| 1 | /* |
| 2 | * colorings of characters |
| 3 | * This file is #included by regcomp.c. |
| 4 | * |
| 5 | * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. |
| 6 | * |
| 7 | * Development of this software was funded, in part, by Cray Research Inc., |
| 8 | * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics |
| 9 | * Corporation, none of whom are responsible for the results. The author |
| 10 | * thanks all of them. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms -- with or without |
| 13 | * modification -- are permitted for any purpose, provided that |
| 14 | * redistributions in source form retain this entire copyright notice and |
| 15 | * indicate the origin and nature of any modifications. |
| 16 | * |
| 17 | * I'd appreciate being given credit for this package in the documentation |
| 18 | * of software which uses it, but that is not a requirement. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| 21 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| 22 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 23 | * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * src/backend/regex/regc_color.c |
| 32 | * |
| 33 | * |
| 34 | * Note that there are some incestuous relationships between this code and |
| 35 | * NFA arc maintenance, which perhaps ought to be cleaned up sometime. |
| 36 | */ |
| 37 | |
| 38 | |
| 39 | |
| 40 | #define CISERR() VISERR(cm->v) |
| 41 | #define CERR(e) VERR(cm->v, (e)) |
| 42 | |
| 43 | |
| 44 | |
| 45 | /* |
| 46 | * initcm - set up new colormap |
| 47 | */ |
| 48 | static void |
| 49 | initcm(struct vars *v, |
| 50 | struct colormap *cm) |
| 51 | { |
| 52 | struct colordesc *cd; |
| 53 | |
| 54 | cm->magic = CMMAGIC; |
| 55 | cm->v = v; |
| 56 | |
| 57 | cm->ncds = NINLINECDS; |
| 58 | cm->cd = cm->cdspace; |
| 59 | cm->max = 0; |
| 60 | cm->free = 0; |
| 61 | |
| 62 | cd = cm->cd; /* cm->cd[WHITE] */ |
| 63 | cd->nschrs = MAX_SIMPLE_CHR - CHR_MIN + 1; |
| 64 | cd->nuchrs = 1; |
| 65 | cd->sub = NOSUB; |
| 66 | cd->arcs = NULL; |
| 67 | cd->firstchr = CHR_MIN; |
| 68 | cd->flags = 0; |
| 69 | |
| 70 | cm->locolormap = (color *) |
| 71 | MALLOC((MAX_SIMPLE_CHR - CHR_MIN + 1) * sizeof(color)); |
| 72 | if (cm->locolormap == NULL) |
| 73 | { |
| 74 | CERR(REG_ESPACE); |
| 75 | cm->cmranges = NULL; /* prevent failure during freecm */ |
| 76 | cm->hicolormap = NULL; |
| 77 | return; |
| 78 | } |
| 79 | /* this memset relies on WHITE being zero: */ |
| 80 | memset(cm->locolormap, WHITE, |
| 81 | (MAX_SIMPLE_CHR - CHR_MIN + 1) * sizeof(color)); |
| 82 | |
| 83 | memset(cm->classbits, 0, sizeof(cm->classbits)); |
| 84 | cm->numcmranges = 0; |
| 85 | cm->cmranges = NULL; |
| 86 | cm->maxarrayrows = 4; /* arbitrary initial allocation */ |
| 87 | cm->hiarrayrows = 1; /* but we have only one row/col initially */ |
| 88 | cm->hiarraycols = 1; |
| 89 | cm->hicolormap = (color *) MALLOC(cm->maxarrayrows * sizeof(color)); |
| 90 | if (cm->hicolormap == NULL) |
| 91 | { |
| 92 | CERR(REG_ESPACE); |
| 93 | return; |
| 94 | } |
| 95 | /* initialize the "all other characters" row to WHITE */ |
| 96 | cm->hicolormap[0] = WHITE; |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * freecm - free dynamically-allocated things in a colormap |
| 101 | */ |
| 102 | static void |
| 103 | freecm(struct colormap *cm) |
| 104 | { |
| 105 | cm->magic = 0; |
| 106 | if (cm->cd != cm->cdspace) |
| 107 | FREE(cm->cd); |
| 108 | if (cm->locolormap != NULL) |
| 109 | FREE(cm->locolormap); |
| 110 | if (cm->cmranges != NULL) |
| 111 | FREE(cm->cmranges); |
| 112 | if (cm->hicolormap != NULL) |
| 113 | FREE(cm->hicolormap); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * pg_reg_getcolor - slow case of GETCOLOR() |
| 118 | */ |
| 119 | color |
| 120 | pg_reg_getcolor(struct colormap *cm, chr c) |
| 121 | { |
| 122 | int rownum, |
| 123 | colnum, |
| 124 | low, |
| 125 | high; |
| 126 | |
| 127 | /* Should not be used for chrs in the locolormap */ |
| 128 | assert(c > MAX_SIMPLE_CHR); |
| 129 | |
| 130 | /* |
| 131 | * Find which row it's in. The colormapranges are in order, so we can use |
| 132 | * binary search. |
| 133 | */ |
| 134 | rownum = 0; /* if no match, use array row zero */ |
| 135 | low = 0; |
| 136 | high = cm->numcmranges; |
| 137 | while (low < high) |
| 138 | { |
| 139 | int middle = low + (high - low) / 2; |
| 140 | const colormaprange *cmr = &cm->cmranges[middle]; |
| 141 | |
| 142 | if (c < cmr->cmin) |
| 143 | high = middle; |
| 144 | else if (c > cmr->cmax) |
