| 1 | /* |
| 2 | * NFA utilities. |
| 3 | * This file is #included by regcomp.c. |
| 4 | * |
| 5 | * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. |
| 6 | * |
| 7 | * Development of this software was funded, in part, by Cray Research Inc., |
| 8 | * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics |
| 9 | * Corporation, none of whom are responsible for the results. The author |
| 10 | * thanks all of them. |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms -- with or without |
| 13 | * modification -- are permitted for any purpose, provided that |
| 14 | * redistributions in source form retain this entire copyright notice and |
| 15 | * indicate the origin and nature of any modifications. |
| 16 | * |
| 17 | * I'd appreciate being given credit for this package in the documentation |
| 18 | * of software which uses it, but that is not a requirement. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
| 21 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| 22 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 23 | * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | * src/backend/regex/regc_nfa.c |
| 32 | * |
| 33 | * |
| 34 | * One or two things that technically ought to be in here |
| 35 | * are actually in color.c, thanks to some incestuous relationships in |
| 36 | * the color chains. |
| 37 | */ |
| 38 | |
| 39 | #define NISERR() VISERR(nfa->v) |
| 40 | #define NERR(e) VERR(nfa->v, (e)) |
| 41 | |
| 42 | |
| 43 | /* |
| 44 | * newnfa - set up an NFA |
| 45 | */ |
| 46 | static struct nfa * /* the NFA, or NULL */ |
| 47 | newnfa(struct vars *v, |
| 48 | struct colormap *cm, |
| 49 | struct nfa *parent) /* NULL if primary NFA */ |
| 50 | { |
| 51 | struct nfa *nfa; |
| 52 | |
| 53 | nfa = (struct nfa *) MALLOC(sizeof(struct nfa)); |
| 54 | if (nfa == NULL) |
| 55 | { |
| 56 | ERR(REG_ESPACE); |
| 57 | return NULL; |
| 58 | } |
| 59 | |
| 60 | nfa->states = NULL; |
| 61 | nfa->slast = NULL; |
| 62 | nfa->free = NULL; |
| 63 | nfa->nstates = 0; |
| 64 | nfa->cm = cm; |
| 65 | nfa->v = v; |
| 66 | nfa->bos[0] = nfa->bos[1] = COLORLESS; |
| 67 | nfa->eos[0] = nfa->eos[1] = COLORLESS; |
| 68 | nfa->parent = parent; /* Precedes newfstate so parent is valid. */ |
| 69 | nfa->post = newfstate(nfa, '@'); /* number 0 */ |
| 70 | nfa->pre = newfstate(nfa, '>'); /* number 1 */ |
| 71 | |
| 72 | nfa->init = newstate(nfa); /* may become invalid later */ |
| 73 | nfa->final = newstate(nfa); |
| 74 | if (ISERR()) |
| 75 | { |
| 76 | freenfa(nfa); |
| 77 | return NULL; |
| 78 | } |
| 79 | rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->pre, nfa->init); |
| 80 | newarc(nfa, '^', 1, nfa->pre, nfa->init); |
| 81 | newarc(nfa, '^', 0, nfa->pre, nfa->init); |
| 82 | rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->final, nfa->post); |
| 83 | newarc(nfa, '$', 1, nfa->final, nfa->post); |
| 84 | newarc(nfa, '$', 0, nfa->final, nfa->post); |
| 85 | |
| 86 | if (ISERR()) |
| 87 | { |
| 88 | freenfa(nfa); |
| 89 | return NULL; |
| 90 | } |
| 91 | return nfa; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * freenfa - free an entire NFA |
| 96 | */ |
| 97 | static void |
| 98 | freenfa(struct nfa *nfa) |
| 99 | { |
| 100 | struct state *s; |
| 101 | |
| 102 | while ((s = nfa->states) != NULL) |
| 103 | { |
| 104 | s->nins = s->nouts = 0; /* don't worry about arcs */ |
| 105 | freestate(nfa, s); |
| 106 | } |
| 107 | while ((s = nfa->free) != NULL) |
| 108 | { |
| 109 | nfa->free = s->next; |
| 110 | destroystate(nfa, s); |
| 111 | } |
| 112 | |
| 113 | nfa->slast = NULL; |
| 114 | nfa->nstates = -1; |
