| 1 | /* |
| 2 | * re_*comp and friends - compile REs |
| 3 | * This file #includes several others (see the bottom). |
| 4 | * |
| 5 | * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. |
| 6 | * |
| 7 | * Development of this software was funded, in part, by Cray Research Inc., |
| 8 | * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics |
| 9 | * Corporation, none of whom are responsible for the results. The author |
| 10 | * thanks all of them. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms -- with or without |
| 13 | * modification -- are permitted for any purpose, provided that |
| 14 | * redistributions in source form retain this entire copyright notice and |
| 15 | * indicate the origin and nature of any modifications. |
| 16 | * |
| 17 | * I'd appreciate being given credit for this package in the documentation |
| 18 | * of software which uses it, but that is not a requirement. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| 21 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| 22 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 23 | * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * src/backend/regex/regcomp.c |
| 32 | * |
| 33 | */ |
| 34 | |
| 35 | #include "regex/regguts.h" |
| 36 | |
| 37 | /* |
| 38 | * forward declarations, up here so forward datatypes etc. are defined early |
| 39 | */ |
| 40 | /* === regcomp.c === */ |
| 41 | static void moresubs(struct vars *, int); |
| 42 | static int freev(struct vars *, int); |
| 43 | static void makesearch(struct vars *, struct nfa *); |
| 44 | static struct subre *parse(struct vars *, int, int, struct state *, struct state *); |
| 45 | static struct subre *parsebranch(struct vars *, int, int, struct state *, struct state *, int); |
| 46 | static void parseqatom(struct vars *, int, int, struct state *, struct state *, struct subre *); |
| 47 | static void nonword(struct vars *, int, struct state *, struct state *); |
| 48 | static void word(struct vars *, int, struct state *, struct state *); |
| 49 | static int scannum(struct vars *); |
| 50 | static void repeat(struct vars *, struct state *, struct state *, int, int); |
| 51 | static void bracket(struct vars *, struct state *, struct state *); |
| 52 | static void cbracket(struct vars *, struct state *, struct state *); |
| 53 | static void brackpart(struct vars *, struct state *, struct state *); |
| 54 | static const chr *scanplain(struct vars *); |
| 55 | static void onechr(struct vars *, chr, struct state *, struct state *); |
| 56 | static void wordchrs(struct vars *); |
| 57 | static void processlacon(struct vars *, struct state *, struct state *, int, |
| 58 | struct state *, struct state *); |
| 59 | static struct subre *subre(struct vars *, int, int, struct state *, struct state *); |
| 60 | static void freesubre(struct vars *, struct subre *); |
| 61 | static void freesrnode(struct vars *, struct subre *); |
| 62 | static void optst(struct vars *, struct subre *); |
| 63 | static int numst(struct subre *, int); |
| 64 | static void markst(struct subre *); |
| 65 | static void cleanst(struct vars *); |
| 66 | static long nfatree(struct vars *, struct subre *, FILE *); |
| 67 | static long nfanode(struct vars *, struct subre *, int, FILE *); |
| 68 | static int newlacon(struct vars *, struct state *, struct state *, int); |
| 69 | static void freelacons(struct subre *, int); |
| 70 | static void rfree(regex_t *); |
| 71 | static int rcancelrequested(void); |
| 72 | static int rstacktoodeep(void); |
| 73 | |
| 74 | #ifdef REG_DEBUG |
| 75 | static void dump(regex_t *, FILE *); |
| 76 | static void dumpst(struct subre *, FILE *, int); |
| 77 | static void stdump(struct subre *, FILE *, int); |
| 78 | static const char *stid(struct subre *, char *, size_t); |
| 79 | #endif |
| 80 | /* === regc_lex.c === */ |
| 81 | static void lexstart(struct vars *); |
| 82 | static void prefixes(struct vars *); |
| 83 | static void lexnest(struct vars *, const chr *, const chr *); |
| 84 | static void lexword(struct vars *); |
| 85 | static int next(struct vars *); |
| 86 | static int lexescape(struct vars *); |
| 87 | static chr lexdigits(struct vars *, int, int, int); |
| 88 | static int brenext(struct vars *, chr); |
| 89 | static void skip(struct vars *); |
| 90 | static chr newline(void); |
| 91 | static chr chrnamed(struct vars *, const chr *, const chr *, chr); |
| 92 | |
| 93 | /* === regc_color.c === */ |
| 94 | static void initcm(struct vars *, struct colormap *); |
| 95 | static void freecm(struct colormap *); |
| 96 | static color maxcolor(struct colormap *); |
| 97 | static color newcolor(struct colormap *); |
| 98 | static void freecolor(struct colormap *, color); |
| 99 | static color pseudocolor(struct colormap *); |
| 100 | static color subcolor(struct colormap *, chr); |
| 101 | static color subcolorhi(struct colormap *, color *); |
| 102 | static color newsub(struct colormap *, color); |
| 103 | static int newhicolorrow(struct colormap *, int); |
| 104 | static void newhicolorcols(struct colormap *); |
| 105 | static void subcolorcvec(struct vars *, struct cvec *, struct state *, struct state *); |
| 106 | static void subcoloronechr(struct vars *, chr, struct state *, struct state *, color *); |
| 107 | static void subcoloronerange(struct vars *, chr, chr, struct state *, struct state *, color *); |
| 108 | static void subcoloronerow(struct vars *, int, struct state *, struct state *, color *); |
| 109 | static void okcolors(struct nfa *, struct colormap *); |
| 110 | static void colorchain(struct colormap *, struct arc *); |
| 111 | static void uncolorchain(struct colormap *, struct arc *); |
| 112 | static void rainbow(struct nfa *, struct colormap *, int, color, struct state *, struct state *); |
| 113 | static void colorcomplement(struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *); |
| 114 | |
| 115 | #ifdef REG_DEBUG |
| 116 | static void dumpcolors(struct colormap *, FILE *); |
| 117 | static void dumpchr(chr, FILE *); |
| 118 | #endif |
| 119 | /* === regc_nfa.c === */ |
| 120 | static struct nfa *newnfa(struct vars *, struct colormap *, struct nfa *); |
| 121 | static void freenfa(struct nfa *); |
| 122 | static struct state *newstate(struct nfa *); |
| 123 | static struct state *newfstate(struct nfa *, int flag); |
| 124 | static void dropstate(struct nfa *, struct state *); |
| 125 | static void freestate(struct nfa *, struct state *); |
| 126 | static void destroystate(struct nfa *, struct state *); |
| 127 | static void newarc(struct nfa *, int, color, struct state *, struct state *); |
| 128 | static void createarc(struct nfa *, int, color, struct state *, struct state *); |
| 129 | static struct arc *allocarc(struct nfa *, struct state *); |
| 130 | static void freearc(struct nfa *, struct arc *); |
| 131 | static void changearctarget(struct arc *, struct state *); |
| 132 | static int hasnonemptyout(struct state *); |
| 133 | static struct arc *findarc(struct state *, int, color); |
| 134 | static void cparc(struct nfa *, struct arc *, struct state *, struct state *); |
| 135 | static void sortins(struct nfa *, struct state *); |
| 136 | static int sortins_cmp(const void *, const void *); |
| 137 | static void sortouts(struct nfa *, struct state *); |
| 138 | static int sortouts_cmp(const void *, const void *); |
| 139 | static void moveins(struct nfa *, struct state *, struct state *); |
| 140 | static void copyins(struct nfa *, struct state *, struct state *); |
| 141 | static void mergeins(struct nfa *, struct state *, struct arc **, int); |
| 142 | static void moveouts(struct nfa *, struct state *, struct state *); |
| 143 | static void copyouts(struct nfa *, struct state *, struct state *); |
| 144 | static void cloneouts(struct nfa *, struct state *, struct state *, struct state *, int); |
| 145 | static void delsub(struct nfa *, struct state *, struct state *); |
| 146 | static void deltraverse(struct nfa *, struct state *, struct state *); |
| 147 | static void dupnfa(struct nfa *, struct state *, struct state *, struct state *, struct state *); |
| 148 | static void duptraverse(struct nfa *, struct state *, struct state *); |
| 149 | static void cleartraverse(struct nfa *, struct state *); |
| 150 | static struct state *single_color_transition(struct state *, struct state *); |
| 151 | static void specialcolors(struct nfa *); |
| 152 | static long optimize(struct nfa *, FILE *); |
| 153 | static void pullback(struct nfa *, FILE *); |
| 154 | static int pull(struct nfa *, struct arc *, struct state **); |
| 155 | static void pushfwd(struct nfa *, FILE *); |
| 156 | static int push(struct nfa *, struct arc *, struct state **); |
| 157 | |
| 158 | #define INCOMPATIBLE 1 /* destroys arc */ |
| 159 | #define SATISFIED 2 /* constraint satisfied */ |
| 160 | #define COMPATIBLE 3 /* compatible but not satisfied yet */ |
| 161 | static int combine(struct arc *, struct arc *); |
| 162 | static void fixempties(struct nfa *, FILE *); |
| 163 | static struct state *emptyreachable(struct nfa *, struct state *, |
| 164 | struct state *, struct arc **); |
| 165 | static int isconstraintarc(struct arc *); |
| 166 | static int hasconstraintout(struct state *); |
| 167 | static void fixconstraintloops(struct nfa *, FILE *); |
| 168 | static int findconstraintloop(struct nfa *, struct state *); |
| 169 | static void breakconstraintloop(struct nfa *, struct state *); |
| 170 | static void clonesuccessorstates(struct nfa *, struct state *, struct state *, |
| 171 | struct state *, struct arc *, |
| 172 | char *, char *, int); |
| 173 | static void cleanup(struct nfa *); |
