInfo = resultRelInfos; |
| 875 | foreach(l, plannedstmt->rootResultRelations) |
| 876 | { |
| 877 | Index resultRelIndex = lfirst_int(l); |
| 878 | Relation resultRelDesc; |
| 879 | |
| 880 | resultRelDesc = ExecGetRangeTableRelation(estate, |
| 881 | resultRelIndex); |
| 882 | InitResultRelInfo(resultRelInfo, |
| 883 | resultRelDesc, |
| 884 | resultRelIndex, |
| 885 | NULL, |
| 886 | estate->es_instrument); |
| 887 | resultRelInfo++; |
| 888 | } |
| 889 | |
| 890 | estate->es_root_result_relations = resultRelInfos; |
| 891 | estate->es_num_root_result_relations = num_roots; |
| 892 | } |
| 893 | else |
| 894 | { |
| 895 | estate->es_root_result_relations = NULL; |
| 896 | estate->es_num_root_result_relations = 0; |
| 897 | } |
| 898 | } |
| 899 | else |
| 900 | { |
| 901 | /* |
| 902 | * if no result relation, then set state appropriately |
| 903 | */ |
| 904 | estate->es_result_relations = NULL; |
| 905 | estate->es_num_result_relations = 0; |
| 906 | estate->es_result_relation_info = NULL; |
| 907 | estate->es_root_result_relations = NULL; |
| 908 | estate->es_num_root_result_relations = 0; |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * Next, build the ExecRowMark array from the PlanRowMark(s), if any. |
| 913 | */ |
| 914 | if (plannedstmt->rowMarks) |
| 915 | { |
| 916 | estate->es_rowmarks = (ExecRowMark **) |
| 917 | palloc0(estate->es_range_table_size * sizeof(ExecRowMark *)); |
| 918 | foreach(l, plannedstmt->rowMarks) |
| 919 | { |
| 920 | PlanRowMark *rc = (PlanRowMark *) lfirst(l); |
| 921 | Oid relid; |
| 922 | Relation relation; |
| 923 | ExecRowMark *erm; |
| 924 | |
| 925 | /* ignore "parent" rowmarks; they are irrelevant at runtime */ |
| 926 | if (rc->isParent) |
| 927 | continue; |
| 928 | |
| 929 | /* get relation's OID (will produce InvalidOid if subquery) */ |
| 930 | relid = exec_rt_fetch(rc->rti, estate)->relid; |
| 931 | |
| 932 | /* open relation, if we need to access it for this mark type */ |
| 933 | switch (rc->markType) |
| 934 | { |
| 935 | case ROW_MARK_EXCLUSIVE: |
| 936 | case ROW_MARK_NOKEYEXCLUSIVE: |
| 937 | case ROW_MARK_SHARE: |
| 938 | case ROW_MARK_KEYSHARE: |
| 939 | case ROW_MARK_REFERENCE: |
| 940 | relation = ExecGetRangeTableRelation(estate, rc->rti); |
| 941 | break; |
| 942 | case ROW_MARK_COPY: |
| 943 | /* no physical table access is required */ |
| 944 | relation = NULL; |
| 945 | break; |
| 946 | default: |
| 947 | elog(ERROR, "unrecognized markType: %d" , rc->markType); |
| 948 | relation = NULL; /* keep compiler quiet */ |
| 949 | break; |
| 950 | } |
| 951 | |
| 952 | /* Check that relation is a legal target for marking */ |
| 953 | if (relation) |
| 954 | CheckValidRowMarkRel(relation, rc->markType); |
| 955 | |
| 956 | erm = (ExecRowMark *) palloc(sizeof(ExecRowMark)); |
| 957 | erm->relation = relation; |
| 958 | erm->relid = relid; |
| 959 | erm->rti = rc->rti; |
| 960 | erm->prti = rc->prti; |
| 961 | erm->rowmarkId = rc->rowmarkId; |
| 962 | erm->markType = rc->markType; |
| 963 | erm->strength = rc->strength; |
| 964 | erm->waitPolicy = rc->waitPolicy; |
| 965 | erm->ermActive = false; |
| 966 | ItemPointerSetInvalid(&(erm->curCtid)); |
| 967 | erm->ermExtra = NULL; |
| 968 | |
| 969 | Assert(erm->rti > 0 && erm->rti <= estate->es_range_table_size && |
| 970 | estate->es_rowmarks[erm->rti - 1] == NULL); |
| 971 | |
| 972 | estate->es_rowmarks[erm->rti - 1] = erm; |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * Initialize the executor's tuple table to empty. |
| 978 | */ |
| 979 | estate->es_tupleTable = NIL; |
| 980 | |
| 981 | /* signal that this EState is not used for EPQ */ |
| 982 | estate->es_epq_active = NULL; |
| 983 | |
| 984 | /* |
| 985 | * Initialize private state information for each SubPlan. We must do this |
| 986 | * before running ExecInitNode on the main query tree, since |
| 987 | * ExecInitSubPlan expects to be able to find these entries. |
| 988 | */ |
| 989 | Assert(estate->es_subplanstates == NIL); |
| 990 | i = 1; /* subplan indices count from 1 */ |
| 991 | foreach(l, plannedstmt->subplans) |
| 992 | { |
| 993 | Plan *subplan = (Plan *) lfirst(l); |
| 994 | PlanState *subplanstate; |
| 995 | int sp_eflags; |
| 996 | |
| 997 | /* |
| 998 | * A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If |
| 999 | * it is a parameterless subplan (not initplan), we suggest that it be |
| 1000 | * prepared to handle REWIND efficiently; otherwise there is no need. |
| 1001 | */ |
| 1002 | sp_eflags = eflags |
| 1003 | & (EXEC_FLAG_EXPLAIN_ONLY | EXEC_FLAG_WITH_NO_DATA); |
| 1004 | if (bms_is_member(i, plannedstmt->rewindPlanIDs)) |
| 1005 | sp_eflags |= EXEC_FLAG_REWIND; |
| 1006 | |
| 1007 | subplanstate = ExecInitNode(subplan, estate, sp_eflags); |
| 1008 | |
| 1009 | estate->es_subplanstates = lappend(estate->es_subplanstates, |
| 1010 | subplanstate); |
| 1011 | |
| 1012 | i++; |
| 1013 | } |
| 1014 | |
| 1015 | /* |
| 1016 | * Initialize the private state information for all the nodes in the query |
| 1017 | * tree. This opens files, allocates storage and leaves us ready to start |
| 1018 | * processing tuples. |
| 1019 | */ |
| 1020 | planstate = ExecInitNode(plan, estate, eflags); |
| 1021 | |
| 1022 | /* |
| 1023 | * Get the tuple descriptor describing the type of tuples to return. |
| 1024 | */ |
| 1025 | tupType = ExecGetResultType(planstate); |
| 1026 | |
| 1027 | /* |
| 1028 | * Initialize the junk filter if needed. SELECT queries need a filter if |
| 1029 | * there are any junk attrs in the top-level tlist. |
| 1030 | */ |
| 1031 | if (operation == CMD_SELECT) |
| 1032 | { |
| 1033 | bool junk_filter_needed = false; |
| 1034 | ListCell *tlist; |
| 1035 | |
| 1036 | foreach(tlist, plan->targetlist) |
| 1037 | { |
| 1038 | TargetEntry *tle = (TargetEntry *) lfirst(tlist); |
| 1039 | |
| 1040 | if (tle->resjunk) |
| 1041 | { |
| 1042 | junk_filter_needed = true; |
| 1043 | break; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if (junk_filter_needed) |
| 1048 | { |
| 1049 | JunkFilter *j; |
| 1050 | TupleTableSlot *slot; |
| 1051 | |
| 1052 | slot = ExecInitExtraTupleSlot(estate, NULL, &TTSOpsVirtual); |
| 1053 | j = ExecInitJunkFilter(planstate->plan->targetlist, |
| 1054 | slot); |
| 1055 | estate->es_junkFilter = j; |
| 1056 | |
| 1057 | /* Want to return the cleaned tuple type */ |
| 1058 | tupType = j->jf_cleanTupType; |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | queryDesc->tupDesc = tupType; |
| 1063 | queryDesc->planstate = planstate; |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * Check that a proposed result relation is a legal target for the operation |
| 1068 | * |
| 1069 | * Generally the parser and/or planner should have noticed any such mistake |
| 1070 | * already, but let's make sure. |
| 1071 | * |
| 1072 | * Note: when changing this function, you probably also need to look at |
| 1073 | * CheckValidRowMarkRel. |
| 1074 | */ |
| 1075 | void |
| 1076 | CheckValidResultRel(ResultRelInfo *resultRelInfo, CmdType operation) |
| 1077 | { |
| 1078 | Relation resultRel = resultRelInfo->ri_RelationDesc; |
| 1079 | TriggerDesc *trigDesc = resultRel->trigdesc; |
| 1080 | FdwRoutine *fdwroutine; |
| 1081 | |
| 1082 | switch (resultRel->rd_rel->relkind) |
| 1083 | { |
| 1084 | case RELKIND_RELATION: |
| 1085 | case RELKIND_PARTITIONED_TABLE: |
| 1086 | CheckCmdReplicaIdentity(resultRel, operation); |
| 1087 | break; |
| 1088 | case RELKIND_SEQUENCE: |
| 1089 | ereport(ERROR, |
| 1090 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1091 | errmsg("cannot change sequence \"%s\"" , |
| 1092 | RelationGetRelationName(resultRel)))); |
| 1093 | break; |
| 1094 | case RELKIND_TOASTVALUE: |
| 1095 | ereport(ERROR, |
| 1096 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1097 | errmsg("cannot change TOAST relation \"%s\"" , |
| 1098 | RelationGetRelationName(resultRel)))); |
| 1099 | break; |
| 1100 | case RELKIND_VIEW: |
| 1101 | |
| 1102 | /* |
| 1103 | * Okay only if there's a suitable INSTEAD OF trigger. Messages |
| 1104 | * here should match rewriteHandler.c's rewriteTargetView, except |
| 1105 | * that we omit errdetail because we haven't got the information |
| 1106 | * handy (and given that we really shouldn't get here anyway, it's |
| 1107 | * not worth great exertion to get). |
| 1108 | */ |
| 1109 | switch (operation) |
| 1110 | { |
| 1111 | case CMD_INSERT: |
| 1112 | if (!trigDesc || !trigDesc->trig_insert_instead_row) |
| 1113 | ereport(ERROR, |
| 1114 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1115 | errmsg("cannot insert into view \"%s\"" , |
| 1116 | RelationGetRelationName(resultRel)), |
| 1117 | errhint("To enable inserting into the view, provide an INSTEAD OF INSERT trigger or an unconditional ON INSERT DO INSTEAD rule." ))); |
| 1118 | break; |
| 1119 | case CMD_UPDATE: |
| 1120 | if (!trigDesc || !trigDesc->trig_update_instead_row) |
| 1121 | ereport(ERROR, |
| 1122 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1123 | errmsg("cannot update view \"%s\"" , |
| 1124 | RelationGetRelationName(resultRel)), |
| 1125 | errhint("To enable updating the view, provide an INSTEAD OF UPDATE trigger or an unconditional ON UPDATE DO INSTEAD rule." ))); |
| 1126 | break; |
| 1127 | case CMD_DELETE: |
| 1128 | if (!trigDesc || !trigDesc->trig_delete_instead_row) |
| 1129 | ereport(ERROR, |
| 1130 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1131 | errmsg("cannot delete from view \"%s\"" , |
| 1132 | RelationGetRelationName(resultRel)), |
| 1133 | errhint("To enable deleting from the view, provide an INSTEAD OF DELETE trigger or an unconditional ON DELETE DO INSTEAD rule." ))); |
| 1134 | break; |
| 1135 | default: |
| 1136 | elog(ERROR, "unrecognized CmdType: %d" , (int) operation); |
| 1137 | break; |
| 1138 | } |
| 1139 | break; |
| 1140 | case RELKIND_MATVIEW: |
| 1141 | if (!MatViewIncrementalMaintenanceIsEnabled()) |
| 1142 | ereport(ERROR, |
| 1143 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1144 | errmsg("cannot change materialized view \"%s\"" , |
| 1145 | RelationGetRelationName(resultRel)))); |
| 1146 | break; |
| 1147 | case RELKIND_FOREIGN_TABLE: |
| 1148 | /* Okay only if the FDW supports it */ |
| 1149 | fdwroutine = resultRelInfo->ri_FdwRoutine; |
| 1150 | switch (operation) |
| 1151 | { |
| 1152 | case CMD_INSERT: |
| 1153 | if (fdwroutine->ExecForeignInsert == NULL) |
| 1154 | ereport(ERROR, |