| 115 | nfa->pre = NULL; |
| 116 | nfa->post = NULL; |
| 117 | FREE(nfa); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * newstate - allocate an NFA state, with zero flag value |
| 122 | */ |
| 123 | static struct state * /* NULL on error */ |
| 124 | newstate(struct nfa *nfa) |
| 125 | { |
| 126 | struct state *s; |
| 127 | |
| 128 | /* |
| 129 | * This is a handy place to check for operation cancel during regex |
| 130 | * compilation, since no code path will go very long without making a new |
| 131 | * state or arc. |
| 132 | */ |
| 133 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 134 | { |
| 135 | NERR(REG_CANCEL); |
| 136 | return NULL; |
| 137 | } |
| 138 | |
| 139 | if (nfa->free != NULL) |
| 140 | { |
| 141 | s = nfa->free; |
| 142 | nfa->free = s->next; |
| 143 | } |
| 144 | else |
| 145 | { |
| 146 | if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE) |
| 147 | { |
| 148 | NERR(REG_ETOOBIG); |
| 149 | return NULL; |
| 150 | } |
| 151 | s = (struct state *) MALLOC(sizeof(struct state)); |
| 152 | if (s == NULL) |
| 153 | { |
| 154 | NERR(REG_ESPACE); |
| 155 | return NULL; |
| 156 | } |
| 157 | nfa->v->spaceused += sizeof(struct state); |
| 158 | s->oas.next = NULL; |
| 159 | s->free = NULL; |
| 160 | s->noas = 0; |
| 161 | } |
| 162 | |
| 163 | assert(nfa->nstates >= 0); |
| 164 | s->no = nfa->nstates++; |
| 165 | s->flag = 0; |
| 166 | if (nfa->states == NULL) |
| 167 | nfa->states = s; |
| 168 | s->nins = 0; |
| 169 | s->ins = NULL; |
| 170 | s->nouts = 0; |
| 171 | s->outs = NULL; |
| 172 | s->tmp = NULL; |
| 173 | s->next = NULL; |
| 174 | if (nfa->slast != NULL) |
| 175 | { |
| 176 | assert(nfa->slast->next == NULL); |
| 177 | nfa->slast->next = s; |
| 178 | } |
| 179 | s->prev = nfa->slast; |
| 180 | nfa->slast = s; |
| 181 | return s; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * newfstate - allocate an NFA state with a specified flag value |
| 186 | */ |
| 187 | static struct state * /* NULL on error */ |
| 188 | newfstate(struct nfa *nfa, int flag) |
| 189 | { |
| 190 | struct state *s; |
| 191 | |
| 192 | s = newstate(nfa); |
| 193 | if (s != NULL) |
| 194 | s->flag = (char) flag; |
| 195 | return s; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * dropstate - delete a state's inarcs and outarcs and free it |
| 200 | */ |
| 201 | static void |
| 202 | dropstate(struct nfa *nfa, |
| 203 | struct state *s) |
| 204 | { |
| 205 | struct arc *a; |
| 206 | |
| 207 | while ((a = s->ins) != NULL) |
| 208 | freearc(nfa, a); |
| 209 | while ((a = s->outs) != NULL) |
| 210 | freearc(nfa, a); |
| 211 | freestate(nfa, s); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * freestate - free a state, which has no in-arcs or out-arcs |
| 216 | */ |
| 217 | static void |
| 218 | freestate(struct nfa *nfa, |
| 219 | struct state *s) |
| 220 | { |
| 221 | assert(s != NULL); |
| 222 | assert(s->nins == 0 && s->nouts == 0); |
| 223 | |
| 224 | s->no = FREESTATE; |
| 225 | s->flag = 0; |
| 226 | if (s->next != NULL) |
| 227 | s->next->prev = s->prev; |
| 228 | else |
| 229 | { |
| 230 | assert(s == nfa->slast); |
| 231 | nfa->slast = s->prev; |
| 232 | } |
| 233 | if (s->prev != NULL) |
| 234 | s->prev->next = s->next; |
| 235 | else |
| 236 | { |
| 237 | assert(s == nfa->states); |
| 238 | nfa->states = s->next; |
| 239 | } |
| 240 | s->prev = NULL; |
| 241 | s->next = nfa->free; /* don't delete it, put it on the free list */ |
| 242 | nfa->free = s; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * destroystate - really get rid of an already-freed state |
| 247 | */ |
