1/*-------------------------------------------------------------------------
2 *
3 * nodeHash.c
4 * Routines to hash relations for hashjoin
5 *
6 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/executor/nodeHash.c
12 *
13 * See note on parallelism in nodeHashjoin.c.
14 *
15 *-------------------------------------------------------------------------
16 */
17/*
18 * INTERFACE ROUTINES
19 * MultiExecHash - generate an in-memory hash table of the relation
20 * ExecInitHash - initialize node and subnodes
21 * ExecEndHash - shutdown node and subnodes
22 */
23
24#include "postgres.h"
25
26#include <math.h>
27#include <limits.h>
28
29#include "access/htup_details.h"
30#include "access/parallel.h"
31#include "catalog/pg_statistic.h"
32#include "commands/tablespace.h"
33#include "executor/execdebug.h"
34#include "executor/hashjoin.h"
35#include "executor/nodeHash.h"
36#include "executor/nodeHashjoin.h"
37#include "miscadmin.h"
38#include "pgstat.h"
39#include "port/atomics.h"
40#include "utils/dynahash.h"
41#include "utils/memutils.h"
42#include "utils/lsyscache.h"
43#include "utils/syscache.h"
44
45
46static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
47static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
48static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
49static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
50static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
51 int mcvsToUse);
52static void ExecHashSkewTableInsert(HashJoinTable hashtable,
53 TupleTableSlot *slot,
54 uint32 hashvalue,
55 int bucketNumber);
56static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
57
58static void *dense_alloc(HashJoinTable hashtable, Size size);
59static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
60 size_t size,
61 dsa_pointer *shared);
62static void MultiExecPrivateHash(HashState *node);
63static void MultiExecParallelHash(HashState *node);
64static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table,
65 int bucketno);
66static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table,
67 HashJoinTuple tuple);
68static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
69 HashJoinTuple tuple,
70 dsa_pointer tuple_shared);
71static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
72static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
73static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
74static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
75static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table,
76 dsa_pointer *shared);
77static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
78 int batchno,
79 size_t size);
80static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
81static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
82
83
84/* ----------------------------------------------------------------
85 * ExecHash
86 *
87 * stub for pro forma compliance
88 * ----------------------------------------------------------------
89 */
90static TupleTableSlot *
91ExecHash(PlanState *pstate)
92{
93 elog(ERROR, "Hash node does not support ExecProcNode call convention");
94 return NULL;
95}
96
97/* ----------------------------------------------------------------
98 * MultiExecHash
99 *
100 * build hash table for hashjoin, doing partitioning if more
101 * than one batch is required.
102 * ----------------------------------------------------------------
103 */
104Node *
105MultiExecHash(HashState *node)
106{
107 /* must provide our own instrumentation support */
108 if (node->ps.instrument)
109 InstrStartNode(node->ps.instrument);
110
111 if (node->parallel_state != NULL)
112 MultiExecParallelHash(node);
113 else
114 MultiExecPrivateHash(node);
115
116 /* must provide our own instrumentation support */
117 if (node->ps.instrument)
118 InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
119
120 /*
121 * We do not return the hash table directly because it's not a subtype of
122 * Node, and so would violate the MultiExecProcNode API. Instead, our
123 * parent Hashjoin node is expected to know how to fish it out of our node
124 * state. Ugly but not really worth cleaning up, since Hashjoin knows
125 * quite a bit more about Hash besides that.
126 */
127 return NULL;
128}
129
130/* ----------------------------------------------------------------
131 * MultiExecPrivateHash
132 *
133 * parallel-oblivious version, building a backend-private
134 * hash table and (if necessary) batch files.
135 * ----------------------------------------------------------------
136 */
137static void
138MultiExecPrivateHash(HashState *node)
139{
140 PlanState *outerNode;
141 List *hashkeys;
142 HashJoinTable hashtable;
143 TupleTableSlot *slot;
144 ExprContext *econtext;
145 uint32 hashvalue;
146
147 /*
148 * get state info from node
149 */
150 outerNode = outerPlanState(node);
151 hashtable = node->hashtable;
152
153 /*
154 * set expression context
155 */
156 hashkeys = node->hashkeys;
157 econtext = node->ps.ps_ExprContext;
158
159 /*
160 * Get all tuples from the node below the Hash node and insert into the
161 * hash table (or temp files).
162 */
163 for (;;)
164 {
165 slot = ExecProcNode(outerNode);
166 if (TupIsNull(slot))
167 break;
168 /* We have to compute the hash value */
169 econtext->ecxt_outertuple = slot;
170 if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
171 false, hashtable->keepNulls,
172 &hashvalue))
173 {
174 int bucketNumber;
175
176 bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
177 if (bucketNumber != INVALID_SKEW_BUCKET_NO)
178 {
179 /* It's a skew tuple, so put it into that hash table */
180 ExecHashSkewTableInsert(hashtable, slot, hashvalue,
181 bucketNumber);
182 hashtable->skewTuples += 1;
183 }
184 else
185 {
186 /* Not subject to skew optimization, so insert normally */
187 ExecHashTableInsert(hashtable, slot, hashvalue);
188 }
189 hashtable->totalTuples += 1;
190 }
191 }
192
193 /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
194 if (hashtable->nbuckets != hashtable->nbuckets_optimal)
195 ExecHashIncreaseNumBuckets(hashtable);
196
197 /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
198 hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
199 if (hashtable->spaceUsed > hashtable->spacePeak)
200 hashtable->spacePeak = hashtable->spaceUsed;
201
202 hashtable->partialTuples = hashtable->totalTuples;
203}
204
205/* ----------------------------------------------------------------
206 * MultiExecParallelHash
207 *
208 * parallel-aware version, building a shared hash table and
209 * (if necessary) batch files using the combined effort of
210 * a set of co-operating backends.
211 * ----------------------------------------------------------------
212 */
213static void
214MultiExecParallelHash(HashState *node)
215{
216 ParallelHashJoinState *pstate;
217 PlanState *outerNode;
218 List *hashkeys;
219 HashJoinTable hashtable;
220 TupleTableSlot *slot;
221 ExprContext *econtext;
222 uint32 hashvalue;
223 Barrier *build_barrier;
224 int i;
225
226 /*
227 * get state info from node
228 */
229 outerNode = outerPlanState(node);
230 hashtable = node->hashtable;
231
232 /*
233 * set expression context
234 */
235 hashkeys = node->hashkeys;
236 econtext = node->ps.ps_ExprContext;
237
238 /*
239 * Synchronize the parallel hash table build. At this stage we know that
240 * the shared hash table has been or is being set up by
241 * ExecHashTableCreate(), but we don't know if our peers have returned
242 * from there or are here in MultiExecParallelHash(), and if so how far
243 * through they are. To find out, we check the build_barrier phase then
244 * and jump to the right step in the build algorithm.
245 */
246 pstate = hashtable->parallel_state;
247 build_barrier = &pstate->build_barrier;
248 Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
249 switch (BarrierPhase(build_barrier))
250 {
251 case PHJ_BUILD_ALLOCATING:
252
253 /*
254 * Either I just allocated the initial hash table in
255 * ExecHashTableCreate(), or someone else is doing that. Either
256 * way, wait for everyone to arrive here so we can proceed.
257 */
258 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATING);
259 /* Fall through. */
260
261 case PHJ_BUILD_HASHING_INNER:
262
263 /*
264 * It's time to begin hashing, or if we just arrived here then
265 * hashing is already underway, so join in that effort. While
266 * hashing we have to be prepared to help increase the number of
267 * batches or buckets at any time, and if we arrived here when
268 * that was already underway we'll have to help complete that work
269 * immediately so that it's safe to access batches and buckets
270 * below.
271 */
272 if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
273 PHJ_GROW_BATCHES_ELECTING)
274 ExecParallelHashIncreaseNumBatches(hashtable);
275 if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
276 PHJ_GROW_BUCKETS_ELECTING)
277 ExecParallelHashIncreaseNumBuckets(hashtable);
278 ExecParallelHashEnsureBatchAccessors(hashtable);
279 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
280 for (;;)
281 {
282 slot = ExecProcNode(outerNode);
283 if (TupIsNull(slot))
284 break;
285 econtext->ecxt_outertuple = slot;
286 if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
287 false, hashtable->keepNulls,
288 &hashvalue))
289 ExecParallelHashTableInsert(hashtable, slot, hashvalue);
290 hashtable->partialTuples++;
291 }
292
293 /*
294 * Make sure that any tuples we wrote to disk are visible to
295 * others before anyone tries to load them.
296 */
297 for (i = 0; i < hashtable->nbatch; ++i)
298 sts_end_write(hashtable->batches[i].inner_tuples);
299
300 /*
301 * Update shared counters. We need an accurate total tuple count
302 * to control the empty table optimization.
303 */
304 ExecParallelHashMergeCounters(hashtable);
305
306 BarrierDetach(&pstate->grow_buckets_barrier);
307 BarrierDetach(&pstate->grow_batches_barrier);
308
309 /*
310 * Wait for everyone to finish building and flushing files and
311 * counters.
312 */
313 if (BarrierArriveAndWait(build_barrier,
314 WAIT_EVENT_HASH_BUILD_HASHING_INNER))
315 {
316 /*
317 * Elect one backend to disable any further growth. Batches
318 * are now fixed. While building them we made sure they'd fit
319 * in our memory budget when we load them back in later (or we
320 * tried to do that and gave up because we detected extreme
321 * skew).
322 */
323 pstate->growth = PHJ_GROWTH_DISABLED;
324 }
325 }
326
327 /*
328 * We're not yet attached to a batch. We all agree on the dimensions and
329 * number of inner tuples (for the empty table optimization).
330 */
331 hashtable->curbatch = -1;
332 hashtable->nbuckets = pstate->nbuckets;
333 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
334 hashtable->totalTuples = pstate->total_tuples;
335 ExecParallelHashEnsureBatchAccessors(hashtable);
336
337 /*
338 * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
339 * case, which will bring the build phase to PHJ_BUILD_DONE (if it isn't
340 * there already).
341 */
342 Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
343 BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
344}
345
346/* ----------------------------------------------------------------
347 * ExecInitHash
348 *
349 * Init routine for Hash node
350 * ----------------------------------------------------------------
351 */
352HashState *
353ExecInitHash(Hash *node, EState *estate, int eflags)
354{
355 HashState *hashstate;
356
357 /* check for unsupported flags */
358 Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
359
360 /*
361 * create state structure
362 */
363 hashstate = makeNode(HashState);
364 hashstate->ps.plan = (Plan *) node;
365 hashstate->ps.state = estate;
366 hashstate->ps.ExecProcNode = ExecHash;
367 hashstate->hashtable = NULL;
368 hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
369
370 /*
371 * Miscellaneous initialization
372 *
373 * create expression context for node
374 */
375 ExecAssignExprContext(estate, &hashstate->ps);
376
377 /*
378 * initialize child nodes
379 */
380 outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
381
382 /*
383 * initialize our result slot and type. No need to build projection
384 * because this node doesn't do projections.
385 */
386 ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
387 hashstate->ps.ps_ProjInfo = NULL;
388
389 /*
390 * initialize child expressions
391 */
392 Assert(node->plan.qual == NIL);
393 hashstate->hashkeys =
394 ExecInitExprList(node->hashkeys, (PlanState *) hashstate);
395
396 return hashstate;
397}
398
399/* ---------------------------------------------------------------
400 * ExecEndHash
401 *
402 * clean up routine for Hash node
403 * ----------------------------------------------------------------
404 */
405void
406ExecEndHash(HashState *node)
407{
408 PlanState *outerPlan;
409
410 /*
411 * free exprcontext
412 */
413 ExecFreeExprContext(&node->ps);
414
415 /*
416 * shut down the subplan
417 */
418 outerPlan = outerPlanState(node);
419 ExecEndNode(outerPlan);
420}
421
422
423/* ----------------------------------------------------------------
424 * ExecHashTableCreate
425 *
426 * create an empty hashtable data structure for hashjoin.
427 * ----------------------------------------------------------------
428 */
429HashJoinTable
430ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
431{
432 Hash *node;
433 HashJoinTable hashtable;
434 Plan *outerNode;
435 size_t space_allowed;
436 int nbuckets;
437 int nbatch;
438 double rows;
439 int num_skew_mcvs;
440 int log2_nbuckets;
441 int nkeys;
442 int i;
443 ListCell *ho;
444 ListCell *hc;
445 MemoryContext oldcxt;
446
447 /*
448 * Get information about the size of the relation to be hashed (it's the
449 * "outer" subtree of this node, but the inner relation of the hashjoin).
450 * Compute the appropriate size of the hash table.
451 */
452 node = (Hash *) state->ps.plan;
453 outerNode = outerPlan(node);
454
455 /*
456 * If this is shared hash table with a partial plan, then we can't use
457 * outerNode->plan_rows to estimate its size. We need an estimate of the
458 * total number of rows across all copies of the partial plan.
459 */
460 rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
461
462 ExecChooseHashTableSize(rows, outerNode->plan_width,
463 OidIsValid(node->skewTable),
464 state->parallel_state != NULL,
465 state->parallel_state != NULL ?