| 145 | low = middle + 1; |
| 146 | else |
| 147 | { |
| 148 | rownum = cmr->rownum; /* found a match */ |
| 149 | break; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Find which column it's in --- this is all locale-dependent. |
| 155 | */ |
| 156 | if (cm->hiarraycols > 1) |
| 157 | { |
| 158 | colnum = cclass_column_index(cm, c); |
| 159 | return cm->hicolormap[rownum * cm->hiarraycols + colnum]; |
| 160 | } |
| 161 | else |
| 162 | { |
| 163 | /* fast path if no relevant cclasses */ |
| 164 | return cm->hicolormap[rownum]; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * maxcolor - report largest color number in use |
| 170 | */ |
| 171 | static color |
| 172 | maxcolor(struct colormap *cm) |
| 173 | { |
| 174 | if (CISERR()) |
| 175 | return COLORLESS; |
| 176 | |
| 177 | return (color) cm->max; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * newcolor - find a new color (must be assigned at once) |
| 182 | * Beware: may relocate the colordescs. |
| 183 | */ |
| 184 | static color /* COLORLESS for error */ |
| 185 | newcolor(struct colormap *cm) |
| 186 | { |
| 187 | struct colordesc *cd; |
| 188 | size_t n; |
| 189 | |
| 190 | if (CISERR()) |
| 191 | return COLORLESS; |
| 192 | |
| 193 | if (cm->free != 0) |
| 194 | { |
| 195 | assert(cm->free > 0); |
| 196 | assert((size_t) cm->free < cm->ncds); |
| 197 | cd = &cm->cd[cm->free]; |
| 198 | assert(UNUSEDCOLOR(cd)); |
| 199 | assert(cd->arcs == NULL); |
| 200 | cm->free = cd->sub; |
| 201 | } |
| 202 | else if (cm->max < cm->ncds - 1) |
| 203 | { |
| 204 | cm->max++; |
| 205 | cd = &cm->cd[cm->max]; |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | /* oops, must allocate more */ |
| 210 | struct colordesc *newCd; |
| 211 | |
| 212 | if (cm->max == MAX_COLOR) |
| 213 | { |
| 214 | CERR(REG_ECOLORS); |
| 215 | return COLORLESS; /* too many colors */ |
| 216 | } |
| 217 | |
| 218 | n = cm->ncds * 2; |
| 219 | if (n > MAX_COLOR + 1) |
| 220 | n = MAX_COLOR + 1; |
| 221 | if (cm->cd == cm->cdspace) |
| 222 | { |
| 223 | newCd = (struct colordesc *) MALLOC(n * sizeof(struct colordesc)); |
| 224 | if (newCd != NULL) |
| 225 | memcpy(VS(newCd), VS(cm->cdspace), cm->ncds * |
| 226 | sizeof(struct colordesc)); |
| 227 | } |
| 228 | else |
| 229 | newCd = (struct colordesc *) |
| 230 | REALLOC(cm->cd, n * sizeof(struct colordesc)); |
| 231 | if (newCd == NULL) |
| 232 | { |
| 233 | CERR(REG_ESPACE); |
| 234 | return COLORLESS; |
| 235 | } |
| 236 | cm->cd = newCd; |
| 237 | cm->ncds = n; |
| 238 | assert(cm->max < cm->ncds - 1); |
| 239 | cm->max++; |
| 240 | cd = &cm->cd[cm->max]; |
| 241 | } |
| 242 | |
| 243 | cd->nschrs = 0; |
| 244 | cd->nuchrs = 0; |
| 245 | cd->sub = NOSUB; |
| 246 | cd->arcs = NULL; |
| 247 | cd->firstchr = CHR_MIN; /* in case never set otherwise */ |
| 248 | cd->flags = 0; |
| 249 | |
| 250 | return (color) (cd - cm->cd); |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * freecolor - free a color (must have no arcs or subcolor) |
| 255 | */ |
| 256 | static void |
| 257 | freecolor(struct colormap *cm, |
| 258 | color co) |
| 259 | { |
| 260 | struct colordesc *cd = &cm->cd[co]; |
| 261 | color pco, |
| 262 | nco; /* for freelist scan */ |
| 263 | |
| 264 | assert(co >= 0); |
| 265 | if (co == WHITE) |
| 266 | return; |
| 267 | |
| 268 | assert(cd->arcs == NULL); |
| 269 | assert(cd->sub == NOSUB); |
| 270 | assert(cd->nschrs == 0); |
| 271 | assert(cd->nuchrs == 0); |
| 272 | cd->flags = FREECOL; |
| 273 | |
| 274 | if ((size_t) co == cm->max) |
| 275 | { |
| 276 | while (cm->max > WHITE && UNUSEDCOLOR(&cm->cd[cm->max])) |
| 277 | cm->max--; |
| 278 | assert(cm->free >= 0); |
| 279 | while ((size_t) cm->free > cm->max) |
| 280 | cm->free = cm->cd[cm->free].sub; |
| 281 | if (cm->free > 0) |
| 282 | { |
| 283 | assert(cm->free < cm->max); |
| 284 | pco = cm->free; |
| 285 | nco = cm->cd[pco].sub; |
| 286 | while (nco > 0) |
| 287 | if ((size_t) nco > cm->max) |
| 288 | { |
| 289 | /* take this one out of freelist */ |
| 290 | nco = cm->cd[nco].sub; |
| 291 | cm->cd[pco].sub = nco; |
| 292 | } |
| 293 | else |
| 294 | { |
| 295 | assert(nco < cm->max); |
| 296 | pco = nco; |
| 297 | nco = cm->cd[pco].sub; |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | else |
| 302 | { |
| 303 | cd->sub = cm->free; |
| 304 | cm->free = (color) (cd - cm->cd); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * pseudocolor - allocate a false color, to be managed by other means |
| 310 | */ |
| 311 | static color |