| 248 | static void |
| 249 | destroystate(struct nfa *nfa, |
| 250 | struct state *s) |
| 251 | { |
| 252 | struct arcbatch *ab; |
| 253 | struct arcbatch *abnext; |
| 254 | |
| 255 | assert(s->no == FREESTATE); |
| 256 | for (ab = s->oas.next; ab != NULL; ab = abnext) |
| 257 | { |
| 258 | abnext = ab->next; |
| 259 | FREE(ab); |
| 260 | nfa->v->spaceused -= sizeof(struct arcbatch); |
| 261 | } |
| 262 | s->ins = NULL; |
| 263 | s->outs = NULL; |
| 264 | s->next = NULL; |
| 265 | FREE(s); |
| 266 | nfa->v->spaceused -= sizeof(struct state); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * newarc - set up a new arc within an NFA |
| 271 | * |
| 272 | * This function checks to make sure that no duplicate arcs are created. |
| 273 | * In general we never want duplicates. |
| 274 | */ |
| 275 | static void |
| 276 | newarc(struct nfa *nfa, |
| 277 | int t, |
| 278 | color co, |
| 279 | struct state *from, |
| 280 | struct state *to) |
| 281 | { |
| 282 | struct arc *a; |
| 283 | |
| 284 | assert(from != NULL && to != NULL); |
| 285 | |
| 286 | /* |
| 287 | * This is a handy place to check for operation cancel during regex |
| 288 | * compilation, since no code path will go very long without making a new |
| 289 | * state or arc. |
| 290 | */ |
| 291 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 292 | { |
| 293 | NERR(REG_CANCEL); |
| 294 | return; |
| 295 | } |
| 296 | |
| 297 | /* check for duplicate arc, using whichever chain is shorter */ |
| 298 | if (from->nouts <= to->nins) |
| 299 | { |
| 300 | for (a = from->outs; a != NULL; a = a->outchain) |
| 301 | if (a->to == to && a->co == co && a->type == t) |
| 302 | return; |
| 303 | } |
| 304 | else |
| 305 | { |
| 306 | for (a = to->ins; a != NULL; a = a->inchain) |
| 307 | if (a->from == from && a->co == co && a->type == t) |
| 308 | return; |
| 309 | } |
| 310 | |
| 311 | /* no dup, so create the arc */ |
| 312 | createarc(nfa, t, co, from, to); |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * createarc - create a new arc within an NFA |
| 317 | * |
| 318 | * This function must *only* be used after verifying that there is no existing |
| 319 | * identical arc (same type/color/from/to). |
| 320 | */ |
| 321 | static void |
| 322 | createarc(struct nfa *nfa, |
| 323 | int t, |
| 324 | color co, |
| 325 | struct state *from, |
| 326 | struct state *to) |
| 327 | { |
| 328 | struct arc *a; |
| 329 | |
| 330 | /* the arc is physically allocated within its from-state */ |
| 331 | a = allocarc(nfa, from); |
| 332 | if (NISERR()) |
| 333 | return; |
| 334 | assert(a != NULL); |
| 335 | |
| 336 | a->type = t; |
| 337 | a->co = co; |
| 338 | a->to = to; |
| 339 | a->from = from; |
| 340 | |
| 341 | /* |
| 342 | * Put the new arc on the beginning, not the end, of the chains; it's |
| 343 | * simpler here, and freearc() is the same cost either way. See also the |
| 344 | * logic in moveins() and its cohorts, as well as fixempties(). |
| 345 | */ |
| 346 | a->inchain = to->ins; |
| 347 | a->inchainRev = NULL; |
| 348 | if (to->ins) |
| 349 | to->ins->inchainRev = a; |
| 350 | to->ins = a; |
| 351 | a->outchain = from->outs; |
| 352 | a->outchainRev = NULL; |
| 353 | if (from->outs) |
| 354 | from->outs->outchainRev = a; |
| 355 | from->outs = a; |
| 356 | |
| 357 | from->nouts++; |
| 358 | to->nins++; |
| 359 | |
| 360 | if (COLORED(a) && nfa->parent == NULL) |
| 361 | colorchain(nfa->cm, a); |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * allocarc - allocate a new out-arc within a state |
| 366 | */ |
| 367 | static struct arc * /* NULL for failure */ |
