| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeIndexscan.c |
| 4 | * Routines to support indexed scans of relations |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/executor/nodeIndexscan.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * ExecIndexScan scans a relation using an index |
| 18 | * IndexNext retrieve next tuple using index |
| 19 | * IndexNextWithReorder same, but recheck ORDER BY expressions |
| 20 | * ExecInitIndexScan creates and initializes state info. |
| 21 | * ExecReScanIndexScan rescans the indexed relation. |
| 22 | * ExecEndIndexScan releases all storage. |
| 23 | * ExecIndexMarkPos marks scan position. |
| 24 | * ExecIndexRestrPos restores scan position. |
| 25 | * ExecIndexScanEstimate estimates DSM space needed for parallel index scan |
| 26 | * ExecIndexScanInitializeDSM initialize DSM for parallel indexscan |
| 27 | * ExecIndexScanReInitializeDSM reinitialize DSM for fresh scan |
| 28 | * ExecIndexScanInitializeWorker attach to DSM info in parallel worker |
| 29 | */ |
| 30 | #include "postgres.h" |
| 31 | |
| 32 | #include "access/nbtree.h" |
| 33 | #include "access/relscan.h" |
| 34 | #include "access/tableam.h" |
| 35 | #include "catalog/pg_am.h" |
| 36 | #include "executor/execdebug.h" |
| 37 | #include "executor/nodeIndexscan.h" |
| 38 | #include "lib/pairingheap.h" |
| 39 | #include "miscadmin.h" |
| 40 | #include "nodes/nodeFuncs.h" |
| 41 | #include "utils/array.h" |
| 42 | #include "utils/datum.h" |
| 43 | #include "utils/lsyscache.h" |
| 44 | #include "utils/memutils.h" |
| 45 | #include "utils/rel.h" |
| 46 | |
| 47 | /* |
| 48 | * When an ordering operator is used, tuples fetched from the index that |
| 49 | * need to be reordered are queued in a pairing heap, as ReorderTuples. |
| 50 | */ |
| 51 | typedef struct |
| 52 | { |
| 53 | pairingheap_node ph_node; |
| 54 | HeapTuple htup; |
| 55 | Datum *orderbyvals; |
| 56 | bool *orderbynulls; |
| 57 | } ReorderTuple; |
| 58 | |
| 59 | static TupleTableSlot *IndexNext(IndexScanState *node); |
| 60 | static TupleTableSlot *IndexNextWithReorder(IndexScanState *node); |
| 61 | static void EvalOrderByExpressions(IndexScanState *node, ExprContext *econtext); |
| 62 | static bool IndexRecheck(IndexScanState *node, TupleTableSlot *slot); |
| 63 | static int cmp_orderbyvals(const Datum *adist, const bool *anulls, |
| 64 | const Datum *bdist, const bool *bnulls, |
| 65 | IndexScanState *node); |
| 66 | static int reorderqueue_cmp(const pairingheap_node *a, |
| 67 | const pairingheap_node *b, void *arg); |
| 68 | static void reorderqueue_push(IndexScanState *node, TupleTableSlot *slot, |
| 69 | Datum *orderbyvals, bool *orderbynulls); |
| 70 | static HeapTuple reorderqueue_pop(IndexScanState *node); |
| 71 | |
| 72 | |
| 73 | /* ---------------------------------------------------------------- |
| 74 | * IndexNext |
| 75 | * |
| 76 | * Retrieve a tuple from the IndexScan node's currentRelation |
| 77 | * using the index specified in the IndexScanState information. |
| 78 | * ---------------------------------------------------------------- |
| 79 | */ |
| 80 | static TupleTableSlot * |
| 81 | IndexNext(IndexScanState *node) |
| 82 | { |
| 83 | EState *estate; |
| 84 | ExprContext *econtext; |
| 85 | ScanDirection direction; |
| 86 | IndexScanDesc scandesc; |
| 87 | TupleTableSlot *slot; |
| 88 | |
| 89 | /* |
| 90 | * extract necessary information from index scan node |
| 91 | */ |
| 92 | estate = node->ss.ps.state; |
| 93 | direction = estate->es_direction; |
| 94 | /* flip direction if this is an overall backward scan */ |
| 95 | if (ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir)) |
| 96 | { |
| 97 | if (ScanDirectionIsForward(direction)) |
| 98 | direction = BackwardScanDirection; |
| 99 | else if (ScanDirectionIsBackward(direction)) |
| 100 | direction = ForwardScanDirection; |
| 101 | } |
| 102 | scandesc = node->iss_ScanDesc; |
| 103 | econtext = node->ss.ps.ps_ExprContext; |
| 104 | slot = node->ss.ss_ScanTupleSlot; |
| 105 | |
| 106 | if (scandesc == NULL) |
| 107 | { |
| 108 | /* |
| 109 | * We reach here if the index scan is not parallel, or if we're |
| 110 | * serially executing an index scan that was planned to be parallel. |
| 111 | */ |
| 112 | scandesc = index_beginscan(node->ss.ss_currentRelation, |
| 113 | node->iss_RelationDesc, |
| 114 | estate->es_snapshot, |
| 115 | node->iss_NumScanKeys, |
| 116 | node->iss_NumOrderByKeys); |
| 117 | |
| 118 | node->iss_ScanDesc = scandesc; |
| 119 | |
| 120 | /* |
| 121 | * If no run-time keys to calculate or they are ready, go ahead and |
| 122 | * pass the scankeys to the index AM. |
| 123 | */ |
| 124 | if (node->iss_NumRuntimeKeys == 0 || node->iss_RuntimeKeysReady) |
| 125 | index_rescan(scandesc, |
| 126 | node->iss_ScanKeys, node->iss_NumScanKeys, |
| 127 | node->iss_OrderByKeys, node->iss_NumOrderByKeys); |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * ok, now that we have what we need, fetch the next tuple. |
| 132 | */ |
| 133 | while (index_getnext_slot(scandesc, direction, slot)) |
| 134 | { |
| 135 | CHECK_FOR_INTERRUPTS(); |
| 136 | |
| 137 | /* |
| 138 | * If the index was lossy, we have to recheck the index quals using |
| 139 | * the fetched tuple. |
| 140 | */ |
| 141 | if (scandesc->xs_recheck) |
| 142 | { |
| 143 | econtext->ecxt_scantuple = slot; |
| 144 | if (!ExecQualAndReset(node->indexqualorig, econtext)) |
| 145 | { |
| 146 | /* Fails recheck, so drop it and loop back for another */ |
| 147 | InstrCountFiltered2(node, 1); |
| 148 | continue; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | return slot; |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * if we get here it means the index scan failed so we are at the end of |
| 157 | * the scan.. |
| 158 | */ |
| 159 | node->iss_ReachedEnd = true; |
| 160 | return ExecClearTuple(slot); |
| 161 | } |
| 162 | |
| 163 | /* ---------------------------------------------------------------- |
| 164 | * IndexNextWithReorder |
| 165 | * |
| 166 | * Like IndexNext, but this version can also re-check ORDER BY |
| 167 | * expressions, and reorder the tuples as necessary. |
| 168 | * ---------------------------------------------------------------- |
| 169 | */ |
| 170 | static TupleTableSlot * |
| 171 | IndexNextWithReorder(IndexScanState *node) |
| 172 | { |
| 173 | EState *estate; |
| 174 | ExprContext *econtext; |
| 175 | IndexScanDesc scandesc; |
| 176 | TupleTableSlot *slot; |
| 177 | ReorderTuple *topmost = NULL; |
| 178 | bool was_exact; |
| 179 | Datum *lastfetched_vals; |
| 180 | bool *lastfetched_nulls; |
| 181 | int cmp; |
| 182 | |
| 183 | estate = node->ss.ps.state; |
| 184 | |
| 185 | /* |
| 186 | * Only forward scan is supported with reordering. Note: we can get away |
| 187 | * with just Asserting here because the system will not try to run the |
| 188 | * plan backwards if ExecSupportsBackwardScan() says it won't work. |
| 189 | * Currently, that is guaranteed because no index AMs support both |
| 190 | * amcanorderbyop and amcanbackward; if any ever do, |
| 191 | * ExecSupportsBackwardScan() will need to consider indexorderbys |
| 192 | * explicitly. |
| 193 | */ |
| 194 | Assert(!ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indexorderdir)); |
| 195 | Assert(ScanDirectionIsForward(estate->es_direction)); |
| 196 | |
| 197 | scandesc = node->iss_ScanDesc; |
| 198 | econtext = node->ss.ps.ps_ExprContext; |
| 199 | slot = node->ss.ss_ScanTupleSlot; |
| 200 | |
| 201 | if (scandesc == NULL) |
| 202 | { |
| 203 | /* |
| 204 | * We reach here if the index scan is not parallel, or if we're |
| 205 | * serially executing an index scan that was planned to be parallel. |
| 206 | */ |
| 207 | scandesc = index_beginscan(node->ss.ss_currentRelation, |
| 208 | node->iss_RelationDesc, |
| 209 | estate->es_snapshot, |
| 210 | node->iss_NumScanKeys, |
| 211 | node->iss_NumOrderByKeys); |
| 212 | |
| 213 | node->iss_ScanDesc = scandesc; |
| 214 | |
| 215 | /* |
| 216 | * If no run-time keys to calculate or they are ready, go ahead and |
| 217 | * pass the scankeys to the index AM. |
| 218 | */ |
| 219 | if (node->iss_NumRuntimeKeys == 0 || node->iss_RuntimeKeysReady) |