| 1155 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1156 | errmsg("cannot insert into foreign table \"%s\"" , |
| 1157 | RelationGetRelationName(resultRel)))); |
| 1158 | if (fdwroutine->IsForeignRelUpdatable != NULL && |
| 1159 | (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0) |
| 1160 | ereport(ERROR, |
| 1161 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1162 | errmsg("foreign table \"%s\" does not allow inserts" , |
| 1163 | RelationGetRelationName(resultRel)))); |
| 1164 | break; |
| 1165 | case CMD_UPDATE: |
| 1166 | if (fdwroutine->ExecForeignUpdate == NULL) |
| 1167 | ereport(ERROR, |
| 1168 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1169 | errmsg("cannot update foreign table \"%s\"" , |
| 1170 | RelationGetRelationName(resultRel)))); |
| 1171 | if (fdwroutine->IsForeignRelUpdatable != NULL && |
| 1172 | (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0) |
| 1173 | ereport(ERROR, |
| 1174 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1175 | errmsg("foreign table \"%s\" does not allow updates" , |
| 1176 | RelationGetRelationName(resultRel)))); |
| 1177 | break; |
| 1178 | case CMD_DELETE: |
| 1179 | if (fdwroutine->ExecForeignDelete == NULL) |
| 1180 | ereport(ERROR, |
| 1181 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1182 | errmsg("cannot delete from foreign table \"%s\"" , |
| 1183 | RelationGetRelationName(resultRel)))); |
| 1184 | if (fdwroutine->IsForeignRelUpdatable != NULL && |
| 1185 | (fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0) |
| 1186 | ereport(ERROR, |
| 1187 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 1188 | errmsg("foreign table \"%s\" does not allow deletes" , |
| 1189 | RelationGetRelationName(resultRel)))); |
| 1190 | break; |
| 1191 | default: |
| 1192 | elog(ERROR, "unrecognized CmdType: %d" , (int) operation); |
| 1193 | break; |
| 1194 | } |
| 1195 | break; |
| 1196 | default: |
| 1197 | ereport(ERROR, |
| 1198 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1199 | errmsg("cannot change relation \"%s\"" , |
| 1200 | RelationGetRelationName(resultRel)))); |
| 1201 | break; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Check that a proposed rowmark target relation is a legal target |
| 1207 | * |
| 1208 | * In most cases parser and/or planner should have noticed this already, but |
| 1209 | * they don't cover all cases. |
| 1210 | */ |
| 1211 | static void |
| 1212 | CheckValidRowMarkRel(Relation rel, RowMarkType markType) |
| 1213 | { |
| 1214 | FdwRoutine *fdwroutine; |
| 1215 | |
| 1216 | switch (rel->rd_rel->relkind) |
| 1217 | { |
| 1218 | case RELKIND_RELATION: |
| 1219 | case RELKIND_PARTITIONED_TABLE: |
| 1220 | /* OK */ |
| 1221 | break; |
| 1222 | case RELKIND_SEQUENCE: |
| 1223 | /* Must disallow this because we don't vacuum sequences */ |
| 1224 | ereport(ERROR, |
| 1225 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1226 | errmsg("cannot lock rows in sequence \"%s\"" , |
| 1227 | RelationGetRelationName(rel)))); |
| 1228 | break; |
| 1229 | case RELKIND_TOASTVALUE: |
| 1230 | /* We could allow this, but there seems no good reason to */ |
| 1231 | ereport(ERROR, |
| 1232 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1233 | errmsg("cannot lock rows in TOAST relation \"%s\"" , |
| 1234 | RelationGetRelationName(rel)))); |
| 1235 | break; |
| 1236 | case RELKIND_VIEW: |
| 1237 | /* Should not get here; planner should have expanded the view */ |
| 1238 | ereport(ERROR, |
| 1239 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1240 | errmsg("cannot lock rows in view \"%s\"" , |
| 1241 | RelationGetRelationName(rel)))); |
| 1242 | break; |
| 1243 | case RELKIND_MATVIEW: |
| 1244 | /* Allow referencing a matview, but not actual locking clauses */ |
| 1245 | if (markType != ROW_MARK_REFERENCE) |
| 1246 | ereport(ERROR, |
| 1247 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1248 | errmsg("cannot lock rows in materialized view \"%s\"" , |
| 1249 | RelationGetRelationName(rel)))); |
| 1250 | break; |
| 1251 | case RELKIND_FOREIGN_TABLE: |
| 1252 | /* Okay only if the FDW supports it */ |
| 1253 | fdwroutine = GetFdwRoutineForRelation(rel, false); |
| 1254 | if (fdwroutine->RefetchForeignRow == NULL) |
| 1255 | ereport(ERROR, |
| 1256 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1257 | errmsg("cannot lock rows in foreign table \"%s\"" , |
| 1258 | RelationGetRelationName(rel)))); |
| 1259 | break; |
| 1260 | default: |
| 1261 | ereport(ERROR, |
| 1262 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 1263 | errmsg("cannot lock rows in relation \"%s\"" , |
| 1264 | RelationGetRelationName(rel)))); |
| 1265 | break; |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * Initialize ResultRelInfo data for one result relation |
| 1271 | * |
| 1272 | * Caution: before Postgres 9.1, this function included the relkind checking |
| 1273 | * that's now in CheckValidResultRel, and it also did ExecOpenIndices if |
| 1274 | * appropriate. Be sure callers cover those needs. |
| 1275 | */ |
| 1276 | void |
| 1277 | InitResultRelInfo(ResultRelInfo *resultRelInfo, |
| 1278 | Relation resultRelationDesc, |
| 1279 | Index resultRelationIndex, |
| 1280 | Relation partition_root, |
| 1281 | int instrument_options) |
| 1282 | { |
| 1283 | List *partition_check = NIL; |
| 1284 | |
| 1285 | MemSet(resultRelInfo, 0, sizeof(ResultRelInfo)); |
| 1286 | resultRelInfo->type = T_ResultRelInfo; |
| 1287 | resultRelInfo->ri_RangeTableIndex = resultRelationIndex; |
| 1288 | resultRelInfo->ri_RelationDesc = resultRelationDesc; |
| 1289 | resultRelInfo->ri_NumIndices = 0; |
| 1290 | resultRelInfo->ri_IndexRelationDescs = NULL; |
| 1291 | resultRelInfo->ri_IndexRelationInfo = NULL; |
| 1292 | /* make a copy so as not to depend on relcache info not changing... */ |
| 1293 | resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc); |
| 1294 | if (resultRelInfo->ri_TrigDesc) |
| 1295 | { |
| 1296 | int n = resultRelInfo->ri_TrigDesc->numtriggers; |
| 1297 | |
| 1298 | resultRelInfo->ri_TrigFunctions = (FmgrInfo *) |
| 1299 | palloc0(n * sizeof(FmgrInfo)); |
| 1300 | resultRelInfo->ri_TrigWhenExprs = (ExprState **) |
| 1301 | palloc0(n * sizeof(ExprState *)); |
| 1302 | if (instrument_options) |
| 1303 | resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options); |
| 1304 | } |
| 1305 | else |
| 1306 | { |
| 1307 | resultRelInfo->ri_TrigFunctions = NULL; |
| 1308 | resultRelInfo->ri_TrigWhenExprs = NULL; |
| 1309 | resultRelInfo->ri_TrigInstrument = NULL; |
| 1310 | } |
| 1311 | if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE) |
| 1312 | resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true); |
| 1313 | else |
| 1314 | resultRelInfo->ri_FdwRoutine = NULL; |
| 1315 | |
| 1316 | /* The following fields are set later if needed */ |
| 1317 | resultRelInfo->ri_FdwState = NULL; |
| 1318 | resultRelInfo->ri_usesFdwDirectModify = false; |
| 1319 | resultRelInfo->ri_ConstraintExprs = NULL; |
| 1320 | resultRelInfo->ri_GeneratedExprs = NULL; |
| 1321 | resultRelInfo->ri_junkFilter = NULL; |
| 1322 | resultRelInfo->ri_projectReturning = NULL; |
| 1323 | resultRelInfo->ri_onConflictArbiterIndexes = NIL; |
| 1324 | resultRelInfo->ri_onConflict = NULL; |
| 1325 | resultRelInfo->ri_ReturningSlot = NULL; |
| 1326 | resultRelInfo->ri_TrigOldSlot = NULL; |
| 1327 | resultRelInfo->ri_TrigNewSlot = NULL; |
| 1328 | |
| 1329 | /* |
| 1330 | * Partition constraint, which also includes the partition constraint of |
| 1331 | * all the ancestors that are partitions. Note that it will be checked |
| 1332 | * even in the case of tuple-routing where this table is the target leaf |
| 1333 | * partition, if there any BR triggers defined on the table. Although |
| 1334 | * tuple-routing implicitly preserves the partition constraint of the |
| 1335 | * target partition for a given row, the BR triggers may change the row |
| 1336 | * such that the constraint is no longer satisfied, which we must fail for |
| 1337 | * by checking it explicitly. |
| 1338 | * |
| 1339 | * If this is a partitioned table, the partition constraint (if any) of a |
| 1340 | * given row will be checked just before performing tuple-routing. |
| 1341 | */ |
| 1342 | partition_check = RelationGetPartitionQual(resultRelationDesc); |
| 1343 | |
| 1344 | resultRelInfo->ri_PartitionCheck = partition_check; |
| 1345 | resultRelInfo->ri_PartitionRoot = partition_root; |
| 1346 | resultRelInfo->ri_PartitionInfo = NULL; /* may be set later */ |
| 1347 | resultRelInfo->ri_CopyMultiInsertBuffer = NULL; |
| 1348 | } |
| 1349 | |
| 1350 | /* |
| 1351 | * ExecGetTriggerResultRel |
| 1352 | * Get a ResultRelInfo for a trigger target relation. |
| 1353 | * |
| 1354 | * Most of the time, triggers are fired on one of the result relations of the |
| 1355 | * query, and so we can just return a member of the es_result_relations array, |
| 1356 | * or the es_root_result_relations array (if any), or the |
| 1357 | * es_tuple_routing_result_relations list (if any). (Note: in self-join |
| 1358 | * situations there might be multiple members with the same OID; if so it |
| 1359 | * doesn't matter which one we pick.) |
| 1360 | * |
| 1361 | * However, it is sometimes necessary to fire triggers on other relations; |
| 1362 | * this happens mainly when an RI update trigger queues additional triggers |
| 1363 | * on other relations, which will be processed in the context of the outer |
| 1364 | * query. For efficiency's sake, we want to have a ResultRelInfo for those |
| 1365 | * triggers too; that can avoid repeated re-opening of the relation. (It |
| 1366 | * also provides a way for EXPLAIN ANALYZE to report the runtimes of such |
| 1367 | * triggers.) So we make additional ResultRelInfo's as needed, and save them |
| 1368 | * in es_trig_target_relations. |
| 1369 | */ |
| 1370 | ResultRelInfo * |
| 1371 | ExecGetTriggerResultRel(EState *estate, Oid relid) |
| 1372 | { |
| 1373 | ResultRelInfo *rInfo; |
| 1374 | int nr; |
| 1375 | ListCell *l; |
| 1376 | Relation rel; |
| 1377 | MemoryContext oldcontext; |
| 1378 | |
| 1379 | /* First, search through the query result relations */ |
| 1380 | rInfo = estate->es_result_relations; |
| 1381 | nr = estate->es_num_result_relations; |
| 1382 | while (nr > 0) |
| 1383 | { |
| 1384 | if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) |
| 1385 | return rInfo; |