| 174 | static void markreachable(struct nfa *, struct state *, struct state *, struct state *); |
| 175 | static void markcanreach(struct nfa *, struct state *, struct state *, struct state *); |
| 176 | static long analyze(struct nfa *); |
| 177 | static void compact(struct nfa *, struct cnfa *); |
| 178 | static void carcsort(struct carc *, size_t); |
| 179 | static int carc_cmp(const void *, const void *); |
| 180 | static void freecnfa(struct cnfa *); |
| 181 | static void dumpnfa(struct nfa *, FILE *); |
| 182 | |
| 183 | #ifdef REG_DEBUG |
| 184 | static void dumpstate(struct state *, FILE *); |
| 185 | static void dumparcs(struct state *, FILE *); |
| 186 | static void dumparc(struct arc *, struct state *, FILE *); |
| 187 | static void dumpcnfa(struct cnfa *, FILE *); |
| 188 | static void dumpcstate(int, struct cnfa *, FILE *); |
| 189 | #endif |
| 190 | /* === regc_cvec.c === */ |
| 191 | static struct cvec *newcvec(int, int); |
| 192 | static struct cvec *clearcvec(struct cvec *); |
| 193 | static void addchr(struct cvec *, chr); |
| 194 | static void addrange(struct cvec *, chr, chr); |
| 195 | static struct cvec *getcvec(struct vars *, int, int); |
| 196 | static void freecvec(struct cvec *); |
| 197 | |
| 198 | /* === regc_pg_locale.c === */ |
| 199 | static int pg_wc_isdigit(pg_wchar c); |
| 200 | static int pg_wc_isalpha(pg_wchar c); |
| 201 | static int pg_wc_isalnum(pg_wchar c); |
| 202 | static int pg_wc_isupper(pg_wchar c); |
| 203 | static int pg_wc_islower(pg_wchar c); |
| 204 | static int pg_wc_isgraph(pg_wchar c); |
| 205 | static int pg_wc_isprint(pg_wchar c); |
| 206 | static int pg_wc_ispunct(pg_wchar c); |
| 207 | static int pg_wc_isspace(pg_wchar c); |
| 208 | static pg_wchar pg_wc_toupper(pg_wchar c); |
| 209 | static pg_wchar pg_wc_tolower(pg_wchar c); |
| 210 | |
| 211 | /* === regc_locale.c === */ |
| 212 | static chr element(struct vars *, const chr *, const chr *); |
| 213 | static struct cvec *range(struct vars *, chr, chr, int); |
| 214 | static int before(chr, chr); |
| 215 | static struct cvec *eclass(struct vars *, chr, int); |
| 216 | static struct cvec *cclass(struct vars *, const chr *, const chr *, int); |
| 217 | static int cclass_column_index(struct colormap *, chr); |
| 218 | static struct cvec *allcases(struct vars *, chr); |
| 219 | static int cmp(const chr *, const chr *, size_t); |
| 220 | static int casecmp(const chr *, const chr *, size_t); |
| 221 | |
| 222 | |
| 223 | /* internal variables, bundled for easy passing around */ |
| 224 | struct vars |
| 225 | { |
| 226 | regex_t *re; |
| 227 | const chr *now; /* scan pointer into string */ |
| 228 | const chr *stop; /* end of string */ |
| 229 | const chr *savenow; /* saved now and stop for "subroutine call" */ |
| 230 | const chr *savestop; |
| 231 | int err; /* error code (0 if none) */ |
| 232 | int cflags; /* copy of compile flags */ |
| 233 | int lasttype; /* type of previous token */ |
| 234 | int nexttype; /* type of next token */ |
| 235 | chr nextvalue; /* value (if any) of next token */ |
| 236 | int lexcon; /* lexical context type (see lex.c) */ |
| 237 | int nsubexp; /* subexpression count */ |
| 238 | struct subre **subs; /* subRE pointer vector */ |
| 239 | size_t nsubs; /* length of vector */ |
| 240 | struct subre *sub10[10]; /* initial vector, enough for most */ |
| 241 | struct nfa *nfa; /* the NFA */ |
| 242 | struct colormap *cm; /* character color map */ |
| 243 | color nlcolor; /* color of newline */ |
| 244 | struct state *wordchrs; /* state in nfa holding word-char outarcs */ |
| 245 | struct subre *tree; /* subexpression tree */ |
| 246 | struct subre *treechain; /* all tree nodes allocated */ |
| 247 | struct subre *treefree; /* any free tree nodes */ |
| 248 | int ntree; /* number of tree nodes, plus one */ |
| 249 | struct cvec *cv; /* interface cvec */ |
| 250 | struct cvec *cv2; /* utility cvec */ |
| 251 | struct subre *lacons; /* lookaround-constraint vector */ |
| 252 | int nlacons; /* size of lacons[]; note that only slots |
| 253 | * numbered 1 .. nlacons-1 are used */ |
| 254 | size_t spaceused; /* approx. space used for compilation */ |
| 255 | }; |
| 256 | |
| 257 | /* parsing macros; most know that `v' is the struct vars pointer */ |
| 258 | #define NEXT() (next(v)) /* advance by one token */ |
| 259 | #define SEE(t) (v->nexttype == (t)) /* is next token this? */ |
| 260 | #define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */ |
| 261 | #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */ |
| 262 | #define ISERR() VISERR(v) |
| 263 | #define VERR(vv,e) ((vv)->nexttype = EOS, \ |
| 264 | (vv)->err = ((vv)->err ? (vv)->err : (e))) |
| 265 | #define ERR(e) VERR(v, e) /* record an error */ |
| 266 | #define NOERR() {if (ISERR()) return;} /* if error seen, return */ |
| 267 | #define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */ |
| 268 | #define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */ |
| 269 | #define INSIST(c, e) do { if (!(c)) ERR(e); } while (0) /* error if c false */ |
| 270 | #define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */ |
| 271 | #define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y) |
| 272 | |
| 273 | /* token type codes, some also used as NFA arc types */ |
| 274 | #define EMPTY 'n' /* no token present */ |
| 275 | #define EOS 'e' /* end of string */ |
| 276 | #define PLAIN 'p' /* ordinary character */ |
| 277 | #define DIGIT 'd' /* digit (in bound) */ |
| 278 | #define BACKREF 'b' /* back reference */ |
| 279 | #define COLLEL 'I' /* start of [. */ |
| 280 | #define ECLASS 'E' /* start of [= */ |
| 281 | #define CCLASS 'C' /* start of [: */ |
| 282 | #define END 'X' /* end of [. [= [: */ |
| 283 | #define RANGE 'R' /* - within [] which might be range delim. */ |
| 284 | #define LACON 'L' /* lookaround constraint subRE */ |
| 285 | #define AHEAD 'a' /* color-lookahead arc */ |
| 286 | #define BEHIND 'r' /* color-lookbehind arc */ |
| 287 | #define WBDRY 'w' /* word boundary constraint */ |
| 288 | #define NWBDRY 'W' /* non-word-boundary constraint */ |
| 289 | #define SBEGIN 'A' /* beginning of string (even if not BOL) */ |
| 290 | #define SEND 'Z' /* end of string (even if not EOL) */ |
| 291 | #define PREFER 'P' /* length preference */ |
| 292 | |
| 293 | /* is an arc colored, and hence on a color chain? */ |
| 294 | #define COLORED(a) \ |
| 295 | ((a)->type == PLAIN || (a)->type == AHEAD || (a)->type == BEHIND) |
| 296 | |
| 297 | |
| 298 | /* static function list */ |
| 299 | static const struct fns functions = { |
| 300 | rfree, /* regfree insides */ |
| 301 | rcancelrequested, /* check for cancel request */ |
| 302 | rstacktoodeep /* check for stack getting dangerously deep */ |
| 303 | }; |
| 304 | |
| 305 | |
| 306 | |
| 307 | /* |
| 308 | * pg_regcomp - compile regular expression |
| 309 | * |
| 310 | * Note: on failure, no resources remain allocated, so pg_regfree() |
| 311 | * need not be applied to re. |
| 312 | */ |
| 313 | int |
| 314 | pg_regcomp(regex_t *re, |
| 315 | const chr *string, |
| 316 | size_t len, |
| 317 | int flags, |
| 318 | Oid collation) |
| 319 | { |
| 320 | struct vars var; |
| 321 | struct vars *v = &var; |
| 322 | struct guts *g; |
| 323 | int i; |
| 324 | size_t j; |
| 325 | |
| 326 | #ifdef REG_DEBUG |
| 327 | FILE *debug = (flags & REG_PROGRESS) ? stdout : (FILE *) NULL; |
| 328 | #else |
| 329 | FILE *debug = (FILE *) NULL; |
| 330 | #endif |
| 331 | |
| 332 | #define CNOERR() { if (ISERR()) return freev(v, v->err); } |
| 333 | |
| 334 | /* sanity checks */ |
| 335 | |
| 336 | if (re == NULL || string == NULL) |
| 337 | return REG_INVARG; |
| 338 | if ((flags & REG_QUOTE) && |
| 339 | (flags & (REG_ADVANCED | REG_EXPANDED | REG_NEWLINE))) |
| 340 | return REG_INVARG; |
| 341 | if (!(flags & REG_EXTENDED) && (flags & REG_ADVF)) |
| 342 | return REG_INVARG; |
| 343 | |
| 344 | /* Initialize locale-dependent support */ |
| 345 | pg_set_regex_collation(collation); |
| 346 | |
| 347 | /* initial setup (after which freev() is callable) */ |
| 348 | v->re = re; |
| 349 | v->now = string; |
| 350 | v->stop = v->now + len; |
| 351 | v->savenow = v->savestop = NULL; |
| 352 | v->err = 0; |
| 353 | v->cflags = flags; |
| 354 | v->nsubexp = 0; |
| 355 | v->subs = v->sub10; |
| 356 | v->nsubs = 10; |
| 357 | for (j = 0; j < v->nsubs; j++) |
| 358 | v->subs[j] = NULL; |
| 359 | v->nfa = NULL; |
| 360 | v->cm = NULL; |
| 361 | v->nlcolor = COLORLESS; |
| 362 | v->wordchrs = NULL; |
| 363 | v->tree = NULL; |
| 364 | v->treechain = NULL; |
| 365 | v->treefree = NULL; |
| 366 | v->cv = NULL; |
| 367 | v->cv2 = NULL; |
| 368 | v->lacons = NULL; |
| 369 | v->nlacons = 0; |
| 370 | v->spaceused = 0; |
| 371 | re->re_magic = REMAGIC; |
| 372 | re->re_info = 0; /* bits get set during parse */ |
| 373 | re->re_csize = sizeof(chr); |
| 374 | re->re_collation = collation; |
| 375 | re->re_guts = NULL; |
| 376 | re->re_fns = VS(&functions); |
| 377 | |
| 378 | /* more complex setup, malloced things */ |
| 379 | re->re_guts = VS(MALLOC(sizeof(struct guts))); |
| 380 | if (re->re_guts == NULL) |
| 381 | return freev(v, REG_ESPACE); |
| 382 | g = (struct guts *) re->re_guts; |
| 383 | g->tree = NULL; |
| 384 | initcm(v, &g->cmap); |
| 385 | v->cm = &g->cmap; |
| 386 | g->lacons = NULL; |
| 387 | g->nlacons = 0; |
| 388 | ZAPCNFA(g->search); |
| 389 | v->nfa = newnfa(v, v->cm, (struct nfa *) NULL); |
| 390 | CNOERR(); |
| 391 | /* set up a reasonably-sized transient cvec for getcvec usage */ |
| 392 | v->cv = newcvec(100, 20); |
| 393 | if (v->cv == NULL) |
| 394 | return freev(v, REG_ESPACE); |
| 395 | |
| 396 | /* parsing */ |