| 220 | index_rescan(scandesc, |
| 221 | node->iss_ScanKeys, node->iss_NumScanKeys, |
| 222 | node->iss_OrderByKeys, node->iss_NumOrderByKeys); |
| 223 | } |
| 224 | |
| 225 | for (;;) |
| 226 | { |
| 227 | CHECK_FOR_INTERRUPTS(); |
| 228 | |
| 229 | /* |
| 230 | * Check the reorder queue first. If the topmost tuple in the queue |
| 231 | * has an ORDER BY value smaller than (or equal to) the value last |
| 232 | * returned by the index, we can return it now. |
| 233 | */ |
| 234 | if (!pairingheap_is_empty(node->iss_ReorderQueue)) |
| 235 | { |
| 236 | topmost = (ReorderTuple *) pairingheap_first(node->iss_ReorderQueue); |
| 237 | |
| 238 | if (node->iss_ReachedEnd || |
| 239 | cmp_orderbyvals(topmost->orderbyvals, |
| 240 | topmost->orderbynulls, |
| 241 | scandesc->xs_orderbyvals, |
| 242 | scandesc->xs_orderbynulls, |
| 243 | node) <= 0) |
| 244 | { |
| 245 | HeapTuple tuple; |
| 246 | |
| 247 | tuple = reorderqueue_pop(node); |
| 248 | |
| 249 | /* Pass 'true', as the tuple in the queue is a palloc'd copy */ |
| 250 | ExecForceStoreHeapTuple(tuple, slot, true); |
| 251 | return slot; |
| 252 | } |
| 253 | } |
| 254 | else if (node->iss_ReachedEnd) |
| 255 | { |
| 256 | /* Queue is empty, and no more tuples from index. We're done. */ |
| 257 | return ExecClearTuple(slot); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Fetch next tuple from the index. |
| 262 | */ |
| 263 | next_indextuple: |
| 264 | if (!index_getnext_slot(scandesc, ForwardScanDirection, slot)) |
| 265 | { |
| 266 | /* |
| 267 | * No more tuples from the index. But we still need to drain any |
| 268 | * remaining tuples from the queue before we're done. |
| 269 | */ |
| 270 | node->iss_ReachedEnd = true; |
| 271 | continue; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * If the index was lossy, we have to recheck the index quals and |
| 276 | * ORDER BY expressions using the fetched tuple. |
| 277 | */ |
| 278 | if (scandesc->xs_recheck) |
| 279 | { |
| 280 | econtext->ecxt_scantuple = slot; |
| 281 | if (!ExecQualAndReset(node->indexqualorig, econtext)) |
| 282 | { |
| 283 | /* Fails recheck, so drop it and loop back for another */ |
| 284 | InstrCountFiltered2(node, 1); |
| 285 | /* allow this loop to be cancellable */ |
| 286 | CHECK_FOR_INTERRUPTS(); |
| 287 | goto next_indextuple; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | if (scandesc->xs_recheckorderby) |
| 292 | { |
| 293 | econtext->ecxt_scantuple = slot; |
| 294 | ResetExprContext(econtext); |
| 295 | EvalOrderByExpressions(node, econtext); |
| 296 | |
| 297 | /* |
| 298 | * Was the ORDER BY value returned by the index accurate? The |
| 299 | * recheck flag means that the index can return inaccurate values, |
| 300 | * but then again, the value returned for any particular tuple |
| 301 | * could also be exactly correct. Compare the value returned by |
| 302 | * the index with the recalculated value. (If the value returned |
| 303 | * by the index happened to be exact right, we can often avoid |
| 304 | * pushing the tuple to the queue, just to pop it back out again.) |
| 305 | */ |
| 306 | cmp = cmp_orderbyvals(node->iss_OrderByValues, |
| 307 | node->iss_OrderByNulls, |
| 308 | scandesc->xs_orderbyvals, |
| 309 | scandesc->xs_orderbynulls, |
| 310 | node); |
| 311 | if (cmp < 0) |
| 312 | elog(ERROR, "index returned tuples in wrong order" ); |
| 313 | else if (cmp == 0) |
| 314 | was_exact = true; |
| 315 | else |
| 316 | was_exact = false; |
| 317 | lastfetched_vals = node->iss_OrderByValues; |
| 318 | lastfetched_nulls = node->iss_OrderByNulls; |
| 319 | } |
| 320 | else |
| 321 | { |
| 322 | was_exact = true; |
| 323 | lastfetched_vals = scandesc->xs_orderbyvals; |
| 324 | lastfetched_nulls = scandesc->xs_orderbynulls; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * Can we return this tuple immediately, or does it need to be pushed |
| 329 | * to the reorder queue? If the ORDER BY expression values returned |
| 330 | * by the index were inaccurate, we can't return it yet, because the |
| 331 | * next tuple from the index might need to come before this one. Also, |
| 332 | * we can't return it yet if there are any smaller tuples in the queue |
| 333 | * already. |
| 334 | */ |
| 335 | if (!was_exact || (topmost && cmp_orderbyvals(lastfetched_vals, |
| 336 | lastfetched_nulls, |
| 337 | topmost->orderbyvals, |
| 338 | topmost->orderbynulls, |
| 339 | node) > 0)) |
| 340 | { |
| 341 | /* Put this tuple to the queue */ |
| 342 | reorderqueue_push(node, slot, lastfetched_vals, lastfetched_nulls); |
| 343 | continue; |
| 344 | } |
| 345 | else |
| 346 | { |
| 347 | /* Can return this tuple immediately. */ |
| 348 | return slot; |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * if we get here it means the index scan failed so we are at the end of |
| 354 | * the scan.. |
| 355 | */ |
| 356 | return ExecClearTuple(slot); |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Calculate the expressions in the ORDER BY clause, based on the heap tuple. |
| 361 | */ |
| 362 | static void |
| 363 | EvalOrderByExpressions(IndexScanState *node, ExprContext *econtext) |
| 364 | { |
| 365 | int i; |
| 366 | ListCell *l; |
| 367 | MemoryContext oldContext; |
| 368 | |
| 369 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 370 | |
| 371 | i = 0; |
| 372 | foreach(l, node->indexorderbyorig) |
| 373 | { |
| 374 | ExprState *orderby = (ExprState *) lfirst(l); |
| 375 | |
| 376 | node->iss_OrderByValues[i] = ExecEvalExpr(orderby, |
| 377 | econtext, |
| 378 | &node->iss_OrderByNulls[i]); |
| 379 | i++; |
| 380 | } |
| 381 | |
| 382 | MemoryContextSwitchTo(oldContext); |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * IndexRecheck -- access method routine to recheck a tuple in EvalPlanQual |
| 387 | */ |
| 388 | static bool |
| 389 | IndexRecheck(IndexScanState *node, TupleTableSlot *slot) |
| 390 | { |
| 391 | ExprContext *econtext; |
| 392 | |
| 393 | /* |
| 394 | * extract necessary information from index scan node |
| 395 | */ |
| 396 | econtext = node->ss.ps.ps_ExprContext; |
| 397 | |
| 398 | /* Does the tuple meet the indexqual condition? */ |
| 399 | econtext->ecxt_scantuple = slot; |
| 400 | return ExecQualAndReset(node->indexqualorig, econtext); |
| 401 | } |
| 402 | |
| 403 | |
| 404 | /* |
| 405 | * Compare ORDER BY expression values. |
| 406 | */ |
| 407 | static int |
| 408 | cmp_orderbyvals(const Datum *adist, const bool *anulls, |
| 409 | const Datum *bdist, const bool *bnulls, |
| 410 | IndexScanState *node) |
| 411 | { |
| 412 | int i; |
| 413 | int result; |
| 414 | |
| 415 | for (i = 0; i < node->iss_NumOrderByKeys; i++) |
| 416 | { |
| 417 | SortSupport ssup = &node->iss_SortSupport[i]; |
| 418 | |
| 419 | /* |
| 420 | * Handle nulls. We only need to support NULLS LAST ordering, because |
| 421 | * match_pathkeys_to_index() doesn't consider indexorderby |
| 422 | * implementation otherwise. |
| 423 | */ |
| 424 | if (anulls[i] && !bnulls[i]) |
| 425 | return 1; |
| 426 | else if (!anulls[i] && bnulls[i]) |
| 427 | return -1; |
| 428 | else if (anulls[i] && bnulls[i]) |
| 429 | return 0; |
| 430 | |
| 431 | result = ssup->comparator(adist[i], bdist[i], ssup); |
| 432 | if (result != 0) |
| 433 | return result; |
| 434 | } |
| 435 | |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * Pairing heap provides getting topmost (greatest) element while KNN provides |
| 441 | * ascending sort. That's why we invert the sort order. |
| 442 | */ |
| 443 | static int |
| 444 | reorderqueue_cmp(const pairingheap_node *a, const pairingheap_node *b, |
| 445 | void *arg) |
| 446 | { |
| 447 | ReorderTuple *rta = (ReorderTuple *) a; |
| 448 | ReorderTuple *rtb = (ReorderTuple *) b; |
| 449 | IndexScanState *node = (IndexScanState *) arg; |
| 450 | |
| 451 | /* exchange argument order to invert the sort order */ |
| 452 | return cmp_orderbyvals(rtb->orderbyvals, rtb->orderbynulls, |
| 453 | rta->orderbyvals, rta->orderbynulls, |
| 454 | node); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Helper function to push a tuple to the reorder queue. |
| 459 | */ |
| 460 | static void |
