| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execUtils.c |
| 4 | * miscellaneous executor utility routines |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/executor/execUtils.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * CreateExecutorState Create/delete executor working state |
| 18 | * FreeExecutorState |
| 19 | * CreateExprContext |
| 20 | * CreateStandaloneExprContext |
| 21 | * FreeExprContext |
| 22 | * ReScanExprContext |
| 23 | * |
| 24 | * ExecAssignExprContext Common code for plan node init routines. |
| 25 | * etc |
| 26 | * |
| 27 | * ExecOpenScanRelation Common code for scan node init routines. |
| 28 | * |
| 29 | * ExecInitRangeTable Set up executor's range-table-related data. |
| 30 | * |
| 31 | * ExecGetRangeTableRelation Fetch Relation for a rangetable entry. |
| 32 | * |
| 33 | * executor_errposition Report syntactic position of an error. |
| 34 | * |
| 35 | * RegisterExprContextCallback Register function shutdown callback |
| 36 | * UnregisterExprContextCallback Deregister function shutdown callback |
| 37 | * |
| 38 | * GetAttributeByName Runtime extraction of columns from tuples. |
| 39 | * GetAttributeByNum |
| 40 | * |
| 41 | * NOTES |
| 42 | * This file has traditionally been the place to stick misc. |
| 43 | * executor support stuff that doesn't really go anyplace else. |
| 44 | */ |
| 45 | |
| 46 | #include "postgres.h" |
| 47 | |
| 48 | #include "access/parallel.h" |
| 49 | #include "access/relscan.h" |
| 50 | #include "access/table.h" |
| 51 | #include "access/tableam.h" |
| 52 | #include "access/transam.h" |
| 53 | #include "executor/executor.h" |
| 54 | #include "jit/jit.h" |
| 55 | #include "mb/pg_wchar.h" |
| 56 | #include "nodes/nodeFuncs.h" |
| 57 | #include "parser/parsetree.h" |
| 58 | #include "partitioning/partdesc.h" |
| 59 | #include "storage/lmgr.h" |
| 60 | #include "utils/builtins.h" |
| 61 | #include "utils/memutils.h" |
| 62 | #include "utils/rel.h" |
| 63 | #include "utils/typcache.h" |
| 64 | |
| 65 | |
| 66 | static bool tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc); |
| 67 | static void ShutdownExprContext(ExprContext *econtext, bool isCommit); |
| 68 | |
| 69 | |
| 70 | /* ---------------------------------------------------------------- |
| 71 | * Executor state and memory management functions |
| 72 | * ---------------------------------------------------------------- |
| 73 | */ |
| 74 | |
| 75 | /* ---------------- |
| 76 | * CreateExecutorState |
| 77 | * |
| 78 | * Create and initialize an EState node, which is the root of |
| 79 | * working storage for an entire Executor invocation. |
| 80 | * |
| 81 | * Principally, this creates the per-query memory context that will be |
| 82 | * used to hold all working data that lives till the end of the query. |
| 83 | * Note that the per-query context will become a child of the caller's |
| 84 | * CurrentMemoryContext. |
| 85 | * ---------------- |
| 86 | */ |
| 87 | EState * |
| 88 | CreateExecutorState(void) |
| 89 | { |
| 90 | EState *estate; |
| 91 | MemoryContext qcontext; |
| 92 | MemoryContext oldcontext; |
| 93 | |
| 94 | /* |
| 95 | * Create the per-query context for this Executor run. |
| 96 | */ |
| 97 | qcontext = AllocSetContextCreate(CurrentMemoryContext, |
| 98 | "ExecutorState" , |
| 99 | ALLOCSET_DEFAULT_SIZES); |
| 100 | |
| 101 | /* |
| 102 | * Make the EState node within the per-query context. This way, we don't |
| 103 | * need a separate pfree() operation for it at shutdown. |
| 104 | */ |
| 105 | oldcontext = MemoryContextSwitchTo(qcontext); |
| 106 | |
| 107 | estate = makeNode(EState); |
| 108 | |
| 109 | /* |
| 110 | * Initialize all fields of the Executor State structure |
| 111 | */ |
| 112 | estate->es_direction = ForwardScanDirection; |
| 113 | estate->es_snapshot = InvalidSnapshot; /* caller must initialize this */ |
| 114 | estate->es_crosscheck_snapshot = InvalidSnapshot; /* no crosscheck */ |
| 115 | estate->es_range_table = NIL; |
| 116 | estate->es_range_table_array = NULL; |
| 117 | estate->es_range_table_size = 0; |
| 118 | estate->es_relations = NULL; |
| 119 | estate->es_rowmarks = NULL; |
| 120 | estate->es_plannedstmt = NULL; |
| 121 | |
| 122 | estate->es_junkFilter = NULL; |
| 123 | |
| 124 | estate->es_output_cid = (CommandId) 0; |
| 125 | |
| 126 | estate->es_result_relations = NULL; |
| 127 | estate->es_num_result_relations = 0; |
| 128 | estate->es_result_relation_info = NULL; |
| 129 | |
| 130 | estate->es_root_result_relations = NULL; |
| 131 | estate->es_num_root_result_relations = 0; |
| 132 | |
| 133 | estate->es_tuple_routing_result_relations = NIL; |
| 134 | |
| 135 | estate->es_trig_target_relations = NIL; |
| 136 | |
| 137 | estate->es_param_list_info = NULL; |
| 138 | estate->es_param_exec_vals = NULL; |
| 139 | |
| 140 | estate->es_queryEnv = NULL; |
| 141 | |
| 142 | estate->es_query_cxt = qcontext; |
| 143 | |
| 144 | estate->es_tupleTable = NIL; |
| 145 | |
| 146 | estate->es_processed = 0; |
| 147 | |
| 148 | estate->es_top_eflags = 0; |
| 149 | estate->es_instrument = 0; |
| 150 | estate->es_finished = false; |
| 151 | |
| 152 | estate->es_exprcontexts = NIL; |
| 153 | |
| 154 | estate->es_subplanstates = NIL; |
| 155 | |
| 156 | estate->es_auxmodifytables = NIL; |