| 312 | pseudocolor(struct colormap *cm) |
| 313 | { |
| 314 | color co; |
| 315 | struct colordesc *cd; |
| 316 | |
| 317 | co = newcolor(cm); |
| 318 | if (CISERR()) |
| 319 | return COLORLESS; |
| 320 | cd = &cm->cd[co]; |
| 321 | cd->nschrs = 0; |
| 322 | cd->nuchrs = 1; /* pretend it is in the upper map */ |
| 323 | cd->sub = NOSUB; |
| 324 | cd->arcs = NULL; |
| 325 | cd->firstchr = CHR_MIN; |
| 326 | cd->flags = PSEUDO; |
| 327 | return co; |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * subcolor - allocate a new subcolor (if necessary) to this chr |
| 332 | * |
| 333 | * This works only for chrs that map into the low color map. |
| 334 | */ |
| 335 | static color |
| 336 | subcolor(struct colormap *cm, chr c) |
| 337 | { |
| 338 | color co; /* current color of c */ |
| 339 | color sco; /* new subcolor */ |
| 340 | |
| 341 | assert(c <= MAX_SIMPLE_CHR); |
| 342 | |
| 343 | co = cm->locolormap[c - CHR_MIN]; |
| 344 | sco = newsub(cm, co); |
| 345 | if (CISERR()) |
| 346 | return COLORLESS; |
| 347 | assert(sco != COLORLESS); |
| 348 | |
| 349 | if (co == sco) /* already in an open subcolor */ |
| 350 | return co; /* rest is redundant */ |
| 351 | cm->cd[co].nschrs--; |
| 352 | if (cm->cd[sco].nschrs == 0) |
| 353 | cm->cd[sco].firstchr = c; |
| 354 | cm->cd[sco].nschrs++; |
| 355 | cm->locolormap[c - CHR_MIN] = sco; |
| 356 | return sco; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * subcolorhi - allocate a new subcolor (if necessary) to this colormap entry |
| 361 | * |
| 362 | * This is the same processing as subcolor(), but for entries in the high |
| 363 | * colormap, which do not necessarily correspond to exactly one chr code. |
| 364 | */ |
| 365 | static color |
| 366 | subcolorhi(struct colormap *cm, color *pco) |
| 367 | { |
| 368 | color co; /* current color of entry */ |
| 369 | color sco; /* new subcolor */ |
| 370 | |
| 371 | co = *pco; |
| 372 | sco = newsub(cm, co); |
| 373 | if (CISERR()) |
| 374 | return COLORLESS; |
| 375 | assert(sco != COLORLESS); |
| 376 | |
| 377 | if (co == sco) /* already in an open subcolor */ |
| 378 | return co; /* rest is redundant */ |
| 379 | cm->cd[co].nuchrs--; |
| 380 | cm->cd[sco].nuchrs++; |
| 381 | *pco = sco; |
| 382 | return sco; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * newsub - allocate a new subcolor (if necessary) for a color |
| 387 | */ |
| 388 | static color |
| 389 | newsub(struct colormap *cm, |
| 390 | color co) |
| 391 | { |
| 392 | color sco; /* new subcolor */ |
| 393 | |
| 394 | sco = cm->cd[co].sub; |
| 395 | if (sco == NOSUB) |
| 396 | { /* color has no open subcolor */ |
| 397 | /* optimization: singly-referenced color need not be subcolored */ |
| 398 | if ((cm->cd[co].nschrs + cm->cd[co].nuchrs) == 1) |
| 399 | return co; |
| 400 | sco = newcolor(cm); /* must create subcolor */ |
| 401 | if (sco == COLORLESS) |
| 402 | { |
| 403 | assert(CISERR()); |
| 404 | return COLORLESS; |
| 405 | } |
| 406 | cm->cd[co].sub = sco; |
| 407 | cm->cd[sco].sub = sco; /* open subcolor points to self */ |
| 408 | } |
| 409 | assert(sco != NOSUB); |
| 410 | |
| 411 | return sco; |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * newhicolorrow - get a new row in the hicolormap, cloning it from oldrow |
| 416 | * |
| 417 | * Returns array index of new row. Note the array might move. |
| 418 | */ |
| 419 | static int |
| 420 | newhicolorrow(struct colormap *cm, |
| 421 | int oldrow) |
| 422 | { |
| 423 | int newrow = cm->hiarrayrows; |
| 424 | color *newrowptr; |
| 425 | int i; |
| 426 | |
| 427 | /* Assign a fresh array row index, enlarging storage if needed */ |
| 428 | if (newrow >= cm->maxarrayrows) |
| 429 | { |
| 430 | color *newarray; |
| 431 | |
| 432 | if (cm->maxarrayrows >= INT_MAX / (cm->hiarraycols * 2)) |
| 433 | { |
| 434 | CERR(REG_ESPACE); |
| 435 | return 0; |
| 436 | } |
| 437 | newarray = (color *) REALLOC(cm->hicolormap, |
| 438 | cm->maxarrayrows * 2 * |
| 439 | cm->hiarraycols * sizeof(color)); |
| 440 | if (newarray == NULL) |
| 441 | { |
| 442 | CERR(REG_ESPACE); |
| 443 | return 0; |
| 444 | } |
| 445 | cm->hicolormap = newarray; |
| 446 | cm->maxarrayrows *= 2; |
| 447 | } |
| 448 | cm->hiarrayrows++; |
| 449 | |
| 450 | /* Copy old row data */ |
| 451 | newrowptr = &cm->hicolormap[newrow * cm->hiarraycols]; |
| 452 | memcpy(newrowptr, |
| 453 | &cm->hicolormap[oldrow * cm->hiarraycols], |
| 454 | cm->hiarraycols * sizeof(color)); |
| 455 | |
| 456 | /* Increase color reference counts to reflect new colormap entries */ |