| 461 | reorderqueue_push(IndexScanState *node, TupleTableSlot *slot, |
| 462 | Datum *orderbyvals, bool *orderbynulls) |
| 463 | { |
| 464 | IndexScanDesc scandesc = node->iss_ScanDesc; |
| 465 | EState *estate = node->ss.ps.state; |
| 466 | MemoryContext oldContext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 467 | ReorderTuple *rt; |
| 468 | int i; |
| 469 | |
| 470 | rt = (ReorderTuple *) palloc(sizeof(ReorderTuple)); |
| 471 | rt->htup = ExecCopySlotHeapTuple(slot); |
| 472 | rt->orderbyvals = |
| 473 | (Datum *) palloc(sizeof(Datum) * scandesc->numberOfOrderBys); |
| 474 | rt->orderbynulls = |
| 475 | (bool *) palloc(sizeof(bool) * scandesc->numberOfOrderBys); |
| 476 | for (i = 0; i < node->iss_NumOrderByKeys; i++) |
| 477 | { |
| 478 | if (!orderbynulls[i]) |
| 479 | rt->orderbyvals[i] = datumCopy(orderbyvals[i], |
| 480 | node->iss_OrderByTypByVals[i], |
| 481 | node->iss_OrderByTypLens[i]); |
| 482 | else |
| 483 | rt->orderbyvals[i] = (Datum) 0; |
| 484 | rt->orderbynulls[i] = orderbynulls[i]; |
| 485 | } |
| 486 | pairingheap_add(node->iss_ReorderQueue, &rt->ph_node); |
| 487 | |
| 488 | MemoryContextSwitchTo(oldContext); |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Helper function to pop the next tuple from the reorder queue. |
| 493 | */ |
| 494 | static HeapTuple |
| 495 | reorderqueue_pop(IndexScanState *node) |
| 496 | { |
| 497 | HeapTuple result; |
| 498 | ReorderTuple *topmost; |
| 499 | int i; |
| 500 | |
| 501 | topmost = (ReorderTuple *) pairingheap_remove_first(node->iss_ReorderQueue); |
| 502 | |
| 503 | result = topmost->htup; |
| 504 | for (i = 0; i < node->iss_NumOrderByKeys; i++) |
| 505 | { |
| 506 | if (!node->iss_OrderByTypByVals[i] && !topmost->orderbynulls[i]) |
| 507 | pfree(DatumGetPointer(topmost->orderbyvals[i])); |
| 508 | } |
| 509 | pfree(topmost->orderbyvals); |
| 510 | pfree(topmost->orderbynulls); |
| 511 | pfree(topmost); |
| 512 | |
| 513 | return result; |
| 514 | } |
| 515 | |
| 516 | |
| 517 | /* ---------------------------------------------------------------- |
| 518 | * ExecIndexScan(node) |
| 519 | * ---------------------------------------------------------------- |
| 520 | */ |
| 521 | static TupleTableSlot * |
| 522 | ExecIndexScan(PlanState *pstate) |
| 523 | { |
| 524 | IndexScanState *node = castNode(IndexScanState, pstate); |
| 525 | |
| 526 | /* |
| 527 | * If we have runtime keys and they've not already been set up, do it now. |
| 528 | */ |
| 529 | if (node->iss_NumRuntimeKeys != 0 && !node->iss_RuntimeKeysReady) |
| 530 | ExecReScan((PlanState *) node); |
| 531 | |
| 532 | if (node->iss_NumOrderByKeys > 0) |
| 533 | return ExecScan(&node->ss, |
| 534 | (ExecScanAccessMtd) IndexNextWithReorder, |
| 535 | (ExecScanRecheckMtd) IndexRecheck); |
| 536 | else |
| 537 | return ExecScan(&node->ss, |
| 538 | (ExecScanAccessMtd) IndexNext, |
| 539 | (ExecScanRecheckMtd) IndexRecheck); |
| 540 | } |
| 541 | |
| 542 | /* ---------------------------------------------------------------- |
| 543 | * ExecReScanIndexScan(node) |
| 544 | * |
| 545 | * Recalculates the values of any scan keys whose value depends on |
| 546 | * information known at runtime, then rescans the indexed relation. |
| 547 | * |
| 548 | * Updating the scan key was formerly done separately in |
| 549 | * ExecUpdateIndexScanKeys. Integrating it into ReScan makes |
| 550 | * rescans of indices and relations/general streams more uniform. |
| 551 | * ---------------------------------------------------------------- |
| 552 | */ |
| 553 | void |
| 554 | ExecReScanIndexScan(IndexScanState *node) |
| 555 | { |
| 556 | /* |
| 557 | * If we are doing runtime key calculations (ie, any of the index key |
| 558 | * values weren't simple Consts), compute the new key values. But first, |
| 559 | * reset the context so we don't leak memory as each outer tuple is |
| 560 | * scanned. Note this assumes that we will recalculate *all* runtime keys |
| 561 | * on each call. |
| 562 | */ |
| 563 | if (node->iss_NumRuntimeKeys != 0) |
| 564 | { |
| 565 | ExprContext *econtext = node->iss_RuntimeContext; |
| 566 | |
| 567 | ResetExprContext(econtext); |
| 568 | ExecIndexEvalRuntimeKeys(econtext, |
| 569 | node->iss_RuntimeKeys, |
| 570 | node->iss_NumRuntimeKeys); |
| 571 | } |
| 572 | node->iss_RuntimeKeysReady = true; |
| 573 | |
| 574 | /* flush the reorder queue */ |
| 575 | if (node->iss_ReorderQueue) |
| 576 | { |
| 577 | while (!pairingheap_is_empty(node->iss_ReorderQueue)) |
| 578 | reorderqueue_pop(node); |
| 579 | } |
| 580 | |
| 581 | /* reset index scan */ |
| 582 | if (node->iss_ScanDesc) |
| 583 | index_rescan(node->iss_ScanDesc, |
| 584 | node->iss_ScanKeys, node->iss_NumScanKeys, |
| 585 | node->iss_OrderByKeys, node->iss_NumOrderByKeys); |
| 586 | node->iss_ReachedEnd = false; |
| 587 | |
| 588 | ExecScanReScan(&node->ss); |
| 589 | } |
| 590 | |
| 591 | |
| 592 | /* |
| 593 | * ExecIndexEvalRuntimeKeys |
| 594 | * Evaluate any runtime key values, and update the scankeys. |
| 595 | */ |
| 596 | void |
| 597 | ExecIndexEvalRuntimeKeys(ExprContext *econtext, |
| 598 | IndexRuntimeKeyInfo *runtimeKeys, int numRuntimeKeys) |
| 599 | { |
| 600 | int j; |
| 601 | MemoryContext oldContext; |
| 602 | |
| 603 | /* We want to keep the key values in per-tuple memory */ |
| 604 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 605 | |
| 606 | for (j = 0; j < numRuntimeKeys; j++) |
| 607 | { |
| 608 | ScanKey scan_key = runtimeKeys[j].scan_key; |
| 609 | ExprState *key_expr = runtimeKeys[j].key_expr; |
| 610 | Datum scanvalue; |
| 611 | bool isNull; |
| 612 | |
| 613 | /* |
| 614 | * For each run-time key, extract the run-time expression and evaluate |
| 615 | * it with respect to the current context. We then stick the result |
| 616 | * into the proper scan key. |
| 617 | * |
| 618 | * Note: the result of the eval could be a pass-by-ref value that's |
| 619 | * stored in some outer scan's tuple, not in |
| 620 | * econtext->ecxt_per_tuple_memory. We assume that the outer tuple |
| 621 | * will stay put throughout our scan. If this is wrong, we could copy |
| 622 | * the result into our context explicitly, but I think that's not |
| 623 | * necessary. |
| 624 | * |
| 625 | * It's also entirely possible that the result of the eval is a |
| 626 | * toasted value. In this case we should forcibly detoast it, to |
| 627 | * avoid repeat detoastings each time the value is examined by an |
| 628 | * index support function. |
| 629 | */ |
| 630 | scanvalue = ExecEvalExpr(key_expr, |
| 631 | econtext, |
| 632 | &isNull); |
| 633 | if (isNull) |
| 634 | { |
| 635 | scan_key->sk_argument = scanvalue; |
| 636 | scan_key->sk_flags |= SK_ISNULL; |
| 637 | } |
| 638 | else |
| 639 | { |
| 640 | if (runtimeKeys[j].key_toastable) |
| 641 | scanvalue = PointerGetDatum(PG_DETOAST_DATUM(scanvalue)); |
| 642 | scan_key->sk_argument = scanvalue; |
| 643 | scan_key->sk_flags &= ~SK_ISNULL; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | MemoryContextSwitchTo(oldContext); |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * ExecIndexEvalArrayKeys |
| 652 | * Evaluate any array key values, and set up to iterate through arrays. |
| 653 | * |
| 654 | * Returns true if there are array elements to consider; false means there |
| 655 | * is at least one null or empty array, so no match is possible. On true |
| 656 | * result, the scankeys are initialized with the first elements of the arrays. |
| 657 | */ |
| 658 | bool |
| 659 | ExecIndexEvalArrayKeys(ExprContext *econtext, |
| 660 | IndexArrayKeyInfo *arrayKeys, int numArrayKeys) |
| 661 | { |
| 662 | bool result = true; |
| 663 | int j; |
| 664 | MemoryContext oldContext; |
| 665 | |
| 666 | /* We want to keep the arrays in per-tuple memory */ |
| 667 | oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory); |
| 668 | |
| 669 | for (j = 0; j < numArrayKeys; j++) |
| 670 | { |
| 671 | ScanKey scan_key = arrayKeys[j].scan_key; |
| 672 | ExprState *array_expr = arrayKeys[j].array_expr; |
| 673 | Datum arraydatum; |
| 674 | bool isNull; |
| 675 | ArrayType *arrayval; |
| 676 | int16 elmlen; |
| 677 | bool elmbyval; |
| 678 | char elmalign; |
