1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * parse_clause.c |
4 | * handle clauses in parser |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/parser/parse_clause.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | |
16 | #include "postgres.h" |
17 | |
18 | #include "miscadmin.h" |
19 | |
20 | #include "access/htup_details.h" |
21 | #include "access/nbtree.h" |
22 | #include "access/table.h" |
23 | #include "access/tsmapi.h" |
24 | #include "catalog/catalog.h" |
25 | #include "catalog/heap.h" |
26 | #include "catalog/pg_am.h" |
27 | #include "catalog/pg_amproc.h" |
28 | #include "catalog/pg_collation.h" |
29 | #include "catalog/pg_constraint.h" |
30 | #include "catalog/pg_type.h" |
31 | #include "commands/defrem.h" |
32 | #include "nodes/makefuncs.h" |
33 | #include "nodes/nodeFuncs.h" |
34 | #include "optimizer/optimizer.h" |
35 | #include "parser/analyze.h" |
36 | #include "parser/parsetree.h" |
37 | #include "parser/parser.h" |
38 | #include "parser/parse_clause.h" |
39 | #include "parser/parse_coerce.h" |
40 | #include "parser/parse_collate.h" |
41 | #include "parser/parse_expr.h" |
42 | #include "parser/parse_func.h" |
43 | #include "parser/parse_oper.h" |
44 | #include "parser/parse_relation.h" |
45 | #include "parser/parse_target.h" |
46 | #include "parser/parse_type.h" |
47 | #include "rewrite/rewriteManip.h" |
48 | #include "utils/builtins.h" |
49 | #include "utils/guc.h" |
50 | #include "utils/catcache.h" |
51 | #include "utils/lsyscache.h" |
52 | #include "utils/syscache.h" |
53 | #include "utils/rel.h" |
54 | |
55 | |
56 | /* Convenience macro for the most common makeNamespaceItem() case */ |
57 | #define makeDefaultNSItem(rte) makeNamespaceItem(rte, true, true, false, true) |
58 | |
59 | static void extractRemainingColumns(List *common_colnames, |
60 | List *src_colnames, List *src_colvars, |
61 | List **res_colnames, List **res_colvars); |
62 | static Node *transformJoinUsingClause(ParseState *pstate, |
63 | RangeTblEntry *leftRTE, RangeTblEntry *rightRTE, |
64 | List *leftVars, List *rightVars); |
65 | static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j, |
66 | List *namespace); |
67 | static RangeTblEntry *getRTEForSpecialRelationTypes(ParseState *pstate, |
68 | RangeVar *rv); |
69 | static RangeTblEntry *transformTableEntry(ParseState *pstate, RangeVar *r); |
70 | static RangeTblEntry *transformRangeSubselect(ParseState *pstate, |
71 | RangeSubselect *r); |
72 | static RangeTblEntry *transformRangeFunction(ParseState *pstate, |
73 | RangeFunction *r); |
74 | static RangeTblEntry *transformRangeTableFunc(ParseState *pstate, |
75 | RangeTableFunc *t); |
76 | static TableSampleClause *transformRangeTableSample(ParseState *pstate, |
77 | RangeTableSample *rts); |
78 | static Node *transformFromClauseItem(ParseState *pstate, Node *n, |
79 | RangeTblEntry **top_rte, int *top_rti, |
80 | List **namespace); |
81 | static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype, |
82 | Var *l_colvar, Var *r_colvar); |
83 | static ParseNamespaceItem *makeNamespaceItem(RangeTblEntry *rte, |
84 | bool rel_visible, bool cols_visible, |
85 | bool lateral_only, bool lateral_ok); |
86 | static void setNamespaceColumnVisibility(List *namespace, bool cols_visible); |
87 | static void setNamespaceLateralState(List *namespace, |
88 | bool lateral_only, bool lateral_ok); |
89 | static void checkExprIsVarFree(ParseState *pstate, Node *n, |
90 | const char *constructName); |
91 | static TargetEntry *findTargetlistEntrySQL92(ParseState *pstate, Node *node, |
92 | List **tlist, ParseExprKind exprKind); |
93 | static TargetEntry *findTargetlistEntrySQL99(ParseState *pstate, Node *node, |
94 | List **tlist, ParseExprKind exprKind); |
95 | static int get_matching_location(int sortgroupref, |
96 | List *sortgrouprefs, List *exprs); |
97 | static List *resolve_unique_index_expr(ParseState *pstate, InferClause *infer, |
98 | Relation heapRel); |
99 | static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle, |
100 | List *grouplist, List *targetlist, int location); |
101 | static WindowClause *findWindowClause(List *wclist, const char *name); |
102 | static Node *transformFrameOffset(ParseState *pstate, int frameOptions, |
103 | Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, |
104 | Node *clause); |
105 | |
106 | |
107 | /* |
108 | * transformFromClause - |
109 | * Process the FROM clause and add items to the query's range table, |
110 | * joinlist, and namespace. |
111 | * |
112 | * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace |
113 | * lists were initialized to NIL when the pstate was created. |
114 | * We will add onto any entries already present --- this is needed for rule |
115 | * processing, as well as for UPDATE and DELETE. |
116 | */ |
117 | void |
118 | transformFromClause(ParseState *pstate, List *frmList) |
119 | { |
120 | ListCell *fl; |
121 | |
122 | /* |
123 | * The grammar will have produced a list of RangeVars, RangeSubselects, |
124 | * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding |
125 | * entries to the rtable), check for duplicate refnames, and then add it |
126 | * to the joinlist and namespace. |
127 | * |
128 | * Note we must process the items left-to-right for proper handling of |
129 | * LATERAL references. |
130 | */ |
131 | foreach(fl, frmList) |
132 | { |
133 | Node *n = lfirst(fl); |
134 | RangeTblEntry *rte; |
135 | int rtindex; |
136 | List *namespace; |
137 | |
138 | n = transformFromClauseItem(pstate, n, |
139 | &rte, |
140 | &rtindex, |
141 | &namespace); |
142 | |
143 | checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace); |
144 | |
145 | /* Mark the new namespace items as visible only to LATERAL */ |
146 | setNamespaceLateralState(namespace, true, true); |
147 | |
148 | pstate->p_joinlist = lappend(pstate->p_joinlist, n); |
149 | pstate->p_namespace = list_concat(pstate->p_namespace, namespace); |
150 | } |
151 | |
152 | /* |
153 | * We're done parsing the FROM list, so make all namespace items |
154 | * unconditionally visible. Note that this will also reset lateral_only |
155 | * for any namespace items that were already present when we were called; |
156 | * but those should have been that way already. |
157 | */ |
158 | setNamespaceLateralState(pstate->p_namespace, false, true); |
159 | } |
160 | |
161 | /* |
162 | * setTargetTable |
163 | * Add the target relation of INSERT/UPDATE/DELETE to the range table, |
164 | * and make the special links to it in the ParseState. |
165 | * |
166 | * We also open the target relation and acquire a write lock on it. |
167 | * This must be done before processing the FROM list, in case the target |
168 | * is also mentioned as a source relation --- we want to be sure to grab |
169 | * the write lock before any read lock. |
170 | * |
171 | * If alsoSource is true, add the target to the query's joinlist and |
172 | * namespace. For INSERT, we don't want the target to be joined to; |
173 | * it's a destination of tuples, not a source. For UPDATE/DELETE, |
174 | * we do need to scan or join the target. (NOTE: we do not bother |
175 | * to check for namespace conflict; we assume that the namespace was |
176 | * initially empty in these cases.) |
177 | * |
178 | * Finally, we mark the relation as requiring the permissions specified |
179 | * by requiredPerms. |
180 | * |
181 | * Returns the rangetable index of the target relation. |
182 | */ |
183 | int |
184 | setTargetTable(ParseState *pstate, RangeVar *relation, |
185 | bool inh, bool alsoSource, AclMode requiredPerms) |
186 | { |
187 | RangeTblEntry *rte; |
188 | int rtindex; |
189 | |
190 | /* |
191 | * ENRs hide tables of the same name, so we need to check for them first. |
192 | * In contrast, CTEs don't hide tables (for this purpose). |
193 | */ |
194 | if (relation->schemaname == NULL && |
195 | scanNameSpaceForENR(pstate, relation->relname)) |
196 | ereport(ERROR, |
197 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
198 | errmsg("relation \"%s\" cannot be the target of a modifying statement" , |
199 | relation->relname))); |
200 | |
201 | /* Close old target; this could only happen for multi-action rules */ |
202 | if (pstate->p_target_relation != NULL) |
203 | table_close(pstate->p_target_relation, NoLock); |
204 | |
205 | /* |
206 | * Open target rel and grab suitable lock (which we will hold till end of |
207 | * transaction). |
208 | * |
209 | * free_parsestate() will eventually do the corresponding table_close(), |
210 | * but *not* release the lock. |
211 | */ |
212 | pstate->p_target_relation = parserOpenTable(pstate, relation, |
213 | RowExclusiveLock); |
214 | |
215 | /* |
216 | * Now build an RTE. |
217 | */ |
218 | rte = addRangeTableEntryForRelation(pstate, pstate->p_target_relation, |
219 | RowExclusiveLock, |
220 | relation->alias, inh, false); |
221 | pstate->p_target_rangetblentry = rte; |
222 | |
223 | /* assume new rte is at end */ |
224 | rtindex = list_length(pstate->p_rtable); |
225 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
226 | |
227 | /* |
228 | * Override addRangeTableEntry's default ACL_SELECT permissions check, and |
229 | * instead mark target table as requiring exactly the specified |
230 | * permissions. |
231 | * |
232 | * If we find an explicit reference to the rel later during parse |
233 | * analysis, we will add the ACL_SELECT bit back again; see |
234 | * markVarForSelectPriv and its callers. |
235 | */ |
236 | rte->requiredPerms = requiredPerms; |
237 | |
238 | /* |
239 | * If UPDATE/DELETE, add table to joinlist and namespace. |
240 | * |
241 | * Note: some callers know that they can find the new ParseNamespaceItem |
242 | * at the end of the pstate->p_namespace list. This is a bit ugly but not |
243 | * worth complicating this function's signature for. |
244 | */ |
245 | if (alsoSource) |
246 | addRTEtoQuery(pstate, rte, true, true, true); |
247 | |
248 | return rtindex; |
249 | } |
250 | |
251 | /* |
252 | * Extract all not-in-common columns from column lists of a source table |
253 | */ |
254 | static void |
255 | extractRemainingColumns(List *common_colnames, |
256 | List *src_colnames, List *src_colvars, |
257 | List **res_colnames, List **res_colvars) |
258 | { |
259 | List *new_colnames = NIL; |
260 | List *new_colvars = NIL; |
261 | ListCell *lnames, |
262 | *lvars; |
263 | |
264 | Assert(list_length(src_colnames) == list_length(src_colvars)); |
265 | |
266 | forboth(lnames, src_colnames, lvars, src_colvars) |
267 | { |
268 | char *colname = strVal(lfirst(lnames)); |
269 | bool match = false; |
270 | ListCell *cnames; |
271 | |
272 | foreach(cnames, common_colnames) |
273 | { |
274 | char *ccolname = strVal(lfirst(cnames)); |
275 | |
276 | if (strcmp(colname, ccolname) == 0) |
277 | { |
278 | match = true; |
279 | break; |
280 | } |
281 | } |
282 | |
283 | if (!match) |
284 | { |
285 | new_colnames = lappend(new_colnames, lfirst(lnames)); |
286 | new_colvars = lappend(new_colvars, lfirst(lvars)); |
287 | } |
288 | } |
289 | |
290 | *res_colnames = new_colnames; |
291 | *res_colvars = new_colvars; |
292 | } |
293 | |
294 | /* transformJoinUsingClause() |
295 | * Build a complete ON clause from a partially-transformed USING list. |
296 | * We are given lists of nodes representing left and right match columns. |
297 | * Result is a transformed qualification expression. |
298 | */ |
299 | static Node * |
300 | transformJoinUsingClause(ParseState *pstate, |
301 | RangeTblEntry *leftRTE, RangeTblEntry *rightRTE, |
302 | List *leftVars, List *rightVars) |
303 | { |
304 | Node *result; |
305 | List *andargs = NIL; |
306 | ListCell *lvars, |
307 | *rvars; |
308 | |
309 | /* |
310 | * We cheat a little bit here by building an untransformed operator tree |
311 | * whose leaves are the already-transformed Vars. This requires collusion |
312 | * from transformExpr(), which normally could be expected to complain |
313 | * about already-transformed subnodes. However, this does mean that we |
314 | * have to mark the columns as requiring SELECT privilege for ourselves; |
315 | * transformExpr() won't do it. |
316 | */ |
317 | forboth(lvars, leftVars, rvars, rightVars) |
318 | { |
319 | Var *lvar = (Var *) lfirst(lvars); |
320 | Var *rvar = (Var *) lfirst(rvars); |
321 | A_Expr *e; |
322 | |
323 | /* Require read access to the join variables */ |
324 | markVarForSelectPriv(pstate, lvar, leftRTE); |
325 | markVarForSelectPriv(pstate, rvar, rightRTE); |
326 | |
327 | /* Now create the lvar = rvar join condition */ |
328 | e = makeSimpleA_Expr(AEXPR_OP, "=" , |
329 | (Node *) copyObject(lvar), (Node *) copyObject(rvar), |
330 | -1); |
331 | |
332 | /* Prepare to combine into an AND clause, if multiple join columns */ |
333 | andargs = lappend(andargs, e); |
334 | } |
335 | |
336 | /* Only need an AND if there's more than one join column */ |
337 | if (list_length(andargs) == 1) |
338 | result = (Node *) linitial(andargs); |
339 | else |
340 | result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1); |
341 | |
342 | /* |
343 | * Since the references are already Vars, and are certainly from the input |
344 | * relations, we don't have to go through the same pushups that |
345 | * transformJoinOnClause() does. Just invoke transformExpr() to fix up |
346 | * the operators, and we're done. |
347 | */ |
348 | result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING); |
349 | |
350 | result = coerce_to_boolean(pstate, result, "JOIN/USING" ); |
351 | |
352 | return result; |
353 | } |
354 | |
355 | /* transformJoinOnClause() |
356 | * Transform the qual conditions for JOIN/ON. |
357 | * Result is a transformed qualification expression. |
358 | */ |
359 | static Node * |
360 | transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace) |
361 | { |
362 | Node *result; |
363 | List *save_namespace; |
364 | |
365 | /* |
366 | * The namespace that the join expression should see is just the two |
367 | * subtrees of the JOIN plus any outer references from upper pstate |
368 | * levels. Temporarily set this pstate's namespace accordingly. (We need |
369 | * not check for refname conflicts, because transformFromClauseItem() |
370 | * already did.) All namespace items are marked visible regardless of |
371 | * LATERAL state. |
372 | */ |
373 | setNamespaceLateralState(namespace, false, true); |
374 | |
375 | save_namespace = pstate->p_namespace; |
376 | pstate->p_namespace = namespace; |
377 | |
378 | result = transformWhereClause(pstate, j->quals, |
379 | EXPR_KIND_JOIN_ON, "JOIN/ON" ); |
380 | |
381 | pstate->p_namespace = save_namespace; |
382 | |
383 | return result; |
384 | } |
385 | |
386 | /* |
387 | * transformTableEntry --- transform a RangeVar (simple relation reference) |
388 | */ |
389 | static RangeTblEntry * |
390 | transformTableEntry(ParseState *pstate, RangeVar *r) |
391 | { |
392 | RangeTblEntry *rte; |
393 | |
394 | /* We need only build a range table entry */ |
395 | rte = addRangeTableEntry(pstate, r, r->alias, r->inh, true); |
396 | |
397 | return rte; |
398 | } |
399 | |
400 | /* |
401 | * transformRangeSubselect --- transform a sub-SELECT appearing in FROM |
402 | */ |
403 | static RangeTblEntry * |
404 | transformRangeSubselect(ParseState *pstate, RangeSubselect *r) |
405 | { |
406 | Query *query; |
407 | RangeTblEntry *rte; |
408 | |
409 | /* |
410 | * We require user to supply an alias for a subselect, per SQL92. To relax |
411 | * this, we'd have to be prepared to gin up a unique alias for an |
412 | * unlabeled subselect. (This is just elog, not ereport, because the |
413 | * grammar should have enforced it already. It'd probably be better to |
414 | * report the error here, but we don't have a good error location here.) |
415 | */ |
416 | if (r->alias == NULL) |
417 | elog(ERROR, "subquery in FROM must have an alias" ); |
418 | |
419 | /* |
420 | * Set p_expr_kind to show this parse level is recursing to a subselect. |
421 | * We can't be nested within any expression, so don't need save-restore |
422 | * logic here. |
423 | */ |
424 | Assert(pstate->p_expr_kind == EXPR_KIND_NONE); |
425 | pstate->p_expr_kind = EXPR_KIND_FROM_SUBSELECT; |
426 | |
427 | /* |
428 | * If the subselect is LATERAL, make lateral_only names of this level |
429 | * visible to it. (LATERAL can't nest within a single pstate level, so we |
430 | * don't need save/restore logic here.) |
431 | */ |
432 | Assert(!pstate->p_lateral_active); |
433 | pstate->p_lateral_active = r->lateral; |
434 | |
435 | /* |
436 | * Analyze and transform the subquery. |
437 | */ |
438 | query = parse_sub_analyze(r->subquery, pstate, NULL, |
439 | isLockedRefname(pstate, r->alias->aliasname), |
440 | true); |
441 | |
442 | /* Restore state */ |
443 | pstate->p_lateral_active = false; |