| 157 | |
| 158 | estate->es_per_tuple_exprcontext = NULL; |
| 159 | |
| 160 | estate->es_sourceText = NULL; |
| 161 | |
| 162 | estate->es_use_parallel_mode = false; |
| 163 | |
| 164 | estate->es_jit_flags = 0; |
| 165 | estate->es_jit = NULL; |
| 166 | |
| 167 | /* |
| 168 | * Return the executor state structure |
| 169 | */ |
| 170 | MemoryContextSwitchTo(oldcontext); |
| 171 | |
| 172 | return estate; |
| 173 | } |
| 174 | |
| 175 | /* ---------------- |
| 176 | * FreeExecutorState |
| 177 | * |
| 178 | * Release an EState along with all remaining working storage. |
| 179 | * |
| 180 | * Note: this is not responsible for releasing non-memory resources, such as |
| 181 | * open relations or buffer pins. But it will shut down any still-active |
| 182 | * ExprContexts within the EState and deallocate associated JITed expressions. |
| 183 | * That is sufficient cleanup for situations where the EState has only been |
| 184 | * used for expression evaluation, and not to run a complete Plan. |
| 185 | * |
| 186 | * This can be called in any memory context ... so long as it's not one |
| 187 | * of the ones to be freed. |
| 188 | * ---------------- |
| 189 | */ |
| 190 | void |
| 191 | FreeExecutorState(EState *estate) |
| 192 | { |
| 193 | /* |
| 194 | * Shut down and free any remaining ExprContexts. We do this explicitly |
| 195 | * to ensure that any remaining shutdown callbacks get called (since they |
| 196 | * might need to release resources that aren't simply memory within the |
| 197 | * per-query memory context). |
| 198 | */ |
| 199 | while (estate->es_exprcontexts) |
| 200 | { |
| 201 | /* |
| 202 | * XXX: seems there ought to be a faster way to implement this than |
| 203 | * repeated list_delete(), no? |
| 204 | */ |
| 205 | FreeExprContext((ExprContext *) linitial(estate->es_exprcontexts), |
| 206 | true); |
| 207 | /* FreeExprContext removed the list link for us */ |
| 208 | } |
| 209 | |
| 210 | /* release JIT context, if allocated */ |
| 211 | if (estate->es_jit) |
| 212 | { |
| 213 | jit_release_context(estate->es_jit); |
| 214 | estate->es_jit = NULL; |
| 215 | } |
| 216 | |
| 217 | /* release partition directory, if allocated */ |
| 218 | if (estate->es_partition_directory) |
| 219 | { |
| 220 | DestroyPartitionDirectory(estate->es_partition_directory); |
| 221 | estate->es_partition_directory = NULL; |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Free the per-query memory context, thereby releasing all working |
| 226 | * memory, including the EState node itself. |
| 227 | */ |
| 228 | MemoryContextDelete(estate->es_query_cxt); |
| 229 | } |
| 230 | |
| 231 | /* ---------------- |
| 232 | * CreateExprContext |
| 233 | * |
| 234 | * Create a context for expression evaluation within an EState. |
| 235 | * |
| 236 | * An executor run may require multiple ExprContexts (we usually make one |
| 237 | * for each Plan node, and a separate one for per-output-tuple processing |
| 238 | * such as constraint checking). Each ExprContext has its own "per-tuple" |
| 239 | * memory context. |
| 240 | * |
| 241 | * Note we make no assumption about the caller's memory context. |
| 242 | * ---------------- |
| 243 | */ |
| 244 | ExprContext * |
| 245 | CreateExprContext(EState *estate) |
| 246 | { |
| 247 | ExprContext *econtext; |
| 248 | MemoryContext oldcontext; |
| 249 | |
| 250 | /* Create the ExprContext node within the per-query memory context */ |
| 251 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 252 | |
| 253 | econtext = makeNode(ExprContext); |
| 254 | |
| 255 | /* Initialize fields of ExprContext */ |
| 256 | econtext->ecxt_scantuple = NULL; |
| 257 | econtext->ecxt_innertuple = NULL; |
| 258 | econtext->ecxt_outertuple = NULL; |
| 259 | |
| 260 | econtext->ecxt_per_query_memory = estate->es_query_cxt; |
| 261 | |
| 262 | /* |
| 263 | * Create working memory for expression evaluation in this context. |
| 264 | */ |
| 265 | econtext->ecxt_per_tuple_memory = |
| 266 | AllocSetContextCreate(estate->es_query_cxt, |
| 267 | "ExprContext" , |
| 268 | ALLOCSET_DEFAULT_SIZES); |
| 269 | |
| 270 | econtext->ecxt_param_exec_vals = estate->es_param_exec_vals; |
| 271 | econtext->ecxt_param_list_info = estate->es_param_list_info; |
| 272 | |
| 273 | econtext->ecxt_aggvalues = NULL; |
| 274 | econtext->ecxt_aggnulls = NULL; |
| 275 | |
| 276 | econtext->caseValue_datum = (Datum) 0; |
| 277 | econtext->caseValue_isNull = true; |
| 278 | |
| 279 | econtext->domainValue_datum = (Datum) 0; |
| 280 | econtext->domainValue_isNull = true; |
| 281 | |
| 282 | econtext->ecxt_estate = estate; |
| 283 | |
| 284 | econtext->ecxt_callbacks = NULL; |
| 285 | |
| 286 | /* |
| 287 | * Link the ExprContext into the EState to ensure it is shut down when the |
| 288 | * EState is freed. Because we use lcons(), shutdowns will occur in |
| 289 | * reverse order of creation, which may not be essential but can't hurt. |
| 290 | */ |
| 291 | estate->es_exprcontexts = lcons(econtext, estate->es_exprcontexts); |
| 292 | |
| 293 | MemoryContextSwitchTo(oldcontext); |
| 294 | |
| 295 | return econtext; |
| 296 | } |
| 297 | |
| 298 | /* ---------------- |
| 299 | * CreateStandaloneExprContext |
| 300 | * |
| 301 | * Create a context for standalone expression evaluation. |