| 679 | int num_elems; |
| 680 | Datum *elem_values; |
| 681 | bool *elem_nulls; |
| 682 | |
| 683 | /* |
| 684 | * Compute and deconstruct the array expression. (Notes in |
| 685 | * ExecIndexEvalRuntimeKeys() apply here too.) |
| 686 | */ |
| 687 | arraydatum = ExecEvalExpr(array_expr, |
| 688 | econtext, |
| 689 | &isNull); |
| 690 | if (isNull) |
| 691 | { |
| 692 | result = false; |
| 693 | break; /* no point in evaluating more */ |
| 694 | } |
| 695 | arrayval = DatumGetArrayTypeP(arraydatum); |
| 696 | /* We could cache this data, but not clear it's worth it */ |
| 697 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| 698 | &elmlen, &elmbyval, &elmalign); |
| 699 | deconstruct_array(arrayval, |
| 700 | ARR_ELEMTYPE(arrayval), |
| 701 | elmlen, elmbyval, elmalign, |
| 702 | &elem_values, &elem_nulls, &num_elems); |
| 703 | if (num_elems <= 0) |
| 704 | { |
| 705 | result = false; |
| 706 | break; /* no point in evaluating more */ |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * Note: we expect the previous array data, if any, to be |
| 711 | * automatically freed by resetting the per-tuple context; hence no |
| 712 | * pfree's here. |
| 713 | */ |
| 714 | arrayKeys[j].elem_values = elem_values; |
| 715 | arrayKeys[j].elem_nulls = elem_nulls; |
| 716 | arrayKeys[j].num_elems = num_elems; |
| 717 | scan_key->sk_argument = elem_values[0]; |
| 718 | if (elem_nulls[0]) |
| 719 | scan_key->sk_flags |= SK_ISNULL; |
| 720 | else |
| 721 | scan_key->sk_flags &= ~SK_ISNULL; |
| 722 | arrayKeys[j].next_elem = 1; |
| 723 | } |
| 724 | |
| 725 | MemoryContextSwitchTo(oldContext); |
| 726 | |
| 727 | return result; |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | * ExecIndexAdvanceArrayKeys |
| 732 | * Advance to the next set of array key values, if any. |
| 733 | * |
| 734 | * Returns true if there is another set of values to consider, false if not. |
| 735 | * On true result, the scankeys are initialized with the next set of values. |
| 736 | */ |
| 737 | bool |
| 738 | ExecIndexAdvanceArrayKeys(IndexArrayKeyInfo *arrayKeys, int numArrayKeys) |
| 739 | { |
| 740 | bool found = false; |
| 741 | int j; |
| 742 | |
| 743 | /* |
| 744 | * Note we advance the rightmost array key most quickly, since it will |
| 745 | * correspond to the lowest-order index column among the available |
| 746 | * qualifications. This is hypothesized to result in better locality of |
| 747 | * access in the index. |
| 748 | */ |
| 749 | for (j = numArrayKeys - 1; j >= 0; j--) |
| 750 | { |
| 751 | ScanKey scan_key = arrayKeys[j].scan_key; |
| 752 | int next_elem = arrayKeys[j].next_elem; |
| 753 | int num_elems = arrayKeys[j].num_elems; |
| 754 | Datum *elem_values = arrayKeys[j].elem_values; |
| 755 | bool *elem_nulls = arrayKeys[j].elem_nulls; |
| 756 | |
| 757 | if (next_elem >= num_elems) |
| 758 | { |
| 759 | next_elem = 0; |
| 760 | found = false; /* need to advance next array key */ |
| 761 | } |
| 762 | else |
| 763 | found = true; |
| 764 | scan_key->sk_argument = elem_values[next_elem]; |
| 765 | if (elem_nulls[next_elem]) |
| 766 | scan_key->sk_flags |= SK_ISNULL; |
| 767 | else |
| 768 | scan_key->sk_flags &= ~SK_ISNULL; |
| 769 | arrayKeys[j].next_elem = next_elem + 1; |
| 770 | if (found) |
| 771 | break; |
| 772 | } |
| 773 | |
| 774 | return found; |
| 775 | } |
| 776 | |
| 777 | |
| 778 | /* ---------------------------------------------------------------- |
| 779 | * ExecEndIndexScan |
| 780 | * ---------------------------------------------------------------- |
| 781 | */ |
| 782 | void |
| 783 | ExecEndIndexScan(IndexScanState *node) |
| 784 | { |
| 785 | Relation indexRelationDesc; |
| 786 | IndexScanDesc indexScanDesc; |
| 787 | |
| 788 | /* |
| 789 | * extract information from the node |
| 790 | */ |
| 791 | indexRelationDesc = node->iss_RelationDesc; |
| 792 | indexScanDesc = node->iss_ScanDesc; |
| 793 | |
| 794 | /* |
| 795 | * Free the exprcontext(s) ... now dead code, see ExecFreeExprContext |
| 796 | */ |
| 797 | #ifdef NOT_USED |
| 798 | ExecFreeExprContext(&node->ss.ps); |
| 799 | if (node->iss_RuntimeContext) |
| 800 | FreeExprContext(node->iss_RuntimeContext, true); |
| 801 | #endif |
| 802 | |
| 803 | /* |
| 804 | * clear out tuple table slots |
| 805 | */ |
| 806 | if (node->ss.ps.ps_ResultTupleSlot) |
| 807 | ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| 808 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| 809 | |
| 810 | /* |
| 811 | * close the index relation (no-op if we didn't open it) |
| 812 | */ |
| 813 | if (indexScanDesc) |
| 814 | index_endscan(indexScanDesc); |
| 815 | if (indexRelationDesc) |
| 816 | index_close(indexRelationDesc, NoLock); |
| 817 | } |
| 818 | |
| 819 | /* ---------------------------------------------------------------- |
| 820 | * ExecIndexMarkPos |
| 821 | * |
| 822 | * Note: we assume that no caller attempts to set a mark before having read |
| 823 | * at least one tuple. Otherwise, iss_ScanDesc might still be NULL. |
| 824 | * ---------------------------------------------------------------- |
| 825 | */ |
| 826 | void |
| 827 | ExecIndexMarkPos(IndexScanState *node) |
| 828 | { |
| 829 | EState *estate = node->ss.ps.state; |
| 830 | EPQState *epqstate = estate->es_epq_active; |
| 831 | |
| 832 | if (epqstate != NULL) |
| 833 | { |
| 834 | /* |
| 835 | * We are inside an EvalPlanQual recheck. If a test tuple exists for |
| 836 | * this relation, then we shouldn't access the index at all. We would |
| 837 | * instead need to save, and later restore, the state of the |
| 838 | * relsubs_done flag, so that re-fetching the test tuple is possible. |
| 839 | * However, given the assumption that no caller sets a mark at the |
| 840 | * start of the scan, we can only get here with relsubs_done[i] |
| 841 | * already set, and so no state need be saved. |
| 842 | */ |
| 843 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
| 844 | |
| 845 | Assert(scanrelid > 0); |
| 846 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
| 847 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
| 848 | { |
| 849 | /* Verify the claim above */ |
| 850 | if (!epqstate->relsubs_done[scanrelid - 1]) |
| 851 | elog(ERROR, "unexpected ExecIndexMarkPos call in EPQ recheck" ); |
| 852 | return; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | index_markpos(node->iss_ScanDesc); |
| 857 | } |
| 858 | |
| 859 | /* ---------------------------------------------------------------- |
| 860 | * ExecIndexRestrPos |
| 861 | * ---------------------------------------------------------------- |
| 862 | */ |
| 863 | void |
| 864 | ExecIndexRestrPos(IndexScanState *node) |
| 865 | { |
| 866 | EState *estate = node->ss.ps.state; |
| 867 | EPQState *epqstate = estate->es_epq_active; |
| 868 | |
| 869 | if (estate->es_epq_active != NULL) |
| 870 | { |
| 871 | /* See comments in ExecIndexMarkPos */ |
| 872 | Index scanrelid = ((Scan *) node->ss.ps.plan)->scanrelid; |
| 873 | |
| 874 | Assert(scanrelid > 0); |
| 875 | if (epqstate->relsubs_slot[scanrelid - 1] != NULL || |
| 876 | epqstate->relsubs_rowmark[scanrelid - 1] != NULL) |
| 877 | { |
| 878 | /* Verify the claim above */ |
| 879 | if (!epqstate->relsubs_done[scanrelid - 1]) |
| 880 | elog(ERROR, "unexpected ExecIndexRestrPos call in EPQ recheck" ); |
| 881 | return; |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | index_restrpos(node->iss_ScanDesc); |
| 886 | } |
| 887 | |
| 888 | /* ---------------------------------------------------------------- |
| 889 | * ExecInitIndexScan |
| 890 | * |
| 891 | * Initializes the index scan's state information, creates |
| 892 | * scan keys, and opens the base and index relations. |
| 893 | * |
| 894 | * Note: index scans have 2 sets of state information because |
| 895 | * we have to keep track of the base relation and the |
| 896 | * index relation. |
| 897 | * ---------------------------------------------------------------- |
| 898 | */ |
| 899 | IndexScanState * |
| 900 | ExecInitIndexScan(IndexScan *node, EState *estate, int eflags) |
| 901 | { |
| 902 | IndexScanState *indexstate; |
| 903 | Relation currentRelation; |
| 904 | LOCKMODE lockmode; |