444 | pstate->p_expr_kind = EXPR_KIND_NONE; |
445 | |
446 | /* |
447 | * Check that we got a SELECT. Anything else should be impossible given |
448 | * restrictions of the grammar, but check anyway. |
449 | */ |
450 | if (!IsA(query, Query) || |
451 | query->commandType != CMD_SELECT) |
452 | elog(ERROR, "unexpected non-SELECT command in subquery in FROM" ); |
453 | |
454 | /* |
455 | * OK, build an RTE for the subquery. |
456 | */ |
457 | rte = addRangeTableEntryForSubquery(pstate, |
458 | query, |
459 | r->alias, |
460 | r->lateral, |
461 | true); |
462 | |
463 | return rte; |
464 | } |
465 | |
466 | |
467 | /* |
468 | * transformRangeFunction --- transform a function call appearing in FROM |
469 | */ |
470 | static RangeTblEntry * |
471 | transformRangeFunction(ParseState *pstate, RangeFunction *r) |
472 | { |
473 | List *funcexprs = NIL; |
474 | List *funcnames = NIL; |
475 | List *coldeflists = NIL; |
476 | bool is_lateral; |
477 | RangeTblEntry *rte; |
478 | ListCell *lc; |
479 | |
480 | /* |
481 | * We make lateral_only names of this level visible, whether or not the |
482 | * RangeFunction is explicitly marked LATERAL. This is needed for SQL |
483 | * spec compliance in the case of UNNEST(), and seems useful on |
484 | * convenience grounds for all functions in FROM. |
485 | * |
486 | * (LATERAL can't nest within a single pstate level, so we don't need |
487 | * save/restore logic here.) |
488 | */ |
489 | Assert(!pstate->p_lateral_active); |
490 | pstate->p_lateral_active = true; |
491 | |
492 | /* |
493 | * Transform the raw expressions. |
494 | * |
495 | * While transforming, also save function names for possible use as alias |
496 | * and column names. We use the same transformation rules as for a SELECT |
497 | * output expression. For a FuncCall node, the result will be the |
498 | * function name, but it is possible for the grammar to hand back other |
499 | * node types. |
500 | * |
501 | * We have to get this info now, because FigureColname only works on raw |
502 | * parsetrees. Actually deciding what to do with the names is left up to |
503 | * addRangeTableEntryForFunction. |
504 | * |
505 | * Likewise, collect column definition lists if there were any. But |
506 | * complain if we find one here and the RangeFunction has one too. |
507 | */ |
508 | foreach(lc, r->functions) |
509 | { |
510 | List *pair = (List *) lfirst(lc); |
511 | Node *fexpr; |
512 | List *coldeflist; |
513 | Node *newfexpr; |
514 | Node *last_srf; |
515 | |
516 | /* Disassemble the function-call/column-def-list pairs */ |
517 | Assert(list_length(pair) == 2); |
518 | fexpr = (Node *) linitial(pair); |
519 | coldeflist = (List *) lsecond(pair); |
520 | |
521 | /* |
522 | * If we find a function call unnest() with more than one argument and |
523 | * no special decoration, transform it into separate unnest() calls on |
524 | * each argument. This is a kluge, for sure, but it's less nasty than |
525 | * other ways of implementing the SQL-standard UNNEST() syntax. |
526 | * |
527 | * If there is any decoration (including a coldeflist), we don't |
528 | * transform, which probably means a no-such-function error later. We |
529 | * could alternatively throw an error right now, but that doesn't seem |
530 | * tremendously helpful. If someone is using any such decoration, |
531 | * then they're not using the SQL-standard syntax, and they're more |
532 | * likely expecting an un-tweaked function call. |
533 | * |
534 | * Note: the transformation changes a non-schema-qualified unnest() |
535 | * function name into schema-qualified pg_catalog.unnest(). This |
536 | * choice is also a bit debatable, but it seems reasonable to force |
537 | * use of built-in unnest() when we make this transformation. |
538 | */ |
539 | if (IsA(fexpr, FuncCall)) |
540 | { |
541 | FuncCall *fc = (FuncCall *) fexpr; |
542 | |
543 | if (list_length(fc->funcname) == 1 && |
544 | strcmp(strVal(linitial(fc->funcname)), "unnest" ) == 0 && |
545 | list_length(fc->args) > 1 && |
546 | fc->agg_order == NIL && |
547 | fc->agg_filter == NULL && |
548 | !fc->agg_star && |
549 | !fc->agg_distinct && |
550 | !fc->func_variadic && |
551 | fc->over == NULL && |
552 | coldeflist == NIL) |
553 | { |
554 | ListCell *lc; |
555 | |
556 | foreach(lc, fc->args) |
557 | { |
558 | Node *arg = (Node *) lfirst(lc); |
559 | FuncCall *newfc; |
560 | |
561 | last_srf = pstate->p_last_srf; |
562 | |
563 | newfc = makeFuncCall(SystemFuncName("unnest" ), |
564 | list_make1(arg), |
565 | fc->location); |
566 | |
567 | newfexpr = transformExpr(pstate, (Node *) newfc, |
568 | EXPR_KIND_FROM_FUNCTION); |
569 | |
570 | /* nodeFunctionscan.c requires SRFs to be at top level */ |
571 | if (pstate->p_last_srf != last_srf && |
572 | pstate->p_last_srf != newfexpr) |
573 | ereport(ERROR, |
574 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
575 | errmsg("set-returning functions must appear at top level of FROM" ), |
576 | parser_errposition(pstate, |
577 | exprLocation(pstate->p_last_srf)))); |
578 | |
579 | funcexprs = lappend(funcexprs, newfexpr); |
580 | |
581 | funcnames = lappend(funcnames, |
582 | FigureColname((Node *) newfc)); |
583 | |
584 | /* coldeflist is empty, so no error is possible */ |
585 | |
586 | coldeflists = lappend(coldeflists, coldeflist); |
587 | } |
588 | continue; /* done with this function item */ |
589 | } |
590 | } |
591 | |
592 | /* normal case ... */ |
593 | last_srf = pstate->p_last_srf; |
594 | |
595 | newfexpr = transformExpr(pstate, fexpr, |
596 | EXPR_KIND_FROM_FUNCTION); |
597 | |
598 | /* nodeFunctionscan.c requires SRFs to be at top level */ |
599 | if (pstate->p_last_srf != last_srf && |
600 | pstate->p_last_srf != newfexpr) |
601 | ereport(ERROR, |
602 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
603 | errmsg("set-returning functions must appear at top level of FROM" ), |
604 | parser_errposition(pstate, |
605 | exprLocation(pstate->p_last_srf)))); |
606 | |
607 | funcexprs = lappend(funcexprs, newfexpr); |
608 | |
609 | funcnames = lappend(funcnames, |
610 | FigureColname(fexpr)); |
611 | |
612 | if (coldeflist && r->coldeflist) |
613 | ereport(ERROR, |
614 | (errcode(ERRCODE_SYNTAX_ERROR), |
615 | errmsg("multiple column definition lists are not allowed for the same function" ), |
616 | parser_errposition(pstate, |
617 | exprLocation((Node *) r->coldeflist)))); |
618 | |
619 | coldeflists = lappend(coldeflists, coldeflist); |
620 | } |
621 | |
622 | pstate->p_lateral_active = false; |
623 | |
624 | /* |
625 | * We must assign collations now so that the RTE exposes correct collation |
626 | * info for Vars created from it. |
627 | */ |
628 | assign_list_collations(pstate, funcexprs); |
629 | |
630 | /* |
631 | * Install the top-level coldeflist if there was one (we already checked |
632 | * that there was no conflicting per-function coldeflist). |
633 | * |
634 | * We only allow this when there's a single function (even after UNNEST |
635 | * expansion) and no WITH ORDINALITY. The reason for the latter |
636 | * restriction is that it's not real clear whether the ordinality column |
637 | * should be in the coldeflist, and users are too likely to make mistakes |
638 | * in one direction or the other. Putting the coldeflist inside ROWS |
639 | * FROM() is much clearer in this case. |
640 | */ |
641 | if (r->coldeflist) |
642 | { |
643 | if (list_length(funcexprs) != 1) |
644 | { |
645 | if (r->is_rowsfrom) |
646 | ereport(ERROR, |
647 | (errcode(ERRCODE_SYNTAX_ERROR), |
648 | errmsg("ROWS FROM() with multiple functions cannot have a column definition list" ), |
649 | errhint("Put a separate column definition list for each function inside ROWS FROM()." ), |
650 | parser_errposition(pstate, |
651 | exprLocation((Node *) r->coldeflist)))); |
652 | else |
653 | ereport(ERROR, |
654 | (errcode(ERRCODE_SYNTAX_ERROR), |
655 | errmsg("UNNEST() with multiple arguments cannot have a column definition list" ), |
656 | errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one." ), |
657 | parser_errposition(pstate, |
658 | exprLocation((Node *) r->coldeflist)))); |
659 | } |
660 | if (r->ordinality) |
661 | ereport(ERROR, |
662 | (errcode(ERRCODE_SYNTAX_ERROR), |
663 | errmsg("WITH ORDINALITY cannot be used with a column definition list" ), |
664 | errhint("Put the column definition list inside ROWS FROM()." ), |
665 | parser_errposition(pstate, |
666 | exprLocation((Node *) r->coldeflist)))); |
667 | |
668 | coldeflists = list_make1(r->coldeflist); |
669 | } |
670 | |
671 | /* |
672 | * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if |
673 | * there are any lateral cross-references in it. |
674 | */ |
675 | is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0); |
676 | |
677 | /* |
678 | * OK, build an RTE for the function. |
679 | */ |
680 | rte = addRangeTableEntryForFunction(pstate, |
681 | funcnames, funcexprs, coldeflists, |
682 | r, is_lateral, true); |
683 | |
684 | return rte; |
685 | } |
686 | |
687 | /* |
688 | * transformRangeTableFunc - |
689 | * Transform a raw RangeTableFunc into TableFunc. |
690 | * |
691 | * Transform the namespace clauses, the document-generating expression, the |
692 | * row-generating expression, the column-generating expressions, and the |
693 | * default value expressions. |
694 | */ |
695 | static RangeTblEntry * |
696 | transformRangeTableFunc(ParseState *pstate, RangeTableFunc *rtf) |
697 | { |
698 | TableFunc *tf = makeNode(TableFunc); |
699 | const char *constructName; |
700 | Oid docType; |
701 | RangeTblEntry *rte; |
702 | bool is_lateral; |
703 | ListCell *col; |
704 | char **names; |
705 | int colno; |
706 | |
707 | /* Currently only XMLTABLE is supported */ |
708 | constructName = "XMLTABLE" ; |
709 | docType = XMLOID; |
710 | |
711 | /* |
712 | * We make lateral_only names of this level visible, whether or not the |
713 | * RangeTableFunc is explicitly marked LATERAL. This is needed for SQL |
714 | * spec compliance and seems useful on convenience grounds for all |
715 | * functions in FROM. |
716 | * |
717 | * (LATERAL can't nest within a single pstate level, so we don't need |
718 | * save/restore logic here.) |
719 | */ |
720 | Assert(!pstate->p_lateral_active); |
721 | pstate->p_lateral_active = true; |
722 | |
723 | /* Transform and apply typecast to the row-generating expression ... */ |
724 | Assert(rtf->rowexpr != NULL); |
725 | tf->rowexpr = coerce_to_specific_type(pstate, |
726 | transformExpr(pstate, rtf->rowexpr, EXPR_KIND_FROM_FUNCTION), |
727 | TEXTOID, |
728 | constructName); |
729 | assign_expr_collations(pstate, tf->rowexpr); |
730 | |
731 | /* ... and to the document itself */ |
732 | Assert(rtf->docexpr != NULL); |
733 | tf->docexpr = coerce_to_specific_type(pstate, |
734 | transformExpr(pstate, rtf->docexpr, EXPR_KIND_FROM_FUNCTION), |
735 | docType, |
736 | constructName); |
737 | assign_expr_collations(pstate, tf->docexpr); |
738 | |
739 | /* undef ordinality column number */ |
740 | tf->ordinalitycol = -1; |
741 | |
742 | /* Process column specs */ |
743 | names = palloc(sizeof(char *) * list_length(rtf->columns)); |
744 | |
745 | colno = 0; |
746 | foreach(col, rtf->columns) |
747 | { |
748 | RangeTableFuncCol *rawc = (RangeTableFuncCol *) lfirst(col); |
749 | Oid typid; |
750 | int32 typmod; |
751 | Node *colexpr; |
752 | Node *coldefexpr; |
753 | int j; |
754 | |
755 | tf->colnames = lappend(tf->colnames, |
756 | makeString(pstrdup(rawc->colname))); |
757 | |
758 | /* |
759 | * Determine the type and typmod for the new column. FOR ORDINALITY |
760 | * columns are INTEGER per spec; the others are user-specified. |
761 | */ |
762 | if (rawc->for_ordinality) |
763 | { |
764 | if (tf->ordinalitycol != -1) |
765 | ereport(ERROR, |
766 | (errcode(ERRCODE_SYNTAX_ERROR), |
767 | errmsg("only one FOR ORDINALITY column is allowed" ), |
768 | parser_errposition(pstate, rawc->location))); |
769 | |
770 | typid = INT4OID; |
771 | typmod = -1; |
772 | tf->ordinalitycol = colno; |
773 | } |
774 | else |
775 | { |
776 | if (rawc->typeName->setof) |
777 | ereport(ERROR, |
778 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
779 | errmsg("column \"%s\" cannot be declared SETOF" , |
780 | rawc->colname), |
781 | parser_errposition(pstate, rawc->location))); |
782 | |
783 | typenameTypeIdAndMod(pstate, rawc->typeName, |
784 | &typid, &typmod); |
785 | } |
786 | |
787 | tf->coltypes = lappend_oid(tf->coltypes, typid); |
788 | tf->coltypmods = lappend_int(tf->coltypmods, typmod); |
789 | tf->colcollations = lappend_oid(tf->colcollations, |
790 | get_typcollation(typid)); |
791 | |
792 | /* Transform the PATH and DEFAULT expressions */ |
793 | if (rawc->colexpr) |
794 | { |
795 | colexpr = coerce_to_specific_type(pstate, |
796 | transformExpr(pstate, rawc->colexpr, |
797 | EXPR_KIND_FROM_FUNCTION), |
798 | TEXTOID, |
799 | constructName); |
800 | assign_expr_collations(pstate, colexpr); |
801 | } |
802 | else |
803 | colexpr = NULL; |
804 | |
805 | if (rawc->coldefexpr) |
806 | { |
807 | coldefexpr = coerce_to_specific_type_typmod(pstate, |
808 | transformExpr(pstate, rawc->coldefexpr, |
809 | EXPR_KIND_FROM_FUNCTION), |
810 | typid, typmod, |
811 | constructName); |
812 | assign_expr_collations(pstate, coldefexpr); |
813 | } |
814 | else |
815 | coldefexpr = NULL; |
816 | |
817 | tf->colexprs = lappend(tf->colexprs, colexpr); |
818 | tf->coldefexprs = lappend(tf->coldefexprs, coldefexpr); |
819 | |
820 | if (rawc->is_not_null) |
821 | tf->notnulls = bms_add_member(tf->notnulls, colno); |
822 | |
823 | /* make sure column names are unique */ |
824 | for (j = 0; j < colno; j++) |
825 | if (strcmp(names[j], rawc->colname) == 0) |
826 | ereport(ERROR, |
827 | (errcode(ERRCODE_SYNTAX_ERROR), |
828 | errmsg("column name \"%s\" is not unique" , |
829 | rawc->colname), |
830 | parser_errposition(pstate, rawc->location))); |
831 | names[colno] = rawc->colname; |
832 | |
833 | colno++; |
834 | } |
835 | pfree(names); |
836 | |
837 | /* Namespaces, if any, also need to be transformed */ |
838 | if (rtf->namespaces != NIL) |
839 | { |
840 | ListCell *ns; |
841 | ListCell *lc2; |
842 | List *ns_uris = NIL; |
843 | List *ns_names = NIL; |
844 | bool default_ns_seen = false; |
845 | |
846 | foreach(ns, rtf->namespaces) |
847 | { |
848 | ResTarget *r = (ResTarget *) lfirst(ns); |
849 | Node *ns_uri; |
850 | |
851 | Assert(IsA(r, ResTarget)); |
852 | ns_uri = transformExpr(pstate, r->val, EXPR_KIND_FROM_FUNCTION); |
853 | ns_uri = coerce_to_specific_type(pstate, ns_uri, |
854 | TEXTOID, constructName); |
855 | assign_expr_collations(pstate, ns_uri); |
856 | ns_uris = lappend(ns_uris, ns_uri); |
857 | |
858 | /* Verify consistency of name list: no dupes, only one DEFAULT */ |
859 | if (r->name != NULL) |
860 | { |
861 | foreach(lc2, ns_names) |
862 | { |
863 | Value *ns_node = (Value *) lfirst(lc2); |
864 | |
865 | if (ns_node == NULL) |
866 | continue; |
867 | if (strcmp(strVal(ns_node), r->name) == 0) |
868 | ereport(ERROR, |
869 | (errcode(ERRCODE_SYNTAX_ERROR), |
870 | errmsg("namespace name \"%s\" is not unique" , |
871 | r->name), |
872 | parser_errposition(pstate, r->location))); |
873 | } |
874 | } |
875 | else |
876 | { |
877 | if (default_ns_seen) |
878 | ereport(ERROR, |
879 | (errcode(ERRCODE_SYNTAX_ERROR), |
880 | errmsg("only one default namespace is allowed" ), |
881 | parser_errposition(pstate, r->location))); |
882 | default_ns_seen = true; |
883 | } |
884 | |
885 | /* We represent DEFAULT by a null pointer */ |
886 | ns_names = lappend(ns_names, |
887 | r->name ? makeString(r->name) : NULL); |
888 | } |
889 | |
890 | tf->ns_uris = ns_uris; |
891 | tf->ns_names = ns_names; |
892 | } |
893 | |
894 | tf->location = rtf->location; |
895 | |
896 | pstate->p_lateral_active = false; |
897 | |
898 | /* |
899 | * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if |
900 | * there are any lateral cross-references in it. |
901 | */ |
902 | is_lateral = rtf->lateral || contain_vars_of_level((Node *) tf, 0); |
903 | |
904 | rte = addRangeTableEntryForTableFunc(pstate, |
905 | tf, rtf->alias, is_lateral, true); |
906 | |
907 | return rte; |
908 | } |
909 | |
910 | /* |
911 | * transformRangeTableSample --- transform a TABLESAMPLE clause |
912 | * |
913 | * Caller has already transformed rts->relation, we just have to validate |
914 | * the remaining fields and create a TableSampleClause node. |
915 | */ |
916 | static TableSampleClause * |
917 | transformRangeTableSample(ParseState *pstate, RangeTableSample *rts) |
918 | { |
919 | TableSampleClause *tablesample; |
920 | Oid handlerOid; |
921 | Oid funcargtypes[1]; |
922 | TsmRoutine *tsm; |
923 | List *fargs; |
924 | ListCell *larg, |
925 | *ltyp; |
926 | |
927 | /* |
928 | * To validate the sample method name, look up the handler function, which |