466 state->parallel_state->nparticipants - 1 : 0,
467 &space_allowed,
468 &nbuckets, &nbatch, &num_skew_mcvs);
469
470 /* nbuckets must be a power of 2 */
471 log2_nbuckets = my_log2(nbuckets);
472 Assert(nbuckets == (1 << log2_nbuckets));
473
474 /*
475 * Initialize the hash table control block.
476 *
477 * The hashtable control block is just palloc'd from the executor's
478 * per-query memory context. Everything else should be kept inside the
479 * subsidiary hashCxt or batchCxt.
480 */
481 hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
482 hashtable->nbuckets = nbuckets;
483 hashtable->nbuckets_original = nbuckets;
484 hashtable->nbuckets_optimal = nbuckets;
485 hashtable->log2_nbuckets = log2_nbuckets;
486 hashtable->log2_nbuckets_optimal = log2_nbuckets;
487 hashtable->buckets.unshared = NULL;
488 hashtable->keepNulls = keepNulls;
489 hashtable->skewEnabled = false;
490 hashtable->skewBucket = NULL;
491 hashtable->skewBucketLen = 0;
492 hashtable->nSkewBuckets = 0;
493 hashtable->skewBucketNums = NULL;
494 hashtable->nbatch = nbatch;
495 hashtable->curbatch = 0;
496 hashtable->nbatch_original = nbatch;
497 hashtable->nbatch_outstart = nbatch;
498 hashtable->growEnabled = true;
499 hashtable->totalTuples = 0;
500 hashtable->partialTuples = 0;
501 hashtable->skewTuples = 0;
502 hashtable->innerBatchFile = NULL;
503 hashtable->outerBatchFile = NULL;
504 hashtable->spaceUsed = 0;
505 hashtable->spacePeak = 0;
506 hashtable->spaceAllowed = space_allowed;
507 hashtable->spaceUsedSkew = 0;
508 hashtable->spaceAllowedSkew =
509 hashtable->spaceAllowed * SKEW_WORK_MEM_PERCENT / 100;
510 hashtable->chunks = NULL;
511 hashtable->current_chunk = NULL;
512 hashtable->parallel_state = state->parallel_state;
513 hashtable->area = state->ps.state->es_query_dsa;
514 hashtable->batches = NULL;
515
516#ifdef HJDEBUG
517 printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
518 hashtable, nbatch, nbuckets);
519#endif
520
521 /*
522 * Create temporary memory contexts in which to keep the hashtable working
523 * storage. See notes in executor/hashjoin.h.
524 */
525 hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
526 "HashTableContext",
527 ALLOCSET_DEFAULT_SIZES);
528
529 hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
530 "HashBatchContext",
531 ALLOCSET_DEFAULT_SIZES);
532
533 /* Allocate data that will live for the life of the hashjoin */
534
535 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
536
537 /*
538 * Get info about the hash functions to be used for each hash key. Also
539 * remember whether the join operators are strict.
540 */
541 nkeys = list_length(hashOperators);
542 hashtable->outer_hashfunctions =
543 (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
544 hashtable->inner_hashfunctions =
545 (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
546 hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
547 hashtable->collations = (Oid *) palloc(nkeys * sizeof(Oid));
548 i = 0;
549 forboth(ho, hashOperators, hc, hashCollations)
550 {
551 Oid hashop = lfirst_oid(ho);
552 Oid left_hashfn;
553 Oid right_hashfn;
554
555 if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
556 elog(ERROR, "could not find hash function for hash operator %u",
557 hashop);
558 fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
559 fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
560 hashtable->hashStrict[i] = op_strict(hashop);
561 hashtable->collations[i] = lfirst_oid(hc);
562 i++;
563 }
564
565 if (nbatch > 1 && hashtable->parallel_state == NULL)
566 {
567 /*
568 * allocate and initialize the file arrays in hashCxt (not needed for
569 * parallel case which uses shared tuplestores instead of raw files)
570 */
571 hashtable->innerBatchFile = (BufFile **)
572 palloc0(nbatch * sizeof(BufFile *));
573 hashtable->outerBatchFile = (BufFile **)
574 palloc0(nbatch * sizeof(BufFile *));
575 /* The files will not be opened until needed... */
576 /* ... but make sure we have temp tablespaces established for them */
577 PrepareTempTablespaces();
578 }
579
580 MemoryContextSwitchTo(oldcxt);
581
582 if (hashtable->parallel_state)
583 {
584 ParallelHashJoinState *pstate = hashtable->parallel_state;
585 Barrier *build_barrier;
586
587 /*
588 * Attach to the build barrier. The corresponding detach operation is
589 * in ExecHashTableDetach. Note that we won't attach to the
590 * batch_barrier for batch 0 yet. We'll attach later and start it out
591 * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
592 * and then loaded while hashing (the standard hybrid hash join
593 * algorithm), and we'll coordinate that using build_barrier.
594 */
595 build_barrier = &pstate->build_barrier;
596 BarrierAttach(build_barrier);
597
598 /*
599 * So far we have no idea whether there are any other participants,
600 * and if so, what phase they are working on. The only thing we care
601 * about at this point is whether someone has already created the
602 * SharedHashJoinBatch objects and the hash table for batch 0. One
603 * backend will be elected to do that now if necessary.
604 */
605 if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
606 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECTING))
607 {
608 pstate->nbatch = nbatch;
609 pstate->space_allowed = space_allowed;
610 pstate->growth = PHJ_GROWTH_OK;
611
612 /* Set up the shared state for coordinating batches. */
613 ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
614
615 /*
616 * Allocate batch 0's hash table up front so we can load it
617 * directly while hashing.
618 */
619 pstate->nbuckets = nbuckets;
620 ExecParallelHashTableAlloc(hashtable, 0);
621 }
622
623 /*
624 * The next Parallel Hash synchronization point is in
625 * MultiExecParallelHash(), which will progress it all the way to
626 * PHJ_BUILD_DONE. The caller must not return control from this
627 * executor node between now and then.
628 */
629 }
630 else
631 {
632 /*
633 * Prepare context for the first-scan space allocations; allocate the
634 * hashbucket array therein, and set each bucket "empty".
635 */
636 MemoryContextSwitchTo(hashtable->batchCxt);
637
638 hashtable->buckets.unshared = (HashJoinTuple *)
639 palloc0(nbuckets * sizeof(HashJoinTuple));
640
641 /*
642 * Set up for skew optimization, if possible and there's a need for
643 * more than one batch. (In a one-batch join, there's no point in
644 * it.)
645 */
646 if (nbatch > 1)
647 ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
648
649 MemoryContextSwitchTo(oldcxt);
650 }
651
652 return hashtable;
653}
654
655
656/*
657 * Compute appropriate size for hashtable given the estimated size of the
658 * relation to be hashed (number of rows and average row width).
659 *
660 * This is exported so that the planner's costsize.c can use it.
661 */
662
663/* Target bucket loading (tuples per bucket) */
664#define NTUP_PER_BUCKET 1
665
666void
667ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
668 bool try_combined_work_mem,
669 int parallel_workers,
670 size_t *space_allowed,
671 int *numbuckets,
672 int *numbatches,
673 int *num_skew_mcvs)
674{
675 int tupsize;
676 double inner_rel_bytes;
677 long bucket_bytes;
678 long hash_table_bytes;
679 long skew_table_bytes;
680 long max_pointers;
681 long mppow2;
682 int nbatch = 1;
683 int nbuckets;
684 double dbuckets;
685
686 /* Force a plausible relation size if no info */
687 if (ntuples <= 0.0)
688 ntuples = 1000.0;
689
690 /*
691 * Estimate tupsize based on footprint of tuple in hashtable... note this
692 * does not allow for any palloc overhead. The manipulations of spaceUsed
693 * don't count palloc overhead either.
694 */
695 tupsize = HJTUPLE_OVERHEAD +
696 MAXALIGN(SizeofMinimalTupleHeader) +
697 MAXALIGN(tupwidth);
698 inner_rel_bytes = ntuples * tupsize;
699
700 /*
701 * Target in-memory hashtable size is work_mem kilobytes.
702 */
703 hash_table_bytes = work_mem * 1024L;
704
705 /*
706 * Parallel Hash tries to use the combined work_mem of all workers to
707 * avoid the need to batch. If that won't work, it falls back to work_mem
708 * per worker and tries to process batches in parallel.
709 */
710 if (try_combined_work_mem)
711 hash_table_bytes += hash_table_bytes * parallel_workers;
712
713 *space_allowed = hash_table_bytes;
714
715 /*
716 * If skew optimization is possible, estimate the number of skew buckets
717 * that will fit in the memory allowed, and decrement the assumed space
718 * available for the main hash table accordingly.
719 *
720 * We make the optimistic assumption that each skew bucket will contain
721 * one inner-relation tuple. If that turns out to be low, we will recover
722 * at runtime by reducing the number of skew buckets.
723 *
724 * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
725 * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
726 * will round up to the next power of 2 and then multiply by 4 to reduce
727 * collisions.
728 */
729 if (useskew)
730 {
731 skew_table_bytes = hash_table_bytes * SKEW_WORK_MEM_PERCENT / 100;
732
733 /*----------
734 * Divisor is:
735 * size of a hash tuple +
736 * worst-case size of skewBucket[] per MCV +
737 * size of skewBucketNums[] entry +
738 * size of skew bucket struct itself
739 *----------
740 */
741 *num_skew_mcvs = skew_table_bytes / (tupsize +
742 (8 * sizeof(HashSkewBucket *)) +
743 sizeof(int) +
744 SKEW_BUCKET_OVERHEAD);
745 if (*num_skew_mcvs > 0)
746 hash_table_bytes -= skew_table_bytes;
747 }
748 else
749 *num_skew_mcvs = 0;
750
751 /*
752 * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
753 * memory is filled, assuming a single batch; but limit the value so that
754 * the pointer arrays we'll try to allocate do not exceed work_mem nor
755 * MaxAllocSize.
756 *
757 * Note that both nbuckets and nbatch must be powers of 2 to make
758 * ExecHashGetBucketAndBatch fast.
759 */
760 max_pointers = *space_allowed / sizeof(HashJoinTuple);
761 max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
762 /* If max_pointers isn't a power of 2, must round it down to one */
763 mppow2 = 1L << my_log2(max_pointers);
764 if (max_pointers != mppow2)
765 max_pointers = mppow2 / 2;
766
767 /* Also ensure we avoid integer overflow in nbatch and nbuckets */
768 /* (this step is redundant given the current value of MaxAllocSize) */
769 max_pointers = Min(max_pointers, INT_MAX / 2);
770
771 dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
772 dbuckets = Min(dbuckets, max_pointers);
773 nbuckets = (int) dbuckets;
774 /* don't let nbuckets be really small, though ... */
775 nbuckets = Max(nbuckets, 1024);
776 /* ... and force it to be a power of 2. */
777 nbuckets = 1 << my_log2(nbuckets);
778
779 /*
780 * If there's not enough space to store the projected number of tuples and
781 * the required bucket headers, we will need multiple batches.
782 */
783 bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
784 if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
785 {
786 /* We'll need multiple batches */
787 long lbuckets;
788 double dbatch;
789 int minbatch;
790 long bucket_size;
791
792 /*
793 * If Parallel Hash with combined work_mem would still need multiple
794 * batches, we'll have to fall back to regular work_mem budget.
795 */
796 if (try_combined_work_mem)
797 {
798 ExecChooseHashTableSize(ntuples, tupwidth, useskew,
799 false, parallel_workers,
800 space_allowed,
801 numbuckets,
802 numbatches,
803 num_skew_mcvs);
804 return;
805 }
806
807 /*
808 * Estimate the number of buckets we'll want to have when work_mem is
809 * entirely full. Each bucket will contain a bucket pointer plus
810 * NTUP_PER_BUCKET tuples, whose projected size already includes
811 * overhead for the hash code, pointer to the next tuple, etc.
812 */
813 bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
814 lbuckets = 1L << my_log2(hash_table_bytes / bucket_size);
815 lbuckets = Min(lbuckets, max_pointers);
816 nbuckets = (int) lbuckets;
817 nbuckets = 1 << my_log2(nbuckets);
818 bucket_bytes = nbuckets * sizeof(HashJoinTuple);
819
820 /*
821 * Buckets are simple pointers to hashjoin tuples, while tupsize
822 * includes the pointer, hash code, and MinimalTupleData. So buckets
823 * should never really exceed 25% of work_mem (even for
824 * NTUP_PER_BUCKET=1); except maybe for work_mem values that are not
825 * 2^N bytes, where we might get more because of doubling. So let's
826 * look for 50% here.
827 */
828 Assert(bucket_bytes <= hash_table_bytes / 2);
829
830 /* Calculate required number of batches. */
831 dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
832 dbatch = Min(dbatch, max_pointers);
833 minbatch = (int) dbatch;
834 nbatch = 2;
835 while (nbatch < minbatch)
836 nbatch <<= 1;
837 }
838
839 Assert(nbuckets > 0);
840 Assert(nbatch > 0);
841
842 *numbuckets = nbuckets;
843 *numbatches = nbatch;
844}
845
846
847/* ----------------------------------------------------------------
848 * ExecHashTableDestroy
849 *
850 * destroy a hash table
851 * ----------------------------------------------------------------
852 */
853void
854ExecHashTableDestroy(HashJoinTable hashtable)
855{
856 int i;
857
858 /*
859 * Make sure all the temp files are closed. We skip batch 0, since it
860 * can't have any temp files (and the arrays might not even exist if
861 * nbatch is only 1). Parallel hash joins don't use these files.