| 905 | |
| 906 | /* |
| 907 | * create state structure |
| 908 | */ |
| 909 | indexstate = makeNode(IndexScanState); |
| 910 | indexstate->ss.ps.plan = (Plan *) node; |
| 911 | indexstate->ss.ps.state = estate; |
| 912 | indexstate->ss.ps.ExecProcNode = ExecIndexScan; |
| 913 | |
| 914 | /* |
| 915 | * Miscellaneous initialization |
| 916 | * |
| 917 | * create expression context for node |
| 918 | */ |
| 919 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
| 920 | |
| 921 | /* |
| 922 | * open the scan relation |
| 923 | */ |
| 924 | currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid, eflags); |
| 925 | |
| 926 | indexstate->ss.ss_currentRelation = currentRelation; |
| 927 | indexstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */ |
| 928 | |
| 929 | /* |
| 930 | * get the scan type from the relation descriptor. |
| 931 | */ |
| 932 | ExecInitScanTupleSlot(estate, &indexstate->ss, |
| 933 | RelationGetDescr(currentRelation), |
| 934 | table_slot_callbacks(currentRelation)); |
| 935 | |
| 936 | /* |
| 937 | * Initialize result type and projection. |
| 938 | */ |
| 939 | ExecInitResultTypeTL(&indexstate->ss.ps); |
| 940 | ExecAssignScanProjectionInfo(&indexstate->ss); |
| 941 | |
| 942 | /* |
| 943 | * initialize child expressions |
| 944 | * |
| 945 | * Note: we don't initialize all of the indexqual expression, only the |
| 946 | * sub-parts corresponding to runtime keys (see below). Likewise for |
| 947 | * indexorderby, if any. But the indexqualorig expression is always |
| 948 | * initialized even though it will only be used in some uncommon cases --- |
| 949 | * would be nice to improve that. (Problem is that any SubPlans present |
| 950 | * in the expression must be found now...) |
| 951 | */ |
| 952 | indexstate->ss.ps.qual = |
| 953 | ExecInitQual(node->scan.plan.qual, (PlanState *) indexstate); |
| 954 | indexstate->indexqualorig = |
| 955 | ExecInitQual(node->indexqualorig, (PlanState *) indexstate); |
| 956 | indexstate->indexorderbyorig = |
| 957 | ExecInitExprList(node->indexorderbyorig, (PlanState *) indexstate); |
| 958 | |
| 959 | /* |
| 960 | * If we are just doing EXPLAIN (ie, aren't going to run the plan), stop |
| 961 | * here. This allows an index-advisor plugin to EXPLAIN a plan containing |
| 962 | * references to nonexistent indexes. |
| 963 | */ |
| 964 | if (eflags & EXEC_FLAG_EXPLAIN_ONLY) |
| 965 | return indexstate; |
| 966 | |
| 967 | /* Open the index relation. */ |
| 968 | lockmode = exec_rt_fetch(node->scan.scanrelid, estate)->rellockmode; |
| 969 | indexstate->iss_RelationDesc = index_open(node->indexid, lockmode); |
| 970 | |
| 971 | /* |
| 972 | * Initialize index-specific scan state |
| 973 | */ |
| 974 | indexstate->iss_RuntimeKeysReady = false; |
| 975 | indexstate->iss_RuntimeKeys = NULL; |
| 976 | indexstate->iss_NumRuntimeKeys = 0; |
| 977 | |
| 978 | /* |
| 979 | * build the index scan keys from the index qualification |
| 980 | */ |
| 981 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
| 982 | indexstate->iss_RelationDesc, |
| 983 | node->indexqual, |
| 984 | false, |
| 985 | &indexstate->iss_ScanKeys, |
| 986 | &indexstate->iss_NumScanKeys, |
| 987 | &indexstate->iss_RuntimeKeys, |
| 988 | &indexstate->iss_NumRuntimeKeys, |
| 989 | NULL, /* no ArrayKeys */ |
| 990 | NULL); |
| 991 | |
| 992 | /* |
| 993 | * any ORDER BY exprs have to be turned into scankeys in the same way |
| 994 | */ |
| 995 | ExecIndexBuildScanKeys((PlanState *) indexstate, |
| 996 | indexstate->iss_RelationDesc, |
| 997 | node->indexorderby, |
| 998 | true, |
| 999 | &indexstate->iss_OrderByKeys, |
| 1000 | &indexstate->iss_NumOrderByKeys, |
| 1001 | &indexstate->iss_RuntimeKeys, |
| 1002 | &indexstate->iss_NumRuntimeKeys, |
| 1003 | NULL, /* no ArrayKeys */ |
| 1004 | NULL); |
| 1005 | |
| 1006 | /* Initialize sort support, if we need to re-check ORDER BY exprs */ |
| 1007 | if (indexstate->iss_NumOrderByKeys > 0) |
| 1008 | { |
| 1009 | int numOrderByKeys = indexstate->iss_NumOrderByKeys; |
| 1010 | int i; |
| 1011 | ListCell *lco; |
| 1012 | ListCell *lcx; |
| 1013 | |
| 1014 | /* |
| 1015 | * Prepare sort support, and look up the data type for each ORDER BY |
| 1016 | * expression. |
| 1017 | */ |
| 1018 | Assert(numOrderByKeys == list_length(node->indexorderbyops)); |
| 1019 | Assert(numOrderByKeys == list_length(node->indexorderbyorig)); |
| 1020 | indexstate->iss_SortSupport = (SortSupportData *) |
| 1021 | palloc0(numOrderByKeys * sizeof(SortSupportData)); |
| 1022 | indexstate->iss_OrderByTypByVals = (bool *) |
| 1023 | palloc(numOrderByKeys * sizeof(bool)); |
| 1024 | indexstate->iss_OrderByTypLens = (int16 *) |
| 1025 | palloc(numOrderByKeys * sizeof(int16)); |
| 1026 | i = 0; |
| 1027 | forboth(lco, node->indexorderbyops, lcx, node->indexorderbyorig) |
| 1028 | { |
| 1029 | Oid orderbyop = lfirst_oid(lco); |
| 1030 | Node *orderbyexpr = (Node *) lfirst(lcx); |
| 1031 | Oid orderbyType = exprType(orderbyexpr); |
| 1032 | Oid orderbyColl = exprCollation(orderbyexpr); |
| 1033 | SortSupport orderbysort = &indexstate->iss_SortSupport[i]; |
| 1034 | |
| 1035 | /* Initialize sort support */ |
| 1036 | orderbysort->ssup_cxt = CurrentMemoryContext; |
| 1037 | orderbysort->ssup_collation = orderbyColl; |
| 1038 | /* See cmp_orderbyvals() comments on NULLS LAST */ |
| 1039 | orderbysort->ssup_nulls_first = false; |
| 1040 | /* ssup_attno is unused here and elsewhere */ |
| 1041 | orderbysort->ssup_attno = 0; |
| 1042 | /* No abbreviation */ |
| 1043 | orderbysort->abbreviate = false; |
| 1044 | PrepareSortSupportFromOrderingOp(orderbyop, orderbysort); |
| 1045 | |
| 1046 | get_typlenbyval(orderbyType, |
| 1047 | &indexstate->iss_OrderByTypLens[i], |
| 1048 | &indexstate->iss_OrderByTypByVals[i]); |
| 1049 | i++; |
| 1050 | } |
| 1051 | |
| 1052 | /* allocate arrays to hold the re-calculated distances */ |
| 1053 | indexstate->iss_OrderByValues = (Datum *) |
| 1054 | palloc(numOrderByKeys * sizeof(Datum)); |
| 1055 | indexstate->iss_OrderByNulls = (bool *) |
| 1056 | palloc(numOrderByKeys * sizeof(bool)); |
| 1057 | |
| 1058 | /* and initialize the reorder queue */ |
| 1059 | indexstate->iss_ReorderQueue = pairingheap_allocate(reorderqueue_cmp, |
| 1060 | indexstate); |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * If we have runtime keys, we need an ExprContext to evaluate them. The |
| 1065 | * node's standard context won't do because we want to reset that context |
| 1066 | * for every tuple. So, build another context just like the other one... |
| 1067 | * -tgl 7/11/00 |
| 1068 | */ |
| 1069 | if (indexstate->iss_NumRuntimeKeys != 0) |
| 1070 | { |
| 1071 | ExprContext *stdecontext = indexstate->ss.ps.ps_ExprContext; |
| 1072 | |
| 1073 | ExecAssignExprContext(estate, &indexstate->ss.ps); |
| 1074 | indexstate->iss_RuntimeContext = indexstate->ss.ps.ps_ExprContext; |
| 1075 | indexstate->ss.ps.ps_ExprContext = stdecontext; |
| 1076 | } |
| 1077 | else |
| 1078 | { |
| 1079 | indexstate->iss_RuntimeContext = NULL; |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * all done. |
| 1084 | */ |
| 1085 | return indexstate; |
| 1086 | } |
| 1087 | |
| 1088 | |
| 1089 | /* |
| 1090 | * ExecIndexBuildScanKeys |
| 1091 | * Build the index scan keys from the index qualification expressions |
| 1092 | * |
| 1093 | * The index quals are passed to the index AM in the form of a ScanKey array. |
| 1094 | * This routine sets up the ScanKeys, fills in all constant fields of the |
| 1095 | * ScanKeys, and prepares information about the keys that have non-constant |
| 1096 | * comparison values. We divide index qual expressions into five types: |
| 1097 | * |
| 1098 | * 1. Simple operator with constant comparison value ("indexkey op constant"). |
| 1099 | * For these, we just fill in a ScanKey containing the constant value. |
| 1100 | * |
| 1101 | * 2. Simple operator with non-constant value ("indexkey op expression"). |
| 1102 | * For these, we create a ScanKey with everything filled in except the |
| 1103 | * expression value, and set up an IndexRuntimeKeyInfo struct to drive |
| 1104 | * evaluation of the expression at the right times. |