| 397 | lexstart(v); /* also handles prefixes */ |
| 398 | if ((v->cflags & REG_NLSTOP) || (v->cflags & REG_NLANCH)) |
| 399 | { |
| 400 | /* assign newline a unique color */ |
| 401 | v->nlcolor = subcolor(v->cm, newline()); |
| 402 | okcolors(v->nfa, v->cm); |
| 403 | } |
| 404 | CNOERR(); |
| 405 | v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final); |
| 406 | assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */ |
| 407 | CNOERR(); |
| 408 | assert(v->tree != NULL); |
| 409 | |
| 410 | /* finish setup of nfa and its subre tree */ |
| 411 | specialcolors(v->nfa); |
| 412 | CNOERR(); |
| 413 | #ifdef REG_DEBUG |
| 414 | if (debug != NULL) |
| 415 | { |
| 416 | fprintf(debug, "\n\n\n========= RAW ==========\n" ); |
| 417 | dumpnfa(v->nfa, debug); |
| 418 | dumpst(v->tree, debug, 1); |
| 419 | } |
| 420 | #endif |
| 421 | optst(v, v->tree); |
| 422 | v->ntree = numst(v->tree, 1); |
| 423 | markst(v->tree); |
| 424 | cleanst(v); |
| 425 | #ifdef REG_DEBUG |
| 426 | if (debug != NULL) |
| 427 | { |
| 428 | fprintf(debug, "\n\n\n========= TREE FIXED ==========\n" ); |
| 429 | dumpst(v->tree, debug, 1); |
| 430 | } |
| 431 | #endif |
| 432 | |
| 433 | /* build compacted NFAs for tree and lacons */ |
| 434 | re->re_info |= nfatree(v, v->tree, debug); |
| 435 | CNOERR(); |
| 436 | assert(v->nlacons == 0 || v->lacons != NULL); |
| 437 | for (i = 1; i < v->nlacons; i++) |
| 438 | { |
| 439 | struct subre *lasub = &v->lacons[i]; |
| 440 | |
| 441 | #ifdef REG_DEBUG |
| 442 | if (debug != NULL) |
| 443 | fprintf(debug, "\n\n\n========= LA%d ==========\n" , i); |
| 444 | #endif |
| 445 | |
| 446 | /* Prepend .* to pattern if it's a lookbehind LACON */ |
| 447 | nfanode(v, lasub, !LATYPE_IS_AHEAD(lasub->subno), debug); |
| 448 | } |
| 449 | CNOERR(); |
| 450 | if (v->tree->flags & SHORTER) |
| 451 | NOTE(REG_USHORTEST); |
| 452 | |
| 453 | /* build compacted NFAs for tree, lacons, fast search */ |
| 454 | #ifdef REG_DEBUG |
| 455 | if (debug != NULL) |
| 456 | fprintf(debug, "\n\n\n========= SEARCH ==========\n" ); |
| 457 | #endif |
| 458 | /* can sacrifice main NFA now, so use it as work area */ |
| 459 | (DISCARD) optimize(v->nfa, debug); |
| 460 | CNOERR(); |
| 461 | makesearch(v, v->nfa); |
| 462 | CNOERR(); |
| 463 | compact(v->nfa, &g->search); |
| 464 | CNOERR(); |
| 465 | |
| 466 | /* looks okay, package it up */ |
| 467 | re->re_nsub = v->nsubexp; |
| 468 | v->re = NULL; /* freev no longer frees re */ |
| 469 | g->magic = GUTSMAGIC; |
| 470 | g->cflags = v->cflags; |
| 471 | g->info = re->re_info; |
| 472 | g->nsub = re->re_nsub; |
| 473 | g->tree = v->tree; |
| 474 | v->tree = NULL; |
| 475 | g->ntree = v->ntree; |
| 476 | g->compare = (v->cflags & REG_ICASE) ? casecmp : cmp; |
| 477 | g->lacons = v->lacons; |
| 478 | v->lacons = NULL; |
| 479 | g->nlacons = v->nlacons; |
| 480 | |
| 481 | #ifdef REG_DEBUG |
| 482 | if (flags & REG_DUMP) |
| 483 | dump(re, stdout); |
| 484 | #endif |
| 485 | |
| 486 | assert(v->err == 0); |
| 487 | return freev(v, 0); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * moresubs - enlarge subRE vector |
| 492 | */ |
| 493 | static void |
| 494 | moresubs(struct vars *v, |
| 495 | int wanted) /* want enough room for this one */ |
| 496 | { |
| 497 | struct subre **p; |
| 498 | size_t n; |
| 499 | |
| 500 | assert(wanted > 0 && (size_t) wanted >= v->nsubs); |
| 501 | n = (size_t) wanted * 3 / 2 + 1; |
| 502 | |
| 503 | if (v->subs == v->sub10) |
| 504 | { |
| 505 | p = (struct subre **) MALLOC(n * sizeof(struct subre *)); |
| 506 | if (p != NULL) |
| 507 | memcpy(VS(p), VS(v->subs), |
| 508 | v->nsubs * sizeof(struct subre *)); |
| 509 | } |
| 510 | else |
| 511 | p = (struct subre **) REALLOC(v->subs, n * sizeof(struct subre *)); |
| 512 | if (p == NULL) |
| 513 | { |
| 514 | ERR(REG_ESPACE); |
| 515 | return; |
| 516 | } |
| 517 | v->subs = p; |
| 518 | for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++) |
| 519 | *p = NULL; |
| 520 | assert(v->nsubs == n); |
| 521 | assert((size_t) wanted < v->nsubs); |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * freev - free vars struct's substructures where necessary |
| 526 | * |
| 527 | * Optionally does error-number setting, and always returns error code |
| 528 | * (if any), to make error-handling code terser. |
| 529 | */ |
| 530 | static int |
| 531 | freev(struct vars *v, |
| 532 | int err) |
| 533 | { |
| 534 | if (v->re != NULL) |
| 535 | rfree(v->re); |
| 536 | if (v->subs != v->sub10) |
| 537 | FREE(v->subs); |
| 538 | if (v->nfa != NULL) |
| 539 | freenfa(v->nfa); |
| 540 | if (v->tree != NULL) |
| 541 | freesubre(v, v->tree); |
| 542 | if (v->treechain != NULL) |
| 543 | cleanst(v); |
| 544 | if (v->cv != NULL) |
| 545 | freecvec(v->cv); |
| 546 | if (v->cv2 != NULL) |
| 547 | freecvec(v->cv2); |
| 548 | if (v->lacons != NULL) |
| 549 | freelacons(v->lacons, v->nlacons); |
| 550 | ERR(err); /* nop if err==0 */ |
| 551 | |
| 552 | return v->err; |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * makesearch - turn an NFA into a search NFA (implicit prepend of .*?) |
| 557 | * NFA must have been optimize()d already. |
| 558 | */ |
| 559 | static void |
| 560 | makesearch(struct vars *v, |
| 561 | struct nfa *nfa) |
| 562 | { |
| 563 | struct arc *a; |
| 564 | struct arc *b; |
| 565 | struct state *pre = nfa->pre; |
| 566 | struct state *s; |
| 567 | struct state *s2; |
| 568 | struct state *slist; |
| 569 | |
| 570 | /* no loops are needed if it's anchored */ |
| 571 | for (a = pre->outs; a != NULL; a = a->outchain) |
| 572 | { |
| 573 | assert(a->type == PLAIN); |
| 574 | if (a->co != nfa->bos[0] && a->co != nfa->bos[1]) |
| 575 | break; |
| 576 | } |
| 577 | if (a != NULL) |
| 578 | { |
| 579 | /* add implicit .* in front */ |
| 580 | rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre); |
| 581 | |
| 582 | /* and ^* and \A* too -- not always necessary, but harmless */ |
| 583 | newarc(nfa, PLAIN, nfa->bos[0], pre, pre); |
| 584 | newarc(nfa, PLAIN, nfa->bos[1], pre, pre); |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Now here's the subtle part. Because many REs have no lookback |
| 589 | * constraints, often knowing when you were in the pre state tells you |
| 590 | * little; it's the next state(s) that are informative. But some of them |
| 591 | * may have other inarcs, i.e. it may be possible to make actual progress |
| 592 | * and then return to one of them. We must de-optimize such cases, |
| 593 | * splitting each such state into progress and no-progress states. |
| 594 | */ |
| 595 | |
| 596 | /* first, make a list of the states reachable from pre and elsewhere */ |
| 597 | slist = NULL; |
| 598 | for (a = pre->outs; a != NULL; a = a->outchain) |
| 599 | { |
| 600 | s = a->to; |
| 601 | for (b = s->ins; b != NULL; b = b->inchain) |
| 602 | { |
| 603 | if (b->from != pre) |
| 604 | break; |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * We want to mark states as being in the list already by having non |
| 609 | * NULL tmp fields, but we can't just store the old slist value in tmp |
| 610 | * because that doesn't work for the first such state. Instead, the |
| 611 | * first list entry gets its own address in tmp. |
| 612 | */ |
| 613 | if (b != NULL && s->tmp == NULL) |
| 614 | { |
| 615 | s->tmp = (slist != NULL) ? slist : s; |
| 616 | slist = s; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | /* do the splits */ |
| 621 | for (s = slist; s != NULL; s = s2) |
| 622 | { |
| 623 | s2 = newstate(nfa); |
| 624 | NOERR(); |
| 625 | copyouts(nfa, s, s2); |
| 626 | NOERR(); |
| 627 | for (a = s->ins; a != NULL; a = b) |
| 628 | { |
| 629 | b = a->inchain; |
| 630 | if (a->from != pre) |
| 631 | { |
| 632 | cparc(nfa, a, a->from, s2); |
| 633 | freearc(nfa, a); |
| 634 | } |
| 635 | } |
| 636 | s2 = (s->tmp != s) ? s->tmp : NULL; |
| 637 | s->tmp = NULL; /* clean up while we're at it */ |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * parse - parse an RE |
| 643 | * |
| 644 | * This is actually just the top level, which parses a bunch of branches |
| 645 | * tied together with '|'. They appear in the tree as the left children |
| 646 | * of a chain of '|' subres. |
| 647 | */ |
| 648 | static struct subre * |
| 649 | parse(struct vars *v, |
| 650 | int stopper, /* EOS or ')' */ |
| 651 | int type, /* LACON (lookaround subRE) or PLAIN */ |
| 652 | struct state *init, /* initial state */ |
| 653 | struct state *final) /* final state */ |
| 654 | { |
| 655 | struct state *left; /* scaffolding for branch */ |
| 656 | struct state *right; |
| 657 | struct subre *branches; /* top level */ |
| 658 | struct subre *branch; /* current branch */ |
| 659 | struct subre *t; /* temporary */ |
| 660 | int firstbranch; /* is this the first branch? */ |
| 661 | |
| 662 | assert(stopper == ')' || stopper == EOS); |
| 663 | |
| 664 | branches = subre(v, '|', LONGER, init, final); |
| 665 | NOERRN(); |
| 666 | branch = branches; |
| 667 | firstbranch = 1; |
| 668 | do |
| 669 | { /* a branch */ |
| 670 | if (!firstbranch) |
| 671 | { |
| 672 | /* need a place to hang it */ |
| 673 | branch->right = subre(v, '|', LONGER, init, final); |
| 674 | NOERRN(); |
| 675 | branch = branch->right; |
| 676 | } |
| 677 | firstbranch = 0; |
| 678 | left = newstate(v->nfa); |
| 679 | right = newstate(v->nfa); |
| 680 | NOERRN(); |
| 681 | EMPTYARC(init, left); |
| 682 | EMPTYARC(right, final); |
| 683 | NOERRN(); |
| 684 | branch->left = parsebranch(v, stopper, type, left, right, 0); |
| 685 | NOERRN(); |
| 686 | branch->flags |= UP(branch->flags | branch->left->flags); |
| 687 | if ((branch->flags & ~branches->flags) != 0) /* new flags */ |