862 */
863 if (hashtable->innerBatchFile != NULL)
864 {
865 for (i = 1; i < hashtable->nbatch; i++)
866 {
867 if (hashtable->innerBatchFile[i])
868 BufFileClose(hashtable->innerBatchFile[i]);
869 if (hashtable->outerBatchFile[i])
870 BufFileClose(hashtable->outerBatchFile[i]);
871 }
872 }
873
874 /* Release working memory (batchCxt is a child, so it goes away too) */
875 MemoryContextDelete(hashtable->hashCxt);
876
877 /* And drop the control block */
878 pfree(hashtable);
879}
880
881/*
882 * ExecHashIncreaseNumBatches
883 * increase the original number of batches in order to reduce
884 * current memory consumption
885 */
886static void
887ExecHashIncreaseNumBatches(HashJoinTable hashtable)
888{
889 int oldnbatch = hashtable->nbatch;
890 int curbatch = hashtable->curbatch;
891 int nbatch;
892 MemoryContext oldcxt;
893 long ninmemory;
894 long nfreed;
895 HashMemoryChunk oldchunks;
896
897 /* do nothing if we've decided to shut off growth */
898 if (!hashtable->growEnabled)
899 return;
900
901 /* safety check to avoid overflow */
902 if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
903 return;
904
905 nbatch = oldnbatch * 2;
906 Assert(nbatch > 1);
907
908#ifdef HJDEBUG
909 printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
910 hashtable, nbatch, hashtable->spaceUsed);
911#endif
912
913 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
914
915 if (hashtable->innerBatchFile == NULL)
916 {
917 /* we had no file arrays before */
918 hashtable->innerBatchFile = (BufFile **)
919 palloc0(nbatch * sizeof(BufFile *));
920 hashtable->outerBatchFile = (BufFile **)
921 palloc0(nbatch * sizeof(BufFile *));
922 /* time to establish the temp tablespaces, too */
923 PrepareTempTablespaces();
924 }
925 else
926 {
927 /* enlarge arrays and zero out added entries */
928 hashtable->innerBatchFile = (BufFile **)
929 repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
930 hashtable->outerBatchFile = (BufFile **)
931 repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
932 MemSet(hashtable->innerBatchFile + oldnbatch, 0,
933 (nbatch - oldnbatch) * sizeof(BufFile *));
934 MemSet(hashtable->outerBatchFile + oldnbatch, 0,
935 (nbatch - oldnbatch) * sizeof(BufFile *));
936 }
937
938 MemoryContextSwitchTo(oldcxt);
939
940 hashtable->nbatch = nbatch;
941
942 /*
943 * Scan through the existing hash table entries and dump out any that are
944 * no longer of the current batch.
945 */
946 ninmemory = nfreed = 0;
947
948 /* If know we need to resize nbuckets, we can do it while rebatching. */
949 if (hashtable->nbuckets_optimal != hashtable->nbuckets)
950 {
951 /* we never decrease the number of buckets */
952 Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
953
954 hashtable->nbuckets = hashtable->nbuckets_optimal;
955 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
956
957 hashtable->buckets.unshared =
958 repalloc(hashtable->buckets.unshared,
959 sizeof(HashJoinTuple) * hashtable->nbuckets);
960 }
961
962 /*
963 * We will scan through the chunks directly, so that we can reset the
964 * buckets now and not have to keep track which tuples in the buckets have
965 * already been processed. We will free the old chunks as we go.
966 */
967 memset(hashtable->buckets.unshared, 0,
968 sizeof(HashJoinTuple) * hashtable->nbuckets);
969 oldchunks = hashtable->chunks;
970 hashtable->chunks = NULL;
971
972 /* so, let's scan through the old chunks, and all tuples in each chunk */
973 while (oldchunks != NULL)
974 {
975 HashMemoryChunk nextchunk = oldchunks->next.unshared;
976
977 /* position within the buffer (up to oldchunks->used) */
978 size_t idx = 0;
979
980 /* process all tuples stored in this chunk (and then free it) */
981 while (idx < oldchunks->used)
982 {
983 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
984 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
985 int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
986 int bucketno;
987 int batchno;
988
989 ninmemory++;
990 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
991 &bucketno, &batchno);
992
993 if (batchno == curbatch)
994 {
995 /* keep tuple in memory - copy it into the new chunk */
996 HashJoinTuple copyTuple;
997
998 copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
999 memcpy(copyTuple, hashTuple, hashTupleSize);
1000
1001 /* and add it back to the appropriate bucket */
1002 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1003 hashtable->buckets.unshared[bucketno] = copyTuple;
1004 }
1005 else
1006 {
1007 /* dump it out */
1008 Assert(batchno > curbatch);
1009 ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
1010 hashTuple->hashvalue,
1011 &hashtable->innerBatchFile[batchno]);
1012
1013 hashtable->spaceUsed -= hashTupleSize;
1014 nfreed++;
1015 }
1016
1017 /* next tuple in this chunk */
1018 idx += MAXALIGN(hashTupleSize);
1019
1020 /* allow this loop to be cancellable */
1021 CHECK_FOR_INTERRUPTS();
1022 }
1023
1024 /* we're done with this chunk - free it and proceed to the next one */
1025 pfree(oldchunks);
1026 oldchunks = nextchunk;
1027 }
1028
1029#ifdef HJDEBUG
1030 printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1031 hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1032#endif
1033
1034 /*
1035 * If we dumped out either all or none of the tuples in the table, disable
1036 * further expansion of nbatch. This situation implies that we have
1037 * enough tuples of identical hashvalues to overflow spaceAllowed.
1038 * Increasing nbatch will not fix it since there's no way to subdivide the
1039 * group any more finely. We have to just gut it out and hope the server
1040 * has enough RAM.
1041 */
1042 if (nfreed == 0 || nfreed == ninmemory)
1043 {
1044 hashtable->growEnabled = false;
1045#ifdef HJDEBUG
1046 printf("Hashjoin %p: disabling further increase of nbatch\n",
1047 hashtable);
1048#endif
1049 }
1050}
1051
1052/*
1053 * ExecParallelHashIncreaseNumBatches
1054 * Every participant attached to grow_batches_barrier must run this
1055 * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1056 */
1057static void
1058ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
1059{
1060 ParallelHashJoinState *pstate = hashtable->parallel_state;
1061 int i;
1062
1063 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1064
1065 /*
1066 * It's unlikely, but we need to be prepared for new participants to show
1067 * up while we're in the middle of this operation so we need to switch on
1068 * barrier phase here.
1069 */
1070 switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
1071 {
1072 case PHJ_GROW_BATCHES_ELECTING:
1073
1074 /*
1075 * Elect one participant to prepare to grow the number of batches.
1076 * This involves reallocating or resetting the buckets of batch 0
1077 * in preparation for all participants to begin repartitioning the
1078 * tuples.
1079 */
1080 if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1081 WAIT_EVENT_HASH_GROW_BATCHES_ELECTING))
1082 {
1083 dsa_pointer_atomic *buckets;
1084 ParallelHashJoinBatch *old_batch0;
1085 int new_nbatch;
1086 int i;
1087
1088 /* Move the old batch out of the way. */
1089 old_batch0 = hashtable->batches[0].shared;
1090 pstate->old_batches = pstate->batches;
1091 pstate->old_nbatch = hashtable->nbatch;
1092 pstate->batches = InvalidDsaPointer;
1093
1094 /* Free this backend's old accessors. */
1095 ExecParallelHashCloseBatchAccessors(hashtable);
1096
1097 /* Figure out how many batches to use. */
1098 if (hashtable->nbatch == 1)
1099 {
1100 /*
1101 * We are going from single-batch to multi-batch. We need
1102 * to switch from one large combined memory budget to the
1103 * regular work_mem budget.
1104 */
1105 pstate->space_allowed = work_mem * 1024L;
1106
1107 /*
1108 * The combined work_mem of all participants wasn't
1109 * enough. Therefore one batch per participant would be
1110 * approximately equivalent and would probably also be
1111 * insufficient. So try two batches per participant,
1112 * rounded up to a power of two.
1113 */
1114 new_nbatch = 1 << my_log2(pstate->nparticipants * 2);
1115 }
1116 else
1117 {
1118 /*
1119 * We were already multi-batched. Try doubling the number
1120 * of batches.
1121 */
1122 new_nbatch = hashtable->nbatch * 2;
1123 }
1124
1125 /* Allocate new larger generation of batches. */
1126 Assert(hashtable->nbatch == pstate->nbatch);
1127 ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1128 Assert(hashtable->nbatch == pstate->nbatch);
1129
1130 /* Replace or recycle batch 0's bucket array. */
1131 if (pstate->old_nbatch == 1)
1132 {
1133 double dtuples;
1134 double dbuckets;
1135 int new_nbuckets;
1136
1137 /*
1138 * We probably also need a smaller bucket array. How many
1139 * tuples do we expect per batch, assuming we have only
1140 * half of them so far? Normally we don't need to change
1141 * the bucket array's size, because the size of each batch
1142 * stays the same as we add more batches, but in this
1143 * special case we move from a large batch to many smaller
1144 * batches and it would be wasteful to keep the large
1145 * array.
1146 */
1147 dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1148 dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1149 dbuckets = Min(dbuckets,
1150 MaxAllocSize / sizeof(dsa_pointer_atomic));
1151 new_nbuckets = (int) dbuckets;
1152 new_nbuckets = Max(new_nbuckets, 1024);
1153 new_nbuckets = 1 << my_log2(new_nbuckets);
1154 dsa_free(hashtable->area, old_batch0->buckets);
1155 hashtable->batches[0].shared->buckets =
1156 dsa_allocate(hashtable->area,
1157 sizeof(dsa_pointer_atomic) * new_nbuckets);
1158 buckets = (dsa_pointer_atomic *)
1159 dsa_get_address(hashtable->area,
1160 hashtable->batches[0].shared->buckets);
1161 for (i = 0; i < new_nbuckets; ++i)
1162 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1163 pstate->nbuckets = new_nbuckets;
1164 }
1165 else
1166 {
1167 /* Recycle the existing bucket array. */
1168 hashtable->batches[0].shared->buckets = old_batch0->buckets;
1169 buckets = (dsa_pointer_atomic *)
1170 dsa_get_address(hashtable->area, old_batch0->buckets);
1171 for (i = 0; i < hashtable->nbuckets; ++i)
1172 dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
1173 }
1174
1175 /* Move all chunks to the work queue for parallel processing. */
1176 pstate->chunk_work_queue = old_batch0->chunks;
1177
1178 /* Disable further growth temporarily while we're growing. */
1179 pstate->growth = PHJ_GROWTH_DISABLED;
1180 }
1181 else
1182 {
1183 /* All other participants just flush their tuples to disk. */
1184 ExecParallelHashCloseBatchAccessors(hashtable);
1185 }
1186 /* Fall through. */
1187
1188 case PHJ_GROW_BATCHES_ALLOCATING:
1189 /* Wait for the above to be finished. */
1190 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1191 WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATING);
1192 /* Fall through. */
1193
1194 case PHJ_GROW_BATCHES_REPARTITIONING:
1195 /* Make sure that we have the current dimensions and buckets. */
1196 ExecParallelHashEnsureBatchAccessors(hashtable);
1197 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1198 /* Then partition, flush counters. */
1199 ExecParallelHashRepartitionFirst(hashtable);
1200 ExecParallelHashRepartitionRest(hashtable);
1201 ExecParallelHashMergeCounters(hashtable);
1202 /* Wait for the above to be finished. */
1203 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1204 WAIT_EVENT_HASH_GROW_BATCHES_REPARTITIONING);
1205 /* Fall through. */
1206
1207 case PHJ_GROW_BATCHES_DECIDING:
1208
1209 /*
1210 * Elect one participant to clean up and decide whether further
1211 * repartitioning is needed, or should be disabled because it's
1212 * not helping.
1213 */
1214 if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1215 WAIT_EVENT_HASH_GROW_BATCHES_DECIDING))
1216 {
1217 bool space_exhausted = false;
1218 bool extreme_skew_detected = false;
1219
1220 /* Make sure that we have the current dimensions and buckets. */
1221 ExecParallelHashEnsureBatchAccessors(hashtable);
1222 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1223
1224 /* Are any of the new generation of batches exhausted? */
1225 for (i = 0; i < hashtable->nbatch; ++i)
1226 {
1227 ParallelHashJoinBatch *batch = hashtable->batches[i].shared;
1228
1229 if (batch->space_exhausted ||
1230 batch->estimated_size > pstate->space_allowed)
1231 {
1232 int parent;
1233
1234 space_exhausted = true;
1235
1236 /*
1237 * Did this batch receive ALL of the tuples from its
1238 * parent batch? That would indicate that further
1239 * repartitioning isn't going to help (the hash values
1240 * are probably all the same).