| 1105 | * |
| 1106 | * 3. RowCompareExpr ("(indexkey, indexkey, ...) op (expr, expr, ...)"). |
| 1107 | * For these, we create a header ScanKey plus a subsidiary ScanKey array, |
| 1108 | * as specified in access/skey.h. The elements of the row comparison |
| 1109 | * can have either constant or non-constant comparison values. |
| 1110 | * |
| 1111 | * 4. ScalarArrayOpExpr ("indexkey op ANY (array-expression)"). If the index |
| 1112 | * supports amsearcharray, we handle these the same as simple operators, |
| 1113 | * setting the SK_SEARCHARRAY flag to tell the AM to handle them. Otherwise, |
| 1114 | * we create a ScanKey with everything filled in except the comparison value, |
| 1115 | * and set up an IndexArrayKeyInfo struct to drive processing of the qual. |
| 1116 | * (Note that if we use an IndexArrayKeyInfo struct, the array expression is |
| 1117 | * always treated as requiring runtime evaluation, even if it's a constant.) |
| 1118 | * |
| 1119 | * 5. NullTest ("indexkey IS NULL/IS NOT NULL"). We just fill in the |
| 1120 | * ScanKey properly. |
| 1121 | * |
| 1122 | * This code is also used to prepare ORDER BY expressions for amcanorderbyop |
| 1123 | * indexes. The behavior is exactly the same, except that we have to look up |
| 1124 | * the operator differently. Note that only cases 1 and 2 are currently |
| 1125 | * possible for ORDER BY. |
| 1126 | * |
| 1127 | * Input params are: |
| 1128 | * |
| 1129 | * planstate: executor state node we are working for |
| 1130 | * index: the index we are building scan keys for |
| 1131 | * quals: indexquals (or indexorderbys) expressions |
| 1132 | * isorderby: true if processing ORDER BY exprs, false if processing quals |
| 1133 | * *runtimeKeys: ptr to pre-existing IndexRuntimeKeyInfos, or NULL if none |
| 1134 | * *numRuntimeKeys: number of pre-existing runtime keys |
| 1135 | * |
| 1136 | * Output params are: |
| 1137 | * |
| 1138 | * *scanKeys: receives ptr to array of ScanKeys |
| 1139 | * *numScanKeys: receives number of scankeys |
| 1140 | * *runtimeKeys: receives ptr to array of IndexRuntimeKeyInfos, or NULL if none |
| 1141 | * *numRuntimeKeys: receives number of runtime keys |
| 1142 | * *arrayKeys: receives ptr to array of IndexArrayKeyInfos, or NULL if none |
| 1143 | * *numArrayKeys: receives number of array keys |
| 1144 | * |
| 1145 | * Caller may pass NULL for arrayKeys and numArrayKeys to indicate that |
| 1146 | * IndexArrayKeyInfos are not supported. |
| 1147 | */ |
| 1148 | void |
| 1149 | ExecIndexBuildScanKeys(PlanState *planstate, Relation index, |
| 1150 | List *quals, bool isorderby, |
| 1151 | ScanKey *scanKeys, int *numScanKeys, |
| 1152 | IndexRuntimeKeyInfo **runtimeKeys, int *numRuntimeKeys, |
| 1153 | IndexArrayKeyInfo **arrayKeys, int *numArrayKeys) |
| 1154 | { |
| 1155 | ListCell *qual_cell; |
| 1156 | ScanKey scan_keys; |
| 1157 | IndexRuntimeKeyInfo *runtime_keys; |
| 1158 | IndexArrayKeyInfo *array_keys; |
| 1159 | int n_scan_keys; |
| 1160 | int n_runtime_keys; |
| 1161 | int max_runtime_keys; |
| 1162 | int n_array_keys; |
| 1163 | int j; |
| 1164 | |
| 1165 | /* Allocate array for ScanKey structs: one per qual */ |
| 1166 | n_scan_keys = list_length(quals); |
| 1167 | scan_keys = (ScanKey) palloc(n_scan_keys * sizeof(ScanKeyData)); |
| 1168 | |
| 1169 | /* |
| 1170 | * runtime_keys array is dynamically resized as needed. We handle it this |
| 1171 | * way so that the same runtime keys array can be shared between |
| 1172 | * indexquals and indexorderbys, which will be processed in separate calls |
| 1173 | * of this function. Caller must be sure to pass in NULL/0 for first |
| 1174 | * call. |
| 1175 | */ |
| 1176 | runtime_keys = *runtimeKeys; |
| 1177 | n_runtime_keys = max_runtime_keys = *numRuntimeKeys; |
| 1178 | |
| 1179 | /* Allocate array_keys as large as it could possibly need to be */ |
| 1180 | array_keys = (IndexArrayKeyInfo *) |
| 1181 | palloc0(n_scan_keys * sizeof(IndexArrayKeyInfo)); |
| 1182 | n_array_keys = 0; |
| 1183 | |
| 1184 | /* |
| 1185 | * for each opclause in the given qual, convert the opclause into a single |
| 1186 | * scan key |
| 1187 | */ |
| 1188 | j = 0; |
| 1189 | foreach(qual_cell, quals) |
| 1190 | { |
| 1191 | Expr *clause = (Expr *) lfirst(qual_cell); |
| 1192 | ScanKey this_scan_key = &scan_keys[j++]; |
| 1193 | Oid opno; /* operator's OID */ |
| 1194 | RegProcedure opfuncid; /* operator proc id used in scan */ |
| 1195 | Oid opfamily; /* opfamily of index column */ |
| 1196 | int op_strategy; /* operator's strategy number */ |
| 1197 | Oid op_lefttype; /* operator's declared input types */ |
| 1198 | Oid op_righttype; |
| 1199 | Expr *leftop; /* expr on lhs of operator */ |
| 1200 | Expr *rightop; /* expr on rhs ... */ |
| 1201 | AttrNumber varattno; /* att number used in scan */ |
| 1202 | int indnkeyatts; |
| 1203 | |
| 1204 | indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index); |
| 1205 | if (IsA(clause, OpExpr)) |
| 1206 | { |
| 1207 | /* indexkey op const or indexkey op expression */ |
| 1208 | int flags = 0; |
| 1209 | Datum scanvalue; |
| 1210 | |
| 1211 | opno = ((OpExpr *) clause)->opno; |
| 1212 | opfuncid = ((OpExpr *) clause)->opfuncid; |
| 1213 | |
| 1214 | /* |
| 1215 | * leftop should be the index key Var, possibly relabeled |
| 1216 | */ |
| 1217 | leftop = (Expr *) get_leftop(clause); |
| 1218 | |
| 1219 | if (leftop && IsA(leftop, RelabelType)) |
| 1220 | leftop = ((RelabelType *) leftop)->arg; |
| 1221 | |
| 1222 | Assert(leftop != NULL); |
| 1223 | |
| 1224 | if (!(IsA(leftop, Var) && |
| 1225 | ((Var *) leftop)->varno == INDEX_VAR)) |
| 1226 | elog(ERROR, "indexqual doesn't have key on left side" ); |
| 1227 | |
| 1228 | varattno = ((Var *) leftop)->varattno; |
| 1229 | if (varattno < 1 || varattno > indnkeyatts) |
| 1230 | elog(ERROR, "bogus index qualification" ); |
| 1231 | |
| 1232 | /* |
| 1233 | * We have to look up the operator's strategy number. This |
| 1234 | * provides a cross-check that the operator does match the index. |
| 1235 | */ |
| 1236 | opfamily = index->rd_opfamily[varattno - 1]; |
| 1237 | |
| 1238 | get_op_opfamily_properties(opno, opfamily, isorderby, |
| 1239 | &op_strategy, |
| 1240 | &op_lefttype, |
| 1241 | &op_righttype); |
| 1242 | |
| 1243 | if (isorderby) |
| 1244 | flags |= SK_ORDER_BY; |
| 1245 | |
| 1246 | /* |
| 1247 | * rightop is the constant or variable comparison value |
| 1248 | */ |
| 1249 | rightop = (Expr *) get_rightop(clause); |
| 1250 | |
| 1251 | if (rightop && IsA(rightop, RelabelType)) |
| 1252 | rightop = ((RelabelType *) rightop)->arg; |
| 1253 | |
| 1254 | Assert(rightop != NULL); |
| 1255 | |
| 1256 | if (IsA(rightop, Const)) |
| 1257 | { |
| 1258 | /* OK, simple constant comparison value */ |
| 1259 | scanvalue = ((Const *) rightop)->constvalue; |
| 1260 | if (((Const *) rightop)->constisnull) |
| 1261 | flags |= SK_ISNULL; |
| 1262 | } |
| 1263 | else |
| 1264 | { |
| 1265 | /* Need to treat this one as a runtime key */ |
| 1266 | if (n_runtime_keys >= max_runtime_keys) |
| 1267 | { |
| 1268 | if (max_runtime_keys == 0) |
| 1269 | { |
| 1270 | max_runtime_keys = 8; |
| 1271 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1272 | palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1273 | } |
| 1274 | else |
| 1275 | { |
| 1276 | max_runtime_keys *= 2; |
| 1277 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1278 | repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1279 | } |
| 1280 | } |
| 1281 | runtime_keys[n_runtime_keys].scan_key = this_scan_key; |
| 1282 | runtime_keys[n_runtime_keys].key_expr = |
| 1283 | ExecInitExpr(rightop, planstate); |
| 1284 | runtime_keys[n_runtime_keys].key_toastable = |
| 1285 | TypeIsToastable(op_righttype); |
| 1286 | n_runtime_keys++; |
| 1287 | scanvalue = (Datum) 0; |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * initialize the scan key's fields appropriately |
| 1292 | */ |
| 1293 | ScanKeyEntryInitialize(this_scan_key, |
| 1294 | flags, |
| 1295 | varattno, /* attribute number to scan */ |
| 1296 | op_strategy, /* op's strategy */ |
| 1297 | op_righttype, /* strategy subtype */ |