929 | * has the same name, one dummy INTERNAL argument, and a result type of |
930 | * tsm_handler. (Note: tablesample method names are not schema-qualified |
931 | * in the SQL standard; but since they are just functions to us, we allow |
932 | * schema qualification to resolve any potential ambiguity.) |
933 | */ |
934 | funcargtypes[0] = INTERNALOID; |
935 | |
936 | handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true); |
937 | |
938 | /* we want error to complain about no-such-method, not no-such-function */ |
939 | if (!OidIsValid(handlerOid)) |
940 | ereport(ERROR, |
941 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
942 | errmsg("tablesample method %s does not exist" , |
943 | NameListToString(rts->method)), |
944 | parser_errposition(pstate, rts->location))); |
945 | |
946 | /* check that handler has correct return type */ |
947 | if (get_func_rettype(handlerOid) != TSM_HANDLEROID) |
948 | ereport(ERROR, |
949 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
950 | errmsg("function %s must return type %s" , |
951 | NameListToString(rts->method), "tsm_handler" ), |
952 | parser_errposition(pstate, rts->location))); |
953 | |
954 | /* OK, run the handler to get TsmRoutine, for argument type info */ |
955 | tsm = GetTsmRoutine(handlerOid); |
956 | |
957 | tablesample = makeNode(TableSampleClause); |
958 | tablesample->tsmhandler = handlerOid; |
959 | |
960 | /* check user provided the expected number of arguments */ |
961 | if (list_length(rts->args) != list_length(tsm->parameterTypes)) |
962 | ereport(ERROR, |
963 | (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), |
964 | errmsg_plural("tablesample method %s requires %d argument, not %d" , |
965 | "tablesample method %s requires %d arguments, not %d" , |
966 | list_length(tsm->parameterTypes), |
967 | NameListToString(rts->method), |
968 | list_length(tsm->parameterTypes), |
969 | list_length(rts->args)), |
970 | parser_errposition(pstate, rts->location))); |
971 | |
972 | /* |
973 | * Transform the arguments, typecasting them as needed. Note we must also |
974 | * assign collations now, because assign_query_collations() doesn't |
975 | * examine any substructure of RTEs. |
976 | */ |
977 | fargs = NIL; |
978 | forboth(larg, rts->args, ltyp, tsm->parameterTypes) |
979 | { |
980 | Node *arg = (Node *) lfirst(larg); |
981 | Oid argtype = lfirst_oid(ltyp); |
982 | |
983 | arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION); |
984 | arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE" ); |
985 | assign_expr_collations(pstate, arg); |
986 | fargs = lappend(fargs, arg); |
987 | } |
988 | tablesample->args = fargs; |
989 | |
990 | /* Process REPEATABLE (seed) */ |
991 | if (rts->repeatable != NULL) |
992 | { |
993 | Node *arg; |
994 | |
995 | if (!tsm->repeatable_across_queries) |
996 | ereport(ERROR, |
997 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
998 | errmsg("tablesample method %s does not support REPEATABLE" , |
999 | NameListToString(rts->method)), |
1000 | parser_errposition(pstate, rts->location))); |
1001 | |
1002 | arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION); |
1003 | arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE" ); |
1004 | assign_expr_collations(pstate, arg); |
1005 | tablesample->repeatable = (Expr *) arg; |
1006 | } |
1007 | else |
1008 | tablesample->repeatable = NULL; |
1009 | |
1010 | return tablesample; |
1011 | } |
1012 | |
1013 | /* |
1014 | * getRTEForSpecialRelationTypes |
1015 | * |
1016 | * If given RangeVar refers to a CTE or an EphemeralNamedRelation, |
1017 | * build and return an appropriate RTE, otherwise return NULL |
1018 | */ |
1019 | static RangeTblEntry * |
1020 | getRTEForSpecialRelationTypes(ParseState *pstate, RangeVar *rv) |
1021 | { |
1022 | CommonTableExpr *cte; |
1023 | Index levelsup; |
1024 | RangeTblEntry *rte; |
1025 | |
1026 | /* |
1027 | * if it is a qualified name, it can't be a CTE or tuplestore reference |
1028 | */ |
1029 | if (rv->schemaname) |
1030 | return NULL; |
1031 | |
1032 | cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup); |
1033 | if (cte) |
1034 | rte = addRangeTableEntryForCTE(pstate, cte, levelsup, rv, true); |
1035 | else if (scanNameSpaceForENR(pstate, rv->relname)) |
1036 | rte = addRangeTableEntryForENR(pstate, rv, true); |
1037 | else |
1038 | rte = NULL; |
1039 | |
1040 | return rte; |
1041 | } |
1042 | |
1043 | /* |
1044 | * transformFromClauseItem - |
1045 | * Transform a FROM-clause item, adding any required entries to the |
1046 | * range table list being built in the ParseState, and return the |
1047 | * transformed item ready to include in the joinlist. Also build a |
1048 | * ParseNamespaceItem list describing the names exposed by this item. |
1049 | * This routine can recurse to handle SQL92 JOIN expressions. |
1050 | * |
1051 | * The function return value is the node to add to the jointree (a |
1052 | * RangeTblRef or JoinExpr). Additional output parameters are: |
1053 | * |
1054 | * *top_rte: receives the RTE corresponding to the jointree item. |
1055 | * (We could extract this from the function return node, but it saves cycles |
1056 | * to pass it back separately.) |
1057 | * |
1058 | * *top_rti: receives the rangetable index of top_rte. (Ditto.) |
1059 | * |
1060 | * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed |
1061 | * as table/column names by this item. (The lateral_only flags in these items |
1062 | * are indeterminate and should be explicitly set by the caller before use.) |
1063 | */ |
1064 | static Node * |
1065 | transformFromClauseItem(ParseState *pstate, Node *n, |
1066 | RangeTblEntry **top_rte, int *top_rti, |
1067 | List **namespace) |
1068 | { |
1069 | if (IsA(n, RangeVar)) |
1070 | { |
1071 | /* Plain relation reference, or perhaps a CTE reference */ |
1072 | RangeVar *rv = (RangeVar *) n; |
1073 | RangeTblRef *rtr; |
1074 | RangeTblEntry *rte; |
1075 | int rtindex; |
1076 | |
1077 | /* Check if it's a CTE or tuplestore reference */ |
1078 | rte = getRTEForSpecialRelationTypes(pstate, rv); |
1079 | |
1080 | /* if not found above, must be a table reference */ |
1081 | if (!rte) |
1082 | rte = transformTableEntry(pstate, rv); |
1083 | |
1084 | /* assume new rte is at end */ |
1085 | rtindex = list_length(pstate->p_rtable); |
1086 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
1087 | *top_rte = rte; |
1088 | *top_rti = rtindex; |
1089 | *namespace = list_make1(makeDefaultNSItem(rte)); |
1090 | rtr = makeNode(RangeTblRef); |
1091 | rtr->rtindex = rtindex; |
1092 | return (Node *) rtr; |
1093 | } |
1094 | else if (IsA(n, RangeSubselect)) |
1095 | { |
1096 | /* sub-SELECT is like a plain relation */ |
1097 | RangeTblRef *rtr; |
1098 | RangeTblEntry *rte; |
1099 | int rtindex; |
1100 | |
1101 | rte = transformRangeSubselect(pstate, (RangeSubselect *) n); |
1102 | /* assume new rte is at end */ |
1103 | rtindex = list_length(pstate->p_rtable); |
1104 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
1105 | *top_rte = rte; |
1106 | *top_rti = rtindex; |
1107 | *namespace = list_make1(makeDefaultNSItem(rte)); |
1108 | rtr = makeNode(RangeTblRef); |
1109 | rtr->rtindex = rtindex; |
1110 | return (Node *) rtr; |
1111 | } |
1112 | else if (IsA(n, RangeFunction)) |
1113 | { |
1114 | /* function is like a plain relation */ |
1115 | RangeTblRef *rtr; |
1116 | RangeTblEntry *rte; |
1117 | int rtindex; |
1118 | |
1119 | rte = transformRangeFunction(pstate, (RangeFunction *) n); |
1120 | /* assume new rte is at end */ |
1121 | rtindex = list_length(pstate->p_rtable); |
1122 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
1123 | *top_rte = rte; |
1124 | *top_rti = rtindex; |
1125 | *namespace = list_make1(makeDefaultNSItem(rte)); |
1126 | rtr = makeNode(RangeTblRef); |
1127 | rtr->rtindex = rtindex; |
1128 | return (Node *) rtr; |
1129 | } |
1130 | else if (IsA(n, RangeTableFunc)) |
1131 | { |
1132 | /* table function is like a plain relation */ |
1133 | RangeTblRef *rtr; |
1134 | RangeTblEntry *rte; |
1135 | int rtindex; |
1136 | |
1137 | rte = transformRangeTableFunc(pstate, (RangeTableFunc *) n); |
1138 | /* assume new rte is at end */ |
1139 | rtindex = list_length(pstate->p_rtable); |
1140 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
1141 | *top_rte = rte; |
1142 | *top_rti = rtindex; |
1143 | *namespace = list_make1(makeDefaultNSItem(rte)); |
1144 | rtr = makeNode(RangeTblRef); |
1145 | rtr->rtindex = rtindex; |
1146 | return (Node *) rtr; |
1147 | } |
1148 | else if (IsA(n, RangeTableSample)) |
1149 | { |
1150 | /* TABLESAMPLE clause (wrapping some other valid FROM node) */ |
1151 | RangeTableSample *rts = (RangeTableSample *) n; |
1152 | Node *rel; |
1153 | RangeTblRef *rtr; |
1154 | RangeTblEntry *rte; |
1155 | |
1156 | /* Recursively transform the contained relation */ |
1157 | rel = transformFromClauseItem(pstate, rts->relation, |
1158 | top_rte, top_rti, namespace); |
1159 | /* Currently, grammar could only return a RangeVar as contained rel */ |
1160 | rtr = castNode(RangeTblRef, rel); |
1161 | rte = rt_fetch(rtr->rtindex, pstate->p_rtable); |
1162 | /* We only support this on plain relations and matviews */ |
1163 | if (rte->relkind != RELKIND_RELATION && |
1164 | rte->relkind != RELKIND_MATVIEW && |
1165 | rte->relkind != RELKIND_PARTITIONED_TABLE) |
1166 | ereport(ERROR, |
1167 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1168 | errmsg("TABLESAMPLE clause can only be applied to tables and materialized views" ), |
1169 | parser_errposition(pstate, exprLocation(rts->relation)))); |
1170 | |
1171 | /* Transform TABLESAMPLE details and attach to the RTE */ |
1172 | rte->tablesample = transformRangeTableSample(pstate, rts); |
1173 | return (Node *) rtr; |
1174 | } |
1175 | else if (IsA(n, JoinExpr)) |
1176 | { |
1177 | /* A newfangled join expression */ |
1178 | JoinExpr *j = (JoinExpr *) n; |
1179 | RangeTblEntry *l_rte; |
1180 | RangeTblEntry *r_rte; |
1181 | int l_rtindex; |
1182 | int r_rtindex; |
1183 | List *l_namespace, |
1184 | *r_namespace, |
1185 | *my_namespace, |
1186 | *l_colnames, |
1187 | *r_colnames, |
1188 | *res_colnames, |
1189 | *l_colvars, |
1190 | *r_colvars, |
1191 | *res_colvars; |
1192 | bool lateral_ok; |
1193 | int sv_namespace_length; |
1194 | RangeTblEntry *rte; |
1195 | int k; |
1196 | |
1197 | /* |
1198 | * Recursively process the left subtree, then the right. We must do |
1199 | * it in this order for correct visibility of LATERAL references. |
1200 | */ |
1201 | j->larg = transformFromClauseItem(pstate, j->larg, |
1202 | &l_rte, |
1203 | &l_rtindex, |
1204 | &l_namespace); |
1205 | |
1206 | /* |
1207 | * Make the left-side RTEs available for LATERAL access within the |
1208 | * right side, by temporarily adding them to the pstate's namespace |
1209 | * list. Per SQL:2008, if the join type is not INNER or LEFT then the |
1210 | * left-side names must still be exposed, but it's an error to |
1211 | * reference them. (Stupid design, but that's what it says.) Hence, |
1212 | * we always push them into the namespace, but mark them as not |
1213 | * lateral_ok if the jointype is wrong. |
1214 | * |
1215 | * Notice that we don't require the merged namespace list to be |
1216 | * conflict-free. See the comments for scanNameSpaceForRefname(). |
1217 | * |
1218 | * NB: this coding relies on the fact that list_concat is not |
1219 | * destructive to its second argument. |
1220 | */ |
1221 | lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT); |
1222 | setNamespaceLateralState(l_namespace, true, lateral_ok); |
1223 | |
1224 | sv_namespace_length = list_length(pstate->p_namespace); |
1225 | pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace); |
1226 | |
1227 | /* And now we can process the RHS */ |
1228 | j->rarg = transformFromClauseItem(pstate, j->rarg, |
1229 | &r_rte, |
1230 | &r_rtindex, |
1231 | &r_namespace); |
1232 | |
1233 | /* Remove the left-side RTEs from the namespace list again */ |
1234 | pstate->p_namespace = list_truncate(pstate->p_namespace, |
1235 | sv_namespace_length); |
1236 | |
1237 | /* |
1238 | * Check for conflicting refnames in left and right subtrees. Must do |
1239 | * this because higher levels will assume I hand back a self- |
1240 | * consistent namespace list. |
1241 | */ |
1242 | checkNameSpaceConflicts(pstate, l_namespace, r_namespace); |
1243 | |
1244 | /* |
1245 | * Generate combined namespace info for possible use below. |
1246 | */ |
1247 | my_namespace = list_concat(l_namespace, r_namespace); |
1248 | |
1249 | /* |
1250 | * Extract column name and var lists from both subtrees |
1251 | * |
1252 | * Note: expandRTE returns new lists, safe for me to modify |
1253 | */ |
1254 | expandRTE(l_rte, l_rtindex, 0, -1, false, |
1255 | &l_colnames, &l_colvars); |
1256 | expandRTE(r_rte, r_rtindex, 0, -1, false, |
1257 | &r_colnames, &r_colvars); |
1258 | |
1259 | /* |
1260 | * Natural join does not explicitly specify columns; must generate |
1261 | * columns to join. Need to run through the list of columns from each |
1262 | * table or join result and match up the column names. Use the first |
1263 | * table, and check every column in the second table for a match. |
1264 | * (We'll check that the matches were unique later on.) The result of |
1265 | * this step is a list of column names just like an explicitly-written |
1266 | * USING list. |
1267 | */ |
1268 | if (j->isNatural) |
1269 | { |
1270 | List *rlist = NIL; |
1271 | ListCell *lx, |
1272 | *rx; |
1273 | |
1274 | Assert(j->usingClause == NIL); /* shouldn't have USING() too */ |
1275 | |
1276 | foreach(lx, l_colnames) |
1277 | { |
1278 | char *l_colname = strVal(lfirst(lx)); |
1279 | Value *m_name = NULL; |
1280 | |
1281 | foreach(rx, r_colnames) |
1282 | { |
1283 | char *r_colname = strVal(lfirst(rx)); |
1284 | |
1285 | if (strcmp(l_colname, r_colname) == 0) |
1286 | { |
1287 | m_name = makeString(l_colname); |
1288 | break; |
1289 | } |
1290 | } |
1291 | |
1292 | /* matched a right column? then keep as join column... */ |
1293 | if (m_name != NULL) |
1294 | rlist = lappend(rlist, m_name); |
1295 | } |
1296 | |
1297 | j->usingClause = rlist; |
1298 | } |
1299 | |
1300 | /* |
1301 | * Now transform the join qualifications, if any. |
1302 | */ |
1303 | res_colnames = NIL; |
1304 | res_colvars = NIL; |
1305 | |
1306 | if (j->usingClause) |
1307 | { |
1308 | /* |
1309 | * JOIN/USING (or NATURAL JOIN, as transformed above). Transform |
1310 | * the list into an explicit ON-condition, and generate a list of |
1311 | * merged result columns. |
1312 | */ |
1313 | List *ucols = j->usingClause; |
1314 | List *l_usingvars = NIL; |
1315 | List *r_usingvars = NIL; |
1316 | ListCell *ucol; |
1317 | |
1318 | Assert(j->quals == NULL); /* shouldn't have ON() too */ |
1319 | |
1320 | foreach(ucol, ucols) |
1321 | { |
1322 | char *u_colname = strVal(lfirst(ucol)); |
1323 | ListCell *col; |
1324 | int ndx; |
1325 | int l_index = -1; |
1326 | int r_index = -1; |
1327 | Var *l_colvar, |
1328 | *r_colvar; |
1329 | |
1330 | /* Check for USING(foo,foo) */ |
1331 | foreach(col, res_colnames) |
1332 | { |
1333 | char *res_colname = strVal(lfirst(col)); |
1334 | |
1335 | if (strcmp(res_colname, u_colname) == 0) |
1336 | ereport(ERROR, |
1337 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
1338 | errmsg("column name \"%s\" appears more than once in USING clause" , |
1339 | u_colname))); |
1340 | } |
1341 | |
1342 | /* Find it in left input */ |
1343 | ndx = 0; |
1344 | foreach(col, l_colnames) |
1345 | { |
1346 | char *l_colname = strVal(lfirst(col)); |
1347 | |
1348 | if (strcmp(l_colname, u_colname) == 0) |
1349 | { |
1350 | if (l_index >= 0) |
1351 | ereport(ERROR, |
1352 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
1353 | errmsg("common column name \"%s\" appears more than once in left table" , |
1354 | u_colname))); |
1355 | l_index = ndx; |
1356 | } |
1357 | ndx++; |
1358 | } |
1359 | if (l_index < 0) |
1360 | ereport(ERROR, |
1361 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
1362 | errmsg("column \"%s\" specified in USING clause does not exist in left table" , |
1363 | u_colname))); |
1364 | |
1365 | /* Find it in right input */ |
1366 | ndx = 0; |
1367 | foreach(col, r_colnames) |
1368 | { |
1369 | char *r_colname = strVal(lfirst(col)); |
1370 | |
1371 | if (strcmp(r_colname, u_colname) == 0) |
1372 | { |
1373 | if (r_index >= 0) |
1374 | ereport(ERROR, |
1375 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
1376 | errmsg("common column name \"%s\" appears more than once in right table" , |
1377 | u_colname))); |
1378 | r_index = ndx; |
1379 | } |
1380 | ndx++; |
1381 | } |
1382 | if (r_index < 0) |
1383 | ereport(ERROR, |
1384 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