| 688 | for (t = branches; t != branch; t = t->right) |
| 689 | t->flags |= branch->flags; |
| 690 | } while (EAT('|')); |
| 691 | assert(SEE(stopper) || SEE(EOS)); |
| 692 | |
| 693 | if (!SEE(stopper)) |
| 694 | { |
| 695 | assert(stopper == ')' && SEE(EOS)); |
| 696 | ERR(REG_EPAREN); |
| 697 | } |
| 698 | |
| 699 | /* optimize out simple cases */ |
| 700 | if (branch == branches) |
| 701 | { /* only one branch */ |
| 702 | assert(branch->right == NULL); |
| 703 | t = branch->left; |
| 704 | branch->left = NULL; |
| 705 | freesubre(v, branches); |
| 706 | branches = t; |
| 707 | } |
| 708 | else if (!MESSY(branches->flags)) |
| 709 | { /* no interesting innards */ |
| 710 | freesubre(v, branches->left); |
| 711 | branches->left = NULL; |
| 712 | freesubre(v, branches->right); |
| 713 | branches->right = NULL; |
| 714 | branches->op = '='; |
| 715 | } |
| 716 | |
| 717 | return branches; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * parsebranch - parse one branch of an RE |
| 722 | * |
| 723 | * This mostly manages concatenation, working closely with parseqatom(). |
| 724 | * Concatenated things are bundled up as much as possible, with separate |
| 725 | * ',' nodes introduced only when necessary due to substructure. |
| 726 | */ |
| 727 | static struct subre * |
| 728 | parsebranch(struct vars *v, |
| 729 | int stopper, /* EOS or ')' */ |
| 730 | int type, /* LACON (lookaround subRE) or PLAIN */ |
| 731 | struct state *left, /* leftmost state */ |
| 732 | struct state *right, /* rightmost state */ |
| 733 | int partial) /* is this only part of a branch? */ |
| 734 | { |
| 735 | struct state *lp; /* left end of current construct */ |
| 736 | int seencontent; /* is there anything in this branch yet? */ |
| 737 | struct subre *t; |
| 738 | |
| 739 | lp = left; |
| 740 | seencontent = 0; |
| 741 | t = subre(v, '=', 0, left, right); /* op '=' is tentative */ |
| 742 | NOERRN(); |
| 743 | while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) |
| 744 | { |
| 745 | if (seencontent) |
| 746 | { /* implicit concat operator */ |
| 747 | lp = newstate(v->nfa); |
| 748 | NOERRN(); |
| 749 | moveins(v->nfa, right, lp); |
| 750 | } |
| 751 | seencontent = 1; |
| 752 | |
| 753 | /* NB, recursion in parseqatom() may swallow rest of branch */ |
| 754 | parseqatom(v, stopper, type, lp, right, t); |
| 755 | NOERRN(); |
| 756 | } |
| 757 | |
| 758 | if (!seencontent) |
| 759 | { /* empty branch */ |
| 760 | if (!partial) |
| 761 | NOTE(REG_UUNSPEC); |
| 762 | assert(lp == left); |
| 763 | EMPTYARC(left, right); |
| 764 | } |
| 765 | |
| 766 | return t; |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * parseqatom - parse one quantified atom or constraint of an RE |
| 771 | * |
| 772 | * The bookkeeping near the end cooperates very closely with parsebranch(); |
| 773 | * in particular, it contains a recursion that can involve parsing the rest |
| 774 | * of the branch, making this function's name somewhat inaccurate. |
| 775 | */ |
| 776 | static void |
| 777 | parseqatom(struct vars *v, |
| 778 | int stopper, /* EOS or ')' */ |
| 779 | int type, /* LACON (lookaround subRE) or PLAIN */ |
| 780 | struct state *lp, /* left state to hang it on */ |
| 781 | struct state *rp, /* right state to hang it on */ |
| 782 | struct subre *top) /* subtree top */ |
| 783 | { |
| 784 | struct state *s; /* temporaries for new states */ |
| 785 | struct state *s2; |
| 786 | |
| 787 | #define ARCV(t, val) newarc(v->nfa, t, val, lp, rp) |
| 788 | int m, |
| 789 | n; |
| 790 | struct subre *atom; /* atom's subtree */ |
| 791 | struct subre *t; |
| 792 | int cap; /* capturing parens? */ |
| 793 | int latype; /* lookaround constraint type */ |
| 794 | int subno; /* capturing-parens or backref number */ |
| 795 | int atomtype; |
| 796 | int qprefer; /* quantifier short/long preference */ |
| 797 | int f; |
| 798 | struct subre **atomp; /* where the pointer to atom is */ |
| 799 | |
| 800 | /* initial bookkeeping */ |
| 801 | atom = NULL; |
| 802 | assert(lp->nouts == 0); /* must string new code */ |
| 803 | assert(rp->nins == 0); /* between lp and rp */ |
| 804 | subno = 0; /* just to shut lint up */ |
| 805 | |
| 806 | /* an atom or constraint... */ |
| 807 | atomtype = v->nexttype; |
| 808 | switch (atomtype) |
| 809 | { |
| 810 | /* first, constraints, which end by returning */ |
| 811 | case '^': |
| 812 | ARCV('^', 1); |
| 813 | if (v->cflags & REG_NLANCH) |
| 814 | ARCV(BEHIND, v->nlcolor); |
| 815 | NEXT(); |
| 816 | return; |
| 817 | break; |
| 818 | case '$': |
| 819 | ARCV('$', 1); |
| 820 | if (v->cflags & REG_NLANCH) |
| 821 | ARCV(AHEAD, v->nlcolor); |
| 822 | NEXT(); |
| 823 | return; |
| 824 | break; |
| 825 | case SBEGIN: |
| 826 | ARCV('^', 1); /* BOL */ |
| 827 | ARCV('^', 0); /* or BOS */ |
| 828 | NEXT(); |
| 829 | return; |
| 830 | break; |
| 831 | case SEND: |
| 832 | ARCV('$', 1); /* EOL */ |
| 833 | ARCV('$', 0); /* or EOS */ |
| 834 | NEXT(); |
| 835 | return; |
| 836 | break; |
| 837 | case '<': |
| 838 | wordchrs(v); /* does NEXT() */ |
| 839 | s = newstate(v->nfa); |
| 840 | NOERR(); |
| 841 | nonword(v, BEHIND, lp, s); |
| 842 | word(v, AHEAD, s, rp); |
| 843 | return; |
| 844 | break; |
| 845 | case '>': |
| 846 | wordchrs(v); /* does NEXT() */ |
| 847 | s = newstate(v->nfa); |
| 848 | NOERR(); |
| 849 | word(v, BEHIND, lp, s); |
| 850 | nonword(v, AHEAD, s, rp); |
| 851 | return; |
| 852 | break; |
| 853 | case WBDRY: |
| 854 | wordchrs(v); /* does NEXT() */ |
| 855 | s = newstate(v->nfa); |
| 856 | NOERR(); |
| 857 | nonword(v, BEHIND, lp, s); |
| 858 | word(v, AHEAD, s, rp); |
| 859 | s = newstate(v->nfa); |
| 860 | NOERR(); |
| 861 | word(v, BEHIND, lp, s); |
| 862 | nonword(v, AHEAD, s, rp); |
| 863 | return; |
| 864 | break; |
| 865 | case NWBDRY: |
| 866 | wordchrs(v); /* does NEXT() */ |
| 867 | s = newstate(v->nfa); |
| 868 | NOERR(); |
| 869 | word(v, BEHIND, lp, s); |
| 870 | word(v, AHEAD, s, rp); |
| 871 | s = newstate(v->nfa); |
| 872 | NOERR(); |
| 873 | nonword(v, BEHIND, lp, s); |
| 874 | nonword(v, AHEAD, s, rp); |
| 875 | return; |
| 876 | break; |
| 877 | case LACON: /* lookaround constraint */ |
| 878 | latype = v->nextvalue; |
| 879 | NEXT(); |
| 880 | s = newstate(v->nfa); |
| 881 | s2 = newstate(v->nfa); |
| 882 | NOERR(); |
| 883 | t = parse(v, ')', LACON, s, s2); |
| 884 | freesubre(v, t); /* internal structure irrelevant */ |
| 885 | NOERR(); |
| 886 | assert(SEE(')')); |
| 887 | NEXT(); |
| 888 | processlacon(v, s, s2, latype, lp, rp); |
| 889 | return; |
| 890 | break; |
| 891 | /* then errors, to get them out of the way */ |
| 892 | case '*': |
| 893 | case '+': |
| 894 | case '?': |
| 895 | case '{': |
| 896 | ERR(REG_BADRPT); |
| 897 | return; |
| 898 | break; |
| 899 | default: |
| 900 | ERR(REG_ASSERT); |
| 901 | return; |
| 902 | break; |
| 903 | /* then plain characters, and minor variants on that theme */ |
| 904 | case ')': /* unbalanced paren */ |
| 905 | if ((v->cflags & REG_ADVANCED) != REG_EXTENDED) |
| 906 | { |
| 907 | ERR(REG_EPAREN); |
| 908 | return; |
| 909 | } |
| 910 | /* legal in EREs due to specification botch */ |
| 911 | NOTE(REG_UPBOTCH); |
| 912 | /* fall through into case PLAIN */ |
| 913 | /* FALLTHROUGH */ |
| 914 | case PLAIN: |
| 915 | onechr(v, v->nextvalue, lp, rp); |
| 916 | okcolors(v->nfa, v->cm); |
| 917 | NOERR(); |
| 918 | NEXT(); |
| 919 | break; |
| 920 | case '[': |
| 921 | if (v->nextvalue == 1) |
| 922 | bracket(v, lp, rp); |
| 923 | else |
| 924 | cbracket(v, lp, rp); |
| 925 | assert(SEE(']') || ISERR()); |
| 926 | NEXT(); |
| 927 | break; |
| 928 | case '.': |
| 929 | rainbow(v->nfa, v->cm, PLAIN, |
| 930 | (v->cflags & REG_NLSTOP) ? v->nlcolor : COLORLESS, |
| 931 | lp, rp); |
| 932 | NEXT(); |
| 933 | break; |
| 934 | /* and finally the ugly stuff */ |
| 935 | case '(': /* value flags as capturing or non */ |
| 936 | cap = (type == LACON) ? 0 : v->nextvalue; |
| 937 | if (cap) |
| 938 | { |
| 939 | v->nsubexp++; |
| 940 | subno = v->nsubexp; |
| 941 | if ((size_t) subno >= v->nsubs) |
| 942 | moresubs(v, subno); |
| 943 | assert((size_t) subno < v->nsubs); |
| 944 | } |
| 945 | else |
| 946 | atomtype = PLAIN; /* something that's not '(' */ |
| 947 | NEXT(); |
| 948 | /* need new endpoints because tree will contain pointers */ |
| 949 | s = newstate(v->nfa); |
| 950 | s2 = newstate(v->nfa); |
| 951 | NOERR(); |
| 952 | EMPTYARC(lp, s); |
| 953 | EMPTYARC(s2, rp); |
| 954 | NOERR(); |
| 955 | atom = parse(v, ')', type, s, s2); |
| 956 | assert(SEE(')') || ISERR()); |
| 957 | NEXT(); |
| 958 | NOERR(); |
| 959 | if (cap) |
| 960 | { |
| 961 | v->subs[subno] = atom; |
| 962 | t = subre(v, '(', atom->flags | CAP, lp, rp); |
| 963 | NOERR(); |
| 964 | t->subno = subno; |
| 965 | t->left = atom; |
| 966 | atom = t; |
| 967 | } |
| 968 | /* postpone everything else pending possible {0} */ |
| 969 | break; |
| 970 | case BACKREF: /* the Feature From The Black Lagoon */ |
| 971 | INSIST(type != LACON, REG_ESUBREG); |
| 972 | INSIST(v->nextvalue < v->nsubs, REG_ESUBREG); |
| 973 | INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG); |
| 974 | NOERR(); |
| 975 | assert(v->nextvalue > 0); |
| 976 | atom = subre(v, 'b', BACKR, lp, rp); |
| 977 | NOERR(); |
| 978 | subno = v->nextvalue; |
| 979 | atom->subno = subno; |
| 980 | EMPTYARC(lp, rp); /* temporarily, so there's something */ |
| 981 | NEXT(); |
| 982 | break; |
| 983 | } |
| 984 | |
| 985 | /* ...and an atom may be followed by a quantifier */ |
| 986 | switch (v->nexttype) |
| 987 | { |
| 988 | case '*': |
| 989 | m = 0; |
| 990 | n = DUPINF; |
| 991 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 992 | NEXT(); |
| 993 | break; |