| 368 | allocarc(struct nfa *nfa, |
| 369 | struct state *s) |
| 370 | { |
| 371 | struct arc *a; |
| 372 | |
| 373 | /* shortcut */ |
| 374 | if (s->free == NULL && s->noas < ABSIZE) |
| 375 | { |
| 376 | a = &s->oas.a[s->noas]; |
| 377 | s->noas++; |
| 378 | return a; |
| 379 | } |
| 380 | |
| 381 | /* if none at hand, get more */ |
| 382 | if (s->free == NULL) |
| 383 | { |
| 384 | struct arcbatch *newAb; |
| 385 | int i; |
| 386 | |
| 387 | if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE) |
| 388 | { |
| 389 | NERR(REG_ETOOBIG); |
| 390 | return NULL; |
| 391 | } |
| 392 | newAb = (struct arcbatch *) MALLOC(sizeof(struct arcbatch)); |
| 393 | if (newAb == NULL) |
| 394 | { |
| 395 | NERR(REG_ESPACE); |
| 396 | return NULL; |
| 397 | } |
| 398 | nfa->v->spaceused += sizeof(struct arcbatch); |
| 399 | newAb->next = s->oas.next; |
| 400 | s->oas.next = newAb; |
| 401 | |
| 402 | for (i = 0; i < ABSIZE; i++) |
| 403 | { |
| 404 | newAb->a[i].type = 0; |
| 405 | newAb->a[i].freechain = &newAb->a[i + 1]; |
| 406 | } |
| 407 | newAb->a[ABSIZE - 1].freechain = NULL; |
| 408 | s->free = &newAb->a[0]; |
| 409 | } |
| 410 | assert(s->free != NULL); |
| 411 | |
| 412 | a = s->free; |
| 413 | s->free = a->freechain; |
| 414 | return a; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * freearc - free an arc |
| 419 | */ |
| 420 | static void |
| 421 | freearc(struct nfa *nfa, |
| 422 | struct arc *victim) |
| 423 | { |
| 424 | struct state *from = victim->from; |
| 425 | struct state *to = victim->to; |
| 426 | struct arc *predecessor; |
| 427 | |
| 428 | assert(victim->type != 0); |
| 429 | |
| 430 | /* take it off color chain if necessary */ |
| 431 | if (COLORED(victim) && nfa->parent == NULL) |
| 432 | uncolorchain(nfa->cm, victim); |
| 433 | |
| 434 | /* take it off source's out-chain */ |
| 435 | assert(from != NULL); |
| 436 | predecessor = victim->outchainRev; |
| 437 | if (predecessor == NULL) |
| 438 | { |
| 439 | assert(from->outs == victim); |
| 440 | from->outs = victim->outchain; |
| 441 | } |
| 442 | else |
| 443 | { |
| 444 | assert(predecessor->outchain == victim); |
| 445 | predecessor->outchain = victim->outchain; |
| 446 | } |
| 447 | if (victim->outchain != NULL) |
| 448 | { |
| 449 | assert(victim->outchain->outchainRev == victim); |
| 450 | victim->outchain->outchainRev = predecessor; |
| 451 | } |
| 452 | from->nouts--; |
| 453 | |
| 454 | /* take it off target's in-chain */ |
| 455 | assert(to != NULL); |
| 456 | predecessor = victim->inchainRev; |
| 457 | if (predecessor == NULL) |
| 458 | { |
| 459 | assert(to->ins == victim); |
| 460 | to->ins = victim->inchain; |
| 461 | } |
| 462 | else |
| 463 | { |
| 464 | assert(predecessor->inchain == victim); |
| 465 | predecessor->inchain = victim->inchain; |
| 466 | } |
| 467 | if (victim->inchain != NULL) |
| 468 | { |
| 469 | assert(victim->inchain->inchainRev == victim); |
| 470 | victim->inchain->inchainRev = predecessor; |
| 471 | } |
| 472 | to->nins--; |
| 473 | |
| 474 | /* clean up and place on from-state's free list */ |
| 475 | victim->type = 0; |
| 476 | victim->from = NULL; /* precautions... */ |
| 477 | victim->to = NULL; |
| 478 | victim->inchain = NULL; |
| 479 | victim->inchainRev = NULL; |
| 480 | victim->outchain = NULL; |
| 481 | victim->outchainRev = NULL; |
| 482 | victim->freechain = from->free; |
| 483 | from->free = victim; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * changearctarget - flip an arc to have a different to state |
| 488 | * |
| 489 | * Caller must have verified that there is no pre-existing duplicate arc. |