1241 */
1242 parent = i % pstate->old_nbatch;
1243 if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1244 extreme_skew_detected = true;
1245 }
1246 }
1247
1248 /* Don't keep growing if it's not helping or we'd overflow. */
1249 if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1250 pstate->growth = PHJ_GROWTH_DISABLED;
1251 else if (space_exhausted)
1252 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
1253 else
1254 pstate->growth = PHJ_GROWTH_OK;
1255
1256 /* Free the old batches in shared memory. */
1257 dsa_free(hashtable->area, pstate->old_batches);
1258 pstate->old_batches = InvalidDsaPointer;
1259 }
1260 /* Fall through. */
1261
1262 case PHJ_GROW_BATCHES_FINISHING:
1263 /* Wait for the above to complete. */
1264 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1265 WAIT_EVENT_HASH_GROW_BATCHES_FINISHING);
1266 }
1267}
1268
1269/*
1270 * Repartition the tuples currently loaded into memory for inner batch 0
1271 * because the number of batches has been increased. Some tuples are retained
1272 * in memory and some are written out to a later batch.
1273 */
1274static void
1275ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
1276{
1277 dsa_pointer chunk_shared;
1278 HashMemoryChunk chunk;
1279
1280 Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1281
1282 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1283 {
1284 size_t idx = 0;
1285
1286 /* Repartition all tuples in this chunk. */
1287 while (idx < chunk->used)
1288 {
1289 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1290 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1291 HashJoinTuple copyTuple;
1292 dsa_pointer shared;
1293 int bucketno;
1294 int batchno;
1295
1296 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1297 &bucketno, &batchno);
1298
1299 Assert(batchno < hashtable->nbatch);
1300 if (batchno == 0)
1301 {
1302 /* It still belongs in batch 0. Copy to a new chunk. */
1303 copyTuple =
1304 ExecParallelHashTupleAlloc(hashtable,
1305 HJTUPLE_OVERHEAD + tuple->t_len,
1306 &shared);
1307 copyTuple->hashvalue = hashTuple->hashvalue;
1308 memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1309 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1310 copyTuple, shared);
1311 }
1312 else
1313 {
1314 size_t tuple_size =
1315 MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1316
1317 /* It belongs in a later batch. */
1318 hashtable->batches[batchno].estimated_size += tuple_size;
1319 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1320 &hashTuple->hashvalue, tuple);
1321 }
1322
1323 /* Count this tuple. */
1324 ++hashtable->batches[0].old_ntuples;
1325 ++hashtable->batches[batchno].ntuples;
1326
1327 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1328 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1329 }
1330
1331 /* Free this chunk. */
1332 dsa_free(hashtable->area, chunk_shared);
1333
1334 CHECK_FOR_INTERRUPTS();
1335 }
1336}
1337
1338/*
1339 * Help repartition inner batches 1..n.
1340 */
1341static void
1342ExecParallelHashRepartitionRest(HashJoinTable hashtable)
1343{
1344 ParallelHashJoinState *pstate = hashtable->parallel_state;
1345 int old_nbatch = pstate->old_nbatch;
1346 SharedTuplestoreAccessor **old_inner_tuples;
1347 ParallelHashJoinBatch *old_batches;
1348 int i;
1349
1350 /* Get our hands on the previous generation of batches. */
1351 old_batches = (ParallelHashJoinBatch *)
1352 dsa_get_address(hashtable->area, pstate->old_batches);
1353 old_inner_tuples = palloc0(sizeof(SharedTuplestoreAccessor *) * old_nbatch);
1354 for (i = 1; i < old_nbatch; ++i)
1355 {
1356 ParallelHashJoinBatch *shared =
1357 NthParallelHashJoinBatch(old_batches, i);
1358
1359 old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1360 ParallelWorkerNumber + 1,
1361 &pstate->fileset);
1362 }
1363
1364 /* Join in the effort to repartition them. */
1365 for (i = 1; i < old_nbatch; ++i)
1366 {
1367 MinimalTuple tuple;
1368 uint32 hashvalue;
1369
1370 /* Scan one partition from the previous generation. */
1371 sts_begin_parallel_scan(old_inner_tuples[i]);
1372 while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1373 {
1374 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1375 int bucketno;
1376 int batchno;
1377
1378 /* Decide which partition it goes to in the new generation. */
1379 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1380 &batchno);
1381
1382 hashtable->batches[batchno].estimated_size += tuple_size;
1383 ++hashtable->batches[batchno].ntuples;
1384 ++hashtable->batches[i].old_ntuples;
1385
1386 /* Store the tuple its new batch. */
1387 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1388 &hashvalue, tuple);
1389
1390 CHECK_FOR_INTERRUPTS();
1391 }
1392 sts_end_parallel_scan(old_inner_tuples[i]);
1393 }
1394
1395 pfree(old_inner_tuples);
1396}
1397
1398/*
1399 * Transfer the backend-local per-batch counters to the shared totals.
1400 */
1401static void
1402ExecParallelHashMergeCounters(HashJoinTable hashtable)
1403{
1404 ParallelHashJoinState *pstate = hashtable->parallel_state;
1405 int i;
1406
1407 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1408 pstate->total_tuples = 0;
1409 for (i = 0; i < hashtable->nbatch; ++i)
1410 {
1411 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1412
1413 batch->shared->size += batch->size;
1414 batch->shared->estimated_size += batch->estimated_size;
1415 batch->shared->ntuples += batch->ntuples;
1416 batch->shared->old_ntuples += batch->old_ntuples;
1417 batch->size = 0;
1418 batch->estimated_size = 0;
1419 batch->ntuples = 0;
1420 batch->old_ntuples = 0;
1421 pstate->total_tuples += batch->shared->ntuples;
1422 }
1423 LWLockRelease(&pstate->lock);
1424}
1425
1426/*
1427 * ExecHashIncreaseNumBuckets
1428 * increase the original number of buckets in order to reduce
1429 * number of tuples per bucket
1430 */
1431static void
1432ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
1433{
1434 HashMemoryChunk chunk;
1435
1436 /* do nothing if not an increase (it's called increase for a reason) */
1437 if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1438 return;
1439
1440#ifdef HJDEBUG
1441 printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1442 hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1443#endif
1444
1445 hashtable->nbuckets = hashtable->nbuckets_optimal;
1446 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1447
1448 Assert(hashtable->nbuckets > 1);
1449 Assert(hashtable->nbuckets <= (INT_MAX / 2));
1450 Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1451
1452 /*
1453 * Just reallocate the proper number of buckets - we don't need to walk
1454 * through them - we can walk the dense-allocated chunks (just like in
1455 * ExecHashIncreaseNumBatches, but without all the copying into new
1456 * chunks)
1457 */
1458 hashtable->buckets.unshared =
1459 (HashJoinTuple *) repalloc(hashtable->buckets.unshared,
1460 hashtable->nbuckets * sizeof(HashJoinTuple));
1461
1462 memset(hashtable->buckets.unshared, 0,
1463 hashtable->nbuckets * sizeof(HashJoinTuple));
1464
1465 /* scan through all tuples in all chunks to rebuild the hash table */
1466 for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1467 {
1468 /* process all tuples stored in this chunk */
1469 size_t idx = 0;
1470
1471 while (idx < chunk->used)
1472 {
1473 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1474 int bucketno;
1475 int batchno;
1476
1477 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1478 &bucketno, &batchno);
1479
1480 /* add the tuple to the proper bucket */
1481 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1482 hashtable->buckets.unshared[bucketno] = hashTuple;
1483
1484 /* advance index past the tuple */
1485 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1486 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1487 }
1488
1489 /* allow this loop to be cancellable */
1490 CHECK_FOR_INTERRUPTS();
1491 }
1492}
1493
1494static void
1495ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
1496{
1497 ParallelHashJoinState *pstate = hashtable->parallel_state;
1498 int i;
1499 HashMemoryChunk chunk;
1500 dsa_pointer chunk_s;
1501
1502 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1503
1504 /*
1505 * It's unlikely, but we need to be prepared for new participants to show
1506 * up while we're in the middle of this operation so we need to switch on
1507 * barrier phase here.
1508 */
1509 switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
1510 {
1511 case PHJ_GROW_BUCKETS_ELECTING:
1512 /* Elect one participant to prepare to increase nbuckets. */
1513 if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1514 WAIT_EVENT_HASH_GROW_BUCKETS_ELECTING))
1515 {
1516 size_t size;
1517 dsa_pointer_atomic *buckets;
1518
1519 /* Double the size of the bucket array. */
1520 pstate->nbuckets *= 2;
1521 size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1522 hashtable->batches[0].shared->size += size / 2;
1523 dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1524 hashtable->batches[0].shared->buckets =
1525 dsa_allocate(hashtable->area, size);
1526 buckets = (dsa_pointer_atomic *)
1527 dsa_get_address(hashtable->area,
1528 hashtable->batches[0].shared->buckets);
1529 for (i = 0; i < pstate->nbuckets; ++i)
1530 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1531
1532 /* Put the chunk list onto the work queue. */
1533 pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1534
1535 /* Clear the flag. */
1536 pstate->growth = PHJ_GROWTH_OK;
1537 }
1538 /* Fall through. */
1539
1540 case PHJ_GROW_BUCKETS_ALLOCATING:
1541 /* Wait for the above to complete. */
1542 BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1543 WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATING);
1544 /* Fall through. */
1545
1546 case PHJ_GROW_BUCKETS_REINSERTING:
1547 /* Reinsert all tuples into the hash table. */
1548 ExecParallelHashEnsureBatchAccessors(hashtable);
1549 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1550 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1551 {
1552 size_t idx = 0;
1553
1554 while (idx < chunk->used)
1555 {
1556 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1557 dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1558 int bucketno;
1559 int batchno;
1560
1561 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1562 &bucketno, &batchno);
1563 Assert(batchno == 0);
1564
1565 /* add the tuple to the proper bucket */
1566 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1567 hashTuple, shared);
1568
1569 /* advance index past the tuple */
1570 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1571 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1572 }
1573
1574 /* allow this loop to be cancellable */
1575 CHECK_FOR_INTERRUPTS();
1576 }
1577 BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1578 WAIT_EVENT_HASH_GROW_BUCKETS_REINSERTING);
1579 }
1580}
1581
1582/*
1583 * ExecHashTableInsert
1584 * insert a tuple into the hash table depending on the hash value
1585 * it may just go to a temp file for later batches
1586 *
1587 * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1588 * tuple; the minimal case in particular is certain to happen while reloading
1589 * tuples from batch files. We could save some cycles in the regular-tuple
1590 * case by not forcing the slot contents into minimal form; not clear if it's
1591 * worth the messiness required.
1592 */
1593void
1594ExecHashTableInsert(HashJoinTable hashtable,
1595 TupleTableSlot *slot,
1596 uint32 hashvalue)
1597{
1598 bool shouldFree;
1599 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1600 int bucketno;
1601 int batchno;
1602
1603 ExecHashGetBucketAndBatch(hashtable, hashvalue,
1604 &bucketno, &batchno);
1605
1606 /*
1607 * decide whether to put the tuple in the hash table or a temp file
1608 */
1609 if (batchno == hashtable->curbatch)
1610 {
1611 /*
1612 * put the tuple in hash table
1613 */
1614 HashJoinTuple hashTuple;
1615 int hashTupleSize;
1616 double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1617
1618 /* Create the HashJoinTuple */
1619 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1620 hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1621
1622 hashTuple->hashvalue = hashvalue;
1623 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1624
1625 /*
1626 * We always reset the tuple-matched flag on insertion. This is okay
1627 * even when reloading a tuple from a batch file, since the tuple
1628 * could not possibly have been matched to an outer tuple before it
1629 * went into the batch file.
1630 */
1631 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1632
1633 /* Push it onto the front of the bucket's list */
1634 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1635 hashtable->buckets.unshared[bucketno] = hashTuple;
1636
1637 /*
1638 * Increase the (optimal) number of buckets if we just exceeded the
1639 * NTUP_PER_BUCKET threshold, but only when there's still a single
1640 * batch.
