1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nodeModifyTable.c |
4 | * routines to handle ModifyTable nodes. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/executor/nodeModifyTable.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | /* INTERFACE ROUTINES |
16 | * ExecInitModifyTable - initialize the ModifyTable node |
17 | * ExecModifyTable - retrieve the next tuple from the node |
18 | * ExecEndModifyTable - shut down the ModifyTable node |
19 | * ExecReScanModifyTable - rescan the ModifyTable node |
20 | * |
21 | * NOTES |
22 | * Each ModifyTable node contains a list of one or more subplans, |
23 | * much like an Append node. There is one subplan per result relation. |
24 | * The key reason for this is that in an inherited UPDATE command, each |
25 | * result relation could have a different schema (more or different |
26 | * columns) requiring a different plan tree to produce it. In an |
27 | * inherited DELETE, all the subplans should produce the same output |
28 | * rowtype, but we might still find that different plans are appropriate |
29 | * for different child relations. |
30 | * |
31 | * If the query specifies RETURNING, then the ModifyTable returns a |
32 | * RETURNING tuple after completing each row insert, update, or delete. |
33 | * It must be called again to continue the operation. Without RETURNING, |
34 | * we just loop within the node until all the work is done, then |
35 | * return NULL. This avoids useless call/return overhead. |
36 | */ |
37 | |
38 | #include "postgres.h" |
39 | |
40 | #include "access/heapam.h" |
41 | #include "access/htup_details.h" |
42 | #include "access/tableam.h" |
43 | #include "access/xact.h" |
44 | #include "catalog/catalog.h" |
45 | #include "commands/trigger.h" |
46 | #include "executor/execPartition.h" |
47 | #include "executor/executor.h" |
48 | #include "executor/nodeModifyTable.h" |
49 | #include "foreign/fdwapi.h" |
50 | #include "miscadmin.h" |
51 | #include "nodes/nodeFuncs.h" |
52 | #include "rewrite/rewriteHandler.h" |
53 | #include "storage/bufmgr.h" |
54 | #include "storage/lmgr.h" |
55 | #include "utils/builtins.h" |
56 | #include "utils/datum.h" |
57 | #include "utils/memutils.h" |
58 | #include "utils/rel.h" |
59 | |
60 | |
61 | static bool ExecOnConflictUpdate(ModifyTableState *mtstate, |
62 | ResultRelInfo *resultRelInfo, |
63 | ItemPointer conflictTid, |
64 | TupleTableSlot *planSlot, |
65 | TupleTableSlot *excludedSlot, |
66 | EState *estate, |
67 | bool canSetTag, |
68 | TupleTableSlot **returning); |
69 | static TupleTableSlot *ExecPrepareTupleRouting(ModifyTableState *mtstate, |
70 | EState *estate, |
71 | PartitionTupleRouting *proute, |
72 | ResultRelInfo *targetRelInfo, |
73 | TupleTableSlot *slot); |
74 | static ResultRelInfo *getTargetResultRelInfo(ModifyTableState *node); |
75 | static void ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate); |
76 | static TupleConversionMap *tupconv_map_for_subplan(ModifyTableState *node, |
77 | int whichplan); |
78 | |
79 | /* |
80 | * Verify that the tuples to be produced by INSERT or UPDATE match the |
81 | * target relation's rowtype |
82 | * |
83 | * We do this to guard against stale plans. If plan invalidation is |
84 | * functioning properly then we should never get a failure here, but better |
85 | * safe than sorry. Note that this is called after we have obtained lock |
86 | * on the target rel, so the rowtype can't change underneath us. |
87 | * |
88 | * The plan output is represented by its targetlist, because that makes |
89 | * handling the dropped-column case easier. |
90 | */ |
91 | static void |
92 | ExecCheckPlanOutput(Relation resultRel, List *targetList) |
93 | { |
94 | TupleDesc resultDesc = RelationGetDescr(resultRel); |
95 | int attno = 0; |
96 | ListCell *lc; |
97 | |
98 | foreach(lc, targetList) |
99 | { |
100 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
101 | Form_pg_attribute attr; |
102 | |
103 | if (tle->resjunk) |
104 | continue; /* ignore junk tlist items */ |
105 | |
106 | if (attno >= resultDesc->natts) |
107 | ereport(ERROR, |
108 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
109 | errmsg("table row type and query-specified row type do not match" ), |
110 | errdetail("Query has too many columns." ))); |
111 | attr = TupleDescAttr(resultDesc, attno); |
112 | attno++; |
113 | |
114 | if (!attr->attisdropped) |
115 | { |
116 | /* Normal case: demand type match */ |
117 | if (exprType((Node *) tle->expr) != attr->atttypid) |
118 | ereport(ERROR, |
119 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
120 | errmsg("table row type and query-specified row type do not match" ), |
121 | errdetail("Table has type %s at ordinal position %d, but query expects %s." , |
122 | format_type_be(attr->atttypid), |
123 | attno, |
124 | format_type_be(exprType((Node *) tle->expr))))); |
125 | } |
126 | else |
127 | { |
128 | /* |
129 | * For a dropped column, we can't check atttypid (it's likely 0). |
130 | * In any case the planner has most likely inserted an INT4 null. |
131 | * What we insist on is just *some* NULL constant. |
132 | */ |
133 | if (!IsA(tle->expr, Const) || |
134 | !((Const *) tle->expr)->constisnull) |
135 | ereport(ERROR, |
136 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
137 | errmsg("table row type and query-specified row type do not match" ), |
138 | errdetail("Query provides a value for a dropped column at ordinal position %d." , |
139 | attno))); |
140 | } |
141 | } |
142 | if (attno != resultDesc->natts) |
143 | ereport(ERROR, |
144 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
145 | errmsg("table row type and query-specified row type do not match" ), |
146 | errdetail("Query has too few columns." ))); |
147 | } |
148 | |
149 | /* |
150 | * ExecProcessReturning --- evaluate a RETURNING list |
151 | * |
152 | * resultRelInfo: current result rel |
153 | * tupleSlot: slot holding tuple actually inserted/updated/deleted |
154 | * planSlot: slot holding tuple returned by top subplan node |
155 | * |
156 | * Note: If tupleSlot is NULL, the FDW should have already provided econtext's |
157 | * scan tuple. |
158 | * |
159 | * Returns a slot holding the result tuple |
160 | */ |
161 | static TupleTableSlot * |
162 | ExecProcessReturning(ResultRelInfo *resultRelInfo, |
163 | TupleTableSlot *tupleSlot, |
164 | TupleTableSlot *planSlot) |
165 | { |
166 | ProjectionInfo *projectReturning = resultRelInfo->ri_projectReturning; |
167 | ExprContext *econtext = projectReturning->pi_exprContext; |
168 | |
169 | /* Make tuple and any needed join variables available to ExecProject */ |
170 | if (tupleSlot) |
171 | econtext->ecxt_scantuple = tupleSlot; |
172 | econtext->ecxt_outertuple = planSlot; |
173 | |
174 | /* |
175 | * RETURNING expressions might reference the tableoid column, so |
176 | * reinitialize tts_tableOid before evaluating them. |
177 | */ |
178 | econtext->ecxt_scantuple->tts_tableOid = |
179 | RelationGetRelid(resultRelInfo->ri_RelationDesc); |
180 | |
181 | /* Compute the RETURNING expressions */ |
182 | return ExecProject(projectReturning); |
183 | } |
184 | |
185 | /* |
186 | * ExecCheckTupleVisible -- verify tuple is visible |
187 | * |
188 | * It would not be consistent with guarantees of the higher isolation levels to |
189 | * proceed with avoiding insertion (taking speculative insertion's alternative |
190 | * path) on the basis of another tuple that is not visible to MVCC snapshot. |
191 | * Check for the need to raise a serialization failure, and do so as necessary. |
192 | */ |
193 | static void |
194 | ExecCheckTupleVisible(EState *estate, |
195 | Relation rel, |
196 | TupleTableSlot *slot) |
197 | { |
198 | if (!IsolationUsesXactSnapshot()) |
199 | return; |
200 | |
201 | if (!table_tuple_satisfies_snapshot(rel, slot, estate->es_snapshot)) |
202 | { |
203 | Datum xminDatum; |
204 | TransactionId xmin; |
205 | bool isnull; |
206 | |
207 | xminDatum = slot_getsysattr(slot, MinTransactionIdAttributeNumber, &isnull); |
208 | Assert(!isnull); |
209 | xmin = DatumGetTransactionId(xminDatum); |
210 | |
211 | /* |
212 | * We should not raise a serialization failure if the conflict is |
213 | * against a tuple inserted by our own transaction, even if it's not |
214 | * visible to our snapshot. (This would happen, for example, if |
215 | * conflicting keys are proposed for insertion in a single command.) |
216 | */ |
217 | if (!TransactionIdIsCurrentTransactionId(xmin)) |
218 | ereport(ERROR, |
219 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
220 | errmsg("could not serialize access due to concurrent update" ))); |
221 | } |
222 | } |
223 | |
224 | /* |
225 | * ExecCheckTIDVisible -- convenience variant of ExecCheckTupleVisible() |
226 | */ |
227 | static void |
228 | ExecCheckTIDVisible(EState *estate, |
229 | ResultRelInfo *relinfo, |
230 | ItemPointer tid, |
231 | TupleTableSlot *tempSlot) |
232 | { |
233 | Relation rel = relinfo->ri_RelationDesc; |
234 | |
235 | /* Redundantly check isolation level */ |
236 | if (!IsolationUsesXactSnapshot()) |
237 | return; |
238 | |
239 | if (!table_tuple_fetch_row_version(rel, tid, SnapshotAny, tempSlot)) |
240 | elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT" ); |
241 | ExecCheckTupleVisible(estate, rel, tempSlot); |
242 | ExecClearTuple(tempSlot); |
243 | } |
244 | |
245 | /* |
246 | * Compute stored generated columns for a tuple |
247 | */ |
248 | void |
249 | ExecComputeStoredGenerated(EState *estate, TupleTableSlot *slot) |
250 | { |
251 | ResultRelInfo *resultRelInfo = estate->es_result_relation_info; |
252 | Relation rel = resultRelInfo->ri_RelationDesc; |
253 | TupleDesc tupdesc = RelationGetDescr(rel); |
254 | int natts = tupdesc->natts; |
255 | MemoryContext oldContext; |
256 | Datum *values; |
257 | bool *nulls; |
258 | |
259 | Assert(tupdesc->constr && tupdesc->constr->has_generated_stored); |
260 | |
261 | /* |
262 | * If first time through for this result relation, build expression |
263 | * nodetrees for rel's stored generation expressions. Keep them in the |
264 | * per-query memory context so they'll survive throughout the query. |
265 | */ |
266 | if (resultRelInfo->ri_GeneratedExprs == NULL) |
267 | { |
268 | oldContext = MemoryContextSwitchTo(estate->es_query_cxt); |
269 | |
270 | resultRelInfo->ri_GeneratedExprs = |
271 | (ExprState **) palloc(natts * sizeof(ExprState *)); |
272 | |
273 | for (int i = 0; i < natts; i++) |
274 | { |
275 | if (TupleDescAttr(tupdesc, i)->attgenerated == ATTRIBUTE_GENERATED_STORED) |
276 | { |
277 | Expr *expr; |
278 | |
279 | expr = (Expr *) build_column_default(rel, i + 1); |
280 | if (expr == NULL) |
281 | elog(ERROR, "no generation expression found for column number %d of table \"%s\"" , |
282 | i + 1, RelationGetRelationName(rel)); |
283 | |
284 | resultRelInfo->ri_GeneratedExprs[i] = ExecPrepareExpr(expr, estate); |
285 | } |
286 | } |
287 | |
288 | MemoryContextSwitchTo(oldContext); |
289 | } |
290 | |
291 | oldContext = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate)); |
292 | |
293 | values = palloc(sizeof(*values) * natts); |
294 | nulls = palloc(sizeof(*nulls) * natts); |
295 | |
296 | slot_getallattrs(slot); |
297 | memcpy(nulls, slot->tts_isnull, sizeof(*nulls) * natts); |
298 | |
299 | for (int i = 0; i < natts; i++) |
300 | { |
301 | Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
302 | |
303 | if (attr->attgenerated == ATTRIBUTE_GENERATED_STORED) |
304 | { |
305 | ExprContext *econtext; |
306 | Datum val; |
307 | bool isnull; |
308 | |
309 | econtext = GetPerTupleExprContext(estate); |
310 | econtext->ecxt_scantuple = slot; |
311 | |
312 | val = ExecEvalExpr(resultRelInfo->ri_GeneratedExprs[i], econtext, &isnull); |
313 | |
314 | values[i] = val; |
315 | nulls[i] = isnull; |
316 | } |
317 | else |
318 | { |
319 | if (!nulls[i]) |
320 | values[i] = datumCopy(slot->tts_values[i], attr->attbyval, attr->attlen); |
321 | } |
322 | } |
323 | |
324 | ExecClearTuple(slot); |
325 | memcpy(slot->tts_values, values, sizeof(*values) * natts); |
326 | memcpy(slot->tts_isnull, nulls, sizeof(*nulls) * natts); |
327 | ExecStoreVirtualTuple(slot); |
328 | ExecMaterializeSlot(slot); |
329 | |
330 | MemoryContextSwitchTo(oldContext); |
331 | } |
332 | |
333 | /* ---------------------------------------------------------------- |
334 | * ExecInsert |
335 | * |
336 | * For INSERT, we have to insert the tuple into the target relation |
337 | * and insert appropriate tuples into the index relations. |
338 | * |
339 | * Returns RETURNING result if any, otherwise NULL. |
340 | * ---------------------------------------------------------------- |
341 | */ |
342 | static TupleTableSlot * |
343 | ExecInsert(ModifyTableState *mtstate, |
344 | TupleTableSlot *slot, |
345 | TupleTableSlot *planSlot, |
346 | EState *estate, |
347 | bool canSetTag) |
348 | { |
349 | ResultRelInfo *resultRelInfo; |
350 | Relation resultRelationDesc; |
351 | List *recheckIndexes = NIL; |
352 | TupleTableSlot *result = NULL; |
353 | TransitionCaptureState *ar_insert_trig_tcs; |
354 | ModifyTable *node = (ModifyTable *) mtstate->ps.plan; |