| 457 | for (i = 0; i < cm->hiarraycols; i++) |
| 458 | cm->cd[newrowptr[i]].nuchrs++; |
| 459 | |
| 460 | return newrow; |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * newhicolorcols - create a new set of columns in the high colormap |
| 465 | * |
| 466 | * Essentially, extends the 2-D array to the right with a copy of itself. |
| 467 | */ |
| 468 | static void |
| 469 | newhicolorcols(struct colormap *cm) |
| 470 | { |
| 471 | color *newarray; |
| 472 | int r, |
| 473 | c; |
| 474 | |
| 475 | if (cm->hiarraycols >= INT_MAX / (cm->maxarrayrows * 2)) |
| 476 | { |
| 477 | CERR(REG_ESPACE); |
| 478 | return; |
| 479 | } |
| 480 | newarray = (color *) REALLOC(cm->hicolormap, |
| 481 | cm->maxarrayrows * |
| 482 | cm->hiarraycols * 2 * sizeof(color)); |
| 483 | if (newarray == NULL) |
| 484 | { |
| 485 | CERR(REG_ESPACE); |
| 486 | return; |
| 487 | } |
| 488 | cm->hicolormap = newarray; |
| 489 | |
| 490 | /* Duplicate existing columns to the right, and increase ref counts */ |
| 491 | /* Must work backwards in the array because we realloc'd in place */ |
| 492 | for (r = cm->hiarrayrows - 1; r >= 0; r--) |
| 493 | { |
| 494 | color *oldrowptr = &newarray[r * cm->hiarraycols]; |
| 495 | color *newrowptr = &newarray[r * cm->hiarraycols * 2]; |
| 496 | color *newrowptr2 = newrowptr + cm->hiarraycols; |
| 497 | |
| 498 | for (c = 0; c < cm->hiarraycols; c++) |
| 499 | { |
| 500 | color co = oldrowptr[c]; |
| 501 | |
| 502 | newrowptr[c] = newrowptr2[c] = co; |
| 503 | cm->cd[co].nuchrs++; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | cm->hiarraycols *= 2; |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * subcolorcvec - allocate new subcolors to cvec members, fill in arcs |
| 512 | * |
| 513 | * For each chr "c" represented by the cvec, do the equivalent of |
| 514 | * newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp); |
| 515 | * |
| 516 | * Note that in typical cases, many of the subcolors are the same. |
| 517 | * While newarc() would discard duplicate arc requests, we can save |
| 518 | * some cycles by not calling it repetitively to begin with. This is |
| 519 | * mechanized with the "lastsubcolor" state variable. |
| 520 | */ |
| 521 | static void |
| 522 | subcolorcvec(struct vars *v, |
| 523 | struct cvec *cv, |
| 524 | struct state *lp, |
| 525 | struct state *rp) |
| 526 | { |
| 527 | struct colormap *cm = v->cm; |
| 528 | color lastsubcolor = COLORLESS; |
| 529 | chr ch, |
| 530 | from, |
| 531 | to; |
| 532 | const chr *p; |
| 533 | int i; |
| 534 | |
| 535 | /* ordinary characters */ |
| 536 | for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) |
| 537 | { |
| 538 | ch = *p; |
| 539 | subcoloronechr(v, ch, lp, rp, &lastsubcolor); |
| 540 | NOERR(); |
| 541 | } |
| 542 | |
| 543 | /* and the ranges */ |
| 544 | for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) |
| 545 | { |
| 546 | from = *p; |
| 547 | to = *(p + 1); |
| 548 | if (from <= MAX_SIMPLE_CHR) |
| 549 | { |
| 550 | /* deal with simple chars one at a time */ |
| 551 | chr lim = (to <= MAX_SIMPLE_CHR) ? to : MAX_SIMPLE_CHR; |
| 552 | |
| 553 | while (from <= lim) |
| 554 | { |
| 555 | color sco = subcolor(cm, from); |
| 556 | |
| 557 | NOERR(); |
| 558 | if (sco != lastsubcolor) |
| 559 | { |
| 560 | newarc(v->nfa, PLAIN, sco, lp, rp); |
| 561 | NOERR(); |
| 562 | lastsubcolor = sco; |
| 563 | } |
| 564 | from++; |
| 565 | } |
| 566 | } |
| 567 | /* deal with any part of the range that's above MAX_SIMPLE_CHR */ |
| 568 | if (from < to) |
| 569 | subcoloronerange(v, from, to, lp, rp, &lastsubcolor); |
| 570 | else if (from == to) |
| 571 | subcoloronechr(v, from, lp, rp, &lastsubcolor); |
| 572 | NOERR(); |
| 573 | } |
| 574 | |
| 575 | /* and deal with cclass if any */ |
| 576 | if (cv->cclasscode >= 0) |
| 577 | { |
| 578 | int classbit; |
| 579 | color *pco; |
| 580 | int r, |
| 581 | c; |
| 582 | |
| 583 | /* Enlarge array if we don't have a column bit assignment for cclass */ |
| 584 | if (cm->classbits[cv->cclasscode] == 0) |
| 585 | { |
| 586 | cm->classbits[cv->cclasscode] = cm->hiarraycols; |
| 587 | newhicolorcols(cm); |
| 588 | NOERR(); |
| 589 | } |
| 590 | /* Apply subcolorhi() and make arc for each entry in relevant cols */ |
| 591 | classbit = cm->classbits[cv->cclasscode]; |
| 592 | pco = cm->hicolormap; |
| 593 | for (r = 0; r < cm->hiarrayrows; r++) |
| 594 | { |
| 595 | for (c = 0; c < cm->hiarraycols; c++) |
| 596 | { |
| 597 | if (c & classbit) |