| 1386 | rInfo++; |
| 1387 | nr--; |
| 1388 | } |
| 1389 | /* Second, search through the root result relations, if any */ |
| 1390 | rInfo = estate->es_root_result_relations; |
| 1391 | nr = estate->es_num_root_result_relations; |
| 1392 | while (nr > 0) |
| 1393 | { |
| 1394 | if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) |
| 1395 | return rInfo; |
| 1396 | rInfo++; |
| 1397 | nr--; |
| 1398 | } |
| 1399 | |
| 1400 | /* |
| 1401 | * Third, search through the result relations that were created during |
| 1402 | * tuple routing, if any. |
| 1403 | */ |
| 1404 | foreach(l, estate->es_tuple_routing_result_relations) |
| 1405 | { |
| 1406 | rInfo = (ResultRelInfo *) lfirst(l); |
| 1407 | if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) |
| 1408 | return rInfo; |
| 1409 | } |
| 1410 | |
| 1411 | /* Nope, but maybe we already made an extra ResultRelInfo for it */ |
| 1412 | foreach(l, estate->es_trig_target_relations) |
| 1413 | { |
| 1414 | rInfo = (ResultRelInfo *) lfirst(l); |
| 1415 | if (RelationGetRelid(rInfo->ri_RelationDesc) == relid) |
| 1416 | return rInfo; |
| 1417 | } |
| 1418 | /* Nope, so we need a new one */ |
| 1419 | |
| 1420 | /* |
| 1421 | * Open the target relation's relcache entry. We assume that an |
| 1422 | * appropriate lock is still held by the backend from whenever the trigger |
| 1423 | * event got queued, so we need take no new lock here. Also, we need not |
| 1424 | * recheck the relkind, so no need for CheckValidResultRel. |
| 1425 | */ |
| 1426 | rel = table_open(relid, NoLock); |
| 1427 | |
| 1428 | /* |
| 1429 | * Make the new entry in the right context. |
| 1430 | */ |
| 1431 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1432 | rInfo = makeNode(ResultRelInfo); |
| 1433 | InitResultRelInfo(rInfo, |
| 1434 | rel, |
| 1435 | 0, /* dummy rangetable index */ |
| 1436 | NULL, |
| 1437 | estate->es_instrument); |
| 1438 | estate->es_trig_target_relations = |
| 1439 | lappend(estate->es_trig_target_relations, rInfo); |
| 1440 | MemoryContextSwitchTo(oldcontext); |
| 1441 | |
| 1442 | /* |
| 1443 | * Currently, we don't need any index information in ResultRelInfos used |
| 1444 | * only for triggers, so no need to call ExecOpenIndices. |
| 1445 | */ |
| 1446 | |
| 1447 | return rInfo; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Close any relations that have been opened by ExecGetTriggerResultRel(). |
| 1452 | */ |
| 1453 | void |
| 1454 | ExecCleanUpTriggerState(EState *estate) |
| 1455 | { |
| 1456 | ListCell *l; |
| 1457 | |
| 1458 | foreach(l, estate->es_trig_target_relations) |
| 1459 | { |
| 1460 | ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l); |
| 1461 | |
| 1462 | /* |
| 1463 | * Assert this is a "dummy" ResultRelInfo, see above. Otherwise we |
| 1464 | * might be issuing a duplicate close against a Relation opened by |
| 1465 | * ExecGetRangeTableRelation. |
| 1466 | */ |
| 1467 | Assert(resultRelInfo->ri_RangeTableIndex == 0); |
| 1468 | |
| 1469 | /* |
| 1470 | * Since ExecGetTriggerResultRel doesn't call ExecOpenIndices for |
| 1471 | * these rels, we needn't call ExecCloseIndices either. |
| 1472 | */ |
| 1473 | Assert(resultRelInfo->ri_NumIndices == 0); |
| 1474 | |
| 1475 | table_close(resultRelInfo->ri_RelationDesc, NoLock); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | /* ---------------------------------------------------------------- |
| 1480 | * ExecPostprocessPlan |
| 1481 | * |
| 1482 | * Give plan nodes a final chance to execute before shutdown |
| 1483 | * ---------------------------------------------------------------- |
| 1484 | */ |
| 1485 | static void |
| 1486 | ExecPostprocessPlan(EState *estate) |
| 1487 | { |
| 1488 | ListCell *lc; |
| 1489 | |
| 1490 | /* |
| 1491 | * Make sure nodes run forward. |
| 1492 | */ |
| 1493 | estate->es_direction = ForwardScanDirection; |
| 1494 | |
| 1495 | /* |
| 1496 | * Run any secondary ModifyTable nodes to completion, in case the main |
| 1497 | * query did not fetch all rows from them. (We do this to ensure that |
| 1498 | * such nodes have predictable results.) |
| 1499 | */ |
| 1500 | foreach(lc, estate->es_auxmodifytables) |
| 1501 | { |
| 1502 | PlanState *ps = (PlanState *) lfirst(lc); |
| 1503 | |
| 1504 | for (;;) |
| 1505 | { |
| 1506 | TupleTableSlot *slot; |
| 1507 | |
| 1508 | /* Reset the per-output-tuple exprcontext each time */ |
| 1509 | ResetPerTupleExprContext(estate); |
| 1510 | |
| 1511 | slot = ExecProcNode(ps); |
| 1512 | |
| 1513 | if (TupIsNull(slot)) |
| 1514 | break; |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | /* ---------------------------------------------------------------- |
| 1520 | * ExecEndPlan |
| 1521 | * |
| 1522 | * Cleans up the query plan -- closes files and frees up storage |
| 1523 | * |
| 1524 | * NOTE: we are no longer very worried about freeing storage per se |
| 1525 | * in this code; FreeExecutorState should be guaranteed to release all |
| 1526 | * memory that needs to be released. What we are worried about doing |
| 1527 | * is closing relations and dropping buffer pins. Thus, for example, |
| 1528 | * tuple tables must be cleared or dropped to ensure pins are released. |
| 1529 | * ---------------------------------------------------------------- |
| 1530 | */ |
| 1531 | static void |
| 1532 | ExecEndPlan(PlanState *planstate, EState *estate) |
| 1533 | { |
| 1534 | ResultRelInfo *resultRelInfo; |
| 1535 | Index num_relations; |
| 1536 | Index i; |
| 1537 | ListCell *l; |
| 1538 | |
| 1539 | /* |
| 1540 | * shut down the node-type-specific query processing |
| 1541 | */ |
| 1542 | ExecEndNode(planstate); |
| 1543 | |
| 1544 | /* |
| 1545 | * for subplans too |
| 1546 | */ |
| 1547 | foreach(l, estate->es_subplanstates) |
| 1548 | { |
| 1549 | PlanState *subplanstate = (PlanState *) lfirst(l); |
| 1550 | |
| 1551 | ExecEndNode(subplanstate); |
| 1552 | } |
| 1553 | |
| 1554 | /* |
| 1555 | * destroy the executor's tuple table. Actually we only care about |
| 1556 | * releasing buffer pins and tupdesc refcounts; there's no need to pfree |
| 1557 | * the TupleTableSlots, since the containing memory context is about to go |
| 1558 | * away anyway. |
| 1559 | */ |
| 1560 | ExecResetTupleTable(estate->es_tupleTable, false); |
| 1561 | |
| 1562 | /* |
| 1563 | * close indexes of result relation(s) if any. (Rels themselves get |
| 1564 | * closed next.) |
| 1565 | */ |
| 1566 | resultRelInfo = estate->es_result_relations; |
| 1567 | for (i = estate->es_num_result_relations; i > 0; i--) |
| 1568 | { |
| 1569 | ExecCloseIndices(resultRelInfo); |
| 1570 | resultRelInfo++; |
| 1571 | } |
| 1572 | |
| 1573 | /* |
| 1574 | * close whatever rangetable Relations have been opened. We do not |
| 1575 | * release any locks we might hold on those rels. |
| 1576 | */ |
| 1577 | num_relations = estate->es_range_table_size; |
| 1578 | for (i = 0; i < num_relations; i++) |
| 1579 | { |
| 1580 | if (estate->es_relations[i]) |
| 1581 | table_close(estate->es_relations[i], NoLock); |
| 1582 | } |
| 1583 | |
| 1584 | /* likewise close any trigger target relations */ |
| 1585 | ExecCleanUpTriggerState(estate); |
| 1586 | } |
| 1587 | |
| 1588 | /* ---------------------------------------------------------------- |
| 1589 | * ExecutePlan |
| 1590 | * |
| 1591 | * Processes the query plan until we have retrieved 'numberTuples' tuples, |
| 1592 | * moving in the specified direction. |
| 1593 | * |
| 1594 | * Runs to completion if numberTuples is 0 |
| 1595 | * |
| 1596 | * Note: the ctid attribute is a 'junk' attribute that is removed before the |
| 1597 | * user can see it |
| 1598 | * ---------------------------------------------------------------- |
| 1599 | */ |
| 1600 | static void |
| 1601 | ExecutePlan(EState *estate, |
| 1602 | PlanState *planstate, |
| 1603 | bool use_parallel_mode, |
| 1604 | CmdType operation, |
| 1605 | bool sendTuples, |
| 1606 | uint64 numberTuples, |
| 1607 | ScanDirection direction, |
| 1608 | DestReceiver *dest, |
| 1609 | bool execute_once) |
| 1610 | { |
| 1611 | TupleTableSlot *slot; |
| 1612 | uint64 current_tuple_count; |
| 1613 | |
| 1614 | /* |
| 1615 | * initialize local variables |
| 1616 | */ |
| 1617 | current_tuple_count = 0; |
| 1618 | |
| 1619 | /* |
| 1620 | * Set the direction. |
| 1621 | */ |
| 1622 | estate->es_direction = direction; |
| 1623 | |
| 1624 | /* |
| 1625 | * If the plan might potentially be executed multiple times, we must force |
| 1626 | * it to run without parallelism, because we might exit early. |
| 1627 | */ |
| 1628 | if (!execute_once) |
| 1629 | use_parallel_mode = false; |
| 1630 | |
| 1631 | estate->es_use_parallel_mode = use_parallel_mode; |
| 1632 | if (use_parallel_mode) |
| 1633 | EnterParallelMode(); |
| 1634 | |
| 1635 | /* |
| 1636 | * Loop until we've processed the proper number of tuples from the plan. |
| 1637 | */ |
| 1638 | for (;;) |
| 1639 | { |
| 1640 | /* Reset the per-output-tuple exprcontext */ |
| 1641 | ResetPerTupleExprContext(estate); |
| 1642 | |
| 1643 | /* |
| 1644 | * Execute the plan and obtain a tuple |
| 1645 | */ |
| 1646 | slot = ExecProcNode(planstate); |
| 1647 | |
| 1648 | /* |
| 1649 | * if the tuple is null, then we assume there is nothing more to |
| 1650 | * process so we just end the loop... |
| 1651 | */ |
| 1652 | if (TupIsNull(slot)) |
| 1653 | { |
| 1654 | /* |
| 1655 | * If we know we won't need to back up, we can release resources |
| 1656 | * at this point. |
| 1657 | */ |
| 1658 | if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD)) |
| 1659 | (void) ExecShutdownNode(planstate); |
| 1660 | break; |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * If we have a junk filter, then project a new tuple with the junk |
| 1665 | * removed. |
| 1666 | * |
| 1667 | * Store this new "clean" tuple in the junkfilter's resultSlot. |
| 1668 | * (Formerly, we stored it back over the "dirty" tuple, which is WRONG |
| 1669 | * because that tuple slot has the wrong descriptor.) |
| 1670 | */ |
| 1671 | if (estate->es_junkFilter != NULL) |
| 1672 | slot = ExecFilterJunk(estate->es_junkFilter, slot); |
| 1673 | |
| 1674 | /* |
| 1675 | * If we are supposed to send the tuple somewhere, do so. (In |
| 1676 | * practice, this is probably always the case at this point.) |
| 1677 | */ |
| 1678 | if (sendTuples) |
| 1679 | { |
| 1680 | /* |
| 1681 | * If we are not able to send the tuple, we assume the destination |