1385 | errmsg("column \"%s\" specified in USING clause does not exist in right table" , |
1386 | u_colname))); |
1387 | |
1388 | l_colvar = list_nth(l_colvars, l_index); |
1389 | l_usingvars = lappend(l_usingvars, l_colvar); |
1390 | r_colvar = list_nth(r_colvars, r_index); |
1391 | r_usingvars = lappend(r_usingvars, r_colvar); |
1392 | |
1393 | res_colnames = lappend(res_colnames, lfirst(ucol)); |
1394 | res_colvars = lappend(res_colvars, |
1395 | buildMergedJoinVar(pstate, |
1396 | j->jointype, |
1397 | l_colvar, |
1398 | r_colvar)); |
1399 | } |
1400 | |
1401 | j->quals = transformJoinUsingClause(pstate, |
1402 | l_rte, |
1403 | r_rte, |
1404 | l_usingvars, |
1405 | r_usingvars); |
1406 | } |
1407 | else if (j->quals) |
1408 | { |
1409 | /* User-written ON-condition; transform it */ |
1410 | j->quals = transformJoinOnClause(pstate, j, my_namespace); |
1411 | } |
1412 | else |
1413 | { |
1414 | /* CROSS JOIN: no quals */ |
1415 | } |
1416 | |
1417 | /* Add remaining columns from each side to the output columns */ |
1418 | extractRemainingColumns(res_colnames, |
1419 | l_colnames, l_colvars, |
1420 | &l_colnames, &l_colvars); |
1421 | extractRemainingColumns(res_colnames, |
1422 | r_colnames, r_colvars, |
1423 | &r_colnames, &r_colvars); |
1424 | res_colnames = list_concat(res_colnames, l_colnames); |
1425 | res_colvars = list_concat(res_colvars, l_colvars); |
1426 | res_colnames = list_concat(res_colnames, r_colnames); |
1427 | res_colvars = list_concat(res_colvars, r_colvars); |
1428 | |
1429 | /* |
1430 | * Check alias (AS clause), if any. |
1431 | */ |
1432 | if (j->alias) |
1433 | { |
1434 | if (j->alias->colnames != NIL) |
1435 | { |
1436 | if (list_length(j->alias->colnames) > list_length(res_colnames)) |
1437 | ereport(ERROR, |
1438 | (errcode(ERRCODE_SYNTAX_ERROR), |
1439 | errmsg("column alias list for \"%s\" has too many entries" , |
1440 | j->alias->aliasname))); |
1441 | } |
1442 | } |
1443 | |
1444 | /* |
1445 | * Now build an RTE for the result of the join |
1446 | */ |
1447 | rte = addRangeTableEntryForJoin(pstate, |
1448 | res_colnames, |
1449 | j->jointype, |
1450 | res_colvars, |
1451 | j->alias, |
1452 | true); |
1453 | |
1454 | /* assume new rte is at end */ |
1455 | j->rtindex = list_length(pstate->p_rtable); |
1456 | Assert(rte == rt_fetch(j->rtindex, pstate->p_rtable)); |
1457 | |
1458 | *top_rte = rte; |
1459 | *top_rti = j->rtindex; |
1460 | |
1461 | /* make a matching link to the JoinExpr for later use */ |
1462 | for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++) |
1463 | pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL); |
1464 | pstate->p_joinexprs = lappend(pstate->p_joinexprs, j); |
1465 | Assert(list_length(pstate->p_joinexprs) == j->rtindex); |
1466 | |
1467 | /* |
1468 | * Prepare returned namespace list. If the JOIN has an alias then it |
1469 | * hides the contained RTEs completely; otherwise, the contained RTEs |
1470 | * are still visible as table names, but are not visible for |
1471 | * unqualified column-name access. |
1472 | * |
1473 | * Note: if there are nested alias-less JOINs, the lower-level ones |
1474 | * will remain in the list although they have neither p_rel_visible |
1475 | * nor p_cols_visible set. We could delete such list items, but it's |
1476 | * unclear that it's worth expending cycles to do so. |
1477 | */ |
1478 | if (j->alias != NULL) |
1479 | my_namespace = NIL; |
1480 | else |
1481 | setNamespaceColumnVisibility(my_namespace, false); |
1482 | |
1483 | /* |
1484 | * The join RTE itself is always made visible for unqualified column |
1485 | * names. It's visible as a relation name only if it has an alias. |
1486 | */ |
1487 | *namespace = lappend(my_namespace, |
1488 | makeNamespaceItem(rte, |
1489 | (j->alias != NULL), |
1490 | true, |
1491 | false, |
1492 | true)); |
1493 | |
1494 | return (Node *) j; |
1495 | } |
1496 | else |
1497 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(n)); |
1498 | return NULL; /* can't get here, keep compiler quiet */ |
1499 | } |
1500 | |
1501 | /* |
1502 | * buildMergedJoinVar - |
1503 | * generate a suitable replacement expression for a merged join column |
1504 | */ |
1505 | static Node * |
1506 | buildMergedJoinVar(ParseState *pstate, JoinType jointype, |
1507 | Var *l_colvar, Var *r_colvar) |
1508 | { |
1509 | Oid outcoltype; |
1510 | int32 outcoltypmod; |
1511 | Node *l_node, |
1512 | *r_node, |
1513 | *res_node; |
1514 | |
1515 | /* |
1516 | * Choose output type if input types are dissimilar. |
1517 | */ |
1518 | outcoltype = l_colvar->vartype; |
1519 | outcoltypmod = l_colvar->vartypmod; |
1520 | if (outcoltype != r_colvar->vartype) |
1521 | { |
1522 | outcoltype = select_common_type(pstate, |
1523 | list_make2(l_colvar, r_colvar), |
1524 | "JOIN/USING" , |
1525 | NULL); |
1526 | outcoltypmod = -1; /* ie, unknown */ |
1527 | } |
1528 | else if (outcoltypmod != r_colvar->vartypmod) |
1529 | { |
1530 | /* same type, but not same typmod */ |
1531 | outcoltypmod = -1; /* ie, unknown */ |
1532 | } |
1533 | |
1534 | /* |
1535 | * Insert coercion functions if needed. Note that a difference in typmod |
1536 | * can only happen if input has typmod but outcoltypmod is -1. In that |
1537 | * case we insert a RelabelType to clearly mark that result's typmod is |
1538 | * not same as input. We never need coerce_type_typmod. |
1539 | */ |
1540 | if (l_colvar->vartype != outcoltype) |
1541 | l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype, |
1542 | outcoltype, outcoltypmod, |
1543 | COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
1544 | else if (l_colvar->vartypmod != outcoltypmod) |
1545 | l_node = (Node *) makeRelabelType((Expr *) l_colvar, |
1546 | outcoltype, outcoltypmod, |
1547 | InvalidOid, /* fixed below */ |
1548 | COERCE_IMPLICIT_CAST); |
1549 | else |
1550 | l_node = (Node *) l_colvar; |
1551 | |
1552 | if (r_colvar->vartype != outcoltype) |
1553 | r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype, |
1554 | outcoltype, outcoltypmod, |
1555 | COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
1556 | else if (r_colvar->vartypmod != outcoltypmod) |
1557 | r_node = (Node *) makeRelabelType((Expr *) r_colvar, |
1558 | outcoltype, outcoltypmod, |
1559 | InvalidOid, /* fixed below */ |
1560 | COERCE_IMPLICIT_CAST); |
1561 | else |
1562 | r_node = (Node *) r_colvar; |
1563 | |
1564 | /* |
1565 | * Choose what to emit |
1566 | */ |
1567 | switch (jointype) |
1568 | { |
1569 | case JOIN_INNER: |
1570 | |
1571 | /* |
1572 | * We can use either var; prefer non-coerced one if available. |
1573 | */ |
1574 | if (IsA(l_node, Var)) |
1575 | res_node = l_node; |
1576 | else if (IsA(r_node, Var)) |
1577 | res_node = r_node; |
1578 | else |
1579 | res_node = l_node; |
1580 | break; |
1581 | case JOIN_LEFT: |
1582 | /* Always use left var */ |
1583 | res_node = l_node; |
1584 | break; |
1585 | case JOIN_RIGHT: |
1586 | /* Always use right var */ |
1587 | res_node = r_node; |
1588 | break; |
1589 | case JOIN_FULL: |
1590 | { |
1591 | /* |
1592 | * Here we must build a COALESCE expression to ensure that the |
1593 | * join output is non-null if either input is. |
1594 | */ |
1595 | CoalesceExpr *c = makeNode(CoalesceExpr); |
1596 | |
1597 | c->coalescetype = outcoltype; |
1598 | /* coalescecollid will get set below */ |
1599 | c->args = list_make2(l_node, r_node); |
1600 | c->location = -1; |
1601 | res_node = (Node *) c; |
1602 | break; |
1603 | } |
1604 | default: |
1605 | elog(ERROR, "unrecognized join type: %d" , (int) jointype); |
1606 | res_node = NULL; /* keep compiler quiet */ |
1607 | break; |
1608 | } |
1609 | |
1610 | /* |
1611 | * Apply assign_expr_collations to fix up the collation info in the |
1612 | * coercion and CoalesceExpr nodes, if we made any. This must be done now |
1613 | * so that the join node's alias vars show correct collation info. |
1614 | */ |
1615 | assign_expr_collations(pstate, res_node); |
1616 | |
1617 | return res_node; |
1618 | } |
1619 | |
1620 | /* |
1621 | * makeNamespaceItem - |
1622 | * Convenience subroutine to construct a ParseNamespaceItem. |
1623 | */ |
1624 | static ParseNamespaceItem * |
1625 | makeNamespaceItem(RangeTblEntry *rte, bool rel_visible, bool cols_visible, |
1626 | bool lateral_only, bool lateral_ok) |
1627 | { |
1628 | ParseNamespaceItem *nsitem; |
1629 | |
1630 | nsitem = (ParseNamespaceItem *) palloc(sizeof(ParseNamespaceItem)); |
1631 | nsitem->p_rte = rte; |
1632 | nsitem->p_rel_visible = rel_visible; |
1633 | nsitem->p_cols_visible = cols_visible; |
1634 | nsitem->p_lateral_only = lateral_only; |
1635 | nsitem->p_lateral_ok = lateral_ok; |
1636 | return nsitem; |
1637 | } |
1638 | |
1639 | /* |
1640 | * setNamespaceColumnVisibility - |
1641 | * Convenience subroutine to update cols_visible flags in a namespace list. |
1642 | */ |
1643 | static void |
1644 | setNamespaceColumnVisibility(List *namespace, bool cols_visible) |
1645 | { |
1646 | ListCell *lc; |
1647 | |
1648 | foreach(lc, namespace) |
1649 | { |
1650 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc); |
1651 | |
1652 | nsitem->p_cols_visible = cols_visible; |
1653 | } |
1654 | } |
1655 | |
1656 | /* |
1657 | * setNamespaceLateralState - |
1658 | * Convenience subroutine to update LATERAL flags in a namespace list. |
1659 | */ |
1660 | static void |
1661 | setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok) |
1662 | { |
1663 | ListCell *lc; |
1664 | |
1665 | foreach(lc, namespace) |
1666 | { |
1667 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc); |
1668 | |
1669 | nsitem->p_lateral_only = lateral_only; |
1670 | nsitem->p_lateral_ok = lateral_ok; |
1671 | } |
1672 | } |
1673 | |
1674 | |
1675 | /* |
1676 | * transformWhereClause - |
1677 | * Transform the qualification and make sure it is of type boolean. |
1678 | * Used for WHERE and allied clauses. |
1679 | * |
1680 | * constructName does not affect the semantics, but is used in error messages |
1681 | */ |
1682 | Node * |
1683 | transformWhereClause(ParseState *pstate, Node *clause, |
1684 | ParseExprKind exprKind, const char *constructName) |
1685 | { |
1686 | Node *qual; |
1687 | |
1688 | if (clause == NULL) |
1689 | return NULL; |
1690 | |
1691 | qual = transformExpr(pstate, clause, exprKind); |
1692 | |
1693 | qual = coerce_to_boolean(pstate, qual, constructName); |
1694 | |
1695 | return qual; |
1696 | } |
1697 | |
1698 | |
1699 | /* |
1700 | * transformLimitClause - |
1701 | * Transform the expression and make sure it is of type bigint. |
1702 | * Used for LIMIT and allied clauses. |
1703 | * |
1704 | * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8, |
1705 | * rather than int4 as before. |
1706 | * |
1707 | * constructName does not affect the semantics, but is used in error messages |
1708 | */ |
1709 | Node * |
1710 | transformLimitClause(ParseState *pstate, Node *clause, |
1711 | ParseExprKind exprKind, const char *constructName) |
1712 | { |
1713 | Node *qual; |
1714 | |
1715 | if (clause == NULL) |
1716 | return NULL; |
1717 | |
1718 | qual = transformExpr(pstate, clause, exprKind); |
1719 | |
1720 | qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName); |
1721 | |
1722 | /* LIMIT can't refer to any variables of the current query */ |
1723 | checkExprIsVarFree(pstate, qual, constructName); |
1724 | |
1725 | return qual; |
1726 | } |
1727 | |
1728 | /* |
1729 | * checkExprIsVarFree |
1730 | * Check that given expr has no Vars of the current query level |
1731 | * (aggregates and window functions should have been rejected already). |
1732 | * |
1733 | * This is used to check expressions that have to have a consistent value |
1734 | * across all rows of the query, such as a LIMIT. Arguably it should reject |
1735 | * volatile functions, too, but we don't do that --- whatever value the |
1736 | * function gives on first execution is what you get. |
1737 | * |
1738 | * constructName does not affect the semantics, but is used in error messages |
1739 | */ |
1740 | static void |
1741 | checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName) |
1742 | { |
1743 | if (contain_vars_of_level(n, 0)) |
1744 | { |
1745 | ereport(ERROR, |
1746 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
1747 | /* translator: %s is name of a SQL construct, eg LIMIT */ |
1748 | errmsg("argument of %s must not contain variables" , |
1749 | constructName), |
1750 | parser_errposition(pstate, |
1751 | locate_var_of_level(n, 0)))); |
1752 | } |
1753 | } |
1754 | |
1755 | |
1756 | /* |
1757 | * checkTargetlistEntrySQL92 - |
1758 | * Validate a targetlist entry found by findTargetlistEntrySQL92 |
1759 | * |
1760 | * When we select a pre-existing tlist entry as a result of syntax such |
1761 | * as "GROUP BY 1", we have to make sure it is acceptable for use in the |
1762 | * indicated clause type; transformExpr() will have treated it as a regular |
1763 | * targetlist item. |
1764 | */ |
1765 | static void |
1766 | checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle, |
1767 | ParseExprKind exprKind) |
1768 | { |
1769 | switch (exprKind) |
1770 | { |
1771 | case EXPR_KIND_GROUP_BY: |
1772 | /* reject aggregates and window functions */ |
1773 | if (pstate->p_hasAggs && |
1774 | contain_aggs_of_level((Node *) tle->expr, 0)) |
1775 | ereport(ERROR, |
1776 | (errcode(ERRCODE_GROUPING_ERROR), |
1777 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
1778 | errmsg("aggregate functions are not allowed in %s" , |
1779 | ParseExprKindName(exprKind)), |
1780 | parser_errposition(pstate, |
1781 | locate_agg_of_level((Node *) tle->expr, 0)))); |
1782 | if (pstate->p_hasWindowFuncs && |
1783 | contain_windowfuncs((Node *) tle->expr)) |
1784 | ereport(ERROR, |
1785 | (errcode(ERRCODE_WINDOWING_ERROR), |
1786 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
1787 | errmsg("window functions are not allowed in %s" , |
1788 | ParseExprKindName(exprKind)), |
1789 | parser_errposition(pstate, |
1790 | locate_windowfunc((Node *) tle->expr)))); |
1791 | break; |
1792 | case EXPR_KIND_ORDER_BY: |
1793 | /* no extra checks needed */ |
1794 | break; |
1795 | case EXPR_KIND_DISTINCT_ON: |
1796 | /* no extra checks needed */ |
1797 | break; |
1798 | default: |
1799 | elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92" ); |
1800 | break; |
1801 | } |
1802 | } |
1803 | |
1804 | /* |
1805 | * findTargetlistEntrySQL92 - |
1806 | * Returns the targetlist entry matching the given (untransformed) node. |
1807 | * If no matching entry exists, one is created and appended to the target |
1808 | * list as a "resjunk" node. |
1809 | * |
1810 | * This function supports the old SQL92 ORDER BY interpretation, where the |
1811 | * expression is an output column name or number. If we fail to find a |
1812 | * match of that sort, we fall through to the SQL99 rules. For historical |
1813 | * reasons, Postgres also allows this interpretation for GROUP BY, though |
1814 | * the standard never did. However, for GROUP BY we prefer a SQL99 match. |
1815 | * This function is *not* used for WINDOW definitions. |
1816 | * |
1817 | * node the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched |
1818 | * tlist the target list (passed by reference so we can append to it) |
1819 | * exprKind identifies clause type being processed |
1820 | */ |
1821 | static TargetEntry * |
1822 | findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist, |
1823 | ParseExprKind exprKind) |
1824 | { |
1825 | ListCell *tl; |
1826 | |
1827 | /*---------- |
1828 | * Handle two special cases as mandated by the SQL92 spec: |
1829 | * |
1830 | * 1. Bare ColumnName (no qualifier or subscripts) |
1831 | * For a bare identifier, we search for a matching column name |
1832 | * in the existing target list. Multiple matches are an error |
1833 | * unless they refer to identical values; for example, |
1834 | * we allow SELECT a, a FROM table ORDER BY a |
1835 | * but not SELECT a AS b, b FROM table ORDER BY b |
1836 | * If no match is found, we fall through and treat the identifier |
1837 | * as an expression. |
1838 | * For GROUP BY, it is incorrect to match the grouping item against |
1839 | * targetlist entries: according to SQL92, an identifier in GROUP BY |
1840 | * is a reference to a column name exposed by FROM, not to a target |
1841 | * list column. However, many implementations (including pre-7.0 |
1842 | * PostgreSQL) accept this anyway. So for GROUP BY, we look first |
1843 | * to see if the identifier matches any FROM column name, and only |
1844 | * try for a targetlist name if it doesn't. This ensures that we |
1845 | * adhere to the spec in the case where the name could be both. |
1846 | * DISTINCT ON isn't in the standard, so we can do what we like there; |
1847 | * we choose to make it work like ORDER BY, on the rather flimsy |