| 598 | { |
| 599 | color sco = subcolorhi(cm, pco); |
| 600 | |
| 601 | NOERR(); |
| 602 | /* add the arc if needed */ |
| 603 | if (sco != lastsubcolor) |
| 604 | { |
| 605 | newarc(v->nfa, PLAIN, sco, lp, rp); |
| 606 | NOERR(); |
| 607 | lastsubcolor = sco; |
| 608 | } |
| 609 | } |
| 610 | pco++; |
| 611 | } |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * subcoloronechr - do subcolorcvec's work for a singleton chr |
| 618 | * |
| 619 | * We could just let subcoloronerange do this, but it's a bit more efficient |
| 620 | * if we exploit the single-chr case. Also, callers find it useful for this |
| 621 | * to be able to handle both low and high chr codes. |
| 622 | */ |
| 623 | static void |
| 624 | subcoloronechr(struct vars *v, |
| 625 | chr ch, |
| 626 | struct state *lp, |
| 627 | struct state *rp, |
| 628 | color *lastsubcolor) |
| 629 | { |
| 630 | struct colormap *cm = v->cm; |
| 631 | colormaprange *newranges; |
| 632 | int numnewranges; |
| 633 | colormaprange *oldrange; |
| 634 | int oldrangen; |
| 635 | int newrow; |
| 636 | |
| 637 | /* Easy case for low chr codes */ |
| 638 | if (ch <= MAX_SIMPLE_CHR) |
| 639 | { |
| 640 | color sco = subcolor(cm, ch); |
| 641 | |
| 642 | NOERR(); |
| 643 | if (sco != *lastsubcolor) |
| 644 | { |
| 645 | newarc(v->nfa, PLAIN, sco, lp, rp); |
| 646 | *lastsubcolor = sco; |
| 647 | } |
| 648 | return; |
| 649 | } |
| 650 | |
| 651 | /* |
| 652 | * Potentially, we could need two more colormapranges than we have now, if |
| 653 | * the given chr is in the middle of some existing range. |
| 654 | */ |
| 655 | newranges = (colormaprange *) |
| 656 | MALLOC((cm->numcmranges + 2) * sizeof(colormaprange)); |
| 657 | if (newranges == NULL) |
| 658 | { |
| 659 | CERR(REG_ESPACE); |
| 660 | return; |
| 661 | } |
| 662 | numnewranges = 0; |
| 663 | |
| 664 | /* Ranges before target are unchanged */ |
| 665 | for (oldrange = cm->cmranges, oldrangen = 0; |
| 666 | oldrangen < cm->numcmranges; |
| 667 | oldrange++, oldrangen++) |
| 668 | { |
| 669 | if (oldrange->cmax >= ch) |
| 670 | break; |
| 671 | newranges[numnewranges++] = *oldrange; |
| 672 | } |
| 673 | |
| 674 | /* Match target chr against current range */ |
| 675 | if (oldrangen >= cm->numcmranges || oldrange->cmin > ch) |
| 676 | { |
| 677 | /* chr does not belong to any existing range, make a new one */ |
| 678 | newranges[numnewranges].cmin = ch; |
| 679 | newranges[numnewranges].cmax = ch; |
| 680 | /* row state should be cloned from the "all others" row */ |
| 681 | newranges[numnewranges].rownum = newrow = newhicolorrow(cm, 0); |
| 682 | numnewranges++; |
| 683 | } |
| 684 | else if (oldrange->cmin == oldrange->cmax) |
| 685 | { |
| 686 | /* we have an existing singleton range matching the chr */ |
| 687 | newranges[numnewranges++] = *oldrange; |
| 688 | newrow = oldrange->rownum; |
| 689 | /* we've now fully processed this old range */ |
| 690 | oldrange++, oldrangen++; |
| 691 | } |
| 692 | else |
| 693 | { |
| 694 | /* chr is a subset of this existing range, must split it */ |
| 695 | if (ch > oldrange->cmin) |
| 696 | { |
| 697 | /* emit portion of old range before chr */ |
| 698 | newranges[numnewranges].cmin = oldrange->cmin; |
| 699 | newranges[numnewranges].cmax = ch - 1; |
| 700 | newranges[numnewranges].rownum = oldrange->rownum; |
| 701 | numnewranges++; |
| 702 | } |
| 703 | /* emit chr as singleton range, initially cloning from range */ |
| 704 | newranges[numnewranges].cmin = ch; |
| 705 | newranges[numnewranges].cmax = ch; |
| 706 | newranges[numnewranges].rownum = newrow = |
| 707 | newhicolorrow(cm, oldrange->rownum); |
| 708 | numnewranges++; |
| 709 | if (ch < oldrange->cmax) |
| 710 | { |
| 711 | /* emit portion of old range after chr */ |
| 712 | newranges[numnewranges].cmin = ch + 1; |
| 713 | newranges[numnewranges].cmax = oldrange->cmax; |
| 714 | /* must clone the row if we are making two new ranges from old */ |
| 715 | newranges[numnewranges].rownum = |
| 716 | (ch > oldrange->cmin) ? newhicolorrow(cm, oldrange->rownum) : |
| 717 | oldrange->rownum; |
| 718 | numnewranges++; |
| 719 | } |
| 720 | /* we've now fully processed this old range */ |
| 721 | oldrange++, oldrangen++; |
| 722 | } |
| 723 | |
| 724 | /* Update colors in newrow and create arcs as needed */ |
| 725 | subcoloronerow(v, newrow, lp, rp, lastsubcolor); |
| 726 | |
| 727 | /* Ranges after target are unchanged */ |
| 728 | for (; oldrangen < cm->numcmranges; oldrange++, oldrangen++) |
| 729 | { |
