| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * parse_clause.c |
| 4 | * handle clauses in parser |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/parser/parse_clause.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "miscadmin.h" |
| 19 | |
| 20 | #include "access/htup_details.h" |
| 21 | #include "access/nbtree.h" |
| 22 | #include "access/table.h" |
| 23 | #include "access/tsmapi.h" |
| 24 | #include "catalog/catalog.h" |
| 25 | #include "catalog/heap.h" |
| 26 | #include "catalog/pg_am.h" |
| 27 | #include "catalog/pg_amproc.h" |
| 28 | #include "catalog/pg_collation.h" |
| 29 | #include "catalog/pg_constraint.h" |
| 30 | #include "catalog/pg_type.h" |
| 31 | #include "commands/defrem.h" |
| 32 | #include "nodes/makefuncs.h" |
| 33 | #include "nodes/nodeFuncs.h" |
| 34 | #include "optimizer/optimizer.h" |
| 35 | #include "parser/analyze.h" |
| 36 | #include "parser/parsetree.h" |
| 37 | #include "parser/parser.h" |
| 38 | #include "parser/parse_clause.h" |
| 39 | #include "parser/parse_coerce.h" |
| 40 | #include "parser/parse_collate.h" |
| 41 | #include "parser/parse_expr.h" |
| 42 | #include "parser/parse_func.h" |
| 43 | #include "parser/parse_oper.h" |
| 44 | #include "parser/parse_relation.h" |
| 45 | #include "parser/parse_target.h" |
| 46 | #include "parser/parse_type.h" |
| 47 | #include "rewrite/rewriteManip.h" |
| 48 | #include "utils/builtins.h" |
| 49 | #include "utils/guc.h" |
| 50 | #include "utils/catcache.h" |
| 51 | #include "utils/lsyscache.h" |
| 52 | #include "utils/syscache.h" |
| 53 | #include "utils/rel.h" |
| 54 | |
| 55 | |
| 56 | /* Convenience macro for the most common makeNamespaceItem() case */ |
| 57 | #define makeDefaultNSItem(rte) makeNamespaceItem(rte, true, true, false, true) |
| 58 | |
| 59 | static void extractRemainingColumns(List *common_colnames, |
| 60 | List *src_colnames, List *src_colvars, |
| 61 | List **res_colnames, List **res_colvars); |
| 62 | static Node *transformJoinUsingClause(ParseState *pstate, |
| 63 | RangeTblEntry *leftRTE, RangeTblEntry *rightRTE, |
| 64 | List *leftVars, List *rightVars); |
| 65 | static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j, |
| 66 | List *namespace); |
| 67 | static RangeTblEntry *getRTEForSpecialRelationTypes(ParseState *pstate, |
| 68 | RangeVar *rv); |
| 69 | static RangeTblEntry *transformTableEntry(ParseState *pstate, RangeVar *r); |
| 70 | static RangeTblEntry *transformRangeSubselect(ParseState *pstate, |
| 71 | RangeSubselect *r); |
| 72 | static RangeTblEntry *transformRangeFunction(ParseState *pstate, |
| 73 | RangeFunction *r); |
| 74 | static RangeTblEntry *transformRangeTableFunc(ParseState *pstate, |
| 75 | RangeTableFunc *t); |
| 76 | static TableSampleClause *transformRangeTableSample(ParseState *pstate, |
| 77 | RangeTableSample *rts); |
| 78 | static Node *transformFromClauseItem(ParseState *pstate, Node *n, |
| 79 | RangeTblEntry **top_rte, int *top_rti, |
| 80 | List **namespace); |
| 81 | static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype, |
| 82 | Var *l_colvar, Var *r_colvar); |
| 83 | static ParseNamespaceItem *makeNamespaceItem(RangeTblEntry *rte, |
| 84 | bool rel_visible, bool cols_visible, |
| 85 | bool lateral_only, bool lateral_ok); |
| 86 | static void setNamespaceColumnVisibility(List *namespace, bool cols_visible); |
| 87 | static void setNamespaceLateralState(List *namespace, |
| 88 | bool lateral_only, bool lateral_ok); |
| 89 | static void checkExprIsVarFree(ParseState *pstate, Node *n, |
| 90 | const char *constructName); |
| 91 | static TargetEntry *findTargetlistEntrySQL92(ParseState *pstate, Node *node, |
| 92 | List **tlist, ParseExprKind exprKind); |
| 93 | static TargetEntry *findTargetlistEntrySQL99(ParseState *pstate, Node *node, |
| 94 | List **tlist, ParseExprKind exprKind); |
| 95 | static int get_matching_location(int sortgroupref, |
| 96 | List *sortgrouprefs, List *exprs); |
| 97 | static List *resolve_unique_index_expr(ParseState *pstate, InferClause *infer, |
| 98 | Relation heapRel); |
| 99 | static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle, |
| 100 | List *grouplist, List *targetlist, int location); |
| 101 | static WindowClause *findWindowClause(List *wclist, const char *name); |
| 102 | static Node *transformFrameOffset(ParseState *pstate, int frameOptions, |
| 103 | Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, |
| 104 | Node *clause); |
| 105 | |
| 106 | |
| 107 | /* |
| 108 | * transformFromClause - |
| 109 | * Process the FROM clause and add items to the query's range table, |
| 110 | * joinlist, and namespace. |
| 111 | * |
| 112 | * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace |
| 113 | * lists were initialized to NIL when the pstate was created. |
| 114 | * We will add onto any entries already present --- this is needed for rule |
| 115 | * processing, as well as for UPDATE and DELETE. |
| 116 | */ |
| 117 | void |
| 118 | transformFromClause(ParseState *pstate, List *frmList) |
| 119 | { |
| 120 | ListCell *fl; |
| 121 | |
| 122 | /* |
| 123 | * The grammar will have produced a list of RangeVars, RangeSubselects, |
| 124 | * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding |
| 125 | * entries to the rtable), check for duplicate refnames, and then add it |
| 126 | * to the joinlist and namespace. |
| 127 | * |
| 128 | * Note we must process the items left-to-right for proper handling of |
| 129 | * LATERAL references. |
| 130 | */ |
| 131 | foreach(fl, frmList) |
| 132 | { |
| 133 | Node *n = lfirst(fl); |
| 134 | RangeTblEntry *rte; |
| 135 | int rtindex; |
| 136 | List *namespace; |
| 137 | |
| 138 | n = transformFromClauseItem(pstate, n, |
| 139 | &rte, |
| 140 | &rtindex, |
| 141 | &namespace); |
| 142 | |
| 143 | checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace); |
| 144 | |
| 145 | /* Mark the new namespace items as visible only to LATERAL */ |
| 146 | setNamespaceLateralState(namespace, true, true); |
| 147 | |
| 148 | pstate->p_joinlist = lappend(pstate->p_joinlist, n); |
| 149 | pstate->p_namespace = list_concat(pstate->p_namespace, namespace); |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * We're done parsing the FROM list, so make all namespace items |
| 154 | * unconditionally visible. Note that this will also reset lateral_only |
| 155 | * for any namespace items that were already present when we were called; |
| 156 | * but those should have been that way already. |
| 157 | */ |
| 158 | setNamespaceLateralState(pstate->p_namespace, false, true); |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * setTargetTable |
| 163 | * Add the target relation of INSERT/UPDATE/DELETE to the range table, |
| 164 | * and make the special links to it in the ParseState. |
| 165 | * |
| 166 | * We also open the target relation and acquire a write lock on it. |
| 167 | * This must be done before processing the FROM list, in case the target |
| 168 | * is also mentioned as a source relation --- we want to be sure to grab |
| 169 | * the write lock before any read lock. |
| 170 | * |
| 171 | * If alsoSource is true, add the target to the query's joinlist and |
| 172 | * namespace. For INSERT, we don't want the target to be joined to; |
| 173 | * it's a destination of tuples, not a source. For UPDATE/DELETE, |
| 174 | * we do need to scan or join the target. (NOTE: we do not bother |
| 175 | * to check for namespace conflict; we assume that the namespace was |
| 176 | * initially empty in these cases.) |
| 177 | * |
| 178 | * Finally, we mark the relation as requiring the permissions specified |
| 179 | * by requiredPerms. |
| 180 | * |
| 181 | * Returns the rangetable index of the target relation. |
| 182 | */ |
| 183 | int |
| 184 | setTargetTable(ParseState *pstate, RangeVar *relation, |
| 185 | bool inh, bool alsoSource, AclMode requiredPerms) |
| 186 | { |
| 187 | RangeTblEntry *rte; |
| 188 | int rtindex; |
| 189 | |
| 190 | /* |
| 191 | * ENRs hide tables of the same name, so we need to check for them first. |
| 192 | * In contrast, CTEs don't hide tables (for this purpose). |
| 193 | */ |
| 194 | if (relation->schemaname == NULL && |
| 195 | scanNameSpaceForENR(pstate, relation->relname)) |
| 196 | ereport(ERROR, |
| 197 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 198 | errmsg("relation \"%s\" cannot be the target of a modifying statement" , |
| 199 | relation->relname))); |
| 200 | |
| 201 | /* Close old target; this could only happen for multi-action rules */ |
| 202 | if (pstate->p_target_relation != NULL) |
| 203 | table_close(pstate->p_target_relation, NoLock); |
| 204 | |
| 205 | /* |
| 206 | * Open target rel and grab suitable lock (which we will hold till end of |
| 207 | * transaction). |
| 208 | * |
| 209 | * free_parsestate() will eventually do the corresponding table_close(), |
| 210 | * but *not* release the lock. |
| 211 | */ |
| 212 | pstate->p_target_relation = parserOpenTable(pstate, relation, |
| 213 | RowExclusiveLock); |
| 214 | |
| 215 | /* |
| 216 | * Now build an RTE. |
| 217 | */ |
| 218 | rte = addRangeTableEntryForRelation(pstate, pstate->p_target_relation, |
| 219 | RowExclusiveLock, |
| 220 | relation->alias, inh, false); |
| 221 | pstate->p_target_rangetblentry = rte; |
| 222 | |
| 223 | /* assume new rte is at end */ |
| 224 | rtindex = list_length(pstate->p_rtable); |
| 225 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 226 | |
| 227 | /* |
| 228 | * Override addRangeTableEntry's default ACL_SELECT permissions check, and |
| 229 | * instead mark target table as requiring exactly the specified |
| 230 | * permissions. |
| 231 | * |
| 232 | * If we find an explicit reference to the rel later during parse |
| 233 | * analysis, we will add the ACL_SELECT bit back again; see |
| 234 | * markVarForSelectPriv and its callers. |
| 235 | */ |
| 236 | rte->requiredPerms = requiredPerms; |
| 237 | |
| 238 | /* |
| 239 | * If UPDATE/DELETE, add table to joinlist and namespace. |
| 240 | * |
| 241 | * Note: some callers know that they can find the new ParseNamespaceItem |
| 242 | * at the end of the pstate->p_namespace list. This is a bit ugly but not |
| 243 | * worth complicating this function's signature for. |
| 244 | */ |
| 245 | if (alsoSource) |
| 246 | addRTEtoQuery(pstate, rte, true, true, true); |
| 247 | |
| 248 | return rtindex; |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * Extract all not-in-common columns from column lists of a source table |
| 253 | */ |
| 254 | static void |
| 255 | extractRemainingColumns(List *common_colnames, |
| 256 | List *src_colnames, List *src_colvars, |
| 257 | List **res_colnames, List **res_colvars) |
| 258 | { |
| 259 | List *new_colnames = NIL; |
| 260 | List *new_colvars = NIL; |
| 261 | ListCell *lnames, |
| 262 | *lvars; |
| 263 | |
| 264 | Assert(list_length(src_colnames) == list_length(src_colvars)); |
| 265 | |
| 266 | forboth(lnames, src_colnames, lvars, src_colvars) |
| 267 | { |
| 268 | char *colname = strVal(lfirst(lnames)); |
| 269 | bool match = false; |
| 270 | ListCell *cnames; |
| 271 | |
| 272 | foreach(cnames, common_colnames) |
| 273 | { |
| 274 | char *ccolname = strVal(lfirst(cnames)); |
| 275 | |
| 276 | if (strcmp(colname, ccolname) == 0) |
| 277 | { |
| 278 | match = true; |
| 279 | break; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | if (!match) |
| 284 | { |
| 285 | new_colnames = lappend(new_colnames, lfirst(lnames)); |
| 286 | new_colvars = lappend(new_colvars, lfirst(lvars)); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | *res_colnames = new_colnames; |
| 291 | *res_colvars = new_colvars; |
| 292 | } |
| 293 | |
| 294 | /* transformJoinUsingClause() |
| 295 | * Build a complete ON clause from a partially-transformed USING list. |
| 296 | * We are given lists of nodes representing left and right match columns. |
| 297 | * Result is a transformed qualification expression. |
| 298 | */ |
| 299 | static Node * |
| 300 | transformJoinUsingClause(ParseState *pstate, |
| 301 | RangeTblEntry *leftRTE, RangeTblEntry *rightRTE, |
| 302 | List *leftVars, List *rightVars) |
| 303 | { |
| 304 | Node *result; |
| 305 | List *andargs = NIL; |
| 306 | ListCell *lvars, |
| 307 | *rvars; |
| 308 | |
| 309 | /* |
| 310 | * We cheat a little bit here by building an untransformed operator tree |
| 311 | * whose leaves are the already-transformed Vars. This requires collusion |
| 312 | * from transformExpr(), which normally could be expected to complain |
| 313 | * about already-transformed subnodes. However, this does mean that we |
| 314 | * have to mark the columns as requiring SELECT privilege for ourselves; |
| 315 | * transformExpr() won't do it. |
| 316 | */ |
| 317 | forboth(lvars, leftVars, rvars, rightVars) |
| 318 | { |
| 319 | Var *lvar = (Var *) lfirst(lvars); |
| 320 | Var *rvar = (Var *) lfirst(rvars); |
| 321 | A_Expr *e; |
| 322 | |
| 323 | /* Require read access to the join variables */ |
| 324 | markVarForSelectPriv(pstate, lvar, leftRTE); |
| 325 | markVarForSelectPriv(pstate, rvar, rightRTE); |
| 326 | |
| 327 | /* Now create the lvar = rvar join condition */ |
| 328 | e = makeSimpleA_Expr(AEXPR_OP, "=" , |
| 329 | (Node *) copyObject(lvar), (Node *) copyObject(rvar), |
| 330 | -1); |
| 331 | |
| 332 | /* Prepare to combine into an AND clause, if multiple join columns */ |
| 333 | andargs = lappend(andargs, e); |
| 334 | } |
| 335 | |
| 336 | /* Only need an AND if there's more than one join column */ |
| 337 | if (list_length(andargs) == 1) |
| 338 | result = (Node *) linitial(andargs); |
| 339 | else |
| 340 | result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1); |
| 341 | |
| 342 | /* |
| 343 | * Since the references are already Vars, and are certainly from the input |
| 344 | * relations, we don't have to go through the same pushups that |
| 345 | * transformJoinOnClause() does. Just invoke transformExpr() to fix up |
| 346 | * the operators, and we're done. |
| 347 | */ |
| 348 | result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING); |
| 349 | |
| 350 | result = coerce_to_boolean(pstate, result, "JOIN/USING" ); |
| 351 | |
| 352 | return result; |
| 353 | } |
| 354 | |
| 355 | /* transformJoinOnClause() |
| 356 | * Transform the qual conditions for JOIN/ON. |
| 357 | * Result is a transformed qualification expression. |
| 358 | */ |
| 359 | static Node * |
| 360 | transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace) |
| 361 | { |
| 362 | Node *result; |
| 363 | List *save_namespace; |
| 364 | |
| 365 | /* |
| 366 | * The namespace that the join expression should see is just the two |
| 367 | * subtrees of the JOIN plus any outer references from upper pstate |
| 368 | * levels. Temporarily set this pstate's namespace accordingly. (We need |
| 369 | * not check for refname conflicts, because transformFromClauseItem() |
| 370 | * already did.) All namespace items are marked visible regardless of |
| 371 | * LATERAL state. |
| 372 | */ |
| 373 | setNamespaceLateralState(namespace, false, true); |
| 374 | |
| 375 | save_namespace = pstate->p_namespace; |
| 376 | pstate->p_namespace = namespace; |
| 377 | |
| 378 | result = transformWhereClause(pstate, j->quals, |
| 379 | EXPR_KIND_JOIN_ON, "JOIN/ON" ); |
| 380 | |
| 381 | pstate->p_namespace = save_namespace; |
| 382 | |
| 383 | return result; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * transformTableEntry --- transform a RangeVar (simple relation reference) |
| 388 | */ |
| 389 | static RangeTblEntry * |
| 390 | transformTableEntry(ParseState *pstate, RangeVar *r) |
| 391 | { |
| 392 | RangeTblEntry *rte; |
| 393 | |
| 394 | /* We need only build a range table entry */ |
| 395 | rte = addRangeTableEntry(pstate, r, r->alias, r->inh, true); |
| 396 | |
| 397 | return rte; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * transformRangeSubselect --- transform a sub-SELECT appearing in FROM |
| 402 | */ |
| 403 | static RangeTblEntry * |
| 404 | transformRangeSubselect(ParseState *pstate, RangeSubselect *r) |
| 405 | { |
| 406 | Query *query; |
| 407 | RangeTblEntry *rte; |
| 408 | |
| 409 | /* |
| 410 | * We require user to supply an alias for a subselect, per SQL92. To relax |
| 411 | * this, we'd have to be prepared to gin up a unique alias for an |
| 412 | * unlabeled subselect. (This is just elog, not ereport, because the |
| 413 | * grammar should have enforced it already. It'd probably be better to |
| 414 | * report the error here, but we don't have a good error location here.) |
| 415 | */ |
| 416 | if (r->alias == NULL) |
| 417 | elog(ERROR, "subquery in FROM must have an alias" ); |
| 418 | |
| 419 | /* |
| 420 | * Set p_expr_kind to show this parse level is recursing to a subselect. |
| 421 | * We can't be nested within any expression, so don't need save-restore |
| 422 | * logic here. |
| 423 | */ |
| 424 | Assert(pstate->p_expr_kind == EXPR_KIND_NONE); |
| 425 | pstate->p_expr_kind = EXPR_KIND_FROM_SUBSELECT; |
| 426 | |
| 427 | /* |
| 428 | * If the subselect is LATERAL, make lateral_only names of this level |
| 429 | * visible to it. (LATERAL can't nest within a single pstate level, so we |
| 430 | * don't need save/restore logic here.) |
| 431 | */ |
| 432 | Assert(!pstate->p_lateral_active); |
| 433 | pstate->p_lateral_active = r->lateral; |
| 434 | |
| 435 | /* |
| 436 | * Analyze and transform the subquery. |
| 437 | */ |
| 438 | query = parse_sub_analyze(r->subquery, pstate, NULL, |
| 439 | isLockedRefname(pstate, r->alias->aliasname), |
| 440 | true); |
| 441 | |
| 442 | /* Restore state */ |
| 443 | pstate->p_lateral_active = false; |
| 444 | pstate->p_expr_kind = EXPR_KIND_NONE; |
| 445 | |
| 446 | /* |