1641 */
1642 if (hashtable->nbatch == 1 &&
1643 ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1644 {
1645 /* Guard against integer overflow and alloc size overflow */
1646 if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1647 hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1648 {
1649 hashtable->nbuckets_optimal *= 2;
1650 hashtable->log2_nbuckets_optimal += 1;
1651 }
1652 }
1653
1654 /* Account for space used, and back off if we've used too much */
1655 hashtable->spaceUsed += hashTupleSize;
1656 if (hashtable->spaceUsed > hashtable->spacePeak)
1657 hashtable->spacePeak = hashtable->spaceUsed;
1658 if (hashtable->spaceUsed +
1659 hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1660 > hashtable->spaceAllowed)
1661 ExecHashIncreaseNumBatches(hashtable);
1662 }
1663 else
1664 {
1665 /*
1666 * put the tuple into a temp file for later batches
1667 */
1668 Assert(batchno > hashtable->curbatch);
1669 ExecHashJoinSaveTuple(tuple,
1670 hashvalue,
1671 &hashtable->innerBatchFile[batchno]);
1672 }
1673
1674 if (shouldFree)
1675 heap_free_minimal_tuple(tuple);
1676}
1677
1678/*
1679 * ExecParallelHashTableInsert
1680 * insert a tuple into a shared hash table or shared batch tuplestore
1681 */
1682void
1683ExecParallelHashTableInsert(HashJoinTable hashtable,
1684 TupleTableSlot *slot,
1685 uint32 hashvalue)
1686{
1687 bool shouldFree;
1688 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1689 dsa_pointer shared;
1690 int bucketno;
1691 int batchno;
1692
1693retry:
1694 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1695
1696 if (batchno == 0)
1697 {
1698 HashJoinTuple hashTuple;
1699
1700 /* Try to load it into memory. */
1701 Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
1702 PHJ_BUILD_HASHING_INNER);
1703 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1704 HJTUPLE_OVERHEAD + tuple->t_len,
1705 &shared);
1706 if (hashTuple == NULL)
1707 goto retry;
1708
1709 /* Store the hash value in the HashJoinTuple header. */
1710 hashTuple->hashvalue = hashvalue;
1711 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1712
1713 /* Push it onto the front of the bucket's list */
1714 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1715 hashTuple, shared);
1716 }
1717 else
1718 {
1719 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1720
1721 Assert(batchno > 0);
1722
1723 /* Try to preallocate space in the batch if necessary. */
1724 if (hashtable->batches[batchno].preallocated < tuple_size)
1725 {
1726 if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1727 goto retry;
1728 }
1729
1730 Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1731 hashtable->batches[batchno].preallocated -= tuple_size;
1732 sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1733 tuple);
1734 }
1735 ++hashtable->batches[batchno].ntuples;
1736
1737 if (shouldFree)
1738 heap_free_minimal_tuple(tuple);
1739}
1740
1741/*
1742 * Insert a tuple into the current hash table. Unlike
1743 * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1744 * to other batches or to run out of memory, and should only be called with
1745 * tuples that belong in the current batch once growth has been disabled.
1746 */
1747void
1748ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
1749 TupleTableSlot *slot,
1750 uint32 hashvalue)
1751{
1752 bool shouldFree;
1753 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1754 HashJoinTuple hashTuple;
1755 dsa_pointer shared;
1756 int batchno;
1757 int bucketno;
1758
1759 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1760 Assert(batchno == hashtable->curbatch);
1761 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1762 HJTUPLE_OVERHEAD + tuple->t_len,
1763 &shared);
1764 hashTuple->hashvalue = hashvalue;
1765 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1766 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1767 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1768 hashTuple, shared);
1769
1770 if (shouldFree)
1771 heap_free_minimal_tuple(tuple);
1772}
1773
1774/*
1775 * ExecHashGetHashValue
1776 * Compute the hash value for a tuple
1777 *
1778 * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
1779 * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
1780 * is false (meaning it's the HashJoin's inner node, Hash), econtext,
1781 * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
1782 * being suitable for tuples from the node below the Hash. Conversely, if
1783 * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
1784 * be appropriate for tuples from HashJoin's outer node.
1785 *
1786 * A true result means the tuple's hash value has been successfully computed
1787 * and stored at *hashvalue. A false result means the tuple cannot match
1788 * because it contains a null attribute, and hence it should be discarded
1789 * immediately. (If keep_nulls is true then false is never returned.)
1790 */
1791bool
1792ExecHashGetHashValue(HashJoinTable hashtable,
1793 ExprContext *econtext,
1794 List *hashkeys,
1795 bool outer_tuple,
1796 bool keep_nulls,
1797 uint32 *hashvalue)
1798{
1799 uint32 hashkey = 0;
1800 FmgrInfo *hashfunctions;
1801 ListCell *hk;
1802 int i = 0;
1803 MemoryContext oldContext;
1804
1805 /*
1806 * We reset the eval context each time to reclaim any memory leaked in the
1807 * hashkey expressions.
1808 */
1809 ResetExprContext(econtext);
1810
1811 oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
1812
1813 if (outer_tuple)
1814 hashfunctions = hashtable->outer_hashfunctions;
1815 else
1816 hashfunctions = hashtable->inner_hashfunctions;
1817
1818 foreach(hk, hashkeys)
1819 {
1820 ExprState *keyexpr = (ExprState *) lfirst(hk);
1821 Datum keyval;
1822 bool isNull;
1823
1824 /* rotate hashkey left 1 bit at each step */
1825 hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
1826
1827 /*
1828 * Get the join attribute value of the tuple
1829 */
1830 keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
1831
1832 /*
1833 * If the attribute is NULL, and the join operator is strict, then
1834 * this tuple cannot pass the join qual so we can reject it
1835 * immediately (unless we're scanning the outside of an outer join, in
1836 * which case we must not reject it). Otherwise we act like the
1837 * hashcode of NULL is zero (this will support operators that act like
1838 * IS NOT DISTINCT, though not any more-random behavior). We treat
1839 * the hash support function as strict even if the operator is not.
1840 *
1841 * Note: currently, all hashjoinable operators must be strict since
1842 * the hash index AM assumes that. However, it takes so little extra
1843 * code here to allow non-strict that we may as well do it.
1844 */
1845 if (isNull)
1846 {
1847 if (hashtable->hashStrict[i] && !keep_nulls)
1848 {
1849 MemoryContextSwitchTo(oldContext);
1850 return false; /* cannot match */
1851 }
1852 /* else, leave hashkey unmodified, equivalent to hashcode 0 */
1853 }
1854 else
1855 {
1856 /* Compute the hash function */
1857 uint32 hkey;
1858
1859 hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
1860 hashkey ^= hkey;
1861 }
1862
1863 i++;
1864 }
1865
1866 MemoryContextSwitchTo(oldContext);
1867
1868 *hashvalue = hashkey;
1869 return true;
1870}
1871
1872/*
1873 * ExecHashGetBucketAndBatch
1874 * Determine the bucket number and batch number for a hash value
1875 *
1876 * Note: on-the-fly increases of nbatch must not change the bucket number
1877 * for a given hash code (since we don't move tuples to different hash
1878 * chains), and must only cause the batch number to remain the same or
1879 * increase. Our algorithm is
1880 * bucketno = hashvalue MOD nbuckets
1881 * batchno = (hashvalue DIV nbuckets) MOD nbatch
1882 * where nbuckets and nbatch are both expected to be powers of 2, so we can
1883 * do the computations by shifting and masking. (This assumes that all hash
1884 * functions are good about randomizing all their output bits, else we are
1885 * likely to have very skewed bucket or batch occupancy.)
1886 *
1887 * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1888 * bucket count growth. Once we start batching, the value is fixed and does
1889 * not change over the course of the join (making it possible to compute batch
1890 * number the way we do here).
1891 *
1892 * nbatch is always a power of 2; we increase it only by doubling it. This
1893 * effectively adds one more bit to the top of the batchno.
1894 */
1895void
1896ExecHashGetBucketAndBatch(HashJoinTable hashtable,
1897 uint32 hashvalue,
1898 int *bucketno,
1899 int *batchno)
1900{
1901 uint32 nbuckets = (uint32) hashtable->nbuckets;
1902 uint32 nbatch = (uint32) hashtable->nbatch;
1903
1904 if (nbatch > 1)
1905 {
1906 /* we can do MOD by masking, DIV by shifting */
1907 *bucketno = hashvalue & (nbuckets - 1);
1908 *batchno = (hashvalue >> hashtable->log2_nbuckets) & (nbatch - 1);
1909 }
1910 else
1911 {
1912 *bucketno = hashvalue & (nbuckets - 1);
1913 *batchno = 0;
1914 }
1915}
1916
1917/*
1918 * ExecScanHashBucket
1919 * scan a hash bucket for matches to the current outer tuple
1920 *
1921 * The current outer tuple must be stored in econtext->ecxt_outertuple.
1922 *
1923 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1924 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1925 * for the latter.
1926 */
1927bool
1928ExecScanHashBucket(HashJoinState *hjstate,
1929 ExprContext *econtext)
1930{
1931 ExprState *hjclauses = hjstate->hashclauses;
1932 HashJoinTable hashtable = hjstate->hj_HashTable;
1933 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1934 uint32 hashvalue = hjstate->hj_CurHashValue;
1935
1936 /*
1937 * hj_CurTuple is the address of the tuple last returned from the current
1938 * bucket, or NULL if it's time to start scanning a new bucket.
1939 *
1940 * If the tuple hashed to a skew bucket then scan the skew bucket
1941 * otherwise scan the standard hashtable bucket.
1942 */
1943 if (hashTuple != NULL)
1944 hashTuple = hashTuple->next.unshared;
1945 else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1946 hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1947 else
1948 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1949
1950 while (hashTuple != NULL)
1951 {
1952 if (hashTuple->hashvalue == hashvalue)
1953 {
1954 TupleTableSlot *inntuple;
1955
1956 /* insert hashtable's tuple into exec slot so ExecQual sees it */
1957 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1958 hjstate->hj_HashTupleSlot,
1959 false); /* do not pfree */
1960 econtext->ecxt_innertuple = inntuple;
1961
1962 if (ExecQualAndReset(hjclauses, econtext))
1963 {
1964 hjstate->hj_CurTuple = hashTuple;
1965 return true;
1966 }
1967 }
1968
1969 hashTuple = hashTuple->next.unshared;
1970 }
1971
1972 /*
1973 * no match
1974 */
1975 return false;
1976}
1977
1978/*
1979 * ExecParallelScanHashBucket
1980 * scan a hash bucket for matches to the current outer tuple
1981 *
1982 * The current outer tuple must be stored in econtext->ecxt_outertuple.
1983 *
1984 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1985 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1986 * for the latter.
1987 */
1988bool
1989ExecParallelScanHashBucket(HashJoinState *hjstate,
1990 ExprContext *econtext)
1991{
1992 ExprState *hjclauses = hjstate->hashclauses;
1993 HashJoinTable hashtable = hjstate->hj_HashTable;
1994 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1995 uint32 hashvalue = hjstate->hj_CurHashValue;
1996
1997 /*
1998 * hj_CurTuple is the address of the tuple last returned from the current
1999 * bucket, or NULL if it's time to start scanning a new bucket.
2000 */
2001 if (hashTuple != NULL)
2002 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2003 else
2004 hashTuple = ExecParallelHashFirstTuple(hashtable,
2005 hjstate->hj_CurBucketNo);
2006
2007 while (hashTuple != NULL)
2008 {
2009 if (hashTuple->hashvalue == hashvalue)
2010 {
2011 TupleTableSlot *inntuple;
2012
2013 /* insert hashtable's tuple into exec slot so ExecQual sees it */
2014 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2015 hjstate->hj_HashTupleSlot,
2016 false); /* do not pfree */
2017 econtext->ecxt_innertuple = inntuple;
2018
2019 if (ExecQualAndReset(hjclauses, econtext))
2020 {
2021 hjstate->hj_CurTuple = hashTuple;
2022 return true;
2023 }
2024 }
2025
2026 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2027 }
2028
2029 /*
2030 * no match
2031 */
2032 return false;
2033}
2034
2035/*
2036 * ExecPrepHashTableForUnmatched
2037 * set up for a series of ExecScanHashTableForUnmatched calls
2038 */
2039void
2040ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
2041{
2042 /*----------
2043 * During this scan we use the HashJoinState fields as follows:
2044 *
2045 * hj_CurBucketNo: next regular bucket to scan
2046 * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
2047 * hj_CurTuple: last tuple returned, or NULL to start next bucket
2048 *----------
2049 */
2050 hjstate->hj_CurBucketNo = 0;
2051 hjstate->hj_CurSkewBucketNo = 0;
2052 hjstate->hj_CurTuple = NULL;
2053}
2054
2055/*
2056 * ExecScanHashTableForUnmatched
2057 * scan the hash table for unmatched inner tuples
2058 *
2059 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2060 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2061 * for the latter.
2062 */
2063bool
2064ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
2065{
2066 HashJoinTable hashtable = hjstate->hj_HashTable;
2067 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2068
2069 for (;;)
2070 {
2071 /*
2072 * hj_CurTuple is the address of the tuple last returned from the
2073 * current bucket, or NULL if it's time to start scanning a new
2074 * bucket.
2075 */
2076 if (hashTuple != NULL)
2077 hashTuple = hashTuple->next.unshared;
2078 else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2079 {
2080 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2081 hjstate->hj_CurBucketNo++;
2082 }
2083 else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2084 {
2085 int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2086
2087 hashTuple = hashtable->skewBucket[j]->tuples;
2088 hjstate->hj_CurSkewBucketNo++;
2089 }
2090 else
2091 break; /* finished all buckets */
2092
2093 while (hashTuple != NULL)
2094 {
2095 if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2096 {
2097 TupleTableSlot *inntuple;
2098
2099 /* insert hashtable's tuple into exec slot */
2100 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2101 hjstate->hj_HashTupleSlot,
2102 false); /* do not pfree */
2103 econtext->ecxt_innertuple = inntuple;
2104
2105 /*
2106 * Reset temp memory each time; although this function doesn't
2107 * do any qual eval, the caller will, so let's keep it
2108 * parallel to ExecScanHashBucket.