355 | OnConflictAction onconflict = node->onConflictAction; |
356 | |
357 | ExecMaterializeSlot(slot); |
358 | |
359 | /* |
360 | * get information on the (current) result relation |
361 | */ |
362 | resultRelInfo = estate->es_result_relation_info; |
363 | resultRelationDesc = resultRelInfo->ri_RelationDesc; |
364 | |
365 | /* |
366 | * BEFORE ROW INSERT Triggers. |
367 | * |
368 | * Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an |
369 | * INSERT ... ON CONFLICT statement. We cannot check for constraint |
370 | * violations before firing these triggers, because they can change the |
371 | * values to insert. Also, they can run arbitrary user-defined code with |
372 | * side-effects that we can't cancel by just not inserting the tuple. |
373 | */ |
374 | if (resultRelInfo->ri_TrigDesc && |
375 | resultRelInfo->ri_TrigDesc->trig_insert_before_row) |
376 | { |
377 | if (!ExecBRInsertTriggers(estate, resultRelInfo, slot)) |
378 | return NULL; /* "do nothing" */ |
379 | } |
380 | |
381 | /* INSTEAD OF ROW INSERT Triggers */ |
382 | if (resultRelInfo->ri_TrigDesc && |
383 | resultRelInfo->ri_TrigDesc->trig_insert_instead_row) |
384 | { |
385 | if (!ExecIRInsertTriggers(estate, resultRelInfo, slot)) |
386 | return NULL; /* "do nothing" */ |
387 | } |
388 | else if (resultRelInfo->ri_FdwRoutine) |
389 | { |
390 | /* |
391 | * Compute stored generated columns |
392 | */ |
393 | if (resultRelationDesc->rd_att->constr && |
394 | resultRelationDesc->rd_att->constr->has_generated_stored) |
395 | ExecComputeStoredGenerated(estate, slot); |
396 | |
397 | /* |
398 | * insert into foreign table: let the FDW do it |
399 | */ |
400 | slot = resultRelInfo->ri_FdwRoutine->ExecForeignInsert(estate, |
401 | resultRelInfo, |
402 | slot, |
403 | planSlot); |
404 | |
405 | if (slot == NULL) /* "do nothing" */ |
406 | return NULL; |
407 | |
408 | /* |
409 | * AFTER ROW Triggers or RETURNING expressions might reference the |
410 | * tableoid column, so (re-)initialize tts_tableOid before evaluating |
411 | * them. |
412 | */ |
413 | slot->tts_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc); |
414 | |
415 | } |
416 | else |
417 | { |
418 | WCOKind wco_kind; |
419 | |
420 | /* |
421 | * Constraints might reference the tableoid column, so (re-)initialize |
422 | * tts_tableOid before evaluating them. |
423 | */ |
424 | slot->tts_tableOid = RelationGetRelid(resultRelationDesc); |
425 | |
426 | /* |
427 | * Compute stored generated columns |
428 | */ |
429 | if (resultRelationDesc->rd_att->constr && |
430 | resultRelationDesc->rd_att->constr->has_generated_stored) |
431 | ExecComputeStoredGenerated(estate, slot); |
432 | |
433 | /* |
434 | * Check any RLS WITH CHECK policies. |
435 | * |
436 | * Normally we should check INSERT policies. But if the insert is the |
437 | * result of a partition key update that moved the tuple to a new |
438 | * partition, we should instead check UPDATE policies, because we are |
439 | * executing policies defined on the target table, and not those |
440 | * defined on the child partitions. |
441 | */ |
442 | wco_kind = (mtstate->operation == CMD_UPDATE) ? |
443 | WCO_RLS_UPDATE_CHECK : WCO_RLS_INSERT_CHECK; |
444 | |
445 | /* |
446 | * ExecWithCheckOptions() will skip any WCOs which are not of the kind |
447 | * we are looking for at this point. |
448 | */ |
449 | if (resultRelInfo->ri_WithCheckOptions != NIL) |
450 | ExecWithCheckOptions(wco_kind, resultRelInfo, slot, estate); |
451 | |
452 | /* |
453 | * Check the constraints of the tuple. |
454 | */ |
455 | if (resultRelationDesc->rd_att->constr) |
456 | ExecConstraints(resultRelInfo, slot, estate); |
457 | |
458 | /* |
459 | * Also check the tuple against the partition constraint, if there is |
460 | * one; except that if we got here via tuple-routing, we don't need to |
461 | * if there's no BR trigger defined on the partition. |
462 | */ |
463 | if (resultRelInfo->ri_PartitionCheck && |
464 | (resultRelInfo->ri_PartitionRoot == NULL || |
465 | (resultRelInfo->ri_TrigDesc && |
466 | resultRelInfo->ri_TrigDesc->trig_insert_before_row))) |
467 | ExecPartitionCheck(resultRelInfo, slot, estate, true); |
468 | |
469 | if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0) |
470 | { |
471 | /* Perform a speculative insertion. */ |
472 | uint32 specToken; |
473 | ItemPointerData conflictTid; |
474 | bool specConflict; |
475 | List *arbiterIndexes; |
476 | |
477 | arbiterIndexes = resultRelInfo->ri_onConflictArbiterIndexes; |
478 | |
479 | /* |
480 | * Do a non-conclusive check for conflicts first. |
481 | * |
482 | * We're not holding any locks yet, so this doesn't guarantee that |
483 | * the later insert won't conflict. But it avoids leaving behind |
484 | * a lot of canceled speculative insertions, if you run a lot of |
485 | * INSERT ON CONFLICT statements that do conflict. |
486 | * |
487 | * We loop back here if we find a conflict below, either during |
488 | * the pre-check, or when we re-check after inserting the tuple |
489 | * speculatively. |
490 | */ |
491 | vlock: |
492 | specConflict = false; |
493 | if (!ExecCheckIndexConstraints(slot, estate, &conflictTid, |
494 | arbiterIndexes)) |
495 | { |
496 | /* committed conflict tuple found */ |
497 | if (onconflict == ONCONFLICT_UPDATE) |
498 | { |
499 | /* |
500 | * In case of ON CONFLICT DO UPDATE, execute the UPDATE |
501 | * part. Be prepared to retry if the UPDATE fails because |
502 | * of another concurrent UPDATE/DELETE to the conflict |
503 | * tuple. |
504 | */ |
505 | TupleTableSlot *returning = NULL; |
506 | |
507 | if (ExecOnConflictUpdate(mtstate, resultRelInfo, |
508 | &conflictTid, planSlot, slot, |
509 | estate, canSetTag, &returning)) |
510 | { |
511 | InstrCountTuples2(&mtstate->ps, 1); |
512 | return returning; |
513 | } |
514 | else |
515 | goto vlock; |
516 | } |
517 | else |
518 | { |
519 | /* |
520 | * In case of ON CONFLICT DO NOTHING, do nothing. However, |
521 | * verify that the tuple is visible to the executor's MVCC |
522 | * snapshot at higher isolation levels. |
523 | * |
524 | * Using ExecGetReturningSlot() to store the tuple for the |
525 | * recheck isn't that pretty, but we can't trivially use |
526 | * the input slot, because it might not be of a compatible |
527 | * type. As there's no conflicting usage of |
528 | * ExecGetReturningSlot() in the DO NOTHING case... |
529 | */ |
530 | Assert(onconflict == ONCONFLICT_NOTHING); |
531 | ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid, |
532 | ExecGetReturningSlot(estate, resultRelInfo)); |
533 | InstrCountTuples2(&mtstate->ps, 1); |
534 | return NULL; |
535 | } |
536 | } |
537 | |
538 | /* |
539 | * Before we start insertion proper, acquire our "speculative |
540 | * insertion lock". Others can use that to wait for us to decide |
541 | * if we're going to go ahead with the insertion, instead of |
542 | * waiting for the whole transaction to complete. |
543 | */ |
544 | specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId()); |
545 | |
546 | /* insert the tuple, with the speculative token */ |
547 | table_tuple_insert_speculative(resultRelationDesc, slot, |
548 | estate->es_output_cid, |
549 | 0, |
550 | NULL, |
551 | specToken); |
552 | |
553 | /* insert index entries for tuple */ |
554 | recheckIndexes = ExecInsertIndexTuples(slot, estate, true, |
555 | &specConflict, |
556 | arbiterIndexes); |
557 | |
558 | /* adjust the tuple's state accordingly */ |
559 | table_tuple_complete_speculative(resultRelationDesc, slot, |
560 | specToken, !specConflict); |
561 | |
562 | /* |
563 | * Wake up anyone waiting for our decision. They will re-check |
564 | * the tuple, see that it's no longer speculative, and wait on our |
565 | * XID as if this was a regularly inserted tuple all along. Or if |
566 | * we killed the tuple, they will see it's dead, and proceed as if |
567 | * the tuple never existed. |
568 | */ |
569 | SpeculativeInsertionLockRelease(GetCurrentTransactionId()); |
570 | |
571 | /* |
572 | * If there was a conflict, start from the beginning. We'll do |
573 | * the pre-check again, which will now find the conflicting tuple |
574 | * (unless it aborts before we get there). |
575 | */ |
576 | if (specConflict) |
577 | { |
578 | list_free(recheckIndexes); |
579 | goto vlock; |
580 | } |
581 | |
582 | /* Since there was no insertion conflict, we're done */ |
583 | } |
584 | else |
585 | { |
586 | /* insert the tuple normally */ |
587 | table_tuple_insert(resultRelationDesc, slot, |
588 | estate->es_output_cid, |
589 | 0, NULL); |
590 | |
591 | /* insert index entries for tuple */ |
592 | if (resultRelInfo->ri_NumIndices > 0) |
593 | recheckIndexes = ExecInsertIndexTuples(slot, estate, false, NULL, |
594 | NIL); |
595 | } |
596 | } |
597 | |
598 | if (canSetTag) |
599 | { |
600 | (estate->es_processed)++; |
601 | setLastTid(&slot->tts_tid); |
602 | } |
603 | |
604 | /* |
605 | * If this insert is the result of a partition key update that moved the |
606 | * tuple to a new partition, put this row into the transition NEW TABLE, |
607 | * if there is one. We need to do this separately for DELETE and INSERT |
608 | * because they happen on different tables. |
609 | */ |
610 | ar_insert_trig_tcs = mtstate->mt_transition_capture; |
611 | if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture |
612 | && mtstate->mt_transition_capture->tcs_update_new_table) |
613 | { |
614 | ExecARUpdateTriggers(estate, resultRelInfo, NULL, |
615 | NULL, |
616 | slot, |
617 | NULL, |
618 | mtstate->mt_transition_capture); |
619 | |
620 | /* |
621 | * We've already captured the NEW TABLE row, so make sure any AR |
622 | * INSERT trigger fired below doesn't capture it again. |
623 | */ |
624 | ar_insert_trig_tcs = NULL; |
625 | } |
626 | |
627 | /* AFTER ROW INSERT Triggers */ |
628 | ExecARInsertTriggers(estate, resultRelInfo, slot, recheckIndexes, |
629 | ar_insert_trig_tcs); |
630 | |
631 | list_free(recheckIndexes); |
632 | |
633 | /* |
634 | * Check any WITH CHECK OPTION constraints from parent views. We are |
635 | * required to do this after testing all constraints and uniqueness |
636 | * violations per the SQL spec, so we do it after actually inserting the |
637 | * record into the heap and all indexes. |
638 | * |
639 | * ExecWithCheckOptions will elog(ERROR) if a violation is found, so the |
640 | * tuple will never be seen, if it violates the WITH CHECK OPTION. |
641 | * |
642 | * ExecWithCheckOptions() will skip any WCOs which are not of the kind we |
643 | * are looking for at this point. |
644 | */ |
645 | if (resultRelInfo->ri_WithCheckOptions != NIL) |
646 | ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate); |
647 | |
648 | /* Process RETURNING if present */ |
649 | if (resultRelInfo->ri_projectReturning) |
650 | result = ExecProcessReturning(resultRelInfo, slot, planSlot); |
651 | |
652 | return result; |
653 | } |
654 | |
655 | /* ---------------------------------------------------------------- |
656 | * ExecDelete |
657 | * |
658 | * DELETE is like UPDATE, except that we delete the tuple and no |
659 | * index modifications are needed. |
660 | * |
661 | * When deleting from a table, tupleid identifies the tuple to |
662 | * delete and oldtuple is NULL. When deleting from a view, |
663 | * oldtuple is passed to the INSTEAD OF triggers and identifies |
664 | * what to delete, and tupleid is invalid. When deleting from a |
665 | * foreign table, tupleid is invalid; the FDW has to figure out |
666 | * which row to delete using data from the planSlot. oldtuple is |
667 | * passed to foreign table triggers; it is NULL when the foreign |
668 | * table has no relevant triggers. We use tupleDeleted to indicate |
669 | * whether the tuple is actually deleted, callers can use it to |
670 | * decide whether to continue the operation. When this DELETE is a |
671 | * part of an UPDATE of partition-key, then the slot returned by |
672 | * EvalPlanQual() is passed back using output parameter epqslot. |
673 | * |
674 | * Returns RETURNING result if any, otherwise NULL. |
675 | * ---------------------------------------------------------------- |
676 | */ |
677 | static TupleTableSlot * |
678 | ExecDelete(ModifyTableState *mtstate, |
679 | ItemPointer tupleid, |
680 | HeapTuple oldtuple, |
681 | TupleTableSlot *planSlot, |
682 | EPQState *epqstate, |
683 | EState *estate, |
684 | bool processReturning, |
685 | bool canSetTag, |
686 | bool changingPart, |
687 | bool *tupleDeleted, |
688 | TupleTableSlot **epqreturnslot) |
689 | { |
690 | ResultRelInfo *resultRelInfo; |
691 | Relation resultRelationDesc; |
692 | TM_Result result; |
693 | TM_FailureData tmfd; |
694 | TupleTableSlot *slot = NULL; |
695 | TransitionCaptureState *ar_delete_trig_tcs; |
696 | |
697 | if (tupleDeleted) |
698 | *tupleDeleted = false; |
699 | |
700 | /* |
701 | * get information on the (current) result relation |
702 | */ |
703 | resultRelInfo = estate->es_result_relation_info; |
704 | resultRelationDesc = resultRelInfo->ri_RelationDesc; |
705 | |
706 | /* BEFORE ROW DELETE Triggers */ |