1848 | * grounds that ordinary DISTINCT works on targetlist entries. |
1849 | * |
1850 | * 2. IntegerConstant |
1851 | * This means to use the n'th item in the existing target list. |
1852 | * Note that it would make no sense to order/group/distinct by an |
1853 | * actual constant, so this does not create a conflict with SQL99. |
1854 | * GROUP BY column-number is not allowed by SQL92, but since |
1855 | * the standard has no other behavior defined for this syntax, |
1856 | * we may as well accept this common extension. |
1857 | * |
1858 | * Note that pre-existing resjunk targets must not be used in either case, |
1859 | * since the user didn't write them in his SELECT list. |
1860 | * |
1861 | * If neither special case applies, fall through to treat the item as |
1862 | * an expression per SQL99. |
1863 | *---------- |
1864 | */ |
1865 | if (IsA(node, ColumnRef) && |
1866 | list_length(((ColumnRef *) node)->fields) == 1 && |
1867 | IsA(linitial(((ColumnRef *) node)->fields), String)) |
1868 | { |
1869 | char *name = strVal(linitial(((ColumnRef *) node)->fields)); |
1870 | int location = ((ColumnRef *) node)->location; |
1871 | |
1872 | if (exprKind == EXPR_KIND_GROUP_BY) |
1873 | { |
1874 | /* |
1875 | * In GROUP BY, we must prefer a match against a FROM-clause |
1876 | * column to one against the targetlist. Look to see if there is |
1877 | * a matching column. If so, fall through to use SQL99 rules. |
1878 | * NOTE: if name could refer ambiguously to more than one column |
1879 | * name exposed by FROM, colNameToVar will ereport(ERROR). That's |
1880 | * just what we want here. |
1881 | * |
1882 | * Small tweak for 7.4.3: ignore matches in upper query levels. |
1883 | * This effectively changes the search order for bare names to (1) |
1884 | * local FROM variables, (2) local targetlist aliases, (3) outer |
1885 | * FROM variables, whereas before it was (1) (3) (2). SQL92 and |
1886 | * SQL99 do not allow GROUPing BY an outer reference, so this |
1887 | * breaks no cases that are legal per spec, and it seems a more |
1888 | * self-consistent behavior. |
1889 | */ |
1890 | if (colNameToVar(pstate, name, true, location) != NULL) |
1891 | name = NULL; |
1892 | } |
1893 | |
1894 | if (name != NULL) |
1895 | { |
1896 | TargetEntry *target_result = NULL; |
1897 | |
1898 | foreach(tl, *tlist) |
1899 | { |
1900 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
1901 | |
1902 | if (!tle->resjunk && |
1903 | strcmp(tle->resname, name) == 0) |
1904 | { |
1905 | if (target_result != NULL) |
1906 | { |
1907 | if (!equal(target_result->expr, tle->expr)) |
1908 | ereport(ERROR, |
1909 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
1910 | |
1911 | /*------ |
1912 | translator: first %s is name of a SQL construct, eg ORDER BY */ |
1913 | errmsg("%s \"%s\" is ambiguous" , |
1914 | ParseExprKindName(exprKind), |
1915 | name), |
1916 | parser_errposition(pstate, location))); |
1917 | } |
1918 | else |
1919 | target_result = tle; |
1920 | /* Stay in loop to check for ambiguity */ |
1921 | } |
1922 | } |
1923 | if (target_result != NULL) |
1924 | { |
1925 | /* return the first match, after suitable validation */ |
1926 | checkTargetlistEntrySQL92(pstate, target_result, exprKind); |
1927 | return target_result; |
1928 | } |
1929 | } |
1930 | } |
1931 | if (IsA(node, A_Const)) |
1932 | { |
1933 | Value *val = &((A_Const *) node)->val; |
1934 | int location = ((A_Const *) node)->location; |
1935 | int targetlist_pos = 0; |
1936 | int target_pos; |
1937 | |
1938 | if (!IsA(val, Integer)) |
1939 | ereport(ERROR, |
1940 | (errcode(ERRCODE_SYNTAX_ERROR), |
1941 | /* translator: %s is name of a SQL construct, eg ORDER BY */ |
1942 | errmsg("non-integer constant in %s" , |
1943 | ParseExprKindName(exprKind)), |
1944 | parser_errposition(pstate, location))); |
1945 | |
1946 | target_pos = intVal(val); |
1947 | foreach(tl, *tlist) |
1948 | { |
1949 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
1950 | |
1951 | if (!tle->resjunk) |
1952 | { |
1953 | if (++targetlist_pos == target_pos) |
1954 | { |
1955 | /* return the unique match, after suitable validation */ |
1956 | checkTargetlistEntrySQL92(pstate, tle, exprKind); |
1957 | return tle; |
1958 | } |
1959 | } |
1960 | } |
1961 | ereport(ERROR, |
1962 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
1963 | /* translator: %s is name of a SQL construct, eg ORDER BY */ |
1964 | errmsg("%s position %d is not in select list" , |
1965 | ParseExprKindName(exprKind), target_pos), |
1966 | parser_errposition(pstate, location))); |
1967 | } |
1968 | |
1969 | /* |
1970 | * Otherwise, we have an expression, so process it per SQL99 rules. |
1971 | */ |
1972 | return findTargetlistEntrySQL99(pstate, node, tlist, exprKind); |
1973 | } |
1974 | |
1975 | /* |
1976 | * findTargetlistEntrySQL99 - |
1977 | * Returns the targetlist entry matching the given (untransformed) node. |
1978 | * If no matching entry exists, one is created and appended to the target |
1979 | * list as a "resjunk" node. |
1980 | * |
1981 | * This function supports the SQL99 interpretation, wherein the expression |
1982 | * is just an ordinary expression referencing input column names. |
1983 | * |
1984 | * node the ORDER BY, GROUP BY, etc expression to be matched |
1985 | * tlist the target list (passed by reference so we can append to it) |
1986 | * exprKind identifies clause type being processed |
1987 | */ |
1988 | static TargetEntry * |
1989 | findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist, |
1990 | ParseExprKind exprKind) |
1991 | { |
1992 | TargetEntry *target_result; |
1993 | ListCell *tl; |
1994 | Node *expr; |
1995 | |
1996 | /* |
1997 | * Convert the untransformed node to a transformed expression, and search |
1998 | * for a match in the tlist. NOTE: it doesn't really matter whether there |
1999 | * is more than one match. Also, we are willing to match an existing |
2000 | * resjunk target here, though the SQL92 cases above must ignore resjunk |
2001 | * targets. |
2002 | */ |
2003 | expr = transformExpr(pstate, node, exprKind); |
2004 | |
2005 | foreach(tl, *tlist) |
2006 | { |
2007 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
2008 | Node *texpr; |
2009 | |
2010 | /* |
2011 | * Ignore any implicit cast on the existing tlist expression. |
2012 | * |
2013 | * This essentially allows the ORDER/GROUP/etc item to adopt the same |
2014 | * datatype previously selected for a textually-equivalent tlist item. |
2015 | * There can't be any implicit cast at top level in an ordinary SELECT |
2016 | * tlist at this stage, but the case does arise with ORDER BY in an |
2017 | * aggregate function. |
2018 | */ |
2019 | texpr = strip_implicit_coercions((Node *) tle->expr); |
2020 | |
2021 | if (equal(expr, texpr)) |
2022 | return tle; |
2023 | } |
2024 | |
2025 | /* |
2026 | * If no matches, construct a new target entry which is appended to the |
2027 | * end of the target list. This target is given resjunk = true so that it |
2028 | * will not be projected into the final tuple. |
2029 | */ |
2030 | target_result = transformTargetEntry(pstate, node, expr, exprKind, |
2031 | NULL, true); |
2032 | |
2033 | *tlist = lappend(*tlist, target_result); |
2034 | |
2035 | return target_result; |
2036 | } |
2037 | |
2038 | /*------------------------------------------------------------------------- |
2039 | * Flatten out parenthesized sublists in grouping lists, and some cases |
2040 | * of nested grouping sets. |
2041 | * |
2042 | * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the |
2043 | * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is |
2044 | * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then |
2045 | * (later) normalize to ((a,b,c),(d)). |
2046 | * |
2047 | * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse), |
2048 | * and we leave that alone if we find it. But if we see GROUPING SETS inside |
2049 | * GROUPING SETS, we can flatten and normalize as follows: |
2050 | * GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g)) |
2051 | * becomes |
2052 | * GROUPING SETS ((a), (b,c), (c,d), (e), (f,g)) |
2053 | * |
2054 | * This is per the spec's syntax transformations, but these are the only such |
2055 | * transformations we do in parse analysis, so that queries retain the |
2056 | * originally specified grouping set syntax for CUBE and ROLLUP as much as |
2057 | * possible when deparsed. (Full expansion of the result into a list of |
2058 | * grouping sets is left to the planner.) |
2059 | * |
2060 | * When we're done, the resulting list should contain only these possible |
2061 | * elements: |
2062 | * - an expression |
2063 | * - a CUBE or ROLLUP with a list of expressions nested 2 deep |
2064 | * - a GROUPING SET containing any of: |
2065 | * - expression lists |
2066 | * - empty grouping sets |
2067 | * - CUBE or ROLLUP nodes with lists nested 2 deep |
2068 | * The return is a new list, but doesn't deep-copy the old nodes except for |
2069 | * GroupingSet nodes. |
2070 | * |
2071 | * As a side effect, flag whether the list has any GroupingSet nodes. |
2072 | *------------------------------------------------------------------------- |
2073 | */ |
2074 | static Node * |
2075 | flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets) |
2076 | { |
2077 | /* just in case of pathological input */ |
2078 | check_stack_depth(); |
2079 | |
2080 | if (expr == (Node *) NIL) |
2081 | return (Node *) NIL; |
2082 | |
2083 | switch (expr->type) |
2084 | { |
2085 | case T_RowExpr: |
2086 | { |
2087 | RowExpr *r = (RowExpr *) expr; |
2088 | |
2089 | if (r->row_format == COERCE_IMPLICIT_CAST) |
2090 | return flatten_grouping_sets((Node *) r->args, |
2091 | false, NULL); |
2092 | } |
2093 | break; |
2094 | case T_GroupingSet: |
2095 | { |
2096 | GroupingSet *gset = (GroupingSet *) expr; |
2097 | ListCell *l2; |
2098 | List *result_set = NIL; |
2099 | |
2100 | if (hasGroupingSets) |
2101 | *hasGroupingSets = true; |
2102 | |
2103 | /* |
2104 | * at the top level, we skip over all empty grouping sets; the |
2105 | * caller can supply the canonical GROUP BY () if nothing is |
2106 | * left. |
2107 | */ |
2108 | |
2109 | if (toplevel && gset->kind == GROUPING_SET_EMPTY) |
2110 | return (Node *) NIL; |
2111 | |
2112 | foreach(l2, gset->content) |
2113 | { |
2114 | Node *n1 = lfirst(l2); |
2115 | Node *n2 = flatten_grouping_sets(n1, false, NULL); |
2116 | |
2117 | if (IsA(n1, GroupingSet) && |
2118 | ((GroupingSet *) n1)->kind == GROUPING_SET_SETS) |
2119 | { |
2120 | result_set = list_concat(result_set, (List *) n2); |
2121 | } |
2122 | else |
2123 | result_set = lappend(result_set, n2); |
2124 | } |
2125 | |
2126 | /* |
2127 | * At top level, keep the grouping set node; but if we're in a |
2128 | * nested grouping set, then we need to concat the flattened |
2129 | * result into the outer list if it's simply nested. |
2130 | */ |
2131 | |
2132 | if (toplevel || (gset->kind != GROUPING_SET_SETS)) |
2133 | { |
2134 | return (Node *) makeGroupingSet(gset->kind, result_set, gset->location); |
2135 | } |
2136 | else |
2137 | return (Node *) result_set; |
2138 | } |
2139 | case T_List: |
2140 | { |
2141 | List *result = NIL; |
2142 | ListCell *l; |
2143 | |
2144 | foreach(l, (List *) expr) |
2145 | { |
2146 | Node *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets); |
2147 | |
2148 | if (n != (Node *) NIL) |
2149 | { |
2150 | if (IsA(n, List)) |
2151 | result = list_concat(result, (List *) n); |
2152 | else |
2153 | result = lappend(result, n); |
2154 | } |
2155 | } |
2156 | |
2157 | return (Node *) result; |
2158 | } |
2159 | default: |
2160 | break; |
2161 | } |
2162 | |
2163 | return expr; |
2164 | } |
2165 | |
2166 | /* |
2167 | * Transform a single expression within a GROUP BY clause or grouping set. |
2168 | * |
2169 | * The expression is added to the targetlist if not already present, and to the |
2170 | * flatresult list (which will become the groupClause) if not already present |
2171 | * there. The sortClause is consulted for operator and sort order hints. |
2172 | * |
2173 | * Returns the ressortgroupref of the expression. |
2174 | * |
2175 | * flatresult reference to flat list of SortGroupClause nodes |
2176 | * seen_local bitmapset of sortgrouprefs already seen at the local level |
2177 | * pstate ParseState |
2178 | * gexpr node to transform |
2179 | * targetlist reference to TargetEntry list |
2180 | * sortClause ORDER BY clause (SortGroupClause nodes) |
2181 | * exprKind expression kind |
2182 | * useSQL99 SQL99 rather than SQL92 syntax |
2183 | * toplevel false if within any grouping set |
2184 | */ |
2185 | static Index |
2186 | transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local, |
2187 | ParseState *pstate, Node *gexpr, |
2188 | List **targetlist, List *sortClause, |
2189 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
2190 | { |
2191 | TargetEntry *tle; |
2192 | bool found = false; |
2193 | |
2194 | if (useSQL99) |
2195 | tle = findTargetlistEntrySQL99(pstate, gexpr, |
2196 | targetlist, exprKind); |
2197 | else |
2198 | tle = findTargetlistEntrySQL92(pstate, gexpr, |
2199 | targetlist, exprKind); |
2200 | |
2201 | if (tle->ressortgroupref > 0) |
2202 | { |
2203 | ListCell *sl; |
2204 | |
2205 | /* |
2206 | * Eliminate duplicates (GROUP BY x, x) but only at local level. |
2207 | * (Duplicates in grouping sets can affect the number of returned |
2208 | * rows, so can't be dropped indiscriminately.) |
2209 | * |
2210 | * Since we don't care about anything except the sortgroupref, we can |
2211 | * use a bitmapset rather than scanning lists. |
2212 | */ |
2213 | if (bms_is_member(tle->ressortgroupref, seen_local)) |
2214 | return 0; |
2215 | |
2216 | /* |
2217 | * If we're already in the flat clause list, we don't need to consider |
2218 | * adding ourselves again. |
2219 | */ |
2220 | found = targetIsInSortList(tle, InvalidOid, *flatresult); |
2221 | if (found) |
2222 | return tle->ressortgroupref; |
2223 | |
2224 | /* |
2225 | * If the GROUP BY tlist entry also appears in ORDER BY, copy operator |
2226 | * info from the (first) matching ORDER BY item. This means that if |
2227 | * you write something like "GROUP BY foo ORDER BY foo USING <<<", the |
2228 | * GROUP BY operation silently takes on the equality semantics implied |
2229 | * by the ORDER BY. There are two reasons to do this: it improves the |
2230 | * odds that we can implement both GROUP BY and ORDER BY with a single |
2231 | * sort step, and it allows the user to choose the equality semantics |
2232 | * used by GROUP BY, should she be working with a datatype that has |
2233 | * more than one equality operator. |
2234 | * |
2235 | * If we're in a grouping set, though, we force our requested ordering |
2236 | * to be NULLS LAST, because if we have any hope of using a sorted agg |
2237 | * for the job, we're going to be tacking on generated NULL values |
2238 | * after the corresponding groups. If the user demands nulls first, |
2239 | * another sort step is going to be inevitable, but that's the |
2240 | * planner's problem. |
2241 | */ |
2242 | |
2243 | foreach(sl, sortClause) |
2244 | { |
2245 | SortGroupClause *sc = (SortGroupClause *) lfirst(sl); |
2246 | |
2247 | if (sc->tleSortGroupRef == tle->ressortgroupref) |
2248 | { |
2249 | SortGroupClause *grpc = copyObject(sc); |
2250 | |
2251 | if (!toplevel) |
2252 | grpc->nulls_first = false; |
2253 | *flatresult = lappend(*flatresult, grpc); |
2254 | found = true; |
2255 | break; |
2256 | } |
2257 | } |
2258 | } |
2259 | |
2260 | /* |
2261 | * If no match in ORDER BY, just add it to the result using default |
2262 | * sort/group semantics. |
2263 | */ |
2264 | if (!found) |
2265 | *flatresult = addTargetToGroupList(pstate, tle, |
2266 | *flatresult, *targetlist, |
2267 | exprLocation(gexpr)); |
2268 | |
2269 | /* |
2270 | * _something_ must have assigned us a sortgroupref by now... |
2271 | */ |
2272 | |
2273 | return tle->ressortgroupref; |
2274 | } |
2275 | |
2276 | /* |
2277 | * Transform a list of expressions within a GROUP BY clause or grouping set. |
2278 | * |
2279 | * The list of expressions belongs to a single clause within which duplicates |
2280 | * can be safely eliminated. |
2281 | * |
2282 | * Returns an integer list of ressortgroupref values. |
2283 | * |
2284 | * flatresult reference to flat list of SortGroupClause nodes |
2285 | * pstate ParseState |
2286 | * list nodes to transform |
2287 | * targetlist reference to TargetEntry list |
2288 | * sortClause ORDER BY clause (SortGroupClause nodes) |
2289 | * exprKind expression kind |
2290 | * useSQL99 SQL99 rather than SQL92 syntax |
2291 | * toplevel false if within any grouping set |
2292 | */ |
2293 | static List * |
2294 | transformGroupClauseList(List **flatresult, |