2109 */
2110 ResetExprContext(econtext);
2111
2112 hjstate->hj_CurTuple = hashTuple;
2113 return true;
2114 }
2115
2116 hashTuple = hashTuple->next.unshared;
2117 }
2118
2119 /* allow this loop to be cancellable */
2120 CHECK_FOR_INTERRUPTS();
2121 }
2122
2123 /*
2124 * no more unmatched tuples
2125 */
2126 return false;
2127}
2128
2129/*
2130 * ExecHashTableReset
2131 *
2132 * reset hash table header for new batch
2133 */
2134void
2135ExecHashTableReset(HashJoinTable hashtable)
2136{
2137 MemoryContext oldcxt;
2138 int nbuckets = hashtable->nbuckets;
2139
2140 /*
2141 * Release all the hash buckets and tuples acquired in the prior pass, and
2142 * reinitialize the context for a new pass.
2143 */
2144 MemoryContextReset(hashtable->batchCxt);
2145 oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2146
2147 /* Reallocate and reinitialize the hash bucket headers. */
2148 hashtable->buckets.unshared = (HashJoinTuple *)
2149 palloc0(nbuckets * sizeof(HashJoinTuple));
2150
2151 hashtable->spaceUsed = 0;
2152
2153 MemoryContextSwitchTo(oldcxt);
2154
2155 /* Forget the chunks (the memory was freed by the context reset above). */
2156 hashtable->chunks = NULL;
2157}
2158
2159/*
2160 * ExecHashTableResetMatchFlags
2161 * Clear all the HeapTupleHeaderHasMatch flags in the table
2162 */
2163void
2164ExecHashTableResetMatchFlags(HashJoinTable hashtable)
2165{
2166 HashJoinTuple tuple;
2167 int i;
2168
2169 /* Reset all flags in the main table ... */
2170 for (i = 0; i < hashtable->nbuckets; i++)
2171 {
2172 for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2173 tuple = tuple->next.unshared)
2174 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2175 }
2176
2177 /* ... and the same for the skew buckets, if any */
2178 for (i = 0; i < hashtable->nSkewBuckets; i++)
2179 {
2180 int j = hashtable->skewBucketNums[i];
2181 HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2182
2183 for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2184 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2185 }
2186}
2187
2188
2189void
2190ExecReScanHash(HashState *node)
2191{
2192 /*
2193 * if chgParam of subnode is not null then plan will be re-scanned by
2194 * first ExecProcNode.
2195 */
2196 if (node->ps.lefttree->chgParam == NULL)
2197 ExecReScan(node->ps.lefttree);
2198}
2199
2200
2201/*
2202 * ExecHashBuildSkewHash
2203 *
2204 * Set up for skew optimization if we can identify the most common values
2205 * (MCVs) of the outer relation's join key. We make a skew hash bucket
2206 * for the hash value of each MCV, up to the number of slots allowed
2207 * based on available memory.
2208 */
2209static void
2210ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
2211{
2212 HeapTupleData *statsTuple;
2213 AttStatsSlot sslot;
2214
2215 /* Do nothing if planner didn't identify the outer relation's join key */
2216 if (!OidIsValid(node->skewTable))
2217 return;
2218 /* Also, do nothing if we don't have room for at least one skew bucket */
2219 if (mcvsToUse <= 0)
2220 return;
2221
2222 /*
2223 * Try to find the MCV statistics for the outer relation's join key.
2224 */
2225 statsTuple = SearchSysCache3(STATRELATTINH,
2226 ObjectIdGetDatum(node->skewTable),
2227 Int16GetDatum(node->skewColumn),
2228 BoolGetDatum(node->skewInherit));
2229 if (!HeapTupleIsValid(statsTuple))
2230 return;
2231
2232 if (get_attstatsslot(&sslot, statsTuple,
2233 STATISTIC_KIND_MCV, InvalidOid,
2234 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
2235 {
2236 double frac;
2237 int nbuckets;
2238 FmgrInfo *hashfunctions;
2239 int i;
2240
2241 if (mcvsToUse > sslot.nvalues)
2242 mcvsToUse = sslot.nvalues;
2243
2244 /*
2245 * Calculate the expected fraction of outer relation that will
2246 * participate in the skew optimization. If this isn't at least
2247 * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2248 */
2249 frac = 0;
2250 for (i = 0; i < mcvsToUse; i++)
2251 frac += sslot.numbers[i];
2252 if (frac < SKEW_MIN_OUTER_FRACTION)
2253 {
2254 free_attstatsslot(&sslot);
2255 ReleaseSysCache(statsTuple);
2256 return;
2257 }
2258
2259 /*
2260 * Okay, set up the skew hashtable.
2261 *
2262 * skewBucket[] is an open addressing hashtable with a power of 2 size
2263 * that is greater than the number of MCV values. (This ensures there
2264 * will be at least one null entry, so searches will always
2265 * terminate.)
2266 *
2267 * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2268 * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2269 * since we limit pg_statistic entries to much less than that.
2270 */
2271 nbuckets = 2;
2272 while (nbuckets <= mcvsToUse)
2273 nbuckets <<= 1;
2274 /* use two more bits just to help avoid collisions */
2275 nbuckets <<= 2;
2276
2277 hashtable->skewEnabled = true;
2278 hashtable->skewBucketLen = nbuckets;
2279
2280 /*
2281 * We allocate the bucket memory in the hashtable's batch context. It
2282 * is only needed during the first batch, and this ensures it will be
2283 * automatically removed once the first batch is done.
2284 */
2285 hashtable->skewBucket = (HashSkewBucket **)
2286 MemoryContextAllocZero(hashtable->batchCxt,
2287 nbuckets * sizeof(HashSkewBucket *));
2288 hashtable->skewBucketNums = (int *)
2289 MemoryContextAllocZero(hashtable->batchCxt,
2290 mcvsToUse * sizeof(int));
2291
2292 hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2293 + mcvsToUse * sizeof(int);
2294 hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2295 + mcvsToUse * sizeof(int);
2296 if (hashtable->spaceUsed > hashtable->spacePeak)
2297 hashtable->spacePeak = hashtable->spaceUsed;
2298
2299 /*
2300 * Create a skew bucket for each MCV hash value.
2301 *
2302 * Note: it is very important that we create the buckets in order of
2303 * decreasing MCV frequency. If we have to remove some buckets, they
2304 * must be removed in reverse order of creation (see notes in
2305 * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2306 * be removed first.
2307 */
2308 hashfunctions = hashtable->outer_hashfunctions;
2309
2310 for (i = 0; i < mcvsToUse; i++)
2311 {
2312 uint32 hashvalue;
2313 int bucket;
2314
2315 hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
2316 hashtable->collations[0],
2317 sslot.values[i]));
2318
2319 /*
2320 * While we have not hit a hole in the hashtable and have not hit
2321 * the desired bucket, we have collided with some previous hash
2322 * value, so try the next bucket location. NB: this code must
2323 * match ExecHashGetSkewBucket.
2324 */
2325 bucket = hashvalue & (nbuckets - 1);
2326 while (hashtable->skewBucket[bucket] != NULL &&
2327 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2328 bucket = (bucket + 1) & (nbuckets - 1);
2329
2330 /*
2331 * If we found an existing bucket with the same hashvalue, leave
2332 * it alone. It's okay for two MCVs to share a hashvalue.
2333 */
2334 if (hashtable->skewBucket[bucket] != NULL)
2335 continue;
2336
2337 /* Okay, create a new skew bucket for this hashvalue. */
2338 hashtable->skewBucket[bucket] = (HashSkewBucket *)
2339 MemoryContextAlloc(hashtable->batchCxt,
2340 sizeof(HashSkewBucket));
2341 hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2342 hashtable->skewBucket[bucket]->tuples = NULL;
2343 hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2344 hashtable->nSkewBuckets++;
2345 hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2346 hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2347 if (hashtable->spaceUsed > hashtable->spacePeak)
2348 hashtable->spacePeak = hashtable->spaceUsed;
2349 }
2350
2351 free_attstatsslot(&sslot);
2352 }
2353
2354 ReleaseSysCache(statsTuple);
2355}
2356
2357/*
2358 * ExecHashGetSkewBucket
2359 *
2360 * Returns the index of the skew bucket for this hashvalue,
2361 * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2362 * associated with any active skew bucket.
2363 */
2364int
2365ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
2366{
2367 int bucket;
2368
2369 /*
2370 * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2371 * particular, this happens after the initial batch is done).
2372 */
2373 if (!hashtable->skewEnabled)
2374 return INVALID_SKEW_BUCKET_NO;
2375
2376 /*
2377 * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2378 */
2379 bucket = hashvalue & (hashtable->skewBucketLen - 1);
2380
2381 /*
2382 * While we have not hit a hole in the hashtable and have not hit the
2383 * desired bucket, we have collided with some other hash value, so try the
2384 * next bucket location.
2385 */
2386 while (hashtable->skewBucket[bucket] != NULL &&
2387 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2388 bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2389
2390 /*
2391 * Found the desired bucket?
2392 */
2393 if (hashtable->skewBucket[bucket] != NULL)
2394 return bucket;
2395
2396 /*
2397 * There must not be any hashtable entry for this hash value.
2398 */
2399 return INVALID_SKEW_BUCKET_NO;
2400}
2401
2402/*
2403 * ExecHashSkewTableInsert
2404 *
2405 * Insert a tuple into the skew hashtable.
2406 *
2407 * This should generally match up with the current-batch case in
2408 * ExecHashTableInsert.
2409 */
2410static void
2411ExecHashSkewTableInsert(HashJoinTable hashtable,
2412 TupleTableSlot *slot,
2413 uint32 hashvalue,
2414 int bucketNumber)
2415{
2416 bool shouldFree;
2417 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2418 HashJoinTuple hashTuple;
2419 int hashTupleSize;
2420
2421 /* Create the HashJoinTuple */
2422 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2423 hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2424 hashTupleSize);
2425 hashTuple->hashvalue = hashvalue;
2426 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2427 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
2428
2429 /* Push it onto the front of the skew bucket's list */
2430 hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2431 hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2432 Assert(hashTuple != hashTuple->next.unshared);
2433
2434 /* Account for space used, and back off if we've used too much */
2435 hashtable->spaceUsed += hashTupleSize;
2436 hashtable->spaceUsedSkew += hashTupleSize;
2437 if (hashtable->spaceUsed > hashtable->spacePeak)
2438 hashtable->spacePeak = hashtable->spaceUsed;
2439 while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2440 ExecHashRemoveNextSkewBucket(hashtable);
2441
2442 /* Check we are not over the total spaceAllowed, either */
2443 if (hashtable->spaceUsed > hashtable->spaceAllowed)
2444 ExecHashIncreaseNumBatches(hashtable);
2445
2446 if (shouldFree)
2447 heap_free_minimal_tuple(tuple);
2448}
2449
2450/*
2451 * ExecHashRemoveNextSkewBucket
2452 *
2453 * Remove the least valuable skew bucket by pushing its tuples into
2454 * the main hash table.
2455 */
2456static void
2457ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
2458{
2459 int bucketToRemove;
2460 HashSkewBucket *bucket;
2461 uint32 hashvalue;
2462 int bucketno;
2463 int batchno;
2464 HashJoinTuple hashTuple;
2465
2466 /* Locate the bucket to remove */
2467 bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2468 bucket = hashtable->skewBucket[bucketToRemove];
2469
2470 /*
2471 * Calculate which bucket and batch the tuples belong to in the main
2472 * hashtable. They all have the same hash value, so it's the same for all
2473 * of them. Also note that it's not possible for nbatch to increase while
2474 * we are processing the tuples.
2475 */
2476 hashvalue = bucket->hashvalue;
2477 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2478
2479 /* Process all tuples in the bucket */
2480 hashTuple = bucket->tuples;
2481 while (hashTuple != NULL)
2482 {
2483 HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2484 MinimalTuple tuple;
2485 Size tupleSize;
2486
2487 /*
2488 * This code must agree with ExecHashTableInsert. We do not use
2489 * ExecHashTableInsert directly as ExecHashTableInsert expects a
2490 * TupleTableSlot while we already have HashJoinTuples.
2491 */
2492 tuple = HJTUPLE_MINTUPLE(hashTuple);
2493 tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2494
2495 /* Decide whether to put the tuple in the hash table or a temp file */
2496 if (batchno == hashtable->curbatch)
2497 {
2498 /* Move the tuple to the main hash table */
2499 HashJoinTuple copyTuple;
2500
2501 /*
2502 * We must copy the tuple into the dense storage, else it will not
2503 * be found by, eg, ExecHashIncreaseNumBatches.
2504 */
2505 copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2506 memcpy(copyTuple, hashTuple, tupleSize);
2507 pfree(hashTuple);
2508
2509 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2510 hashtable->buckets.unshared[bucketno] = copyTuple;
2511
2512 /* We have reduced skew space, but overall space doesn't change */
2513 hashtable->spaceUsedSkew -= tupleSize;
2514 }
2515 else
2516 {
2517 /* Put the tuple into a temp file for later batches */
2518 Assert(batchno > hashtable->curbatch);
2519 ExecHashJoinSaveTuple(tuple, hashvalue,
2520 &hashtable->innerBatchFile[batchno]);
2521 pfree(hashTuple);
2522 hashtable->spaceUsed -= tupleSize;
2523 hashtable->spaceUsedSkew -= tupleSize;
2524 }
2525
2526 hashTuple = nextHashTuple;
2527
2528 /* allow this loop to be cancellable */
2529 CHECK_FOR_INTERRUPTS();
2530 }
2531
2532 /*
2533 * Free the bucket struct itself and reset the hashtable entry to NULL.