| 447 | * Check that we got a SELECT. Anything else should be impossible given |
| 448 | * restrictions of the grammar, but check anyway. |
| 449 | */ |
| 450 | if (!IsA(query, Query) || |
| 451 | query->commandType != CMD_SELECT) |
| 452 | elog(ERROR, "unexpected non-SELECT command in subquery in FROM" ); |
| 453 | |
| 454 | /* |
| 455 | * OK, build an RTE for the subquery. |
| 456 | */ |
| 457 | rte = addRangeTableEntryForSubquery(pstate, |
| 458 | query, |
| 459 | r->alias, |
| 460 | r->lateral, |
| 461 | true); |
| 462 | |
| 463 | return rte; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | /* |
| 468 | * transformRangeFunction --- transform a function call appearing in FROM |
| 469 | */ |
| 470 | static RangeTblEntry * |
| 471 | transformRangeFunction(ParseState *pstate, RangeFunction *r) |
| 472 | { |
| 473 | List *funcexprs = NIL; |
| 474 | List *funcnames = NIL; |
| 475 | List *coldeflists = NIL; |
| 476 | bool is_lateral; |
| 477 | RangeTblEntry *rte; |
| 478 | ListCell *lc; |
| 479 | |
| 480 | /* |
| 481 | * We make lateral_only names of this level visible, whether or not the |
| 482 | * RangeFunction is explicitly marked LATERAL. This is needed for SQL |
| 483 | * spec compliance in the case of UNNEST(), and seems useful on |
| 484 | * convenience grounds for all functions in FROM. |
| 485 | * |
| 486 | * (LATERAL can't nest within a single pstate level, so we don't need |
| 487 | * save/restore logic here.) |
| 488 | */ |
| 489 | Assert(!pstate->p_lateral_active); |
| 490 | pstate->p_lateral_active = true; |
| 491 | |
| 492 | /* |
| 493 | * Transform the raw expressions. |
| 494 | * |
| 495 | * While transforming, also save function names for possible use as alias |
| 496 | * and column names. We use the same transformation rules as for a SELECT |
| 497 | * output expression. For a FuncCall node, the result will be the |
| 498 | * function name, but it is possible for the grammar to hand back other |
| 499 | * node types. |
| 500 | * |
| 501 | * We have to get this info now, because FigureColname only works on raw |
| 502 | * parsetrees. Actually deciding what to do with the names is left up to |
| 503 | * addRangeTableEntryForFunction. |
| 504 | * |
| 505 | * Likewise, collect column definition lists if there were any. But |
| 506 | * complain if we find one here and the RangeFunction has one too. |
| 507 | */ |
| 508 | foreach(lc, r->functions) |
| 509 | { |
| 510 | List *pair = (List *) lfirst(lc); |
| 511 | Node *fexpr; |
| 512 | List *coldeflist; |
| 513 | Node *newfexpr; |
| 514 | Node *last_srf; |
| 515 | |
| 516 | /* Disassemble the function-call/column-def-list pairs */ |
| 517 | Assert(list_length(pair) == 2); |
| 518 | fexpr = (Node *) linitial(pair); |
| 519 | coldeflist = (List *) lsecond(pair); |
| 520 | |
| 521 | /* |
| 522 | * If we find a function call unnest() with more than one argument and |
| 523 | * no special decoration, transform it into separate unnest() calls on |
| 524 | * each argument. This is a kluge, for sure, but it's less nasty than |
| 525 | * other ways of implementing the SQL-standard UNNEST() syntax. |
| 526 | * |
| 527 | * If there is any decoration (including a coldeflist), we don't |
| 528 | * transform, which probably means a no-such-function error later. We |
| 529 | * could alternatively throw an error right now, but that doesn't seem |
| 530 | * tremendously helpful. If someone is using any such decoration, |
| 531 | * then they're not using the SQL-standard syntax, and they're more |
| 532 | * likely expecting an un-tweaked function call. |
| 533 | * |
| 534 | * Note: the transformation changes a non-schema-qualified unnest() |
| 535 | * function name into schema-qualified pg_catalog.unnest(). This |
| 536 | * choice is also a bit debatable, but it seems reasonable to force |
| 537 | * use of built-in unnest() when we make this transformation. |
| 538 | */ |
| 539 | if (IsA(fexpr, FuncCall)) |
| 540 | { |
| 541 | FuncCall *fc = (FuncCall *) fexpr; |
| 542 | |
| 543 | if (list_length(fc->funcname) == 1 && |
| 544 | strcmp(strVal(linitial(fc->funcname)), "unnest" ) == 0 && |
| 545 | list_length(fc->args) > 1 && |
| 546 | fc->agg_order == NIL && |
| 547 | fc->agg_filter == NULL && |
| 548 | !fc->agg_star && |
| 549 | !fc->agg_distinct && |
| 550 | !fc->func_variadic && |
| 551 | fc->over == NULL && |
| 552 | coldeflist == NIL) |
| 553 | { |
| 554 | ListCell *lc; |
| 555 | |
| 556 | foreach(lc, fc->args) |
| 557 | { |
| 558 | Node *arg = (Node *) lfirst(lc); |
| 559 | FuncCall *newfc; |
| 560 | |
| 561 | last_srf = pstate->p_last_srf; |
| 562 | |
| 563 | newfc = makeFuncCall(SystemFuncName("unnest" ), |
| 564 | list_make1(arg), |
| 565 | fc->location); |
| 566 | |
| 567 | newfexpr = transformExpr(pstate, (Node *) newfc, |
| 568 | EXPR_KIND_FROM_FUNCTION); |
| 569 | |
| 570 | /* nodeFunctionscan.c requires SRFs to be at top level */ |
| 571 | if (pstate->p_last_srf != last_srf && |
| 572 | pstate->p_last_srf != newfexpr) |
| 573 | ereport(ERROR, |
| 574 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 575 | errmsg("set-returning functions must appear at top level of FROM" ), |
| 576 | parser_errposition(pstate, |
| 577 | exprLocation(pstate->p_last_srf)))); |
| 578 | |
| 579 | funcexprs = lappend(funcexprs, newfexpr); |
| 580 | |
| 581 | funcnames = lappend(funcnames, |
| 582 | FigureColname((Node *) newfc)); |
| 583 | |
| 584 | /* coldeflist is empty, so no error is possible */ |
| 585 | |
| 586 | coldeflists = lappend(coldeflists, coldeflist); |
| 587 | } |
| 588 | continue; /* done with this function item */ |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | /* normal case ... */ |
| 593 | last_srf = pstate->p_last_srf; |
| 594 | |
| 595 | newfexpr = transformExpr(pstate, fexpr, |
| 596 | EXPR_KIND_FROM_FUNCTION); |
| 597 | |
| 598 | /* nodeFunctionscan.c requires SRFs to be at top level */ |
| 599 | if (pstate->p_last_srf != last_srf && |
| 600 | pstate->p_last_srf != newfexpr) |
| 601 | ereport(ERROR, |
| 602 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 603 | errmsg("set-returning functions must appear at top level of FROM" ), |
| 604 | parser_errposition(pstate, |
| 605 | exprLocation(pstate->p_last_srf)))); |
| 606 | |
| 607 | funcexprs = lappend(funcexprs, newfexpr); |
| 608 | |
| 609 | funcnames = lappend(funcnames, |
| 610 | FigureColname(fexpr)); |
| 611 | |
| 612 | if (coldeflist && r->coldeflist) |
| 613 | ereport(ERROR, |
| 614 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 615 | errmsg("multiple column definition lists are not allowed for the same function" ), |
| 616 | parser_errposition(pstate, |
| 617 | exprLocation((Node *) r->coldeflist)))); |
| 618 | |
| 619 | coldeflists = lappend(coldeflists, coldeflist); |
| 620 | } |
| 621 | |
| 622 | pstate->p_lateral_active = false; |
| 623 | |
| 624 | /* |
| 625 | * We must assign collations now so that the RTE exposes correct collation |
| 626 | * info for Vars created from it. |
| 627 | */ |
| 628 | assign_list_collations(pstate, funcexprs); |
| 629 | |
| 630 | /* |
| 631 | * Install the top-level coldeflist if there was one (we already checked |
| 632 | * that there was no conflicting per-function coldeflist). |
| 633 | * |
| 634 | * We only allow this when there's a single function (even after UNNEST |
| 635 | * expansion) and no WITH ORDINALITY. The reason for the latter |
| 636 | * restriction is that it's not real clear whether the ordinality column |
| 637 | * should be in the coldeflist, and users are too likely to make mistakes |
| 638 | * in one direction or the other. Putting the coldeflist inside ROWS |
| 639 | * FROM() is much clearer in this case. |
| 640 | */ |
| 641 | if (r->coldeflist) |
| 642 | { |
| 643 | if (list_length(funcexprs) != 1) |
| 644 | { |
| 645 | if (r->is_rowsfrom) |
| 646 | ereport(ERROR, |
| 647 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 648 | errmsg("ROWS FROM() with multiple functions cannot have a column definition list" ), |
| 649 | errhint("Put a separate column definition list for each function inside ROWS FROM()." ), |
| 650 | parser_errposition(pstate, |
| 651 | exprLocation((Node *) r->coldeflist)))); |
| 652 | else |
| 653 | ereport(ERROR, |
| 654 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 655 | errmsg("UNNEST() with multiple arguments cannot have a column definition list" ), |
| 656 | errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one." ), |
| 657 | parser_errposition(pstate, |
| 658 | exprLocation((Node *) r->coldeflist)))); |
| 659 | } |
| 660 | if (r->ordinality) |
| 661 | ereport(ERROR, |
| 662 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 663 | errmsg("WITH ORDINALITY cannot be used with a column definition list" ), |
| 664 | errhint("Put the column definition list inside ROWS FROM()." ), |
| 665 | parser_errposition(pstate, |
| 666 | exprLocation((Node *) r->coldeflist)))); |
| 667 | |
| 668 | coldeflists = list_make1(r->coldeflist); |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if |
| 673 | * there are any lateral cross-references in it. |
| 674 | */ |
| 675 | is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0); |
| 676 | |
| 677 | /* |
| 678 | * OK, build an RTE for the function. |
| 679 | */ |
| 680 | rte = addRangeTableEntryForFunction(pstate, |
| 681 | funcnames, funcexprs, coldeflists, |
| 682 | r, is_lateral, true); |
| 683 | |
| 684 | return rte; |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | * transformRangeTableFunc - |
| 689 | * Transform a raw RangeTableFunc into TableFunc. |
| 690 | * |
| 691 | * Transform the namespace clauses, the document-generating expression, the |
| 692 | * row-generating expression, the column-generating expressions, and the |
| 693 | * default value expressions. |
| 694 | */ |
| 695 | static RangeTblEntry * |
| 696 | transformRangeTableFunc(ParseState *pstate, RangeTableFunc *rtf) |
| 697 | { |
| 698 | TableFunc *tf = makeNode(TableFunc); |
| 699 | const char *constructName; |
| 700 | Oid docType; |
| 701 | RangeTblEntry *rte; |
| 702 | bool is_lateral; |
| 703 | ListCell *col; |
| 704 | char **names; |
| 705 | int colno; |
| 706 | |
| 707 | /* Currently only XMLTABLE is supported */ |
| 708 | constructName = "XMLTABLE" ; |
| 709 | docType = XMLOID; |
| 710 | |
| 711 | /* |
| 712 | * We make lateral_only names of this level visible, whether or not the |
| 713 | * RangeTableFunc is explicitly marked LATERAL. This is needed for SQL |
| 714 | * spec compliance and seems useful on convenience grounds for all |
| 715 | * functions in FROM. |
| 716 | * |
| 717 | * (LATERAL can't nest within a single pstate level, so we don't need |
| 718 | * save/restore logic here.) |
| 719 | */ |
| 720 | Assert(!pstate->p_lateral_active); |
| 721 | pstate->p_lateral_active = true; |
| 722 | |
| 723 | /* Transform and apply typecast to the row-generating expression ... */ |
| 724 | Assert(rtf->rowexpr != NULL); |
| 725 | tf->rowexpr = coerce_to_specific_type(pstate, |
| 726 | transformExpr(pstate, rtf->rowexpr, EXPR_KIND_FROM_FUNCTION), |
| 727 | TEXTOID, |
| 728 | constructName); |
| 729 | assign_expr_collations(pstate, tf->rowexpr); |
| 730 | |
| 731 | /* ... and to the document itself */ |
| 732 | Assert(rtf->docexpr != NULL); |
| 733 | tf->docexpr = coerce_to_specific_type(pstate, |
| 734 | transformExpr(pstate, rtf->docexpr, EXPR_KIND_FROM_FUNCTION), |
| 735 | docType, |
| 736 | constructName); |
| 737 | assign_expr_collations(pstate, tf->docexpr); |
| 738 | |
| 739 | /* undef ordinality column number */ |
| 740 | tf->ordinalitycol = -1; |
| 741 | |
| 742 | /* Process column specs */ |
| 743 | names = palloc(sizeof(char *) * list_length(rtf->columns)); |
| 744 | |
| 745 | colno = 0; |
| 746 | foreach(col, rtf->columns) |
| 747 | { |
| 748 | RangeTableFuncCol *rawc = (RangeTableFuncCol *) lfirst(col); |
| 749 | Oid typid; |
| 750 | int32 typmod; |
| 751 | Node *colexpr; |
| 752 | Node *coldefexpr; |
| 753 | int j; |
| 754 | |
| 755 | tf->colnames = lappend(tf->colnames, |
| 756 | makeString(pstrdup(rawc->colname))); |
| 757 | |
| 758 | /* |
| 759 | * Determine the type and typmod for the new column. FOR ORDINALITY |
| 760 | * columns are INTEGER per spec; the others are user-specified. |
| 761 | */ |
| 762 | if (rawc->for_ordinality) |
| 763 | { |
| 764 | if (tf->ordinalitycol != -1) |
| 765 | ereport(ERROR, |
| 766 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 767 | errmsg("only one FOR ORDINALITY column is allowed" ), |
| 768 | parser_errposition(pstate, rawc->location))); |
| 769 | |
| 770 | typid = INT4OID; |
| 771 | typmod = -1; |
| 772 | tf->ordinalitycol = colno; |
| 773 | } |
| 774 | else |
| 775 | { |
| 776 | if (rawc->typeName->setof) |
| 777 | ereport(ERROR, |
| 778 | (errcode(ERRCODE_INVALID_TABLE_DEFINITION), |
| 779 | errmsg("column \"%s\" cannot be declared SETOF" , |
| 780 | rawc->colname), |
| 781 | parser_errposition(pstate, rawc->location))); |
| 782 | |
| 783 | typenameTypeIdAndMod(pstate, rawc->typeName, |
| 784 | &typid, &typmod); |
| 785 | } |
| 786 | |
| 787 | tf->coltypes = lappend_oid(tf->coltypes, typid); |
| 788 | tf->coltypmods = lappend_int(tf->coltypmods, typmod); |
| 789 | tf->colcollations = lappend_oid(tf->colcollations, |
| 790 | get_typcollation(typid)); |
| 791 | |
| 792 | /* Transform the PATH and DEFAULT expressions */ |
| 793 | if (rawc->colexpr) |
| 794 | { |
| 795 | colexpr = coerce_to_specific_type(pstate, |
| 796 | transformExpr(pstate, rawc->colexpr, |
| 797 | EXPR_KIND_FROM_FUNCTION), |
| 798 | TEXTOID, |
| 799 | constructName); |
| 800 | assign_expr_collations(pstate, colexpr); |
| 801 | } |
| 802 | else |
| 803 | colexpr = NULL; |
| 804 | |
| 805 | if (rawc->coldefexpr) |
| 806 | { |
| 807 | coldefexpr = coerce_to_specific_type_typmod(pstate, |
| 808 | transformExpr(pstate, rawc->coldefexpr, |
| 809 | EXPR_KIND_FROM_FUNCTION), |
| 810 | typid, typmod, |
| 811 | constructName); |
| 812 | assign_expr_collations(pstate, coldefexpr); |
| 813 | } |
| 814 | else |
| 815 | coldefexpr = NULL; |
| 816 | |
| 817 | tf->colexprs = lappend(tf->colexprs, colexpr); |
| 818 | tf->coldefexprs = lappend(tf->coldefexprs, coldefexpr); |
| 819 | |
| 820 | if (rawc->is_not_null) |
| 821 | tf->notnulls = bms_add_member(tf->notnulls, colno); |
| 822 | |
| 823 | /* make sure column names are unique */ |
| 824 | for (j = 0; j < colno; j++) |
| 825 | if (strcmp(names[j], rawc->colname) == 0) |
| 826 | ereport(ERROR, |
| 827 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 828 | errmsg("column name \"%s\" is not unique" , |
| 829 | rawc->colname), |
| 830 | parser_errposition(pstate, rawc->location))); |
| 831 | names[colno] = rawc->colname; |
| 832 | |
| 833 | colno++; |
| 834 | } |
| 835 | pfree(names); |
| 836 | |
| 837 | /* Namespaces, if any, also need to be transformed */ |
| 838 | if (rtf->namespaces != NIL) |
| 839 | { |
| 840 | ListCell *ns; |
| 841 | ListCell *lc2; |
| 842 | List *ns_uris = NIL; |
| 843 | List *ns_names = NIL; |
| 844 | bool default_ns_seen = false; |
| 845 | |
| 846 | foreach(ns, rtf->namespaces) |
| 847 | { |
| 848 | ResTarget *r = (ResTarget *) lfirst(ns); |
| 849 | Node *ns_uri; |
| 850 | |
| 851 | Assert(IsA(r, ResTarget)); |
| 852 | ns_uri = transformExpr(pstate, r->val, EXPR_KIND_FROM_FUNCTION); |
| 853 | ns_uri = coerce_to_specific_type(pstate, ns_uri, |
| 854 | TEXTOID, constructName); |
| 855 | assign_expr_collations(pstate, ns_uri); |
| 856 | ns_uris = lappend(ns_uris, ns_uri); |
| 857 | |
| 858 | /* Verify consistency of name list: no dupes, only one DEFAULT */ |
| 859 | if (r->name != NULL) |
| 860 | { |
| 861 | foreach(lc2, ns_names) |
| 862 | { |
| 863 | Value *ns_node = (Value *) lfirst(lc2); |
| 864 | |
| 865 | if (ns_node == NULL) |
| 866 | continue; |
| 867 | if (strcmp(strVal(ns_node), r->name) == 0) |
| 868 | ereport(ERROR, |
| 869 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 870 | errmsg("namespace name \"%s\" is not unique" , |
| 871 | r->name), |
| 872 | parser_errposition(pstate, r->location))); |
| 873 | } |
| 874 | } |
| 875 | else |
| 876 | { |
| 877 | if (default_ns_seen) |
| 878 | ereport(ERROR, |
| 879 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 880 | errmsg("only one default namespace is allowed" ), |
| 881 | parser_errposition(pstate, r->location))); |
| 882 | default_ns_seen = true; |
| 883 | } |
| 884 | |
| 885 | /* We represent DEFAULT by a null pointer */ |
| 886 | ns_names = lappend(ns_names, |
| 887 | r->name ? makeString(r->name) : NULL); |
| 888 | } |
| 889 | |
| 890 | tf->ns_uris = ns_uris; |
| 891 | tf->ns_names = ns_names; |
| 892 | } |
| 893 | |
| 894 | tf->location = rtf->location; |
| 895 | |
| 896 | pstate->p_lateral_active = false; |
| 897 | |
| 898 | /* |
| 899 | * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if |
| 900 | * there are any lateral cross-references in it. |
| 901 | */ |
| 902 | is_lateral = rtf->lateral || contain_vars_of_level((Node *) tf, 0); |
| 903 | |
| 904 | rte = addRangeTableEntryForTableFunc(pstate, |
| 905 | tf, rtf->alias, is_lateral, true); |
| 906 | |
| 907 | return rte; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * transformRangeTableSample --- transform a TABLESAMPLE clause |
| 912 | * |
| 913 | * Caller has already transformed rts->relation, we just have to validate |
| 914 | * the remaining fields and create a TableSampleClause node. |
| 915 | */ |
| 916 | static TableSampleClause * |
| 917 | transformRangeTableSample(ParseState *pstate, RangeTableSample *rts) |
| 918 | { |
| 919 | TableSampleClause *tablesample; |
| 920 | Oid handlerOid; |
| 921 | Oid funcargtypes[1]; |
| 922 | TsmRoutine *tsm; |
| 923 | List *fargs; |
| 924 | ListCell *larg, |
| 925 | *ltyp; |
| 926 | |
| 927 | /* |