| 994 | case '+': |
| 995 | m = 1; |
| 996 | n = DUPINF; |
| 997 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 998 | NEXT(); |
| 999 | break; |
| 1000 | case '?': |
| 1001 | m = 0; |
| 1002 | n = 1; |
| 1003 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 1004 | NEXT(); |
| 1005 | break; |
| 1006 | case '{': |
| 1007 | NEXT(); |
| 1008 | m = scannum(v); |
| 1009 | if (EAT(',')) |
| 1010 | { |
| 1011 | if (SEE(DIGIT)) |
| 1012 | n = scannum(v); |
| 1013 | else |
| 1014 | n = DUPINF; |
| 1015 | if (m > n) |
| 1016 | { |
| 1017 | ERR(REG_BADBR); |
| 1018 | return; |
| 1019 | } |
| 1020 | /* {m,n} exercises preference, even if it's {m,m} */ |
| 1021 | qprefer = (v->nextvalue) ? LONGER : SHORTER; |
| 1022 | } |
| 1023 | else |
| 1024 | { |
| 1025 | n = m; |
| 1026 | /* {m} passes operand's preference through */ |
| 1027 | qprefer = 0; |
| 1028 | } |
| 1029 | if (!SEE('}')) |
| 1030 | { /* catches errors too */ |
| 1031 | ERR(REG_BADBR); |
| 1032 | return; |
| 1033 | } |
| 1034 | NEXT(); |
| 1035 | break; |
| 1036 | default: /* no quantifier */ |
| 1037 | m = n = 1; |
| 1038 | qprefer = 0; |
| 1039 | break; |
| 1040 | } |
| 1041 | |
| 1042 | /* annoying special case: {0} or {0,0} cancels everything */ |
| 1043 | if (m == 0 && n == 0) |
| 1044 | { |
| 1045 | if (atom != NULL) |
| 1046 | freesubre(v, atom); |
| 1047 | if (atomtype == '(') |
| 1048 | v->subs[subno] = NULL; |
| 1049 | delsub(v->nfa, lp, rp); |
| 1050 | EMPTYARC(lp, rp); |
| 1051 | return; |
| 1052 | } |
| 1053 | |
| 1054 | /* if not a messy case, avoid hard part */ |
| 1055 | assert(!MESSY(top->flags)); |
| 1056 | f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0); |
| 1057 | if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) |
| 1058 | { |
| 1059 | if (!(m == 1 && n == 1)) |
| 1060 | repeat(v, lp, rp, m, n); |
| 1061 | if (atom != NULL) |
| 1062 | freesubre(v, atom); |
| 1063 | top->flags = f; |
| 1064 | return; |
| 1065 | } |
| 1066 | |
| 1067 | /* |
| 1068 | * hard part: something messy |
| 1069 | * |
| 1070 | * That is, capturing parens, back reference, short/long clash, or an atom |
| 1071 | * with substructure containing one of those. |
| 1072 | */ |
| 1073 | |
| 1074 | /* now we'll need a subre for the contents even if they're boring */ |
| 1075 | if (atom == NULL) |
| 1076 | { |
| 1077 | atom = subre(v, '=', 0, lp, rp); |
| 1078 | NOERR(); |
| 1079 | } |
| 1080 | |
| 1081 | /*---------- |
| 1082 | * Prepare a general-purpose state skeleton. |
| 1083 | * |
| 1084 | * In the no-backrefs case, we want this: |
| 1085 | * |
| 1086 | * [lp] ---> [s] ---prefix---> [begin] ---atom---> [end] ---rest---> [rp] |
| 1087 | * |
| 1088 | * where prefix is some repetitions of atom. In the general case we need |
| 1089 | * |
| 1090 | * [lp] ---> [s] ---iterator---> [s2] ---rest---> [rp] |
| 1091 | * |
| 1092 | * where the iterator wraps around [begin] ---atom---> [end] |
| 1093 | * |
| 1094 | * We make the s state here for both cases; s2 is made below if needed |
| 1095 | *---------- |
| 1096 | */ |
| 1097 | s = newstate(v->nfa); /* first, new endpoints for the atom */ |
| 1098 | s2 = newstate(v->nfa); |
| 1099 | NOERR(); |
| 1100 | moveouts(v->nfa, lp, s); |
| 1101 | moveins(v->nfa, rp, s2); |
| 1102 | NOERR(); |
| 1103 | atom->begin = s; |
| 1104 | atom->end = s2; |
| 1105 | s = newstate(v->nfa); /* set up starting state */ |
| 1106 | NOERR(); |
| 1107 | EMPTYARC(lp, s); |
| 1108 | NOERR(); |
| 1109 | |
| 1110 | /* break remaining subRE into x{...} and what follows */ |
| 1111 | t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp); |
| 1112 | NOERR(); |
| 1113 | t->left = atom; |
| 1114 | atomp = &t->left; |
| 1115 | |
| 1116 | /* here we should recurse... but we must postpone that to the end */ |
| 1117 | |
| 1118 | /* split top into prefix and remaining */ |
| 1119 | assert(top->op == '=' && top->left == NULL && top->right == NULL); |
| 1120 | top->left = subre(v, '=', top->flags, top->begin, lp); |
| 1121 | NOERR(); |
| 1122 | top->op = '.'; |
| 1123 | top->right = t; |
| 1124 | |
| 1125 | /* if it's a backref, now is the time to replicate the subNFA */ |
| 1126 | if (atomtype == BACKREF) |
| 1127 | { |
| 1128 | assert(atom->begin->nouts == 1); /* just the EMPTY */ |
| 1129 | delsub(v->nfa, atom->begin, atom->end); |
| 1130 | assert(v->subs[subno] != NULL); |
| 1131 | |
| 1132 | /* |
| 1133 | * And here's why the recursion got postponed: it must wait until the |
| 1134 | * skeleton is filled in, because it may hit a backref that wants to |
| 1135 | * copy the filled-in skeleton. |
| 1136 | */ |
| 1137 | dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end, |
| 1138 | atom->begin, atom->end); |
| 1139 | NOERR(); |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * It's quantifier time. If the atom is just a backref, we'll let it deal |
| 1144 | * with quantifiers internally. |
| 1145 | */ |
| 1146 | if (atomtype == BACKREF) |
| 1147 | { |
| 1148 | /* special case: backrefs have internal quantifiers */ |
| 1149 | EMPTYARC(s, atom->begin); /* empty prefix */ |
| 1150 | /* just stuff everything into atom */ |
| 1151 | repeat(v, atom->begin, atom->end, m, n); |
| 1152 | atom->min = (short) m; |
| 1153 | atom->max = (short) n; |
| 1154 | atom->flags |= COMBINE(qprefer, atom->flags); |
| 1155 | /* rest of branch can be strung starting from atom->end */ |
| 1156 | s2 = atom->end; |
| 1157 | } |
| 1158 | else if (m == 1 && n == 1 && |
| 1159 | (qprefer == 0 || |
| 1160 | (atom->flags & (LONGER | SHORTER | MIXED)) == 0 || |
| 1161 | qprefer == (atom->flags & (LONGER | SHORTER | MIXED)))) |
| 1162 | { |
| 1163 | /* no/vacuous quantifier: done */ |
| 1164 | EMPTYARC(s, atom->begin); /* empty prefix */ |
| 1165 | /* rest of branch can be strung starting from atom->end */ |
| 1166 | s2 = atom->end; |
| 1167 | } |
| 1168 | else if (m > 0 && !(atom->flags & BACKR)) |
| 1169 | { |
| 1170 | /* |
| 1171 | * If there's no backrefs involved, we can turn x{m,n} into |
| 1172 | * x{m-1,n-1}x, with capturing parens in only the second x. This is |
| 1173 | * valid because we only care about capturing matches from the final |
| 1174 | * iteration of the quantifier. It's a win because we can implement |
| 1175 | * the backref-free left side as a plain DFA node, since we don't |
| 1176 | * really care where its submatches are. |
| 1177 | */ |
| 1178 | dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin); |
| 1179 | assert(m >= 1 && m != DUPINF && n >= 1); |
| 1180 | repeat(v, s, atom->begin, m - 1, (n == DUPINF) ? n : n - 1); |
| 1181 | f = COMBINE(qprefer, atom->flags); |
| 1182 | t = subre(v, '.', f, s, atom->end); /* prefix and atom */ |
| 1183 | NOERR(); |
| 1184 | t->left = subre(v, '=', PREF(f), s, atom->begin); |
| 1185 | NOERR(); |
| 1186 | t->right = atom; |
| 1187 | *atomp = t; |
| 1188 | /* rest of branch can be strung starting from atom->end */ |
| 1189 | s2 = atom->end; |
| 1190 | } |
| 1191 | else |
| 1192 | { |
| 1193 | /* general case: need an iteration node */ |
| 1194 | s2 = newstate(v->nfa); |
| 1195 | NOERR(); |
| 1196 | moveouts(v->nfa, atom->end, s2); |
| 1197 | NOERR(); |
| 1198 | dupnfa(v->nfa, atom->begin, atom->end, s, s2); |
| 1199 | repeat(v, s, s2, m, n); |
| 1200 | f = COMBINE(qprefer, atom->flags); |
| 1201 | t = subre(v, '*', f, s, s2); |
| 1202 | NOERR(); |
| 1203 | t->min = (short) m; |
| 1204 | t->max = (short) n; |
| 1205 | t->left = atom; |
| 1206 | *atomp = t; |
| 1207 | /* rest of branch is to be strung from iteration's end state */ |
| 1208 | } |
| 1209 | |
| 1210 | /* and finally, look after that postponed recursion */ |
| 1211 | t = top->right; |
| 1212 | if (!(SEE('|') || SEE(stopper) || SEE(EOS))) |
| 1213 | t->right = parsebranch(v, stopper, type, s2, rp, 1); |
| 1214 | else |
| 1215 | { |
| 1216 | EMPTYARC(s2, rp); |
| 1217 | t->right = subre(v, '=', 0, s2, rp); |
| 1218 | } |
| 1219 | NOERR(); |
| 1220 | assert(SEE('|') || SEE(stopper) || SEE(EOS)); |
| 1221 | t->flags |= COMBINE(t->flags, t->right->flags); |
| 1222 | top->flags |= COMBINE(top->flags, t->flags); |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * nonword - generate arcs for non-word-character ahead or behind |
| 1227 | */ |
| 1228 | static void |
| 1229 | nonword(struct vars *v, |
| 1230 | int dir, /* AHEAD or BEHIND */ |
| 1231 | struct state *lp, |
| 1232 | struct state *rp) |
| 1233 | { |
| 1234 | int anchor = (dir == AHEAD) ? '$' : '^'; |
| 1235 | |
| 1236 | assert(dir == AHEAD || dir == BEHIND); |
| 1237 | newarc(v->nfa, anchor, 1, lp, rp); |
| 1238 | newarc(v->nfa, anchor, 0, lp, rp); |
| 1239 | colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp); |
| 1240 | /* (no need for special attention to \n) */ |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * word - generate arcs for word character ahead or behind |
| 1245 | */ |
| 1246 | static void |
| 1247 | word(struct vars *v, |
| 1248 | int dir, /* AHEAD or BEHIND */ |
| 1249 | struct state *lp, |
| 1250 | struct state *rp) |
| 1251 | { |
| 1252 | assert(dir == AHEAD || dir == BEHIND); |
| 1253 | cloneouts(v->nfa, v->wordchrs, lp, rp, dir); |
| 1254 | /* (no need for special attention to \n) */ |
| 1255 | } |
| 1256 | |
| 1257 | /* |
| 1258 | * scannum - scan a number |
| 1259 | */ |
| 1260 | static int /* value, <= DUPMAX */ |
| 1261 | scannum(struct vars *v) |
| 1262 | { |
| 1263 | int n = 0; |
| 1264 | |
| 1265 | while (SEE(DIGIT) && n < DUPMAX) |
| 1266 | { |
| 1267 | n = n * 10 + v->nextvalue; |
| 1268 | NEXT(); |
| 1269 | } |
| 1270 | if (SEE(DIGIT) || n > DUPMAX) |
| 1271 | { |
| 1272 | ERR(REG_BADBR); |
| 1273 | return 0; |
| 1274 | } |
| 1275 | return n; |
| 1276 | } |
| 1277 | |
| 1278 | /* |