| 302 | * |
| 303 | * An ExprContext made this way can be used for evaluation of expressions |
| 304 | * that contain no Params, subplans, or Var references (it might work to |
| 305 | * put tuple references into the scantuple field, but it seems unwise). |
| 306 | * |
| 307 | * The ExprContext struct is allocated in the caller's current memory |
| 308 | * context, which also becomes its "per query" context. |
| 309 | * |
| 310 | * It is caller's responsibility to free the ExprContext when done, |
| 311 | * or at least ensure that any shutdown callbacks have been called |
| 312 | * (ReScanExprContext() is suitable). Otherwise, non-memory resources |
| 313 | * might be leaked. |
| 314 | * ---------------- |
| 315 | */ |
| 316 | ExprContext * |
| 317 | CreateStandaloneExprContext(void) |
| 318 | { |
| 319 | ExprContext *econtext; |
| 320 | |
| 321 | /* Create the ExprContext node within the caller's memory context */ |
| 322 | econtext = makeNode(ExprContext); |
| 323 | |
| 324 | /* Initialize fields of ExprContext */ |
| 325 | econtext->ecxt_scantuple = NULL; |
| 326 | econtext->ecxt_innertuple = NULL; |
| 327 | econtext->ecxt_outertuple = NULL; |
| 328 | |
| 329 | econtext->ecxt_per_query_memory = CurrentMemoryContext; |
| 330 | |
| 331 | /* |
| 332 | * Create working memory for expression evaluation in this context. |
| 333 | */ |
| 334 | econtext->ecxt_per_tuple_memory = |
| 335 | AllocSetContextCreate(CurrentMemoryContext, |
| 336 | "ExprContext" , |
| 337 | ALLOCSET_DEFAULT_SIZES); |
| 338 | |
| 339 | econtext->ecxt_param_exec_vals = NULL; |
| 340 | econtext->ecxt_param_list_info = NULL; |
| 341 | |
| 342 | econtext->ecxt_aggvalues = NULL; |
| 343 | econtext->ecxt_aggnulls = NULL; |
| 344 | |
| 345 | econtext->caseValue_datum = (Datum) 0; |
| 346 | econtext->caseValue_isNull = true; |
| 347 | |
| 348 | econtext->domainValue_datum = (Datum) 0; |
| 349 | econtext->domainValue_isNull = true; |
| 350 | |
| 351 | econtext->ecxt_estate = NULL; |
| 352 | |
| 353 | econtext->ecxt_callbacks = NULL; |
| 354 | |
| 355 | return econtext; |
| 356 | } |
| 357 | |
| 358 | /* ---------------- |
| 359 | * FreeExprContext |
| 360 | * |
| 361 | * Free an expression context, including calling any remaining |
| 362 | * shutdown callbacks. |
| 363 | * |
| 364 | * Since we free the temporary context used for expression evaluation, |
| 365 | * any previously computed pass-by-reference expression result will go away! |
| 366 | * |
| 367 | * If isCommit is false, we are being called in error cleanup, and should |
| 368 | * not call callbacks but only release memory. (It might be better to call |
| 369 | * the callbacks and pass the isCommit flag to them, but that would require |
| 370 | * more invasive code changes than currently seems justified.) |
| 371 | * |
| 372 | * Note we make no assumption about the caller's memory context. |
| 373 | * ---------------- |
| 374 | */ |
| 375 | void |
| 376 | FreeExprContext(ExprContext *econtext, bool isCommit) |
| 377 | { |
| 378 | EState *estate; |
| 379 | |
| 380 | /* Call any registered callbacks */ |
| 381 | ShutdownExprContext(econtext, isCommit); |
| 382 | /* And clean up the memory used */ |
| 383 | MemoryContextDelete(econtext->ecxt_per_tuple_memory); |
| 384 | /* Unlink self from owning EState, if any */ |
| 385 | estate = econtext->ecxt_estate; |
| 386 | if (estate) |
| 387 | estate->es_exprcontexts = list_delete_ptr(estate->es_exprcontexts, |
| 388 | econtext); |
| 389 | /* And delete the ExprContext node */ |
| 390 | pfree(econtext); |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * ReScanExprContext |
| 395 | * |
| 396 | * Reset an expression context in preparation for a rescan of its |
| 397 | * plan node. This requires calling any registered shutdown callbacks, |
| 398 | * since any partially complete set-returning-functions must be canceled. |
| 399 | * |
| 400 | * Note we make no assumption about the caller's memory context. |
| 401 | */ |
| 402 | void |
| 403 | ReScanExprContext(ExprContext *econtext) |
| 404 | { |
| 405 | /* Call any registered callbacks */ |
| 406 | ShutdownExprContext(econtext, true); |
| 407 | /* And clean up the memory used */ |
| 408 | MemoryContextReset(econtext->ecxt_per_tuple_memory); |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * Build a per-output-tuple ExprContext for an EState. |
| 413 | * |
| 414 | * This is normally invoked via GetPerTupleExprContext() macro, |
| 415 | * not directly. |
| 416 | */ |
| 417 | ExprContext * |
| 418 | MakePerTupleExprContext(EState *estate) |
| 419 | { |
| 420 | if (estate->es_per_tuple_exprcontext == NULL) |
| 421 | estate->es_per_tuple_exprcontext = CreateExprContext(estate); |
| 422 | |
| 423 | return estate->es_per_tuple_exprcontext; |
| 424 | } |
| 425 | |
| 426 | |
| 427 | /* ---------------------------------------------------------------- |
| 428 | * miscellaneous node-init support functions |
| 429 | * |
| 430 | * Note: all of these are expected to be called with CurrentMemoryContext |
| 431 | * equal to the per-query memory context. |
| 432 | * ---------------------------------------------------------------- |
| 433 | */ |
| 434 | |
| 435 | /* ---------------- |
| 436 | * ExecAssignExprContext |
| 437 | * |