| 1682 | * has closed and no more tuples can be sent. If that's the case, |
| 1683 | * end the loop. |
| 1684 | */ |
| 1685 | if (!dest->receiveSlot(slot, dest)) |
| 1686 | break; |
| 1687 | } |
| 1688 | |
| 1689 | /* |
| 1690 | * Count tuples processed, if this is a SELECT. (For other operation |
| 1691 | * types, the ModifyTable plan node must count the appropriate |
| 1692 | * events.) |
| 1693 | */ |
| 1694 | if (operation == CMD_SELECT) |
| 1695 | (estate->es_processed)++; |
| 1696 | |
| 1697 | /* |
| 1698 | * check our tuple count.. if we've processed the proper number then |
| 1699 | * quit, else loop again and process more tuples. Zero numberTuples |
| 1700 | * means no limit. |
| 1701 | */ |
| 1702 | current_tuple_count++; |
| 1703 | if (numberTuples && numberTuples == current_tuple_count) |
| 1704 | { |
| 1705 | /* |
| 1706 | * If we know we won't need to back up, we can release resources |
| 1707 | * at this point. |
| 1708 | */ |
| 1709 | if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD)) |
| 1710 | (void) ExecShutdownNode(planstate); |
| 1711 | break; |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | if (use_parallel_mode) |
| 1716 | ExitParallelMode(); |
| 1717 | } |
| 1718 | |
| 1719 | |
| 1720 | /* |
| 1721 | * ExecRelCheck --- check that tuple meets constraints for result relation |
| 1722 | * |
| 1723 | * Returns NULL if OK, else name of failed check constraint |
| 1724 | */ |
| 1725 | static const char * |
| 1726 | ExecRelCheck(ResultRelInfo *resultRelInfo, |
| 1727 | TupleTableSlot *slot, EState *estate) |
| 1728 | { |
| 1729 | Relation rel = resultRelInfo->ri_RelationDesc; |
| 1730 | int ncheck = rel->rd_att->constr->num_check; |
| 1731 | ConstrCheck *check = rel->rd_att->constr->check; |
| 1732 | ExprContext *econtext; |
| 1733 | MemoryContext oldContext; |
| 1734 | int i; |
| 1735 | |
| 1736 | /* |
| 1737 | * If first time through for this result relation, build expression |
| 1738 | * nodetrees for rel's constraint expressions. Keep them in the per-query |
| 1739 | * memory context so they'll survive throughout the query. |
| 1740 | */ |
| 1741 | if (resultRelInfo->ri_ConstraintExprs == NULL) |
| 1742 | { |
| 1743 | oldContext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1744 | resultRelInfo->ri_ConstraintExprs = |
| 1745 | (ExprState **) palloc(ncheck * sizeof(ExprState *)); |
| 1746 | for (i = 0; i < ncheck; i++) |
| 1747 | { |
| 1748 | Expr *checkconstr; |
| 1749 | |
| 1750 | checkconstr = stringToNode(check[i].ccbin); |
| 1751 | resultRelInfo->ri_ConstraintExprs[i] = |
| 1752 | ExecPrepareExpr(checkconstr, estate); |
| 1753 | } |
| 1754 | MemoryContextSwitchTo(oldContext); |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * We will use the EState's per-tuple context for evaluating constraint |
| 1759 | * expressions (creating it if it's not already there). |
| 1760 | */ |
| 1761 | econtext = GetPerTupleExprContext(estate); |
| 1762 | |
| 1763 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 1764 | econtext->ecxt_scantuple = slot; |
| 1765 | |
| 1766 | /* And evaluate the constraints */ |
| 1767 | for (i = 0; i < ncheck; i++) |
| 1768 | { |
| 1769 | ExprState *checkconstr = resultRelInfo->ri_ConstraintExprs[i]; |
| 1770 | |
| 1771 | /* |
| 1772 | * NOTE: SQL specifies that a NULL result from a constraint expression |
| 1773 | * is not to be treated as a failure. Therefore, use ExecCheck not |
| 1774 | * ExecQual. |
| 1775 | */ |
| 1776 | if (!ExecCheck(checkconstr, econtext)) |
| 1777 | return check[i].ccname; |
| 1778 | } |
| 1779 | |
| 1780 | /* NULL result means no error */ |
| 1781 | return NULL; |
| 1782 | } |
| 1783 | |
| 1784 | /* |
| 1785 | * ExecPartitionCheck --- check that tuple meets the partition constraint. |
| 1786 | * |
| 1787 | * Returns true if it meets the partition constraint. If the constraint |
| 1788 | * fails and we're asked to emit to error, do so and don't return; otherwise |
| 1789 | * return false. |
| 1790 | */ |
| 1791 | bool |
| 1792 | ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot, |
| 1793 | EState *estate, bool emitError) |
| 1794 | { |
| 1795 | ExprContext *econtext; |
| 1796 | bool success; |
| 1797 | |
| 1798 | /* |
| 1799 | * If first time through, build expression state tree for the partition |
| 1800 | * check expression. Keep it in the per-query memory context so they'll |
| 1801 | * survive throughout the query. |
| 1802 | */ |
| 1803 | if (resultRelInfo->ri_PartitionCheckExpr == NULL) |
| 1804 | { |
| 1805 | List *qual = resultRelInfo->ri_PartitionCheck; |
| 1806 | |
| 1807 | resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate); |
| 1808 | } |
| 1809 | |
| 1810 | /* |
| 1811 | * We will use the EState's per-tuple context for evaluating constraint |
| 1812 | * expressions (creating it if it's not already there). |
| 1813 | */ |
| 1814 | econtext = GetPerTupleExprContext(estate); |
| 1815 | |
| 1816 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 1817 | econtext->ecxt_scantuple = slot; |
| 1818 | |
| 1819 | /* |
| 1820 | * As in case of the catalogued constraints, we treat a NULL result as |
| 1821 | * success here, not a failure. |
| 1822 | */ |
| 1823 | success = ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext); |
| 1824 | |
| 1825 | /* if asked to emit error, don't actually return on failure */ |
| 1826 | if (!success && emitError) |
| 1827 | ExecPartitionCheckEmitError(resultRelInfo, slot, estate); |
| 1828 | |
| 1829 | return success; |
| 1830 | } |
| 1831 | |
| 1832 | /* |
| 1833 | * ExecPartitionCheckEmitError - Form and emit an error message after a failed |
| 1834 | * partition constraint check. |
| 1835 | */ |
| 1836 | void |
| 1837 | ExecPartitionCheckEmitError(ResultRelInfo *resultRelInfo, |
| 1838 | TupleTableSlot *slot, |
| 1839 | EState *estate) |
| 1840 | { |
| 1841 | Oid root_relid; |
| 1842 | TupleDesc tupdesc; |
| 1843 | char *val_desc; |
| 1844 | Bitmapset *modifiedCols; |
| 1845 | |
| 1846 | /* |
| 1847 | * If the tuple has been routed, it's been converted to the partition's |
| 1848 | * rowtype, which might differ from the root table's. We must convert it |
| 1849 | * back to the root table's rowtype so that val_desc in the error message |
| 1850 | * matches the input tuple. |
| 1851 | */ |
| 1852 | if (resultRelInfo->ri_PartitionRoot) |
| 1853 | { |
| 1854 | TupleDesc old_tupdesc; |
| 1855 | AttrNumber *map; |
| 1856 | |
| 1857 | root_relid = RelationGetRelid(resultRelInfo->ri_PartitionRoot); |
| 1858 | tupdesc = RelationGetDescr(resultRelInfo->ri_PartitionRoot); |
| 1859 | |
| 1860 | old_tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc); |
| 1861 | /* a reverse map */ |
| 1862 | map = convert_tuples_by_name_map_if_req(old_tupdesc, tupdesc, |
| 1863 | gettext_noop("could not convert row type" )); |
| 1864 | |
| 1865 | /* |
| 1866 | * Partition-specific slot's tupdesc can't be changed, so allocate a |
| 1867 | * new one. |
| 1868 | */ |
| 1869 | if (map != NULL) |
| 1870 | slot = execute_attr_map_slot(map, slot, |
| 1871 | MakeTupleTableSlot(tupdesc, &TTSOpsVirtual)); |
| 1872 | } |
| 1873 | else |
| 1874 | { |
| 1875 | root_relid = RelationGetRelid(resultRelInfo->ri_RelationDesc); |
| 1876 | tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc); |
| 1877 | } |
| 1878 | |
| 1879 | modifiedCols = bms_union(GetInsertedColumns(resultRelInfo, estate), |
| 1880 | GetUpdatedColumns(resultRelInfo, estate)); |
| 1881 | |
| 1882 | val_desc = ExecBuildSlotValueDescription(root_relid, |
| 1883 | slot, |
| 1884 | tupdesc, |
| 1885 | modifiedCols, |
| 1886 | 64); |
| 1887 | ereport(ERROR, |
| 1888 | (errcode(ERRCODE_CHECK_VIOLATION), |
| 1889 | errmsg("new row for relation \"%s\" violates partition constraint" , |
| 1890 | RelationGetRelationName(resultRelInfo->ri_RelationDesc)), |
| 1891 | val_desc ? errdetail("Failing row contains %s." , val_desc) : 0)); |
| 1892 | } |
| 1893 | |
| 1894 | /* |
| 1895 | * ExecConstraints - check constraints of the tuple in 'slot' |
| 1896 | * |
| 1897 | * This checks the traditional NOT NULL and check constraints. |
| 1898 | * |
| 1899 | * The partition constraint is *NOT* checked. |
| 1900 | * |
| 1901 | * Note: 'slot' contains the tuple to check the constraints of, which may |
| 1902 | * have been converted from the original input tuple after tuple routing. |
| 1903 | * 'resultRelInfo' is the final result relation, after tuple routing. |
| 1904 | */ |
| 1905 | void |
| 1906 | ExecConstraints(ResultRelInfo *resultRelInfo, |
| 1907 | TupleTableSlot *slot, EState *estate) |
| 1908 | { |
| 1909 | Relation rel = resultRelInfo->ri_RelationDesc; |
| 1910 | TupleDesc tupdesc = RelationGetDescr(rel); |
| 1911 | TupleConstr *constr = tupdesc->constr; |
| 1912 | Bitmapset *modifiedCols; |
| 1913 | Bitmapset *insertedCols; |
| 1914 | Bitmapset *updatedCols; |
| 1915 | |
| 1916 | Assert(constr || resultRelInfo->ri_PartitionCheck); |
| 1917 | |
| 1918 | if (constr && constr->has_not_null) |
| 1919 | { |
| 1920 | int natts = tupdesc->natts; |
| 1921 | int attrChk; |
| 1922 | |
| 1923 | for (attrChk = 1; attrChk <= natts; attrChk++) |
| 1924 | { |
| 1925 | Form_pg_attribute att = TupleDescAttr(tupdesc, attrChk - 1); |
| 1926 | |
| 1927 | if (att->attnotnull && slot_attisnull(slot, attrChk)) |
| 1928 | { |
| 1929 | char *val_desc; |
| 1930 | Relation orig_rel = rel; |
| 1931 | TupleDesc orig_tupdesc = RelationGetDescr(rel); |
| 1932 | |
| 1933 | /* |
| 1934 | * If the tuple has been routed, it's been converted to the |
| 1935 | * partition's rowtype, which might differ from the root |
| 1936 | * table's. We must convert it back to the root table's |
| 1937 | * rowtype so that val_desc shown error message matches the |
| 1938 | * input tuple. |
| 1939 | */ |
| 1940 | if (resultRelInfo->ri_PartitionRoot) |
| 1941 | { |
| 1942 | AttrNumber *map; |
| 1943 | |
| 1944 | rel = resultRelInfo->ri_PartitionRoot; |
| 1945 | tupdesc = RelationGetDescr(rel); |
| 1946 | /* a reverse map */ |
| 1947 | map = convert_tuples_by_name_map_if_req(orig_tupdesc, |
| 1948 | tupdesc, |
| 1949 | gettext_noop("could not convert row type" )); |
| 1950 | |
| 1951 | /* |
| 1952 | * Partition-specific slot's tupdesc can't be changed, so |
| 1953 | * allocate a new one. |
| 1954 | */ |
| 1955 | if (map != NULL) |
| 1956 | slot = execute_attr_map_slot(map, slot, |
| 1957 | MakeTupleTableSlot(tupdesc, &TTSOpsVirtual)); |