| 1279 | * repeat - replicate subNFA for quantifiers |
| 1280 | * |
| 1281 | * The sub-NFA strung from lp to rp is modified to represent m to n |
| 1282 | * repetitions of its initial contents. |
| 1283 | * |
| 1284 | * The duplication sequences used here are chosen carefully so that any |
| 1285 | * pointers starting out pointing into the subexpression end up pointing into |
| 1286 | * the last occurrence. (Note that it may not be strung between the same |
| 1287 | * left and right end states, however!) This used to be important for the |
| 1288 | * subRE tree, although the important bits are now handled by the in-line |
| 1289 | * code in parse(), and when this is called, it doesn't matter any more. |
| 1290 | */ |
| 1291 | static void |
| 1292 | repeat(struct vars *v, |
| 1293 | struct state *lp, |
| 1294 | struct state *rp, |
| 1295 | int m, |
| 1296 | int n) |
| 1297 | { |
| 1298 | #define SOME 2 |
| 1299 | #define INF 3 |
| 1300 | #define PAIR(x, y) ((x)*4 + (y)) |
| 1301 | #define REDUCE(x) ( ((x) == DUPINF) ? INF : (((x) > 1) ? SOME : (x)) ) |
| 1302 | const int rm = REDUCE(m); |
| 1303 | const int rn = REDUCE(n); |
| 1304 | struct state *s; |
| 1305 | struct state *s2; |
| 1306 | |
| 1307 | switch (PAIR(rm, rn)) |
| 1308 | { |
| 1309 | case PAIR(0, 0): /* empty string */ |
| 1310 | delsub(v->nfa, lp, rp); |
| 1311 | EMPTYARC(lp, rp); |
| 1312 | break; |
| 1313 | case PAIR(0, 1): /* do as x| */ |
| 1314 | EMPTYARC(lp, rp); |
| 1315 | break; |
| 1316 | case PAIR(0, SOME): /* do as x{1,n}| */ |
| 1317 | repeat(v, lp, rp, 1, n); |
| 1318 | NOERR(); |
| 1319 | EMPTYARC(lp, rp); |
| 1320 | break; |
| 1321 | case PAIR(0, INF): /* loop x around */ |
| 1322 | s = newstate(v->nfa); |
| 1323 | NOERR(); |
| 1324 | moveouts(v->nfa, lp, s); |
| 1325 | moveins(v->nfa, rp, s); |
| 1326 | EMPTYARC(lp, s); |
| 1327 | EMPTYARC(s, rp); |
| 1328 | break; |
| 1329 | case PAIR(1, 1): /* no action required */ |
| 1330 | break; |
| 1331 | case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */ |
| 1332 | s = newstate(v->nfa); |
| 1333 | NOERR(); |
| 1334 | moveouts(v->nfa, lp, s); |
| 1335 | dupnfa(v->nfa, s, rp, lp, s); |
| 1336 | NOERR(); |
| 1337 | repeat(v, lp, s, 1, n - 1); |
| 1338 | NOERR(); |
| 1339 | EMPTYARC(lp, s); |
| 1340 | break; |
| 1341 | case PAIR(1, INF): /* add loopback arc */ |
| 1342 | s = newstate(v->nfa); |
| 1343 | s2 = newstate(v->nfa); |
| 1344 | NOERR(); |
| 1345 | moveouts(v->nfa, lp, s); |
| 1346 | moveins(v->nfa, rp, s2); |
| 1347 | EMPTYARC(lp, s); |
| 1348 | EMPTYARC(s2, rp); |
| 1349 | EMPTYARC(s2, s); |
| 1350 | break; |
| 1351 | case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */ |
| 1352 | s = newstate(v->nfa); |
| 1353 | NOERR(); |
| 1354 | moveouts(v->nfa, lp, s); |
| 1355 | dupnfa(v->nfa, s, rp, lp, s); |
| 1356 | NOERR(); |
| 1357 | repeat(v, lp, s, m - 1, n - 1); |
| 1358 | break; |
| 1359 | case PAIR(SOME, INF): /* do as x{m-1,}x */ |
| 1360 | s = newstate(v->nfa); |
| 1361 | NOERR(); |
| 1362 | moveouts(v->nfa, lp, s); |
| 1363 | dupnfa(v->nfa, s, rp, lp, s); |
| 1364 | NOERR(); |
| 1365 | repeat(v, lp, s, m - 1, n); |
| 1366 | break; |
| 1367 | default: |
| 1368 | ERR(REG_ASSERT); |
| 1369 | break; |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * bracket - handle non-complemented bracket expression |
| 1375 | * Also called from cbracket for complemented bracket expressions. |
| 1376 | */ |
| 1377 | static void |
| 1378 | bracket(struct vars *v, |
| 1379 | struct state *lp, |
| 1380 | struct state *rp) |
| 1381 | { |
| 1382 | assert(SEE('[')); |
| 1383 | NEXT(); |
| 1384 | while (!SEE(']') && !SEE(EOS)) |
| 1385 | brackpart(v, lp, rp); |
| 1386 | assert(SEE(']') || ISERR()); |
| 1387 | okcolors(v->nfa, v->cm); |
| 1388 | } |
| 1389 | |
| 1390 | /* |
| 1391 | * cbracket - handle complemented bracket expression |
| 1392 | * We do it by calling bracket() with dummy endpoints, and then complementing |
| 1393 | * the result. The alternative would be to invoke rainbow(), and then delete |
| 1394 | * arcs as the b.e. is seen... but that gets messy. |
| 1395 | */ |
| 1396 | static void |
| 1397 | cbracket(struct vars *v, |
| 1398 | struct state *lp, |
| 1399 | struct state *rp) |
| 1400 | { |
| 1401 | struct state *left = newstate(v->nfa); |
| 1402 | struct state *right = newstate(v->nfa); |
| 1403 | |
| 1404 | NOERR(); |
| 1405 | bracket(v, left, right); |
| 1406 | if (v->cflags & REG_NLSTOP) |
| 1407 | newarc(v->nfa, PLAIN, v->nlcolor, left, right); |
| 1408 | NOERR(); |
| 1409 | |
| 1410 | assert(lp->nouts == 0); /* all outarcs will be ours */ |
| 1411 | |
| 1412 | /* |
| 1413 | * Easy part of complementing, and all there is to do since the MCCE code |
| 1414 | * was removed. |
| 1415 | */ |
| 1416 | colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp); |
| 1417 | NOERR(); |
| 1418 | dropstate(v->nfa, left); |
| 1419 | assert(right->nins == 0); |
| 1420 | freestate(v->nfa, right); |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * brackpart - handle one item (or range) within a bracket expression |
| 1425 | */ |
| 1426 | static void |
| 1427 | brackpart(struct vars *v, |
| 1428 | struct state *lp, |
| 1429 | struct state *rp) |
| 1430 | { |
| 1431 | chr startc; |
| 1432 | chr endc; |
| 1433 | struct cvec *cv; |
| 1434 | const chr *startp; |
| 1435 | const chr *endp; |
| 1436 | chr c[1]; |
| 1437 | |
| 1438 | /* parse something, get rid of special cases, take shortcuts */ |
| 1439 | switch (v->nexttype) |
| 1440 | { |
| 1441 | case RANGE: /* a-b-c or other botch */ |
| 1442 | ERR(REG_ERANGE); |
| 1443 | return; |
| 1444 | break; |
| 1445 | case PLAIN: |
| 1446 | c[0] = v->nextvalue; |
| 1447 | NEXT(); |
| 1448 | /* shortcut for ordinary chr (not range) */ |
| 1449 | if (!SEE(RANGE)) |
| 1450 | { |
| 1451 | onechr(v, c[0], lp, rp); |
| 1452 | return; |
| 1453 | } |
| 1454 | startc = element(v, c, c + 1); |
| 1455 | NOERR(); |
| 1456 | break; |
| 1457 | case COLLEL: |
| 1458 | startp = v->now; |
| 1459 | endp = scanplain(v); |
| 1460 | INSIST(startp < endp, REG_ECOLLATE); |
| 1461 | NOERR(); |
| 1462 | startc = element(v, startp, endp); |
| 1463 | NOERR(); |
| 1464 | break; |
| 1465 | case ECLASS: |
| 1466 | startp = v->now; |
| 1467 | endp = scanplain(v); |
| 1468 | INSIST(startp < endp, REG_ECOLLATE); |
| 1469 | NOERR(); |
| 1470 | startc = element(v, startp, endp); |
| 1471 | NOERR(); |
| 1472 | cv = eclass(v, startc, (v->cflags & REG_ICASE)); |
| 1473 | NOERR(); |
| 1474 | subcolorcvec(v, cv, lp, rp); |
| 1475 | return; |
| 1476 | break; |
| 1477 | case CCLASS: |
| 1478 | startp = v->now; |
| 1479 | endp = scanplain(v); |
| 1480 | INSIST(startp < endp, REG_ECTYPE); |
| 1481 | NOERR(); |
| 1482 | cv = cclass(v, startp, endp, (v->cflags & REG_ICASE)); |
| 1483 | NOERR(); |
| 1484 | subcolorcvec(v, cv, lp, rp); |
| 1485 | return; |
| 1486 | break; |
| 1487 | default: |
| 1488 | ERR(REG_ASSERT); |
| 1489 | return; |
| 1490 | break; |
| 1491 | } |
| 1492 | |
| 1493 | if (SEE(RANGE)) |
| 1494 | { |
| 1495 | NEXT(); |
| 1496 | switch (v->nexttype) |
| 1497 | { |
| 1498 | case PLAIN: |
| 1499 | case RANGE: |
| 1500 | c[0] = v->nextvalue; |
| 1501 | NEXT(); |
| 1502 | endc = element(v, c, c + 1); |
| 1503 | NOERR(); |
| 1504 | break; |
| 1505 | case COLLEL: |
| 1506 | startp = v->now; |
| 1507 | endp = scanplain(v); |
| 1508 | INSIST(startp < endp, REG_ECOLLATE); |
| 1509 | NOERR(); |
| 1510 | endc = element(v, startp, endp); |
| 1511 | NOERR(); |
| 1512 | break; |
| 1513 | default: |
| 1514 | ERR(REG_ERANGE); |
| 1515 | return; |
| 1516 | break; |
| 1517 | } |
| 1518 | } |
| 1519 | else |
| 1520 | endc = startc; |
| 1521 | |
| 1522 | /* |
| 1523 | * Ranges are unportable. Actually, standard C does guarantee that digits |
| 1524 | * are contiguous, but making that an exception is just too complicated. |
| 1525 | */ |
| 1526 | if (startc != endc) |
| 1527 | NOTE(REG_UUNPORT); |
| 1528 | cv = range(v, startc, endc, (v->cflags & REG_ICASE)); |
| 1529 | NOERR(); |
| 1530 | subcolorcvec(v, cv, lp, rp); |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * scanplain - scan PLAIN contents of [. etc. |
| 1535 | * |
| 1536 | * Certain bits of trickery in lex.c know that this code does not try |
| 1537 | * to look past the final bracket of the [. etc. |
| 1538 | */ |
| 1539 | static const chr * /* just after end of sequence */ |
| 1540 | scanplain(struct vars *v) |
| 1541 | { |
| 1542 | const chr *endp; |
| 1543 | |
| 1544 | assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS)); |
| 1545 | NEXT(); |
| 1546 | |
| 1547 | endp = v->now; |
| 1548 | while (SEE(PLAIN)) |
| 1549 | { |
| 1550 | endp = v->now; |
| 1551 | NEXT(); |
| 1552 | } |
| 1553 | |
| 1554 | assert(SEE(END) || ISERR()); |
| 1555 | NEXT(); |
| 1556 | |
| 1557 | return endp; |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * onechr - fill in arcs for a plain character, and possible case complements |
| 1562 | * This is mostly a shortcut for efficient handling of the common case. |
| 1563 | */ |
| 1564 | static void |
| 1565 | onechr(struct vars *v, |
| 1566 | chr c, |
| 1567 | struct state *lp, |
| 1568 | struct state *rp) |
| 1569 | { |
| 1570 | if (!(v->cflags & REG_ICASE)) |
| 1571 | { |
| 1572 | color lastsubcolor = COLORLESS; |
| 1573 | |
| 1574 | subcoloronechr(v, c, lp, rp, &lastsubcolor); |
| 1575 | return; |
| 1576 | } |
| 1577 | |
| 1578 | /* rats, need general case anyway... */ |
| 1579 | subcolorcvec(v, allcases(v, c), lp, rp); |
| 1580 | } |
| 1581 | |
| 1582 | /* |
| 1583 | * wordchrs - set up word-chr list for word-boundary stuff, if needed |
| 1584 | * |
| 1585 | * The list is kept as a bunch of arcs between two dummy states; it's |