707 | if (resultRelInfo->ri_TrigDesc && |
708 | resultRelInfo->ri_TrigDesc->trig_delete_before_row) |
709 | { |
710 | bool dodelete; |
711 | |
712 | dodelete = ExecBRDeleteTriggers(estate, epqstate, resultRelInfo, |
713 | tupleid, oldtuple, epqreturnslot); |
714 | |
715 | if (!dodelete) /* "do nothing" */ |
716 | return NULL; |
717 | } |
718 | |
719 | /* INSTEAD OF ROW DELETE Triggers */ |
720 | if (resultRelInfo->ri_TrigDesc && |
721 | resultRelInfo->ri_TrigDesc->trig_delete_instead_row) |
722 | { |
723 | bool dodelete; |
724 | |
725 | Assert(oldtuple != NULL); |
726 | dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, oldtuple); |
727 | |
728 | if (!dodelete) /* "do nothing" */ |
729 | return NULL; |
730 | } |
731 | else if (resultRelInfo->ri_FdwRoutine) |
732 | { |
733 | /* |
734 | * delete from foreign table: let the FDW do it |
735 | * |
736 | * We offer the returning slot as a place to store RETURNING data, |
737 | * although the FDW can return some other slot if it wants. |
738 | */ |
739 | slot = ExecGetReturningSlot(estate, resultRelInfo); |
740 | slot = resultRelInfo->ri_FdwRoutine->ExecForeignDelete(estate, |
741 | resultRelInfo, |
742 | slot, |
743 | planSlot); |
744 | |
745 | if (slot == NULL) /* "do nothing" */ |
746 | return NULL; |
747 | |
748 | /* |
749 | * RETURNING expressions might reference the tableoid column, so |
750 | * (re)initialize tts_tableOid before evaluating them. |
751 | */ |
752 | if (TTS_EMPTY(slot)) |
753 | ExecStoreAllNullTuple(slot); |
754 | |
755 | slot->tts_tableOid = RelationGetRelid(resultRelationDesc); |
756 | } |
757 | else |
758 | { |
759 | /* |
760 | * delete the tuple |
761 | * |
762 | * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check |
763 | * that the row to be deleted is visible to that snapshot, and throw a |
764 | * can't-serialize error if not. This is a special-case behavior |
765 | * needed for referential integrity updates in transaction-snapshot |
766 | * mode transactions. |
767 | */ |
768 | ldelete:; |
769 | result = table_tuple_delete(resultRelationDesc, tupleid, |
770 | estate->es_output_cid, |
771 | estate->es_snapshot, |
772 | estate->es_crosscheck_snapshot, |
773 | true /* wait for commit */ , |
774 | &tmfd, |
775 | changingPart); |
776 | |
777 | switch (result) |
778 | { |
779 | case TM_SelfModified: |
780 | |
781 | /* |
782 | * The target tuple was already updated or deleted by the |
783 | * current command, or by a later command in the current |
784 | * transaction. The former case is possible in a join DELETE |
785 | * where multiple tuples join to the same target tuple. This |
786 | * is somewhat questionable, but Postgres has always allowed |
787 | * it: we just ignore additional deletion attempts. |
788 | * |
789 | * The latter case arises if the tuple is modified by a |
790 | * command in a BEFORE trigger, or perhaps by a command in a |
791 | * volatile function used in the query. In such situations we |
792 | * should not ignore the deletion, but it is equally unsafe to |
793 | * proceed. We don't want to discard the original DELETE |
794 | * while keeping the triggered actions based on its deletion; |
795 | * and it would be no better to allow the original DELETE |
796 | * while discarding updates that it triggered. The row update |
797 | * carries some information that might be important according |
798 | * to business rules; so throwing an error is the only safe |
799 | * course. |
800 | * |
801 | * If a trigger actually intends this type of interaction, it |
802 | * can re-execute the DELETE and then return NULL to cancel |
803 | * the outer delete. |
804 | */ |
805 | if (tmfd.cmax != estate->es_output_cid) |
806 | ereport(ERROR, |
807 | (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), |
808 | errmsg("tuple to be deleted was already modified by an operation triggered by the current command" ), |
809 | errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows." ))); |
810 | |
811 | /* Else, already deleted by self; nothing to do */ |
812 | return NULL; |
813 | |
814 | case TM_Ok: |
815 | break; |
816 | |
817 | case TM_Updated: |
818 | { |
819 | TupleTableSlot *inputslot; |
820 | TupleTableSlot *epqslot; |
821 | |
822 | if (IsolationUsesXactSnapshot()) |
823 | ereport(ERROR, |
824 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
825 | errmsg("could not serialize access due to concurrent update" ))); |
826 | |
827 | /* |
828 | * Already know that we're going to need to do EPQ, so |
829 | * fetch tuple directly into the right slot. |
830 | */ |
831 | EvalPlanQualBegin(epqstate); |
832 | inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc, |
833 | resultRelInfo->ri_RangeTableIndex); |
834 | |
835 | result = table_tuple_lock(resultRelationDesc, tupleid, |
836 | estate->es_snapshot, |
837 | inputslot, estate->es_output_cid, |
838 | LockTupleExclusive, LockWaitBlock, |
839 | TUPLE_LOCK_FLAG_FIND_LAST_VERSION, |
840 | &tmfd); |
841 | |
842 | switch (result) |
843 | { |
844 | case TM_Ok: |
845 | Assert(tmfd.traversed); |
846 | epqslot = EvalPlanQual(epqstate, |
847 | resultRelationDesc, |
848 | resultRelInfo->ri_RangeTableIndex, |
849 | inputslot); |
850 | if (TupIsNull(epqslot)) |
851 | /* Tuple not passing quals anymore, exiting... */ |
852 | return NULL; |
853 | |
854 | /* |
855 | * If requested, skip delete and pass back the |
856 | * updated row. |
857 | */ |
858 | if (epqreturnslot) |
859 | { |
860 | *epqreturnslot = epqslot; |
861 | return NULL; |
862 | } |
863 | else |
864 | goto ldelete; |
865 | |
866 | case TM_SelfModified: |
867 | |
868 | /* |
869 | * This can be reached when following an update |
870 | * chain from a tuple updated by another session, |
871 | * reaching a tuple that was already updated in |
872 | * this transaction. If previously updated by this |
873 | * command, ignore the delete, otherwise error |
874 | * out. |
875 | * |
876 | * See also TM_SelfModified response to |
877 | * table_tuple_delete() above. |
878 | */ |
879 | if (tmfd.cmax != estate->es_output_cid) |
880 | ereport(ERROR, |
881 | (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), |
882 | errmsg("tuple to be deleted was already modified by an operation triggered by the current command" ), |
883 | errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows." ))); |
884 | return NULL; |
885 | |
886 | case TM_Deleted: |
887 | /* tuple already deleted; nothing to do */ |
888 | return NULL; |
889 | |
890 | default: |
891 | |
892 | /* |
893 | * TM_Invisible should be impossible because we're |
894 | * waiting for updated row versions, and would |
895 | * already have errored out if the first version |
896 | * is invisible. |
897 | * |
898 | * TM_Updated should be impossible, because we're |
899 | * locking the latest version via |
900 | * TUPLE_LOCK_FLAG_FIND_LAST_VERSION. |
901 | */ |
902 | elog(ERROR, "unexpected table_tuple_lock status: %u" , |
903 | result); |
904 | return NULL; |
905 | } |
906 | |
907 | Assert(false); |
908 | break; |
909 | } |
910 | |
911 | case TM_Deleted: |
912 | if (IsolationUsesXactSnapshot()) |
913 | ereport(ERROR, |
914 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
915 | errmsg("could not serialize access due to concurrent delete" ))); |
916 | /* tuple already deleted; nothing to do */ |
917 | return NULL; |
918 | |
919 | default: |
920 | elog(ERROR, "unrecognized table_tuple_delete status: %u" , |
921 | result); |
922 | return NULL; |
923 | } |
924 | |
925 | /* |
926 | * Note: Normally one would think that we have to delete index tuples |
927 | * associated with the heap tuple now... |
928 | * |
929 | * ... but in POSTGRES, we have no need to do this because VACUUM will |
930 | * take care of it later. We can't delete index tuples immediately |
931 | * anyway, since the tuple is still visible to other transactions. |
932 | */ |
933 | } |
934 | |
935 | if (canSetTag) |
936 | (estate->es_processed)++; |
937 | |
938 | /* Tell caller that the delete actually happened. */ |
939 | if (tupleDeleted) |
940 | *tupleDeleted = true; |
941 | |
942 | /* |
943 | * If this delete is the result of a partition key update that moved the |
944 | * tuple to a new partition, put this row into the transition OLD TABLE, |
945 | * if there is one. We need to do this separately for DELETE and INSERT |
946 | * because they happen on different tables. |
947 | */ |
948 | ar_delete_trig_tcs = mtstate->mt_transition_capture; |
949 | if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture |
950 | && mtstate->mt_transition_capture->tcs_update_old_table) |
951 | { |
952 | ExecARUpdateTriggers(estate, resultRelInfo, |
953 | tupleid, |
954 | oldtuple, |
955 | NULL, |
956 | NULL, |
957 | mtstate->mt_transition_capture); |
958 | |
959 | /* |
960 | * We've already captured the NEW TABLE row, so make sure any AR |
961 | * DELETE trigger fired below doesn't capture it again. |
962 | */ |
963 | ar_delete_trig_tcs = NULL; |
964 | } |
965 | |
966 | /* AFTER ROW DELETE Triggers */ |
967 | ExecARDeleteTriggers(estate, resultRelInfo, tupleid, oldtuple, |
968 | ar_delete_trig_tcs); |
969 | |
970 | /* Process RETURNING if present and if requested */ |
971 | if (processReturning && resultRelInfo->ri_projectReturning) |
972 | { |
973 | /* |
974 | * We have to put the target tuple into a slot, which means first we |
975 | * gotta fetch it. We can use the trigger tuple slot. |
976 | */ |
977 | TupleTableSlot *rslot; |
978 | |
979 | if (resultRelInfo->ri_FdwRoutine) |
980 | { |
981 | /* FDW must have provided a slot containing the deleted row */ |
982 | Assert(!TupIsNull(slot)); |
983 | } |
984 | else |
985 | { |
986 | slot = ExecGetReturningSlot(estate, resultRelInfo); |
987 | if (oldtuple != NULL) |
988 | { |
989 | ExecForceStoreHeapTuple(oldtuple, slot, false); |
990 | } |
991 | else |
992 | { |
993 | if (!table_tuple_fetch_row_version(resultRelationDesc, tupleid, |
994 | SnapshotAny, slot)) |
995 | elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING" ); |
996 | } |
997 | } |
998 | |
999 | rslot = ExecProcessReturning(resultRelInfo, slot, planSlot); |
1000 | |
1001 | /* |
1002 | * Before releasing the target tuple again, make sure rslot has a |
1003 | * local copy of any pass-by-reference values. |
1004 | */ |
1005 | ExecMaterializeSlot(rslot); |
1006 | |
1007 | ExecClearTuple(slot); |
1008 | |
1009 | return rslot; |
1010 | } |
1011 | |
1012 | return NULL; |
1013 | } |
1014 | |
1015 | /* ---------------------------------------------------------------- |
1016 | * ExecUpdate |
1017 | * |
1018 | * note: we can't run UPDATE queries with transactions |
1019 | * off because UPDATEs are actually INSERTs and our |
1020 | * scan will mistakenly loop forever, updating the tuple |
1021 | * it just inserted.. This should be fixed but until it |
1022 | * is, we don't want to get stuck in an infinite loop |
1023 | * which corrupts your database.. |
1024 | * |
1025 | * When updating a table, tupleid identifies the tuple to |
1026 | * update and oldtuple is NULL. When updating a view, oldtuple |
1027 | * is passed to the INSTEAD OF triggers and identifies what to |
1028 | * update, and tupleid is invalid. When updating a foreign table, |
1029 | * tupleid is invalid; the FDW has to figure out which row to |
1030 | * update using data from the planSlot. oldtuple is passed to |
1031 | * foreign table triggers; it is NULL when the foreign table has |
1032 | * no relevant triggers. |
1033 | * |
1034 | * Returns RETURNING result if any, otherwise NULL. |
1035 | * ---------------------------------------------------------------- |
1036 | */ |
1037 | static TupleTableSlot * |
1038 | ExecUpdate(ModifyTableState *mtstate, |
1039 | ItemPointer tupleid, |
1040 | HeapTuple oldtuple, |
1041 | TupleTableSlot *slot, |
1042 | TupleTableSlot *planSlot, |
1043 | EPQState *epqstate, |
1044 | EState *estate, |
1045 | bool canSetTag) |
1046 | { |
1047 | ResultRelInfo *resultRelInfo; |
1048 | Relation resultRelationDesc; |
1049 | TM_Result result; |
1050 | TM_FailureData tmfd; |
1051 | List *recheckIndexes = NIL; |
1052 | TupleConversionMap *saved_tcs_map = NULL; |
1053 | |
1054 | /* |
1055 | * abort the operation if not running transactions |
1056 | */ |
1057 | if (IsBootstrapProcessingMode()) |
1058 | elog(ERROR, "cannot UPDATE during bootstrap" ); |
1059 | |
1060 | ExecMaterializeSlot(slot); |
1061 | |
1062 | /* |
1063 | * get information on the (current) result relation |
1064 | */ |
1065 | resultRelInfo = estate->es_result_relation_info; |
1066 | resultRelationDesc = resultRelInfo->ri_RelationDesc; |
1067 | |
1068 | /* BEFORE ROW UPDATE Triggers */ |
1069 | if (resultRelInfo->ri_TrigDesc && |
1070 | resultRelInfo->ri_TrigDesc->trig_update_before_row) |
1071 | { |
1072 | if (!ExecBRUpdateTriggers(estate, epqstate, resultRelInfo, |
1073 | tupleid, oldtuple, slot)) |
1074 | return NULL; /* "do nothing" */ |
1075 | } |
1076 | |
1077 | /* INSTEAD OF ROW UPDATE Triggers */ |
1078 | if (resultRelInfo->ri_TrigDesc && |
1079 | resultRelInfo->ri_TrigDesc->trig_update_instead_row) |
1080 | { |
1081 | if (!ExecIRUpdateTriggers(estate, resultRelInfo, |