| 1958 | } |
| 1959 | |
| 1960 | insertedCols = GetInsertedColumns(resultRelInfo, estate); |
| 1961 | updatedCols = GetUpdatedColumns(resultRelInfo, estate); |
| 1962 | modifiedCols = bms_union(insertedCols, updatedCols); |
| 1963 | val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), |
| 1964 | slot, |
| 1965 | tupdesc, |
| 1966 | modifiedCols, |
| 1967 | 64); |
| 1968 | |
| 1969 | ereport(ERROR, |
| 1970 | (errcode(ERRCODE_NOT_NULL_VIOLATION), |
| 1971 | errmsg("null value in column \"%s\" violates not-null constraint" , |
| 1972 | NameStr(att->attname)), |
| 1973 | val_desc ? errdetail("Failing row contains %s." , val_desc) : 0, |
| 1974 | errtablecol(orig_rel, attrChk))); |
| 1975 | } |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | if (constr && constr->num_check > 0) |
| 1980 | { |
| 1981 | const char *failed; |
| 1982 | |
| 1983 | if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL) |
| 1984 | { |
| 1985 | char *val_desc; |
| 1986 | Relation orig_rel = rel; |
| 1987 | |
| 1988 | /* See the comment above. */ |
| 1989 | if (resultRelInfo->ri_PartitionRoot) |
| 1990 | { |
| 1991 | TupleDesc old_tupdesc = RelationGetDescr(rel); |
| 1992 | AttrNumber *map; |
| 1993 | |
| 1994 | rel = resultRelInfo->ri_PartitionRoot; |
| 1995 | tupdesc = RelationGetDescr(rel); |
| 1996 | /* a reverse map */ |
| 1997 | map = convert_tuples_by_name_map_if_req(old_tupdesc, |
| 1998 | tupdesc, |
| 1999 | gettext_noop("could not convert row type" )); |
| 2000 | |
| 2001 | /* |
| 2002 | * Partition-specific slot's tupdesc can't be changed, so |
| 2003 | * allocate a new one. |
| 2004 | */ |
| 2005 | if (map != NULL) |
| 2006 | slot = execute_attr_map_slot(map, slot, |
| 2007 | MakeTupleTableSlot(tupdesc, &TTSOpsVirtual)); |
| 2008 | } |
| 2009 | |
| 2010 | insertedCols = GetInsertedColumns(resultRelInfo, estate); |
| 2011 | updatedCols = GetUpdatedColumns(resultRelInfo, estate); |
| 2012 | modifiedCols = bms_union(insertedCols, updatedCols); |
| 2013 | val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), |
| 2014 | slot, |
| 2015 | tupdesc, |
| 2016 | modifiedCols, |
| 2017 | 64); |
| 2018 | ereport(ERROR, |
| 2019 | (errcode(ERRCODE_CHECK_VIOLATION), |
| 2020 | errmsg("new row for relation \"%s\" violates check constraint \"%s\"" , |
| 2021 | RelationGetRelationName(orig_rel), failed), |
| 2022 | val_desc ? errdetail("Failing row contains %s." , val_desc) : 0, |
| 2023 | errtableconstraint(orig_rel, failed))); |
| 2024 | } |
| 2025 | } |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs |
| 2030 | * of the specified kind. |
| 2031 | * |
| 2032 | * Note that this needs to be called multiple times to ensure that all kinds of |
| 2033 | * WITH CHECK OPTIONs are handled (both those from views which have the WITH |
| 2034 | * CHECK OPTION set and from row level security policies). See ExecInsert() |
| 2035 | * and ExecUpdate(). |
| 2036 | */ |
| 2037 | void |
| 2038 | ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo, |
| 2039 | TupleTableSlot *slot, EState *estate) |
| 2040 | { |
| 2041 | Relation rel = resultRelInfo->ri_RelationDesc; |
| 2042 | TupleDesc tupdesc = RelationGetDescr(rel); |
| 2043 | ExprContext *econtext; |
| 2044 | ListCell *l1, |
| 2045 | *l2; |
| 2046 | |
| 2047 | /* |
| 2048 | * We will use the EState's per-tuple context for evaluating constraint |
| 2049 | * expressions (creating it if it's not already there). |
| 2050 | */ |
| 2051 | econtext = GetPerTupleExprContext(estate); |
| 2052 | |
| 2053 | /* Arrange for econtext's scan tuple to be the tuple under test */ |
| 2054 | econtext->ecxt_scantuple = slot; |
| 2055 | |
| 2056 | /* Check each of the constraints */ |
| 2057 | forboth(l1, resultRelInfo->ri_WithCheckOptions, |
| 2058 | l2, resultRelInfo->ri_WithCheckOptionExprs) |
| 2059 | { |
| 2060 | WithCheckOption *wco = (WithCheckOption *) lfirst(l1); |
| 2061 | ExprState *wcoExpr = (ExprState *) lfirst(l2); |
| 2062 | |
| 2063 | /* |
| 2064 | * Skip any WCOs which are not the kind we are looking for at this |
| 2065 | * time. |
| 2066 | */ |
| 2067 | if (wco->kind != kind) |
| 2068 | continue; |
| 2069 | |
| 2070 | /* |
| 2071 | * WITH CHECK OPTION checks are intended to ensure that the new tuple |
| 2072 | * is visible (in the case of a view) or that it passes the |
| 2073 | * 'with-check' policy (in the case of row security). If the qual |
| 2074 | * evaluates to NULL or FALSE, then the new tuple won't be included in |
| 2075 | * the view or doesn't pass the 'with-check' policy for the table. |
| 2076 | */ |
| 2077 | if (!ExecQual(wcoExpr, econtext)) |
| 2078 | { |
| 2079 | char *val_desc; |
| 2080 | Bitmapset *modifiedCols; |
| 2081 | Bitmapset *insertedCols; |
| 2082 | Bitmapset *updatedCols; |
| 2083 | |
| 2084 | switch (wco->kind) |
| 2085 | { |
| 2086 | /* |
| 2087 | * For WITH CHECK OPTIONs coming from views, we might be |
| 2088 | * able to provide the details on the row, depending on |
| 2089 | * the permissions on the relation (that is, if the user |
| 2090 | * could view it directly anyway). For RLS violations, we |
| 2091 | * don't include the data since we don't know if the user |
| 2092 | * should be able to view the tuple as that depends on the |
| 2093 | * USING policy. |
| 2094 | */ |
| 2095 | case WCO_VIEW_CHECK: |
| 2096 | /* See the comment in ExecConstraints(). */ |
| 2097 | if (resultRelInfo->ri_PartitionRoot) |
| 2098 | { |
| 2099 | TupleDesc old_tupdesc = RelationGetDescr(rel); |
| 2100 | AttrNumber *map; |
| 2101 | |
| 2102 | rel = resultRelInfo->ri_PartitionRoot; |
| 2103 | tupdesc = RelationGetDescr(rel); |
| 2104 | /* a reverse map */ |
| 2105 | map = convert_tuples_by_name_map_if_req(old_tupdesc, |
| 2106 | tupdesc, |
| 2107 | gettext_noop("could not convert row type" )); |
| 2108 | |
| 2109 | /* |
| 2110 | * Partition-specific slot's tupdesc can't be changed, |
| 2111 | * so allocate a new one. |
| 2112 | */ |
| 2113 | if (map != NULL) |
| 2114 | slot = execute_attr_map_slot(map, slot, |
| 2115 | MakeTupleTableSlot(tupdesc, &TTSOpsVirtual)); |
| 2116 | } |
| 2117 | |
| 2118 | insertedCols = GetInsertedColumns(resultRelInfo, estate); |
| 2119 | updatedCols = GetUpdatedColumns(resultRelInfo, estate); |
| 2120 | modifiedCols = bms_union(insertedCols, updatedCols); |
| 2121 | val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel), |
| 2122 | slot, |
| 2123 | tupdesc, |
| 2124 | modifiedCols, |
| 2125 | 64); |
| 2126 | |
| 2127 | ereport(ERROR, |
| 2128 | (errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION), |
| 2129 | errmsg("new row violates check option for view \"%s\"" , |
| 2130 | wco->relname), |
| 2131 | val_desc ? errdetail("Failing row contains %s." , |
| 2132 | val_desc) : 0)); |
| 2133 | break; |
| 2134 | case WCO_RLS_INSERT_CHECK: |
| 2135 | case WCO_RLS_UPDATE_CHECK: |
| 2136 | if (wco->polname != NULL) |
| 2137 | ereport(ERROR, |
| 2138 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
| 2139 | errmsg("new row violates row-level security policy \"%s\" for table \"%s\"" , |
| 2140 | wco->polname, wco->relname))); |
| 2141 | else |
| 2142 | ereport(ERROR, |
| 2143 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
| 2144 | errmsg("new row violates row-level security policy for table \"%s\"" , |
| 2145 | wco->relname))); |
| 2146 | break; |
| 2147 | case WCO_RLS_CONFLICT_CHECK: |
| 2148 | if (wco->polname != NULL) |
| 2149 | ereport(ERROR, |
| 2150 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
| 2151 | errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"" , |
| 2152 | wco->polname, wco->relname))); |
| 2153 | else |
| 2154 | ereport(ERROR, |
| 2155 | (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), |
| 2156 | errmsg("new row violates row-level security policy (USING expression) for table \"%s\"" , |
| 2157 | wco->relname))); |
| 2158 | break; |
| 2159 | default: |
| 2160 | elog(ERROR, "unrecognized WCO kind: %u" , wco->kind); |
| 2161 | break; |
| 2162 | } |
| 2163 | } |
| 2164 | } |
| 2165 | } |
| 2166 | |
| 2167 | /* |
| 2168 | * ExecBuildSlotValueDescription -- construct a string representing a tuple |
| 2169 | * |
| 2170 | * This is intentionally very similar to BuildIndexValueDescription, but |
| 2171 | * unlike that function, we truncate long field values (to at most maxfieldlen |
| 2172 | * bytes). That seems necessary here since heap field values could be very |
| 2173 | * long, whereas index entries typically aren't so wide. |
| 2174 | * |
| 2175 | * Also, unlike the case with index entries, we need to be prepared to ignore |
| 2176 | * dropped columns. We used to use the slot's tuple descriptor to decode the |
| 2177 | * data, but the slot's descriptor doesn't identify dropped columns, so we |
| 2178 | * now need to be passed the relation's descriptor. |
| 2179 | * |
| 2180 | * Note that, like BuildIndexValueDescription, if the user does not have |
| 2181 | * permission to view any of the columns involved, a NULL is returned. Unlike |
| 2182 | * BuildIndexValueDescription, if the user has access to view a subset of the |
| 2183 | * column involved, that subset will be returned with a key identifying which |
| 2184 | * columns they are. |
| 2185 | */ |
| 2186 | static char * |
| 2187 | ExecBuildSlotValueDescription(Oid reloid, |
| 2188 | TupleTableSlot *slot, |
| 2189 | TupleDesc tupdesc, |
| 2190 | Bitmapset *modifiedCols, |
| 2191 | int maxfieldlen) |
| 2192 | { |
| 2193 | StringInfoData buf; |
| 2194 | StringInfoData collist; |
| 2195 | bool write_comma = false; |
| 2196 | bool write_comma_collist = false; |
| 2197 | int i; |
| 2198 | AclResult aclresult; |
| 2199 | bool table_perm = false; |
| 2200 | bool any_perm = false; |
| 2201 | |
| 2202 | /* |
| 2203 | * Check if RLS is enabled and should be active for the relation; if so, |
| 2204 | * then don't return anything. Otherwise, go through normal permission |
| 2205 | * checks. |
| 2206 | */ |
| 2207 | if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED) |
| 2208 | return NULL; |
| 2209 | |
| 2210 | initStringInfo(&buf); |
| 2211 | |
| 2212 | appendStringInfoChar(&buf, '('); |
| 2213 | |
| 2214 | /* |
| 2215 | * Check if the user has permissions to see the row. Table-level SELECT |
| 2216 | * allows access to all columns. If the user does not have table-level |
| 2217 | * SELECT then we check each column and include those the user has SELECT |
| 2218 | * rights on. Additionally, we always include columns the user provided |