2534 *
2535 * NOTE: this is not nearly as simple as it looks on the surface, because
2536 * of the possibility of collisions in the hashtable. Suppose that hash
2537 * values A and B collide at a particular hashtable entry, and that A was
2538 * entered first so B gets shifted to a different table entry. If we were
2539 * to remove A first then ExecHashGetSkewBucket would mistakenly start
2540 * reporting that B is not in the hashtable, because it would hit the NULL
2541 * before finding B. However, we always remove entries in the reverse
2542 * order of creation, so this failure cannot happen.
2543 */
2544 hashtable->skewBucket[bucketToRemove] = NULL;
2545 hashtable->nSkewBuckets--;
2546 pfree(bucket);
2547 hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2548 hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2549
2550 /*
2551 * If we have removed all skew buckets then give up on skew optimization.
2552 * Release the arrays since they aren't useful any more.
2553 */
2554 if (hashtable->nSkewBuckets == 0)
2555 {
2556 hashtable->skewEnabled = false;
2557 pfree(hashtable->skewBucket);
2558 pfree(hashtable->skewBucketNums);
2559 hashtable->skewBucket = NULL;
2560 hashtable->skewBucketNums = NULL;
2561 hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2562 hashtable->spaceUsedSkew = 0;
2563 }
2564}
2565
2566/*
2567 * Reserve space in the DSM segment for instrumentation data.
2568 */
2569void
2570ExecHashEstimate(HashState *node, ParallelContext *pcxt)
2571{
2572 size_t size;
2573
2574 /* don't need this if not instrumenting or no workers */
2575 if (!node->ps.instrument || pcxt->nworkers == 0)
2576 return;
2577
2578 size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2579 size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2580 shm_toc_estimate_chunk(&pcxt->estimator, size);
2581 shm_toc_estimate_keys(&pcxt->estimator, 1);
2582}
2583
2584/*
2585 * Set up a space in the DSM for all workers to record instrumentation data
2586 * about their hash table.
2587 */
2588void
2589ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
2590{
2591 size_t size;
2592
2593 /* don't need this if not instrumenting or no workers */
2594 if (!node->ps.instrument || pcxt->nworkers == 0)
2595 return;
2596
2597 size = offsetof(SharedHashInfo, hinstrument) +
2598 pcxt->nworkers * sizeof(HashInstrumentation);
2599 node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
2600 memset(node->shared_info, 0, size);
2601 node->shared_info->num_workers = pcxt->nworkers;
2602 shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2603 node->shared_info);
2604}
2605
2606/*
2607 * Locate the DSM space for hash table instrumentation data that we'll write
2608 * to at shutdown time.
2609 */
2610void
2611ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
2612{
2613 SharedHashInfo *shared_info;
2614
2615 /* don't need this if not instrumenting */
2616 if (!node->ps.instrument)
2617 return;
2618
2619 shared_info = (SharedHashInfo *)
2620 shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2621 node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2622}
2623
2624/*
2625 * Copy instrumentation data from this worker's hash table (if it built one)
2626 * to DSM memory so the leader can retrieve it. This must be done in an
2627 * ExecShutdownHash() rather than ExecEndHash() because the latter runs after
2628 * we've detached from the DSM segment.
2629 */
2630void
2631ExecShutdownHash(HashState *node)
2632{
2633 if (node->hinstrument && node->hashtable)
2634 ExecHashGetInstrumentation(node->hinstrument, node->hashtable);
2635}
2636
2637/*
2638 * Retrieve instrumentation data from workers before the DSM segment is
2639 * detached, so that EXPLAIN can access it.
2640 */
2641void
2642ExecHashRetrieveInstrumentation(HashState *node)
2643{
2644 SharedHashInfo *shared_info = node->shared_info;
2645 size_t size;
2646
2647 if (shared_info == NULL)
2648 return;
2649
2650 /* Replace node->shared_info with a copy in backend-local memory. */
2651 size = offsetof(SharedHashInfo, hinstrument) +
2652 shared_info->num_workers * sizeof(HashInstrumentation);
2653 node->shared_info = palloc(size);
2654 memcpy(node->shared_info, shared_info, size);
2655}
2656
2657/*
2658 * Copy the instrumentation data from 'hashtable' into a HashInstrumentation
2659 * struct.
2660 */
2661void
2662ExecHashGetInstrumentation(HashInstrumentation *instrument,
2663 HashJoinTable hashtable)
2664{
2665 instrument->nbuckets = hashtable->nbuckets;
2666 instrument->nbuckets_original = hashtable->nbuckets_original;
2667 instrument->nbatch = hashtable->nbatch;
2668 instrument->nbatch_original = hashtable->nbatch_original;
2669 instrument->space_peak = hashtable->spacePeak;
2670}
2671
2672/*
2673 * Allocate 'size' bytes from the currently active HashMemoryChunk
2674 */
2675static void *
2676dense_alloc(HashJoinTable hashtable, Size size)
2677{
2678 HashMemoryChunk newChunk;
2679 char *ptr;
2680
2681 /* just in case the size is not already aligned properly */
2682 size = MAXALIGN(size);
2683
2684 /*
2685 * If tuple size is larger than threshold, allocate a separate chunk.
2686 */
2687 if (size > HASH_CHUNK_THRESHOLD)
2688 {
2689 /* allocate new chunk and put it at the beginning of the list */
2690 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2691 HASH_CHUNK_HEADER_SIZE + size);
2692 newChunk->maxlen = size;
2693 newChunk->used = size;
2694 newChunk->ntuples = 1;
2695
2696 /*
2697 * Add this chunk to the list after the first existing chunk, so that
2698 * we don't lose the remaining space in the "current" chunk.
2699 */
2700 if (hashtable->chunks != NULL)
2701 {
2702 newChunk->next = hashtable->chunks->next;
2703 hashtable->chunks->next.unshared = newChunk;
2704 }
2705 else
2706 {
2707 newChunk->next.unshared = hashtable->chunks;
2708 hashtable->chunks = newChunk;
2709 }
2710
2711 return HASH_CHUNK_DATA(newChunk);
2712 }
2713
2714 /*
2715 * See if we have enough space for it in the current chunk (if any). If
2716 * not, allocate a fresh chunk.
2717 */
2718 if ((hashtable->chunks == NULL) ||
2719 (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2720 {
2721 /* allocate new chunk and put it at the beginning of the list */
2722 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2723 HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
2724
2725 newChunk->maxlen = HASH_CHUNK_SIZE;
2726 newChunk->used = size;
2727 newChunk->ntuples = 1;
2728
2729 newChunk->next.unshared = hashtable->chunks;
2730 hashtable->chunks = newChunk;
2731
2732 return HASH_CHUNK_DATA(newChunk);
2733 }
2734
2735 /* There is enough space in the current chunk, let's add the tuple */
2736 ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2737 hashtable->chunks->used += size;
2738 hashtable->chunks->ntuples += 1;
2739
2740 /* return pointer to the start of the tuple memory */
2741 return ptr;
2742}
2743
2744/*
2745 * Allocate space for a tuple in shared dense storage. This is equivalent to
2746 * dense_alloc but for Parallel Hash using shared memory.
2747 *
2748 * While loading a tuple into shared memory, we might run out of memory and
2749 * decide to repartition, or determine that the load factor is too high and
2750 * decide to expand the bucket array, or discover that another participant has
2751 * commanded us to help do that. Return NULL if number of buckets or batches
2752 * has changed, indicating that the caller must retry (considering the
2753 * possibility that the tuple no longer belongs in the same batch).
2754 */
2755static HashJoinTuple
2756ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
2757 dsa_pointer *shared)
2758{
2759 ParallelHashJoinState *pstate = hashtable->parallel_state;
2760 dsa_pointer chunk_shared;
2761 HashMemoryChunk chunk;
2762 Size chunk_size;
2763 HashJoinTuple result;
2764 int curbatch = hashtable->curbatch;
2765
2766 size = MAXALIGN(size);
2767
2768 /*
2769 * Fast path: if there is enough space in this backend's current chunk,
2770 * then we can allocate without any locking.
2771 */
2772 chunk = hashtable->current_chunk;
2773 if (chunk != NULL &&
2774 size <= HASH_CHUNK_THRESHOLD &&
2775 chunk->maxlen - chunk->used >= size)
2776 {
2777
2778 chunk_shared = hashtable->current_chunk_shared;
2779 Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2780 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2781 result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2782 chunk->used += size;
2783
2784 Assert(chunk->used <= chunk->maxlen);
2785 Assert(result == dsa_get_address(hashtable->area, *shared));
2786
2787 return result;
2788 }
2789
2790 /* Slow path: try to allocate a new chunk. */
2791 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2792
2793 /*
2794 * Check if we need to help increase the number of buckets or batches.
2795 */
2796 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2797 pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2798 {
2799 ParallelHashGrowth growth = pstate->growth;
2800
2801 hashtable->current_chunk = NULL;
2802 LWLockRelease(&pstate->lock);
2803
2804 /* Another participant has commanded us to help grow. */
2805 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2806 ExecParallelHashIncreaseNumBatches(hashtable);
2807 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2808 ExecParallelHashIncreaseNumBuckets(hashtable);
2809
2810 /* The caller must retry. */
2811 return NULL;
2812 }
2813
2814 /* Oversized tuples get their own chunk. */
2815 if (size > HASH_CHUNK_THRESHOLD)
2816 chunk_size = size + HASH_CHUNK_HEADER_SIZE;
2817 else
2818 chunk_size = HASH_CHUNK_SIZE;
2819
2820 /* Check if it's time to grow batches or buckets. */
2821 if (pstate->growth != PHJ_GROWTH_DISABLED)
2822 {
2823 Assert(curbatch == 0);
2824 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
2825
2826 /*
2827 * Check if our space limit would be exceeded. To avoid choking on
2828 * very large tuples or very low work_mem setting, we'll always allow
2829 * each backend to allocate at least one chunk.
2830 */
2831 if (hashtable->batches[0].at_least_one_chunk &&
2832 hashtable->batches[0].shared->size +
2833 chunk_size > pstate->space_allowed)
2834 {
2835 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
2836 hashtable->batches[0].shared->space_exhausted = true;
2837 LWLockRelease(&pstate->lock);
2838
2839 return NULL;
2840 }
2841
2842 /* Check if our load factor limit would be exceeded. */
2843 if (hashtable->nbatch == 1)
2844 {
2845 hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
2846 hashtable->batches[0].ntuples = 0;
2847 /* Guard against integer overflow and alloc size overflow */
2848 if (hashtable->batches[0].shared->ntuples + 1 >
2849 hashtable->nbuckets * NTUP_PER_BUCKET &&
2850 hashtable->nbuckets < (INT_MAX / 2) &&
2851 hashtable->nbuckets * 2 <=
2852 MaxAllocSize / sizeof(dsa_pointer_atomic))
2853 {
2854 pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
2855 LWLockRelease(&pstate->lock);
2856
2857 return NULL;
2858 }
2859 }
2860 }
2861
2862 /* We are cleared to allocate a new chunk. */
2863 chunk_shared = dsa_allocate(hashtable->area, chunk_size);
2864 hashtable->batches[curbatch].shared->size += chunk_size;
2865 hashtable->batches[curbatch].at_least_one_chunk = true;
2866
2867 /* Set up the chunk. */
2868 chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
2869 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
2870 chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
2871 chunk->used = size;
2872
2873 /*
2874 * Push it onto the list of chunks, so that it can be found if we need to
2875 * increase the number of buckets or batches (batch 0 only) and later for
2876 * freeing the memory (all batches).
2877 */
2878 chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
2879 hashtable->batches[curbatch].shared->chunks = chunk_shared;
2880
2881 if (size <= HASH_CHUNK_THRESHOLD)
2882 {
2883 /*
2884 * Make this the current chunk so that we can use the fast path to
2885 * fill the rest of it up in future calls.
2886 */
2887 hashtable->current_chunk = chunk;
2888 hashtable->current_chunk_shared = chunk_shared;
2889 }
2890 LWLockRelease(&pstate->lock);
2891
2892 Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
2893 result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
2894
2895 return result;
2896}
2897
2898/*
2899 * One backend needs to set up the shared batch state including tuplestores.
2900 * Other backends will ensure they have correctly configured accessors by
2901 * called ExecParallelHashEnsureBatchAccessors().