1082 | oldtuple, slot)) |
1083 | return NULL; /* "do nothing" */ |
1084 | } |
1085 | else if (resultRelInfo->ri_FdwRoutine) |
1086 | { |
1087 | /* |
1088 | * Compute stored generated columns |
1089 | */ |
1090 | if (resultRelationDesc->rd_att->constr && |
1091 | resultRelationDesc->rd_att->constr->has_generated_stored) |
1092 | ExecComputeStoredGenerated(estate, slot); |
1093 | |
1094 | /* |
1095 | * update in foreign table: let the FDW do it |
1096 | */ |
1097 | slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate, |
1098 | resultRelInfo, |
1099 | slot, |
1100 | planSlot); |
1101 | |
1102 | if (slot == NULL) /* "do nothing" */ |
1103 | return NULL; |
1104 | |
1105 | /* |
1106 | * AFTER ROW Triggers or RETURNING expressions might reference the |
1107 | * tableoid column, so (re-)initialize tts_tableOid before evaluating |
1108 | * them. |
1109 | */ |
1110 | slot->tts_tableOid = RelationGetRelid(resultRelationDesc); |
1111 | } |
1112 | else |
1113 | { |
1114 | LockTupleMode lockmode; |
1115 | bool partition_constraint_failed; |
1116 | bool update_indexes; |
1117 | |
1118 | /* |
1119 | * Constraints might reference the tableoid column, so (re-)initialize |
1120 | * tts_tableOid before evaluating them. |
1121 | */ |
1122 | slot->tts_tableOid = RelationGetRelid(resultRelationDesc); |
1123 | |
1124 | /* |
1125 | * Compute stored generated columns |
1126 | */ |
1127 | if (resultRelationDesc->rd_att->constr && |
1128 | resultRelationDesc->rd_att->constr->has_generated_stored) |
1129 | ExecComputeStoredGenerated(estate, slot); |
1130 | |
1131 | /* |
1132 | * Check any RLS UPDATE WITH CHECK policies |
1133 | * |
1134 | * If we generate a new candidate tuple after EvalPlanQual testing, we |
1135 | * must loop back here and recheck any RLS policies and constraints. |
1136 | * (We don't need to redo triggers, however. If there are any BEFORE |
1137 | * triggers then trigger.c will have done table_tuple_lock to lock the |
1138 | * correct tuple, so there's no need to do them again.) |
1139 | */ |
1140 | lreplace:; |
1141 | |
1142 | /* ensure slot is independent, consider e.g. EPQ */ |
1143 | ExecMaterializeSlot(slot); |
1144 | |
1145 | /* |
1146 | * If partition constraint fails, this row might get moved to another |
1147 | * partition, in which case we should check the RLS CHECK policy just |
1148 | * before inserting into the new partition, rather than doing it here. |
1149 | * This is because a trigger on that partition might again change the |
1150 | * row. So skip the WCO checks if the partition constraint fails. |
1151 | */ |
1152 | partition_constraint_failed = |
1153 | resultRelInfo->ri_PartitionCheck && |
1154 | !ExecPartitionCheck(resultRelInfo, slot, estate, false); |
1155 | |
1156 | if (!partition_constraint_failed && |
1157 | resultRelInfo->ri_WithCheckOptions != NIL) |
1158 | { |
1159 | /* |
1160 | * ExecWithCheckOptions() will skip any WCOs which are not of the |
1161 | * kind we are looking for at this point. |
1162 | */ |
1163 | ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK, |
1164 | resultRelInfo, slot, estate); |
1165 | } |
1166 | |
1167 | /* |
1168 | * If a partition check failed, try to move the row into the right |
1169 | * partition. |
1170 | */ |
1171 | if (partition_constraint_failed) |
1172 | { |
1173 | bool tuple_deleted; |
1174 | TupleTableSlot *ret_slot; |
1175 | TupleTableSlot *epqslot = NULL; |
1176 | PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing; |
1177 | int map_index; |
1178 | TupleConversionMap *tupconv_map; |
1179 | |
1180 | /* |
1181 | * Disallow an INSERT ON CONFLICT DO UPDATE that causes the |
1182 | * original row to migrate to a different partition. Maybe this |
1183 | * can be implemented some day, but it seems a fringe feature with |
1184 | * little redeeming value. |
1185 | */ |
1186 | if (((ModifyTable *) mtstate->ps.plan)->onConflictAction == ONCONFLICT_UPDATE) |
1187 | ereport(ERROR, |
1188 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1189 | errmsg("invalid ON UPDATE specification" ), |
1190 | errdetail("The result tuple would appear in a different partition than the original tuple." ))); |
1191 | |
1192 | /* |
1193 | * When an UPDATE is run on a leaf partition, we will not have |
1194 | * partition tuple routing set up. In that case, fail with |
1195 | * partition constraint violation error. |
1196 | */ |
1197 | if (proute == NULL) |
1198 | ExecPartitionCheckEmitError(resultRelInfo, slot, estate); |
1199 | |
1200 | /* |
1201 | * Row movement, part 1. Delete the tuple, but skip RETURNING |
1202 | * processing. We want to return rows from INSERT. |
1203 | */ |
1204 | ExecDelete(mtstate, tupleid, oldtuple, planSlot, epqstate, |
1205 | estate, false, false /* canSetTag */ , |
1206 | true /* changingPart */ , &tuple_deleted, &epqslot); |
1207 | |
1208 | /* |
1209 | * For some reason if DELETE didn't happen (e.g. trigger prevented |
1210 | * it, or it was already deleted by self, or it was concurrently |
1211 | * deleted by another transaction), then we should skip the insert |
1212 | * as well; otherwise, an UPDATE could cause an increase in the |
1213 | * total number of rows across all partitions, which is clearly |
1214 | * wrong. |
1215 | * |
1216 | * For a normal UPDATE, the case where the tuple has been the |
1217 | * subject of a concurrent UPDATE or DELETE would be handled by |
1218 | * the EvalPlanQual machinery, but for an UPDATE that we've |
1219 | * translated into a DELETE from this partition and an INSERT into |
1220 | * some other partition, that's not available, because CTID chains |
1221 | * can't span relation boundaries. We mimic the semantics to a |
1222 | * limited extent by skipping the INSERT if the DELETE fails to |
1223 | * find a tuple. This ensures that two concurrent attempts to |
1224 | * UPDATE the same tuple at the same time can't turn one tuple |
1225 | * into two, and that an UPDATE of a just-deleted tuple can't |
1226 | * resurrect it. |
1227 | */ |
1228 | if (!tuple_deleted) |
1229 | { |
1230 | /* |
1231 | * epqslot will be typically NULL. But when ExecDelete() |
1232 | * finds that another transaction has concurrently updated the |
1233 | * same row, it re-fetches the row, skips the delete, and |
1234 | * epqslot is set to the re-fetched tuple slot. In that case, |
1235 | * we need to do all the checks again. |
1236 | */ |
1237 | if (TupIsNull(epqslot)) |
1238 | return NULL; |
1239 | else |
1240 | { |
1241 | slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot); |
1242 | goto lreplace; |
1243 | } |
1244 | } |
1245 | |
1246 | /* |
1247 | * Updates set the transition capture map only when a new subplan |
1248 | * is chosen. But for inserts, it is set for each row. So after |
1249 | * INSERT, we need to revert back to the map created for UPDATE; |
1250 | * otherwise the next UPDATE will incorrectly use the one created |
1251 | * for INSERT. So first save the one created for UPDATE. |
1252 | */ |
1253 | if (mtstate->mt_transition_capture) |
1254 | saved_tcs_map = mtstate->mt_transition_capture->tcs_map; |
1255 | |
1256 | /* |
1257 | * resultRelInfo is one of the per-subplan resultRelInfos. So we |
1258 | * should convert the tuple into root's tuple descriptor, since |
1259 | * ExecInsert() starts the search from root. The tuple conversion |
1260 | * map list is in the order of mtstate->resultRelInfo[], so to |
1261 | * retrieve the one for this resultRel, we need to know the |
1262 | * position of the resultRel in mtstate->resultRelInfo[]. |
1263 | */ |
1264 | map_index = resultRelInfo - mtstate->resultRelInfo; |
1265 | Assert(map_index >= 0 && map_index < mtstate->mt_nplans); |
1266 | tupconv_map = tupconv_map_for_subplan(mtstate, map_index); |
1267 | if (tupconv_map != NULL) |
1268 | slot = execute_attr_map_slot(tupconv_map->attrMap, |
1269 | slot, |
1270 | mtstate->mt_root_tuple_slot); |
1271 | |
1272 | /* |
1273 | * Prepare for tuple routing, making it look like we're inserting |
1274 | * into the root. |
1275 | */ |
1276 | Assert(mtstate->rootResultRelInfo != NULL); |
1277 | slot = ExecPrepareTupleRouting(mtstate, estate, proute, |
1278 | mtstate->rootResultRelInfo, slot); |
1279 | |
1280 | ret_slot = ExecInsert(mtstate, slot, planSlot, |
1281 | estate, canSetTag); |
1282 | |
1283 | /* Revert ExecPrepareTupleRouting's node change. */ |
1284 | estate->es_result_relation_info = resultRelInfo; |
1285 | if (mtstate->mt_transition_capture) |
1286 | { |
1287 | mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL; |
1288 | mtstate->mt_transition_capture->tcs_map = saved_tcs_map; |
1289 | } |
1290 | |
1291 | return ret_slot; |
1292 | } |
1293 | |
1294 | /* |
1295 | * Check the constraints of the tuple. We've already checked the |
1296 | * partition constraint above; however, we must still ensure the tuple |
1297 | * passes all other constraints, so we will call ExecConstraints() and |
1298 | * have it validate all remaining checks. |
1299 | */ |
1300 | if (resultRelationDesc->rd_att->constr) |
1301 | ExecConstraints(resultRelInfo, slot, estate); |
1302 | |
1303 | /* |
1304 | * replace the heap tuple |
1305 | * |
1306 | * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check |
1307 | * that the row to be updated is visible to that snapshot, and throw a |
1308 | * can't-serialize error if not. This is a special-case behavior |
1309 | * needed for referential integrity updates in transaction-snapshot |
1310 | * mode transactions. |
1311 | */ |
1312 | result = table_tuple_update(resultRelationDesc, tupleid, slot, |
1313 | estate->es_output_cid, |
1314 | estate->es_snapshot, |
1315 | estate->es_crosscheck_snapshot, |
1316 | true /* wait for commit */ , |
1317 | &tmfd, &lockmode, &update_indexes); |
1318 | |
1319 | switch (result) |
1320 | { |
1321 | case TM_SelfModified: |
1322 | |
1323 | /* |
1324 | * The target tuple was already updated or deleted by the |
1325 | * current command, or by a later command in the current |
1326 | * transaction. The former case is possible in a join UPDATE |
1327 | * where multiple tuples join to the same target tuple. This |
1328 | * is pretty questionable, but Postgres has always allowed it: |
1329 | * we just execute the first update action and ignore |
1330 | * additional update attempts. |
1331 | * |
1332 | * The latter case arises if the tuple is modified by a |
1333 | * command in a BEFORE trigger, or perhaps by a command in a |
1334 | * volatile function used in the query. In such situations we |
1335 | * should not ignore the update, but it is equally unsafe to |
1336 | * proceed. We don't want to discard the original UPDATE |
1337 | * while keeping the triggered actions based on it; and we |
1338 | * have no principled way to merge this update with the |
1339 | * previous ones. So throwing an error is the only safe |
1340 | * course. |
1341 | * |
1342 | * If a trigger actually intends this type of interaction, it |
1343 | * can re-execute the UPDATE (assuming it can figure out how) |
1344 | * and then return NULL to cancel the outer update. |
1345 | */ |
1346 | if (tmfd.cmax != estate->es_output_cid) |
1347 | ereport(ERROR, |
1348 | (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), |
1349 | errmsg("tuple to be updated was already modified by an operation triggered by the current command" ), |
1350 | errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows." ))); |
1351 | |
1352 | /* Else, already updated by self; nothing to do */ |
1353 | return NULL; |
1354 | |
1355 | case TM_Ok: |
1356 | break; |
1357 | |
1358 | case TM_Updated: |
1359 | { |
1360 | TupleTableSlot *inputslot; |
1361 | TupleTableSlot *epqslot; |
1362 | |
1363 | if (IsolationUsesXactSnapshot()) |
1364 | ereport(ERROR, |
1365 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
1366 | errmsg("could not serialize access due to concurrent update" ))); |
1367 | |
1368 | /* |
1369 | * Already know that we're going to need to do EPQ, so |
1370 | * fetch tuple directly into the right slot. |
1371 | */ |
1372 | inputslot = EvalPlanQualSlot(epqstate, resultRelationDesc, |
1373 | resultRelInfo->ri_RangeTableIndex); |
1374 | |
1375 | result = table_tuple_lock(resultRelationDesc, tupleid, |
1376 | estate->es_snapshot, |
1377 | inputslot, estate->es_output_cid, |
1378 | lockmode, LockWaitBlock, |
1379 | TUPLE_LOCK_FLAG_FIND_LAST_VERSION, |
1380 | &tmfd); |
1381 | |
1382 | switch (result) |
1383 | { |
1384 | case TM_Ok: |
1385 | Assert(tmfd.traversed); |
1386 | |
1387 | epqslot = EvalPlanQual(epqstate, |
1388 | resultRelationDesc, |
1389 | resultRelInfo->ri_RangeTableIndex, |
1390 | inputslot); |
1391 | if (TupIsNull(epqslot)) |
1392 | /* Tuple not passing quals anymore, exiting... */ |
1393 | return NULL; |
1394 | |
1395 | slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot); |
1396 | goto lreplace; |
1397 | |
1398 | case TM_Deleted: |
1399 | /* tuple already deleted; nothing to do */ |
1400 | return NULL; |
1401 | |
1402 | case TM_SelfModified: |
1403 | |
1404 | /* |
1405 | * This can be reached when following an update |
1406 | * chain from a tuple updated by another session, |