| 928 | * To validate the sample method name, look up the handler function, which |
| 929 | * has the same name, one dummy INTERNAL argument, and a result type of |
| 930 | * tsm_handler. (Note: tablesample method names are not schema-qualified |
| 931 | * in the SQL standard; but since they are just functions to us, we allow |
| 932 | * schema qualification to resolve any potential ambiguity.) |
| 933 | */ |
| 934 | funcargtypes[0] = INTERNALOID; |
| 935 | |
| 936 | handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true); |
| 937 | |
| 938 | /* we want error to complain about no-such-method, not no-such-function */ |
| 939 | if (!OidIsValid(handlerOid)) |
| 940 | ereport(ERROR, |
| 941 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 942 | errmsg("tablesample method %s does not exist" , |
| 943 | NameListToString(rts->method)), |
| 944 | parser_errposition(pstate, rts->location))); |
| 945 | |
| 946 | /* check that handler has correct return type */ |
| 947 | if (get_func_rettype(handlerOid) != TSM_HANDLEROID) |
| 948 | ereport(ERROR, |
| 949 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 950 | errmsg("function %s must return type %s" , |
| 951 | NameListToString(rts->method), "tsm_handler" ), |
| 952 | parser_errposition(pstate, rts->location))); |
| 953 | |
| 954 | /* OK, run the handler to get TsmRoutine, for argument type info */ |
| 955 | tsm = GetTsmRoutine(handlerOid); |
| 956 | |
| 957 | tablesample = makeNode(TableSampleClause); |
| 958 | tablesample->tsmhandler = handlerOid; |
| 959 | |
| 960 | /* check user provided the expected number of arguments */ |
| 961 | if (list_length(rts->args) != list_length(tsm->parameterTypes)) |
| 962 | ereport(ERROR, |
| 963 | (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), |
| 964 | errmsg_plural("tablesample method %s requires %d argument, not %d" , |
| 965 | "tablesample method %s requires %d arguments, not %d" , |
| 966 | list_length(tsm->parameterTypes), |
| 967 | NameListToString(rts->method), |
| 968 | list_length(tsm->parameterTypes), |
| 969 | list_length(rts->args)), |
| 970 | parser_errposition(pstate, rts->location))); |
| 971 | |
| 972 | /* |
| 973 | * Transform the arguments, typecasting them as needed. Note we must also |
| 974 | * assign collations now, because assign_query_collations() doesn't |
| 975 | * examine any substructure of RTEs. |
| 976 | */ |
| 977 | fargs = NIL; |
| 978 | forboth(larg, rts->args, ltyp, tsm->parameterTypes) |
| 979 | { |
| 980 | Node *arg = (Node *) lfirst(larg); |
| 981 | Oid argtype = lfirst_oid(ltyp); |
| 982 | |
| 983 | arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION); |
| 984 | arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE" ); |
| 985 | assign_expr_collations(pstate, arg); |
| 986 | fargs = lappend(fargs, arg); |
| 987 | } |
| 988 | tablesample->args = fargs; |
| 989 | |
| 990 | /* Process REPEATABLE (seed) */ |
| 991 | if (rts->repeatable != NULL) |
| 992 | { |
| 993 | Node *arg; |
| 994 | |
| 995 | if (!tsm->repeatable_across_queries) |
| 996 | ereport(ERROR, |
| 997 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 998 | errmsg("tablesample method %s does not support REPEATABLE" , |
| 999 | NameListToString(rts->method)), |
| 1000 | parser_errposition(pstate, rts->location))); |
| 1001 | |
| 1002 | arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION); |
| 1003 | arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE" ); |
| 1004 | assign_expr_collations(pstate, arg); |
| 1005 | tablesample->repeatable = (Expr *) arg; |
| 1006 | } |
| 1007 | else |
| 1008 | tablesample->repeatable = NULL; |
| 1009 | |
| 1010 | return tablesample; |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * getRTEForSpecialRelationTypes |
| 1015 | * |
| 1016 | * If given RangeVar refers to a CTE or an EphemeralNamedRelation, |
| 1017 | * build and return an appropriate RTE, otherwise return NULL |
| 1018 | */ |
| 1019 | static RangeTblEntry * |
| 1020 | getRTEForSpecialRelationTypes(ParseState *pstate, RangeVar *rv) |
| 1021 | { |
| 1022 | CommonTableExpr *cte; |
| 1023 | Index levelsup; |
| 1024 | RangeTblEntry *rte; |
| 1025 | |
| 1026 | /* |
| 1027 | * if it is a qualified name, it can't be a CTE or tuplestore reference |
| 1028 | */ |
| 1029 | if (rv->schemaname) |
| 1030 | return NULL; |
| 1031 | |
| 1032 | cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup); |
| 1033 | if (cte) |
| 1034 | rte = addRangeTableEntryForCTE(pstate, cte, levelsup, rv, true); |
| 1035 | else if (scanNameSpaceForENR(pstate, rv->relname)) |
| 1036 | rte = addRangeTableEntryForENR(pstate, rv, true); |
| 1037 | else |
| 1038 | rte = NULL; |
| 1039 | |
| 1040 | return rte; |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * transformFromClauseItem - |
| 1045 | * Transform a FROM-clause item, adding any required entries to the |
| 1046 | * range table list being built in the ParseState, and return the |
| 1047 | * transformed item ready to include in the joinlist. Also build a |
| 1048 | * ParseNamespaceItem list describing the names exposed by this item. |
| 1049 | * This routine can recurse to handle SQL92 JOIN expressions. |
| 1050 | * |
| 1051 | * The function return value is the node to add to the jointree (a |
| 1052 | * RangeTblRef or JoinExpr). Additional output parameters are: |
| 1053 | * |
| 1054 | * *top_rte: receives the RTE corresponding to the jointree item. |
| 1055 | * (We could extract this from the function return node, but it saves cycles |
| 1056 | * to pass it back separately.) |
| 1057 | * |
| 1058 | * *top_rti: receives the rangetable index of top_rte. (Ditto.) |
| 1059 | * |
| 1060 | * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed |
| 1061 | * as table/column names by this item. (The lateral_only flags in these items |
| 1062 | * are indeterminate and should be explicitly set by the caller before use.) |
| 1063 | */ |
| 1064 | static Node * |
| 1065 | transformFromClauseItem(ParseState *pstate, Node *n, |
| 1066 | RangeTblEntry **top_rte, int *top_rti, |
| 1067 | List **namespace) |
| 1068 | { |
| 1069 | if (IsA(n, RangeVar)) |
| 1070 | { |
| 1071 | /* Plain relation reference, or perhaps a CTE reference */ |
| 1072 | RangeVar *rv = (RangeVar *) n; |
| 1073 | RangeTblRef *rtr; |
| 1074 | RangeTblEntry *rte; |
| 1075 | int rtindex; |
| 1076 | |
| 1077 | /* Check if it's a CTE or tuplestore reference */ |
| 1078 | rte = getRTEForSpecialRelationTypes(pstate, rv); |
| 1079 | |
| 1080 | /* if not found above, must be a table reference */ |
| 1081 | if (!rte) |
| 1082 | rte = transformTableEntry(pstate, rv); |
| 1083 | |
| 1084 | /* assume new rte is at end */ |
| 1085 | rtindex = list_length(pstate->p_rtable); |
| 1086 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 1087 | *top_rte = rte; |
| 1088 | *top_rti = rtindex; |
| 1089 | *namespace = list_make1(makeDefaultNSItem(rte)); |
| 1090 | rtr = makeNode(RangeTblRef); |
| 1091 | rtr->rtindex = rtindex; |
| 1092 | return (Node *) rtr; |
| 1093 | } |
| 1094 | else if (IsA(n, RangeSubselect)) |
| 1095 | { |
| 1096 | /* sub-SELECT is like a plain relation */ |
| 1097 | RangeTblRef *rtr; |
| 1098 | RangeTblEntry *rte; |
| 1099 | int rtindex; |
| 1100 | |
| 1101 | rte = transformRangeSubselect(pstate, (RangeSubselect *) n); |
| 1102 | /* assume new rte is at end */ |
| 1103 | rtindex = list_length(pstate->p_rtable); |
| 1104 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 1105 | *top_rte = rte; |
| 1106 | *top_rti = rtindex; |
| 1107 | *namespace = list_make1(makeDefaultNSItem(rte)); |
| 1108 | rtr = makeNode(RangeTblRef); |
| 1109 | rtr->rtindex = rtindex; |
| 1110 | return (Node *) rtr; |
| 1111 | } |
| 1112 | else if (IsA(n, RangeFunction)) |
| 1113 | { |
| 1114 | /* function is like a plain relation */ |
| 1115 | RangeTblRef *rtr; |
| 1116 | RangeTblEntry *rte; |
| 1117 | int rtindex; |
| 1118 | |
| 1119 | rte = transformRangeFunction(pstate, (RangeFunction *) n); |
| 1120 | /* assume new rte is at end */ |
| 1121 | rtindex = list_length(pstate->p_rtable); |
| 1122 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 1123 | *top_rte = rte; |
| 1124 | *top_rti = rtindex; |
| 1125 | *namespace = list_make1(makeDefaultNSItem(rte)); |
| 1126 | rtr = makeNode(RangeTblRef); |
| 1127 | rtr->rtindex = rtindex; |
| 1128 | return (Node *) rtr; |
| 1129 | } |
| 1130 | else if (IsA(n, RangeTableFunc)) |
| 1131 | { |
| 1132 | /* table function is like a plain relation */ |
| 1133 | RangeTblRef *rtr; |
| 1134 | RangeTblEntry *rte; |
| 1135 | int rtindex; |
| 1136 | |
| 1137 | rte = transformRangeTableFunc(pstate, (RangeTableFunc *) n); |
| 1138 | /* assume new rte is at end */ |
| 1139 | rtindex = list_length(pstate->p_rtable); |
| 1140 | Assert(rte == rt_fetch(rtindex, pstate->p_rtable)); |
| 1141 | *top_rte = rte; |
| 1142 | *top_rti = rtindex; |
| 1143 | *namespace = list_make1(makeDefaultNSItem(rte)); |
| 1144 | rtr = makeNode(RangeTblRef); |
| 1145 | rtr->rtindex = rtindex; |
| 1146 | return (Node *) rtr; |
| 1147 | } |
| 1148 | else if (IsA(n, RangeTableSample)) |
| 1149 | { |
| 1150 | /* TABLESAMPLE clause (wrapping some other valid FROM node) */ |
| 1151 | RangeTableSample *rts = (RangeTableSample *) n; |
| 1152 | Node *rel; |
| 1153 | RangeTblRef *rtr; |
| 1154 | RangeTblEntry *rte; |
| 1155 | |
| 1156 | /* Recursively transform the contained relation */ |
| 1157 | rel = transformFromClauseItem(pstate, rts->relation, |
| 1158 | top_rte, top_rti, namespace); |
| 1159 | /* Currently, grammar could only return a RangeVar as contained rel */ |
| 1160 | rtr = castNode(RangeTblRef, rel); |
| 1161 | rte = rt_fetch(rtr->rtindex, pstate->p_rtable); |
| 1162 | /* We only support this on plain relations and matviews */ |
| 1163 | if (rte->relkind != RELKIND_RELATION && |
| 1164 | rte->relkind != RELKIND_MATVIEW && |
| 1165 | rte->relkind != RELKIND_PARTITIONED_TABLE) |
| 1166 | ereport(ERROR, |
| 1167 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1168 | errmsg("TABLESAMPLE clause can only be applied to tables and materialized views" ), |
| 1169 | parser_errposition(pstate, exprLocation(rts->relation)))); |
| 1170 | |
| 1171 | /* Transform TABLESAMPLE details and attach to the RTE */ |
| 1172 | rte->tablesample = transformRangeTableSample(pstate, rts); |
| 1173 | return (Node *) rtr; |
| 1174 | } |
| 1175 | else if (IsA(n, JoinExpr)) |
| 1176 | { |
| 1177 | /* A newfangled join expression */ |
| 1178 | JoinExpr *j = (JoinExpr *) n; |
| 1179 | RangeTblEntry *l_rte; |
| 1180 | RangeTblEntry *r_rte; |
| 1181 | int l_rtindex; |
| 1182 | int r_rtindex; |
| 1183 | List *l_namespace, |
| 1184 | *r_namespace, |
| 1185 | *my_namespace, |
| 1186 | *l_colnames, |
| 1187 | *r_colnames, |
| 1188 | *res_colnames, |
| 1189 | *l_colvars, |
| 1190 | *r_colvars, |
| 1191 | *res_colvars; |
| 1192 | bool lateral_ok; |
| 1193 | int sv_namespace_length; |
| 1194 | RangeTblEntry *rte; |
| 1195 | int k; |
| 1196 | |
| 1197 | /* |
| 1198 | * Recursively process the left subtree, then the right. We must do |
| 1199 | * it in this order for correct visibility of LATERAL references. |
| 1200 | */ |
| 1201 | j->larg = transformFromClauseItem(pstate, j->larg, |
| 1202 | &l_rte, |
| 1203 | &l_rtindex, |
| 1204 | &l_namespace); |
| 1205 | |
| 1206 | /* |
| 1207 | * Make the left-side RTEs available for LATERAL access within the |
| 1208 | * right side, by temporarily adding them to the pstate's namespace |
| 1209 | * list. Per SQL:2008, if the join type is not INNER or LEFT then the |
| 1210 | * left-side names must still be exposed, but it's an error to |
| 1211 | * reference them. (Stupid design, but that's what it says.) Hence, |
| 1212 | * we always push them into the namespace, but mark them as not |
| 1213 | * lateral_ok if the jointype is wrong. |
| 1214 | * |
| 1215 | * Notice that we don't require the merged namespace list to be |
| 1216 | * conflict-free. See the comments for scanNameSpaceForRefname(). |
| 1217 | * |
| 1218 | * NB: this coding relies on the fact that list_concat is not |
| 1219 | * destructive to its second argument. |
| 1220 | */ |
| 1221 | lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT); |
| 1222 | setNamespaceLateralState(l_namespace, true, lateral_ok); |
| 1223 | |
| 1224 | sv_namespace_length = list_length(pstate->p_namespace); |
| 1225 | pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace); |
| 1226 | |
| 1227 | /* And now we can process the RHS */ |
| 1228 | j->rarg = transformFromClauseItem(pstate, j->rarg, |
| 1229 | &r_rte, |
| 1230 | &r_rtindex, |
| 1231 | &r_namespace); |
| 1232 | |
| 1233 | /* Remove the left-side RTEs from the namespace list again */ |
| 1234 | pstate->p_namespace = list_truncate(pstate->p_namespace, |
| 1235 | sv_namespace_length); |
| 1236 | |
| 1237 | /* |
| 1238 | * Check for conflicting refnames in left and right subtrees. Must do |
| 1239 | * this because higher levels will assume I hand back a self- |
| 1240 | * consistent namespace list. |
| 1241 | */ |
| 1242 | checkNameSpaceConflicts(pstate, l_namespace, r_namespace); |
| 1243 | |
| 1244 | /* |
| 1245 | * Generate combined namespace info for possible use below. |
| 1246 | */ |
| 1247 | my_namespace = list_concat(l_namespace, r_namespace); |
| 1248 | |
| 1249 | /* |
| 1250 | * Extract column name and var lists from both subtrees |
| 1251 | * |
| 1252 | * Note: expandRTE returns new lists, safe for me to modify |
| 1253 | */ |
| 1254 | expandRTE(l_rte, l_rtindex, 0, -1, false, |
| 1255 | &l_colnames, &l_colvars); |
| 1256 | expandRTE(r_rte, r_rtindex, 0, -1, false, |
| 1257 | &r_colnames, &r_colvars); |
| 1258 | |
| 1259 | /* |
| 1260 | * Natural join does not explicitly specify columns; must generate |
| 1261 | * columns to join. Need to run through the list of columns from each |
| 1262 | * table or join result and match up the column names. Use the first |
| 1263 | * table, and check every column in the second table for a match. |
| 1264 | * (We'll check that the matches were unique later on.) The result of |
| 1265 | * this step is a list of column names just like an explicitly-written |
| 1266 | * USING list. |
| 1267 | */ |
| 1268 | if (j->isNatural) |
| 1269 | { |
| 1270 | List *rlist = NIL; |
| 1271 | ListCell *lx, |
| 1272 | *rx; |
| 1273 | |
| 1274 | Assert(j->usingClause == NIL); /* shouldn't have USING() too */ |
| 1275 | |
| 1276 | foreach(lx, l_colnames) |
| 1277 | { |
| 1278 | char *l_colname = strVal(lfirst(lx)); |
| 1279 | Value *m_name = NULL; |
| 1280 | |
| 1281 | foreach(rx, r_colnames) |
| 1282 | { |
| 1283 | char *r_colname = strVal(lfirst(rx)); |
| 1284 | |
| 1285 | if (strcmp(l_colname, r_colname) == 0) |
| 1286 | { |
| 1287 | m_name = makeString(l_colname); |
| 1288 | break; |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | /* matched a right column? then keep as join column... */ |
| 1293 | if (m_name != NULL) |
| 1294 | rlist = lappend(rlist, m_name); |
| 1295 | } |
| 1296 | |
| 1297 | j->usingClause = rlist; |
| 1298 | } |
| 1299 | |
| 1300 | /* |
| 1301 | * Now transform the join qualifications, if any. |
| 1302 | */ |
| 1303 | res_colnames = NIL; |
| 1304 | res_colvars = NIL; |
| 1305 | |
| 1306 | if (j->usingClause) |
| 1307 | { |
| 1308 | /* |
| 1309 | * JOIN/USING (or NATURAL JOIN, as transformed above). Transform |
| 1310 | * the list into an explicit ON-condition, and generate a list of |
| 1311 | * merged result columns. |
| 1312 | */ |
| 1313 | List *ucols = j->usingClause; |
| 1314 | List *l_usingvars = NIL; |
| 1315 | List *r_usingvars = NIL; |
| 1316 | ListCell *ucol; |
| 1317 | |
| 1318 | Assert(j->quals == NULL); /* shouldn't have ON() too */ |
| 1319 | |
| 1320 | foreach(ucol, ucols) |
| 1321 | { |
| 1322 | char *u_colname = strVal(lfirst(ucol)); |
| 1323 | ListCell *col; |
| 1324 | int ndx; |
| 1325 | int l_index = -1; |
| 1326 | int r_index = -1; |
| 1327 | Var *l_colvar, |
| 1328 | *r_colvar; |
| 1329 | |
| 1330 | /* Check for USING(foo,foo) */ |
| 1331 | foreach(col, res_colnames) |
| 1332 | { |
| 1333 | char *res_colname = strVal(lfirst(col)); |
| 1334 | |
| 1335 | if (strcmp(res_colname, u_colname) == 0) |
| 1336 | ereport(ERROR, |
| 1337 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
| 1338 | errmsg("column name \"%s\" appears more than once in USING clause" , |
| 1339 | u_colname))); |
| 1340 | } |
| 1341 | |
| 1342 | /* Find it in left input */ |
| 1343 | ndx = 0; |
| 1344 | foreach(col, l_colnames) |
| 1345 | { |
| 1346 | char *l_colname = strVal(lfirst(col)); |
| 1347 | |
| 1348 | if (strcmp(l_colname, u_colname) == 0) |
| 1349 | { |
| 1350 | if (l_index >= 0) |
| 1351 | ereport(ERROR, |
| 1352 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
| 1353 | errmsg("common column name \"%s\" appears more than once in left table" , |
| 1354 | u_colname))); |
| 1355 | l_index = ndx; |
| 1356 | } |
| 1357 | ndx++; |
| 1358 | } |
| 1359 | if (l_index < 0) |
| 1360 | ereport(ERROR, |
| 1361 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 1362 | errmsg("column \"%s\" specified in USING clause does not exist in left table" , |
| 1363 | u_colname))); |
| 1364 | |
| 1365 | /* Find it in right input */ |
| 1366 | ndx = 0; |
| 1367 | foreach(col, r_colnames) |
| 1368 | { |
| 1369 | char *r_colname = strVal(lfirst(col)); |
| 1370 | |
| 1371 | if (strcmp(r_colname, u_colname) == 0) |
| 1372 | { |
| 1373 | if (r_index >= 0) |
| 1374 | ereport(ERROR, |
| 1375 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
| 1376 | errmsg("common column name \"%s\" appears more than once in right table" , |
| 1377 | u_colname))); |
| 1378 | r_index = ndx; |
| 1379 | } |
| 1380 | ndx++; |
| 1381 | } |
| 1382 | if (r_index < 0) |
| 1383 | ereport(ERROR, |
| 1384 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