| 438 | * This initializes the ps_ExprContext field. It is only necessary |
| 439 | * to do this for nodes which use ExecQual or ExecProject |
| 440 | * because those routines require an econtext. Other nodes that |
| 441 | * don't have to evaluate expressions don't need to do this. |
| 442 | * ---------------- |
| 443 | */ |
| 444 | void |
| 445 | ExecAssignExprContext(EState *estate, PlanState *planstate) |
| 446 | { |
| 447 | planstate->ps_ExprContext = CreateExprContext(estate); |
| 448 | } |
| 449 | |
| 450 | /* ---------------- |
| 451 | * ExecGetResultType |
| 452 | * ---------------- |
| 453 | */ |
| 454 | TupleDesc |
| 455 | ExecGetResultType(PlanState *planstate) |
| 456 | { |
| 457 | return planstate->ps_ResultTupleDesc; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * ExecGetResultSlotOps - information about node's type of result slot |
| 462 | */ |
| 463 | const TupleTableSlotOps * |
| 464 | ExecGetResultSlotOps(PlanState *planstate, bool *isfixed) |
| 465 | { |
| 466 | if (planstate->resultopsset && planstate->resultops) |
| 467 | { |
| 468 | if (isfixed) |
| 469 | *isfixed = planstate->resultopsfixed; |
| 470 | return planstate->resultops; |
| 471 | } |
| 472 | |
| 473 | if (isfixed) |
| 474 | { |
| 475 | if (planstate->resultopsset) |
| 476 | *isfixed = planstate->resultopsfixed; |
| 477 | else if (planstate->ps_ResultTupleSlot) |
| 478 | *isfixed = TTS_FIXED(planstate->ps_ResultTupleSlot); |
| 479 | else |
| 480 | *isfixed = false; |
| 481 | } |
| 482 | |
| 483 | if (!planstate->ps_ResultTupleSlot) |
| 484 | return &TTSOpsVirtual; |
| 485 | |
| 486 | return planstate->ps_ResultTupleSlot->tts_ops; |
| 487 | } |
| 488 | |
| 489 | |
| 490 | /* ---------------- |
| 491 | * ExecAssignProjectionInfo |
| 492 | * |
| 493 | * forms the projection information from the node's targetlist |
| 494 | * |
| 495 | * Notes for inputDesc are same as for ExecBuildProjectionInfo: supply it |
| 496 | * for a relation-scan node, can pass NULL for upper-level nodes |
| 497 | * ---------------- |
| 498 | */ |
| 499 | void |
| 500 | ExecAssignProjectionInfo(PlanState *planstate, |
| 501 | TupleDesc inputDesc) |
| 502 | { |
| 503 | planstate->ps_ProjInfo = |
| 504 | ExecBuildProjectionInfo(planstate->plan->targetlist, |
| 505 | planstate->ps_ExprContext, |
| 506 | planstate->ps_ResultTupleSlot, |
| 507 | planstate, |
| 508 | inputDesc); |
| 509 | } |
| 510 | |
| 511 | |
| 512 | /* ---------------- |
| 513 | * ExecConditionalAssignProjectionInfo |
| 514 | * |
| 515 | * as ExecAssignProjectionInfo, but store NULL rather than building projection |
| 516 | * info if no projection is required |
| 517 | * ---------------- |
| 518 | */ |
| 519 | void |
| 520 | ExecConditionalAssignProjectionInfo(PlanState *planstate, TupleDesc inputDesc, |
| 521 | Index varno) |
| 522 | { |
| 523 | if (tlist_matches_tupdesc(planstate, |
| 524 | planstate->plan->targetlist, |
| 525 | varno, |
| 526 | inputDesc)) |
| 527 | { |
| 528 | planstate->ps_ProjInfo = NULL; |
| 529 | planstate->resultopsset = planstate->scanopsset; |
| 530 | planstate->resultopsfixed = planstate->scanopsfixed; |
| 531 | planstate->resultops = planstate->scanops; |
| 532 | } |
| 533 | else |
| 534 | { |
| 535 | if (!planstate->ps_ResultTupleSlot) |
| 536 | { |
| 537 | ExecInitResultSlot(planstate, &TTSOpsVirtual); |
| 538 | planstate->resultops = &TTSOpsVirtual; |
| 539 | planstate->resultopsfixed = true; |
| 540 | planstate->resultopsset = true; |
| 541 | } |
| 542 | ExecAssignProjectionInfo(planstate, inputDesc); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | static bool |
| 547 | tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc) |
| 548 | { |
| 549 | int numattrs = tupdesc->natts; |
| 550 | int attrno; |
| 551 | ListCell *tlist_item = list_head(tlist); |
| 552 | |
| 553 | /* Check the tlist attributes */ |
| 554 | for (attrno = 1; attrno <= numattrs; attrno++) |
| 555 | { |
| 556 | Form_pg_attribute att_tup = TupleDescAttr(tupdesc, attrno - 1); |
| 557 | Var *var; |
| 558 | |
| 559 | if (tlist_item == NULL) |
| 560 | return false; /* tlist too short */ |
| 561 | var = (Var *) ((TargetEntry *) lfirst(tlist_item))->expr; |
| 562 | if (!var || !IsA(var, Var)) |
| 563 | return false; /* tlist item not a Var */ |
| 564 | /* if these Asserts fail, planner messed up */ |
| 565 | Assert(var->varno == varno); |
| 566 | Assert(var->varlevelsup == 0); |
| 567 | if (var->varattno != attrno) |
| 568 | return false; /* out of order */ |
| 569 | if (att_tup->attisdropped) |
| 570 | return false; /* table contains dropped columns */ |
| 571 | if (att_tup->atthasmissing) |
| 572 | return false; /* table contains cols with missing values */ |
| 573 | |
| 574 | /* |
| 575 | * Note: usually the Var's type should match the tupdesc exactly, but |
| 576 | * in situations involving unions of columns that have different |
| 577 | * typmods, the Var may have come from above the union and hence have |
| 578 | * typmod -1. This is a legitimate situation since the Var still |
| 579 | * describes the column, just not as exactly as the tupdesc does. We |
| 580 | * could change the planner to prevent it, but it'd then insert |
| 581 | * projection steps just to convert from specific typmod to typmod -1, |