| 2219 | * data for. |
| 2220 | */ |
| 2221 | aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT); |
| 2222 | if (aclresult != ACLCHECK_OK) |
| 2223 | { |
| 2224 | /* Set up the buffer for the column list */ |
| 2225 | initStringInfo(&collist); |
| 2226 | appendStringInfoChar(&collist, '('); |
| 2227 | } |
| 2228 | else |
| 2229 | table_perm = any_perm = true; |
| 2230 | |
| 2231 | /* Make sure the tuple is fully deconstructed */ |
| 2232 | slot_getallattrs(slot); |
| 2233 | |
| 2234 | for (i = 0; i < tupdesc->natts; i++) |
| 2235 | { |
| 2236 | bool column_perm = false; |
| 2237 | char *val; |
| 2238 | int vallen; |
| 2239 | Form_pg_attribute att = TupleDescAttr(tupdesc, i); |
| 2240 | |
| 2241 | /* ignore dropped columns */ |
| 2242 | if (att->attisdropped) |
| 2243 | continue; |
| 2244 | |
| 2245 | if (!table_perm) |
| 2246 | { |
| 2247 | /* |
| 2248 | * No table-level SELECT, so need to make sure they either have |
| 2249 | * SELECT rights on the column or that they have provided the data |
| 2250 | * for the column. If not, omit this column from the error |
| 2251 | * message. |
| 2252 | */ |
| 2253 | aclresult = pg_attribute_aclcheck(reloid, att->attnum, |
| 2254 | GetUserId(), ACL_SELECT); |
| 2255 | if (bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber, |
| 2256 | modifiedCols) || aclresult == ACLCHECK_OK) |
| 2257 | { |
| 2258 | column_perm = any_perm = true; |
| 2259 | |
| 2260 | if (write_comma_collist) |
| 2261 | appendStringInfoString(&collist, ", " ); |
| 2262 | else |
| 2263 | write_comma_collist = true; |
| 2264 | |
| 2265 | appendStringInfoString(&collist, NameStr(att->attname)); |
| 2266 | } |
| 2267 | } |
| 2268 | |
| 2269 | if (table_perm || column_perm) |
| 2270 | { |
| 2271 | if (slot->tts_isnull[i]) |
| 2272 | val = "null" ; |
| 2273 | else |
| 2274 | { |
| 2275 | Oid foutoid; |
| 2276 | bool typisvarlena; |
| 2277 | |
| 2278 | getTypeOutputInfo(att->atttypid, |
| 2279 | &foutoid, &typisvarlena); |
| 2280 | val = OidOutputFunctionCall(foutoid, slot->tts_values[i]); |
| 2281 | } |
| 2282 | |
| 2283 | if (write_comma) |
| 2284 | appendStringInfoString(&buf, ", " ); |
| 2285 | else |
| 2286 | write_comma = true; |
| 2287 | |
| 2288 | /* truncate if needed */ |
| 2289 | vallen = strlen(val); |
| 2290 | if (vallen <= maxfieldlen) |
| 2291 | appendStringInfoString(&buf, val); |
| 2292 | else |
| 2293 | { |
| 2294 | vallen = pg_mbcliplen(val, vallen, maxfieldlen); |
| 2295 | appendBinaryStringInfo(&buf, val, vallen); |
| 2296 | appendStringInfoString(&buf, "..." ); |
| 2297 | } |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | /* If we end up with zero columns being returned, then return NULL. */ |
| 2302 | if (!any_perm) |
| 2303 | return NULL; |
| 2304 | |
| 2305 | appendStringInfoChar(&buf, ')'); |
| 2306 | |
| 2307 | if (!table_perm) |
| 2308 | { |
| 2309 | appendStringInfoString(&collist, ") = " ); |
| 2310 | appendStringInfoString(&collist, buf.data); |
| 2311 | |
| 2312 | return collist.data; |
| 2313 | } |
| 2314 | |
| 2315 | return buf.data; |
| 2316 | } |
| 2317 | |
| 2318 | |
| 2319 | /* |
| 2320 | * ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a |
| 2321 | * given ResultRelInfo |
| 2322 | */ |
| 2323 | LockTupleMode |
| 2324 | ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo) |
| 2325 | { |
| 2326 | Bitmapset *keyCols; |
| 2327 | Bitmapset *updatedCols; |
| 2328 | |
| 2329 | /* |
| 2330 | * Compute lock mode to use. If columns that are part of the key have not |
| 2331 | * been modified, then we can use a weaker lock, allowing for better |
| 2332 | * concurrency. |
| 2333 | */ |
| 2334 | updatedCols = GetAllUpdatedColumns(relinfo, estate); |
| 2335 | keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc, |
| 2336 | INDEX_ATTR_BITMAP_KEY); |
| 2337 | |
| 2338 | if (bms_overlap(keyCols, updatedCols)) |
| 2339 | return LockTupleExclusive; |
| 2340 | |
| 2341 | return LockTupleNoKeyExclusive; |
| 2342 | } |
| 2343 | |
| 2344 | /* |
| 2345 | * ExecFindRowMark -- find the ExecRowMark struct for given rangetable index |
| 2346 | * |
| 2347 | * If no such struct, either return NULL or throw error depending on missing_ok |
| 2348 | */ |
| 2349 | ExecRowMark * |
| 2350 | ExecFindRowMark(EState *estate, Index rti, bool missing_ok) |
| 2351 | { |
| 2352 | if (rti > 0 && rti <= estate->es_range_table_size && |
| 2353 | estate->es_rowmarks != NULL) |
| 2354 | { |
| 2355 | ExecRowMark *erm = estate->es_rowmarks[rti - 1]; |
| 2356 | |
| 2357 | if (erm) |
| 2358 | return erm; |
| 2359 | } |
| 2360 | if (!missing_ok) |
| 2361 | elog(ERROR, "failed to find ExecRowMark for rangetable index %u" , rti); |
| 2362 | return NULL; |
| 2363 | } |
| 2364 | |
| 2365 | /* |
| 2366 | * ExecBuildAuxRowMark -- create an ExecAuxRowMark struct |
| 2367 | * |
| 2368 | * Inputs are the underlying ExecRowMark struct and the targetlist of the |
| 2369 | * input plan node (not planstate node!). We need the latter to find out |
| 2370 | * the column numbers of the resjunk columns. |
| 2371 | */ |
| 2372 | ExecAuxRowMark * |
| 2373 | ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist) |
| 2374 | { |
| 2375 | ExecAuxRowMark *aerm = (ExecAuxRowMark *) palloc0(sizeof(ExecAuxRowMark)); |
| 2376 | char resname[32]; |
| 2377 | |
| 2378 | aerm->rowmark = erm; |
| 2379 | |
| 2380 | /* Look up the resjunk columns associated with this rowmark */ |
| 2381 | if (erm->markType != ROW_MARK_COPY) |
| 2382 | { |
| 2383 | /* need ctid for all methods other than COPY */ |
| 2384 | snprintf(resname, sizeof(resname), "ctid%u" , erm->rowmarkId); |
| 2385 | aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist, |
| 2386 | resname); |
| 2387 | if (!AttributeNumberIsValid(aerm->ctidAttNo)) |
| 2388 | elog(ERROR, "could not find junk %s column" , resname); |
| 2389 | } |
| 2390 | else |
| 2391 | { |
| 2392 | /* need wholerow if COPY */ |
| 2393 | snprintf(resname, sizeof(resname), "wholerow%u" , erm->rowmarkId); |
| 2394 | aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist, |
| 2395 | resname); |
| 2396 | if (!AttributeNumberIsValid(aerm->wholeAttNo)) |
| 2397 | elog(ERROR, "could not find junk %s column" , resname); |
| 2398 | } |
| 2399 | |
| 2400 | /* if child rel, need tableoid */ |
| 2401 | if (erm->rti != erm->prti) |
| 2402 | { |
| 2403 | snprintf(resname, sizeof(resname), "tableoid%u" , erm->rowmarkId); |
| 2404 | aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist, |
| 2405 | resname); |
| 2406 | if (!AttributeNumberIsValid(aerm->toidAttNo)) |
| 2407 | elog(ERROR, "could not find junk %s column" , resname); |
| 2408 | } |
| 2409 | |
| 2410 | return aerm; |
| 2411 | } |
| 2412 | |
| 2413 | |
| 2414 | /* |
| 2415 | * EvalPlanQual logic --- recheck modified tuple(s) to see if we want to |
| 2416 | * process the updated version under READ COMMITTED rules. |
| 2417 | * |
| 2418 | * See backend/executor/README for some info about how this works. |
| 2419 | */ |
| 2420 | |
| 2421 | |
| 2422 | /* |
| 2423 | * Check the updated version of a tuple to see if we want to process it under |
| 2424 | * READ COMMITTED rules. |
| 2425 | * |
| 2426 | * epqstate - state for EvalPlanQual rechecking |
| 2427 | * relation - table containing tuple |
| 2428 | * rti - rangetable index of table containing tuple |
| 2429 | * inputslot - tuple for processing - this can be the slot from |
| 2430 | * EvalPlanQualSlot(), for the increased efficiency. |
| 2431 | * |
| 2432 | * This tests whether the tuple in inputslot still matches the relevant |
| 2433 | * quals. For that result to be useful, typically the input tuple has to be |
| 2434 | * last row version (otherwise the result isn't particularly useful) and |
| 2435 | * locked (otherwise the result might be out of date). That's typically |
| 2436 | * achieved by using table_tuple_lock() with the |
| 2437 | * TUPLE_LOCK_FLAG_FIND_LAST_VERSION flag. |
| 2438 | * |
| 2439 | * Returns a slot containing the new candidate update/delete tuple, or |
| 2440 | * NULL if we determine we shouldn't process the row. |
| 2441 | */ |
| 2442 | TupleTableSlot * |
| 2443 | EvalPlanQual(EPQState *epqstate, Relation relation, |
| 2444 | Index rti, TupleTableSlot *inputslot) |
| 2445 | { |
| 2446 | TupleTableSlot *slot; |
| 2447 | TupleTableSlot *testslot; |
| 2448 | |
| 2449 | Assert(rti > 0); |
| 2450 | |
| 2451 | /* |
| 2452 | * Need to run a recheck subquery. Initialize or reinitialize EPQ state. |
| 2453 | */ |
| 2454 | EvalPlanQualBegin(epqstate); |
| 2455 | |
| 2456 | /* |
| 2457 | * Callers will often use the EvalPlanQualSlot to store the tuple to avoid |
| 2458 | * an unnecessary copy. |
| 2459 | */ |
| 2460 | testslot = EvalPlanQualSlot(epqstate, relation, rti); |
| 2461 | if (testslot != inputslot) |
| 2462 | ExecCopySlot(testslot, inputslot); |
| 2463 | |
| 2464 | /* |
| 2465 | * Run the EPQ query. We assume it will return at most one tuple. |
| 2466 | */ |
| 2467 | slot = EvalPlanQualNext(epqstate); |
| 2468 | |
| 2469 | /* |
| 2470 | * If we got a tuple, force the slot to materialize the tuple so that it |
| 2471 | * is not dependent on any local state in the EPQ query (in particular, |
| 2472 | * it's highly likely that the slot contains references to any pass-by-ref |
| 2473 | * datums that may be present in copyTuple). As with the next step, this |
| 2474 | * is to guard against early re-use of the EPQ query. |
| 2475 | */ |
| 2476 | if (!TupIsNull(slot)) |
| 2477 | ExecMaterializeSlot(slot); |
| 2478 | |
| 2479 | /* |
| 2480 | * Clear out the test tuple. This is needed in case the EPQ query is |
| 2481 | * re-used to test a tuple for a different relation. (Not clear that can |
| 2482 | * really happen, but let's be safe.) |
| 2483 | */ |
| 2484 | ExecClearTuple(testslot); |
| 2485 | |
| 2486 | return slot; |
| 2487 | } |
| 2488 | |
| 2489 | /* |
| 2490 | * EvalPlanQualInit -- initialize during creation of a plan state node |
| 2491 | * that might need to invoke EPQ processing. |
| 2492 | * |
| 2493 | * Note: subplan/auxrowmarks can be NULL/NIL if they will be set later |
| 2494 | * with EvalPlanQualSetPlan. |
| 2495 | */ |
| 2496 | void |
| 2497 | EvalPlanQualInit(EPQState *epqstate, EState *parentestate, |
| 2498 | Plan *subplan, List *auxrowmarks, int epqParam) |
| 2499 | { |
| 2500 | Index rtsize = parentestate->es_range_table_size; |
| 2501 | |