| 1298 | ((OpExpr *) clause)->inputcollid, /* collation */ |
| 1299 | opfuncid, /* reg proc to use */ |
| 1300 | scanvalue); /* constant */ |
| 1301 | } |
| 1302 | else if (IsA(clause, RowCompareExpr)) |
| 1303 | { |
| 1304 | /* (indexkey, indexkey, ...) op (expression, expression, ...) */ |
| 1305 | RowCompareExpr *rc = (RowCompareExpr *) clause; |
| 1306 | ScanKey first_sub_key; |
| 1307 | int n_sub_key; |
| 1308 | ListCell *largs_cell; |
| 1309 | ListCell *rargs_cell; |
| 1310 | ListCell *opnos_cell; |
| 1311 | ListCell *collids_cell; |
| 1312 | |
| 1313 | Assert(!isorderby); |
| 1314 | |
| 1315 | first_sub_key = (ScanKey) |
| 1316 | palloc(list_length(rc->opnos) * sizeof(ScanKeyData)); |
| 1317 | n_sub_key = 0; |
| 1318 | |
| 1319 | /* Scan RowCompare columns and generate subsidiary ScanKey items */ |
| 1320 | forfour(largs_cell, rc->largs, rargs_cell, rc->rargs, |
| 1321 | opnos_cell, rc->opnos, collids_cell, rc->inputcollids) |
| 1322 | { |
| 1323 | ScanKey this_sub_key = &first_sub_key[n_sub_key]; |
| 1324 | int flags = SK_ROW_MEMBER; |
| 1325 | Datum scanvalue; |
| 1326 | Oid inputcollation; |
| 1327 | |
| 1328 | leftop = (Expr *) lfirst(largs_cell); |
| 1329 | rightop = (Expr *) lfirst(rargs_cell); |
| 1330 | opno = lfirst_oid(opnos_cell); |
| 1331 | inputcollation = lfirst_oid(collids_cell); |
| 1332 | |
| 1333 | /* |
| 1334 | * leftop should be the index key Var, possibly relabeled |
| 1335 | */ |
| 1336 | if (leftop && IsA(leftop, RelabelType)) |
| 1337 | leftop = ((RelabelType *) leftop)->arg; |
| 1338 | |
| 1339 | Assert(leftop != NULL); |
| 1340 | |
| 1341 | if (!(IsA(leftop, Var) && |
| 1342 | ((Var *) leftop)->varno == INDEX_VAR)) |
| 1343 | elog(ERROR, "indexqual doesn't have key on left side" ); |
| 1344 | |
| 1345 | varattno = ((Var *) leftop)->varattno; |
| 1346 | |
| 1347 | /* |
| 1348 | * We have to look up the operator's associated btree support |
| 1349 | * function |
| 1350 | */ |
| 1351 | if (index->rd_rel->relam != BTREE_AM_OID || |
| 1352 | varattno < 1 || varattno > indnkeyatts) |
| 1353 | elog(ERROR, "bogus RowCompare index qualification" ); |
| 1354 | opfamily = index->rd_opfamily[varattno - 1]; |
| 1355 | |
| 1356 | get_op_opfamily_properties(opno, opfamily, isorderby, |
| 1357 | &op_strategy, |
| 1358 | &op_lefttype, |
| 1359 | &op_righttype); |
| 1360 | |
| 1361 | if (op_strategy != rc->rctype) |
| 1362 | elog(ERROR, "RowCompare index qualification contains wrong operator" ); |
| 1363 | |
| 1364 | opfuncid = get_opfamily_proc(opfamily, |
| 1365 | op_lefttype, |
| 1366 | op_righttype, |
| 1367 | BTORDER_PROC); |
| 1368 | if (!RegProcedureIsValid(opfuncid)) |
| 1369 | elog(ERROR, "missing support function %d(%u,%u) in opfamily %u" , |
| 1370 | BTORDER_PROC, op_lefttype, op_righttype, opfamily); |
| 1371 | |
| 1372 | /* |
| 1373 | * rightop is the constant or variable comparison value |
| 1374 | */ |
| 1375 | if (rightop && IsA(rightop, RelabelType)) |
| 1376 | rightop = ((RelabelType *) rightop)->arg; |
| 1377 | |
| 1378 | Assert(rightop != NULL); |
| 1379 | |
| 1380 | if (IsA(rightop, Const)) |
| 1381 | { |
| 1382 | /* OK, simple constant comparison value */ |
| 1383 | scanvalue = ((Const *) rightop)->constvalue; |
| 1384 | if (((Const *) rightop)->constisnull) |
| 1385 | flags |= SK_ISNULL; |
| 1386 | } |
| 1387 | else |
| 1388 | { |
| 1389 | /* Need to treat this one as a runtime key */ |
| 1390 | if (n_runtime_keys >= max_runtime_keys) |
| 1391 | { |
| 1392 | if (max_runtime_keys == 0) |
| 1393 | { |
| 1394 | max_runtime_keys = 8; |
| 1395 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1396 | palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1397 | } |
| 1398 | else |
| 1399 | { |
| 1400 | max_runtime_keys *= 2; |
| 1401 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1402 | repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1403 | } |
| 1404 | } |
| 1405 | runtime_keys[n_runtime_keys].scan_key = this_sub_key; |
| 1406 | runtime_keys[n_runtime_keys].key_expr = |
| 1407 | ExecInitExpr(rightop, planstate); |
| 1408 | runtime_keys[n_runtime_keys].key_toastable = |
| 1409 | TypeIsToastable(op_righttype); |
| 1410 | n_runtime_keys++; |
| 1411 | scanvalue = (Datum) 0; |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * initialize the subsidiary scan key's fields appropriately |
| 1416 | */ |
| 1417 | ScanKeyEntryInitialize(this_sub_key, |
| 1418 | flags, |
| 1419 | varattno, /* attribute number */ |
| 1420 | op_strategy, /* op's strategy */ |
| 1421 | op_righttype, /* strategy subtype */ |
| 1422 | inputcollation, /* collation */ |
| 1423 | opfuncid, /* reg proc to use */ |
| 1424 | scanvalue); /* constant */ |
| 1425 | n_sub_key++; |
| 1426 | } |
| 1427 | |
| 1428 | /* Mark the last subsidiary scankey correctly */ |
| 1429 | first_sub_key[n_sub_key - 1].sk_flags |= SK_ROW_END; |
| 1430 | |
| 1431 | /* |
| 1432 | * We don't use ScanKeyEntryInitialize for the header because it |
| 1433 | * isn't going to contain a valid sk_func pointer. |
| 1434 | */ |
| 1435 | MemSet(this_scan_key, 0, sizeof(ScanKeyData)); |
| 1436 | this_scan_key->sk_flags = SK_ROW_HEADER; |
| 1437 | this_scan_key->sk_attno = first_sub_key->sk_attno; |
| 1438 | this_scan_key->sk_strategy = rc->rctype; |
| 1439 | /* sk_subtype, sk_collation, sk_func not used in a header */ |
| 1440 | this_scan_key->sk_argument = PointerGetDatum(first_sub_key); |
| 1441 | } |
| 1442 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 1443 | { |
| 1444 | /* indexkey op ANY (array-expression) */ |
| 1445 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 1446 | int flags = 0; |
| 1447 | Datum scanvalue; |
| 1448 | |
| 1449 | Assert(!isorderby); |
| 1450 | |
| 1451 | Assert(saop->useOr); |
| 1452 | opno = saop->opno; |
| 1453 | opfuncid = saop->opfuncid; |
| 1454 | |
| 1455 | /* |
| 1456 | * leftop should be the index key Var, possibly relabeled |
| 1457 | */ |
| 1458 | leftop = (Expr *) linitial(saop->args); |
| 1459 | |
| 1460 | if (leftop && IsA(leftop, RelabelType)) |
| 1461 | leftop = ((RelabelType *) leftop)->arg; |
| 1462 | |
| 1463 | Assert(leftop != NULL); |
| 1464 | |
| 1465 | if (!(IsA(leftop, Var) && |
| 1466 | ((Var *) leftop)->varno == INDEX_VAR)) |
| 1467 | elog(ERROR, "indexqual doesn't have key on left side" ); |
| 1468 | |
| 1469 | varattno = ((Var *) leftop)->varattno; |
| 1470 | if (varattno < 1 || varattno > indnkeyatts) |
| 1471 | elog(ERROR, "bogus index qualification" ); |
| 1472 | |
| 1473 | /* |
| 1474 | * We have to look up the operator's strategy number. This |
| 1475 | * provides a cross-check that the operator does match the index. |
| 1476 | */ |
| 1477 | opfamily = index->rd_opfamily[varattno - 1]; |
| 1478 | |
| 1479 | get_op_opfamily_properties(opno, opfamily, isorderby, |
| 1480 | &op_strategy, |
| 1481 | &op_lefttype, |
| 1482 | &op_righttype); |
| 1483 | |
| 1484 | /* |
| 1485 | * rightop is the constant or variable array value |
| 1486 | */ |
| 1487 | rightop = (Expr *) lsecond(saop->args); |
| 1488 | |
| 1489 | if (rightop && IsA(rightop, RelabelType)) |
| 1490 | rightop = ((RelabelType *) rightop)->arg; |
| 1491 | |
| 1492 | Assert(rightop != NULL); |
| 1493 | |
| 1494 | if (index->rd_indam->amsearcharray) |
| 1495 | { |
| 1496 | /* Index AM will handle this like a simple operator */ |
| 1497 | flags |= SK_SEARCHARRAY; |
| 1498 | if (IsA(rightop, Const)) |
| 1499 | { |
| 1500 | /* OK, simple constant comparison value */ |
| 1501 | scanvalue = ((Const *) rightop)->constvalue; |
| 1502 | if (((Const *) rightop)->constisnull) |
| 1503 | flags |= SK_ISNULL; |
| 1504 | } |
| 1505 | else |
| 1506 | { |
| 1507 | /* Need to treat this one as a runtime key */ |
| 1508 | if (n_runtime_keys >= max_runtime_keys) |
| 1509 | { |
| 1510 | if (max_runtime_keys == 0) |
| 1511 | { |
| 1512 | max_runtime_keys = 8; |
| 1513 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1514 | palloc(max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1515 | } |
| 1516 | else |
| 1517 | { |
| 1518 | max_runtime_keys *= 2; |
| 1519 | runtime_keys = (IndexRuntimeKeyInfo *) |
| 1520 | repalloc(runtime_keys, max_runtime_keys * sizeof(IndexRuntimeKeyInfo)); |
| 1521 | } |