| 582 | * which is pretty silly. |
| 583 | */ |
| 584 | if (var->vartype != att_tup->atttypid || |
| 585 | (var->vartypmod != att_tup->atttypmod && |
| 586 | var->vartypmod != -1)) |
| 587 | return false; /* type mismatch */ |
| 588 | |
| 589 | tlist_item = lnext(tlist_item); |
| 590 | } |
| 591 | |
| 592 | if (tlist_item) |
| 593 | return false; /* tlist too long */ |
| 594 | |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | /* ---------------- |
| 599 | * ExecFreeExprContext |
| 600 | * |
| 601 | * A plan node's ExprContext should be freed explicitly during executor |
| 602 | * shutdown because there may be shutdown callbacks to call. (Other resources |
| 603 | * made by the above routines, such as projection info, don't need to be freed |
| 604 | * explicitly because they're just memory in the per-query memory context.) |
| 605 | * |
| 606 | * However ... there is no particular need to do it during ExecEndNode, |
| 607 | * because FreeExecutorState will free any remaining ExprContexts within |
| 608 | * the EState. Letting FreeExecutorState do it allows the ExprContexts to |
| 609 | * be freed in reverse order of creation, rather than order of creation as |
| 610 | * will happen if we delete them here, which saves O(N^2) work in the list |
| 611 | * cleanup inside FreeExprContext. |
| 612 | * ---------------- |
| 613 | */ |
| 614 | void |
| 615 | ExecFreeExprContext(PlanState *planstate) |
| 616 | { |
| 617 | /* |
| 618 | * Per above discussion, don't actually delete the ExprContext. We do |
| 619 | * unlink it from the plan node, though. |
| 620 | */ |
| 621 | planstate->ps_ExprContext = NULL; |
| 622 | } |
| 623 | |
| 624 | |
| 625 | /* ---------------------------------------------------------------- |
| 626 | * Scan node support |
| 627 | * ---------------------------------------------------------------- |
| 628 | */ |
| 629 | |
| 630 | /* ---------------- |
| 631 | * ExecAssignScanType |
| 632 | * ---------------- |
| 633 | */ |
| 634 | void |
| 635 | ExecAssignScanType(ScanState *scanstate, TupleDesc tupDesc) |
| 636 | { |
| 637 | TupleTableSlot *slot = scanstate->ss_ScanTupleSlot; |
| 638 | |
| 639 | ExecSetSlotDescriptor(slot, tupDesc); |
| 640 | } |
| 641 | |
| 642 | /* ---------------- |
| 643 | * ExecCreateScanSlotFromOuterPlan |
| 644 | * ---------------- |
| 645 | */ |
| 646 | void |
| 647 | ExecCreateScanSlotFromOuterPlan(EState *estate, |
| 648 | ScanState *scanstate, |
| 649 | const TupleTableSlotOps *tts_ops) |
| 650 | { |
| 651 | PlanState *outerPlan; |
| 652 | TupleDesc tupDesc; |
| 653 | |
| 654 | outerPlan = outerPlanState(scanstate); |
| 655 | tupDesc = ExecGetResultType(outerPlan); |
| 656 | |
| 657 | ExecInitScanTupleSlot(estate, scanstate, tupDesc, tts_ops); |
| 658 | } |
| 659 | |
| 660 | /* ---------------------------------------------------------------- |
| 661 | * ExecRelationIsTargetRelation |
| 662 | * |
| 663 | * Detect whether a relation (identified by rangetable index) |
| 664 | * is one of the target relations of the query. |
| 665 | * |
| 666 | * Note: This is currently no longer used in core. We keep it around |
| 667 | * because FDWs may wish to use it to determine if their foreign table |
| 668 | * is a target relation. |
| 669 | * ---------------------------------------------------------------- |
| 670 | */ |
| 671 | bool |
| 672 | ExecRelationIsTargetRelation(EState *estate, Index scanrelid) |
| 673 | { |
| 674 | ResultRelInfo *resultRelInfos; |
| 675 | int i; |
| 676 | |
| 677 | resultRelInfos = estate->es_result_relations; |
| 678 | for (i = 0; i < estate->es_num_result_relations; i++) |
| 679 | { |
| 680 | if (resultRelInfos[i].ri_RangeTableIndex == scanrelid) |
| 681 | return true; |
| 682 | } |
| 683 | return false; |
| 684 | } |
| 685 | |
| 686 | /* ---------------------------------------------------------------- |
| 687 | * ExecOpenScanRelation |
| 688 | * |
| 689 | * Open the heap relation to be scanned by a base-level scan plan node. |
| 690 | * This should be called during the node's ExecInit routine. |
| 691 | * ---------------------------------------------------------------- |
| 692 | */ |
| 693 | Relation |
| 694 | ExecOpenScanRelation(EState *estate, Index scanrelid, int eflags) |
| 695 | { |
| 696 | Relation rel; |
| 697 | |
| 698 | /* Open the relation. */ |
| 699 | rel = ExecGetRangeTableRelation(estate, scanrelid); |
| 700 | |
| 701 | /* |
| 702 | * Complain if we're attempting a scan of an unscannable relation, except |
| 703 | * when the query won't actually be run. This is a slightly klugy place |
| 704 | * to do this, perhaps, but there is no better place. |
| 705 | */ |
| 706 | if ((eflags & (EXEC_FLAG_EXPLAIN_ONLY | EXEC_FLAG_WITH_NO_DATA)) == 0 && |
| 707 | !RelationIsScannable(rel)) |
| 708 | ereport(ERROR, |
| 709 | (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), |
| 710 | errmsg("materialized view \"%s\" has not been populated" , |
| 711 | RelationGetRelationName(rel)), |
| 712 | errhint("Use the REFRESH MATERIALIZED VIEW command." ))); |
| 713 | |
| 714 | return rel; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * ExecInitRangeTable |
| 719 | * Set up executor's range-table-related data |
| 720 | * |
| 721 | * We build an array from the range table list to allow faster lookup by RTI. |