1407 | * reaching a tuple that was already updated in |
1408 | * this transaction. If previously modified by |
1409 | * this command, ignore the redundant update, |
1410 | * otherwise error out. |
1411 | * |
1412 | * See also TM_SelfModified response to |
1413 | * table_tuple_update() above. |
1414 | */ |
1415 | if (tmfd.cmax != estate->es_output_cid) |
1416 | ereport(ERROR, |
1417 | (errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION), |
1418 | errmsg("tuple to be updated was already modified by an operation triggered by the current command" ), |
1419 | errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows." ))); |
1420 | return NULL; |
1421 | |
1422 | default: |
1423 | /* see table_tuple_lock call in ExecDelete() */ |
1424 | elog(ERROR, "unexpected table_tuple_lock status: %u" , |
1425 | result); |
1426 | return NULL; |
1427 | } |
1428 | } |
1429 | |
1430 | break; |
1431 | |
1432 | case TM_Deleted: |
1433 | if (IsolationUsesXactSnapshot()) |
1434 | ereport(ERROR, |
1435 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
1436 | errmsg("could not serialize access due to concurrent delete" ))); |
1437 | /* tuple already deleted; nothing to do */ |
1438 | return NULL; |
1439 | |
1440 | default: |
1441 | elog(ERROR, "unrecognized table_tuple_update status: %u" , |
1442 | result); |
1443 | return NULL; |
1444 | } |
1445 | |
1446 | /* insert index entries for tuple if necessary */ |
1447 | if (resultRelInfo->ri_NumIndices > 0 && update_indexes) |
1448 | recheckIndexes = ExecInsertIndexTuples(slot, estate, false, NULL, NIL); |
1449 | } |
1450 | |
1451 | if (canSetTag) |
1452 | (estate->es_processed)++; |
1453 | |
1454 | /* AFTER ROW UPDATE Triggers */ |
1455 | ExecARUpdateTriggers(estate, resultRelInfo, tupleid, oldtuple, slot, |
1456 | recheckIndexes, |
1457 | mtstate->operation == CMD_INSERT ? |
1458 | mtstate->mt_oc_transition_capture : |
1459 | mtstate->mt_transition_capture); |
1460 | |
1461 | list_free(recheckIndexes); |
1462 | |
1463 | /* |
1464 | * Check any WITH CHECK OPTION constraints from parent views. We are |
1465 | * required to do this after testing all constraints and uniqueness |
1466 | * violations per the SQL spec, so we do it after actually updating the |
1467 | * record in the heap and all indexes. |
1468 | * |
1469 | * ExecWithCheckOptions() will skip any WCOs which are not of the kind we |
1470 | * are looking for at this point. |
1471 | */ |
1472 | if (resultRelInfo->ri_WithCheckOptions != NIL) |
1473 | ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate); |
1474 | |
1475 | /* Process RETURNING if present */ |
1476 | if (resultRelInfo->ri_projectReturning) |
1477 | return ExecProcessReturning(resultRelInfo, slot, planSlot); |
1478 | |
1479 | return NULL; |
1480 | } |
1481 | |
1482 | /* |
1483 | * ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE |
1484 | * |
1485 | * Try to lock tuple for update as part of speculative insertion. If |
1486 | * a qual originating from ON CONFLICT DO UPDATE is satisfied, update |
1487 | * (but still lock row, even though it may not satisfy estate's |
1488 | * snapshot). |
1489 | * |
1490 | * Returns true if we're done (with or without an update), or false if |
1491 | * the caller must retry the INSERT from scratch. |
1492 | */ |
1493 | static bool |
1494 | ExecOnConflictUpdate(ModifyTableState *mtstate, |
1495 | ResultRelInfo *resultRelInfo, |
1496 | ItemPointer conflictTid, |
1497 | TupleTableSlot *planSlot, |
1498 | TupleTableSlot *excludedSlot, |
1499 | EState *estate, |
1500 | bool canSetTag, |
1501 | TupleTableSlot **returning) |
1502 | { |
1503 | ExprContext *econtext = mtstate->ps.ps_ExprContext; |
1504 | Relation relation = resultRelInfo->ri_RelationDesc; |
1505 | ExprState *onConflictSetWhere = resultRelInfo->ri_onConflict->oc_WhereClause; |
1506 | TupleTableSlot *existing = resultRelInfo->ri_onConflict->oc_Existing; |
1507 | TM_FailureData tmfd; |
1508 | LockTupleMode lockmode; |
1509 | TM_Result test; |
1510 | Datum xminDatum; |
1511 | TransactionId xmin; |
1512 | bool isnull; |
1513 | |
1514 | /* Determine lock mode to use */ |
1515 | lockmode = ExecUpdateLockMode(estate, resultRelInfo); |
1516 | |
1517 | /* |
1518 | * Lock tuple for update. Don't follow updates when tuple cannot be |
1519 | * locked without doing so. A row locking conflict here means our |
1520 | * previous conclusion that the tuple is conclusively committed is not |
1521 | * true anymore. |
1522 | */ |
1523 | test = table_tuple_lock(relation, conflictTid, |
1524 | estate->es_snapshot, |
1525 | existing, estate->es_output_cid, |
1526 | lockmode, LockWaitBlock, 0, |
1527 | &tmfd); |
1528 | switch (test) |
1529 | { |
1530 | case TM_Ok: |
1531 | /* success! */ |
1532 | break; |
1533 | |
1534 | case TM_Invisible: |
1535 | |
1536 | /* |
1537 | * This can occur when a just inserted tuple is updated again in |
1538 | * the same command. E.g. because multiple rows with the same |
1539 | * conflicting key values are inserted. |
1540 | * |
1541 | * This is somewhat similar to the ExecUpdate() TM_SelfModified |
1542 | * case. We do not want to proceed because it would lead to the |
1543 | * same row being updated a second time in some unspecified order, |
1544 | * and in contrast to plain UPDATEs there's no historical behavior |
1545 | * to break. |
1546 | * |
1547 | * It is the user's responsibility to prevent this situation from |
1548 | * occurring. These problems are why SQL-2003 similarly specifies |
1549 | * that for SQL MERGE, an exception must be raised in the event of |
1550 | * an attempt to update the same row twice. |
1551 | */ |
1552 | xminDatum = slot_getsysattr(existing, |
1553 | MinTransactionIdAttributeNumber, |
1554 | &isnull); |
1555 | Assert(!isnull); |
1556 | xmin = DatumGetTransactionId(xminDatum); |
1557 | |
1558 | if (TransactionIdIsCurrentTransactionId(xmin)) |
1559 | ereport(ERROR, |
1560 | (errcode(ERRCODE_CARDINALITY_VIOLATION), |
1561 | errmsg("ON CONFLICT DO UPDATE command cannot affect row a second time" ), |
1562 | errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values." ))); |
1563 | |
1564 | /* This shouldn't happen */ |
1565 | elog(ERROR, "attempted to lock invisible tuple" ); |
1566 | break; |
1567 | |
1568 | case TM_SelfModified: |
1569 | |
1570 | /* |
1571 | * This state should never be reached. As a dirty snapshot is used |
1572 | * to find conflicting tuples, speculative insertion wouldn't have |
1573 | * seen this row to conflict with. |
1574 | */ |
1575 | elog(ERROR, "unexpected self-updated tuple" ); |
1576 | break; |
1577 | |
1578 | case TM_Updated: |
1579 | if (IsolationUsesXactSnapshot()) |
1580 | ereport(ERROR, |
1581 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
1582 | errmsg("could not serialize access due to concurrent update" ))); |
1583 | |
1584 | /* |
1585 | * As long as we don't support an UPDATE of INSERT ON CONFLICT for |
1586 | * a partitioned table we shouldn't reach to a case where tuple to |
1587 | * be lock is moved to another partition due to concurrent update |
1588 | * of the partition key. |
1589 | */ |
1590 | Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid)); |
1591 | |
1592 | /* |
1593 | * Tell caller to try again from the very start. |
1594 | * |
1595 | * It does not make sense to use the usual EvalPlanQual() style |
1596 | * loop here, as the new version of the row might not conflict |
1597 | * anymore, or the conflicting tuple has actually been deleted. |
1598 | */ |
1599 | ExecClearTuple(existing); |
1600 | return false; |
1601 | |
1602 | case TM_Deleted: |
1603 | if (IsolationUsesXactSnapshot()) |
1604 | ereport(ERROR, |
1605 | (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE), |
1606 | errmsg("could not serialize access due to concurrent delete" ))); |
1607 | |
1608 | /* see TM_Updated case */ |
1609 | Assert(!ItemPointerIndicatesMovedPartitions(&tmfd.ctid)); |
1610 | ExecClearTuple(existing); |
1611 | return false; |
1612 | |
1613 | default: |
1614 | elog(ERROR, "unrecognized table_tuple_lock status: %u" , test); |
1615 | } |
1616 | |
1617 | /* Success, the tuple is locked. */ |
1618 | |
1619 | /* |
1620 | * Verify that the tuple is visible to our MVCC snapshot if the current |
1621 | * isolation level mandates that. |
1622 | * |
1623 | * It's not sufficient to rely on the check within ExecUpdate() as e.g. |
1624 | * CONFLICT ... WHERE clause may prevent us from reaching that. |
1625 | * |
1626 | * This means we only ever continue when a new command in the current |
1627 | * transaction could see the row, even though in READ COMMITTED mode the |
1628 | * tuple will not be visible according to the current statement's |
1629 | * snapshot. This is in line with the way UPDATE deals with newer tuple |
1630 | * versions. |
1631 | */ |
1632 | ExecCheckTupleVisible(estate, relation, existing); |
1633 | |
1634 | /* |
1635 | * Make tuple and any needed join variables available to ExecQual and |
1636 | * ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while |
1637 | * the target's existing tuple is installed in the scantuple. EXCLUDED |
1638 | * has been made to reference INNER_VAR in setrefs.c, but there is no |
1639 | * other redirection. |
1640 | */ |
1641 | econtext->ecxt_scantuple = existing; |
1642 | econtext->ecxt_innertuple = excludedSlot; |
1643 | econtext->ecxt_outertuple = NULL; |
1644 | |
1645 | if (!ExecQual(onConflictSetWhere, econtext)) |
1646 | { |
1647 | ExecClearTuple(existing); /* see return below */ |
1648 | InstrCountFiltered1(&mtstate->ps, 1); |
1649 | return true; /* done with the tuple */ |
1650 | } |
1651 | |
1652 | if (resultRelInfo->ri_WithCheckOptions != NIL) |
1653 | { |
1654 | /* |
1655 | * Check target's existing tuple against UPDATE-applicable USING |
1656 | * security barrier quals (if any), enforced here as RLS checks/WCOs. |
1657 | * |
1658 | * The rewriter creates UPDATE RLS checks/WCOs for UPDATE security |
1659 | * quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK, |
1660 | * but that's almost the extent of its special handling for ON |
1661 | * CONFLICT DO UPDATE. |
1662 | * |
1663 | * The rewriter will also have associated UPDATE applicable straight |
1664 | * RLS checks/WCOs for the benefit of the ExecUpdate() call that |
1665 | * follows. INSERTs and UPDATEs naturally have mutually exclusive WCO |
1666 | * kinds, so there is no danger of spurious over-enforcement in the |
1667 | * INSERT or UPDATE path. |
1668 | */ |
1669 | ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo, |
1670 | existing, |
1671 | mtstate->ps.state); |
1672 | } |
1673 | |
1674 | /* Project the new tuple version */ |
1675 | ExecProject(resultRelInfo->ri_onConflict->oc_ProjInfo); |
1676 | |
1677 | /* |
1678 | * Note that it is possible that the target tuple has been modified in |
1679 | * this session, after the above table_tuple_lock. We choose to not error |
1680 | * out in that case, in line with ExecUpdate's treatment of similar cases. |
1681 | * This can happen if an UPDATE is triggered from within ExecQual(), |
1682 | * ExecWithCheckOptions() or ExecProject() above, e.g. by selecting from a |
1683 | * wCTE in the ON CONFLICT's SET. |
1684 | */ |
1685 | |
1686 | /* Execute UPDATE with projection */ |
1687 | *returning = ExecUpdate(mtstate, conflictTid, NULL, |
1688 | resultRelInfo->ri_onConflict->oc_ProjSlot, |
1689 | planSlot, |
1690 | &mtstate->mt_epqstate, mtstate->ps.state, |
1691 | canSetTag); |
1692 | |
1693 | /* |
1694 | * Clear out existing tuple, as there might not be another conflict among |
1695 | * the next input rows. Don't want to hold resources till the end of the |
1696 | * query. |
1697 | */ |
1698 | ExecClearTuple(existing); |
1699 | return true; |
1700 | } |
1701 | |
1702 | |
1703 | /* |
1704 | * Process BEFORE EACH STATEMENT triggers |
1705 | */ |
1706 | static void |
1707 | fireBSTriggers(ModifyTableState *node) |
1708 | { |
1709 | ModifyTable *plan = (ModifyTable *) node->ps.plan; |
1710 | ResultRelInfo *resultRelInfo = node->resultRelInfo; |
1711 | |
1712 | /* |
1713 | * If the node modifies a partitioned table, we must fire its triggers. |
1714 | * Note that in that case, node->resultRelInfo points to the first leaf |
1715 | * partition, not the root table. |
1716 | */ |
1717 | if (node->rootResultRelInfo != NULL) |
1718 | resultRelInfo = node->rootResultRelInfo; |
1719 | |
1720 | switch (node->operation) |
1721 | { |
1722 | case CMD_INSERT: |
1723 | ExecBSInsertTriggers(node->ps.state, resultRelInfo); |
1724 | if (plan->onConflictAction == ONCONFLICT_UPDATE) |
1725 | ExecBSUpdateTriggers(node->ps.state, |
1726 | resultRelInfo); |
1727 | break; |
1728 | case CMD_UPDATE: |
1729 | ExecBSUpdateTriggers(node->ps.state, resultRelInfo); |
1730 | break; |
1731 | case CMD_DELETE: |
1732 | ExecBSDeleteTriggers(node->ps.state, resultRelInfo); |
1733 | break; |
1734 | default: |
1735 | elog(ERROR, "unknown operation" ); |
1736 | break; |
1737 | } |
1738 | } |
1739 | |
1740 | /* |
1741 | * Return the target rel ResultRelInfo. |
1742 | * |
1743 | * This relation is the same as : |
1744 | * - the relation for which we will fire AFTER STATEMENT triggers. |