| 2502 | /* initialize data not changing over EPQState's lifetime */ |
| 2503 | epqstate->parentestate = parentestate; |
| 2504 | epqstate->epqParam = epqParam; |
| 2505 | |
| 2506 | /* |
| 2507 | * Allocate space to reference a slot for each potential rti - do so now |
| 2508 | * rather than in EvalPlanQualBegin(), as done for other dynamically |
| 2509 | * allocated resources, so EvalPlanQualSlot() can be used to hold tuples |
| 2510 | * that *may* need EPQ later, without forcing the overhead of |
| 2511 | * EvalPlanQualBegin(). |
| 2512 | */ |
| 2513 | epqstate->tuple_table = NIL; |
| 2514 | epqstate->relsubs_slot = (TupleTableSlot **) |
| 2515 | palloc0(rtsize * sizeof(TupleTableSlot *)); |
| 2516 | |
| 2517 | /* ... and remember data that EvalPlanQualBegin will need */ |
| 2518 | epqstate->plan = subplan; |
| 2519 | epqstate->arowMarks = auxrowmarks; |
| 2520 | |
| 2521 | /* ... and mark the EPQ state inactive */ |
| 2522 | epqstate->origslot = NULL; |
| 2523 | epqstate->recheckestate = NULL; |
| 2524 | epqstate->recheckplanstate = NULL; |
| 2525 | epqstate->relsubs_rowmark = NULL; |
| 2526 | epqstate->relsubs_done = NULL; |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * EvalPlanQualSetPlan -- set or change subplan of an EPQState. |
| 2531 | * |
| 2532 | * We need this so that ModifyTable can deal with multiple subplans. |
| 2533 | */ |
| 2534 | void |
| 2535 | EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks) |
| 2536 | { |
| 2537 | /* If we have a live EPQ query, shut it down */ |
| 2538 | EvalPlanQualEnd(epqstate); |
| 2539 | /* And set/change the plan pointer */ |
| 2540 | epqstate->plan = subplan; |
| 2541 | /* The rowmarks depend on the plan, too */ |
| 2542 | epqstate->arowMarks = auxrowmarks; |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Return, and create if necessary, a slot for an EPQ test tuple. |
| 2547 | * |
| 2548 | * Note this only requires EvalPlanQualInit() to have been called, |
| 2549 | * EvalPlanQualBegin() is not necessary. |
| 2550 | */ |
| 2551 | TupleTableSlot * |
| 2552 | EvalPlanQualSlot(EPQState *epqstate, |
| 2553 | Relation relation, Index rti) |
| 2554 | { |
| 2555 | TupleTableSlot **slot; |
| 2556 | |
| 2557 | Assert(relation); |
| 2558 | Assert(rti > 0 && rti <= epqstate->parentestate->es_range_table_size); |
| 2559 | slot = &epqstate->relsubs_slot[rti - 1]; |
| 2560 | |
| 2561 | if (*slot == NULL) |
| 2562 | { |
| 2563 | MemoryContext oldcontext; |
| 2564 | |
| 2565 | oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt); |
| 2566 | *slot = table_slot_create(relation, &epqstate->tuple_table); |
| 2567 | MemoryContextSwitchTo(oldcontext); |
| 2568 | } |
| 2569 | |
| 2570 | return *slot; |
| 2571 | } |
| 2572 | |
| 2573 | /* |
| 2574 | * Fetch the current row value for a non-locked relation, identified by rti, |
| 2575 | * that needs to be scanned by an EvalPlanQual operation. origslot must have |
| 2576 | * been set to contain the current result row (top-level row) that we need to |
| 2577 | * recheck. Returns true if a substitution tuple was found, false if not. |
| 2578 | */ |
| 2579 | bool |
| 2580 | EvalPlanQualFetchRowMark(EPQState *epqstate, Index rti, TupleTableSlot *slot) |
| 2581 | { |
| 2582 | ExecAuxRowMark *earm = epqstate->relsubs_rowmark[rti - 1]; |
| 2583 | ExecRowMark *erm = earm->rowmark; |
| 2584 | Datum datum; |
| 2585 | bool isNull; |
| 2586 | |
| 2587 | Assert(earm != NULL); |
| 2588 | Assert(epqstate->origslot != NULL); |
| 2589 | |
| 2590 | if (RowMarkRequiresRowShareLock(erm->markType)) |
| 2591 | elog(ERROR, "EvalPlanQual doesn't support locking rowmarks" ); |
| 2592 | |
| 2593 | /* if child rel, must check whether it produced this row */ |
| 2594 | if (erm->rti != erm->prti) |
| 2595 | { |
| 2596 | Oid tableoid; |
| 2597 | |
| 2598 | datum = ExecGetJunkAttribute(epqstate->origslot, |
| 2599 | earm->toidAttNo, |
| 2600 | &isNull); |
| 2601 | /* non-locked rels could be on the inside of outer joins */ |
| 2602 | if (isNull) |
| 2603 | return false; |
| 2604 | |
| 2605 | tableoid = DatumGetObjectId(datum); |
| 2606 | |
| 2607 | Assert(OidIsValid(erm->relid)); |
| 2608 | if (tableoid != erm->relid) |
| 2609 | { |
| 2610 | /* this child is inactive right now */ |
| 2611 | return false; |
| 2612 | } |
| 2613 | } |
| 2614 | |
| 2615 | if (erm->markType == ROW_MARK_REFERENCE) |
| 2616 | { |
| 2617 | Assert(erm->relation != NULL); |
| 2618 | |
| 2619 | /* fetch the tuple's ctid */ |
| 2620 | datum = ExecGetJunkAttribute(epqstate->origslot, |
| 2621 | earm->ctidAttNo, |
| 2622 | &isNull); |
| 2623 | /* non-locked rels could be on the inside of outer joins */ |
| 2624 | if (isNull) |
| 2625 | return false; |
| 2626 | |
| 2627 | /* fetch requests on foreign tables must be passed to their FDW */ |
| 2628 | if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE) |
| 2629 | { |
| 2630 | FdwRoutine *fdwroutine; |
| 2631 | bool updated = false; |
| 2632 | |
| 2633 | fdwroutine = GetFdwRoutineForRelation(erm->relation, false); |
| 2634 | /* this should have been checked already, but let's be safe */ |
| 2635 | if (fdwroutine->RefetchForeignRow == NULL) |
| 2636 | ereport(ERROR, |
| 2637 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 2638 | errmsg("cannot lock rows in foreign table \"%s\"" , |
| 2639 | RelationGetRelationName(erm->relation)))); |
| 2640 | |
| 2641 | fdwroutine->RefetchForeignRow(epqstate->recheckestate, |
| 2642 | erm, |
| 2643 | datum, |
| 2644 | slot, |
| 2645 | &updated); |
| 2646 | if (TupIsNull(slot)) |
| 2647 | elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck" ); |
| 2648 | |
| 2649 | /* |
| 2650 | * Ideally we'd insist on updated == false here, but that assumes |
| 2651 | * that FDWs can track that exactly, which they might not be able |
| 2652 | * to. So just ignore the flag. |
| 2653 | */ |
| 2654 | return true; |
| 2655 | } |
| 2656 | else |
| 2657 | { |
| 2658 | /* ordinary table, fetch the tuple */ |
| 2659 | if (!table_tuple_fetch_row_version(erm->relation, |
| 2660 | (ItemPointer) DatumGetPointer(datum), |
| 2661 | SnapshotAny, slot)) |
| 2662 | elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck" ); |
| 2663 | return true; |
| 2664 | } |
| 2665 | } |
| 2666 | else |
| 2667 | { |
| 2668 | Assert(erm->markType == ROW_MARK_COPY); |
| 2669 | |
| 2670 | /* fetch the whole-row Var for the relation */ |
| 2671 | datum = ExecGetJunkAttribute(epqstate->origslot, |
| 2672 | earm->wholeAttNo, |
| 2673 | &isNull); |
| 2674 | /* non-locked rels could be on the inside of outer joins */ |
| 2675 | if (isNull) |
| 2676 | return false; |
| 2677 | |
| 2678 | ExecStoreHeapTupleDatum(datum, slot); |
| 2679 | return true; |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | /* |
| 2684 | * Fetch the next row (if any) from EvalPlanQual testing |
| 2685 | * |
| 2686 | * (In practice, there should never be more than one row...) |
| 2687 | */ |
| 2688 | TupleTableSlot * |
| 2689 | EvalPlanQualNext(EPQState *epqstate) |
| 2690 | { |
| 2691 | MemoryContext oldcontext; |
| 2692 | TupleTableSlot *slot; |
| 2693 | |
| 2694 | oldcontext = MemoryContextSwitchTo(epqstate->recheckestate->es_query_cxt); |
| 2695 | slot = ExecProcNode(epqstate->recheckplanstate); |
| 2696 | MemoryContextSwitchTo(oldcontext); |
| 2697 | |
| 2698 | return slot; |
| 2699 | } |
| 2700 | |
| 2701 | /* |
| 2702 | * Initialize or reset an EvalPlanQual state tree |
| 2703 | */ |
| 2704 | void |
| 2705 | EvalPlanQualBegin(EPQState *epqstate) |
| 2706 | { |
| 2707 | EState *parentestate = epqstate->parentestate; |
| 2708 | EState *recheckestate = epqstate->recheckestate; |
| 2709 | |
| 2710 | if (recheckestate == NULL) |
| 2711 | { |
| 2712 | /* First time through, so create a child EState */ |
| 2713 | EvalPlanQualStart(epqstate, epqstate->plan); |
| 2714 | } |
| 2715 | else |
| 2716 | { |
| 2717 | /* |
| 2718 | * We already have a suitable child EPQ tree, so just reset it. |
| 2719 | */ |
| 2720 | Index rtsize = parentestate->es_range_table_size; |
| 2721 | PlanState *rcplanstate = epqstate->recheckplanstate; |
| 2722 | |
| 2723 | MemSet(epqstate->relsubs_done, 0, rtsize * sizeof(bool)); |
| 2724 | |
| 2725 | /* Recopy current values of parent parameters */ |
| 2726 | if (parentestate->es_plannedstmt->paramExecTypes != NIL) |
| 2727 | { |
| 2728 | int i; |
| 2729 | |
| 2730 | /* |
| 2731 | * Force evaluation of any InitPlan outputs that could be needed |
| 2732 | * by the subplan, just in case they got reset since |
| 2733 | * EvalPlanQualStart (see comments therein). |
| 2734 | */ |
| 2735 | ExecSetParamPlanMulti(rcplanstate->plan->extParam, |
| 2736 | GetPerTupleExprContext(parentestate)); |
| 2737 | |
| 2738 | i = list_length(parentestate->es_plannedstmt->paramExecTypes); |
| 2739 | |
| 2740 | while (--i >= 0) |
| 2741 | { |
| 2742 | /* copy value if any, but not execPlan link */ |
| 2743 | recheckestate->es_param_exec_vals[i].value = |
| 2744 | parentestate->es_param_exec_vals[i].value; |
| 2745 | recheckestate->es_param_exec_vals[i].isnull = |
| 2746 | parentestate->es_param_exec_vals[i].isnull; |
| 2747 | } |
| 2748 | } |
| 2749 | |
| 2750 | /* |
| 2751 | * Mark child plan tree as needing rescan at all scan nodes. The |
| 2752 | * first ExecProcNode will take care of actually doing the rescan. |
| 2753 | */ |
| 2754 | rcplanstate->chgParam = bms_add_member(rcplanstate->chgParam, |
| 2755 | epqstate->epqParam); |
| 2756 | } |
| 2757 | } |
| 2758 | |
| 2759 | /* |
| 2760 | * Start execution of an EvalPlanQual plan tree. |
| 2761 | * |
| 2762 | * This is a cut-down version of ExecutorStart(): we copy some state from |
| 2763 | * the top-level estate rather than initializing it fresh. |
| 2764 | */ |
| 2765 | static void |
| 2766 | EvalPlanQualStart(EPQState *epqstate, Plan *planTree) |
| 2767 | { |
| 2768 | EState *parentestate = epqstate->parentestate; |
| 2769 | Index rtsize = parentestate->es_range_table_size; |
| 2770 | EState *rcestate; |
| 2771 | MemoryContext oldcontext; |
| 2772 | ListCell *l; |
| 2773 | |
| 2774 | epqstate->recheckestate = rcestate = CreateExecutorState(); |
| 2775 | |
| 2776 | oldcontext = MemoryContextSwitchTo(rcestate->es_query_cxt); |
| 2777 | |
| 2778 | /* signal that this is an EState for executing EPQ */ |
| 2779 | rcestate->es_epq_active = epqstate; |
| 2780 | |
| 2781 | /* |
| 2782 | * Child EPQ EStates share the parent's copy of unchanging state such as |