| 722 | * (The es_range_table field is now somewhat redundant, but we keep it to |
| 723 | * avoid breaking external code unnecessarily.) |
| 724 | * This is also a convenient place to set up the parallel es_relations array. |
| 725 | */ |
| 726 | void |
| 727 | ExecInitRangeTable(EState *estate, List *rangeTable) |
| 728 | { |
| 729 | Index rti; |
| 730 | ListCell *lc; |
| 731 | |
| 732 | /* Remember the range table List as-is */ |
| 733 | estate->es_range_table = rangeTable; |
| 734 | |
| 735 | /* Set up the equivalent array representation */ |
| 736 | estate->es_range_table_size = list_length(rangeTable); |
| 737 | estate->es_range_table_array = (RangeTblEntry **) |
| 738 | palloc(estate->es_range_table_size * sizeof(RangeTblEntry *)); |
| 739 | rti = 0; |
| 740 | foreach(lc, rangeTable) |
| 741 | { |
| 742 | estate->es_range_table_array[rti++] = lfirst_node(RangeTblEntry, lc); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Allocate an array to store an open Relation corresponding to each |
| 747 | * rangetable entry, and initialize entries to NULL. Relations are opened |
| 748 | * and stored here as needed. |
| 749 | */ |
| 750 | estate->es_relations = (Relation *) |
| 751 | palloc0(estate->es_range_table_size * sizeof(Relation)); |
| 752 | |
| 753 | /* |
| 754 | * es_rowmarks is also parallel to the es_range_table_array, but it's |
| 755 | * allocated only if needed. |
| 756 | */ |
| 757 | estate->es_rowmarks = NULL; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * ExecGetRangeTableRelation |
| 762 | * Open the Relation for a range table entry, if not already done |
| 763 | * |
| 764 | * The Relations will be closed again in ExecEndPlan(). |
| 765 | */ |
| 766 | Relation |
| 767 | ExecGetRangeTableRelation(EState *estate, Index rti) |
| 768 | { |
| 769 | Relation rel; |
| 770 | |
| 771 | Assert(rti > 0 && rti <= estate->es_range_table_size); |
| 772 | |
| 773 | rel = estate->es_relations[rti - 1]; |
| 774 | if (rel == NULL) |
| 775 | { |
| 776 | /* First time through, so open the relation */ |
| 777 | RangeTblEntry *rte = exec_rt_fetch(rti, estate); |
| 778 | |
| 779 | Assert(rte->rtekind == RTE_RELATION); |
| 780 | |
| 781 | if (!IsParallelWorker()) |
| 782 | { |
| 783 | /* |
| 784 | * In a normal query, we should already have the appropriate lock, |
| 785 | * but verify that through an Assert. Since there's already an |
| 786 | * Assert inside table_open that insists on holding some lock, it |
| 787 | * seems sufficient to check this only when rellockmode is higher |
| 788 | * than the minimum. |
| 789 | */ |
| 790 | rel = table_open(rte->relid, NoLock); |
| 791 | Assert(rte->rellockmode == AccessShareLock || |
| 792 | CheckRelationLockedByMe(rel, rte->rellockmode, false)); |
| 793 | } |
| 794 | else |
| 795 | { |
| 796 | /* |
| 797 | * If we are a parallel worker, we need to obtain our own local |
| 798 | * lock on the relation. This ensures sane behavior in case the |
| 799 | * parent process exits before we do. |
| 800 | */ |
| 801 | rel = table_open(rte->relid, rte->rellockmode); |
| 802 | } |
| 803 | |
| 804 | estate->es_relations[rti - 1] = rel; |
| 805 | } |
| 806 | |
| 807 | return rel; |
| 808 | } |
| 809 | |
| 810 | /* |
| 811 | * UpdateChangedParamSet |
| 812 | * Add changed parameters to a plan node's chgParam set |
| 813 | */ |
| 814 | void |
| 815 | UpdateChangedParamSet(PlanState *node, Bitmapset *newchg) |
| 816 | { |
| 817 | Bitmapset *parmset; |
| 818 | |
| 819 | /* |
| 820 | * The plan node only depends on params listed in its allParam set. Don't |
| 821 | * include anything else into its chgParam set. |
| 822 | */ |
| 823 | parmset = bms_intersect(node->plan->allParam, newchg); |
| 824 | |
| 825 | /* |
| 826 | * Keep node->chgParam == NULL if there's not actually any members; this |
| 827 | * allows the simplest possible tests in executor node files. |
| 828 | */ |
| 829 | if (!bms_is_empty(parmset)) |
| 830 | node->chgParam = bms_join(node->chgParam, parmset); |
| 831 | else |
| 832 | bms_free(parmset); |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * executor_errposition |
| 837 | * Report an execution-time cursor position, if possible. |
| 838 | * |
| 839 | * This is expected to be used within an ereport() call. The return value |
| 840 | * is a dummy (always 0, in fact). |
| 841 | * |
| 842 | * The locations stored in parsetrees are byte offsets into the source string. |
| 843 | * We have to convert them to 1-based character indexes for reporting to |
| 844 | * clients. (We do things this way to avoid unnecessary overhead in the |
| 845 | * normal non-error case: computing character indexes would be much more |
| 846 | * expensive than storing token offsets.) |
| 847 | */ |
| 848 | int |
| 849 | executor_errposition(EState *estate, int location) |
| 850 | { |
| 851 | int pos; |
| 852 | |
| 853 | /* No-op if location was not provided */ |
| 854 | if (location < 0) |
| 855 | return 0; |
| 856 | /* Can't do anything if source text is not available */ |
| 857 | if (estate == NULL || estate->es_sourceText == NULL) |
| 858 | return 0; |
| 859 | /* Convert offset to character number */ |
| 860 | pos = pg_mbstrlen_with_len(estate->es_sourceText, location) + 1; |
| 861 | /* And pass it to the ereport mechanism */ |