| 1586 | * disposed of by the unreachable-states sweep in NFA optimization. |
| 1587 | * Does NEXT(). Must not be called from any unusual lexical context. |
| 1588 | * This should be reconciled with the \w etc. handling in lex.c, and |
| 1589 | * should be cleaned up to reduce dependencies on input scanning. |
| 1590 | */ |
| 1591 | static void |
| 1592 | wordchrs(struct vars *v) |
| 1593 | { |
| 1594 | struct state *left; |
| 1595 | struct state *right; |
| 1596 | |
| 1597 | if (v->wordchrs != NULL) |
| 1598 | { |
| 1599 | NEXT(); /* for consistency */ |
| 1600 | return; |
| 1601 | } |
| 1602 | |
| 1603 | left = newstate(v->nfa); |
| 1604 | right = newstate(v->nfa); |
| 1605 | NOERR(); |
| 1606 | /* fine point: implemented with [::], and lexer will set REG_ULOCALE */ |
| 1607 | lexword(v); |
| 1608 | NEXT(); |
| 1609 | assert(v->savenow != NULL && SEE('[')); |
| 1610 | bracket(v, left, right); |
| 1611 | assert((v->savenow != NULL && SEE(']')) || ISERR()); |
| 1612 | NEXT(); |
| 1613 | NOERR(); |
| 1614 | v->wordchrs = left; |
| 1615 | } |
| 1616 | |
| 1617 | /* |
| 1618 | * processlacon - generate the NFA representation of a LACON |
| 1619 | * |
| 1620 | * In the general case this is just newlacon() + newarc(), but some cases |
| 1621 | * can be optimized. |
| 1622 | */ |
| 1623 | static void |
| 1624 | processlacon(struct vars *v, |
| 1625 | struct state *begin, /* start of parsed LACON sub-re */ |
| 1626 | struct state *end, /* end of parsed LACON sub-re */ |
| 1627 | int latype, |
| 1628 | struct state *lp, /* left state to hang it on */ |
| 1629 | struct state *rp) /* right state to hang it on */ |
| 1630 | { |
| 1631 | struct state *s1; |
| 1632 | int n; |
| 1633 | |
| 1634 | /* |
| 1635 | * Check for lookaround RE consisting of a single plain color arc (or set |
| 1636 | * of arcs); this would typically be a simple chr or a bracket expression. |
| 1637 | */ |
| 1638 | s1 = single_color_transition(begin, end); |
| 1639 | switch (latype) |
| 1640 | { |
| 1641 | case LATYPE_AHEAD_POS: |
| 1642 | /* If lookahead RE is just colorset C, convert to AHEAD(C) */ |
| 1643 | if (s1 != NULL) |
| 1644 | { |
| 1645 | cloneouts(v->nfa, s1, lp, rp, AHEAD); |
| 1646 | return; |
| 1647 | } |
| 1648 | break; |
| 1649 | case LATYPE_AHEAD_NEG: |
| 1650 | /* If lookahead RE is just colorset C, convert to AHEAD(^C)|$ */ |
| 1651 | if (s1 != NULL) |
| 1652 | { |
| 1653 | colorcomplement(v->nfa, v->cm, AHEAD, s1, lp, rp); |
| 1654 | newarc(v->nfa, '$', 1, lp, rp); |
| 1655 | newarc(v->nfa, '$', 0, lp, rp); |
| 1656 | return; |
| 1657 | } |
| 1658 | break; |
| 1659 | case LATYPE_BEHIND_POS: |
| 1660 | /* If lookbehind RE is just colorset C, convert to BEHIND(C) */ |
| 1661 | if (s1 != NULL) |
| 1662 | { |
| 1663 | cloneouts(v->nfa, s1, lp, rp, BEHIND); |
| 1664 | return; |
| 1665 | } |
| 1666 | break; |
| 1667 | case LATYPE_BEHIND_NEG: |
| 1668 | /* If lookbehind RE is just colorset C, convert to BEHIND(^C)|^ */ |
| 1669 | if (s1 != NULL) |
| 1670 | { |
| 1671 | colorcomplement(v->nfa, v->cm, BEHIND, s1, lp, rp); |
| 1672 | newarc(v->nfa, '^', 1, lp, rp); |
| 1673 | newarc(v->nfa, '^', 0, lp, rp); |
| 1674 | return; |
| 1675 | } |
| 1676 | break; |
| 1677 | default: |
| 1678 | assert(NOTREACHED); |
| 1679 | } |
| 1680 | |
| 1681 | /* General case: we need a LACON subre and arc */ |
| 1682 | n = newlacon(v, begin, end, latype); |
| 1683 | newarc(v->nfa, LACON, n, lp, rp); |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * subre - allocate a subre |
| 1688 | */ |
| 1689 | static struct subre * |
| 1690 | subre(struct vars *v, |
| 1691 | int op, |
| 1692 | int flags, |
| 1693 | struct state *begin, |
| 1694 | struct state *end) |
| 1695 | { |
| 1696 | struct subre *ret = v->treefree; |
| 1697 | |
| 1698 | /* |
| 1699 | * Checking for stack overflow here is sufficient to protect parse() and |
| 1700 | * its recursive subroutines. |
| 1701 | */ |
| 1702 | if (STACK_TOO_DEEP(v->re)) |
| 1703 | { |
| 1704 | ERR(REG_ETOOBIG); |
| 1705 | return NULL; |
| 1706 | } |
| 1707 | |
| 1708 | if (ret != NULL) |
| 1709 | v->treefree = ret->left; |
| 1710 | else |
| 1711 | { |
| 1712 | ret = (struct subre *) MALLOC(sizeof(struct subre)); |
| 1713 | if (ret == NULL) |
| 1714 | { |
| 1715 | ERR(REG_ESPACE); |
| 1716 | return NULL; |
| 1717 | } |
| 1718 | ret->chain = v->treechain; |
| 1719 | v->treechain = ret; |
| 1720 | } |
| 1721 | |
| 1722 | assert(strchr("=b|.*(" , op) != NULL); |
| 1723 | |
| 1724 | ret->op = op; |
| 1725 | ret->flags = flags; |
| 1726 | ret->id = 0; /* will be assigned later */ |
| 1727 | ret->subno = 0; |
| 1728 | ret->min = ret->max = 1; |
| 1729 | ret->left = NULL; |
| 1730 | ret->right = NULL; |
| 1731 | ret->begin = begin; |
| 1732 | ret->end = end; |
| 1733 | ZAPCNFA(ret->cnfa); |
| 1734 | |
| 1735 | return ret; |
| 1736 | } |
| 1737 | |
| 1738 | /* |
| 1739 | * freesubre - free a subRE subtree |
| 1740 | */ |
| 1741 | static void |
| 1742 | freesubre(struct vars *v, /* might be NULL */ |
| 1743 | struct subre *sr) |
| 1744 | { |
| 1745 | if (sr == NULL) |
| 1746 | return; |
| 1747 | |
| 1748 | if (sr->left != NULL) |
| 1749 | freesubre(v, sr->left); |
| 1750 | if (sr->right != NULL) |
| 1751 | freesubre(v, sr->right); |
| 1752 | |
| 1753 | freesrnode(v, sr); |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | * freesrnode - free one node in a subRE subtree |
| 1758 | */ |
| 1759 | static void |
| 1760 | freesrnode(struct vars *v, /* might be NULL */ |
| 1761 | struct subre *sr) |
| 1762 | { |
| 1763 | if (sr == NULL) |
| 1764 | return; |
| 1765 | |
| 1766 | if (!NULLCNFA(sr->cnfa)) |
| 1767 | freecnfa(&sr->cnfa); |
| 1768 | sr->flags = 0; |
| 1769 | |
| 1770 | if (v != NULL && v->treechain != NULL) |
| 1771 | { |
| 1772 | /* we're still parsing, maybe we can reuse the subre */ |
| 1773 | sr->left = v->treefree; |
| 1774 | v->treefree = sr; |
| 1775 | } |
| 1776 | else |
| 1777 | FREE(sr); |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * optst - optimize a subRE subtree |
| 1782 | */ |
| 1783 | static void |
| 1784 | optst(struct vars *v, |
| 1785 | struct subre *t) |
| 1786 | { |
| 1787 | /* |
| 1788 | * DGP (2007-11-13): I assume it was the programmer's intent to eventually |
| 1789 | * come back and add code to optimize subRE trees, but the routine coded |
| 1790 | * just spends effort traversing the tree and doing nothing. We can do |
| 1791 | * nothing with less effort. |
| 1792 | */ |
| 1793 | return; |
| 1794 | } |
| 1795 | |
| 1796 | /* |
| 1797 | * numst - number tree nodes (assigning "id" indexes) |
| 1798 | */ |
| 1799 | static int /* next number */ |
| 1800 | numst(struct subre *t, |
| 1801 | int start) /* starting point for subtree numbers */ |
| 1802 | { |
| 1803 | int i; |
| 1804 | |
| 1805 | assert(t != NULL); |
| 1806 | |
| 1807 | i = start; |
| 1808 | t->id = (short) i++; |
| 1809 | if (t->left != NULL) |
| 1810 | i = numst(t->left, i); |
| 1811 | if (t->right != NULL) |
| 1812 | i = numst(t->right, i); |
| 1813 | return i; |
| 1814 | } |
| 1815 | |
| 1816 | /* |
| 1817 | * markst - mark tree nodes as INUSE |
| 1818 | * |
| 1819 | * Note: this is a great deal more subtle than it looks. During initial |
| 1820 | * parsing of a regex, all subres are linked into the treechain list; |
| 1821 | * discarded ones are also linked into the treefree list for possible reuse. |
| 1822 | * After we are done creating all subres required for a regex, we run markst() |
| 1823 | * then cleanst(), which results in discarding all subres not reachable from |
| 1824 | * v->tree. We then clear v->treechain, indicating that subres must be found |
| 1825 | * by descending from v->tree. This changes the behavior of freesubre(): it |
| 1826 | * will henceforth FREE() unwanted subres rather than sticking them into the |
| 1827 | * treefree list. (Doing that any earlier would result in dangling links in |
| 1828 | * the treechain list.) This all means that freev() will clean up correctly |
| 1829 | * if invoked before or after markst()+cleanst(); but it would not work if |
| 1830 | * called partway through this state conversion, so we mustn't error out |
| 1831 | * in or between these two functions. |
| 1832 | */ |
| 1833 | static void |
| 1834 | markst(struct subre *t) |
| 1835 | { |
| 1836 | assert(t != NULL); |
| 1837 | |
| 1838 | t->flags |= INUSE; |
| 1839 | if (t->left != NULL) |
| 1840 | markst(t->left); |
| 1841 | if (t->right != NULL) |
| 1842 | markst(t->right); |
| 1843 | } |
| 1844 | |
| 1845 | /* |
| 1846 | * cleanst - free any tree nodes not marked INUSE |
| 1847 | */ |
| 1848 | static void |
| 1849 | cleanst(struct vars *v) |
| 1850 | { |
| 1851 | struct subre *t; |
| 1852 | struct subre *next; |
| 1853 | |
| 1854 | for (t = v->treechain; t != NULL; t = next) |
| 1855 | { |
| 1856 | next = t->chain; |
| 1857 | if (!(t->flags & INUSE)) |
| 1858 | FREE(t); |
| 1859 | } |
| 1860 | v->treechain = NULL; |
| 1861 | v->treefree = NULL; /* just on general principles */ |
| 1862 | } |
| 1863 | |
| 1864 | /* |
| 1865 | * nfatree - turn a subRE subtree into a tree of compacted NFAs |
| 1866 | */ |
| 1867 | static long /* optimize results from top node */ |
| 1868 | nfatree(struct vars *v, |
| 1869 | struct subre *t, |
| 1870 | FILE *f) /* for debug output */ |
| 1871 | { |
| 1872 | assert(t != NULL && t->begin != NULL); |
| 1873 | |
| 1874 | if (t->left != NULL) |
| 1875 | (DISCARD) nfatree(v, t->left, f); |
| 1876 | if (t->right != NULL) |
| 1877 | (DISCARD) nfatree(v, t->right, f); |
| 1878 | |
| 1879 | return nfanode(v, t, 0, f); |
| 1880 | } |
| 1881 | |
| 1882 | /* |
| 1883 | * nfanode - do one NFA for nfatree or lacons |
| 1884 | * |