2902 */
2903static void
2904ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
2905{
2906 ParallelHashJoinState *pstate = hashtable->parallel_state;
2907 ParallelHashJoinBatch *batches;
2908 MemoryContext oldcxt;
2909 int i;
2910
2911 Assert(hashtable->batches == NULL);
2912
2913 /* Allocate space. */
2914 pstate->batches =
2915 dsa_allocate0(hashtable->area,
2916 EstimateParallelHashJoinBatch(hashtable) * nbatch);
2917 pstate->nbatch = nbatch;
2918 batches = dsa_get_address(hashtable->area, pstate->batches);
2919
2920 /* Use hash join memory context. */
2921 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
2922
2923 /* Allocate this backend's accessor array. */
2924 hashtable->nbatch = nbatch;
2925 hashtable->batches = (ParallelHashJoinBatchAccessor *)
2926 palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
2927
2928 /* Set up the shared state, tuplestores and backend-local accessors. */
2929 for (i = 0; i < hashtable->nbatch; ++i)
2930 {
2931 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
2932 ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
2933 char name[MAXPGPATH];
2934
2935 /*
2936 * All members of shared were zero-initialized. We just need to set
2937 * up the Barrier.
2938 */
2939 BarrierInit(&shared->batch_barrier, 0);
2940 if (i == 0)
2941 {
2942 /* Batch 0 doesn't need to be loaded. */
2943 BarrierAttach(&shared->batch_barrier);
2944 while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING)
2945 BarrierArriveAndWait(&shared->batch_barrier, 0);
2946 BarrierDetach(&shared->batch_barrier);
2947 }
2948
2949 /* Initialize accessor state. All members were zero-initialized. */
2950 accessor->shared = shared;
2951
2952 /* Initialize the shared tuplestores. */
2953 snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
2954 accessor->inner_tuples =
2955 sts_initialize(ParallelHashJoinBatchInner(shared),
2956 pstate->nparticipants,
2957 ParallelWorkerNumber + 1,
2958 sizeof(uint32),
2959 SHARED_TUPLESTORE_SINGLE_PASS,
2960 &pstate->fileset,
2961 name);
2962 snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
2963 accessor->outer_tuples =
2964 sts_initialize(ParallelHashJoinBatchOuter(shared,
2965 pstate->nparticipants),
2966 pstate->nparticipants,
2967 ParallelWorkerNumber + 1,
2968 sizeof(uint32),
2969 SHARED_TUPLESTORE_SINGLE_PASS,
2970 &pstate->fileset,
2971 name);
2972 }
2973
2974 MemoryContextSwitchTo(oldcxt);
2975}
2976
2977/*
2978 * Free the current set of ParallelHashJoinBatchAccessor objects.
2979 */
2980static void
2981ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
2982{
2983 int i;
2984
2985 for (i = 0; i < hashtable->nbatch; ++i)
2986 {
2987 /* Make sure no files are left open. */
2988 sts_end_write(hashtable->batches[i].inner_tuples);
2989 sts_end_write(hashtable->batches[i].outer_tuples);
2990 sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
2991 sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
2992 }
2993 pfree(hashtable->batches);
2994 hashtable->batches = NULL;
2995}
2996
2997/*
2998 * Make sure this backend has up-to-date accessors for the current set of
2999 * batches.
3000 */
3001static void
3002ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
3003{
3004 ParallelHashJoinState *pstate = hashtable->parallel_state;
3005 ParallelHashJoinBatch *batches;
3006 MemoryContext oldcxt;
3007 int i;
3008
3009 if (hashtable->batches != NULL)
3010 {
3011 if (hashtable->nbatch == pstate->nbatch)
3012 return;
3013 ExecParallelHashCloseBatchAccessors(hashtable);
3014 }
3015
3016 /*
3017 * It's possible for a backend to start up very late so that the whole
3018 * join is finished and the shm state for tracking batches has already
3019 * been freed by ExecHashTableDetach(). In that case we'll just leave
3020 * hashtable->batches as NULL so that ExecParallelHashJoinNewBatch() gives
3021 * up early.
3022 */
3023 if (!DsaPointerIsValid(pstate->batches))
3024 return;
3025
3026 /* Use hash join memory context. */
3027 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
3028
3029 /* Allocate this backend's accessor array. */
3030 hashtable->nbatch = pstate->nbatch;
3031 hashtable->batches = (ParallelHashJoinBatchAccessor *)
3032 palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
3033
3034 /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3035 batches = (ParallelHashJoinBatch *)
3036 dsa_get_address(hashtable->area, pstate->batches);
3037
3038 /* Set up the accessor array and attach to the tuplestores. */
3039 for (i = 0; i < hashtable->nbatch; ++i)
3040 {
3041 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3042 ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3043
3044 accessor->shared = shared;
3045 accessor->preallocated = 0;
3046 accessor->done = false;
3047 accessor->inner_tuples =
3048 sts_attach(ParallelHashJoinBatchInner(shared),
3049 ParallelWorkerNumber + 1,
3050 &pstate->fileset);
3051 accessor->outer_tuples =
3052 sts_attach(ParallelHashJoinBatchOuter(shared,
3053 pstate->nparticipants),
3054 ParallelWorkerNumber + 1,
3055 &pstate->fileset);
3056 }
3057
3058 MemoryContextSwitchTo(oldcxt);
3059}
3060
3061/*
3062 * Allocate an empty shared memory hash table for a given batch.
3063 */
3064void
3065ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
3066{
3067 ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3068 dsa_pointer_atomic *buckets;
3069 int nbuckets = hashtable->parallel_state->nbuckets;
3070 int i;
3071
3072 batch->buckets =
3073 dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3074 buckets = (dsa_pointer_atomic *)
3075 dsa_get_address(hashtable->area, batch->buckets);
3076 for (i = 0; i < nbuckets; ++i)
3077 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
3078}
3079
3080/*
3081 * If we are currently attached to a shared hash join batch, detach. If we
3082 * are last to detach, clean up.
3083 */
3084void
3085ExecHashTableDetachBatch(HashJoinTable hashtable)
3086{
3087 if (hashtable->parallel_state != NULL &&
3088 hashtable->curbatch >= 0)
3089 {
3090 int curbatch = hashtable->curbatch;
3091 ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3092
3093 /* Make sure any temporary files are closed. */
3094 sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3095 sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3096
3097 /* Detach from the batch we were last working on. */
3098 if (BarrierArriveAndDetach(&batch->batch_barrier))
3099 {
3100 /*
3101 * Technically we shouldn't access the barrier because we're no
3102 * longer attached, but since there is no way it's moving after
3103 * this point it seems safe to make the following assertion.
3104 */
3105 Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);
3106
3107 /* Free shared chunks and buckets. */
3108 while (DsaPointerIsValid(batch->chunks))
3109 {
3110 HashMemoryChunk chunk =
3111 dsa_get_address(hashtable->area, batch->chunks);
3112 dsa_pointer next = chunk->next.shared;
3113
3114 dsa_free(hashtable->area, batch->chunks);
3115 batch->chunks = next;
3116 }
3117 if (DsaPointerIsValid(batch->buckets))
3118 {
3119 dsa_free(hashtable->area, batch->buckets);
3120 batch->buckets = InvalidDsaPointer;
3121 }
3122 }
3123
3124 /*
3125 * Track the largest batch we've been attached to. Though each
3126 * backend might see a different subset of batches, explain.c will
3127 * scan the results from all backends to find the largest value.
3128 */
3129 hashtable->spacePeak =
3130 Max(hashtable->spacePeak,
3131 batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3132
3133 /* Remember that we are not attached to a batch. */
3134 hashtable->curbatch = -1;
3135 }
3136}
3137
3138/*
3139 * Detach from all shared resources. If we are last to detach, clean up.
3140 */
3141void
3142ExecHashTableDetach(HashJoinTable hashtable)
3143{
3144 if (hashtable->parallel_state)
3145 {
3146 ParallelHashJoinState *pstate = hashtable->parallel_state;
3147 int i;
3148
3149 /* Make sure any temporary files are closed. */
3150 if (hashtable->batches)
3151 {
3152 for (i = 0; i < hashtable->nbatch; ++i)
3153 {
3154 sts_end_write(hashtable->batches[i].inner_tuples);
3155 sts_end_write(hashtable->batches[i].outer_tuples);
3156 sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3157 sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3158 }
3159 }
3160
3161 /* If we're last to detach, clean up shared memory. */
3162 if (BarrierDetach(&pstate->build_barrier))
3163 {
3164 if (DsaPointerIsValid(pstate->batches))
3165 {
3166 dsa_free(hashtable->area, pstate->batches);
3167 pstate->batches = InvalidDsaPointer;
3168 }
3169 }
3170
3171 hashtable->parallel_state = NULL;
3172 }
3173}
3174
3175/*
3176 * Get the first tuple in a given bucket identified by number.
3177 */
3178static inline HashJoinTuple
3179ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
3180{
3181 HashJoinTuple tuple;
3182 dsa_pointer p;
3183
3184 Assert(hashtable->parallel_state);
3185 p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3186 tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3187
3188 return tuple;
3189}
3190
3191/*
3192 * Get the next tuple in the same bucket as 'tuple'.
3193 */
3194static inline HashJoinTuple
3195ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
3196{
3197 HashJoinTuple next;
3198
3199 Assert(hashtable->parallel_state);
3200 next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3201
3202 return next;
3203}
3204
3205/*
3206 * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3207 */
3208static inline void
3209ExecParallelHashPushTuple(dsa_pointer_atomic *head,
3210 HashJoinTuple tuple,
3211 dsa_pointer tuple_shared)
3212{
3213 for (;;)
3214 {
3215 tuple->next.shared = dsa_pointer_atomic_read(head);
3216 if (dsa_pointer_atomic_compare_exchange(head,
3217 &tuple->next.shared,
3218 tuple_shared))
3219 break;
3220 }
3221}
3222
3223/*
3224 * Prepare to work on a given batch.
3225 */
3226void
3227ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
3228{
3229 Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3230
3231 hashtable->curbatch = batchno;
3232 hashtable->buckets.shared = (dsa_pointer_atomic *)
3233 dsa_get_address(hashtable->area,
3234 hashtable->batches[batchno].shared->buckets);
3235 hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3236 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3237 hashtable->current_chunk = NULL;
3238 hashtable->current_chunk_shared = InvalidDsaPointer;
3239 hashtable->batches[batchno].at_least_one_chunk = false;
3240}
3241
3242/*
3243 * Take the next available chunk from the queue of chunks being worked on in
3244 * parallel. Return NULL if there are none left. Otherwise return a pointer
3245 * to the chunk, and set *shared to the DSA pointer to the chunk.
3246 */
3247static HashMemoryChunk
3248ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
3249{
3250 ParallelHashJoinState *pstate = hashtable->parallel_state;
3251 HashMemoryChunk chunk;
3252
3253 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3254 if (DsaPointerIsValid(pstate->chunk_work_queue))
3255 {
3256 *shared = pstate->chunk_work_queue;
3257 chunk = (HashMemoryChunk)
3258 dsa_get_address(hashtable->area, *shared);
3259 pstate->chunk_work_queue = chunk->next.shared;
3260 }
3261 else
3262 chunk = NULL;
3263 LWLockRelease(&pstate->lock);
3264
3265 return chunk;
3266}
3267
3268/*
3269 * Increase the space preallocated in this backend for a given inner batch by
3270 * at least a given amount. This allows us to track whether a given batch
3271 * would fit in memory when loaded back in. Also increase the number of
3272 * batches or buckets if required.
3273 *
3274 * This maintains a running estimation of how much space will be taken when we
3275 * load the batch back into memory by simulating the way chunks will be handed
3276 * out to workers. It's not perfectly accurate because the tuples will be
3277 * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3278 * it should be pretty close. It tends to overestimate by a fraction of a
3279 * chunk per worker since all workers gang up to preallocate during hashing,
3280 * but workers tend to reload batches alone if there are enough to go around,
3281 * leaving fewer partially filled chunks. This effect is bounded by
3282 * nparticipants.
3283 *
3284 * Return false if the number of batches or buckets has changed, and the
3285 * caller should reconsider which batch a given tuple now belongs in and call
3286 * again.
3287 */
3288static bool
3289ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3290{
3291 ParallelHashJoinState *pstate = hashtable->parallel_state;
3292 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3293 size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
3294
3295 Assert(batchno > 0);
3296 Assert(batchno < hashtable->nbatch);
3297 Assert(size == MAXALIGN(size));
3298
3299 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3300
3301 /* Has another participant commanded us to help grow? */
3302 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3303 pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3304 {
3305 ParallelHashGrowth growth = pstate->growth;
3306
3307 LWLockRelease(&pstate->lock);
3308 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3309 ExecParallelHashIncreaseNumBatches(hashtable);
3310 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3311 ExecParallelHashIncreaseNumBuckets(hashtable);
3312
3313 return false;
3314 }
3315
3316 if (pstate->growth != PHJ_GROWTH_DISABLED &&
3317 batch->at_least_one_chunk &&
3318 (batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
3319 > pstate->space_allowed))
3320 {
3321 /*
3322 * We have determined that this batch would exceed the space budget if
3323 * loaded into memory. Command all participants to help repartition.
3324 */
3325 batch->shared->space_exhausted = true;
3326 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3327 LWLockRelease(&pstate->lock);
3328
3329 return false;
3330 }
3331
3332 batch->at_least_one_chunk = true;
3333 batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
3334 batch->preallocated = want;
3335 LWLockRelease(&pstate->lock);
3336
3337 return true;
3338}
3339