1745 | * - the relation into whose tuple format all captured transition tuples must |
1746 | * be converted. |
1747 | * - the root partitioned table. |
1748 | */ |
1749 | static ResultRelInfo * |
1750 | getTargetResultRelInfo(ModifyTableState *node) |
1751 | { |
1752 | /* |
1753 | * Note that if the node modifies a partitioned table, node->resultRelInfo |
1754 | * points to the first leaf partition, not the root table. |
1755 | */ |
1756 | if (node->rootResultRelInfo != NULL) |
1757 | return node->rootResultRelInfo; |
1758 | else |
1759 | return node->resultRelInfo; |
1760 | } |
1761 | |
1762 | /* |
1763 | * Process AFTER EACH STATEMENT triggers |
1764 | */ |
1765 | static void |
1766 | fireASTriggers(ModifyTableState *node) |
1767 | { |
1768 | ModifyTable *plan = (ModifyTable *) node->ps.plan; |
1769 | ResultRelInfo *resultRelInfo = getTargetResultRelInfo(node); |
1770 | |
1771 | switch (node->operation) |
1772 | { |
1773 | case CMD_INSERT: |
1774 | if (plan->onConflictAction == ONCONFLICT_UPDATE) |
1775 | ExecASUpdateTriggers(node->ps.state, |
1776 | resultRelInfo, |
1777 | node->mt_oc_transition_capture); |
1778 | ExecASInsertTriggers(node->ps.state, resultRelInfo, |
1779 | node->mt_transition_capture); |
1780 | break; |
1781 | case CMD_UPDATE: |
1782 | ExecASUpdateTriggers(node->ps.state, resultRelInfo, |
1783 | node->mt_transition_capture); |
1784 | break; |
1785 | case CMD_DELETE: |
1786 | ExecASDeleteTriggers(node->ps.state, resultRelInfo, |
1787 | node->mt_transition_capture); |
1788 | break; |
1789 | default: |
1790 | elog(ERROR, "unknown operation" ); |
1791 | break; |
1792 | } |
1793 | } |
1794 | |
1795 | /* |
1796 | * Set up the state needed for collecting transition tuples for AFTER |
1797 | * triggers. |
1798 | */ |
1799 | static void |
1800 | ExecSetupTransitionCaptureState(ModifyTableState *mtstate, EState *estate) |
1801 | { |
1802 | ModifyTable *plan = (ModifyTable *) mtstate->ps.plan; |
1803 | ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate); |
1804 | |
1805 | /* Check for transition tables on the directly targeted relation. */ |
1806 | mtstate->mt_transition_capture = |
1807 | MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc, |
1808 | RelationGetRelid(targetRelInfo->ri_RelationDesc), |
1809 | mtstate->operation); |
1810 | if (plan->operation == CMD_INSERT && |
1811 | plan->onConflictAction == ONCONFLICT_UPDATE) |
1812 | mtstate->mt_oc_transition_capture = |
1813 | MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc, |
1814 | RelationGetRelid(targetRelInfo->ri_RelationDesc), |
1815 | CMD_UPDATE); |
1816 | |
1817 | /* |
1818 | * If we found that we need to collect transition tuples then we may also |
1819 | * need tuple conversion maps for any children that have TupleDescs that |
1820 | * aren't compatible with the tuplestores. (We can share these maps |
1821 | * between the regular and ON CONFLICT cases.) |
1822 | */ |
1823 | if (mtstate->mt_transition_capture != NULL || |
1824 | mtstate->mt_oc_transition_capture != NULL) |
1825 | { |
1826 | ExecSetupChildParentMapForSubplan(mtstate); |
1827 | |
1828 | /* |
1829 | * Install the conversion map for the first plan for UPDATE and DELETE |
1830 | * operations. It will be advanced each time we switch to the next |
1831 | * plan. (INSERT operations set it every time, so we need not update |
1832 | * mtstate->mt_oc_transition_capture here.) |
1833 | */ |
1834 | if (mtstate->mt_transition_capture && mtstate->operation != CMD_INSERT) |
1835 | mtstate->mt_transition_capture->tcs_map = |
1836 | tupconv_map_for_subplan(mtstate, 0); |
1837 | } |
1838 | } |
1839 | |
1840 | /* |
1841 | * ExecPrepareTupleRouting --- prepare for routing one tuple |
1842 | * |
1843 | * Determine the partition in which the tuple in slot is to be inserted, |
1844 | * and modify mtstate and estate to prepare for it. |
1845 | * |
1846 | * Caller must revert the estate changes after executing the insertion! |
1847 | * In mtstate, transition capture changes may also need to be reverted. |
1848 | * |
1849 | * Returns a slot holding the tuple of the partition rowtype. |
1850 | */ |
1851 | static TupleTableSlot * |
1852 | ExecPrepareTupleRouting(ModifyTableState *mtstate, |
1853 | EState *estate, |
1854 | PartitionTupleRouting *proute, |
1855 | ResultRelInfo *targetRelInfo, |
1856 | TupleTableSlot *slot) |
1857 | { |
1858 | ResultRelInfo *partrel; |
1859 | PartitionRoutingInfo *partrouteinfo; |
1860 | TupleConversionMap *map; |
1861 | |
1862 | /* |
1863 | * Lookup the target partition's ResultRelInfo. If ExecFindPartition does |
1864 | * not find a valid partition for the tuple in 'slot' then an error is |
1865 | * raised. An error may also be raised if the found partition is not a |
1866 | * valid target for INSERTs. This is required since a partitioned table |
1867 | * UPDATE to another partition becomes a DELETE+INSERT. |
1868 | */ |
1869 | partrel = ExecFindPartition(mtstate, targetRelInfo, proute, slot, estate); |
1870 | partrouteinfo = partrel->ri_PartitionInfo; |
1871 | Assert(partrouteinfo != NULL); |
1872 | |
1873 | /* |
1874 | * Make it look like we are inserting into the partition. |
1875 | */ |
1876 | estate->es_result_relation_info = partrel; |
1877 | |
1878 | /* |
1879 | * If we're capturing transition tuples, we might need to convert from the |
1880 | * partition rowtype to root partitioned table's rowtype. |
1881 | */ |
1882 | if (mtstate->mt_transition_capture != NULL) |
1883 | { |
1884 | if (partrel->ri_TrigDesc && |
1885 | partrel->ri_TrigDesc->trig_insert_before_row) |
1886 | { |
1887 | /* |
1888 | * If there are any BEFORE triggers on the partition, we'll have |
1889 | * to be ready to convert their result back to tuplestore format. |
1890 | */ |
1891 | mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL; |
1892 | mtstate->mt_transition_capture->tcs_map = |
1893 | partrouteinfo->pi_PartitionToRootMap; |
1894 | } |
1895 | else |
1896 | { |
1897 | /* |
1898 | * Otherwise, just remember the original unconverted tuple, to |
1899 | * avoid a needless round trip conversion. |
1900 | */ |
1901 | mtstate->mt_transition_capture->tcs_original_insert_tuple = slot; |
1902 | mtstate->mt_transition_capture->tcs_map = NULL; |
1903 | } |
1904 | } |
1905 | if (mtstate->mt_oc_transition_capture != NULL) |
1906 | { |
1907 | mtstate->mt_oc_transition_capture->tcs_map = |
1908 | partrouteinfo->pi_PartitionToRootMap; |
1909 | } |
1910 | |
1911 | /* |
1912 | * Convert the tuple, if necessary. |
1913 | */ |
1914 | map = partrouteinfo->pi_RootToPartitionMap; |
1915 | if (map != NULL) |
1916 | { |
1917 | TupleTableSlot *new_slot = partrouteinfo->pi_PartitionTupleSlot; |
1918 | |
1919 | slot = execute_attr_map_slot(map->attrMap, slot, new_slot); |
1920 | } |
1921 | |
1922 | return slot; |
1923 | } |
1924 | |
1925 | /* |
1926 | * Initialize the child-to-root tuple conversion map array for UPDATE subplans. |
1927 | * |
1928 | * This map array is required to convert the tuple from the subplan result rel |
1929 | * to the target table descriptor. This requirement arises for two independent |
1930 | * scenarios: |
1931 | * 1. For update-tuple-routing. |
1932 | * 2. For capturing tuples in transition tables. |
1933 | */ |
1934 | static void |
1935 | ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate) |
1936 | { |
1937 | ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate); |
1938 | ResultRelInfo *resultRelInfos = mtstate->resultRelInfo; |
1939 | TupleDesc outdesc; |
1940 | int numResultRelInfos = mtstate->mt_nplans; |
1941 | int i; |
1942 | |
1943 | /* |
1944 | * Build array of conversion maps from each child's TupleDesc to the one |
1945 | * used in the target relation. The map pointers may be NULL when no |
1946 | * conversion is necessary, which is hopefully a common case. |
1947 | */ |
1948 | |
1949 | /* Get tuple descriptor of the target rel. */ |
1950 | outdesc = RelationGetDescr(targetRelInfo->ri_RelationDesc); |
1951 | |
1952 | mtstate->mt_per_subplan_tupconv_maps = (TupleConversionMap **) |
1953 | palloc(sizeof(TupleConversionMap *) * numResultRelInfos); |
1954 | |
1955 | for (i = 0; i < numResultRelInfos; ++i) |
1956 | { |
1957 | mtstate->mt_per_subplan_tupconv_maps[i] = |
1958 | convert_tuples_by_name(RelationGetDescr(resultRelInfos[i].ri_RelationDesc), |
1959 | outdesc, |
1960 | gettext_noop("could not convert row type" )); |
1961 | } |
1962 | } |
1963 | |
1964 | /* |
1965 | * For a given subplan index, get the tuple conversion map. |
1966 | */ |
1967 | static TupleConversionMap * |
1968 | tupconv_map_for_subplan(ModifyTableState *mtstate, int whichplan) |
1969 | { |
1970 | /* If nobody else set the per-subplan array of maps, do so ourselves. */ |
1971 | if (mtstate->mt_per_subplan_tupconv_maps == NULL) |
1972 | ExecSetupChildParentMapForSubplan(mtstate); |
1973 | |
1974 | Assert(whichplan >= 0 && whichplan < mtstate->mt_nplans); |
1975 | return mtstate->mt_per_subplan_tupconv_maps[whichplan]; |
1976 | } |
1977 | |
1978 | /* ---------------------------------------------------------------- |
1979 | * ExecModifyTable |
1980 | * |
1981 | * Perform table modifications as required, and return RETURNING results |
1982 | * if needed. |
1983 | * ---------------------------------------------------------------- |
1984 | */ |
1985 | static TupleTableSlot * |
1986 | ExecModifyTable(PlanState *pstate) |
1987 | { |
1988 | ModifyTableState *node = castNode(ModifyTableState, pstate); |
1989 | PartitionTupleRouting *proute = node->mt_partition_tuple_routing; |
1990 | EState *estate = node->ps.state; |
1991 | CmdType operation = node->operation; |
1992 | ResultRelInfo *saved_resultRelInfo; |
1993 | ResultRelInfo *resultRelInfo; |
1994 | PlanState *subplanstate; |
1995 | JunkFilter *junkfilter; |
1996 | TupleTableSlot *slot; |
1997 | TupleTableSlot *planSlot; |
1998 | ItemPointer tupleid; |
1999 | ItemPointerData tuple_ctid; |
2000 | HeapTupleData oldtupdata; |
2001 | HeapTuple oldtuple; |
2002 | |
2003 | CHECK_FOR_INTERRUPTS(); |
2004 | |
2005 | /* |
2006 | * This should NOT get called during EvalPlanQual; we should have passed a |
2007 | * subplan tree to EvalPlanQual, instead. Use a runtime test not just |
2008 | * Assert because this condition is easy to miss in testing. (Note: |
2009 | * although ModifyTable should not get executed within an EvalPlanQual |
2010 | * operation, we do have to allow it to be initialized and shut down in |
2011 | * case it is within a CTE subplan. Hence this test must be here, not in |
2012 | * ExecInitModifyTable.) |
2013 | */ |
2014 | if (estate->es_epq_active != NULL) |
2015 | elog(ERROR, "ModifyTable should not be called during EvalPlanQual" ); |
2016 | |
2017 | /* |
2018 | * If we've already completed processing, don't try to do more. We need |
2019 | * this test because ExecPostprocessPlan might call us an extra time, and |
2020 | * our subplan's nodes aren't necessarily robust against being called |
2021 | * extra times. |
2022 | */ |
2023 | if (node->mt_done) |
2024 | return NULL; |
2025 | |
2026 | /* |
2027 | * On first call, fire BEFORE STATEMENT triggers before proceeding. |
2028 | */ |
2029 | if (node->fireBSTriggers) |
2030 | { |
2031 | fireBSTriggers(node); |
2032 | node->fireBSTriggers = false; |
2033 | } |
2034 | |
2035 | /* Preload local variables */ |
2036 | resultRelInfo = node->resultRelInfo + node->mt_whichplan; |
2037 | subplanstate = node->mt_plans[node->mt_whichplan]; |
2038 | junkfilter = resultRelInfo->ri_junkFilter; |
2039 | |
2040 | /* |
2041 | * es_result_relation_info must point to the currently active result |
2042 | * relation while we are within this ModifyTable node. Even though |
2043 | * ModifyTable nodes can't be nested statically, they can be nested |
2044 | * dynamically (since our subplan could include a reference to a modifying |
2045 | * CTE). So we have to save and restore the caller's value. |
2046 | */ |
2047 | saved_resultRelInfo = estate->es_result_relation_info; |
2048 | |
2049 | estate->es_result_relation_info = resultRelInfo; |
2050 | |
2051 | /* |
2052 | * Fetch rows from subplan(s), and execute the required table modification |
2053 | * for each row. |
2054 | */ |
2055 | for (;;) |
2056 | { |
2057 | /* |
2058 | * Reset the per-output-tuple exprcontext. This is needed because |
2059 | * triggers expect to use that context as workspace. It's a bit ugly |
2060 | * to do this below the top level of the plan, however. We might need |
2061 | * to rethink this later. |
2062 | */ |
2063 | ResetPerTupleExprContext(estate); |
2064 | |
2065 | /* |
2066 | * Reset per-tuple memory context used for processing on conflict and |
2067 | * returning clauses, to free any expression evaluation storage |
2068 | * allocated in the previous cycle. |
2069 | */ |
2070 | if (pstate->ps_ExprContext) |
2071 | ResetExprContext(pstate->ps_ExprContext); |
2072 | |
2073 | planSlot = ExecProcNode(subplanstate); |
2074 | |
2075 | if (TupIsNull(planSlot)) |
2076 | { |
2077 | /* advance to next subplan if any */ |
2078 | node->mt_whichplan++; |
2079 | if (node->mt_whichplan < node->mt_nplans) |