| 1885 | * If converttosearch is true, apply makesearch() to the NFA. |
| 1886 | */ |
| 1887 | static long /* optimize results */ |
| 1888 | nfanode(struct vars *v, |
| 1889 | struct subre *t, |
| 1890 | int converttosearch, |
| 1891 | FILE *f) /* for debug output */ |
| 1892 | { |
| 1893 | struct nfa *nfa; |
| 1894 | long ret = 0; |
| 1895 | |
| 1896 | assert(t->begin != NULL); |
| 1897 | |
| 1898 | #ifdef REG_DEBUG |
| 1899 | if (f != NULL) |
| 1900 | { |
| 1901 | char idbuf[50]; |
| 1902 | |
| 1903 | fprintf(f, "\n\n\n========= TREE NODE %s ==========\n" , |
| 1904 | stid(t, idbuf, sizeof(idbuf))); |
| 1905 | } |
| 1906 | #endif |
| 1907 | nfa = newnfa(v, v->cm, v->nfa); |
| 1908 | NOERRZ(); |
| 1909 | dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final); |
| 1910 | if (!ISERR()) |
| 1911 | specialcolors(nfa); |
| 1912 | if (!ISERR()) |
| 1913 | ret = optimize(nfa, f); |
| 1914 | if (converttosearch && !ISERR()) |
| 1915 | makesearch(v, nfa); |
| 1916 | if (!ISERR()) |
| 1917 | compact(nfa, &t->cnfa); |
| 1918 | |
| 1919 | freenfa(nfa); |
| 1920 | return ret; |
| 1921 | } |
| 1922 | |
| 1923 | /* |
| 1924 | * newlacon - allocate a lookaround-constraint subRE |
| 1925 | */ |
| 1926 | static int /* lacon number */ |
| 1927 | newlacon(struct vars *v, |
| 1928 | struct state *begin, |
| 1929 | struct state *end, |
| 1930 | int latype) |
| 1931 | { |
| 1932 | int n; |
| 1933 | struct subre *newlacons; |
| 1934 | struct subre *sub; |
| 1935 | |
| 1936 | if (v->nlacons == 0) |
| 1937 | { |
| 1938 | n = 1; /* skip 0th */ |
| 1939 | newlacons = (struct subre *) MALLOC(2 * sizeof(struct subre)); |
| 1940 | } |
| 1941 | else |
| 1942 | { |
| 1943 | n = v->nlacons; |
| 1944 | newlacons = (struct subre *) REALLOC(v->lacons, |
| 1945 | (n + 1) * sizeof(struct subre)); |
| 1946 | } |
| 1947 | if (newlacons == NULL) |
| 1948 | { |
| 1949 | ERR(REG_ESPACE); |
| 1950 | return 0; |
| 1951 | } |
| 1952 | v->lacons = newlacons; |
| 1953 | v->nlacons = n + 1; |
| 1954 | sub = &v->lacons[n]; |
| 1955 | sub->begin = begin; |
| 1956 | sub->end = end; |
| 1957 | sub->subno = latype; |
| 1958 | ZAPCNFA(sub->cnfa); |
| 1959 | return n; |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | * freelacons - free lookaround-constraint subRE vector |
| 1964 | */ |
| 1965 | static void |
| 1966 | freelacons(struct subre *subs, |
| 1967 | int n) |
| 1968 | { |
| 1969 | struct subre *sub; |
| 1970 | int i; |
| 1971 | |
| 1972 | assert(n > 0); |
| 1973 | for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */ |
| 1974 | if (!NULLCNFA(sub->cnfa)) |
| 1975 | freecnfa(&sub->cnfa); |
| 1976 | FREE(subs); |
| 1977 | } |
| 1978 | |
| 1979 | /* |
| 1980 | * rfree - free a whole RE (insides of regfree) |
| 1981 | */ |
| 1982 | static void |
| 1983 | rfree(regex_t *re) |
| 1984 | { |
| 1985 | struct guts *g; |
| 1986 | |
| 1987 | if (re == NULL || re->re_magic != REMAGIC) |
| 1988 | return; |
| 1989 | |
| 1990 | re->re_magic = 0; /* invalidate RE */ |
| 1991 | g = (struct guts *) re->re_guts; |
| 1992 | re->re_guts = NULL; |
| 1993 | re->re_fns = NULL; |
| 1994 | if (g != NULL) |
| 1995 | { |
| 1996 | g->magic = 0; |
| 1997 | freecm(&g->cmap); |
| 1998 | if (g->tree != NULL) |
| 1999 | freesubre((struct vars *) NULL, g->tree); |
| 2000 | if (g->lacons != NULL) |
| 2001 | freelacons(g->lacons, g->nlacons); |
| 2002 | if (!NULLCNFA(g->search)) |
| 2003 | freecnfa(&g->search); |
| 2004 | FREE(g); |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * rcancelrequested - check for external request to cancel regex operation |
| 2010 | * |
| 2011 | * Return nonzero to fail the operation with error code REG_CANCEL, |
| 2012 | * zero to keep going |
| 2013 | * |
| 2014 | * The current implementation is Postgres-specific. If we ever get around |
| 2015 | * to splitting the regex code out as a standalone library, there will need |
| 2016 | * to be some API to let applications define a callback function for this. |
| 2017 | */ |
| 2018 | static int |
| 2019 | rcancelrequested(void) |
| 2020 | { |
| 2021 | return InterruptPending && (QueryCancelPending || ProcDiePending); |
| 2022 | } |
| 2023 | |
| 2024 | /* |
| 2025 | * rstacktoodeep - check for stack getting dangerously deep |
| 2026 | * |
| 2027 | * Return nonzero to fail the operation with error code REG_ETOOBIG, |
| 2028 | * zero to keep going |
| 2029 | * |
| 2030 | * The current implementation is Postgres-specific. If we ever get around |
| 2031 | * to splitting the regex code out as a standalone library, there will need |
| 2032 | * to be some API to let applications define a callback function for this. |
| 2033 | */ |
| 2034 | static int |
| 2035 | rstacktoodeep(void) |
| 2036 | { |
| 2037 | return stack_is_too_deep(); |
| 2038 | } |
| 2039 | |
| 2040 | #ifdef REG_DEBUG |
| 2041 | |
| 2042 | /* |
| 2043 | * dump - dump an RE in human-readable form |
| 2044 | */ |
| 2045 | static void |
| 2046 | dump(regex_t *re, |
| 2047 | FILE *f) |
| 2048 | { |
| 2049 | struct guts *g; |
| 2050 | int i; |
| 2051 | |
| 2052 | if (re->re_magic != REMAGIC) |
| 2053 | fprintf(f, "bad magic number (0x%x not 0x%x)\n" , re->re_magic, |
| 2054 | REMAGIC); |
| 2055 | if (re->re_guts == NULL) |
| 2056 | { |
| 2057 | fprintf(f, "NULL guts!!!\n" ); |
| 2058 | return; |
| 2059 | } |
| 2060 | g = (struct guts *) re->re_guts; |
| 2061 | if (g->magic != GUTSMAGIC) |
| 2062 | fprintf(f, "bad guts magic number (0x%x not 0x%x)\n" , g->magic, |
| 2063 | GUTSMAGIC); |
| 2064 | |
| 2065 | fprintf(f, "\n\n\n========= DUMP ==========\n" ); |
| 2066 | fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n" , |
| 2067 | (int) re->re_nsub, re->re_info, re->re_csize, g->ntree); |
| 2068 | |
| 2069 | dumpcolors(&g->cmap, f); |
| 2070 | if (!NULLCNFA(g->search)) |
| 2071 | { |
| 2072 | fprintf(f, "\nsearch:\n" ); |
| 2073 | dumpcnfa(&g->search, f); |
| 2074 | } |
| 2075 | for (i = 1; i < g->nlacons; i++) |
| 2076 | { |
| 2077 | struct subre *lasub = &g->lacons[i]; |
| 2078 | const char *latype; |
| 2079 | |
| 2080 | switch (lasub->subno) |
| 2081 | { |
| 2082 | case LATYPE_AHEAD_POS: |
| 2083 | latype = "positive lookahead" ; |
| 2084 | break; |
| 2085 | case LATYPE_AHEAD_NEG: |
| 2086 | latype = "negative lookahead" ; |
| 2087 | break; |
| 2088 | case LATYPE_BEHIND_POS: |
| 2089 | latype = "positive lookbehind" ; |
| 2090 | break; |
| 2091 | case LATYPE_BEHIND_NEG: |
| 2092 | latype = "negative lookbehind" ; |
| 2093 | break; |
| 2094 | default: |
| 2095 | latype = "???" ; |
| 2096 | break; |
| 2097 | } |
| 2098 | fprintf(f, "\nla%d (%s):\n" , i, latype); |
| 2099 | dumpcnfa(&lasub->cnfa, f); |
| 2100 | } |
| 2101 | fprintf(f, "\n" ); |
| 2102 | dumpst(g->tree, f, 0); |
| 2103 | } |
| 2104 | |
| 2105 | /* |
| 2106 | * dumpst - dump a subRE tree |
| 2107 | */ |
| 2108 | static void |
| 2109 | dumpst(struct subre *t, |
| 2110 | FILE *f, |
| 2111 | int nfapresent) /* is the original NFA still around? */ |
| 2112 | { |
| 2113 | if (t == NULL) |
| 2114 | fprintf(f, "null tree\n" ); |
| 2115 | else |
| 2116 | stdump(t, f, nfapresent); |
| 2117 | fflush(f); |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * stdump - recursive guts of dumpst |
| 2122 | */ |
| 2123 | static void |
| 2124 | stdump(struct subre *t, |
| 2125 | FILE *f, |
| 2126 | int nfapresent) /* is the original NFA still around? */ |
| 2127 | { |
| 2128 | char idbuf[50]; |
| 2129 | |
| 2130 | fprintf(f, "%s. `%c'" , stid(t, idbuf, sizeof(idbuf)), t->op); |
| 2131 | if (t->flags & LONGER) |
| 2132 | fprintf(f, " longest" ); |
| 2133 | if (t->flags & SHORTER) |
| 2134 | fprintf(f, " shortest" ); |
| 2135 | if (t->flags & MIXED) |
| 2136 | fprintf(f, " hasmixed" ); |
| 2137 | if (t->flags & CAP) |
| 2138 | fprintf(f, " hascapture" ); |
| 2139 | if (t->flags & BACKR) |
| 2140 | fprintf(f, " hasbackref" ); |
| 2141 | if (!(t->flags & INUSE)) |
| 2142 | fprintf(f, " UNUSED" ); |
| 2143 | if (t->subno != 0) |
| 2144 | fprintf(f, " (#%d)" , t->subno); |
| 2145 | if (t->min != 1 || t->max != 1) |
| 2146 | { |
| 2147 | fprintf(f, " {%d," , t->min); |
| 2148 | if (t->max != DUPINF) |
| 2149 | fprintf(f, "%d" , t->max); |
| 2150 | fprintf(f, "}" ); |
| 2151 | } |
| 2152 | if (nfapresent) |
| 2153 | fprintf(f, " %ld-%ld" , (long) t->begin->no, (long) t->end->no); |
| 2154 | if (t->left != NULL) |
| 2155 | fprintf(f, " L:%s" , stid(t->left, idbuf, sizeof(idbuf))); |
| 2156 | if (t->right != NULL) |
| 2157 | fprintf(f, " R:%s" , stid(t->right, idbuf, sizeof(idbuf))); |
| 2158 | if (!NULLCNFA(t->cnfa)) |
| 2159 | { |
| 2160 | fprintf(f, "\n" ); |
| 2161 | dumpcnfa(&t->cnfa, f); |
| 2162 | } |
| 2163 | fprintf(f, "\n" ); |
| 2164 | if (t->left != NULL) |
| 2165 | stdump(t->left, f, nfapresent); |
| 2166 | if (t->right != NULL) |
| 2167 | stdump(t->right, f, nfapresent); |
| 2168 | } |
| 2169 | |
| 2170 | /* |
| 2171 | * stid - identify a subtree node for dumping |
| 2172 | */ |
| 2173 | static const char * /* points to buf or constant string */ |
| 2174 | stid(struct subre *t, |
| 2175 | char *buf, |
| 2176 | size_t bufsize) |
| 2177 | { |
| 2178 | /* big enough for hex int or decimal t->id? */ |
| 2179 | if (bufsize < sizeof(void *) * 2 + 3 || bufsize < sizeof(t->id) * 3 + 1) |
| 2180 | return "unable" ; |
| 2181 | if (t->id != 0) |
| 2182 | sprintf(buf, "%d" , t->id); |
| 2183 | else |
| 2184 | sprintf(buf, "%p" , t); |
| 2185 | return buf; |
| 2186 | } |
| 2187 | #endif /* REG_DEBUG */ |
| 2188 | |
| 2189 | |
| 2190 | #include "regc_lex.c" |
| 2191 | #include "regc_color.c" |
| 2192 | #include "regc_nfa.c" |
| 2193 | #include "regc_cvec.c" |
| 2194 | #include "regc_pg_locale.c" |
| 2195 | #include "regc_locale.c" |
| 2196 | |