| 1522 | } |
| 1523 | runtime_keys[n_runtime_keys].scan_key = this_scan_key; |
| 1524 | runtime_keys[n_runtime_keys].key_expr = |
| 1525 | ExecInitExpr(rightop, planstate); |
| 1526 | |
| 1527 | /* |
| 1528 | * Careful here: the runtime expression is not of |
| 1529 | * op_righttype, but rather is an array of same; so |
| 1530 | * TypeIsToastable() isn't helpful. However, we can |
| 1531 | * assume that all array types are toastable. |
| 1532 | */ |
| 1533 | runtime_keys[n_runtime_keys].key_toastable = true; |
| 1534 | n_runtime_keys++; |
| 1535 | scanvalue = (Datum) 0; |
| 1536 | } |
| 1537 | } |
| 1538 | else |
| 1539 | { |
| 1540 | /* Executor has to expand the array value */ |
| 1541 | array_keys[n_array_keys].scan_key = this_scan_key; |
| 1542 | array_keys[n_array_keys].array_expr = |
| 1543 | ExecInitExpr(rightop, planstate); |
| 1544 | /* the remaining fields were zeroed by palloc0 */ |
| 1545 | n_array_keys++; |
| 1546 | scanvalue = (Datum) 0; |
| 1547 | } |
| 1548 | |
| 1549 | /* |
| 1550 | * initialize the scan key's fields appropriately |
| 1551 | */ |
| 1552 | ScanKeyEntryInitialize(this_scan_key, |
| 1553 | flags, |
| 1554 | varattno, /* attribute number to scan */ |
| 1555 | op_strategy, /* op's strategy */ |
| 1556 | op_righttype, /* strategy subtype */ |
| 1557 | saop->inputcollid, /* collation */ |
| 1558 | opfuncid, /* reg proc to use */ |
| 1559 | scanvalue); /* constant */ |
| 1560 | } |
| 1561 | else if (IsA(clause, NullTest)) |
| 1562 | { |
| 1563 | /* indexkey IS NULL or indexkey IS NOT NULL */ |
| 1564 | NullTest *ntest = (NullTest *) clause; |
| 1565 | int flags; |
| 1566 | |
| 1567 | Assert(!isorderby); |
| 1568 | |
| 1569 | /* |
| 1570 | * argument should be the index key Var, possibly relabeled |
| 1571 | */ |
| 1572 | leftop = ntest->arg; |
| 1573 | |
| 1574 | if (leftop && IsA(leftop, RelabelType)) |
| 1575 | leftop = ((RelabelType *) leftop)->arg; |
| 1576 | |
| 1577 | Assert(leftop != NULL); |
| 1578 | |
| 1579 | if (!(IsA(leftop, Var) && |
| 1580 | ((Var *) leftop)->varno == INDEX_VAR)) |
| 1581 | elog(ERROR, "NullTest indexqual has wrong key" ); |
| 1582 | |
| 1583 | varattno = ((Var *) leftop)->varattno; |
| 1584 | |
| 1585 | /* |
| 1586 | * initialize the scan key's fields appropriately |
| 1587 | */ |
| 1588 | switch (ntest->nulltesttype) |
| 1589 | { |
| 1590 | case IS_NULL: |
| 1591 | flags = SK_ISNULL | SK_SEARCHNULL; |
| 1592 | break; |
| 1593 | case IS_NOT_NULL: |
| 1594 | flags = SK_ISNULL | SK_SEARCHNOTNULL; |
| 1595 | break; |
| 1596 | default: |
| 1597 | elog(ERROR, "unrecognized nulltesttype: %d" , |
| 1598 | (int) ntest->nulltesttype); |
| 1599 | flags = 0; /* keep compiler quiet */ |
| 1600 | break; |
| 1601 | } |
| 1602 | |
| 1603 | ScanKeyEntryInitialize(this_scan_key, |
| 1604 | flags, |
| 1605 | varattno, /* attribute number to scan */ |
| 1606 | InvalidStrategy, /* no strategy */ |
| 1607 | InvalidOid, /* no strategy subtype */ |
| 1608 | InvalidOid, /* no collation */ |
| 1609 | InvalidOid, /* no reg proc for this */ |
| 1610 | (Datum) 0); /* constant */ |
| 1611 | } |
| 1612 | else |
| 1613 | elog(ERROR, "unsupported indexqual type: %d" , |
| 1614 | (int) nodeTag(clause)); |
| 1615 | } |
| 1616 | |
| 1617 | Assert(n_runtime_keys <= max_runtime_keys); |
| 1618 | |
| 1619 | /* Get rid of any unused arrays */ |
| 1620 | if (n_array_keys == 0) |
| 1621 | { |
| 1622 | pfree(array_keys); |
| 1623 | array_keys = NULL; |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * Return info to our caller. |
| 1628 | */ |
| 1629 | *scanKeys = scan_keys; |
| 1630 | *numScanKeys = n_scan_keys; |
| 1631 | *runtimeKeys = runtime_keys; |
| 1632 | *numRuntimeKeys = n_runtime_keys; |
| 1633 | if (arrayKeys) |
| 1634 | { |
| 1635 | *arrayKeys = array_keys; |
| 1636 | *numArrayKeys = n_array_keys; |
| 1637 | } |
| 1638 | else if (n_array_keys != 0) |
| 1639 | elog(ERROR, "ScalarArrayOpExpr index qual found where not allowed" ); |
| 1640 | } |
| 1641 | |
| 1642 | /* ---------------------------------------------------------------- |
| 1643 | * Parallel Scan Support |
| 1644 | * ---------------------------------------------------------------- |
| 1645 | */ |
| 1646 | |
| 1647 | /* ---------------------------------------------------------------- |
| 1648 | * ExecIndexScanEstimate |
| 1649 | * |
| 1650 | * Compute the amount of space we'll need in the parallel |
| 1651 | * query DSM, and inform pcxt->estimator about our needs. |
| 1652 | * ---------------------------------------------------------------- |
| 1653 | */ |
| 1654 | void |
| 1655 | ExecIndexScanEstimate(IndexScanState *node, |
| 1656 | ParallelContext *pcxt) |
| 1657 | { |
| 1658 | EState *estate = node->ss.ps.state; |
| 1659 | |
| 1660 | node->iss_PscanLen = index_parallelscan_estimate(node->iss_RelationDesc, |
| 1661 | estate->es_snapshot); |
| 1662 | shm_toc_estimate_chunk(&pcxt->estimator, node->iss_PscanLen); |
| 1663 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 1664 | } |
| 1665 | |
| 1666 | /* ---------------------------------------------------------------- |
| 1667 | * ExecIndexScanInitializeDSM |
| 1668 | * |
| 1669 | * Set up a parallel index scan descriptor. |
| 1670 | * ---------------------------------------------------------------- |
| 1671 | */ |
| 1672 | void |
| 1673 | ExecIndexScanInitializeDSM(IndexScanState *node, |
| 1674 | ParallelContext *pcxt) |
| 1675 | { |
| 1676 | EState *estate = node->ss.ps.state; |
| 1677 | ParallelIndexScanDesc piscan; |
| 1678 | |
| 1679 | piscan = shm_toc_allocate(pcxt->toc, node->iss_PscanLen); |
| 1680 | index_parallelscan_initialize(node->ss.ss_currentRelation, |
| 1681 | node->iss_RelationDesc, |
| 1682 | estate->es_snapshot, |
| 1683 | piscan); |
| 1684 | shm_toc_insert(pcxt->toc, node->ss.ps.plan->plan_node_id, piscan); |
| 1685 | node->iss_ScanDesc = |
| 1686 | index_beginscan_parallel(node->ss.ss_currentRelation, |
| 1687 | node->iss_RelationDesc, |
| 1688 | node->iss_NumScanKeys, |
| 1689 | node->iss_NumOrderByKeys, |
| 1690 | piscan); |
| 1691 | |
| 1692 | /* |
| 1693 | * If no run-time keys to calculate or they are ready, go ahead and pass |
| 1694 | * the scankeys to the index AM. |
| 1695 | */ |
| 1696 | if (node->iss_NumRuntimeKeys == 0 || node->iss_RuntimeKeysReady) |
| 1697 | index_rescan(node->iss_ScanDesc, |
| 1698 | node->iss_ScanKeys, node->iss_NumScanKeys, |
| 1699 | node->iss_OrderByKeys, node->iss_NumOrderByKeys); |
| 1700 | } |
| 1701 | |
| 1702 | /* ---------------------------------------------------------------- |
| 1703 | * ExecIndexScanReInitializeDSM |
| 1704 | * |
| 1705 | * Reset shared state before beginning a fresh scan. |
| 1706 | * ---------------------------------------------------------------- |
| 1707 | */ |
| 1708 | void |
| 1709 | ExecIndexScanReInitializeDSM(IndexScanState *node, |
| 1710 | ParallelContext *pcxt) |
| 1711 | { |
| 1712 | index_parallelrescan(node->iss_ScanDesc); |
| 1713 | } |
| 1714 | |
| 1715 | /* ---------------------------------------------------------------- |
| 1716 | * ExecIndexScanInitializeWorker |
| 1717 | * |
| 1718 | * Copy relevant information from TOC into planstate. |
| 1719 | * ---------------------------------------------------------------- |
| 1720 | */ |
| 1721 | void |
| 1722 | ExecIndexScanInitializeWorker(IndexScanState *node, |
| 1723 | ParallelWorkerContext *pwcxt) |
| 1724 | { |
| 1725 | ParallelIndexScanDesc piscan; |
| 1726 | |
| 1727 | piscan = shm_toc_lookup(pwcxt->toc, node->ss.ps.plan->plan_node_id, false); |
| 1728 | node->iss_ScanDesc = |
| 1729 | index_beginscan_parallel(node->ss.ss_currentRelation, |
| 1730 | node->iss_RelationDesc, |
| 1731 | node->iss_NumScanKeys, |
| 1732 | node->iss_NumOrderByKeys, |
| 1733 | piscan); |
| 1734 | |
| 1735 | /* |
| 1736 | * If no run-time keys to calculate or they are ready, go ahead and pass |
| 1737 | * the scankeys to the index AM. |
| 1738 | */ |
| 1739 | if (node->iss_NumRuntimeKeys == 0 || node->iss_RuntimeKeysReady) |
| 1740 | index_rescan(node->iss_ScanDesc, |
| 1741 | node->iss_ScanKeys, node->iss_NumScanKeys, |
| 1742 | node->iss_OrderByKeys, node->iss_NumOrderByKeys); |
| 1743 | } |
| 1744 | |