| 1385 | errmsg("column \"%s\" specified in USING clause does not exist in right table" , |
| 1386 | u_colname))); |
| 1387 | |
| 1388 | l_colvar = list_nth(l_colvars, l_index); |
| 1389 | l_usingvars = lappend(l_usingvars, l_colvar); |
| 1390 | r_colvar = list_nth(r_colvars, r_index); |
| 1391 | r_usingvars = lappend(r_usingvars, r_colvar); |
| 1392 | |
| 1393 | res_colnames = lappend(res_colnames, lfirst(ucol)); |
| 1394 | res_colvars = lappend(res_colvars, |
| 1395 | buildMergedJoinVar(pstate, |
| 1396 | j->jointype, |
| 1397 | l_colvar, |
| 1398 | r_colvar)); |
| 1399 | } |
| 1400 | |
| 1401 | j->quals = transformJoinUsingClause(pstate, |
| 1402 | l_rte, |
| 1403 | r_rte, |
| 1404 | l_usingvars, |
| 1405 | r_usingvars); |
| 1406 | } |
| 1407 | else if (j->quals) |
| 1408 | { |
| 1409 | /* User-written ON-condition; transform it */ |
| 1410 | j->quals = transformJoinOnClause(pstate, j, my_namespace); |
| 1411 | } |
| 1412 | else |
| 1413 | { |
| 1414 | /* CROSS JOIN: no quals */ |
| 1415 | } |
| 1416 | |
| 1417 | /* Add remaining columns from each side to the output columns */ |
| 1418 | extractRemainingColumns(res_colnames, |
| 1419 | l_colnames, l_colvars, |
| 1420 | &l_colnames, &l_colvars); |
| 1421 | extractRemainingColumns(res_colnames, |
| 1422 | r_colnames, r_colvars, |
| 1423 | &r_colnames, &r_colvars); |
| 1424 | res_colnames = list_concat(res_colnames, l_colnames); |
| 1425 | res_colvars = list_concat(res_colvars, l_colvars); |
| 1426 | res_colnames = list_concat(res_colnames, r_colnames); |
| 1427 | res_colvars = list_concat(res_colvars, r_colvars); |
| 1428 | |
| 1429 | /* |
| 1430 | * Check alias (AS clause), if any. |
| 1431 | */ |
| 1432 | if (j->alias) |
| 1433 | { |
| 1434 | if (j->alias->colnames != NIL) |
| 1435 | { |
| 1436 | if (list_length(j->alias->colnames) > list_length(res_colnames)) |
| 1437 | ereport(ERROR, |
| 1438 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1439 | errmsg("column alias list for \"%s\" has too many entries" , |
| 1440 | j->alias->aliasname))); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /* |
| 1445 | * Now build an RTE for the result of the join |
| 1446 | */ |
| 1447 | rte = addRangeTableEntryForJoin(pstate, |
| 1448 | res_colnames, |
| 1449 | j->jointype, |
| 1450 | res_colvars, |
| 1451 | j->alias, |
| 1452 | true); |
| 1453 | |
| 1454 | /* assume new rte is at end */ |
| 1455 | j->rtindex = list_length(pstate->p_rtable); |
| 1456 | Assert(rte == rt_fetch(j->rtindex, pstate->p_rtable)); |
| 1457 | |
| 1458 | *top_rte = rte; |
| 1459 | *top_rti = j->rtindex; |
| 1460 | |
| 1461 | /* make a matching link to the JoinExpr for later use */ |
| 1462 | for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++) |
| 1463 | pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL); |
| 1464 | pstate->p_joinexprs = lappend(pstate->p_joinexprs, j); |
| 1465 | Assert(list_length(pstate->p_joinexprs) == j->rtindex); |
| 1466 | |
| 1467 | /* |
| 1468 | * Prepare returned namespace list. If the JOIN has an alias then it |
| 1469 | * hides the contained RTEs completely; otherwise, the contained RTEs |
| 1470 | * are still visible as table names, but are not visible for |
| 1471 | * unqualified column-name access. |
| 1472 | * |
| 1473 | * Note: if there are nested alias-less JOINs, the lower-level ones |
| 1474 | * will remain in the list although they have neither p_rel_visible |
| 1475 | * nor p_cols_visible set. We could delete such list items, but it's |
| 1476 | * unclear that it's worth expending cycles to do so. |
| 1477 | */ |
| 1478 | if (j->alias != NULL) |
| 1479 | my_namespace = NIL; |
| 1480 | else |
| 1481 | setNamespaceColumnVisibility(my_namespace, false); |
| 1482 | |
| 1483 | /* |
| 1484 | * The join RTE itself is always made visible for unqualified column |
| 1485 | * names. It's visible as a relation name only if it has an alias. |
| 1486 | */ |
| 1487 | *namespace = lappend(my_namespace, |
| 1488 | makeNamespaceItem(rte, |
| 1489 | (j->alias != NULL), |
| 1490 | true, |
| 1491 | false, |
| 1492 | true)); |
| 1493 | |
| 1494 | return (Node *) j; |
| 1495 | } |
| 1496 | else |
| 1497 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(n)); |
| 1498 | return NULL; /* can't get here, keep compiler quiet */ |
| 1499 | } |
| 1500 | |
| 1501 | /* |
| 1502 | * buildMergedJoinVar - |
| 1503 | * generate a suitable replacement expression for a merged join column |
| 1504 | */ |
| 1505 | static Node * |
| 1506 | buildMergedJoinVar(ParseState *pstate, JoinType jointype, |
| 1507 | Var *l_colvar, Var *r_colvar) |
| 1508 | { |
| 1509 | Oid outcoltype; |
| 1510 | int32 outcoltypmod; |
| 1511 | Node *l_node, |
| 1512 | *r_node, |
| 1513 | *res_node; |
| 1514 | |
| 1515 | /* |
| 1516 | * Choose output type if input types are dissimilar. |
| 1517 | */ |
| 1518 | outcoltype = l_colvar->vartype; |
| 1519 | outcoltypmod = l_colvar->vartypmod; |
| 1520 | if (outcoltype != r_colvar->vartype) |
| 1521 | { |
| 1522 | outcoltype = select_common_type(pstate, |
| 1523 | list_make2(l_colvar, r_colvar), |
| 1524 | "JOIN/USING" , |
| 1525 | NULL); |
| 1526 | outcoltypmod = -1; /* ie, unknown */ |
| 1527 | } |
| 1528 | else if (outcoltypmod != r_colvar->vartypmod) |
| 1529 | { |
| 1530 | /* same type, but not same typmod */ |
| 1531 | outcoltypmod = -1; /* ie, unknown */ |
| 1532 | } |
| 1533 | |
| 1534 | /* |
| 1535 | * Insert coercion functions if needed. Note that a difference in typmod |
| 1536 | * can only happen if input has typmod but outcoltypmod is -1. In that |
| 1537 | * case we insert a RelabelType to clearly mark that result's typmod is |
| 1538 | * not same as input. We never need coerce_type_typmod. |
| 1539 | */ |
| 1540 | if (l_colvar->vartype != outcoltype) |
| 1541 | l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype, |
| 1542 | outcoltype, outcoltypmod, |
| 1543 | COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
| 1544 | else if (l_colvar->vartypmod != outcoltypmod) |
| 1545 | l_node = (Node *) makeRelabelType((Expr *) l_colvar, |
| 1546 | outcoltype, outcoltypmod, |
| 1547 | InvalidOid, /* fixed below */ |
| 1548 | COERCE_IMPLICIT_CAST); |
| 1549 | else |
| 1550 | l_node = (Node *) l_colvar; |
| 1551 | |
| 1552 | if (r_colvar->vartype != outcoltype) |
| 1553 | r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype, |
| 1554 | outcoltype, outcoltypmod, |
| 1555 | COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
| 1556 | else if (r_colvar->vartypmod != outcoltypmod) |
| 1557 | r_node = (Node *) makeRelabelType((Expr *) r_colvar, |
| 1558 | outcoltype, outcoltypmod, |
| 1559 | InvalidOid, /* fixed below */ |
| 1560 | COERCE_IMPLICIT_CAST); |
| 1561 | else |
| 1562 | r_node = (Node *) r_colvar; |
| 1563 | |
| 1564 | /* |
| 1565 | * Choose what to emit |
| 1566 | */ |
| 1567 | switch (jointype) |
| 1568 | { |
| 1569 | case JOIN_INNER: |
| 1570 | |
| 1571 | /* |
| 1572 | * We can use either var; prefer non-coerced one if available. |
| 1573 | */ |
| 1574 | if (IsA(l_node, Var)) |
| 1575 | res_node = l_node; |
| 1576 | else if (IsA(r_node, Var)) |
| 1577 | res_node = r_node; |
| 1578 | else |
| 1579 | res_node = l_node; |
| 1580 | break; |
| 1581 | case JOIN_LEFT: |
| 1582 | /* Always use left var */ |
| 1583 | res_node = l_node; |
| 1584 | break; |
| 1585 | case JOIN_RIGHT: |
| 1586 | /* Always use right var */ |
| 1587 | res_node = r_node; |
| 1588 | break; |
| 1589 | case JOIN_FULL: |
| 1590 | { |
| 1591 | /* |
| 1592 | * Here we must build a COALESCE expression to ensure that the |
| 1593 | * join output is non-null if either input is. |
| 1594 | */ |
| 1595 | CoalesceExpr *c = makeNode(CoalesceExpr); |
| 1596 | |
| 1597 | c->coalescetype = outcoltype; |
| 1598 | /* coalescecollid will get set below */ |
| 1599 | c->args = list_make2(l_node, r_node); |
| 1600 | c->location = -1; |
| 1601 | res_node = (Node *) c; |
| 1602 | break; |
| 1603 | } |
| 1604 | default: |
| 1605 | elog(ERROR, "unrecognized join type: %d" , (int) jointype); |
| 1606 | res_node = NULL; /* keep compiler quiet */ |
| 1607 | break; |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Apply assign_expr_collations to fix up the collation info in the |
| 1612 | * coercion and CoalesceExpr nodes, if we made any. This must be done now |
| 1613 | * so that the join node's alias vars show correct collation info. |
| 1614 | */ |
| 1615 | assign_expr_collations(pstate, res_node); |
| 1616 | |
| 1617 | return res_node; |
| 1618 | } |
| 1619 | |
| 1620 | /* |
| 1621 | * makeNamespaceItem - |
| 1622 | * Convenience subroutine to construct a ParseNamespaceItem. |
| 1623 | */ |
| 1624 | static ParseNamespaceItem * |
| 1625 | makeNamespaceItem(RangeTblEntry *rte, bool rel_visible, bool cols_visible, |
| 1626 | bool lateral_only, bool lateral_ok) |
| 1627 | { |
| 1628 | ParseNamespaceItem *nsitem; |
| 1629 | |
| 1630 | nsitem = (ParseNamespaceItem *) palloc(sizeof(ParseNamespaceItem)); |
| 1631 | nsitem->p_rte = rte; |
| 1632 | nsitem->p_rel_visible = rel_visible; |
| 1633 | nsitem->p_cols_visible = cols_visible; |
| 1634 | nsitem->p_lateral_only = lateral_only; |
| 1635 | nsitem->p_lateral_ok = lateral_ok; |
| 1636 | return nsitem; |
| 1637 | } |
| 1638 | |
| 1639 | /* |
| 1640 | * setNamespaceColumnVisibility - |
| 1641 | * Convenience subroutine to update cols_visible flags in a namespace list. |
| 1642 | */ |
| 1643 | static void |
| 1644 | setNamespaceColumnVisibility(List *namespace, bool cols_visible) |
| 1645 | { |
| 1646 | ListCell *lc; |
| 1647 | |
| 1648 | foreach(lc, namespace) |
| 1649 | { |
| 1650 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc); |
| 1651 | |
| 1652 | nsitem->p_cols_visible = cols_visible; |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * setNamespaceLateralState - |
| 1658 | * Convenience subroutine to update LATERAL flags in a namespace list. |
| 1659 | */ |
| 1660 | static void |
| 1661 | setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok) |
| 1662 | { |
| 1663 | ListCell *lc; |
| 1664 | |
| 1665 | foreach(lc, namespace) |
| 1666 | { |
| 1667 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc); |
| 1668 | |
| 1669 | nsitem->p_lateral_only = lateral_only; |
| 1670 | nsitem->p_lateral_ok = lateral_ok; |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | |
| 1675 | /* |
| 1676 | * transformWhereClause - |
| 1677 | * Transform the qualification and make sure it is of type boolean. |
| 1678 | * Used for WHERE and allied clauses. |
| 1679 | * |
| 1680 | * constructName does not affect the semantics, but is used in error messages |
| 1681 | */ |
| 1682 | Node * |
| 1683 | transformWhereClause(ParseState *pstate, Node *clause, |
| 1684 | ParseExprKind exprKind, const char *constructName) |
| 1685 | { |
| 1686 | Node *qual; |
| 1687 | |
| 1688 | if (clause == NULL) |
| 1689 | return NULL; |
| 1690 | |
| 1691 | qual = transformExpr(pstate, clause, exprKind); |
| 1692 | |
| 1693 | qual = coerce_to_boolean(pstate, qual, constructName); |
| 1694 | |
| 1695 | return qual; |
| 1696 | } |
| 1697 | |
| 1698 | |
| 1699 | /* |
| 1700 | * transformLimitClause - |
| 1701 | * Transform the expression and make sure it is of type bigint. |
| 1702 | * Used for LIMIT and allied clauses. |
| 1703 | * |
| 1704 | * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8, |
| 1705 | * rather than int4 as before. |
| 1706 | * |
| 1707 | * constructName does not affect the semantics, but is used in error messages |
| 1708 | */ |
| 1709 | Node * |
| 1710 | transformLimitClause(ParseState *pstate, Node *clause, |
| 1711 | ParseExprKind exprKind, const char *constructName) |
| 1712 | { |
| 1713 | Node *qual; |
| 1714 | |
| 1715 | if (clause == NULL) |
| 1716 | return NULL; |
| 1717 | |
| 1718 | qual = transformExpr(pstate, clause, exprKind); |
| 1719 | |
| 1720 | qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName); |
| 1721 | |
| 1722 | /* LIMIT can't refer to any variables of the current query */ |
| 1723 | checkExprIsVarFree(pstate, qual, constructName); |
| 1724 | |
| 1725 | return qual; |
| 1726 | } |
| 1727 | |
| 1728 | /* |
| 1729 | * checkExprIsVarFree |
| 1730 | * Check that given expr has no Vars of the current query level |
| 1731 | * (aggregates and window functions should have been rejected already). |
| 1732 | * |
| 1733 | * This is used to check expressions that have to have a consistent value |
| 1734 | * across all rows of the query, such as a LIMIT. Arguably it should reject |
| 1735 | * volatile functions, too, but we don't do that --- whatever value the |
| 1736 | * function gives on first execution is what you get. |
| 1737 | * |
| 1738 | * constructName does not affect the semantics, but is used in error messages |
| 1739 | */ |
| 1740 | static void |
| 1741 | checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName) |
| 1742 | { |
| 1743 | if (contain_vars_of_level(n, 0)) |
| 1744 | { |
| 1745 | ereport(ERROR, |
| 1746 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 1747 | /* translator: %s is name of a SQL construct, eg LIMIT */ |
| 1748 | errmsg("argument of %s must not contain variables" , |
| 1749 | constructName), |
| 1750 | parser_errposition(pstate, |
| 1751 | locate_var_of_level(n, 0)))); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | /* |
| 1757 | * checkTargetlistEntrySQL92 - |
| 1758 | * Validate a targetlist entry found by findTargetlistEntrySQL92 |
| 1759 | * |
| 1760 | * When we select a pre-existing tlist entry as a result of syntax such |
| 1761 | * as "GROUP BY 1", we have to make sure it is acceptable for use in the |
| 1762 | * indicated clause type; transformExpr() will have treated it as a regular |
| 1763 | * targetlist item. |
| 1764 | */ |
| 1765 | static void |
| 1766 | checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle, |
| 1767 | ParseExprKind exprKind) |
| 1768 | { |
| 1769 | switch (exprKind) |
| 1770 | { |
| 1771 | case EXPR_KIND_GROUP_BY: |
| 1772 | /* reject aggregates and window functions */ |
| 1773 | if (pstate->p_hasAggs && |
| 1774 | contain_aggs_of_level((Node *) tle->expr, 0)) |
| 1775 | ereport(ERROR, |
| 1776 | (errcode(ERRCODE_GROUPING_ERROR), |
| 1777 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 1778 | errmsg("aggregate functions are not allowed in %s" , |
| 1779 | ParseExprKindName(exprKind)), |
| 1780 | parser_errposition(pstate, |
| 1781 | locate_agg_of_level((Node *) tle->expr, 0)))); |
| 1782 | if (pstate->p_hasWindowFuncs && |
| 1783 | contain_windowfuncs((Node *) tle->expr)) |
| 1784 | ereport(ERROR, |
| 1785 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 1786 | /* translator: %s is name of a SQL construct, eg GROUP BY */ |
| 1787 | errmsg("window functions are not allowed in %s" , |
| 1788 | ParseExprKindName(exprKind)), |
| 1789 | parser_errposition(pstate, |
| 1790 | locate_windowfunc((Node *) tle->expr)))); |
| 1791 | break; |
| 1792 | case EXPR_KIND_ORDER_BY: |
| 1793 | /* no extra checks needed */ |
| 1794 | break; |
| 1795 | case EXPR_KIND_DISTINCT_ON: |
| 1796 | /* no extra checks needed */ |
| 1797 | break; |
| 1798 | default: |
| 1799 | elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92" ); |
| 1800 | break; |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | /* |
| 1805 | * findTargetlistEntrySQL92 - |
| 1806 | * Returns the targetlist entry matching the given (untransformed) node. |
| 1807 | * If no matching entry exists, one is created and appended to the target |
| 1808 | * list as a "resjunk" node. |
| 1809 | * |
| 1810 | * This function supports the old SQL92 ORDER BY interpretation, where the |
| 1811 | * expression is an output column name or number. If we fail to find a |
| 1812 | * match of that sort, we fall through to the SQL99 rules. For historical |
| 1813 | * reasons, Postgres also allows this interpretation for GROUP BY, though |
| 1814 | * the standard never did. However, for GROUP BY we prefer a SQL99 match. |
| 1815 | * This function is *not* used for WINDOW definitions. |
| 1816 | * |
| 1817 | * node the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched |
| 1818 | * tlist the target list (passed by reference so we can append to it) |
| 1819 | * exprKind identifies clause type being processed |
| 1820 | */ |
| 1821 | static TargetEntry * |
| 1822 | findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist, |
| 1823 | ParseExprKind exprKind) |
| 1824 | { |
| 1825 | ListCell *tl; |
| 1826 | |
| 1827 | /*---------- |
| 1828 | * Handle two special cases as mandated by the SQL92 spec: |
| 1829 | * |
| 1830 | * 1. Bare ColumnName (no qualifier or subscripts) |
| 1831 | * For a bare identifier, we search for a matching column name |
| 1832 | * in the existing target list. Multiple matches are an error |
| 1833 | * unless they refer to identical values; for example, |
| 1834 | * we allow SELECT a, a FROM table ORDER BY a |
| 1835 | * but not SELECT a AS b, b FROM table ORDER BY b |
| 1836 | * If no match is found, we fall through and treat the identifier |
| 1837 | * as an expression. |
| 1838 | * For GROUP BY, it is incorrect to match the grouping item against |
| 1839 | * targetlist entries: according to SQL92, an identifier in GROUP BY |
| 1840 | * is a reference to a column name exposed by FROM, not to a target |
| 1841 | * list column. However, many implementations (including pre-7.0 |
| 1842 | * PostgreSQL) accept this anyway. So for GROUP BY, we look first |
| 1843 | * to see if the identifier matches any FROM column name, and only |
| 1844 | * try for a targetlist name if it doesn't. This ensures that we |
| 1845 | * adhere to the spec in the case where the name could be both. |
| 1846 | * DISTINCT ON isn't in the standard, so we can do what we like there; |