| 730 | newranges[numnewranges++] = *oldrange; |
| 731 | } |
| 732 | |
| 733 | /* Assert our original space estimate was adequate */ |
| 734 | assert(numnewranges <= (cm->numcmranges + 2)); |
| 735 | |
| 736 | /* And finally, store back the updated list of ranges */ |
| 737 | if (cm->cmranges != NULL) |
| 738 | FREE(cm->cmranges); |
| 739 | cm->cmranges = newranges; |
| 740 | cm->numcmranges = numnewranges; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * subcoloronerange - do subcolorcvec's work for a high range |
| 745 | */ |
| 746 | static void |
| 747 | subcoloronerange(struct vars *v, |
| 748 | chr from, |
| 749 | chr to, |
| 750 | struct state *lp, |
| 751 | struct state *rp, |
| 752 | color *lastsubcolor) |
| 753 | { |
| 754 | struct colormap *cm = v->cm; |
| 755 | colormaprange *newranges; |
| 756 | int numnewranges; |
| 757 | colormaprange *oldrange; |
| 758 | int oldrangen; |
| 759 | int newrow; |
| 760 | |
| 761 | /* Caller should take care of non-high-range cases */ |
| 762 | assert(from > MAX_SIMPLE_CHR); |
| 763 | assert(from < to); |
| 764 | |
| 765 | /* |
| 766 | * Potentially, if we have N non-adjacent ranges, we could need as many as |
| 767 | * 2N+1 result ranges (consider case where new range spans 'em all). |
| 768 | */ |
| 769 | newranges = (colormaprange *) |
| 770 | MALLOC((cm->numcmranges * 2 + 1) * sizeof(colormaprange)); |
| 771 | if (newranges == NULL) |
| 772 | { |
| 773 | CERR(REG_ESPACE); |
| 774 | return; |
| 775 | } |
| 776 | numnewranges = 0; |
| 777 | |
| 778 | /* Ranges before target are unchanged */ |
| 779 | for (oldrange = cm->cmranges, oldrangen = 0; |
| 780 | oldrangen < cm->numcmranges; |
| 781 | oldrange++, oldrangen++) |
| 782 | { |
| 783 | if (oldrange->cmax >= from) |
| 784 | break; |
| 785 | newranges[numnewranges++] = *oldrange; |
| 786 | } |
| 787 | |
| 788 | /* |
| 789 | * Deal with ranges that (partially) overlap the target. As we process |
| 790 | * each such range, increase "from" to remove the dealt-with characters |
| 791 | * from the target range. |
| 792 | */ |
| 793 | while (oldrangen < cm->numcmranges && oldrange->cmin <= to) |
| 794 | { |
| 795 | if (from < oldrange->cmin) |
| 796 | { |
| 797 | /* Handle portion of new range that corresponds to no old range */ |
| 798 | newranges[numnewranges].cmin = from; |
| 799 | newranges[numnewranges].cmax = oldrange->cmin - 1; |
| 800 | /* row state should be cloned from the "all others" row */ |
| 801 | newranges[numnewranges].rownum = newrow = newhicolorrow(cm, 0); |
| 802 | numnewranges++; |
| 803 | /* Update colors in newrow and create arcs as needed */ |
| 804 | subcoloronerow(v, newrow, lp, rp, lastsubcolor); |
| 805 | /* We've now fully processed the part of new range before old */ |
| 806 | from = oldrange->cmin; |
| 807 | } |
| 808 | |
| 809 | if (from <= oldrange->cmin && to >= oldrange->cmax) |
| 810 | { |
| 811 | /* old range is fully contained in new, process it in-place */ |
| 812 | newranges[numnewranges++] = *oldrange; |
| 813 | newrow = oldrange->rownum; |
| 814 | from = oldrange->cmax + 1; |
| 815 | } |
| 816 | else |
| 817 | { |
| 818 | /* some part of old range does not overlap new range */ |
| 819 | if (from > oldrange->cmin) |
| 820 | { |
| 821 | /* emit portion of old range before new range */ |
| 822 | newranges[numnewranges].cmin = oldrange->cmin; |
| 823 | newranges[numnewranges].cmax = from - 1; |
| 824 | newranges[numnewranges].rownum = oldrange->rownum; |
| 825 | numnewranges++; |
| 826 | } |
| 827 | /* emit common subrange, initially cloning from old range */ |
| 828 | newranges[numnewranges].cmin = from; |
| 829 | newranges[numnewranges].cmax = |
| 830 | (to < oldrange->cmax) ? to : oldrange->cmax; |
| 831 | newranges[numnewranges].rownum = newrow = |
| 832 | newhicolorrow(cm, oldrange->rownum); |
| 833 | numnewranges++; |
| 834 | if (to < oldrange->cmax) |
| 835 | { |
| 836 | /* emit portion of old range after new range */ |
| 837 | newranges[numnewranges].cmin = to + 1; |
| 838 | newranges[numnewranges].cmax = oldrange->cmax; |
| 839 | /* must clone the row if we are making two new ranges from old */ |
| 840 | newranges[numnewranges].rownum = |
| 841 | (from > oldrange->cmin) ? newhicolorrow(cm, oldrange->rownum) : |
| 842 | oldrange->rownum; |
| 843 | numnewranges++; |
| 844 | } |
| 845 | from = oldrange->cmax + 1; |
| 846 | } |
| 847 | /* Update colors in newrow and create arcs as needed */ |
| 848 | subcoloronerow(v, newrow, lp, rp, lastsubcolor); |