2295 | ParseState *pstate, List *list, |
2296 | List **targetlist, List *sortClause, |
2297 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
2298 | { |
2299 | Bitmapset *seen_local = NULL; |
2300 | List *result = NIL; |
2301 | ListCell *gl; |
2302 | |
2303 | foreach(gl, list) |
2304 | { |
2305 | Node *gexpr = (Node *) lfirst(gl); |
2306 | |
2307 | Index ref = transformGroupClauseExpr(flatresult, |
2308 | seen_local, |
2309 | pstate, |
2310 | gexpr, |
2311 | targetlist, |
2312 | sortClause, |
2313 | exprKind, |
2314 | useSQL99, |
2315 | toplevel); |
2316 | |
2317 | if (ref > 0) |
2318 | { |
2319 | seen_local = bms_add_member(seen_local, ref); |
2320 | result = lappend_int(result, ref); |
2321 | } |
2322 | } |
2323 | |
2324 | return result; |
2325 | } |
2326 | |
2327 | /* |
2328 | * Transform a grouping set and (recursively) its content. |
2329 | * |
2330 | * The grouping set might be a GROUPING SETS node with other grouping sets |
2331 | * inside it, but SETS within SETS have already been flattened out before |
2332 | * reaching here. |
2333 | * |
2334 | * Returns the transformed node, which now contains SIMPLE nodes with lists |
2335 | * of ressortgrouprefs rather than expressions. |
2336 | * |
2337 | * flatresult reference to flat list of SortGroupClause nodes |
2338 | * pstate ParseState |
2339 | * gset grouping set to transform |
2340 | * targetlist reference to TargetEntry list |
2341 | * sortClause ORDER BY clause (SortGroupClause nodes) |
2342 | * exprKind expression kind |
2343 | * useSQL99 SQL99 rather than SQL92 syntax |
2344 | * toplevel false if within any grouping set |
2345 | */ |
2346 | static Node * |
2347 | transformGroupingSet(List **flatresult, |
2348 | ParseState *pstate, GroupingSet *gset, |
2349 | List **targetlist, List *sortClause, |
2350 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
2351 | { |
2352 | ListCell *gl; |
2353 | List *content = NIL; |
2354 | |
2355 | Assert(toplevel || gset->kind != GROUPING_SET_SETS); |
2356 | |
2357 | foreach(gl, gset->content) |
2358 | { |
2359 | Node *n = lfirst(gl); |
2360 | |
2361 | if (IsA(n, List)) |
2362 | { |
2363 | List *l = transformGroupClauseList(flatresult, |
2364 | pstate, (List *) n, |
2365 | targetlist, sortClause, |
2366 | exprKind, useSQL99, false); |
2367 | |
2368 | content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE, |
2369 | l, |
2370 | exprLocation(n))); |
2371 | } |
2372 | else if (IsA(n, GroupingSet)) |
2373 | { |
2374 | GroupingSet *gset2 = (GroupingSet *) lfirst(gl); |
2375 | |
2376 | content = lappend(content, transformGroupingSet(flatresult, |
2377 | pstate, gset2, |
2378 | targetlist, sortClause, |
2379 | exprKind, useSQL99, false)); |
2380 | } |
2381 | else |
2382 | { |
2383 | Index ref = transformGroupClauseExpr(flatresult, |
2384 | NULL, |
2385 | pstate, |
2386 | n, |
2387 | targetlist, |
2388 | sortClause, |
2389 | exprKind, |
2390 | useSQL99, |
2391 | false); |
2392 | |
2393 | content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE, |
2394 | list_make1_int(ref), |
2395 | exprLocation(n))); |
2396 | } |
2397 | } |
2398 | |
2399 | /* Arbitrarily cap the size of CUBE, which has exponential growth */ |
2400 | if (gset->kind == GROUPING_SET_CUBE) |
2401 | { |
2402 | if (list_length(content) > 12) |
2403 | ereport(ERROR, |
2404 | (errcode(ERRCODE_TOO_MANY_COLUMNS), |
2405 | errmsg("CUBE is limited to 12 elements" ), |
2406 | parser_errposition(pstate, gset->location))); |
2407 | } |
2408 | |
2409 | return (Node *) makeGroupingSet(gset->kind, content, gset->location); |
2410 | } |
2411 | |
2412 | |
2413 | /* |
2414 | * transformGroupClause - |
2415 | * transform a GROUP BY clause |
2416 | * |
2417 | * GROUP BY items will be added to the targetlist (as resjunk columns) |
2418 | * if not already present, so the targetlist must be passed by reference. |
2419 | * |
2420 | * This is also used for window PARTITION BY clauses (which act almost the |
2421 | * same, but are always interpreted per SQL99 rules). |
2422 | * |
2423 | * Grouping sets make this a lot more complex than it was. Our goal here is |
2424 | * twofold: we make a flat list of SortGroupClause nodes referencing each |
2425 | * distinct expression used for grouping, with those expressions added to the |
2426 | * targetlist if needed. At the same time, we build the groupingSets tree, |
2427 | * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes |
2428 | * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain |
2429 | * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that |
2430 | * out; while CUBE and ROLLUP can contain only SIMPLE nodes). |
2431 | * |
2432 | * We skip much of the hard work if there are no grouping sets. |
2433 | * |
2434 | * One subtlety is that the groupClause list can end up empty while the |
2435 | * groupingSets list is not; this happens if there are only empty grouping |
2436 | * sets, or an explicit GROUP BY (). This has the same effect as specifying |
2437 | * aggregates or a HAVING clause with no GROUP BY; the output is one row per |
2438 | * grouping set even if the input is empty. |
2439 | * |
2440 | * Returns the transformed (flat) groupClause. |
2441 | * |
2442 | * pstate ParseState |
2443 | * grouplist clause to transform |
2444 | * groupingSets reference to list to contain the grouping set tree |
2445 | * targetlist reference to TargetEntry list |
2446 | * sortClause ORDER BY clause (SortGroupClause nodes) |
2447 | * exprKind expression kind |
2448 | * useSQL99 SQL99 rather than SQL92 syntax |
2449 | */ |
2450 | List * |
2451 | transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets, |
2452 | List **targetlist, List *sortClause, |
2453 | ParseExprKind exprKind, bool useSQL99) |
2454 | { |
2455 | List *result = NIL; |
2456 | List *flat_grouplist; |
2457 | List *gsets = NIL; |
2458 | ListCell *gl; |
2459 | bool hasGroupingSets = false; |
2460 | Bitmapset *seen_local = NULL; |
2461 | |
2462 | /* |
2463 | * Recursively flatten implicit RowExprs. (Technically this is only needed |
2464 | * for GROUP BY, per the syntax rules for grouping sets, but we do it |
2465 | * anyway.) |
2466 | */ |
2467 | flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist, |
2468 | true, |
2469 | &hasGroupingSets); |
2470 | |
2471 | /* |
2472 | * If the list is now empty, but hasGroupingSets is true, it's because we |
2473 | * elided redundant empty grouping sets. Restore a single empty grouping |
2474 | * set to leave a canonical form: GROUP BY () |
2475 | */ |
2476 | |
2477 | if (flat_grouplist == NIL && hasGroupingSets) |
2478 | { |
2479 | flat_grouplist = list_make1(makeGroupingSet(GROUPING_SET_EMPTY, |
2480 | NIL, |
2481 | exprLocation((Node *) grouplist))); |
2482 | } |
2483 | |
2484 | foreach(gl, flat_grouplist) |
2485 | { |
2486 | Node *gexpr = (Node *) lfirst(gl); |
2487 | |
2488 | if (IsA(gexpr, GroupingSet)) |
2489 | { |
2490 | GroupingSet *gset = (GroupingSet *) gexpr; |
2491 | |
2492 | switch (gset->kind) |
2493 | { |
2494 | case GROUPING_SET_EMPTY: |
2495 | gsets = lappend(gsets, gset); |
2496 | break; |
2497 | case GROUPING_SET_SIMPLE: |
2498 | /* can't happen */ |
2499 | Assert(false); |
2500 | break; |
2501 | case GROUPING_SET_SETS: |
2502 | case GROUPING_SET_CUBE: |
2503 | case GROUPING_SET_ROLLUP: |
2504 | gsets = lappend(gsets, |
2505 | transformGroupingSet(&result, |
2506 | pstate, gset, |
2507 | targetlist, sortClause, |
2508 | exprKind, useSQL99, true)); |
2509 | break; |
2510 | } |
2511 | } |
2512 | else |
2513 | { |
2514 | Index ref = transformGroupClauseExpr(&result, seen_local, |
2515 | pstate, gexpr, |
2516 | targetlist, sortClause, |
2517 | exprKind, useSQL99, true); |
2518 | |
2519 | if (ref > 0) |
2520 | { |
2521 | seen_local = bms_add_member(seen_local, ref); |
2522 | if (hasGroupingSets) |
2523 | gsets = lappend(gsets, |
2524 | makeGroupingSet(GROUPING_SET_SIMPLE, |
2525 | list_make1_int(ref), |
2526 | exprLocation(gexpr))); |
2527 | } |
2528 | } |
2529 | } |
2530 | |
2531 | /* parser should prevent this */ |
2532 | Assert(gsets == NIL || groupingSets != NULL); |
2533 | |
2534 | if (groupingSets) |
2535 | *groupingSets = gsets; |
2536 | |
2537 | return result; |
2538 | } |
2539 | |
2540 | /* |
2541 | * transformSortClause - |
2542 | * transform an ORDER BY clause |
2543 | * |
2544 | * ORDER BY items will be added to the targetlist (as resjunk columns) |
2545 | * if not already present, so the targetlist must be passed by reference. |
2546 | * |
2547 | * This is also used for window and aggregate ORDER BY clauses (which act |
2548 | * almost the same, but are always interpreted per SQL99 rules). |
2549 | */ |
2550 | List * |
2551 | transformSortClause(ParseState *pstate, |
2552 | List *orderlist, |
2553 | List **targetlist, |
2554 | ParseExprKind exprKind, |
2555 | bool useSQL99) |
2556 | { |
2557 | List *sortlist = NIL; |
2558 | ListCell *olitem; |
2559 | |
2560 | foreach(olitem, orderlist) |
2561 | { |
2562 | SortBy *sortby = (SortBy *) lfirst(olitem); |
2563 | TargetEntry *tle; |
2564 | |
2565 | if (useSQL99) |
2566 | tle = findTargetlistEntrySQL99(pstate, sortby->node, |
2567 | targetlist, exprKind); |
2568 | else |
2569 | tle = findTargetlistEntrySQL92(pstate, sortby->node, |
2570 | targetlist, exprKind); |
2571 | |
2572 | sortlist = addTargetToSortList(pstate, tle, |
2573 | sortlist, *targetlist, sortby); |
2574 | } |
2575 | |
2576 | return sortlist; |
2577 | } |
2578 | |
2579 | /* |
2580 | * transformWindowDefinitions - |
2581 | * transform window definitions (WindowDef to WindowClause) |
2582 | */ |
2583 | List * |
2584 | transformWindowDefinitions(ParseState *pstate, |
2585 | List *windowdefs, |
2586 | List **targetlist) |
2587 | { |
2588 | List *result = NIL; |
2589 | Index winref = 0; |
2590 | ListCell *lc; |
2591 | |
2592 | foreach(lc, windowdefs) |
2593 | { |
2594 | WindowDef *windef = (WindowDef *) lfirst(lc); |
2595 | WindowClause *refwc = NULL; |
2596 | List *partitionClause; |
2597 | List *orderClause; |
2598 | Oid rangeopfamily = InvalidOid; |
2599 | Oid rangeopcintype = InvalidOid; |
2600 | WindowClause *wc; |
2601 | |
2602 | winref++; |
2603 | |
2604 | /* |
2605 | * Check for duplicate window names. |
2606 | */ |
2607 | if (windef->name && |
2608 | findWindowClause(result, windef->name) != NULL) |
2609 | ereport(ERROR, |
2610 | (errcode(ERRCODE_WINDOWING_ERROR), |
2611 | errmsg("window \"%s\" is already defined" , windef->name), |
2612 | parser_errposition(pstate, windef->location))); |
2613 | |
2614 | /* |
2615 | * If it references a previous window, look that up. |
2616 | */ |
2617 | if (windef->refname) |
2618 | { |
2619 | refwc = findWindowClause(result, windef->refname); |
2620 | if (refwc == NULL) |
2621 | ereport(ERROR, |
2622 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
2623 | errmsg("window \"%s\" does not exist" , |
2624 | windef->refname), |
2625 | parser_errposition(pstate, windef->location))); |
2626 | } |
2627 | |
2628 | /* |
2629 | * Transform PARTITION and ORDER specs, if any. These are treated |
2630 | * almost exactly like top-level GROUP BY and ORDER BY clauses, |
2631 | * including the special handling of nondefault operator semantics. |
2632 | */ |
2633 | orderClause = transformSortClause(pstate, |
2634 | windef->orderClause, |
2635 | targetlist, |
2636 | EXPR_KIND_WINDOW_ORDER, |
2637 | true /* force SQL99 rules */ ); |
2638 | partitionClause = transformGroupClause(pstate, |
2639 | windef->partitionClause, |
2640 | NULL, |
2641 | targetlist, |
2642 | orderClause, |
2643 | EXPR_KIND_WINDOW_PARTITION, |
2644 | true /* force SQL99 rules */ ); |
2645 | |
2646 | /* |
2647 | * And prepare the new WindowClause. |
2648 | */ |
2649 | wc = makeNode(WindowClause); |
2650 | wc->name = windef->name; |
2651 | wc->refname = windef->refname; |
2652 | |
2653 | /* |
2654 | * Per spec, a windowdef that references a previous one copies the |
2655 | * previous partition clause (and mustn't specify its own). It can |
2656 | * specify its own ordering clause, but only if the previous one had |
2657 | * none. It always specifies its own frame clause, and the previous |
2658 | * one must not have a frame clause. Yeah, it's bizarre that each of |
2659 | * these cases works differently, but SQL:2008 says so; see 7.11 |
2660 | * <window clause> syntax rule 10 and general rule 1. The frame |
2661 | * clause rule is especially bizarre because it makes "OVER foo" |
2662 | * different from "OVER (foo)", and requires the latter to throw an |
2663 | * error if foo has a nondefault frame clause. Well, ours not to |
2664 | * reason why, but we do go out of our way to throw a useful error |
2665 | * message for such cases. |
2666 | */ |
2667 | if (refwc) |
2668 | { |
2669 | if (partitionClause) |
2670 | ereport(ERROR, |
2671 | (errcode(ERRCODE_WINDOWING_ERROR), |
2672 | errmsg("cannot override PARTITION BY clause of window \"%s\"" , |
2673 | windef->refname), |
2674 | parser_errposition(pstate, windef->location))); |
2675 | wc->partitionClause = copyObject(refwc->partitionClause); |
2676 | } |
2677 | else |
2678 | wc->partitionClause = partitionClause; |
2679 | if (refwc) |
2680 | { |
2681 | if (orderClause && refwc->orderClause) |
2682 | ereport(ERROR, |
2683 | (errcode(ERRCODE_WINDOWING_ERROR), |
2684 | errmsg("cannot override ORDER BY clause of window \"%s\"" , |
2685 | windef->refname), |
2686 | parser_errposition(pstate, windef->location))); |
2687 | if (orderClause) |
2688 | { |
2689 | wc->orderClause = orderClause; |
2690 | wc->copiedOrder = false; |
2691 | } |
2692 | else |
2693 | { |
2694 | wc->orderClause = copyObject(refwc->orderClause); |
2695 | wc->copiedOrder = true; |
2696 | } |
2697 | } |
2698 | else |
2699 | { |
2700 | wc->orderClause = orderClause; |
2701 | wc->copiedOrder = false; |
2702 | } |
2703 | if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS) |
2704 | { |
2705 | /* |
2706 | * Use this message if this is a WINDOW clause, or if it's an OVER |
2707 | * clause that includes ORDER BY or framing clauses. (We already |
2708 | * rejected PARTITION BY above, so no need to check that.) |
2709 | */ |
2710 | if (windef->name || |
2711 | orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS) |
2712 | ereport(ERROR, |
2713 | (errcode(ERRCODE_WINDOWING_ERROR), |
2714 | errmsg("cannot copy window \"%s\" because it has a frame clause" , |
2715 | windef->refname), |
2716 | parser_errposition(pstate, windef->location))); |
2717 | /* Else this clause is just OVER (foo), so say this: */ |
2718 | ereport(ERROR, |
2719 | (errcode(ERRCODE_WINDOWING_ERROR), |
2720 | errmsg("cannot copy window \"%s\" because it has a frame clause" , |
2721 | windef->refname), |
2722 | errhint("Omit the parentheses in this OVER clause." ), |
2723 | parser_errposition(pstate, windef->location))); |
2724 | } |
2725 | wc->frameOptions = windef->frameOptions; |
2726 | |
2727 | /* |
2728 | * RANGE offset PRECEDING/FOLLOWING requires exactly one ORDER BY |
2729 | * column; check that and get its sort opfamily info. |
2730 | */ |
2731 | if ((wc->frameOptions & FRAMEOPTION_RANGE) && |
2732 | (wc->frameOptions & (FRAMEOPTION_START_OFFSET | |
2733 | FRAMEOPTION_END_OFFSET))) |
2734 | { |
2735 | SortGroupClause *sortcl; |
2736 | Node *sortkey; |
2737 | int16 rangestrategy; |
2738 | |
2739 | if (list_length(wc->orderClause) != 1) |
2740 | ereport(ERROR, |
2741 | (errcode(ERRCODE_WINDOWING_ERROR), |
2742 | errmsg("RANGE with offset PRECEDING/FOLLOWING requires exactly one ORDER BY column" ), |
2743 | parser_errposition(pstate, windef->location))); |
2744 | sortcl = castNode(SortGroupClause, linitial(wc->orderClause)); |
2745 | sortkey = get_sortgroupclause_expr(sortcl, *targetlist); |
2746 | /* Find the sort operator in pg_amop */ |
2747 | if (!get_ordering_op_properties(sortcl->sortop, |
2748 | &rangeopfamily, |
2749 | &rangeopcintype, |
2750 | &rangestrategy)) |
2751 | elog(ERROR, "operator %u is not a valid ordering operator" , |
2752 | sortcl->sortop); |
2753 | /* Record properties of sort ordering */ |
2754 | wc->inRangeColl = exprCollation(sortkey); |
2755 | wc->inRangeAsc = (rangestrategy == BTLessStrategyNumber); |
2756 | wc->inRangeNullsFirst = sortcl->nulls_first; |
2757 | } |
2758 | |
2759 | /* Per spec, GROUPS mode requires an ORDER BY clause */ |
2760 | if (wc->frameOptions & FRAMEOPTION_GROUPS) |
2761 | { |
2762 | if (wc->orderClause == NIL) |
2763 | ereport(ERROR, |
2764 | (errcode(ERRCODE_WINDOWING_ERROR), |
2765 | errmsg("GROUPS mode requires an ORDER BY clause" ), |
2766 | parser_errposition(pstate, windef->location))); |
2767 | } |
2768 | |
2769 | /* Process frame offset expressions */ |
2770 | wc->startOffset = transformFrameOffset(pstate, wc->frameOptions, |
2771 | rangeopfamily, rangeopcintype, |
2772 | &wc->startInRangeFunc, |
2773 | windef->startOffset); |