2080 | { |
2081 | resultRelInfo++; |
2082 | subplanstate = node->mt_plans[node->mt_whichplan]; |
2083 | junkfilter = resultRelInfo->ri_junkFilter; |
2084 | estate->es_result_relation_info = resultRelInfo; |
2085 | EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan, |
2086 | node->mt_arowmarks[node->mt_whichplan]); |
2087 | /* Prepare to convert transition tuples from this child. */ |
2088 | if (node->mt_transition_capture != NULL) |
2089 | { |
2090 | node->mt_transition_capture->tcs_map = |
2091 | tupconv_map_for_subplan(node, node->mt_whichplan); |
2092 | } |
2093 | if (node->mt_oc_transition_capture != NULL) |
2094 | { |
2095 | node->mt_oc_transition_capture->tcs_map = |
2096 | tupconv_map_for_subplan(node, node->mt_whichplan); |
2097 | } |
2098 | continue; |
2099 | } |
2100 | else |
2101 | break; |
2102 | } |
2103 | |
2104 | /* |
2105 | * Ensure input tuple is the right format for the target relation. |
2106 | */ |
2107 | if (node->mt_scans[node->mt_whichplan]->tts_ops != planSlot->tts_ops) |
2108 | { |
2109 | ExecCopySlot(node->mt_scans[node->mt_whichplan], planSlot); |
2110 | planSlot = node->mt_scans[node->mt_whichplan]; |
2111 | } |
2112 | |
2113 | /* |
2114 | * If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do |
2115 | * here is compute the RETURNING expressions. |
2116 | */ |
2117 | if (resultRelInfo->ri_usesFdwDirectModify) |
2118 | { |
2119 | Assert(resultRelInfo->ri_projectReturning); |
2120 | |
2121 | /* |
2122 | * A scan slot containing the data that was actually inserted, |
2123 | * updated or deleted has already been made available to |
2124 | * ExecProcessReturning by IterateDirectModify, so no need to |
2125 | * provide it here. |
2126 | */ |
2127 | slot = ExecProcessReturning(resultRelInfo, NULL, planSlot); |
2128 | |
2129 | estate->es_result_relation_info = saved_resultRelInfo; |
2130 | return slot; |
2131 | } |
2132 | |
2133 | EvalPlanQualSetSlot(&node->mt_epqstate, planSlot); |
2134 | slot = planSlot; |
2135 | |
2136 | tupleid = NULL; |
2137 | oldtuple = NULL; |
2138 | if (junkfilter != NULL) |
2139 | { |
2140 | /* |
2141 | * extract the 'ctid' or 'wholerow' junk attribute. |
2142 | */ |
2143 | if (operation == CMD_UPDATE || operation == CMD_DELETE) |
2144 | { |
2145 | char relkind; |
2146 | Datum datum; |
2147 | bool isNull; |
2148 | |
2149 | relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind; |
2150 | if (relkind == RELKIND_RELATION || relkind == RELKIND_MATVIEW) |
2151 | { |
2152 | datum = ExecGetJunkAttribute(slot, |
2153 | junkfilter->jf_junkAttNo, |
2154 | &isNull); |
2155 | /* shouldn't ever get a null result... */ |
2156 | if (isNull) |
2157 | elog(ERROR, "ctid is NULL" ); |
2158 | |
2159 | tupleid = (ItemPointer) DatumGetPointer(datum); |
2160 | tuple_ctid = *tupleid; /* be sure we don't free ctid!! */ |
2161 | tupleid = &tuple_ctid; |
2162 | } |
2163 | |
2164 | /* |
2165 | * Use the wholerow attribute, when available, to reconstruct |
2166 | * the old relation tuple. |
2167 | * |
2168 | * Foreign table updates have a wholerow attribute when the |
2169 | * relation has a row-level trigger. Note that the wholerow |
2170 | * attribute does not carry system columns. Foreign table |
2171 | * triggers miss seeing those, except that we know enough here |
2172 | * to set t_tableOid. Quite separately from this, the FDW may |
2173 | * fetch its own junk attrs to identify the row. |
2174 | * |
2175 | * Other relevant relkinds, currently limited to views, always |
2176 | * have a wholerow attribute. |
2177 | */ |
2178 | else if (AttributeNumberIsValid(junkfilter->jf_junkAttNo)) |
2179 | { |
2180 | datum = ExecGetJunkAttribute(slot, |
2181 | junkfilter->jf_junkAttNo, |
2182 | &isNull); |
2183 | /* shouldn't ever get a null result... */ |
2184 | if (isNull) |
2185 | elog(ERROR, "wholerow is NULL" ); |
2186 | |
2187 | oldtupdata.t_data = DatumGetHeapTupleHeader(datum); |
2188 | oldtupdata.t_len = |
2189 | HeapTupleHeaderGetDatumLength(oldtupdata.t_data); |
2190 | ItemPointerSetInvalid(&(oldtupdata.t_self)); |
2191 | /* Historically, view triggers see invalid t_tableOid. */ |
2192 | oldtupdata.t_tableOid = |
2193 | (relkind == RELKIND_VIEW) ? InvalidOid : |
2194 | RelationGetRelid(resultRelInfo->ri_RelationDesc); |
2195 | |
2196 | oldtuple = &oldtupdata; |
2197 | } |
2198 | else |
2199 | Assert(relkind == RELKIND_FOREIGN_TABLE); |
2200 | } |
2201 | |
2202 | /* |
2203 | * apply the junkfilter if needed. |
2204 | */ |
2205 | if (operation != CMD_DELETE) |
2206 | slot = ExecFilterJunk(junkfilter, slot); |
2207 | } |
2208 | |
2209 | switch (operation) |
2210 | { |
2211 | case CMD_INSERT: |
2212 | /* Prepare for tuple routing if needed. */ |
2213 | if (proute) |
2214 | slot = ExecPrepareTupleRouting(node, estate, proute, |
2215 | resultRelInfo, slot); |
2216 | slot = ExecInsert(node, slot, planSlot, |
2217 | estate, node->canSetTag); |
2218 | /* Revert ExecPrepareTupleRouting's state change. */ |
2219 | if (proute) |
2220 | estate->es_result_relation_info = resultRelInfo; |
2221 | break; |
2222 | case CMD_UPDATE: |
2223 | slot = ExecUpdate(node, tupleid, oldtuple, slot, planSlot, |
2224 | &node->mt_epqstate, estate, node->canSetTag); |
2225 | break; |
2226 | case CMD_DELETE: |
2227 | slot = ExecDelete(node, tupleid, oldtuple, planSlot, |
2228 | &node->mt_epqstate, estate, |
2229 | true, node->canSetTag, |
2230 | false /* changingPart */ , NULL, NULL); |
2231 | break; |
2232 | default: |
2233 | elog(ERROR, "unknown operation" ); |
2234 | break; |
2235 | } |
2236 | |
2237 | /* |
2238 | * If we got a RETURNING result, return it to caller. We'll continue |
2239 | * the work on next call. |
2240 | */ |
2241 | if (slot) |
2242 | { |
2243 | estate->es_result_relation_info = saved_resultRelInfo; |
2244 | return slot; |
2245 | } |
2246 | } |
2247 | |
2248 | /* Restore es_result_relation_info before exiting */ |
2249 | estate->es_result_relation_info = saved_resultRelInfo; |
2250 | |
2251 | /* |
2252 | * We're done, but fire AFTER STATEMENT triggers before exiting. |
2253 | */ |
2254 | fireASTriggers(node); |
2255 | |
2256 | node->mt_done = true; |
2257 | |
2258 | return NULL; |
2259 | } |
2260 | |
2261 | /* ---------------------------------------------------------------- |
2262 | * ExecInitModifyTable |
2263 | * ---------------------------------------------------------------- |
2264 | */ |
2265 | ModifyTableState * |
2266 | ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags) |
2267 | { |
2268 | ModifyTableState *mtstate; |
2269 | CmdType operation = node->operation; |
2270 | int nplans = list_length(node->plans); |
2271 | ResultRelInfo *saved_resultRelInfo; |
2272 | ResultRelInfo *resultRelInfo; |
2273 | Plan *subplan; |
2274 | ListCell *l; |
2275 | int i; |
2276 | Relation rel; |
2277 | bool update_tuple_routing_needed = node->partColsUpdated; |
2278 | |
2279 | /* check for unsupported flags */ |
2280 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
2281 | |
2282 | /* |
2283 | * create state structure |
2284 | */ |
2285 | mtstate = makeNode(ModifyTableState); |
2286 | mtstate->ps.plan = (Plan *) node; |
2287 | mtstate->ps.state = estate; |
2288 | mtstate->ps.ExecProcNode = ExecModifyTable; |
2289 | |
2290 | mtstate->operation = operation; |
2291 | mtstate->canSetTag = node->canSetTag; |
2292 | mtstate->mt_done = false; |
2293 | |
2294 | mtstate->mt_plans = (PlanState **) palloc0(sizeof(PlanState *) * nplans); |
2295 | mtstate->resultRelInfo = estate->es_result_relations + node->resultRelIndex; |
2296 | mtstate->mt_scans = (TupleTableSlot **) palloc0(sizeof(TupleTableSlot *) * nplans); |
2297 | |
2298 | /* If modifying a partitioned table, initialize the root table info */ |
2299 | if (node->rootResultRelIndex >= 0) |
2300 | mtstate->rootResultRelInfo = estate->es_root_result_relations + |
2301 | node->rootResultRelIndex; |
2302 | |
2303 | mtstate->mt_arowmarks = (List **) palloc0(sizeof(List *) * nplans); |
2304 | mtstate->mt_nplans = nplans; |
2305 | |
2306 | /* set up epqstate with dummy subplan data for the moment */ |
2307 | EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL, node->epqParam); |
2308 | mtstate->fireBSTriggers = true; |
2309 | |
2310 | /* |
2311 | * call ExecInitNode on each of the plans to be executed and save the |
2312 | * results into the array "mt_plans". This is also a convenient place to |
2313 | * verify that the proposed target relations are valid and open their |
2314 | * indexes for insertion of new index entries. Note we *must* set |
2315 | * estate->es_result_relation_info correctly while we initialize each |
2316 | * sub-plan; external modules such as FDWs may depend on that (see |
2317 | * contrib/postgres_fdw/postgres_fdw.c: postgresBeginDirectModify() as one |
2318 | * example). |
2319 | */ |
2320 | saved_resultRelInfo = estate->es_result_relation_info; |
2321 | |
2322 | resultRelInfo = mtstate->resultRelInfo; |
2323 | i = 0; |
2324 | foreach(l, node->plans) |
2325 | { |
2326 | subplan = (Plan *) lfirst(l); |
2327 | |
2328 | /* Initialize the usesFdwDirectModify flag */ |
2329 | resultRelInfo->ri_usesFdwDirectModify = bms_is_member(i, |
2330 | node->fdwDirectModifyPlans); |
2331 | |
2332 | /* |
2333 | * Verify result relation is a valid target for the current operation |
2334 | */ |
2335 | CheckValidResultRel(resultRelInfo, operation); |
2336 | |
2337 | /* |
2338 | * If there are indices on the result relation, open them and save |
2339 | * descriptors in the result relation info, so that we can add new |
2340 | * index entries for the tuples we add/update. We need not do this |
2341 | * for a DELETE, however, since deletion doesn't affect indexes. Also, |
2342 | * inside an EvalPlanQual operation, the indexes might be open |
2343 | * already, since we share the resultrel state with the original |
2344 | * query. |
2345 | */ |
2346 | if (resultRelInfo->ri_RelationDesc->rd_rel->relhasindex && |
2347 | operation != CMD_DELETE && |
2348 | resultRelInfo->ri_IndexRelationDescs == NULL) |
2349 | ExecOpenIndices(resultRelInfo, |
2350 | node->onConflictAction != ONCONFLICT_NONE); |
2351 | |
2352 | /* |
2353 | * If this is an UPDATE and a BEFORE UPDATE trigger is present, the |
2354 | * trigger itself might modify the partition-key values. So arrange |
2355 | * for tuple routing. |
2356 | */ |
2357 | if (resultRelInfo->ri_TrigDesc && |
2358 | resultRelInfo->ri_TrigDesc->trig_update_before_row && |
2359 | operation == CMD_UPDATE) |
2360 | update_tuple_routing_needed = true; |
2361 | |
2362 | /* Now init the plan for this result rel */ |
2363 | estate->es_result_relation_info = resultRelInfo; |
2364 | mtstate->mt_plans[i] = ExecInitNode(subplan, estate, eflags); |
2365 | mtstate->mt_scans[i] = |
2366 | ExecInitExtraTupleSlot(mtstate->ps.state, ExecGetResultType(mtstate->mt_plans[i]), |
2367 | table_slot_callbacks(resultRelInfo->ri_RelationDesc)); |
2368 | |
2369 | /* Also let FDWs init themselves for foreign-table result rels */ |
2370 | if (!resultRelInfo->ri_usesFdwDirectModify && |
2371 | resultRelInfo->ri_FdwRoutine != NULL && |
2372 | resultRelInfo->ri_FdwRoutine->BeginForeignModify != NULL) |
2373 | { |
2374 | List *fdw_private = (List *) list_nth(node->fdwPrivLists, i); |
2375 | |
2376 | resultRelInfo->ri_FdwRoutine->BeginForeignModify(mtstate, |
2377 | resultRelInfo, |
2378 | fdw_private, |
2379 | i, |
2380 | eflags); |
2381 | } |
2382 | |
2383 | resultRelInfo++; |
2384 | i++; |
2385 | } |
2386 | |
2387 | estate->es_result_relation_info = saved_resultRelInfo; |
2388 | |
2389 | /* Get the target relation */ |
2390 | rel = (getTargetResultRelInfo(mtstate))->ri_RelationDesc; |
2391 | |
2392 | /* |
2393 | * If it's not a partitioned table after all, UPDATE tuple routing should |
2394 | * not be attempted. |
2395 | */ |
2396 | if (rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE) |
2397 | update_tuple_routing_needed = false; |
2398 | |
2399 | /* |
2400 | * Build state for tuple routing if it's an INSERT or if it's an UPDATE of |
2401 | * partition key. |
2402 | */ |
2403 | if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE && |
2404 | (operation == CMD_INSERT || update_tuple_routing_needed)) |
2405 | mtstate->mt_partition_tuple_routing = |
2406 | ExecSetupPartitionTupleRouting(estate, mtstate, rel); |
2407 | |
2408 | /* |
2409 | * Build state for collecting transition tuples. This requires having a |
2410 | * valid trigger query context, so skip it in explain-only mode. |
2411 | */ |
2412 | if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY)) |
2413 | ExecSetupTransitionCaptureState(mtstate, estate); |
2414 | |
2415 | /* |
2416 | * Construct mapping from each of the per-subplan partition attnos to the |
2417 | * root attno. This is required when during update row movement the tuple |
2418 | * descriptor of a source partition does not match the root partitioned |
2419 | * table descriptor. In such a case we need to convert tuples to the root |
2420 | * tuple descriptor, because the search for destination partition starts |
2421 | * from the root. We'll also need a slot to store these converted tuples. |