| 849 | /* we've now fully processed this old range */ |
| 850 | oldrange++, oldrangen++; |
| 851 | } |
| 852 | |
| 853 | if (from <= to) |
| 854 | { |
| 855 | /* Handle portion of new range that corresponds to no old range */ |
| 856 | newranges[numnewranges].cmin = from; |
| 857 | newranges[numnewranges].cmax = to; |
| 858 | /* row state should be cloned from the "all others" row */ |
| 859 | newranges[numnewranges].rownum = newrow = newhicolorrow(cm, 0); |
| 860 | numnewranges++; |
| 861 | /* Update colors in newrow and create arcs as needed */ |
| 862 | subcoloronerow(v, newrow, lp, rp, lastsubcolor); |
| 863 | } |
| 864 | |
| 865 | /* Ranges after target are unchanged */ |
| 866 | for (; oldrangen < cm->numcmranges; oldrange++, oldrangen++) |
| 867 | { |
| 868 | newranges[numnewranges++] = *oldrange; |
| 869 | } |
| 870 | |
| 871 | /* Assert our original space estimate was adequate */ |
| 872 | assert(numnewranges <= (cm->numcmranges * 2 + 1)); |
| 873 | |
| 874 | /* And finally, store back the updated list of ranges */ |
| 875 | if (cm->cmranges != NULL) |
| 876 | FREE(cm->cmranges); |
| 877 | cm->cmranges = newranges; |
| 878 | cm->numcmranges = numnewranges; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * subcoloronerow - do subcolorcvec's work for one new row in the high colormap |
| 883 | */ |
| 884 | static void |
| 885 | subcoloronerow(struct vars *v, |
| 886 | int rownum, |
| 887 | struct state *lp, |
| 888 | struct state *rp, |
| 889 | color *lastsubcolor) |
| 890 | { |
| 891 | struct colormap *cm = v->cm; |
| 892 | color *pco; |
| 893 | int i; |
| 894 | |
| 895 | /* Apply subcolorhi() and make arc for each entry in row */ |
| 896 | pco = &cm->hicolormap[rownum * cm->hiarraycols]; |
| 897 | for (i = 0; i < cm->hiarraycols; pco++, i++) |
| 898 | { |
| 899 | color sco = subcolorhi(cm, pco); |
| 900 | |
| 901 | NOERR(); |
| 902 | /* make the arc if needed */ |
| 903 | if (sco != *lastsubcolor) |
| 904 | { |
| 905 | newarc(v->nfa, PLAIN, sco, lp, rp); |
| 906 | NOERR(); |
| 907 | *lastsubcolor = sco; |
| 908 | } |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * okcolors - promote subcolors to full colors |
| 914 | */ |
| 915 | static void |
| 916 | okcolors(struct nfa *nfa, |
| 917 | struct colormap *cm) |
| 918 | { |
| 919 | struct colordesc *cd; |
| 920 | struct colordesc *end = CDEND(cm); |
| 921 | struct colordesc *scd; |
| 922 | struct arc *a; |
| 923 | color co; |
| 924 | color sco; |
| 925 | |
| 926 | for (cd = cm->cd, co = 0; cd < end; cd++, co++) |
| 927 | { |
| 928 | sco = cd->sub; |
| 929 | if (UNUSEDCOLOR(cd) || sco == NOSUB) |
| 930 | { |
| 931 | /* has no subcolor, no further action */ |
| 932 | } |
| 933 | else if (sco == co) |
| 934 | { |
| 935 | /* is subcolor, let parent deal with it */ |
| 936 | } |
| 937 | else if (cd->nschrs == 0 && cd->nuchrs == 0) |
| 938 | { |
| 939 | /* parent empty, its arcs change color to subcolor */ |
| 940 | cd->sub = NOSUB; |
| 941 | scd = &cm->cd[sco]; |
| 942 | assert(scd->nschrs > 0 || scd->nuchrs > 0); |
| 943 | assert(scd->sub == sco); |
| 944 | scd->sub = NOSUB; |
| 945 | while ((a = cd->arcs) != NULL) |
| 946 | { |
| 947 | assert(a->co == co); |
| 948 | uncolorchain(cm, a); |
| 949 | a->co = sco; |
| 950 | colorchain(cm, a); |
| 951 | } |
| 952 | freecolor(cm, co); |
| 953 | } |
| 954 | else |
| 955 | { |
| 956 | /* parent's arcs must gain parallel subcolor arcs */ |
| 957 | cd->sub = NOSUB; |
| 958 | scd = &cm->cd[sco]; |
| 959 | assert(scd->nschrs > 0 || scd->nuchrs > 0); |
| 960 | assert(scd->sub == sco); |
| 961 | scd->sub = NOSUB; |
| 962 | for (a = cd->arcs; a != NULL; a = a->colorchain) |
| 963 | { |
| 964 | assert(a->co == co); |
| 965 | newarc(nfa, a->type, sco, a->from, a->to); |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | /* |
| 972 | * colorchain - add this arc to the color chain of its color |
| 973 | */ |
| 974 | static void |
| 975 | colorchain(struct colormap *cm, |
| 976 | struct arc *a) |
| 977 | { |
| 978 | struct colordesc *cd = &cm->cd[a->co]; |
| 979 | |
| 980 | if (cd->arcs != NULL) |
| 981 | cd->arcs->colorchainRev = a; |
| 982 | a->colorchain = cd->arcs; |
| 983 | a->colorchainRev = NULL; |
| 984 | cd->arcs = a; |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * uncolorchain - delete this arc from the color chain of its color |
| 989 | */ |
| 990 | static void |
| 991 | uncolorchain(struct colormap *cm, |
| 992 | struct arc *a) |
| 993 | { |
| 994 | struct colordesc *cd = &cm->cd[a->co]; |
| 995 | struct arc *aa = a->colorchainRev; |