| 1847 | * we choose to make it work like ORDER BY, on the rather flimsy |
| 1848 | * grounds that ordinary DISTINCT works on targetlist entries. |
| 1849 | * |
| 1850 | * 2. IntegerConstant |
| 1851 | * This means to use the n'th item in the existing target list. |
| 1852 | * Note that it would make no sense to order/group/distinct by an |
| 1853 | * actual constant, so this does not create a conflict with SQL99. |
| 1854 | * GROUP BY column-number is not allowed by SQL92, but since |
| 1855 | * the standard has no other behavior defined for this syntax, |
| 1856 | * we may as well accept this common extension. |
| 1857 | * |
| 1858 | * Note that pre-existing resjunk targets must not be used in either case, |
| 1859 | * since the user didn't write them in his SELECT list. |
| 1860 | * |
| 1861 | * If neither special case applies, fall through to treat the item as |
| 1862 | * an expression per SQL99. |
| 1863 | *---------- |
| 1864 | */ |
| 1865 | if (IsA(node, ColumnRef) && |
| 1866 | list_length(((ColumnRef *) node)->fields) == 1 && |
| 1867 | IsA(linitial(((ColumnRef *) node)->fields), String)) |
| 1868 | { |
| 1869 | char *name = strVal(linitial(((ColumnRef *) node)->fields)); |
| 1870 | int location = ((ColumnRef *) node)->location; |
| 1871 | |
| 1872 | if (exprKind == EXPR_KIND_GROUP_BY) |
| 1873 | { |
| 1874 | /* |
| 1875 | * In GROUP BY, we must prefer a match against a FROM-clause |
| 1876 | * column to one against the targetlist. Look to see if there is |
| 1877 | * a matching column. If so, fall through to use SQL99 rules. |
| 1878 | * NOTE: if name could refer ambiguously to more than one column |
| 1879 | * name exposed by FROM, colNameToVar will ereport(ERROR). That's |
| 1880 | * just what we want here. |
| 1881 | * |
| 1882 | * Small tweak for 7.4.3: ignore matches in upper query levels. |
| 1883 | * This effectively changes the search order for bare names to (1) |
| 1884 | * local FROM variables, (2) local targetlist aliases, (3) outer |
| 1885 | * FROM variables, whereas before it was (1) (3) (2). SQL92 and |
| 1886 | * SQL99 do not allow GROUPing BY an outer reference, so this |
| 1887 | * breaks no cases that are legal per spec, and it seems a more |
| 1888 | * self-consistent behavior. |
| 1889 | */ |
| 1890 | if (colNameToVar(pstate, name, true, location) != NULL) |
| 1891 | name = NULL; |
| 1892 | } |
| 1893 | |
| 1894 | if (name != NULL) |
| 1895 | { |
| 1896 | TargetEntry *target_result = NULL; |
| 1897 | |
| 1898 | foreach(tl, *tlist) |
| 1899 | { |
| 1900 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
| 1901 | |
| 1902 | if (!tle->resjunk && |
| 1903 | strcmp(tle->resname, name) == 0) |
| 1904 | { |
| 1905 | if (target_result != NULL) |
| 1906 | { |
| 1907 | if (!equal(target_result->expr, tle->expr)) |
| 1908 | ereport(ERROR, |
| 1909 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
| 1910 | |
| 1911 | /*------ |
| 1912 | translator: first %s is name of a SQL construct, eg ORDER BY */ |
| 1913 | errmsg("%s \"%s\" is ambiguous" , |
| 1914 | ParseExprKindName(exprKind), |
| 1915 | name), |
| 1916 | parser_errposition(pstate, location))); |
| 1917 | } |
| 1918 | else |
| 1919 | target_result = tle; |
| 1920 | /* Stay in loop to check for ambiguity */ |
| 1921 | } |
| 1922 | } |
| 1923 | if (target_result != NULL) |
| 1924 | { |
| 1925 | /* return the first match, after suitable validation */ |
| 1926 | checkTargetlistEntrySQL92(pstate, target_result, exprKind); |
| 1927 | return target_result; |
| 1928 | } |
| 1929 | } |
| 1930 | } |
| 1931 | if (IsA(node, A_Const)) |
| 1932 | { |
| 1933 | Value *val = &((A_Const *) node)->val; |
| 1934 | int location = ((A_Const *) node)->location; |
| 1935 | int targetlist_pos = 0; |
| 1936 | int target_pos; |
| 1937 | |
| 1938 | if (!IsA(val, Integer)) |
| 1939 | ereport(ERROR, |
| 1940 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 1941 | /* translator: %s is name of a SQL construct, eg ORDER BY */ |
| 1942 | errmsg("non-integer constant in %s" , |
| 1943 | ParseExprKindName(exprKind)), |
| 1944 | parser_errposition(pstate, location))); |
| 1945 | |
| 1946 | target_pos = intVal(val); |
| 1947 | foreach(tl, *tlist) |
| 1948 | { |
| 1949 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
| 1950 | |
| 1951 | if (!tle->resjunk) |
| 1952 | { |
| 1953 | if (++targetlist_pos == target_pos) |
| 1954 | { |
| 1955 | /* return the unique match, after suitable validation */ |
| 1956 | checkTargetlistEntrySQL92(pstate, tle, exprKind); |
| 1957 | return tle; |
| 1958 | } |
| 1959 | } |
| 1960 | } |
| 1961 | ereport(ERROR, |
| 1962 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 1963 | /* translator: %s is name of a SQL construct, eg ORDER BY */ |
| 1964 | errmsg("%s position %d is not in select list" , |
| 1965 | ParseExprKindName(exprKind), target_pos), |
| 1966 | parser_errposition(pstate, location))); |
| 1967 | } |
| 1968 | |
| 1969 | /* |
| 1970 | * Otherwise, we have an expression, so process it per SQL99 rules. |
| 1971 | */ |
| 1972 | return findTargetlistEntrySQL99(pstate, node, tlist, exprKind); |
| 1973 | } |
| 1974 | |
| 1975 | /* |
| 1976 | * findTargetlistEntrySQL99 - |
| 1977 | * Returns the targetlist entry matching the given (untransformed) node. |
| 1978 | * If no matching entry exists, one is created and appended to the target |
| 1979 | * list as a "resjunk" node. |
| 1980 | * |
| 1981 | * This function supports the SQL99 interpretation, wherein the expression |
| 1982 | * is just an ordinary expression referencing input column names. |
| 1983 | * |
| 1984 | * node the ORDER BY, GROUP BY, etc expression to be matched |
| 1985 | * tlist the target list (passed by reference so we can append to it) |
| 1986 | * exprKind identifies clause type being processed |
| 1987 | */ |
| 1988 | static TargetEntry * |
| 1989 | findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist, |
| 1990 | ParseExprKind exprKind) |
| 1991 | { |
| 1992 | TargetEntry *target_result; |
| 1993 | ListCell *tl; |
| 1994 | Node *expr; |
| 1995 | |
| 1996 | /* |
| 1997 | * Convert the untransformed node to a transformed expression, and search |
| 1998 | * for a match in the tlist. NOTE: it doesn't really matter whether there |
| 1999 | * is more than one match. Also, we are willing to match an existing |
| 2000 | * resjunk target here, though the SQL92 cases above must ignore resjunk |
| 2001 | * targets. |
| 2002 | */ |
| 2003 | expr = transformExpr(pstate, node, exprKind); |
| 2004 | |
| 2005 | foreach(tl, *tlist) |
| 2006 | { |
| 2007 | TargetEntry *tle = (TargetEntry *) lfirst(tl); |
| 2008 | Node *texpr; |
| 2009 | |
| 2010 | /* |
| 2011 | * Ignore any implicit cast on the existing tlist expression. |
| 2012 | * |
| 2013 | * This essentially allows the ORDER/GROUP/etc item to adopt the same |
| 2014 | * datatype previously selected for a textually-equivalent tlist item. |
| 2015 | * There can't be any implicit cast at top level in an ordinary SELECT |
| 2016 | * tlist at this stage, but the case does arise with ORDER BY in an |
| 2017 | * aggregate function. |
| 2018 | */ |
| 2019 | texpr = strip_implicit_coercions((Node *) tle->expr); |
| 2020 | |
| 2021 | if (equal(expr, texpr)) |
| 2022 | return tle; |
| 2023 | } |
| 2024 | |
| 2025 | /* |
| 2026 | * If no matches, construct a new target entry which is appended to the |
| 2027 | * end of the target list. This target is given resjunk = true so that it |
| 2028 | * will not be projected into the final tuple. |
| 2029 | */ |
| 2030 | target_result = transformTargetEntry(pstate, node, expr, exprKind, |
| 2031 | NULL, true); |
| 2032 | |
| 2033 | *tlist = lappend(*tlist, target_result); |
| 2034 | |
| 2035 | return target_result; |
| 2036 | } |
| 2037 | |
| 2038 | /*------------------------------------------------------------------------- |
| 2039 | * Flatten out parenthesized sublists in grouping lists, and some cases |
| 2040 | * of nested grouping sets. |
| 2041 | * |
| 2042 | * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the |
| 2043 | * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is |
| 2044 | * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then |
| 2045 | * (later) normalize to ((a,b,c),(d)). |
| 2046 | * |
| 2047 | * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse), |
| 2048 | * and we leave that alone if we find it. But if we see GROUPING SETS inside |
| 2049 | * GROUPING SETS, we can flatten and normalize as follows: |
| 2050 | * GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g)) |
| 2051 | * becomes |
| 2052 | * GROUPING SETS ((a), (b,c), (c,d), (e), (f,g)) |
| 2053 | * |
| 2054 | * This is per the spec's syntax transformations, but these are the only such |
| 2055 | * transformations we do in parse analysis, so that queries retain the |
| 2056 | * originally specified grouping set syntax for CUBE and ROLLUP as much as |
| 2057 | * possible when deparsed. (Full expansion of the result into a list of |
| 2058 | * grouping sets is left to the planner.) |
| 2059 | * |
| 2060 | * When we're done, the resulting list should contain only these possible |
| 2061 | * elements: |
| 2062 | * - an expression |
| 2063 | * - a CUBE or ROLLUP with a list of expressions nested 2 deep |
| 2064 | * - a GROUPING SET containing any of: |
| 2065 | * - expression lists |
| 2066 | * - empty grouping sets |
| 2067 | * - CUBE or ROLLUP nodes with lists nested 2 deep |
| 2068 | * The return is a new list, but doesn't deep-copy the old nodes except for |
| 2069 | * GroupingSet nodes. |
| 2070 | * |
| 2071 | * As a side effect, flag whether the list has any GroupingSet nodes. |
| 2072 | *------------------------------------------------------------------------- |
| 2073 | */ |
| 2074 | static Node * |
| 2075 | flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets) |
| 2076 | { |
| 2077 | /* just in case of pathological input */ |
| 2078 | check_stack_depth(); |
| 2079 | |
| 2080 | if (expr == (Node *) NIL) |
| 2081 | return (Node *) NIL; |
| 2082 | |
| 2083 | switch (expr->type) |
| 2084 | { |
| 2085 | case T_RowExpr: |
| 2086 | { |
| 2087 | RowExpr *r = (RowExpr *) expr; |
| 2088 | |
| 2089 | if (r->row_format == COERCE_IMPLICIT_CAST) |
| 2090 | return flatten_grouping_sets((Node *) r->args, |
| 2091 | false, NULL); |
| 2092 | } |
| 2093 | break; |
| 2094 | case T_GroupingSet: |
| 2095 | { |
| 2096 | GroupingSet *gset = (GroupingSet *) expr; |
| 2097 | ListCell *l2; |
| 2098 | List *result_set = NIL; |
| 2099 | |
| 2100 | if (hasGroupingSets) |
| 2101 | *hasGroupingSets = true; |
| 2102 | |
| 2103 | /* |
| 2104 | * at the top level, we skip over all empty grouping sets; the |
| 2105 | * caller can supply the canonical GROUP BY () if nothing is |
| 2106 | * left. |
| 2107 | */ |
| 2108 | |
| 2109 | if (toplevel && gset->kind == GROUPING_SET_EMPTY) |
| 2110 | return (Node *) NIL; |
| 2111 | |
| 2112 | foreach(l2, gset->content) |
| 2113 | { |
| 2114 | Node *n1 = lfirst(l2); |
| 2115 | Node *n2 = flatten_grouping_sets(n1, false, NULL); |
| 2116 | |
| 2117 | if (IsA(n1, GroupingSet) && |
| 2118 | ((GroupingSet *) n1)->kind == GROUPING_SET_SETS) |
| 2119 | { |
| 2120 | result_set = list_concat(result_set, (List *) n2); |
| 2121 | } |
| 2122 | else |
| 2123 | result_set = lappend(result_set, n2); |
| 2124 | } |
| 2125 | |
| 2126 | /* |
| 2127 | * At top level, keep the grouping set node; but if we're in a |
| 2128 | * nested grouping set, then we need to concat the flattened |
| 2129 | * result into the outer list if it's simply nested. |
| 2130 | */ |
| 2131 | |
| 2132 | if (toplevel || (gset->kind != GROUPING_SET_SETS)) |
| 2133 | { |
| 2134 | return (Node *) makeGroupingSet(gset->kind, result_set, gset->location); |
| 2135 | } |
| 2136 | else |
| 2137 | return (Node *) result_set; |
| 2138 | } |
| 2139 | case T_List: |
| 2140 | { |
| 2141 | List *result = NIL; |
| 2142 | ListCell *l; |
| 2143 | |
| 2144 | foreach(l, (List *) expr) |
| 2145 | { |
| 2146 | Node *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets); |
| 2147 | |
| 2148 | if (n != (Node *) NIL) |
| 2149 | { |
| 2150 | if (IsA(n, List)) |
| 2151 | result = list_concat(result, (List *) n); |
| 2152 | else |
| 2153 | result = lappend(result, n); |
| 2154 | } |
| 2155 | } |
| 2156 | |
| 2157 | return (Node *) result; |
| 2158 | } |
| 2159 | default: |
| 2160 | break; |
| 2161 | } |
| 2162 | |
| 2163 | return expr; |
| 2164 | } |
| 2165 | |
| 2166 | /* |
| 2167 | * Transform a single expression within a GROUP BY clause or grouping set. |
| 2168 | * |
| 2169 | * The expression is added to the targetlist if not already present, and to the |
| 2170 | * flatresult list (which will become the groupClause) if not already present |
| 2171 | * there. The sortClause is consulted for operator and sort order hints. |
| 2172 | * |
| 2173 | * Returns the ressortgroupref of the expression. |
| 2174 | * |
| 2175 | * flatresult reference to flat list of SortGroupClause nodes |
| 2176 | * seen_local bitmapset of sortgrouprefs already seen at the local level |
| 2177 | * pstate ParseState |
| 2178 | * gexpr node to transform |
| 2179 | * targetlist reference to TargetEntry list |
| 2180 | * sortClause ORDER BY clause (SortGroupClause nodes) |
| 2181 | * exprKind expression kind |
| 2182 | * useSQL99 SQL99 rather than SQL92 syntax |
| 2183 | * toplevel false if within any grouping set |
| 2184 | */ |
| 2185 | static Index |
| 2186 | transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local, |
| 2187 | ParseState *pstate, Node *gexpr, |
| 2188 | List **targetlist, List *sortClause, |
| 2189 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
| 2190 | { |
| 2191 | TargetEntry *tle; |
| 2192 | bool found = false; |
| 2193 | |
| 2194 | if (useSQL99) |
| 2195 | tle = findTargetlistEntrySQL99(pstate, gexpr, |
| 2196 | targetlist, exprKind); |
| 2197 | else |
| 2198 | tle = findTargetlistEntrySQL92(pstate, gexpr, |
| 2199 | targetlist, exprKind); |
| 2200 | |
| 2201 | if (tle->ressortgroupref > 0) |
| 2202 | { |
| 2203 | ListCell *sl; |
| 2204 | |
| 2205 | /* |
| 2206 | * Eliminate duplicates (GROUP BY x, x) but only at local level. |
| 2207 | * (Duplicates in grouping sets can affect the number of returned |
| 2208 | * rows, so can't be dropped indiscriminately.) |
| 2209 | * |
| 2210 | * Since we don't care about anything except the sortgroupref, we can |
| 2211 | * use a bitmapset rather than scanning lists. |
| 2212 | */ |
| 2213 | if (bms_is_member(tle->ressortgroupref, seen_local)) |
| 2214 | return 0; |
| 2215 | |
| 2216 | /* |
| 2217 | * If we're already in the flat clause list, we don't need to consider |
| 2218 | * adding ourselves again. |
| 2219 | */ |
| 2220 | found = targetIsInSortList(tle, InvalidOid, *flatresult); |
| 2221 | if (found) |
| 2222 | return tle->ressortgroupref; |
| 2223 | |
| 2224 | /* |
| 2225 | * If the GROUP BY tlist entry also appears in ORDER BY, copy operator |
| 2226 | * info from the (first) matching ORDER BY item. This means that if |
| 2227 | * you write something like "GROUP BY foo ORDER BY foo USING <<<", the |
| 2228 | * GROUP BY operation silently takes on the equality semantics implied |
| 2229 | * by the ORDER BY. There are two reasons to do this: it improves the |
| 2230 | * odds that we can implement both GROUP BY and ORDER BY with a single |
| 2231 | * sort step, and it allows the user to choose the equality semantics |
| 2232 | * used by GROUP BY, should she be working with a datatype that has |
| 2233 | * more than one equality operator. |
| 2234 | * |
| 2235 | * If we're in a grouping set, though, we force our requested ordering |
| 2236 | * to be NULLS LAST, because if we have any hope of using a sorted agg |
| 2237 | * for the job, we're going to be tacking on generated NULL values |
| 2238 | * after the corresponding groups. If the user demands nulls first, |
| 2239 | * another sort step is going to be inevitable, but that's the |
| 2240 | * planner's problem. |
| 2241 | */ |
| 2242 | |
| 2243 | foreach(sl, sortClause) |
| 2244 | { |
| 2245 | SortGroupClause *sc = (SortGroupClause *) lfirst(sl); |
| 2246 | |
| 2247 | if (sc->tleSortGroupRef == tle->ressortgroupref) |
| 2248 | { |
| 2249 | SortGroupClause *grpc = copyObject(sc); |
| 2250 | |
| 2251 | if (!toplevel) |
| 2252 | grpc->nulls_first = false; |
| 2253 | *flatresult = lappend(*flatresult, grpc); |
| 2254 | found = true; |
| 2255 | break; |
| 2256 | } |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | /* |
| 2261 | * If no match in ORDER BY, just add it to the result using default |
| 2262 | * sort/group semantics. |
| 2263 | */ |
| 2264 | if (!found) |
| 2265 | *flatresult = addTargetToGroupList(pstate, tle, |
| 2266 | *flatresult, *targetlist, |
| 2267 | exprLocation(gexpr)); |
| 2268 | |
| 2269 | /* |
| 2270 | * _something_ must have assigned us a sortgroupref by now... |
| 2271 | */ |
| 2272 | |
| 2273 | return tle->ressortgroupref; |
| 2274 | } |
| 2275 | |
| 2276 | /* |
| 2277 | * Transform a list of expressions within a GROUP BY clause or grouping set. |
| 2278 | * |
| 2279 | * The list of expressions belongs to a single clause within which duplicates |
| 2280 | * can be safely eliminated. |
| 2281 | * |
| 2282 | * Returns an integer list of ressortgroupref values. |
| 2283 | * |
| 2284 | * flatresult reference to flat list of SortGroupClause nodes |
| 2285 | * pstate ParseState |
| 2286 | * list nodes to transform |
| 2287 | * targetlist reference to TargetEntry list |
| 2288 | * sortClause ORDER BY clause (SortGroupClause nodes) |
| 2289 | * exprKind expression kind |
| 2290 | * useSQL99 SQL99 rather than SQL92 syntax |
| 2291 | * toplevel false if within any grouping set |
| 2292 | */ |
| 2293 | static List * |
| 2294 | transformGroupClauseList(List **flatresult, |