2774 | wc->endOffset = transformFrameOffset(pstate, wc->frameOptions, |
2775 | rangeopfamily, rangeopcintype, |
2776 | &wc->endInRangeFunc, |
2777 | windef->endOffset); |
2778 | wc->winref = winref; |
2779 | |
2780 | result = lappend(result, wc); |
2781 | } |
2782 | |
2783 | return result; |
2784 | } |
2785 | |
2786 | /* |
2787 | * transformDistinctClause - |
2788 | * transform a DISTINCT clause |
2789 | * |
2790 | * Since we may need to add items to the query's targetlist, that list |
2791 | * is passed by reference. |
2792 | * |
2793 | * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as |
2794 | * possible into the distinctClause. This avoids a possible need to re-sort, |
2795 | * and allows the user to choose the equality semantics used by DISTINCT, |
2796 | * should she be working with a datatype that has more than one equality |
2797 | * operator. |
2798 | * |
2799 | * is_agg is true if we are transforming an aggregate(DISTINCT ...) |
2800 | * function call. This does not affect any behavior, only the phrasing |
2801 | * of error messages. |
2802 | */ |
2803 | List * |
2804 | transformDistinctClause(ParseState *pstate, |
2805 | List **targetlist, List *sortClause, bool is_agg) |
2806 | { |
2807 | List *result = NIL; |
2808 | ListCell *slitem; |
2809 | ListCell *tlitem; |
2810 | |
2811 | /* |
2812 | * The distinctClause should consist of all ORDER BY items followed by all |
2813 | * other non-resjunk targetlist items. There must not be any resjunk |
2814 | * ORDER BY items --- that would imply that we are sorting by a value that |
2815 | * isn't necessarily unique within a DISTINCT group, so the results |
2816 | * wouldn't be well-defined. This construction ensures we follow the rule |
2817 | * that sortClause and distinctClause match; in fact the sortClause will |
2818 | * always be a prefix of distinctClause. |
2819 | * |
2820 | * Note a corner case: the same TLE could be in the ORDER BY list multiple |
2821 | * times with different sortops. We have to include it in the |
2822 | * distinctClause the same way to preserve the prefix property. The net |
2823 | * effect will be that the TLE value will be made unique according to both |
2824 | * sortops. |
2825 | */ |
2826 | foreach(slitem, sortClause) |
2827 | { |
2828 | SortGroupClause *scl = (SortGroupClause *) lfirst(slitem); |
2829 | TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist); |
2830 | |
2831 | if (tle->resjunk) |
2832 | ereport(ERROR, |
2833 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
2834 | is_agg ? |
2835 | errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list" ) : |
2836 | errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list" ), |
2837 | parser_errposition(pstate, |
2838 | exprLocation((Node *) tle->expr)))); |
2839 | result = lappend(result, copyObject(scl)); |
2840 | } |
2841 | |
2842 | /* |
2843 | * Now add any remaining non-resjunk tlist items, using default sort/group |
2844 | * semantics for their data types. |
2845 | */ |
2846 | foreach(tlitem, *targetlist) |
2847 | { |
2848 | TargetEntry *tle = (TargetEntry *) lfirst(tlitem); |
2849 | |
2850 | if (tle->resjunk) |
2851 | continue; /* ignore junk */ |
2852 | result = addTargetToGroupList(pstate, tle, |
2853 | result, *targetlist, |
2854 | exprLocation((Node *) tle->expr)); |
2855 | } |
2856 | |
2857 | /* |
2858 | * Complain if we found nothing to make DISTINCT. Returning an empty list |
2859 | * would cause the parsed Query to look like it didn't have DISTINCT, with |
2860 | * results that would probably surprise the user. Note: this case is |
2861 | * presently impossible for aggregates because of grammar restrictions, |
2862 | * but we check anyway. |
2863 | */ |
2864 | if (result == NIL) |
2865 | ereport(ERROR, |
2866 | (errcode(ERRCODE_SYNTAX_ERROR), |
2867 | is_agg ? |
2868 | errmsg("an aggregate with DISTINCT must have at least one argument" ) : |
2869 | errmsg("SELECT DISTINCT must have at least one column" ))); |
2870 | |
2871 | return result; |
2872 | } |
2873 | |
2874 | /* |
2875 | * transformDistinctOnClause - |
2876 | * transform a DISTINCT ON clause |
2877 | * |
2878 | * Since we may need to add items to the query's targetlist, that list |
2879 | * is passed by reference. |
2880 | * |
2881 | * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as |
2882 | * possible into the distinctClause. This avoids a possible need to re-sort, |
2883 | * and allows the user to choose the equality semantics used by DISTINCT, |
2884 | * should she be working with a datatype that has more than one equality |
2885 | * operator. |
2886 | */ |
2887 | List * |
2888 | transformDistinctOnClause(ParseState *pstate, List *distinctlist, |
2889 | List **targetlist, List *sortClause) |
2890 | { |
2891 | List *result = NIL; |
2892 | List *sortgrouprefs = NIL; |
2893 | bool skipped_sortitem; |
2894 | ListCell *lc; |
2895 | ListCell *lc2; |
2896 | |
2897 | /* |
2898 | * Add all the DISTINCT ON expressions to the tlist (if not already |
2899 | * present, they are added as resjunk items). Assign sortgroupref numbers |
2900 | * to them, and make a list of these numbers. (NB: we rely below on the |
2901 | * sortgrouprefs list being one-for-one with the original distinctlist. |
2902 | * Also notice that we could have duplicate DISTINCT ON expressions and |
2903 | * hence duplicate entries in sortgrouprefs.) |
2904 | */ |
2905 | foreach(lc, distinctlist) |
2906 | { |
2907 | Node *dexpr = (Node *) lfirst(lc); |
2908 | int sortgroupref; |
2909 | TargetEntry *tle; |
2910 | |
2911 | tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist, |
2912 | EXPR_KIND_DISTINCT_ON); |
2913 | sortgroupref = assignSortGroupRef(tle, *targetlist); |
2914 | sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref); |
2915 | } |
2916 | |
2917 | /* |
2918 | * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting |
2919 | * semantics from ORDER BY items that match DISTINCT ON items, and also |
2920 | * adopt their column sort order. We insist that the distinctClause and |
2921 | * sortClause match, so throw error if we find the need to add any more |
2922 | * distinctClause items after we've skipped an ORDER BY item that wasn't |
2923 | * in DISTINCT ON. |
2924 | */ |
2925 | skipped_sortitem = false; |
2926 | foreach(lc, sortClause) |
2927 | { |
2928 | SortGroupClause *scl = (SortGroupClause *) lfirst(lc); |
2929 | |
2930 | if (list_member_int(sortgrouprefs, scl->tleSortGroupRef)) |
2931 | { |
2932 | if (skipped_sortitem) |
2933 | ereport(ERROR, |
2934 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
2935 | errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions" ), |
2936 | parser_errposition(pstate, |
2937 | get_matching_location(scl->tleSortGroupRef, |
2938 | sortgrouprefs, |
2939 | distinctlist)))); |
2940 | else |
2941 | result = lappend(result, copyObject(scl)); |
2942 | } |
2943 | else |
2944 | skipped_sortitem = true; |
2945 | } |
2946 | |
2947 | /* |
2948 | * Now add any remaining DISTINCT ON items, using default sort/group |
2949 | * semantics for their data types. (Note: this is pretty questionable; if |
2950 | * the ORDER BY list doesn't include all the DISTINCT ON items and more |
2951 | * besides, you certainly aren't using DISTINCT ON in the intended way, |
2952 | * and you probably aren't going to get consistent results. It might be |
2953 | * better to throw an error or warning here. But historically we've |
2954 | * allowed it, so keep doing so.) |
2955 | */ |
2956 | forboth(lc, distinctlist, lc2, sortgrouprefs) |
2957 | { |
2958 | Node *dexpr = (Node *) lfirst(lc); |
2959 | int sortgroupref = lfirst_int(lc2); |
2960 | TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist); |
2961 | |
2962 | if (targetIsInSortList(tle, InvalidOid, result)) |
2963 | continue; /* already in list (with some semantics) */ |
2964 | if (skipped_sortitem) |
2965 | ereport(ERROR, |
2966 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
2967 | errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions" ), |
2968 | parser_errposition(pstate, exprLocation(dexpr)))); |
2969 | result = addTargetToGroupList(pstate, tle, |
2970 | result, *targetlist, |
2971 | exprLocation(dexpr)); |
2972 | } |
2973 | |
2974 | /* |
2975 | * An empty result list is impossible here because of grammar |
2976 | * restrictions. |
2977 | */ |
2978 | Assert(result != NIL); |
2979 | |
2980 | return result; |
2981 | } |
2982 | |
2983 | /* |
2984 | * get_matching_location |
2985 | * Get the exprLocation of the exprs member corresponding to the |
2986 | * (first) member of sortgrouprefs that equals sortgroupref. |
2987 | * |
2988 | * This is used so that we can point at a troublesome DISTINCT ON entry. |
2989 | * (Note that we need to use the original untransformed DISTINCT ON list |
2990 | * item, as whatever TLE it corresponds to will very possibly have a |
2991 | * parse location pointing to some matching entry in the SELECT list |
2992 | * or ORDER BY list.) |
2993 | */ |
2994 | static int |
2995 | get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs) |
2996 | { |
2997 | ListCell *lcs; |
2998 | ListCell *lce; |
2999 | |
3000 | forboth(lcs, sortgrouprefs, lce, exprs) |
3001 | { |
3002 | if (lfirst_int(lcs) == sortgroupref) |
3003 | return exprLocation((Node *) lfirst(lce)); |
3004 | } |
3005 | /* if no match, caller blew it */ |
3006 | elog(ERROR, "get_matching_location: no matching sortgroupref" ); |
3007 | return -1; /* keep compiler quiet */ |
3008 | } |
3009 | |
3010 | /* |
3011 | * resolve_unique_index_expr |
3012 | * Infer a unique index from a list of indexElems, for ON |
3013 | * CONFLICT clause |
3014 | * |
3015 | * Perform parse analysis of expressions and columns appearing within ON |
3016 | * CONFLICT clause. During planning, the returned list of expressions is used |
3017 | * to infer which unique index to use. |
3018 | */ |
3019 | static List * |
3020 | resolve_unique_index_expr(ParseState *pstate, InferClause *infer, |
3021 | Relation heapRel) |
3022 | { |
3023 | List *result = NIL; |
3024 | ListCell *l; |
3025 | |
3026 | foreach(l, infer->indexElems) |
3027 | { |
3028 | IndexElem *ielem = (IndexElem *) lfirst(l); |
3029 | InferenceElem *pInfer = makeNode(InferenceElem); |
3030 | Node *parse; |
3031 | |
3032 | /* |
3033 | * Raw grammar re-uses CREATE INDEX infrastructure for unique index |
3034 | * inference clause, and so will accept opclasses by name and so on. |
3035 | * |
3036 | * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS |
3037 | * LAST ordering, since those are not significant for inference |
3038 | * purposes (any unique index matching the inference specification in |
3039 | * other regards is accepted indifferently). Actively reject this as |
3040 | * wrong-headed. |
3041 | */ |
3042 | if (ielem->ordering != SORTBY_DEFAULT) |
3043 | ereport(ERROR, |
3044 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
3045 | errmsg("ASC/DESC is not allowed in ON CONFLICT clause" ), |
3046 | parser_errposition(pstate, |
3047 | exprLocation((Node *) infer)))); |
3048 | if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT) |
3049 | ereport(ERROR, |
3050 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
3051 | errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause" ), |
3052 | parser_errposition(pstate, |
3053 | exprLocation((Node *) infer)))); |
3054 | |
3055 | if (!ielem->expr) |
3056 | { |
3057 | /* Simple index attribute */ |
3058 | ColumnRef *n; |
3059 | |
3060 | /* |
3061 | * Grammar won't have built raw expression for us in event of |
3062 | * plain column reference. Create one directly, and perform |
3063 | * expression transformation. Planner expects this, and performs |
3064 | * its own normalization for the purposes of matching against |
3065 | * pg_index. |
3066 | */ |
3067 | n = makeNode(ColumnRef); |
3068 | n->fields = list_make1(makeString(ielem->name)); |
3069 | /* Location is approximately that of inference specification */ |
3070 | n->location = infer->location; |
3071 | parse = (Node *) n; |
3072 | } |
3073 | else |
3074 | { |
3075 | /* Do parse transformation of the raw expression */ |
3076 | parse = (Node *) ielem->expr; |
3077 | } |
3078 | |
3079 | /* |
3080 | * transformExpr() will reject subqueries, aggregates, window |
3081 | * functions, and SRFs, based on being passed |
3082 | * EXPR_KIND_INDEX_EXPRESSION. So we needn't worry about those |
3083 | * further ... not that they would match any available index |
3084 | * expression anyway. |
3085 | */ |
3086 | pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION); |
3087 | |
3088 | /* Perform lookup of collation and operator class as required */ |
3089 | if (!ielem->collation) |
3090 | pInfer->infercollid = InvalidOid; |
3091 | else |
3092 | pInfer->infercollid = LookupCollation(pstate, ielem->collation, |
3093 | exprLocation(pInfer->expr)); |
3094 | |
3095 | if (!ielem->opclass) |
3096 | pInfer->inferopclass = InvalidOid; |
3097 | else |
3098 | pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID, |
3099 | ielem->opclass, false); |
3100 | |
3101 | result = lappend(result, pInfer); |
3102 | } |
3103 | |
3104 | return result; |
3105 | } |
3106 | |
3107 | /* |
3108 | * transformOnConflictArbiter - |
3109 | * transform arbiter expressions in an ON CONFLICT clause. |
3110 | * |
3111 | * Transformed expressions used to infer one unique index relation to serve as |
3112 | * an ON CONFLICT arbiter. Partial unique indexes may be inferred using WHERE |
3113 | * clause from inference specification clause. |
3114 | */ |
3115 | void |
3116 | transformOnConflictArbiter(ParseState *pstate, |
3117 | OnConflictClause *onConflictClause, |
3118 | List **arbiterExpr, Node **arbiterWhere, |
3119 | Oid *constraint) |
3120 | { |
3121 | InferClause *infer = onConflictClause->infer; |
3122 | |
3123 | *arbiterExpr = NIL; |
3124 | *arbiterWhere = NULL; |
3125 | *constraint = InvalidOid; |
3126 | |
3127 | if (onConflictClause->action == ONCONFLICT_UPDATE && !infer) |
3128 | ereport(ERROR, |
3129 | (errcode(ERRCODE_SYNTAX_ERROR), |
3130 | errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name" ), |
3131 | errhint("For example, ON CONFLICT (column_name)." ), |
3132 | parser_errposition(pstate, |
3133 | exprLocation((Node *) onConflictClause)))); |
3134 | |
3135 | /* |
3136 | * To simplify certain aspects of its design, speculative insertion into |
3137 | * system catalogs is disallowed |
3138 | */ |
3139 | if (IsCatalogRelation(pstate->p_target_relation)) |
3140 | ereport(ERROR, |
3141 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3142 | errmsg("ON CONFLICT is not supported with system catalog tables" ), |
3143 | parser_errposition(pstate, |
3144 | exprLocation((Node *) onConflictClause)))); |
3145 | |
3146 | /* Same applies to table used by logical decoding as catalog table */ |
3147 | if (RelationIsUsedAsCatalogTable(pstate->p_target_relation)) |
3148 | ereport(ERROR, |
3149 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3150 | errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table" , |
3151 | RelationGetRelationName(pstate->p_target_relation)), |
3152 | parser_errposition(pstate, |
3153 | exprLocation((Node *) onConflictClause)))); |
3154 | |
3155 | /* ON CONFLICT DO NOTHING does not require an inference clause */ |
3156 | if (infer) |
3157 | { |
3158 | List *save_namespace; |
3159 | |
3160 | /* |
3161 | * While we process the arbiter expressions, accept only non-qualified |
3162 | * references to the target table. Hide any other relations. |
3163 | */ |
3164 | save_namespace = pstate->p_namespace; |
3165 | pstate->p_namespace = NIL; |
3166 | addRTEtoQuery(pstate, pstate->p_target_rangetblentry, |
3167 | false, false, true); |
3168 | |
3169 | if (infer->indexElems) |
3170 | *arbiterExpr = resolve_unique_index_expr(pstate, infer, |
3171 | pstate->p_target_relation); |
3172 | |
3173 | /* |
3174 | * Handling inference WHERE clause (for partial unique index |
3175 | * inference) |
3176 | */ |
3177 | if (infer->whereClause) |
3178 | *arbiterWhere = transformExpr(pstate, infer->whereClause, |
3179 | EXPR_KIND_INDEX_PREDICATE); |
3180 | |
3181 | pstate->p_namespace = save_namespace; |
3182 | |
3183 | /* |
3184 | * If the arbiter is specified by constraint name, get the constraint |
3185 | * OID and mark the constrained columns as requiring SELECT privilege, |
3186 | * in the same way as would have happened if the arbiter had been |
3187 | * specified by explicit reference to the constraint's index columns. |
3188 | */ |
3189 | if (infer->conname) |
3190 | { |
3191 | Oid relid = RelationGetRelid(pstate->p_target_relation); |
3192 | RangeTblEntry *rte = pstate->p_target_rangetblentry; |
3193 | Bitmapset *conattnos; |
3194 | |
3195 | conattnos = get_relation_constraint_attnos(relid, infer->conname, |