2422 | * We can skip this setup if it's not a partition key update. |
2423 | */ |
2424 | if (update_tuple_routing_needed) |
2425 | { |
2426 | ExecSetupChildParentMapForSubplan(mtstate); |
2427 | mtstate->mt_root_tuple_slot = table_slot_create(rel, NULL); |
2428 | } |
2429 | |
2430 | /* |
2431 | * Initialize any WITH CHECK OPTION constraints if needed. |
2432 | */ |
2433 | resultRelInfo = mtstate->resultRelInfo; |
2434 | i = 0; |
2435 | foreach(l, node->withCheckOptionLists) |
2436 | { |
2437 | List *wcoList = (List *) lfirst(l); |
2438 | List *wcoExprs = NIL; |
2439 | ListCell *ll; |
2440 | |
2441 | foreach(ll, wcoList) |
2442 | { |
2443 | WithCheckOption *wco = (WithCheckOption *) lfirst(ll); |
2444 | ExprState *wcoExpr = ExecInitQual((List *) wco->qual, |
2445 | &mtstate->ps); |
2446 | |
2447 | wcoExprs = lappend(wcoExprs, wcoExpr); |
2448 | } |
2449 | |
2450 | resultRelInfo->ri_WithCheckOptions = wcoList; |
2451 | resultRelInfo->ri_WithCheckOptionExprs = wcoExprs; |
2452 | resultRelInfo++; |
2453 | i++; |
2454 | } |
2455 | |
2456 | /* |
2457 | * Initialize RETURNING projections if needed. |
2458 | */ |
2459 | if (node->returningLists) |
2460 | { |
2461 | TupleTableSlot *slot; |
2462 | ExprContext *econtext; |
2463 | |
2464 | /* |
2465 | * Initialize result tuple slot and assign its rowtype using the first |
2466 | * RETURNING list. We assume the rest will look the same. |
2467 | */ |
2468 | mtstate->ps.plan->targetlist = (List *) linitial(node->returningLists); |
2469 | |
2470 | /* Set up a slot for the output of the RETURNING projection(s) */ |
2471 | ExecInitResultTupleSlotTL(&mtstate->ps, &TTSOpsVirtual); |
2472 | slot = mtstate->ps.ps_ResultTupleSlot; |
2473 | |
2474 | /* Need an econtext too */ |
2475 | if (mtstate->ps.ps_ExprContext == NULL) |
2476 | ExecAssignExprContext(estate, &mtstate->ps); |
2477 | econtext = mtstate->ps.ps_ExprContext; |
2478 | |
2479 | /* |
2480 | * Build a projection for each result rel. |
2481 | */ |
2482 | resultRelInfo = mtstate->resultRelInfo; |
2483 | foreach(l, node->returningLists) |
2484 | { |
2485 | List *rlist = (List *) lfirst(l); |
2486 | |
2487 | resultRelInfo->ri_returningList = rlist; |
2488 | resultRelInfo->ri_projectReturning = |
2489 | ExecBuildProjectionInfo(rlist, econtext, slot, &mtstate->ps, |
2490 | resultRelInfo->ri_RelationDesc->rd_att); |
2491 | resultRelInfo++; |
2492 | } |
2493 | } |
2494 | else |
2495 | { |
2496 | /* |
2497 | * We still must construct a dummy result tuple type, because InitPlan |
2498 | * expects one (maybe should change that?). |
2499 | */ |
2500 | mtstate->ps.plan->targetlist = NIL; |
2501 | ExecInitResultTypeTL(&mtstate->ps); |
2502 | |
2503 | mtstate->ps.ps_ExprContext = NULL; |
2504 | } |
2505 | |
2506 | /* Set the list of arbiter indexes if needed for ON CONFLICT */ |
2507 | resultRelInfo = mtstate->resultRelInfo; |
2508 | if (node->onConflictAction != ONCONFLICT_NONE) |
2509 | resultRelInfo->ri_onConflictArbiterIndexes = node->arbiterIndexes; |
2510 | |
2511 | /* |
2512 | * If needed, Initialize target list, projection and qual for ON CONFLICT |
2513 | * DO UPDATE. |
2514 | */ |
2515 | if (node->onConflictAction == ONCONFLICT_UPDATE) |
2516 | { |
2517 | ExprContext *econtext; |
2518 | TupleDesc relationDesc; |
2519 | TupleDesc tupDesc; |
2520 | |
2521 | /* insert may only have one plan, inheritance is not expanded */ |
2522 | Assert(nplans == 1); |
2523 | |
2524 | /* already exists if created by RETURNING processing above */ |
2525 | if (mtstate->ps.ps_ExprContext == NULL) |
2526 | ExecAssignExprContext(estate, &mtstate->ps); |
2527 | |
2528 | econtext = mtstate->ps.ps_ExprContext; |
2529 | relationDesc = resultRelInfo->ri_RelationDesc->rd_att; |
2530 | |
2531 | /* carried forward solely for the benefit of explain */ |
2532 | mtstate->mt_excludedtlist = node->exclRelTlist; |
2533 | |
2534 | /* create state for DO UPDATE SET operation */ |
2535 | resultRelInfo->ri_onConflict = makeNode(OnConflictSetState); |
2536 | |
2537 | /* initialize slot for the existing tuple */ |
2538 | resultRelInfo->ri_onConflict->oc_Existing = |
2539 | table_slot_create(resultRelInfo->ri_RelationDesc, |
2540 | &mtstate->ps.state->es_tupleTable); |
2541 | |
2542 | /* |
2543 | * Create the tuple slot for the UPDATE SET projection. We want a slot |
2544 | * of the table's type here, because the slot will be used to insert |
2545 | * into the table, and for RETURNING processing - which may access |
2546 | * system attributes. |
2547 | */ |
2548 | tupDesc = ExecTypeFromTL((List *) node->onConflictSet); |
2549 | resultRelInfo->ri_onConflict->oc_ProjSlot = |
2550 | ExecInitExtraTupleSlot(mtstate->ps.state, tupDesc, |
2551 | table_slot_callbacks(resultRelInfo->ri_RelationDesc)); |
2552 | |
2553 | /* build UPDATE SET projection state */ |
2554 | resultRelInfo->ri_onConflict->oc_ProjInfo = |
2555 | ExecBuildProjectionInfo(node->onConflictSet, econtext, |
2556 | resultRelInfo->ri_onConflict->oc_ProjSlot, |
2557 | &mtstate->ps, |
2558 | relationDesc); |
2559 | |
2560 | /* initialize state to evaluate the WHERE clause, if any */ |
2561 | if (node->onConflictWhere) |
2562 | { |
2563 | ExprState *qualexpr; |
2564 | |
2565 | qualexpr = ExecInitQual((List *) node->onConflictWhere, |
2566 | &mtstate->ps); |
2567 | resultRelInfo->ri_onConflict->oc_WhereClause = qualexpr; |
2568 | } |
2569 | } |
2570 | |
2571 | /* |
2572 | * If we have any secondary relations in an UPDATE or DELETE, they need to |
2573 | * be treated like non-locked relations in SELECT FOR UPDATE, ie, the |
2574 | * EvalPlanQual mechanism needs to be told about them. Locate the |
2575 | * relevant ExecRowMarks. |
2576 | */ |
2577 | foreach(l, node->rowMarks) |
2578 | { |
2579 | PlanRowMark *rc = lfirst_node(PlanRowMark, l); |
2580 | ExecRowMark *erm; |
2581 | |
2582 | /* ignore "parent" rowmarks; they are irrelevant at runtime */ |
2583 | if (rc->isParent) |
2584 | continue; |
2585 | |
2586 | /* find ExecRowMark (same for all subplans) */ |
2587 | erm = ExecFindRowMark(estate, rc->rti, false); |
2588 | |
2589 | /* build ExecAuxRowMark for each subplan */ |
2590 | for (i = 0; i < nplans; i++) |
2591 | { |
2592 | ExecAuxRowMark *aerm; |
2593 | |
2594 | subplan = mtstate->mt_plans[i]->plan; |
2595 | aerm = ExecBuildAuxRowMark(erm, subplan->targetlist); |
2596 | mtstate->mt_arowmarks[i] = lappend(mtstate->mt_arowmarks[i], aerm); |
2597 | } |
2598 | } |
2599 | |
2600 | /* select first subplan */ |
2601 | mtstate->mt_whichplan = 0; |
2602 | subplan = (Plan *) linitial(node->plans); |
2603 | EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan, |
2604 | mtstate->mt_arowmarks[0]); |
2605 | |
2606 | /* |
2607 | * Initialize the junk filter(s) if needed. INSERT queries need a filter |
2608 | * if there are any junk attrs in the tlist. UPDATE and DELETE always |
2609 | * need a filter, since there's always at least one junk attribute present |
2610 | * --- no need to look first. Typically, this will be a 'ctid' or |
2611 | * 'wholerow' attribute, but in the case of a foreign data wrapper it |
2612 | * might be a set of junk attributes sufficient to identify the remote |
2613 | * row. |
2614 | * |
2615 | * If there are multiple result relations, each one needs its own junk |
2616 | * filter. Note multiple rels are only possible for UPDATE/DELETE, so we |
2617 | * can't be fooled by some needing a filter and some not. |
2618 | * |
2619 | * This section of code is also a convenient place to verify that the |
2620 | * output of an INSERT or UPDATE matches the target table(s). |
2621 | */ |
2622 | { |
2623 | bool junk_filter_needed = false; |
2624 | |
2625 | switch (operation) |
2626 | { |
2627 | case CMD_INSERT: |
2628 | foreach(l, subplan->targetlist) |
2629 | { |
2630 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
2631 | |
2632 | if (tle->resjunk) |
2633 | { |
2634 | junk_filter_needed = true; |
2635 | break; |
2636 | } |
2637 | } |
2638 | break; |
2639 | case CMD_UPDATE: |
2640 | case CMD_DELETE: |
2641 | junk_filter_needed = true; |
2642 | break; |
2643 | default: |
2644 | elog(ERROR, "unknown operation" ); |
2645 | break; |
2646 | } |
2647 | |
2648 | if (junk_filter_needed) |
2649 | { |
2650 | resultRelInfo = mtstate->resultRelInfo; |
2651 | for (i = 0; i < nplans; i++) |
2652 | { |
2653 | JunkFilter *j; |
2654 | TupleTableSlot *junkresslot; |
2655 | |
2656 | subplan = mtstate->mt_plans[i]->plan; |
2657 | if (operation == CMD_INSERT || operation == CMD_UPDATE) |
2658 | ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc, |
2659 | subplan->targetlist); |
2660 | |
2661 | junkresslot = |
2662 | ExecInitExtraTupleSlot(estate, NULL, |
2663 | table_slot_callbacks(resultRelInfo->ri_RelationDesc)); |
2664 | j = ExecInitJunkFilter(subplan->targetlist, |
2665 | junkresslot); |
2666 | |
2667 | if (operation == CMD_UPDATE || operation == CMD_DELETE) |
2668 | { |
2669 | /* For UPDATE/DELETE, find the appropriate junk attr now */ |
2670 | char relkind; |
2671 | |
2672 | relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind; |
2673 | if (relkind == RELKIND_RELATION || |
2674 | relkind == RELKIND_MATVIEW || |
2675 | relkind == RELKIND_PARTITIONED_TABLE) |
2676 | { |
2677 | j->jf_junkAttNo = ExecFindJunkAttribute(j, "ctid" ); |
2678 | if (!AttributeNumberIsValid(j->jf_junkAttNo)) |
2679 | elog(ERROR, "could not find junk ctid column" ); |
2680 | } |
2681 | else if (relkind == RELKIND_FOREIGN_TABLE) |
2682 | { |
2683 | /* |
2684 | * When there is a row-level trigger, there should be |
2685 | * a wholerow attribute. |
2686 | */ |
2687 | j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow" ); |
2688 | } |
2689 | else |
2690 | { |
2691 | j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow" ); |
2692 | if (!AttributeNumberIsValid(j->jf_junkAttNo)) |
2693 | elog(ERROR, "could not find junk wholerow column" ); |
2694 | } |
2695 | } |
2696 | |
2697 | resultRelInfo->ri_junkFilter = j; |
2698 | resultRelInfo++; |
2699 | } |
2700 | } |
2701 | else |
2702 | { |
2703 | if (operation == CMD_INSERT) |
2704 | ExecCheckPlanOutput(mtstate->resultRelInfo->ri_RelationDesc, |
2705 | subplan->targetlist); |
2706 | } |
2707 | } |
2708 | |
2709 | /* |
2710 | * Lastly, if this is not the primary (canSetTag) ModifyTable node, add it |
2711 | * to estate->es_auxmodifytables so that it will be run to completion by |
2712 | * ExecPostprocessPlan. (It'd actually work fine to add the primary |
2713 | * ModifyTable node too, but there's no need.) Note the use of lcons not |
2714 | * lappend: we need later-initialized ModifyTable nodes to be shut down |
2715 | * before earlier ones. This ensures that we don't throw away RETURNING |
2716 | * rows that need to be seen by a later CTE subplan. |
2717 | */ |
2718 | if (!mtstate->canSetTag) |
2719 | estate->es_auxmodifytables = lcons(mtstate, |
2720 | estate->es_auxmodifytables); |
2721 | |
2722 | return mtstate; |
2723 | } |
2724 | |
2725 | /* ---------------------------------------------------------------- |
2726 | * ExecEndModifyTable |
2727 | * |
2728 | * Shuts down the plan. |
2729 | * |
2730 | * Returns nothing of interest. |
2731 | * ---------------------------------------------------------------- |
2732 | */ |
2733 | void |
2734 | ExecEndModifyTable(ModifyTableState *node) |
2735 | { |
2736 | int i; |
2737 | |
2738 | /* |
2739 | * Allow any FDWs to shut down |
2740 | */ |
2741 | for (i = 0; i < node->mt_nplans; i++) |
2742 | { |
2743 | ResultRelInfo *resultRelInfo = node->resultRelInfo + i; |
2744 | |
2745 | if (!resultRelInfo->ri_usesFdwDirectModify && |
2746 | resultRelInfo->ri_FdwRoutine != NULL && |
2747 | resultRelInfo->ri_FdwRoutine->EndForeignModify != NULL) |
2748 | resultRelInfo->ri_FdwRoutine->EndForeignModify(node->ps.state, |
2749 | resultRelInfo); |
2750 | } |
2751 | |
2752 | /* |
2753 | * Close all the partitioned tables, leaf partitions, and their indices |
2754 | * and release the slot used for tuple routing, if set. |
2755 | */ |
2756 | if (node->mt_partition_tuple_routing) |
2757 | { |
2758 | ExecCleanupTupleRouting(node, node->mt_partition_tuple_routing); |
2759 | |
2760 | if (node->mt_root_tuple_slot) |
2761 | ExecDropSingleTupleTableSlot(node->mt_root_tuple_slot); |
2762 | } |
2763 | |
2764 | /* |
2765 | * Free the exprcontext |
2766 | */ |
2767 | ExecFreeExprContext(&node->ps); |
2768 | |
2769 | /* |
2770 | * clean out the tuple table |
2771 | */ |
2772 | if (node->ps.ps_ResultTupleSlot) |
2773 | ExecClearTuple(node->ps.ps_ResultTupleSlot); |
2774 | |
2775 | /* |
2776 | * Terminate EPQ execution if active |
2777 | */ |
2778 | EvalPlanQualEnd(&node->mt_epqstate); |
2779 | |
2780 | /* |
2781 | * shut down subplans |
2782 | */ |
2783 | for (i = 0; i < node->mt_nplans; i++) |
2784 | ExecEndNode(node->mt_plans[i]); |
2785 | } |
2786 | |
2787 | void |
2788 | ExecReScanModifyTable(ModifyTableState *node) |
2789 | { |
2790 | /* |
2791 | * Currently, we don't need to support rescan on ModifyTable nodes. The |
2792 | * semantics of that would be a bit debatable anyway. |
2793 | */ |
2794 | elog(ERROR, "ExecReScanModifyTable is not implemented" ); |
2795 | } |
2796 | |