| 862 | return errposition(pos); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Register a shutdown callback in an ExprContext. |
| 867 | * |
| 868 | * Shutdown callbacks will be called (in reverse order of registration) |
| 869 | * when the ExprContext is deleted or rescanned. This provides a hook |
| 870 | * for functions called in the context to do any cleanup needed --- it's |
| 871 | * particularly useful for functions returning sets. Note that the |
| 872 | * callback will *not* be called in the event that execution is aborted |
| 873 | * by an error. |
| 874 | */ |
| 875 | void |
| 876 | RegisterExprContextCallback(ExprContext *econtext, |
| 877 | ExprContextCallbackFunction function, |
| 878 | Datum arg) |
| 879 | { |
| 880 | ExprContext_CB *ecxt_callback; |
| 881 | |
| 882 | /* Save the info in appropriate memory context */ |
| 883 | ecxt_callback = (ExprContext_CB *) |
| 884 | MemoryContextAlloc(econtext->ecxt_per_query_memory, |
| 885 | sizeof(ExprContext_CB)); |
| 886 | |
| 887 | ecxt_callback->function = function; |
| 888 | ecxt_callback->arg = arg; |
| 889 | |
| 890 | /* link to front of list for appropriate execution order */ |
| 891 | ecxt_callback->next = econtext->ecxt_callbacks; |
| 892 | econtext->ecxt_callbacks = ecxt_callback; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Deregister a shutdown callback in an ExprContext. |
| 897 | * |
| 898 | * Any list entries matching the function and arg will be removed. |
| 899 | * This can be used if it's no longer necessary to call the callback. |
| 900 | */ |
| 901 | void |
| 902 | UnregisterExprContextCallback(ExprContext *econtext, |
| 903 | ExprContextCallbackFunction function, |
| 904 | Datum arg) |
| 905 | { |
| 906 | ExprContext_CB **prev_callback; |
| 907 | ExprContext_CB *ecxt_callback; |
| 908 | |
| 909 | prev_callback = &econtext->ecxt_callbacks; |
| 910 | |
| 911 | while ((ecxt_callback = *prev_callback) != NULL) |
| 912 | { |
| 913 | if (ecxt_callback->function == function && ecxt_callback->arg == arg) |
| 914 | { |
| 915 | *prev_callback = ecxt_callback->next; |
| 916 | pfree(ecxt_callback); |
| 917 | } |
| 918 | else |
| 919 | prev_callback = &ecxt_callback->next; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * Call all the shutdown callbacks registered in an ExprContext. |
| 925 | * |
| 926 | * The callback list is emptied (important in case this is only a rescan |
| 927 | * reset, and not deletion of the ExprContext). |
| 928 | * |
| 929 | * If isCommit is false, just clean the callback list but don't call 'em. |
| 930 | * (See comment for FreeExprContext.) |
| 931 | */ |
| 932 | static void |
| 933 | ShutdownExprContext(ExprContext *econtext, bool isCommit) |
| 934 | { |
| 935 | ExprContext_CB *ecxt_callback; |
| 936 | MemoryContext oldcontext; |
| 937 | |
| 938 | /* Fast path in normal case where there's nothing to do. */ |
| 939 | if (econtext->ecxt_callbacks == NULL) |
| 940 | return; |
| 941 | |
| 942 | /* |
| 943 | * Call the callbacks in econtext's per-tuple context. This ensures that |
| 944 | * any memory they might leak will get cleaned up. |
| 945 | */ |
| 946 | oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 947 | |
| 948 | /* |
| 949 | * Call each callback function in reverse registration order. |
| 950 | */ |
| 951 | while ((ecxt_callback = econtext->ecxt_callbacks) != NULL) |
| 952 | { |
| 953 | econtext->ecxt_callbacks = ecxt_callback->next; |
| 954 | if (isCommit) |
| 955 | ecxt_callback->function(ecxt_callback->arg); |
| 956 | pfree(ecxt_callback); |
| 957 | } |
| 958 | |
| 959 | MemoryContextSwitchTo(oldcontext); |
| 960 | } |
| 961 | |
| 962 | /* |
| 963 | * GetAttributeByName |
| 964 | * GetAttributeByNum |
| 965 | * |
| 966 | * These functions return the value of the requested attribute |
| 967 | * out of the given tuple Datum. |
| 968 | * C functions which take a tuple as an argument are expected |
| 969 | * to use these. Ex: overpaid(EMP) might call GetAttributeByNum(). |
| 970 | * Note: these are actually rather slow because they do a typcache |
| 971 | * lookup on each call. |
| 972 | */ |
| 973 | Datum |
| 974 | GetAttributeByName(HeapTupleHeader tuple, const char *attname, bool *isNull) |
| 975 | { |
| 976 | AttrNumber attrno; |
| 977 | Datum result; |
| 978 | Oid tupType; |
| 979 | int32 tupTypmod; |
| 980 | TupleDesc tupDesc; |
| 981 | HeapTupleData tmptup; |
| 982 | int i; |
| 983 | |
| 984 | if (attname == NULL) |
| 985 | elog(ERROR, "invalid attribute name" ); |
| 986 | |
| 987 | if (isNull == NULL) |
| 988 | elog(ERROR, "a NULL isNull pointer was passed" ); |
| 989 | |
| 990 | if (tuple == NULL) |
| 991 | { |
| 992 | /* Kinda bogus but compatible with old behavior... */ |
| 993 | *isNull = true; |
| 994 | return (Datum) 0; |
| 995 | } |
| 996 | |
| 997 | tupType = HeapTupleHeaderGetTypeId(tuple); |
| 998 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
| 999 | tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod); |
| 1000 | |
| 1001 | attrno = InvalidAttrNumber; |
| 1002 | for (i = 0; i < tupDesc->natts; i++) |
| 1003 | { |
| 1004 | Form_pg_attribute att = TupleDescAttr(tupDesc, i); |
| 1005 | |
| 1006 | if (namestrcmp(&(att->attname), attname) == 0) |
| 1007 | { |
| 1008 | attrno = att->attnum; |