| 2783 | * the snapshot, rangetable, result-rel info, and external Param info. |
| 2784 | * They need their own copies of local state, including a tuple table, |
| 2785 | * es_param_exec_vals, etc. |
| 2786 | * |
| 2787 | * The ResultRelInfo array management is trickier than it looks. We |
| 2788 | * create fresh arrays for the child but copy all the content from the |
| 2789 | * parent. This is because it's okay for the child to share any |
| 2790 | * per-relation state the parent has already created --- but if the child |
| 2791 | * sets up any ResultRelInfo fields, such as its own junkfilter, that |
| 2792 | * state must *not* propagate back to the parent. (For one thing, the |
| 2793 | * pointed-to data is in a memory context that won't last long enough.) |
| 2794 | */ |
| 2795 | rcestate->es_direction = ForwardScanDirection; |
| 2796 | rcestate->es_snapshot = parentestate->es_snapshot; |
| 2797 | rcestate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot; |
| 2798 | rcestate->es_range_table = parentestate->es_range_table; |
| 2799 | rcestate->es_range_table_array = parentestate->es_range_table_array; |
| 2800 | rcestate->es_range_table_size = parentestate->es_range_table_size; |
| 2801 | rcestate->es_relations = parentestate->es_relations; |
| 2802 | rcestate->es_queryEnv = parentestate->es_queryEnv; |
| 2803 | rcestate->es_rowmarks = parentestate->es_rowmarks; |
| 2804 | rcestate->es_plannedstmt = parentestate->es_plannedstmt; |
| 2805 | rcestate->es_junkFilter = parentestate->es_junkFilter; |
| 2806 | rcestate->es_output_cid = parentestate->es_output_cid; |
| 2807 | if (parentestate->es_num_result_relations > 0) |
| 2808 | { |
| 2809 | int numResultRelations = parentestate->es_num_result_relations; |
| 2810 | int numRootResultRels = parentestate->es_num_root_result_relations; |
| 2811 | ResultRelInfo *resultRelInfos; |
| 2812 | |
| 2813 | resultRelInfos = (ResultRelInfo *) |
| 2814 | palloc(numResultRelations * sizeof(ResultRelInfo)); |
| 2815 | memcpy(resultRelInfos, parentestate->es_result_relations, |
| 2816 | numResultRelations * sizeof(ResultRelInfo)); |
| 2817 | rcestate->es_result_relations = resultRelInfos; |
| 2818 | rcestate->es_num_result_relations = numResultRelations; |
| 2819 | |
| 2820 | /* Also transfer partitioned root result relations. */ |
| 2821 | if (numRootResultRels > 0) |
| 2822 | { |
| 2823 | resultRelInfos = (ResultRelInfo *) |
| 2824 | palloc(numRootResultRels * sizeof(ResultRelInfo)); |
| 2825 | memcpy(resultRelInfos, parentestate->es_root_result_relations, |
| 2826 | numRootResultRels * sizeof(ResultRelInfo)); |
| 2827 | rcestate->es_root_result_relations = resultRelInfos; |
| 2828 | rcestate->es_num_root_result_relations = numRootResultRels; |
| 2829 | } |
| 2830 | } |
| 2831 | /* es_result_relation_info must NOT be copied */ |
| 2832 | /* es_trig_target_relations must NOT be copied */ |
| 2833 | rcestate->es_top_eflags = parentestate->es_top_eflags; |
| 2834 | rcestate->es_instrument = parentestate->es_instrument; |
| 2835 | /* es_auxmodifytables must NOT be copied */ |
| 2836 | |
| 2837 | /* |
| 2838 | * The external param list is simply shared from parent. The internal |
| 2839 | * param workspace has to be local state, but we copy the initial values |
| 2840 | * from the parent, so as to have access to any param values that were |
| 2841 | * already set from other parts of the parent's plan tree. |
| 2842 | */ |
| 2843 | rcestate->es_param_list_info = parentestate->es_param_list_info; |
| 2844 | if (parentestate->es_plannedstmt->paramExecTypes != NIL) |
| 2845 | { |
| 2846 | int i; |
| 2847 | |
| 2848 | /* |
| 2849 | * Force evaluation of any InitPlan outputs that could be needed by |
| 2850 | * the subplan. (With more complexity, maybe we could postpone this |
| 2851 | * till the subplan actually demands them, but it doesn't seem worth |
| 2852 | * the trouble; this is a corner case already, since usually the |
| 2853 | * InitPlans would have been evaluated before reaching EvalPlanQual.) |
| 2854 | * |
| 2855 | * This will not touch output params of InitPlans that occur somewhere |
| 2856 | * within the subplan tree, only those that are attached to the |
| 2857 | * ModifyTable node or above it and are referenced within the subplan. |
| 2858 | * That's OK though, because the planner would only attach such |
| 2859 | * InitPlans to a lower-level SubqueryScan node, and EPQ execution |
| 2860 | * will not descend into a SubqueryScan. |
| 2861 | * |
| 2862 | * The EState's per-output-tuple econtext is sufficiently short-lived |
| 2863 | * for this, since it should get reset before there is any chance of |
| 2864 | * doing EvalPlanQual again. |
| 2865 | */ |
| 2866 | ExecSetParamPlanMulti(planTree->extParam, |
| 2867 | GetPerTupleExprContext(parentestate)); |
| 2868 | |
| 2869 | /* now make the internal param workspace ... */ |
| 2870 | i = list_length(parentestate->es_plannedstmt->paramExecTypes); |
| 2871 | rcestate->es_param_exec_vals = (ParamExecData *) |
| 2872 | palloc0(i * sizeof(ParamExecData)); |
| 2873 | /* ... and copy down all values, whether really needed or not */ |
| 2874 | while (--i >= 0) |
| 2875 | { |
| 2876 | /* copy value if any, but not execPlan link */ |
| 2877 | rcestate->es_param_exec_vals[i].value = |
| 2878 | parentestate->es_param_exec_vals[i].value; |
| 2879 | rcestate->es_param_exec_vals[i].isnull = |
| 2880 | parentestate->es_param_exec_vals[i].isnull; |
| 2881 | } |
| 2882 | } |
| 2883 | |
| 2884 | /* |
| 2885 | * Initialize private state information for each SubPlan. We must do this |
| 2886 | * before running ExecInitNode on the main query tree, since |
| 2887 | * ExecInitSubPlan expects to be able to find these entries. Some of the |
| 2888 | * SubPlans might not be used in the part of the plan tree we intend to |
| 2889 | * run, but since it's not easy to tell which, we just initialize them |
| 2890 | * all. |
| 2891 | */ |
| 2892 | Assert(rcestate->es_subplanstates == NIL); |
| 2893 | foreach(l, parentestate->es_plannedstmt->subplans) |
| 2894 | { |
| 2895 | Plan *subplan = (Plan *) lfirst(l); |
| 2896 | PlanState *subplanstate; |
| 2897 | |
| 2898 | subplanstate = ExecInitNode(subplan, rcestate, 0); |
| 2899 | rcestate->es_subplanstates = lappend(rcestate->es_subplanstates, |
| 2900 | subplanstate); |
| 2901 | } |
| 2902 | |
| 2903 | /* |
| 2904 | * These arrays are reused across different plans set with |
| 2905 | * EvalPlanQualSetPlan(), which is safe because they all use the same |
| 2906 | * parent EState. Therefore we can reuse if already allocated. |
| 2907 | */ |
| 2908 | if (epqstate->relsubs_rowmark == NULL) |
| 2909 | { |
| 2910 | Assert(epqstate->relsubs_done == NULL); |
| 2911 | epqstate->relsubs_rowmark = (ExecAuxRowMark **) |
| 2912 | palloc0(rtsize * sizeof(ExecAuxRowMark *)); |
| 2913 | epqstate->relsubs_done = (bool *) |
| 2914 | palloc0(rtsize * sizeof(bool)); |
| 2915 | } |
| 2916 | else |
| 2917 | { |
| 2918 | Assert(epqstate->relsubs_done != NULL); |
| 2919 | memset(epqstate->relsubs_rowmark, 0, |
| 2920 | rtsize * sizeof(ExecAuxRowMark *)); |
| 2921 | memset(epqstate->relsubs_done, 0, |
| 2922 | rtsize * sizeof(bool)); |
| 2923 | } |
| 2924 | |
| 2925 | /* |
| 2926 | * Build an RTI indexed array of rowmarks, so that |
| 2927 | * EvalPlanQualFetchRowMark() can efficiently access the to be fetched |
| 2928 | * rowmark. |
| 2929 | */ |
| 2930 | foreach(l, epqstate->arowMarks) |
| 2931 | { |
| 2932 | ExecAuxRowMark *earm = (ExecAuxRowMark *) lfirst(l); |
| 2933 | |
| 2934 | epqstate->relsubs_rowmark[earm->rowmark->rti - 1] = earm; |
| 2935 | } |
| 2936 | |
| 2937 | /* |
| 2938 | * Initialize the private state information for all the nodes in the part |
| 2939 | * of the plan tree we need to run. This opens files, allocates storage |
| 2940 | * and leaves us ready to start processing tuples. |
| 2941 | */ |
| 2942 | epqstate->recheckplanstate = ExecInitNode(planTree, rcestate, 0); |
| 2943 | |
| 2944 | MemoryContextSwitchTo(oldcontext); |
| 2945 | } |
| 2946 | |
| 2947 | /* |
| 2948 | * EvalPlanQualEnd -- shut down at termination of parent plan state node, |
| 2949 | * or if we are done with the current EPQ child. |
| 2950 | * |
| 2951 | * This is a cut-down version of ExecutorEnd(); basically we want to do most |
| 2952 | * of the normal cleanup, but *not* close result relations (which we are |
| 2953 | * just sharing from the outer query). We do, however, have to close any |
| 2954 | * trigger target relations that got opened, since those are not shared. |
| 2955 | * (There probably shouldn't be any of the latter, but just in case...) |
| 2956 | */ |
| 2957 | void |
| 2958 | EvalPlanQualEnd(EPQState *epqstate) |
| 2959 | { |
| 2960 | EState *estate = epqstate->recheckestate; |
| 2961 | Index rtsize; |
| 2962 | MemoryContext oldcontext; |
| 2963 | ListCell *l; |
| 2964 | |
| 2965 | rtsize = epqstate->parentestate->es_range_table_size; |
| 2966 | |
| 2967 | /* |
| 2968 | * We may have a tuple table, even if EPQ wasn't started, because we allow |
| 2969 | * use of EvalPlanQualSlot() without calling EvalPlanQualBegin(). |
| 2970 | */ |
| 2971 | if (epqstate->tuple_table != NIL) |
| 2972 | { |
| 2973 | memset(epqstate->relsubs_slot, 0, |
| 2974 | rtsize * sizeof(TupleTableSlot *)); |
| 2975 | ExecResetTupleTable(epqstate->tuple_table, true); |
| 2976 | epqstate->tuple_table = NIL; |
| 2977 | } |
| 2978 | |
| 2979 | /* EPQ wasn't started, nothing further to do */ |
| 2980 | if (estate == NULL) |
| 2981 | return; |
| 2982 | |
| 2983 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 2984 | |
| 2985 | ExecEndNode(epqstate->recheckplanstate); |
| 2986 | |
| 2987 | foreach(l, estate->es_subplanstates) |
| 2988 | { |
| 2989 | PlanState *subplanstate = (PlanState *) lfirst(l); |
| 2990 | |
| 2991 | ExecEndNode(subplanstate); |
| 2992 | } |
| 2993 | |
| 2994 | /* throw away the per-estate tuple table, some node may have used it */ |
| 2995 | ExecResetTupleTable(estate->es_tupleTable, false); |
| 2996 | |
| 2997 | /* close any trigger target relations attached to this EState */ |
| 2998 | ExecCleanUpTriggerState(estate); |
| 2999 | |
| 3000 | MemoryContextSwitchTo(oldcontext); |
| 3001 | |
| 3002 | FreeExecutorState(estate); |
| 3003 | |
| 3004 | /* Mark EPQState idle */ |
| 3005 | epqstate->recheckestate = NULL; |
| 3006 | epqstate->recheckplanstate = NULL; |
| 3007 | epqstate->origslot = NULL; |
| 3008 | } |
| 3009 | |