| 2295 | ParseState *pstate, List *list, |
| 2296 | List **targetlist, List *sortClause, |
| 2297 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
| 2298 | { |
| 2299 | Bitmapset *seen_local = NULL; |
| 2300 | List *result = NIL; |
| 2301 | ListCell *gl; |
| 2302 | |
| 2303 | foreach(gl, list) |
| 2304 | { |
| 2305 | Node *gexpr = (Node *) lfirst(gl); |
| 2306 | |
| 2307 | Index ref = transformGroupClauseExpr(flatresult, |
| 2308 | seen_local, |
| 2309 | pstate, |
| 2310 | gexpr, |
| 2311 | targetlist, |
| 2312 | sortClause, |
| 2313 | exprKind, |
| 2314 | useSQL99, |
| 2315 | toplevel); |
| 2316 | |
| 2317 | if (ref > 0) |
| 2318 | { |
| 2319 | seen_local = bms_add_member(seen_local, ref); |
| 2320 | result = lappend_int(result, ref); |
| 2321 | } |
| 2322 | } |
| 2323 | |
| 2324 | return result; |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Transform a grouping set and (recursively) its content. |
| 2329 | * |
| 2330 | * The grouping set might be a GROUPING SETS node with other grouping sets |
| 2331 | * inside it, but SETS within SETS have already been flattened out before |
| 2332 | * reaching here. |
| 2333 | * |
| 2334 | * Returns the transformed node, which now contains SIMPLE nodes with lists |
| 2335 | * of ressortgrouprefs rather than expressions. |
| 2336 | * |
| 2337 | * flatresult reference to flat list of SortGroupClause nodes |
| 2338 | * pstate ParseState |
| 2339 | * gset grouping set to transform |
| 2340 | * targetlist reference to TargetEntry list |
| 2341 | * sortClause ORDER BY clause (SortGroupClause nodes) |
| 2342 | * exprKind expression kind |
| 2343 | * useSQL99 SQL99 rather than SQL92 syntax |
| 2344 | * toplevel false if within any grouping set |
| 2345 | */ |
| 2346 | static Node * |
| 2347 | transformGroupingSet(List **flatresult, |
| 2348 | ParseState *pstate, GroupingSet *gset, |
| 2349 | List **targetlist, List *sortClause, |
| 2350 | ParseExprKind exprKind, bool useSQL99, bool toplevel) |
| 2351 | { |
| 2352 | ListCell *gl; |
| 2353 | List *content = NIL; |
| 2354 | |
| 2355 | Assert(toplevel || gset->kind != GROUPING_SET_SETS); |
| 2356 | |
| 2357 | foreach(gl, gset->content) |
| 2358 | { |
| 2359 | Node *n = lfirst(gl); |
| 2360 | |
| 2361 | if (IsA(n, List)) |
| 2362 | { |
| 2363 | List *l = transformGroupClauseList(flatresult, |
| 2364 | pstate, (List *) n, |
| 2365 | targetlist, sortClause, |
| 2366 | exprKind, useSQL99, false); |
| 2367 | |
| 2368 | content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE, |
| 2369 | l, |
| 2370 | exprLocation(n))); |
| 2371 | } |
| 2372 | else if (IsA(n, GroupingSet)) |
| 2373 | { |
| 2374 | GroupingSet *gset2 = (GroupingSet *) lfirst(gl); |
| 2375 | |
| 2376 | content = lappend(content, transformGroupingSet(flatresult, |
| 2377 | pstate, gset2, |
| 2378 | targetlist, sortClause, |
| 2379 | exprKind, useSQL99, false)); |
| 2380 | } |
| 2381 | else |
| 2382 | { |
| 2383 | Index ref = transformGroupClauseExpr(flatresult, |
| 2384 | NULL, |
| 2385 | pstate, |
| 2386 | n, |
| 2387 | targetlist, |
| 2388 | sortClause, |
| 2389 | exprKind, |
| 2390 | useSQL99, |
| 2391 | false); |
| 2392 | |
| 2393 | content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE, |
| 2394 | list_make1_int(ref), |
| 2395 | exprLocation(n))); |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | /* Arbitrarily cap the size of CUBE, which has exponential growth */ |
| 2400 | if (gset->kind == GROUPING_SET_CUBE) |
| 2401 | { |
| 2402 | if (list_length(content) > 12) |
| 2403 | ereport(ERROR, |
| 2404 | (errcode(ERRCODE_TOO_MANY_COLUMNS), |
| 2405 | errmsg("CUBE is limited to 12 elements" ), |
| 2406 | parser_errposition(pstate, gset->location))); |
| 2407 | } |
| 2408 | |
| 2409 | return (Node *) makeGroupingSet(gset->kind, content, gset->location); |
| 2410 | } |
| 2411 | |
| 2412 | |
| 2413 | /* |
| 2414 | * transformGroupClause - |
| 2415 | * transform a GROUP BY clause |
| 2416 | * |
| 2417 | * GROUP BY items will be added to the targetlist (as resjunk columns) |
| 2418 | * if not already present, so the targetlist must be passed by reference. |
| 2419 | * |
| 2420 | * This is also used for window PARTITION BY clauses (which act almost the |
| 2421 | * same, but are always interpreted per SQL99 rules). |
| 2422 | * |
| 2423 | * Grouping sets make this a lot more complex than it was. Our goal here is |
| 2424 | * twofold: we make a flat list of SortGroupClause nodes referencing each |
| 2425 | * distinct expression used for grouping, with those expressions added to the |
| 2426 | * targetlist if needed. At the same time, we build the groupingSets tree, |
| 2427 | * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes |
| 2428 | * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain |
| 2429 | * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that |
| 2430 | * out; while CUBE and ROLLUP can contain only SIMPLE nodes). |
| 2431 | * |
| 2432 | * We skip much of the hard work if there are no grouping sets. |
| 2433 | * |
| 2434 | * One subtlety is that the groupClause list can end up empty while the |
| 2435 | * groupingSets list is not; this happens if there are only empty grouping |
| 2436 | * sets, or an explicit GROUP BY (). This has the same effect as specifying |
| 2437 | * aggregates or a HAVING clause with no GROUP BY; the output is one row per |
| 2438 | * grouping set even if the input is empty. |
| 2439 | * |
| 2440 | * Returns the transformed (flat) groupClause. |
| 2441 | * |
| 2442 | * pstate ParseState |
| 2443 | * grouplist clause to transform |
| 2444 | * groupingSets reference to list to contain the grouping set tree |
| 2445 | * targetlist reference to TargetEntry list |
| 2446 | * sortClause ORDER BY clause (SortGroupClause nodes) |
| 2447 | * exprKind expression kind |
| 2448 | * useSQL99 SQL99 rather than SQL92 syntax |
| 2449 | */ |
| 2450 | List * |
| 2451 | transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets, |
| 2452 | List **targetlist, List *sortClause, |
| 2453 | ParseExprKind exprKind, bool useSQL99) |
| 2454 | { |
| 2455 | List *result = NIL; |
| 2456 | List *flat_grouplist; |
| 2457 | List *gsets = NIL; |
| 2458 | ListCell *gl; |
| 2459 | bool hasGroupingSets = false; |
| 2460 | Bitmapset *seen_local = NULL; |
| 2461 | |
| 2462 | /* |
| 2463 | * Recursively flatten implicit RowExprs. (Technically this is only needed |
| 2464 | * for GROUP BY, per the syntax rules for grouping sets, but we do it |
| 2465 | * anyway.) |
| 2466 | */ |
| 2467 | flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist, |
| 2468 | true, |
| 2469 | &hasGroupingSets); |
| 2470 | |
| 2471 | /* |
| 2472 | * If the list is now empty, but hasGroupingSets is true, it's because we |
| 2473 | * elided redundant empty grouping sets. Restore a single empty grouping |
| 2474 | * set to leave a canonical form: GROUP BY () |
| 2475 | */ |
| 2476 | |
| 2477 | if (flat_grouplist == NIL && hasGroupingSets) |
| 2478 | { |
| 2479 | flat_grouplist = list_make1(makeGroupingSet(GROUPING_SET_EMPTY, |
| 2480 | NIL, |
| 2481 | exprLocation((Node *) grouplist))); |
| 2482 | } |
| 2483 | |
| 2484 | foreach(gl, flat_grouplist) |
| 2485 | { |
| 2486 | Node *gexpr = (Node *) lfirst(gl); |
| 2487 | |
| 2488 | if (IsA(gexpr, GroupingSet)) |
| 2489 | { |
| 2490 | GroupingSet *gset = (GroupingSet *) gexpr; |
| 2491 | |
| 2492 | switch (gset->kind) |
| 2493 | { |
| 2494 | case GROUPING_SET_EMPTY: |
| 2495 | gsets = lappend(gsets, gset); |
| 2496 | break; |
| 2497 | case GROUPING_SET_SIMPLE: |
| 2498 | /* can't happen */ |
| 2499 | Assert(false); |
| 2500 | break; |
| 2501 | case GROUPING_SET_SETS: |
| 2502 | case GROUPING_SET_CUBE: |
| 2503 | case GROUPING_SET_ROLLUP: |
| 2504 | gsets = lappend(gsets, |
| 2505 | transformGroupingSet(&result, |
| 2506 | pstate, gset, |
| 2507 | targetlist, sortClause, |
| 2508 | exprKind, useSQL99, true)); |
| 2509 | break; |
| 2510 | } |
| 2511 | } |
| 2512 | else |
| 2513 | { |
| 2514 | Index ref = transformGroupClauseExpr(&result, seen_local, |
| 2515 | pstate, gexpr, |
| 2516 | targetlist, sortClause, |
| 2517 | exprKind, useSQL99, true); |
| 2518 | |
| 2519 | if (ref > 0) |
| 2520 | { |
| 2521 | seen_local = bms_add_member(seen_local, ref); |
| 2522 | if (hasGroupingSets) |
| 2523 | gsets = lappend(gsets, |
| 2524 | makeGroupingSet(GROUPING_SET_SIMPLE, |
| 2525 | list_make1_int(ref), |
| 2526 | exprLocation(gexpr))); |
| 2527 | } |
| 2528 | } |
| 2529 | } |
| 2530 | |
| 2531 | /* parser should prevent this */ |
| 2532 | Assert(gsets == NIL || groupingSets != NULL); |
| 2533 | |
| 2534 | if (groupingSets) |
| 2535 | *groupingSets = gsets; |
| 2536 | |
| 2537 | return result; |
| 2538 | } |
| 2539 | |
| 2540 | /* |
| 2541 | * transformSortClause - |
| 2542 | * transform an ORDER BY clause |
| 2543 | * |
| 2544 | * ORDER BY items will be added to the targetlist (as resjunk columns) |
| 2545 | * if not already present, so the targetlist must be passed by reference. |
| 2546 | * |
| 2547 | * This is also used for window and aggregate ORDER BY clauses (which act |
| 2548 | * almost the same, but are always interpreted per SQL99 rules). |
| 2549 | */ |
| 2550 | List * |
| 2551 | transformSortClause(ParseState *pstate, |
| 2552 | List *orderlist, |
| 2553 | List **targetlist, |
| 2554 | ParseExprKind exprKind, |
| 2555 | bool useSQL99) |
| 2556 | { |
| 2557 | List *sortlist = NIL; |
| 2558 | ListCell *olitem; |
| 2559 | |
| 2560 | foreach(olitem, orderlist) |
| 2561 | { |
| 2562 | SortBy *sortby = (SortBy *) lfirst(olitem); |
| 2563 | TargetEntry *tle; |
| 2564 | |
| 2565 | if (useSQL99) |
| 2566 | tle = findTargetlistEntrySQL99(pstate, sortby->node, |
| 2567 | targetlist, exprKind); |
| 2568 | else |
| 2569 | tle = findTargetlistEntrySQL92(pstate, sortby->node, |
| 2570 | targetlist, exprKind); |
| 2571 | |
| 2572 | sortlist = addTargetToSortList(pstate, tle, |
| 2573 | sortlist, *targetlist, sortby); |
| 2574 | } |
| 2575 | |
| 2576 | return sortlist; |
| 2577 | } |
| 2578 | |
| 2579 | /* |
| 2580 | * transformWindowDefinitions - |
| 2581 | * transform window definitions (WindowDef to WindowClause) |
| 2582 | */ |
| 2583 | List * |
| 2584 | transformWindowDefinitions(ParseState *pstate, |
| 2585 | List *windowdefs, |
| 2586 | List **targetlist) |
| 2587 | { |
| 2588 | List *result = NIL; |
| 2589 | Index winref = 0; |
| 2590 | ListCell *lc; |
| 2591 | |
| 2592 | foreach(lc, windowdefs) |
| 2593 | { |
| 2594 | WindowDef *windef = (WindowDef *) lfirst(lc); |
| 2595 | WindowClause *refwc = NULL; |
| 2596 | List *partitionClause; |
| 2597 | List *orderClause; |
| 2598 | Oid rangeopfamily = InvalidOid; |
| 2599 | Oid rangeopcintype = InvalidOid; |
| 2600 | WindowClause *wc; |
| 2601 | |
| 2602 | winref++; |
| 2603 | |
| 2604 | /* |
| 2605 | * Check for duplicate window names. |
| 2606 | */ |
| 2607 | if (windef->name && |
| 2608 | findWindowClause(result, windef->name) != NULL) |
| 2609 | ereport(ERROR, |
| 2610 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2611 | errmsg("window \"%s\" is already defined" , windef->name), |
| 2612 | parser_errposition(pstate, windef->location))); |
| 2613 | |
| 2614 | /* |
| 2615 | * If it references a previous window, look that up. |
| 2616 | */ |
| 2617 | if (windef->refname) |
| 2618 | { |
| 2619 | refwc = findWindowClause(result, windef->refname); |
| 2620 | if (refwc == NULL) |
| 2621 | ereport(ERROR, |
| 2622 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 2623 | errmsg("window \"%s\" does not exist" , |
| 2624 | windef->refname), |
| 2625 | parser_errposition(pstate, windef->location))); |
| 2626 | } |
| 2627 | |
| 2628 | /* |
| 2629 | * Transform PARTITION and ORDER specs, if any. These are treated |
| 2630 | * almost exactly like top-level GROUP BY and ORDER BY clauses, |
| 2631 | * including the special handling of nondefault operator semantics. |
| 2632 | */ |
| 2633 | orderClause = transformSortClause(pstate, |
| 2634 | windef->orderClause, |
| 2635 | targetlist, |
| 2636 | EXPR_KIND_WINDOW_ORDER, |
| 2637 | true /* force SQL99 rules */ ); |
| 2638 | partitionClause = transformGroupClause(pstate, |
| 2639 | windef->partitionClause, |
| 2640 | NULL, |
| 2641 | targetlist, |
| 2642 | orderClause, |
| 2643 | EXPR_KIND_WINDOW_PARTITION, |
| 2644 | true /* force SQL99 rules */ ); |
| 2645 | |
| 2646 | /* |
| 2647 | * And prepare the new WindowClause. |
| 2648 | */ |
| 2649 | wc = makeNode(WindowClause); |
| 2650 | wc->name = windef->name; |
| 2651 | wc->refname = windef->refname; |
| 2652 | |
| 2653 | /* |
| 2654 | * Per spec, a windowdef that references a previous one copies the |
| 2655 | * previous partition clause (and mustn't specify its own). It can |
| 2656 | * specify its own ordering clause, but only if the previous one had |
| 2657 | * none. It always specifies its own frame clause, and the previous |
| 2658 | * one must not have a frame clause. Yeah, it's bizarre that each of |
| 2659 | * these cases works differently, but SQL:2008 says so; see 7.11 |
| 2660 | * <window clause> syntax rule 10 and general rule 1. The frame |
| 2661 | * clause rule is especially bizarre because it makes "OVER foo" |
| 2662 | * different from "OVER (foo)", and requires the latter to throw an |
| 2663 | * error if foo has a nondefault frame clause. Well, ours not to |
| 2664 | * reason why, but we do go out of our way to throw a useful error |
| 2665 | * message for such cases. |
| 2666 | */ |
| 2667 | if (refwc) |
| 2668 | { |
| 2669 | if (partitionClause) |
| 2670 | ereport(ERROR, |
| 2671 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2672 | errmsg("cannot override PARTITION BY clause of window \"%s\"" , |
| 2673 | windef->refname), |
| 2674 | parser_errposition(pstate, windef->location))); |
| 2675 | wc->partitionClause = copyObject(refwc->partitionClause); |
| 2676 | } |
| 2677 | else |
| 2678 | wc->partitionClause = partitionClause; |
| 2679 | if (refwc) |
| 2680 | { |
| 2681 | if (orderClause && refwc->orderClause) |
| 2682 | ereport(ERROR, |
| 2683 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2684 | errmsg("cannot override ORDER BY clause of window \"%s\"" , |
| 2685 | windef->refname), |
| 2686 | parser_errposition(pstate, windef->location))); |
| 2687 | if (orderClause) |
| 2688 | { |
| 2689 | wc->orderClause = orderClause; |
| 2690 | wc->copiedOrder = false; |
| 2691 | } |
| 2692 | else |
| 2693 | { |
| 2694 | wc->orderClause = copyObject(refwc->orderClause); |
| 2695 | wc->copiedOrder = true; |
| 2696 | } |
| 2697 | } |
| 2698 | else |
| 2699 | { |
| 2700 | wc->orderClause = orderClause; |
| 2701 | wc->copiedOrder = false; |
| 2702 | } |
| 2703 | if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS) |
| 2704 | { |
| 2705 | /* |
| 2706 | * Use this message if this is a WINDOW clause, or if it's an OVER |
| 2707 | * clause that includes ORDER BY or framing clauses. (We already |
| 2708 | * rejected PARTITION BY above, so no need to check that.) |
| 2709 | */ |
| 2710 | if (windef->name || |
| 2711 | orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS) |
| 2712 | ereport(ERROR, |
| 2713 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2714 | errmsg("cannot copy window \"%s\" because it has a frame clause" , |
| 2715 | windef->refname), |
| 2716 | parser_errposition(pstate, windef->location))); |
| 2717 | /* Else this clause is just OVER (foo), so say this: */ |
| 2718 | ereport(ERROR, |
| 2719 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2720 | errmsg("cannot copy window \"%s\" because it has a frame clause" , |
| 2721 | windef->refname), |
| 2722 | errhint("Omit the parentheses in this OVER clause." ), |
| 2723 | parser_errposition(pstate, windef->location))); |
| 2724 | } |
| 2725 | wc->frameOptions = windef->frameOptions; |
| 2726 | |
| 2727 | /* |
| 2728 | * RANGE offset PRECEDING/FOLLOWING requires exactly one ORDER BY |
| 2729 | * column; check that and get its sort opfamily info. |
| 2730 | */ |
| 2731 | if ((wc->frameOptions & FRAMEOPTION_RANGE) && |
| 2732 | (wc->frameOptions & (FRAMEOPTION_START_OFFSET | |
| 2733 | FRAMEOPTION_END_OFFSET))) |
| 2734 | { |
| 2735 | SortGroupClause *sortcl; |
| 2736 | Node *sortkey; |
| 2737 | int16 rangestrategy; |
| 2738 | |
| 2739 | if (list_length(wc->orderClause) != 1) |
| 2740 | ereport(ERROR, |
| 2741 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2742 | errmsg("RANGE with offset PRECEDING/FOLLOWING requires exactly one ORDER BY column" ), |
| 2743 | parser_errposition(pstate, windef->location))); |
| 2744 | sortcl = castNode(SortGroupClause, linitial(wc->orderClause)); |
| 2745 | sortkey = get_sortgroupclause_expr(sortcl, *targetlist); |
| 2746 | /* Find the sort operator in pg_amop */ |
| 2747 | if (!get_ordering_op_properties(sortcl->sortop, |
| 2748 | &rangeopfamily, |
| 2749 | &rangeopcintype, |
| 2750 | &rangestrategy)) |
| 2751 | elog(ERROR, "operator %u is not a valid ordering operator" , |
| 2752 | sortcl->sortop); |
| 2753 | /* Record properties of sort ordering */ |
| 2754 | wc->inRangeColl = exprCollation(sortkey); |
| 2755 | wc->inRangeAsc = (rangestrategy == BTLessStrategyNumber); |
| 2756 | wc->inRangeNullsFirst = sortcl->nulls_first; |
| 2757 | } |
| 2758 | |
| 2759 | /* Per spec, GROUPS mode requires an ORDER BY clause */ |
| 2760 | if (wc->frameOptions & FRAMEOPTION_GROUPS) |
| 2761 | { |
| 2762 | if (wc->orderClause == NIL) |
| 2763 | ereport(ERROR, |
| 2764 | (errcode(ERRCODE_WINDOWING_ERROR), |
| 2765 | errmsg("GROUPS mode requires an ORDER BY clause" ), |
| 2766 | parser_errposition(pstate, windef->location))); |
| 2767 | } |
| 2768 | |
| 2769 | /* Process frame offset expressions */ |
| 2770 | wc->startOffset = transformFrameOffset(pstate, wc->frameOptions, |