| 1009 | break; |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | if (attrno == InvalidAttrNumber) |
| 1014 | elog(ERROR, "attribute \"%s\" does not exist" , attname); |
| 1015 | |
| 1016 | /* |
| 1017 | * heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all |
| 1018 | * the fields in the struct just in case user tries to inspect system |
| 1019 | * columns. |
| 1020 | */ |
| 1021 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
| 1022 | ItemPointerSetInvalid(&(tmptup.t_self)); |
| 1023 | tmptup.t_tableOid = InvalidOid; |
| 1024 | tmptup.t_data = tuple; |
| 1025 | |
| 1026 | result = heap_getattr(&tmptup, |
| 1027 | attrno, |
| 1028 | tupDesc, |
| 1029 | isNull); |
| 1030 | |
| 1031 | ReleaseTupleDesc(tupDesc); |
| 1032 | |
| 1033 | return result; |
| 1034 | } |
| 1035 | |
| 1036 | Datum |
| 1037 | GetAttributeByNum(HeapTupleHeader tuple, |
| 1038 | AttrNumber attrno, |
| 1039 | bool *isNull) |
| 1040 | { |
| 1041 | Datum result; |
| 1042 | Oid tupType; |
| 1043 | int32 tupTypmod; |
| 1044 | TupleDesc tupDesc; |
| 1045 | HeapTupleData tmptup; |
| 1046 | |
| 1047 | if (!AttributeNumberIsValid(attrno)) |
| 1048 | elog(ERROR, "invalid attribute number %d" , attrno); |
| 1049 | |
| 1050 | if (isNull == NULL) |
| 1051 | elog(ERROR, "a NULL isNull pointer was passed" ); |
| 1052 | |
| 1053 | if (tuple == NULL) |
| 1054 | { |
| 1055 | /* Kinda bogus but compatible with old behavior... */ |
| 1056 | *isNull = true; |
| 1057 | return (Datum) 0; |
| 1058 | } |
| 1059 | |
| 1060 | tupType = HeapTupleHeaderGetTypeId(tuple); |
| 1061 | tupTypmod = HeapTupleHeaderGetTypMod(tuple); |
| 1062 | tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod); |
| 1063 | |
| 1064 | /* |
| 1065 | * heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all |
| 1066 | * the fields in the struct just in case user tries to inspect system |
| 1067 | * columns. |
| 1068 | */ |
| 1069 | tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple); |
| 1070 | ItemPointerSetInvalid(&(tmptup.t_self)); |
| 1071 | tmptup.t_tableOid = InvalidOid; |
| 1072 | tmptup.t_data = tuple; |
| 1073 | |
| 1074 | result = heap_getattr(&tmptup, |
| 1075 | attrno, |
| 1076 | tupDesc, |
| 1077 | isNull); |
| 1078 | |
| 1079 | ReleaseTupleDesc(tupDesc); |
| 1080 | |
| 1081 | return result; |
| 1082 | } |
| 1083 | |
| 1084 | /* |
| 1085 | * Number of items in a tlist (including any resjunk items!) |
| 1086 | */ |
| 1087 | int |
| 1088 | ExecTargetListLength(List *targetlist) |
| 1089 | { |
| 1090 | /* This used to be more complex, but fjoins are dead */ |
| 1091 | return list_length(targetlist); |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * Number of items in a tlist, not including any resjunk items |
| 1096 | */ |
| 1097 | int |
| 1098 | ExecCleanTargetListLength(List *targetlist) |
| 1099 | { |
| 1100 | int len = 0; |
| 1101 | ListCell *tl; |
| 1102 | |
| 1103 | foreach(tl, targetlist) |
| 1104 | { |
| 1105 | TargetEntry *curTle = lfirst_node(TargetEntry, tl); |
| 1106 | |
| 1107 | if (!curTle->resjunk) |
| 1108 | len++; |
| 1109 | } |
| 1110 | return len; |
| 1111 | } |
| 1112 | |
| 1113 | /* |
| 1114 | * Return a relInfo's tuple slot for a trigger's OLD tuples. |
| 1115 | */ |
| 1116 | TupleTableSlot * |
| 1117 | ExecGetTriggerOldSlot(EState *estate, ResultRelInfo *relInfo) |
| 1118 | { |
| 1119 | if (relInfo->ri_TrigOldSlot == NULL) |
| 1120 | { |
| 1121 | Relation rel = relInfo->ri_RelationDesc; |
| 1122 | MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1123 | |
| 1124 | relInfo->ri_TrigOldSlot = |
| 1125 | ExecInitExtraTupleSlot(estate, |
| 1126 | RelationGetDescr(rel), |
| 1127 | table_slot_callbacks(rel)); |
| 1128 | |
| 1129 | MemoryContextSwitchTo(oldcontext); |
| 1130 | } |
| 1131 | |
| 1132 | return relInfo->ri_TrigOldSlot; |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Return a relInfo's tuple slot for a trigger's NEW tuples. |
| 1137 | */ |
| 1138 | TupleTableSlot * |
| 1139 | ExecGetTriggerNewSlot(EState *estate, ResultRelInfo *relInfo) |
| 1140 | { |
| 1141 | if (relInfo->ri_TrigNewSlot == NULL) |
| 1142 | { |
| 1143 | Relation rel = relInfo->ri_RelationDesc; |
| 1144 | MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1145 | |
| 1146 | relInfo->ri_TrigNewSlot = |
| 1147 | ExecInitExtraTupleSlot(estate, |
| 1148 | RelationGetDescr(rel), |
| 1149 | table_slot_callbacks(rel)); |
| 1150 | |
| 1151 | MemoryContextSwitchTo(oldcontext); |
| 1152 | } |
| 1153 | |
| 1154 | return relInfo->ri_TrigNewSlot; |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * Return a relInfo's tuple slot for processing returning tuples. |
| 1159 | */ |
| 1160 | TupleTableSlot * |
| 1161 | ExecGetReturningSlot(EState *estate, ResultRelInfo *relInfo) |
| 1162 | { |
| 1163 | if (relInfo->ri_ReturningSlot == NULL) |
| 1164 | { |
| 1165 | Relation rel = relInfo->ri_RelationDesc; |
| 1166 | MemoryContext oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1167 | |
| 1168 | relInfo->ri_ReturningSlot = |
| 1169 | ExecInitExtraTupleSlot(estate, |
| 1170 | RelationGetDescr(rel), |
| 1171 | table_slot_callbacks(rel)); |
| 1172 | |
| 1173 | MemoryContextSwitchTo(oldcontext); |
| 1174 | } |
| 1175 | |
| 1176 | return relInfo->ri_ReturningSlot; |
| 1177 | } |
| 1178 | |