| 996 | |
| 997 | if (aa == NULL) |
| 998 | { |
| 999 | assert(cd->arcs == a); |
| 1000 | cd->arcs = a->colorchain; |
| 1001 | } |
| 1002 | else |
| 1003 | { |
| 1004 | assert(aa->colorchain == a); |
| 1005 | aa->colorchain = a->colorchain; |
| 1006 | } |
| 1007 | if (a->colorchain != NULL) |
| 1008 | a->colorchain->colorchainRev = aa; |
| 1009 | a->colorchain = NULL; /* paranoia */ |
| 1010 | a->colorchainRev = NULL; |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * rainbow - add arcs of all full colors (but one) between specified states |
| 1015 | */ |
| 1016 | static void |
| 1017 | rainbow(struct nfa *nfa, |
| 1018 | struct colormap *cm, |
| 1019 | int type, |
| 1020 | color but, /* COLORLESS if no exceptions */ |
| 1021 | struct state *from, |
| 1022 | struct state *to) |
| 1023 | { |
| 1024 | struct colordesc *cd; |
| 1025 | struct colordesc *end = CDEND(cm); |
| 1026 | color co; |
| 1027 | |
| 1028 | for (cd = cm->cd, co = 0; cd < end && !CISERR(); cd++, co++) |
| 1029 | if (!UNUSEDCOLOR(cd) && cd->sub != co && co != but && |
| 1030 | !(cd->flags & PSEUDO)) |
| 1031 | newarc(nfa, type, co, from, to); |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * colorcomplement - add arcs of complementary colors |
| 1036 | * |
| 1037 | * The calling sequence ought to be reconciled with cloneouts(). |
| 1038 | */ |
| 1039 | static void |
| 1040 | colorcomplement(struct nfa *nfa, |
| 1041 | struct colormap *cm, |
| 1042 | int type, |
| 1043 | struct state *of, /* complements of this guy's PLAIN outarcs */ |
| 1044 | struct state *from, |
| 1045 | struct state *to) |
| 1046 | { |
| 1047 | struct colordesc *cd; |
| 1048 | struct colordesc *end = CDEND(cm); |
| 1049 | color co; |
| 1050 | |
| 1051 | assert(of != from); |
| 1052 | for (cd = cm->cd, co = 0; cd < end && !CISERR(); cd++, co++) |
| 1053 | if (!UNUSEDCOLOR(cd) && !(cd->flags & PSEUDO)) |
| 1054 | if (findarc(of, PLAIN, co) == NULL) |
| 1055 | newarc(nfa, type, co, from, to); |
| 1056 | } |
| 1057 | |
| 1058 | |
| 1059 | #ifdef REG_DEBUG |
| 1060 | |
| 1061 | /* |
| 1062 | * dumpcolors - debugging output |
| 1063 | */ |
| 1064 | static void |
| 1065 | dumpcolors(struct colormap *cm, |
| 1066 | FILE *f) |
| 1067 | { |
| 1068 | struct colordesc *cd; |
| 1069 | struct colordesc *end; |
| 1070 | color co; |
| 1071 | chr c; |
| 1072 | |
| 1073 | fprintf(f, "max %ld\n" , (long) cm->max); |
| 1074 | end = CDEND(cm); |
| 1075 | for (cd = cm->cd + 1, co = 1; cd < end; cd++, co++) /* skip 0 */ |
| 1076 | { |
| 1077 | if (!UNUSEDCOLOR(cd)) |
| 1078 | { |
| 1079 | assert(cd->nschrs > 0 || cd->nuchrs > 0); |
| 1080 | if (cd->flags & PSEUDO) |
| 1081 | fprintf(f, "#%2ld(ps): " , (long) co); |
| 1082 | else |
| 1083 | fprintf(f, "#%2ld(%2d): " , (long) co, cd->nschrs + cd->nuchrs); |
| 1084 | |
| 1085 | /* |
| 1086 | * Unfortunately, it's hard to do this next bit more efficiently. |
| 1087 | */ |
| 1088 | for (c = CHR_MIN; c <= MAX_SIMPLE_CHR; c++) |
| 1089 | if (GETCOLOR(cm, c) == co) |
| 1090 | dumpchr(c, f); |
| 1091 | fprintf(f, "\n" ); |
| 1092 | } |
| 1093 | } |
| 1094 | /* dump the high colormap if it contains anything interesting */ |
| 1095 | if (cm->hiarrayrows > 1 || cm->hiarraycols > 1) |
| 1096 | { |
| 1097 | int r, |
| 1098 | c; |
| 1099 | const color *rowptr; |
| 1100 | |
| 1101 | fprintf(f, "other:\t" ); |
| 1102 | for (c = 0; c < cm->hiarraycols; c++) |
| 1103 | { |
| 1104 | fprintf(f, "\t%ld" , (long) cm->hicolormap[c]); |
| 1105 | } |
| 1106 | fprintf(f, "\n" ); |
| 1107 | for (r = 0; r < cm->numcmranges; r++) |
| 1108 | { |
| 1109 | dumpchr(cm->cmranges[r].cmin, f); |
| 1110 | fprintf(f, ".." ); |
| 1111 | dumpchr(cm->cmranges[r].cmax, f); |
| 1112 | fprintf(f, ":" ); |
| 1113 | rowptr = &cm->hicolormap[cm->cmranges[r].rownum * cm->hiarraycols]; |
| 1114 | for (c = 0; c < cm->hiarraycols; c++) |
| 1115 | { |
| 1116 | fprintf(f, "\t%ld" , (long) rowptr[c]); |
| 1117 | } |
| 1118 | fprintf(f, "\n" ); |
| 1119 | } |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * dumpchr - print a chr |
| 1125 | * |
| 1126 | * Kind of char-centric but works well enough for debug use. |
| 1127 | */ |
| 1128 | static void |
| 1129 | dumpchr(chr c, |
| 1130 | FILE *f) |
| 1131 | { |
| 1132 | if (c == '\\') |
| 1133 | fprintf(f, "\\\\" ); |
| 1134 | else if (c > ' ' && c <= '~') |
| 1135 | putc((char) c, f); |
| 1136 | else |
| 1137 | fprintf(f, "\\u%04lx" , (long) c); |
| 1138 | } |
| 1139 | |
| 1140 | #endif /* REG_DEBUG */ |
| 1141 | |