| 2771 | rangeopfamily, rangeopcintype, |
| 2772 | &wc->startInRangeFunc, |
| 2773 | windef->startOffset); |
| 2774 | wc->endOffset = transformFrameOffset(pstate, wc->frameOptions, |
| 2775 | rangeopfamily, rangeopcintype, |
| 2776 | &wc->endInRangeFunc, |
| 2777 | windef->endOffset); |
| 2778 | wc->winref = winref; |
| 2779 | |
| 2780 | result = lappend(result, wc); |
| 2781 | } |
| 2782 | |
| 2783 | return result; |
| 2784 | } |
| 2785 | |
| 2786 | /* |
| 2787 | * transformDistinctClause - |
| 2788 | * transform a DISTINCT clause |
| 2789 | * |
| 2790 | * Since we may need to add items to the query's targetlist, that list |
| 2791 | * is passed by reference. |
| 2792 | * |
| 2793 | * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as |
| 2794 | * possible into the distinctClause. This avoids a possible need to re-sort, |
| 2795 | * and allows the user to choose the equality semantics used by DISTINCT, |
| 2796 | * should she be working with a datatype that has more than one equality |
| 2797 | * operator. |
| 2798 | * |
| 2799 | * is_agg is true if we are transforming an aggregate(DISTINCT ...) |
| 2800 | * function call. This does not affect any behavior, only the phrasing |
| 2801 | * of error messages. |
| 2802 | */ |
| 2803 | List * |
| 2804 | transformDistinctClause(ParseState *pstate, |
| 2805 | List **targetlist, List *sortClause, bool is_agg) |
| 2806 | { |
| 2807 | List *result = NIL; |
| 2808 | ListCell *slitem; |
| 2809 | ListCell *tlitem; |
| 2810 | |
| 2811 | /* |
| 2812 | * The distinctClause should consist of all ORDER BY items followed by all |
| 2813 | * other non-resjunk targetlist items. There must not be any resjunk |
| 2814 | * ORDER BY items --- that would imply that we are sorting by a value that |
| 2815 | * isn't necessarily unique within a DISTINCT group, so the results |
| 2816 | * wouldn't be well-defined. This construction ensures we follow the rule |
| 2817 | * that sortClause and distinctClause match; in fact the sortClause will |
| 2818 | * always be a prefix of distinctClause. |
| 2819 | * |
| 2820 | * Note a corner case: the same TLE could be in the ORDER BY list multiple |
| 2821 | * times with different sortops. We have to include it in the |
| 2822 | * distinctClause the same way to preserve the prefix property. The net |
| 2823 | * effect will be that the TLE value will be made unique according to both |
| 2824 | * sortops. |
| 2825 | */ |
| 2826 | foreach(slitem, sortClause) |
| 2827 | { |
| 2828 | SortGroupClause *scl = (SortGroupClause *) lfirst(slitem); |
| 2829 | TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist); |
| 2830 | |
| 2831 | if (tle->resjunk) |
| 2832 | ereport(ERROR, |
| 2833 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 2834 | is_agg ? |
| 2835 | errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list" ) : |
| 2836 | errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list" ), |
| 2837 | parser_errposition(pstate, |
| 2838 | exprLocation((Node *) tle->expr)))); |
| 2839 | result = lappend(result, copyObject(scl)); |
| 2840 | } |
| 2841 | |
| 2842 | /* |
| 2843 | * Now add any remaining non-resjunk tlist items, using default sort/group |
| 2844 | * semantics for their data types. |
| 2845 | */ |
| 2846 | foreach(tlitem, *targetlist) |
| 2847 | { |
| 2848 | TargetEntry *tle = (TargetEntry *) lfirst(tlitem); |
| 2849 | |
| 2850 | if (tle->resjunk) |
| 2851 | continue; /* ignore junk */ |
| 2852 | result = addTargetToGroupList(pstate, tle, |
| 2853 | result, *targetlist, |
| 2854 | exprLocation((Node *) tle->expr)); |
| 2855 | } |
| 2856 | |
| 2857 | /* |
| 2858 | * Complain if we found nothing to make DISTINCT. Returning an empty list |
| 2859 | * would cause the parsed Query to look like it didn't have DISTINCT, with |
| 2860 | * results that would probably surprise the user. Note: this case is |
| 2861 | * presently impossible for aggregates because of grammar restrictions, |
| 2862 | * but we check anyway. |
| 2863 | */ |
| 2864 | if (result == NIL) |
| 2865 | ereport(ERROR, |
| 2866 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 2867 | is_agg ? |
| 2868 | errmsg("an aggregate with DISTINCT must have at least one argument" ) : |
| 2869 | errmsg("SELECT DISTINCT must have at least one column" ))); |
| 2870 | |
| 2871 | return result; |
| 2872 | } |
| 2873 | |
| 2874 | /* |
| 2875 | * transformDistinctOnClause - |
| 2876 | * transform a DISTINCT ON clause |
| 2877 | * |
| 2878 | * Since we may need to add items to the query's targetlist, that list |
| 2879 | * is passed by reference. |
| 2880 | * |
| 2881 | * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as |
| 2882 | * possible into the distinctClause. This avoids a possible need to re-sort, |
| 2883 | * and allows the user to choose the equality semantics used by DISTINCT, |
| 2884 | * should she be working with a datatype that has more than one equality |
| 2885 | * operator. |
| 2886 | */ |
| 2887 | List * |
| 2888 | transformDistinctOnClause(ParseState *pstate, List *distinctlist, |
| 2889 | List **targetlist, List *sortClause) |
| 2890 | { |
| 2891 | List *result = NIL; |
| 2892 | List *sortgrouprefs = NIL; |
| 2893 | bool skipped_sortitem; |
| 2894 | ListCell *lc; |
| 2895 | ListCell *lc2; |
| 2896 | |
| 2897 | /* |
| 2898 | * Add all the DISTINCT ON expressions to the tlist (if not already |
| 2899 | * present, they are added as resjunk items). Assign sortgroupref numbers |
| 2900 | * to them, and make a list of these numbers. (NB: we rely below on the |
| 2901 | * sortgrouprefs list being one-for-one with the original distinctlist. |
| 2902 | * Also notice that we could have duplicate DISTINCT ON expressions and |
| 2903 | * hence duplicate entries in sortgrouprefs.) |
| 2904 | */ |
| 2905 | foreach(lc, distinctlist) |
| 2906 | { |
| 2907 | Node *dexpr = (Node *) lfirst(lc); |
| 2908 | int sortgroupref; |
| 2909 | TargetEntry *tle; |
| 2910 | |
| 2911 | tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist, |
| 2912 | EXPR_KIND_DISTINCT_ON); |
| 2913 | sortgroupref = assignSortGroupRef(tle, *targetlist); |
| 2914 | sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref); |
| 2915 | } |
| 2916 | |
| 2917 | /* |
| 2918 | * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting |
| 2919 | * semantics from ORDER BY items that match DISTINCT ON items, and also |
| 2920 | * adopt their column sort order. We insist that the distinctClause and |
| 2921 | * sortClause match, so throw error if we find the need to add any more |
| 2922 | * distinctClause items after we've skipped an ORDER BY item that wasn't |
| 2923 | * in DISTINCT ON. |
| 2924 | */ |
| 2925 | skipped_sortitem = false; |
| 2926 | foreach(lc, sortClause) |
| 2927 | { |
| 2928 | SortGroupClause *scl = (SortGroupClause *) lfirst(lc); |
| 2929 | |
| 2930 | if (list_member_int(sortgrouprefs, scl->tleSortGroupRef)) |
| 2931 | { |
| 2932 | if (skipped_sortitem) |
| 2933 | ereport(ERROR, |
| 2934 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 2935 | errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions" ), |
| 2936 | parser_errposition(pstate, |
| 2937 | get_matching_location(scl->tleSortGroupRef, |
| 2938 | sortgrouprefs, |
| 2939 | distinctlist)))); |
| 2940 | else |
| 2941 | result = lappend(result, copyObject(scl)); |
| 2942 | } |
| 2943 | else |
| 2944 | skipped_sortitem = true; |
| 2945 | } |
| 2946 | |
| 2947 | /* |
| 2948 | * Now add any remaining DISTINCT ON items, using default sort/group |
| 2949 | * semantics for their data types. (Note: this is pretty questionable; if |
| 2950 | * the ORDER BY list doesn't include all the DISTINCT ON items and more |
| 2951 | * besides, you certainly aren't using DISTINCT ON in the intended way, |
| 2952 | * and you probably aren't going to get consistent results. It might be |
| 2953 | * better to throw an error or warning here. But historically we've |
| 2954 | * allowed it, so keep doing so.) |
| 2955 | */ |
| 2956 | forboth(lc, distinctlist, lc2, sortgrouprefs) |
| 2957 | { |
| 2958 | Node *dexpr = (Node *) lfirst(lc); |
| 2959 | int sortgroupref = lfirst_int(lc2); |
| 2960 | TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist); |
| 2961 | |
| 2962 | if (targetIsInSortList(tle, InvalidOid, result)) |
| 2963 | continue; /* already in list (with some semantics) */ |
| 2964 | if (skipped_sortitem) |
| 2965 | ereport(ERROR, |
| 2966 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 2967 | errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions" ), |
| 2968 | parser_errposition(pstate, exprLocation(dexpr)))); |
| 2969 | result = addTargetToGroupList(pstate, tle, |
| 2970 | result, *targetlist, |
| 2971 | exprLocation(dexpr)); |
| 2972 | } |
| 2973 | |
| 2974 | /* |
| 2975 | * An empty result list is impossible here because of grammar |
| 2976 | * restrictions. |
| 2977 | */ |
| 2978 | Assert(result != NIL); |
| 2979 | |
| 2980 | return result; |
| 2981 | } |
| 2982 | |
| 2983 | /* |
| 2984 | * get_matching_location |
| 2985 | * Get the exprLocation of the exprs member corresponding to the |
| 2986 | * (first) member of sortgrouprefs that equals sortgroupref. |
| 2987 | * |
| 2988 | * This is used so that we can point at a troublesome DISTINCT ON entry. |
| 2989 | * (Note that we need to use the original untransformed DISTINCT ON list |
| 2990 | * item, as whatever TLE it corresponds to will very possibly have a |
| 2991 | * parse location pointing to some matching entry in the SELECT list |
| 2992 | * or ORDER BY list.) |
| 2993 | */ |
| 2994 | static int |
| 2995 | get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs) |
| 2996 | { |
| 2997 | ListCell *lcs; |
| 2998 | ListCell *lce; |
| 2999 | |
| 3000 | forboth(lcs, sortgrouprefs, lce, exprs) |
| 3001 | { |
| 3002 | if (lfirst_int(lcs) == sortgroupref) |
| 3003 | return exprLocation((Node *) lfirst(lce)); |
| 3004 | } |
| 3005 | /* if no match, caller blew it */ |
| 3006 | elog(ERROR, "get_matching_location: no matching sortgroupref" ); |
| 3007 | return -1; /* keep compiler quiet */ |
| 3008 | } |
| 3009 | |
| 3010 | /* |
| 3011 | * resolve_unique_index_expr |
| 3012 | * Infer a unique index from a list of indexElems, for ON |
| 3013 | * CONFLICT clause |
| 3014 | * |
| 3015 | * Perform parse analysis of expressions and columns appearing within ON |
| 3016 | * CONFLICT clause. During planning, the returned list of expressions is used |
| 3017 | * to infer which unique index to use. |
| 3018 | */ |
| 3019 | static List * |
| 3020 | resolve_unique_index_expr(ParseState *pstate, InferClause *infer, |
| 3021 | Relation heapRel) |
| 3022 | { |
| 3023 | List *result = NIL; |
| 3024 | ListCell *l; |
| 3025 | |
| 3026 | foreach(l, infer->indexElems) |
| 3027 | { |
| 3028 | IndexElem *ielem = (IndexElem *) lfirst(l); |
| 3029 | InferenceElem *pInfer = makeNode(InferenceElem); |
| 3030 | Node *parse; |
| 3031 | |
| 3032 | /* |
| 3033 | * Raw grammar re-uses CREATE INDEX infrastructure for unique index |
| 3034 | * inference clause, and so will accept opclasses by name and so on. |
| 3035 | * |
| 3036 | * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS |
| 3037 | * LAST ordering, since those are not significant for inference |
| 3038 | * purposes (any unique index matching the inference specification in |
| 3039 | * other regards is accepted indifferently). Actively reject this as |
| 3040 | * wrong-headed. |
| 3041 | */ |
| 3042 | if (ielem->ordering != SORTBY_DEFAULT) |
| 3043 | ereport(ERROR, |
| 3044 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 3045 | errmsg("ASC/DESC is not allowed in ON CONFLICT clause" ), |
| 3046 | parser_errposition(pstate, |
| 3047 | exprLocation((Node *) infer)))); |
| 3048 | if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT) |
| 3049 | ereport(ERROR, |
| 3050 | (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), |
| 3051 | errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause" ), |
| 3052 | parser_errposition(pstate, |
| 3053 | exprLocation((Node *) infer)))); |
| 3054 | |
| 3055 | if (!ielem->expr) |
| 3056 | { |
| 3057 | /* Simple index attribute */ |
| 3058 | ColumnRef *n; |
| 3059 | |
| 3060 | /* |
| 3061 | * Grammar won't have built raw expression for us in event of |
| 3062 | * plain column reference. Create one directly, and perform |
| 3063 | * expression transformation. Planner expects this, and performs |
| 3064 | * its own normalization for the purposes of matching against |
| 3065 | * pg_index. |
| 3066 | */ |
| 3067 | n = makeNode(ColumnRef); |
| 3068 | n->fields = list_make1(makeString(ielem->name)); |
| 3069 | /* Location is approximately that of inference specification */ |
| 3070 | n->location = infer->location; |
| 3071 | parse = (Node *) n; |
| 3072 | } |
| 3073 | else |
| 3074 | { |
| 3075 | /* Do parse transformation of the raw expression */ |
| 3076 | parse = (Node *) ielem->expr; |
| 3077 | } |
| 3078 | |
| 3079 | /* |
| 3080 | * transformExpr() will reject subqueries, aggregates, window |
| 3081 | * functions, and SRFs, based on being passed |
| 3082 | * EXPR_KIND_INDEX_EXPRESSION. So we needn't worry about those |
| 3083 | * further ... not that they would match any available index |
| 3084 | * expression anyway. |
| 3085 | */ |
| 3086 | pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION); |
| 3087 | |
| 3088 | /* Perform lookup of collation and operator class as required */ |
| 3089 | if (!ielem->collation) |
| 3090 | pInfer->infercollid = InvalidOid; |
| 3091 | else |
| 3092 | pInfer->infercollid = LookupCollation(pstate, ielem->collation, |
| 3093 | exprLocation(pInfer->expr)); |
| 3094 | |
| 3095 | if (!ielem->opclass) |
| 3096 | pInfer->inferopclass = InvalidOid; |
| 3097 | else |
| 3098 | pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID, |
| 3099 | ielem->opclass, false); |
| 3100 | |
| 3101 | result = lappend(result, pInfer); |
| 3102 | } |
| 3103 | |
| 3104 | return result; |
| 3105 | } |
| 3106 | |
| 3107 | /* |
| 3108 | * transformOnConflictArbiter - |
| 3109 | * transform arbiter expressions in an ON CONFLICT clause. |
| 3110 | * |
| 3111 | * Transformed expressions used to infer one unique index relation to serve as |
| 3112 | * an ON CONFLICT arbiter. Partial unique indexes may be inferred using WHERE |
| 3113 | * clause from inference specification clause. |
| 3114 | */ |
| 3115 | void |
| 3116 | transformOnConflictArbiter(ParseState *pstate, |
| 3117 | OnConflictClause *onConflictClause, |
| 3118 | List **arbiterExpr, Node **arbiterWhere, |
| 3119 | Oid *constraint) |
| 3120 | { |
| 3121 | InferClause *infer = onConflictClause->infer; |
| 3122 | |
| 3123 | *arbiterExpr = NIL; |
| 3124 | *arbiterWhere = NULL; |
| 3125 | *constraint = InvalidOid; |
| 3126 | |
| 3127 | if (onConflictClause->action == ONCONFLICT_UPDATE && !infer) |
| 3128 | ereport(ERROR, |
| 3129 | (errcode(ERRCODE_SYNTAX_ERROR), |
| 3130 | errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name" ), |
| 3131 | errhint("For example, ON CONFLICT (column_name)." ), |
| 3132 | parser_errposition(pstate, |
| 3133 | exprLocation((Node *) onConflictClause)))); |
| 3134 | |
| 3135 | /* |
| 3136 | * To simplify certain aspects of its design, speculative insertion into |
| 3137 | * system catalogs is disallowed |
| 3138 | */ |
| 3139 | if (IsCatalogRelation(pstate->p_target_relation)) |
| 3140 | ereport(ERROR, |
| 3141 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3142 | errmsg("ON CONFLICT is not supported with system catalog tables" ), |
| 3143 | parser_errposition(pstate, |
| 3144 | exprLocation((Node *) onConflictClause)))); |
| 3145 | |
| 3146 | /* Same applies to table used by logical decoding as catalog table */ |
| 3147 | if (RelationIsUsedAsCatalogTable(pstate->p_target_relation)) |
| 3148 | ereport(ERROR, |
| 3149 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3150 | errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table" , |
| 3151 | RelationGetRelationName(pstate->p_target_relation)), |
| 3152 | parser_errposition(pstate, |
| 3153 | exprLocation((Node *) onConflictClause)))); |
| 3154 | |
| 3155 | /* ON CONFLICT DO NOTHING does not require an inference clause */ |
| 3156 | if (infer) |
| 3157 | { |
| 3158 | List *save_namespace; |
| 3159 | |
| 3160 | /* |
| 3161 | * While we process the arbiter expressions, accept only non-qualified |
| 3162 | * references to the target table. Hide any other relations. |
| 3163 | */ |
| 3164 | save_namespace = pstate->p_namespace; |
| 3165 | pstate->p_namespace = NIL; |
| 3166 | addRTEtoQuery(pstate, pstate->p_target_rangetblentry, |
| 3167 | false, false, true); |
| 3168 | |
| 3169 | if (infer->indexElems) |
| 3170 | *arbiterExpr = resolve_unique_index_expr(pstate, infer, |
| 3171 | pstate->p_target_relation); |
| 3172 | |
| 3173 | /* |
| 3174 | * Handling inference WHERE clause (for partial unique index |
| 3175 | * inference) |
| 3176 | */ |
| 3177 | if (infer->whereClause) |
| 3178 | *arbiterWhere = transformExpr(pstate, infer->whereClause, |
| 3179 | EXPR_KIND_INDEX_PREDICATE); |
| 3180 | |
| 3181 | pstate->p_namespace = save_namespace; |
| 3182 | |
| 3183 | /* |
| 3184 | * If the arbiter is specified by constraint name, get the constraint |
| 3185 | * OID and mark the constrained columns as requiring SELECT privilege, |
| 3186 | * in the same way as would have happened if the arbiter had been |
| 3187 | * specified by explicit reference to the constraint's index columns. |
| 3188 | */ |
| 3189 | if (infer->conname) |
| 3190 | { |
| 3191 | Oid relid = RelationGetRelid(pstate->p_target_relation); |
| 3192 | RangeTblEntry *rte = pstate->p_target_rangetblentry; |
| 3193 | Bitmapset *conattnos; |
| 3194 | |
| 3195 | conattnos = get_relation_constraint_attnos(relid, infer->conname, |