3196 | false, constraint); |
3197 | |
3198 | /* Make sure the rel as a whole is marked for SELECT access */ |
3199 | rte->requiredPerms |= ACL_SELECT; |
3200 | /* Mark the constrained columns as requiring SELECT access */ |
3201 | rte->selectedCols = bms_add_members(rte->selectedCols, conattnos); |
3202 | } |
3203 | } |
3204 | |
3205 | /* |
3206 | * It's convenient to form a list of expressions based on the |
3207 | * representation used by CREATE INDEX, since the same restrictions are |
3208 | * appropriate (e.g. on subqueries). However, from here on, a dedicated |
3209 | * primnode representation is used for inference elements, and so |
3210 | * assign_query_collations() can be trusted to do the right thing with the |
3211 | * post parse analysis query tree inference clause representation. |
3212 | */ |
3213 | } |
3214 | |
3215 | /* |
3216 | * addTargetToSortList |
3217 | * If the given targetlist entry isn't already in the SortGroupClause |
3218 | * list, add it to the end of the list, using the given sort ordering |
3219 | * info. |
3220 | * |
3221 | * Returns the updated SortGroupClause list. |
3222 | */ |
3223 | List * |
3224 | addTargetToSortList(ParseState *pstate, TargetEntry *tle, |
3225 | List *sortlist, List *targetlist, SortBy *sortby) |
3226 | { |
3227 | Oid restype = exprType((Node *) tle->expr); |
3228 | Oid sortop; |
3229 | Oid eqop; |
3230 | bool hashable; |
3231 | bool reverse; |
3232 | int location; |
3233 | ParseCallbackState pcbstate; |
3234 | |
3235 | /* if tlist item is an UNKNOWN literal, change it to TEXT */ |
3236 | if (restype == UNKNOWNOID) |
3237 | { |
3238 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
3239 | restype, TEXTOID, -1, |
3240 | COERCION_IMPLICIT, |
3241 | COERCE_IMPLICIT_CAST, |
3242 | -1); |
3243 | restype = TEXTOID; |
3244 | } |
3245 | |
3246 | /* |
3247 | * Rather than clutter the API of get_sort_group_operators and the other |
3248 | * functions we're about to use, make use of error context callback to |
3249 | * mark any error reports with a parse position. We point to the operator |
3250 | * location if present, else to the expression being sorted. (NB: use the |
3251 | * original untransformed expression here; the TLE entry might well point |
3252 | * at a duplicate expression in the regular SELECT list.) |
3253 | */ |
3254 | location = sortby->location; |
3255 | if (location < 0) |
3256 | location = exprLocation(sortby->node); |
3257 | setup_parser_errposition_callback(&pcbstate, pstate, location); |
3258 | |
3259 | /* determine the sortop, eqop, and directionality */ |
3260 | switch (sortby->sortby_dir) |
3261 | { |
3262 | case SORTBY_DEFAULT: |
3263 | case SORTBY_ASC: |
3264 | get_sort_group_operators(restype, |
3265 | true, true, false, |
3266 | &sortop, &eqop, NULL, |
3267 | &hashable); |
3268 | reverse = false; |
3269 | break; |
3270 | case SORTBY_DESC: |
3271 | get_sort_group_operators(restype, |
3272 | false, true, true, |
3273 | NULL, &eqop, &sortop, |
3274 | &hashable); |
3275 | reverse = true; |
3276 | break; |
3277 | case SORTBY_USING: |
3278 | Assert(sortby->useOp != NIL); |
3279 | sortop = compatible_oper_opid(sortby->useOp, |
3280 | restype, |
3281 | restype, |
3282 | false); |
3283 | |
3284 | /* |
3285 | * Verify it's a valid ordering operator, fetch the corresponding |
3286 | * equality operator, and determine whether to consider it like |
3287 | * ASC or DESC. |
3288 | */ |
3289 | eqop = get_equality_op_for_ordering_op(sortop, &reverse); |
3290 | if (!OidIsValid(eqop)) |
3291 | ereport(ERROR, |
3292 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
3293 | errmsg("operator %s is not a valid ordering operator" , |
3294 | strVal(llast(sortby->useOp))), |
3295 | errhint("Ordering operators must be \"<\" or \">\" members of btree operator families." ))); |
3296 | |
3297 | /* |
3298 | * Also see if the equality operator is hashable. |
3299 | */ |
3300 | hashable = op_hashjoinable(eqop, restype); |
3301 | break; |
3302 | default: |
3303 | elog(ERROR, "unrecognized sortby_dir: %d" , sortby->sortby_dir); |
3304 | sortop = InvalidOid; /* keep compiler quiet */ |
3305 | eqop = InvalidOid; |
3306 | hashable = false; |
3307 | reverse = false; |
3308 | break; |
3309 | } |
3310 | |
3311 | cancel_parser_errposition_callback(&pcbstate); |
3312 | |
3313 | /* avoid making duplicate sortlist entries */ |
3314 | if (!targetIsInSortList(tle, sortop, sortlist)) |
3315 | { |
3316 | SortGroupClause *sortcl = makeNode(SortGroupClause); |
3317 | |
3318 | sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist); |
3319 | |
3320 | sortcl->eqop = eqop; |
3321 | sortcl->sortop = sortop; |
3322 | sortcl->hashable = hashable; |
3323 | |
3324 | switch (sortby->sortby_nulls) |
3325 | { |
3326 | case SORTBY_NULLS_DEFAULT: |
3327 | /* NULLS FIRST is default for DESC; other way for ASC */ |
3328 | sortcl->nulls_first = reverse; |
3329 | break; |
3330 | case SORTBY_NULLS_FIRST: |
3331 | sortcl->nulls_first = true; |
3332 | break; |
3333 | case SORTBY_NULLS_LAST: |
3334 | sortcl->nulls_first = false; |
3335 | break; |
3336 | default: |
3337 | elog(ERROR, "unrecognized sortby_nulls: %d" , |
3338 | sortby->sortby_nulls); |
3339 | break; |
3340 | } |
3341 | |
3342 | sortlist = lappend(sortlist, sortcl); |
3343 | } |
3344 | |
3345 | return sortlist; |
3346 | } |
3347 | |
3348 | /* |
3349 | * addTargetToGroupList |
3350 | * If the given targetlist entry isn't already in the SortGroupClause |
3351 | * list, add it to the end of the list, using default sort/group |
3352 | * semantics. |
3353 | * |
3354 | * This is very similar to addTargetToSortList, except that we allow the |
3355 | * case where only a grouping (equality) operator can be found, and that |
3356 | * the TLE is considered "already in the list" if it appears there with any |
3357 | * sorting semantics. |
3358 | * |
3359 | * location is the parse location to be fingered in event of trouble. Note |
3360 | * that we can't rely on exprLocation(tle->expr), because that might point |
3361 | * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing |
3362 | * to report such a location. |
3363 | * |
3364 | * Returns the updated SortGroupClause list. |
3365 | */ |
3366 | static List * |
3367 | addTargetToGroupList(ParseState *pstate, TargetEntry *tle, |
3368 | List *grouplist, List *targetlist, int location) |
3369 | { |
3370 | Oid restype = exprType((Node *) tle->expr); |
3371 | |
3372 | /* if tlist item is an UNKNOWN literal, change it to TEXT */ |
3373 | if (restype == UNKNOWNOID) |
3374 | { |
3375 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
3376 | restype, TEXTOID, -1, |
3377 | COERCION_IMPLICIT, |
3378 | COERCE_IMPLICIT_CAST, |
3379 | -1); |
3380 | restype = TEXTOID; |
3381 | } |
3382 | |
3383 | /* avoid making duplicate grouplist entries */ |
3384 | if (!targetIsInSortList(tle, InvalidOid, grouplist)) |
3385 | { |
3386 | SortGroupClause *grpcl = makeNode(SortGroupClause); |
3387 | Oid sortop; |
3388 | Oid eqop; |
3389 | bool hashable; |
3390 | ParseCallbackState pcbstate; |
3391 | |
3392 | setup_parser_errposition_callback(&pcbstate, pstate, location); |
3393 | |
3394 | /* determine the eqop and optional sortop */ |
3395 | get_sort_group_operators(restype, |
3396 | false, true, false, |
3397 | &sortop, &eqop, NULL, |
3398 | &hashable); |
3399 | |
3400 | cancel_parser_errposition_callback(&pcbstate); |
3401 | |
3402 | grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist); |
3403 | grpcl->eqop = eqop; |
3404 | grpcl->sortop = sortop; |
3405 | grpcl->nulls_first = false; /* OK with or without sortop */ |
3406 | grpcl->hashable = hashable; |
3407 | |
3408 | grouplist = lappend(grouplist, grpcl); |
3409 | } |
3410 | |
3411 | return grouplist; |
3412 | } |
3413 | |
3414 | /* |
3415 | * assignSortGroupRef |
3416 | * Assign the targetentry an unused ressortgroupref, if it doesn't |
3417 | * already have one. Return the assigned or pre-existing refnumber. |
3418 | * |
3419 | * 'tlist' is the targetlist containing (or to contain) the given targetentry. |
3420 | */ |
3421 | Index |
3422 | assignSortGroupRef(TargetEntry *tle, List *tlist) |
3423 | { |
3424 | Index maxRef; |
3425 | ListCell *l; |
3426 | |
3427 | if (tle->ressortgroupref) /* already has one? */ |
3428 | return tle->ressortgroupref; |
3429 | |
3430 | /* easiest way to pick an unused refnumber: max used + 1 */ |
3431 | maxRef = 0; |
3432 | foreach(l, tlist) |
3433 | { |
3434 | Index ref = ((TargetEntry *) lfirst(l))->ressortgroupref; |
3435 | |
3436 | if (ref > maxRef) |
3437 | maxRef = ref; |
3438 | } |
3439 | tle->ressortgroupref = maxRef + 1; |
3440 | return tle->ressortgroupref; |
3441 | } |
3442 | |
3443 | /* |
3444 | * targetIsInSortList |
3445 | * Is the given target item already in the sortlist? |
3446 | * If sortop is not InvalidOid, also test for a match to the sortop. |
3447 | * |
3448 | * It is not an oversight that this function ignores the nulls_first flag. |
3449 | * We check sortop when determining if an ORDER BY item is redundant with |
3450 | * earlier ORDER BY items, because it's conceivable that "ORDER BY |
3451 | * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes |
3452 | * values that < considers equal. We need not check nulls_first |
3453 | * however, because a lower-order column with the same sortop but |
3454 | * opposite nulls direction is redundant. Also, we can consider |
3455 | * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match. |
3456 | * |
3457 | * Works for both ordering and grouping lists (sortop would normally be |
3458 | * InvalidOid when considering grouping). Note that the main reason we need |
3459 | * this routine (and not just a quick test for nonzeroness of ressortgroupref) |
3460 | * is that a TLE might be in only one of the lists. |
3461 | */ |
3462 | bool |
3463 | targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList) |
3464 | { |
3465 | Index ref = tle->ressortgroupref; |
3466 | ListCell *l; |
3467 | |
3468 | /* no need to scan list if tle has no marker */ |
3469 | if (ref == 0) |
3470 | return false; |
3471 | |
3472 | foreach(l, sortList) |
3473 | { |
3474 | SortGroupClause *scl = (SortGroupClause *) lfirst(l); |
3475 | |
3476 | if (scl->tleSortGroupRef == ref && |
3477 | (sortop == InvalidOid || |
3478 | sortop == scl->sortop || |
3479 | sortop == get_commutator(scl->sortop))) |
3480 | return true; |
3481 | } |
3482 | return false; |
3483 | } |
3484 | |
3485 | /* |
3486 | * findWindowClause |
3487 | * Find the named WindowClause in the list, or return NULL if not there |
3488 | */ |
3489 | static WindowClause * |
3490 | findWindowClause(List *wclist, const char *name) |
3491 | { |
3492 | ListCell *l; |
3493 | |
3494 | foreach(l, wclist) |
3495 | { |
3496 | WindowClause *wc = (WindowClause *) lfirst(l); |
3497 | |
3498 | if (wc->name && strcmp(wc->name, name) == 0) |
3499 | return wc; |
3500 | } |
3501 | |
3502 | return NULL; |
3503 | } |
3504 | |
3505 | /* |
3506 | * transformFrameOffset |
3507 | * Process a window frame offset expression |
3508 | * |
3509 | * In RANGE mode, rangeopfamily is the sort opfamily for the input ORDER BY |
3510 | * column, and rangeopcintype is the input data type the sort operator is |
3511 | * registered with. We expect the in_range function to be registered with |
3512 | * that same type. (In binary-compatible cases, it might be different from |
3513 | * the input column's actual type, so we can't use that for the lookups.) |
3514 | * We'll return the OID of the in_range function to *inRangeFunc. |
3515 | */ |
3516 | static Node * |
3517 | transformFrameOffset(ParseState *pstate, int frameOptions, |
3518 | Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, |
3519 | Node *clause) |
3520 | { |
3521 | const char *constructName = NULL; |
3522 | Node *node; |
3523 | |
3524 | *inRangeFunc = InvalidOid; /* default result */ |
3525 | |
3526 | /* Quick exit if no offset expression */ |
3527 | if (clause == NULL) |
3528 | return NULL; |
3529 | |
3530 | if (frameOptions & FRAMEOPTION_ROWS) |
3531 | { |
3532 | /* Transform the raw expression tree */ |
3533 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS); |
3534 | |
3535 | /* |
3536 | * Like LIMIT clause, simply coerce to int8 |
3537 | */ |
3538 | constructName = "ROWS" ; |
3539 | node = coerce_to_specific_type(pstate, node, INT8OID, constructName); |
3540 | } |
3541 | else if (frameOptions & FRAMEOPTION_RANGE) |
3542 | { |
3543 | /* |
3544 | * We must look up the in_range support function that's to be used, |
3545 | * possibly choosing one of several, and coerce the "offset" value to |
3546 | * the appropriate input type. |
3547 | */ |
3548 | Oid nodeType; |
3549 | Oid preferredType; |
3550 | int nfuncs = 0; |
3551 | int nmatches = 0; |
3552 | Oid selectedType = InvalidOid; |
3553 | Oid selectedFunc = InvalidOid; |
3554 | CatCList *proclist; |
3555 | int i; |
3556 | |
3557 | /* Transform the raw expression tree */ |
3558 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE); |
3559 | nodeType = exprType(node); |
3560 | |
3561 | /* |
3562 | * If there are multiple candidates, we'll prefer the one that exactly |
3563 | * matches nodeType; or if nodeType is as yet unknown, prefer the one |
3564 | * that exactly matches the sort column type. (The second rule is |
3565 | * like what we do for "known_type operator unknown".) |
3566 | */ |
3567 | preferredType = (nodeType != UNKNOWNOID) ? nodeType : rangeopcintype; |
3568 | |
3569 | /* Find the in_range support functions applicable to this case */ |
3570 | proclist = SearchSysCacheList2(AMPROCNUM, |
3571 | ObjectIdGetDatum(rangeopfamily), |
3572 | ObjectIdGetDatum(rangeopcintype)); |
3573 | for (i = 0; i < proclist->n_members; i++) |
3574 | { |
3575 | HeapTuple proctup = &proclist->members[i]->tuple; |
3576 | Form_pg_amproc procform = (Form_pg_amproc) GETSTRUCT(proctup); |
3577 | |
3578 | /* The search will find all support proc types; ignore others */ |
3579 | if (procform->amprocnum != BTINRANGE_PROC) |
3580 | continue; |
3581 | nfuncs++; |
3582 | |
3583 | /* Ignore function if given value can't be coerced to that type */ |
3584 | if (!can_coerce_type(1, &nodeType, &procform->amprocrighttype, |
3585 | COERCION_IMPLICIT)) |
3586 | continue; |
3587 | nmatches++; |
3588 | |
3589 | /* Remember preferred match, or any match if didn't find that */ |
3590 | if (selectedType != preferredType) |
3591 | { |
3592 | selectedType = procform->amprocrighttype; |
3593 | selectedFunc = procform->amproc; |
3594 | } |
3595 | } |
3596 | ReleaseCatCacheList(proclist); |
3597 | |
3598 | /* |
3599 | * Throw error if needed. It seems worth taking the trouble to |
3600 | * distinguish "no support at all" from "you didn't match any |
3601 | * available offset type". |
3602 | */ |
3603 | if (nfuncs == 0) |
3604 | ereport(ERROR, |
3605 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3606 | errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s" , |
3607 | format_type_be(rangeopcintype)), |
3608 | parser_errposition(pstate, exprLocation(node)))); |
3609 | if (nmatches == 0) |
3610 | ereport(ERROR, |
3611 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3612 | errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s and offset type %s" , |
3613 | format_type_be(rangeopcintype), |
3614 | format_type_be(nodeType)), |
3615 | errhint("Cast the offset value to an appropriate type." ), |
3616 | parser_errposition(pstate, exprLocation(node)))); |
3617 | if (nmatches != 1 && selectedType != preferredType) |
3618 | ereport(ERROR, |
3619 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
3620 | errmsg("RANGE with offset PRECEDING/FOLLOWING has multiple interpretations for column type %s and offset type %s" , |
3621 | format_type_be(rangeopcintype), |
3622 | format_type_be(nodeType)), |
3623 | errhint("Cast the offset value to the exact intended type." ), |
3624 | parser_errposition(pstate, exprLocation(node)))); |
3625 | |
3626 | /* OK, coerce the offset to the right type */ |
3627 | constructName = "RANGE" ; |
3628 | node = coerce_to_specific_type(pstate, node, |
3629 | selectedType, constructName); |
3630 | *inRangeFunc = selectedFunc; |
3631 | } |
3632 | else if (frameOptions & FRAMEOPTION_GROUPS) |
3633 | { |
3634 | /* Transform the raw expression tree */ |
3635 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_GROUPS); |
3636 | |
3637 | /* |
3638 | * Like LIMIT clause, simply coerce to int8 |
3639 | */ |
3640 | constructName = "GROUPS" ; |
3641 | node = coerce_to_specific_type(pstate, node, INT8OID, constructName); |
3642 | } |
3643 | else |
3644 | { |
3645 | Assert(false); |
3646 | node = NULL; |
3647 | } |
3648 | |
3649 | /* Disallow variables in frame offsets */ |
3650 | checkExprIsVarFree(pstate, node, constructName); |
3651 | |
3652 | return node; |
3653 | } |
3654 | |