| 3196 | false, constraint); |
| 3197 | |
| 3198 | /* Make sure the rel as a whole is marked for SELECT access */ |
| 3199 | rte->requiredPerms |= ACL_SELECT; |
| 3200 | /* Mark the constrained columns as requiring SELECT access */ |
| 3201 | rte->selectedCols = bms_add_members(rte->selectedCols, conattnos); |
| 3202 | } |
| 3203 | } |
| 3204 | |
| 3205 | /* |
| 3206 | * It's convenient to form a list of expressions based on the |
| 3207 | * representation used by CREATE INDEX, since the same restrictions are |
| 3208 | * appropriate (e.g. on subqueries). However, from here on, a dedicated |
| 3209 | * primnode representation is used for inference elements, and so |
| 3210 | * assign_query_collations() can be trusted to do the right thing with the |
| 3211 | * post parse analysis query tree inference clause representation. |
| 3212 | */ |
| 3213 | } |
| 3214 | |
| 3215 | /* |
| 3216 | * addTargetToSortList |
| 3217 | * If the given targetlist entry isn't already in the SortGroupClause |
| 3218 | * list, add it to the end of the list, using the given sort ordering |
| 3219 | * info. |
| 3220 | * |
| 3221 | * Returns the updated SortGroupClause list. |
| 3222 | */ |
| 3223 | List * |
| 3224 | addTargetToSortList(ParseState *pstate, TargetEntry *tle, |
| 3225 | List *sortlist, List *targetlist, SortBy *sortby) |
| 3226 | { |
| 3227 | Oid restype = exprType((Node *) tle->expr); |
| 3228 | Oid sortop; |
| 3229 | Oid eqop; |
| 3230 | bool hashable; |
| 3231 | bool reverse; |
| 3232 | int location; |
| 3233 | ParseCallbackState pcbstate; |
| 3234 | |
| 3235 | /* if tlist item is an UNKNOWN literal, change it to TEXT */ |
| 3236 | if (restype == UNKNOWNOID) |
| 3237 | { |
| 3238 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
| 3239 | restype, TEXTOID, -1, |
| 3240 | COERCION_IMPLICIT, |
| 3241 | COERCE_IMPLICIT_CAST, |
| 3242 | -1); |
| 3243 | restype = TEXTOID; |
| 3244 | } |
| 3245 | |
| 3246 | /* |
| 3247 | * Rather than clutter the API of get_sort_group_operators and the other |
| 3248 | * functions we're about to use, make use of error context callback to |
| 3249 | * mark any error reports with a parse position. We point to the operator |
| 3250 | * location if present, else to the expression being sorted. (NB: use the |
| 3251 | * original untransformed expression here; the TLE entry might well point |
| 3252 | * at a duplicate expression in the regular SELECT list.) |
| 3253 | */ |
| 3254 | location = sortby->location; |
| 3255 | if (location < 0) |
| 3256 | location = exprLocation(sortby->node); |
| 3257 | setup_parser_errposition_callback(&pcbstate, pstate, location); |
| 3258 | |
| 3259 | /* determine the sortop, eqop, and directionality */ |
| 3260 | switch (sortby->sortby_dir) |
| 3261 | { |
| 3262 | case SORTBY_DEFAULT: |
| 3263 | case SORTBY_ASC: |
| 3264 | get_sort_group_operators(restype, |
| 3265 | true, true, false, |
| 3266 | &sortop, &eqop, NULL, |
| 3267 | &hashable); |
| 3268 | reverse = false; |
| 3269 | break; |
| 3270 | case SORTBY_DESC: |
| 3271 | get_sort_group_operators(restype, |
| 3272 | false, true, true, |
| 3273 | NULL, &eqop, &sortop, |
| 3274 | &hashable); |
| 3275 | reverse = true; |
| 3276 | break; |
| 3277 | case SORTBY_USING: |
| 3278 | Assert(sortby->useOp != NIL); |
| 3279 | sortop = compatible_oper_opid(sortby->useOp, |
| 3280 | restype, |
| 3281 | restype, |
| 3282 | false); |
| 3283 | |
| 3284 | /* |
| 3285 | * Verify it's a valid ordering operator, fetch the corresponding |
| 3286 | * equality operator, and determine whether to consider it like |
| 3287 | * ASC or DESC. |
| 3288 | */ |
| 3289 | eqop = get_equality_op_for_ordering_op(sortop, &reverse); |
| 3290 | if (!OidIsValid(eqop)) |
| 3291 | ereport(ERROR, |
| 3292 | (errcode(ERRCODE_WRONG_OBJECT_TYPE), |
| 3293 | errmsg("operator %s is not a valid ordering operator" , |
| 3294 | strVal(llast(sortby->useOp))), |
| 3295 | errhint("Ordering operators must be \"<\" or \">\" members of btree operator families." ))); |
| 3296 | |
| 3297 | /* |
| 3298 | * Also see if the equality operator is hashable. |
| 3299 | */ |
| 3300 | hashable = op_hashjoinable(eqop, restype); |
| 3301 | break; |
| 3302 | default: |
| 3303 | elog(ERROR, "unrecognized sortby_dir: %d" , sortby->sortby_dir); |
| 3304 | sortop = InvalidOid; /* keep compiler quiet */ |
| 3305 | eqop = InvalidOid; |
| 3306 | hashable = false; |
| 3307 | reverse = false; |
| 3308 | break; |
| 3309 | } |
| 3310 | |
| 3311 | cancel_parser_errposition_callback(&pcbstate); |
| 3312 | |
| 3313 | /* avoid making duplicate sortlist entries */ |
| 3314 | if (!targetIsInSortList(tle, sortop, sortlist)) |
| 3315 | { |
| 3316 | SortGroupClause *sortcl = makeNode(SortGroupClause); |
| 3317 | |
| 3318 | sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist); |
| 3319 | |
| 3320 | sortcl->eqop = eqop; |
| 3321 | sortcl->sortop = sortop; |
| 3322 | sortcl->hashable = hashable; |
| 3323 | |
| 3324 | switch (sortby->sortby_nulls) |
| 3325 | { |
| 3326 | case SORTBY_NULLS_DEFAULT: |
| 3327 | /* NULLS FIRST is default for DESC; other way for ASC */ |
| 3328 | sortcl->nulls_first = reverse; |
| 3329 | break; |
| 3330 | case SORTBY_NULLS_FIRST: |
| 3331 | sortcl->nulls_first = true; |
| 3332 | break; |
| 3333 | case SORTBY_NULLS_LAST: |
| 3334 | sortcl->nulls_first = false; |
| 3335 | break; |
| 3336 | default: |
| 3337 | elog(ERROR, "unrecognized sortby_nulls: %d" , |
| 3338 | sortby->sortby_nulls); |
| 3339 | break; |
| 3340 | } |
| 3341 | |
| 3342 | sortlist = lappend(sortlist, sortcl); |
| 3343 | } |
| 3344 | |
| 3345 | return sortlist; |
| 3346 | } |
| 3347 | |
| 3348 | /* |
| 3349 | * addTargetToGroupList |
| 3350 | * If the given targetlist entry isn't already in the SortGroupClause |
| 3351 | * list, add it to the end of the list, using default sort/group |
| 3352 | * semantics. |
| 3353 | * |
| 3354 | * This is very similar to addTargetToSortList, except that we allow the |
| 3355 | * case where only a grouping (equality) operator can be found, and that |
| 3356 | * the TLE is considered "already in the list" if it appears there with any |
| 3357 | * sorting semantics. |
| 3358 | * |
| 3359 | * location is the parse location to be fingered in event of trouble. Note |
| 3360 | * that we can't rely on exprLocation(tle->expr), because that might point |
| 3361 | * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing |
| 3362 | * to report such a location. |
| 3363 | * |
| 3364 | * Returns the updated SortGroupClause list. |
| 3365 | */ |
| 3366 | static List * |
| 3367 | addTargetToGroupList(ParseState *pstate, TargetEntry *tle, |
| 3368 | List *grouplist, List *targetlist, int location) |
| 3369 | { |
| 3370 | Oid restype = exprType((Node *) tle->expr); |
| 3371 | |
| 3372 | /* if tlist item is an UNKNOWN literal, change it to TEXT */ |
| 3373 | if (restype == UNKNOWNOID) |
| 3374 | { |
| 3375 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
| 3376 | restype, TEXTOID, -1, |
| 3377 | COERCION_IMPLICIT, |
| 3378 | COERCE_IMPLICIT_CAST, |
| 3379 | -1); |
| 3380 | restype = TEXTOID; |
| 3381 | } |
| 3382 | |
| 3383 | /* avoid making duplicate grouplist entries */ |
| 3384 | if (!targetIsInSortList(tle, InvalidOid, grouplist)) |
| 3385 | { |
| 3386 | SortGroupClause *grpcl = makeNode(SortGroupClause); |
| 3387 | Oid sortop; |
| 3388 | Oid eqop; |
| 3389 | bool hashable; |
| 3390 | ParseCallbackState pcbstate; |
| 3391 | |
| 3392 | setup_parser_errposition_callback(&pcbstate, pstate, location); |
| 3393 | |
| 3394 | /* determine the eqop and optional sortop */ |
| 3395 | get_sort_group_operators(restype, |
| 3396 | false, true, false, |
| 3397 | &sortop, &eqop, NULL, |
| 3398 | &hashable); |
| 3399 | |
| 3400 | cancel_parser_errposition_callback(&pcbstate); |
| 3401 | |
| 3402 | grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist); |
| 3403 | grpcl->eqop = eqop; |
| 3404 | grpcl->sortop = sortop; |
| 3405 | grpcl->nulls_first = false; /* OK with or without sortop */ |
| 3406 | grpcl->hashable = hashable; |
| 3407 | |
| 3408 | grouplist = lappend(grouplist, grpcl); |
| 3409 | } |
| 3410 | |
| 3411 | return grouplist; |
| 3412 | } |
| 3413 | |
| 3414 | /* |
| 3415 | * assignSortGroupRef |
| 3416 | * Assign the targetentry an unused ressortgroupref, if it doesn't |
| 3417 | * already have one. Return the assigned or pre-existing refnumber. |
| 3418 | * |
| 3419 | * 'tlist' is the targetlist containing (or to contain) the given targetentry. |
| 3420 | */ |
| 3421 | Index |
| 3422 | assignSortGroupRef(TargetEntry *tle, List *tlist) |
| 3423 | { |
| 3424 | Index maxRef; |
| 3425 | ListCell *l; |
| 3426 | |
| 3427 | if (tle->ressortgroupref) /* already has one? */ |
| 3428 | return tle->ressortgroupref; |
| 3429 | |
| 3430 | /* easiest way to pick an unused refnumber: max used + 1 */ |
| 3431 | maxRef = 0; |
| 3432 | foreach(l, tlist) |
| 3433 | { |
| 3434 | Index ref = ((TargetEntry *) lfirst(l))->ressortgroupref; |
| 3435 | |
| 3436 | if (ref > maxRef) |
| 3437 | maxRef = ref; |
| 3438 | } |
| 3439 | tle->ressortgroupref = maxRef + 1; |
| 3440 | return tle->ressortgroupref; |
| 3441 | } |
| 3442 | |
| 3443 | /* |
| 3444 | * targetIsInSortList |
| 3445 | * Is the given target item already in the sortlist? |
| 3446 | * If sortop is not InvalidOid, also test for a match to the sortop. |
| 3447 | * |
| 3448 | * It is not an oversight that this function ignores the nulls_first flag. |
| 3449 | * We check sortop when determining if an ORDER BY item is redundant with |
| 3450 | * earlier ORDER BY items, because it's conceivable that "ORDER BY |
| 3451 | * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes |
| 3452 | * values that < considers equal. We need not check nulls_first |
| 3453 | * however, because a lower-order column with the same sortop but |
| 3454 | * opposite nulls direction is redundant. Also, we can consider |
| 3455 | * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match. |
| 3456 | * |
| 3457 | * Works for both ordering and grouping lists (sortop would normally be |
| 3458 | * InvalidOid when considering grouping). Note that the main reason we need |
| 3459 | * this routine (and not just a quick test for nonzeroness of ressortgroupref) |
| 3460 | * is that a TLE might be in only one of the lists. |
| 3461 | */ |
| 3462 | bool |
| 3463 | targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList) |
| 3464 | { |
| 3465 | Index ref = tle->ressortgroupref; |
| 3466 | ListCell *l; |
| 3467 | |
| 3468 | /* no need to scan list if tle has no marker */ |
| 3469 | if (ref == 0) |
| 3470 | return false; |
| 3471 | |
| 3472 | foreach(l, sortList) |
| 3473 | { |
| 3474 | SortGroupClause *scl = (SortGroupClause *) lfirst(l); |
| 3475 | |
| 3476 | if (scl->tleSortGroupRef == ref && |
| 3477 | (sortop == InvalidOid || |
| 3478 | sortop == scl->sortop || |
| 3479 | sortop == get_commutator(scl->sortop))) |
| 3480 | return true; |
| 3481 | } |
| 3482 | return false; |
| 3483 | } |
| 3484 | |
| 3485 | /* |
| 3486 | * findWindowClause |
| 3487 | * Find the named WindowClause in the list, or return NULL if not there |
| 3488 | */ |
| 3489 | static WindowClause * |
| 3490 | findWindowClause(List *wclist, const char *name) |
| 3491 | { |
| 3492 | ListCell *l; |
| 3493 | |
| 3494 | foreach(l, wclist) |
| 3495 | { |
| 3496 | WindowClause *wc = (WindowClause *) lfirst(l); |
| 3497 | |
| 3498 | if (wc->name && strcmp(wc->name, name) == 0) |
| 3499 | return wc; |
| 3500 | } |
| 3501 | |
| 3502 | return NULL; |
| 3503 | } |
| 3504 | |
| 3505 | /* |
| 3506 | * transformFrameOffset |
| 3507 | * Process a window frame offset expression |
| 3508 | * |
| 3509 | * In RANGE mode, rangeopfamily is the sort opfamily for the input ORDER BY |
| 3510 | * column, and rangeopcintype is the input data type the sort operator is |
| 3511 | * registered with. We expect the in_range function to be registered with |
| 3512 | * that same type. (In binary-compatible cases, it might be different from |
| 3513 | * the input column's actual type, so we can't use that for the lookups.) |
| 3514 | * We'll return the OID of the in_range function to *inRangeFunc. |
| 3515 | */ |
| 3516 | static Node * |
| 3517 | transformFrameOffset(ParseState *pstate, int frameOptions, |
| 3518 | Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, |
| 3519 | Node *clause) |
| 3520 | { |
| 3521 | const char *constructName = NULL; |
| 3522 | Node *node; |
| 3523 | |
| 3524 | *inRangeFunc = InvalidOid; /* default result */ |
| 3525 | |
| 3526 | /* Quick exit if no offset expression */ |
| 3527 | if (clause == NULL) |
| 3528 | return NULL; |
| 3529 | |
| 3530 | if (frameOptions & FRAMEOPTION_ROWS) |
| 3531 | { |
| 3532 | /* Transform the raw expression tree */ |
| 3533 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS); |
| 3534 | |
| 3535 | /* |
| 3536 | * Like LIMIT clause, simply coerce to int8 |
| 3537 | */ |
| 3538 | constructName = "ROWS" ; |
| 3539 | node = coerce_to_specific_type(pstate, node, INT8OID, constructName); |
| 3540 | } |
| 3541 | else if (frameOptions & FRAMEOPTION_RANGE) |
| 3542 | { |
| 3543 | /* |
| 3544 | * We must look up the in_range support function that's to be used, |
| 3545 | * possibly choosing one of several, and coerce the "offset" value to |
| 3546 | * the appropriate input type. |
| 3547 | */ |
| 3548 | Oid nodeType; |
| 3549 | Oid preferredType; |
| 3550 | int nfuncs = 0; |
| 3551 | int nmatches = 0; |
| 3552 | Oid selectedType = InvalidOid; |
| 3553 | Oid selectedFunc = InvalidOid; |
| 3554 | CatCList *proclist; |
| 3555 | int i; |
| 3556 | |
| 3557 | /* Transform the raw expression tree */ |
| 3558 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE); |
| 3559 | nodeType = exprType(node); |
| 3560 | |
| 3561 | /* |
| 3562 | * If there are multiple candidates, we'll prefer the one that exactly |
| 3563 | * matches nodeType; or if nodeType is as yet unknown, prefer the one |
| 3564 | * that exactly matches the sort column type. (The second rule is |
| 3565 | * like what we do for "known_type operator unknown".) |
| 3566 | */ |
| 3567 | preferredType = (nodeType != UNKNOWNOID) ? nodeType : rangeopcintype; |
| 3568 | |
| 3569 | /* Find the in_range support functions applicable to this case */ |
| 3570 | proclist = SearchSysCacheList2(AMPROCNUM, |
| 3571 | ObjectIdGetDatum(rangeopfamily), |
| 3572 | ObjectIdGetDatum(rangeopcintype)); |
| 3573 | for (i = 0; i < proclist->n_members; i++) |
| 3574 | { |
| 3575 | HeapTuple proctup = &proclist->members[i]->tuple; |
| 3576 | Form_pg_amproc procform = (Form_pg_amproc) GETSTRUCT(proctup); |
| 3577 | |
| 3578 | /* The search will find all support proc types; ignore others */ |
| 3579 | if (procform->amprocnum != BTINRANGE_PROC) |
| 3580 | continue; |
| 3581 | nfuncs++; |
| 3582 | |
| 3583 | /* Ignore function if given value can't be coerced to that type */ |
| 3584 | if (!can_coerce_type(1, &nodeType, &procform->amprocrighttype, |
| 3585 | COERCION_IMPLICIT)) |
| 3586 | continue; |
| 3587 | nmatches++; |
| 3588 | |
| 3589 | /* Remember preferred match, or any match if didn't find that */ |
| 3590 | if (selectedType != preferredType) |
| 3591 | { |
| 3592 | selectedType = procform->amprocrighttype; |
| 3593 | selectedFunc = procform->amproc; |
| 3594 | } |
| 3595 | } |
| 3596 | ReleaseCatCacheList(proclist); |
| 3597 | |
| 3598 | /* |
| 3599 | * Throw error if needed. It seems worth taking the trouble to |
| 3600 | * distinguish "no support at all" from "you didn't match any |
| 3601 | * available offset type". |
| 3602 | */ |
| 3603 | if (nfuncs == 0) |
| 3604 | ereport(ERROR, |
| 3605 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3606 | errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s" , |
| 3607 | format_type_be(rangeopcintype)), |
| 3608 | parser_errposition(pstate, exprLocation(node)))); |
| 3609 | if (nmatches == 0) |
| 3610 | ereport(ERROR, |
| 3611 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3612 | errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s and offset type %s" , |
| 3613 | format_type_be(rangeopcintype), |
| 3614 | format_type_be(nodeType)), |
| 3615 | errhint("Cast the offset value to an appropriate type." ), |
| 3616 | parser_errposition(pstate, exprLocation(node)))); |
| 3617 | if (nmatches != 1 && selectedType != preferredType) |
| 3618 | ereport(ERROR, |
| 3619 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3620 | errmsg("RANGE with offset PRECEDING/FOLLOWING has multiple interpretations for column type %s and offset type %s" , |
| 3621 | format_type_be(rangeopcintype), |
| 3622 | format_type_be(nodeType)), |
| 3623 | errhint("Cast the offset value to the exact intended type." ), |
| 3624 | parser_errposition(pstate, exprLocation(node)))); |
| 3625 | |
| 3626 | /* OK, coerce the offset to the right type */ |
| 3627 | constructName = "RANGE" ; |
| 3628 | node = coerce_to_specific_type(pstate, node, |
| 3629 | selectedType, constructName); |
| 3630 | *inRangeFunc = selectedFunc; |
| 3631 | } |
| 3632 | else if (frameOptions & FRAMEOPTION_GROUPS) |
| 3633 | { |
| 3634 | /* Transform the raw expression tree */ |
| 3635 | node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_GROUPS); |
| 3636 | |
| 3637 | /* |
| 3638 | * Like LIMIT clause, simply coerce to int8 |
| 3639 | */ |
| 3640 | constructName = "GROUPS" ; |
| 3641 | node = coerce_to_specific_type(pstate, node, INT8OID, constructName); |
| 3642 | } |
| 3643 | else |
| 3644 | { |
| 3645 | Assert(false); |
| 3646 | node = NULL; |
| 3647 | } |
| 3648 | |
| 3649 | /* Disallow variables in frame offsets */ |
| 3650 | checkExprIsVarFree(pstate, node, constructName); |
| 3651 | |
| 3652 | return node; |
| 3653 | } |
| 3654 | |