| 490 | * |
| 491 | * Note that because we store arcs in their from state, we can't easily have |
| 492 | * a similar changearcsource function. |
| 493 | */ |
| 494 | static void |
| 495 | changearctarget(struct arc *a, struct state *newto) |
| 496 | { |
| 497 | struct state *oldto = a->to; |
| 498 | struct arc *predecessor; |
| 499 | |
| 500 | assert(oldto != newto); |
| 501 | |
| 502 | /* take it off old target's in-chain */ |
| 503 | assert(oldto != NULL); |
| 504 | predecessor = a->inchainRev; |
| 505 | if (predecessor == NULL) |
| 506 | { |
| 507 | assert(oldto->ins == a); |
| 508 | oldto->ins = a->inchain; |
| 509 | } |
| 510 | else |
| 511 | { |
| 512 | assert(predecessor->inchain == a); |
| 513 | predecessor->inchain = a->inchain; |
| 514 | } |
| 515 | if (a->inchain != NULL) |
| 516 | { |
| 517 | assert(a->inchain->inchainRev == a); |
| 518 | a->inchain->inchainRev = predecessor; |
| 519 | } |
| 520 | oldto->nins--; |
| 521 | |
| 522 | a->to = newto; |
| 523 | |
| 524 | /* prepend it to new target's in-chain */ |
| 525 | a->inchain = newto->ins; |
| 526 | a->inchainRev = NULL; |
| 527 | if (newto->ins) |
| 528 | newto->ins->inchainRev = a; |
| 529 | newto->ins = a; |
| 530 | newto->nins++; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * hasnonemptyout - Does state have a non-EMPTY out arc? |
| 535 | */ |
| 536 | static int |
| 537 | hasnonemptyout(struct state *s) |
| 538 | { |
| 539 | struct arc *a; |
| 540 | |
| 541 | for (a = s->outs; a != NULL; a = a->outchain) |
| 542 | { |
| 543 | if (a->type != EMPTY) |
| 544 | return 1; |
| 545 | } |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * findarc - find arc, if any, from given source with given type and color |
| 551 | * If there is more than one such arc, the result is random. |
| 552 | */ |
| 553 | static struct arc * |
| 554 | findarc(struct state *s, |
| 555 | int type, |
| 556 | color co) |
| 557 | { |
| 558 | struct arc *a; |
| 559 | |
| 560 | for (a = s->outs; a != NULL; a = a->outchain) |
| 561 | if (a->type == type && a->co == co) |
| 562 | return a; |
| 563 | return NULL; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * cparc - allocate a new arc within an NFA, copying details from old one |
| 568 | */ |
| 569 | static void |
| 570 | cparc(struct nfa *nfa, |
| 571 | struct arc *oa, |
| 572 | struct state *from, |
| 573 | struct state *to) |
| 574 | { |
| 575 | newarc(nfa, oa->type, oa->co, from, to); |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * sortins - sort the in arcs of a state by from/color/type |
| 580 | */ |
| 581 | static void |
| 582 | sortins(struct nfa *nfa, |
| 583 | struct state *s) |
| 584 | { |
| 585 | struct arc **sortarray; |
| 586 | struct arc *a; |
| 587 | int n = s->nins; |
| 588 | int i; |
| 589 | |
| 590 | if (n <= 1) |
| 591 | return; /* nothing to do */ |
| 592 | /* make an array of arc pointers ... */ |
| 593 | sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *)); |
| 594 | if (sortarray == NULL) |
| 595 | { |
| 596 | NERR(REG_ESPACE); |
| 597 | return; |
| 598 | } |
| 599 | i = 0; |
| 600 | for (a = s->ins; a != NULL; a = a->inchain) |
| 601 | sortarray[i++] = a; |
| 602 | assert(i == n); |
| 603 | /* ... sort the array */ |
| 604 | qsort(sortarray, n, sizeof(struct arc *), sortins_cmp); |
| 605 | /* ... and rebuild arc list in order */ |
| 606 | /* it seems worth special-casing first and last items to simplify loop */ |
| 607 | a = sortarray[0]; |
| 608 | s->ins = a; |
| 609 | a->inchain = sortarray[1]; |
| 610 | a->inchainRev = NULL; |
| 611 | for (i = 1; i < n - 1; i++) |
| 612 | { |
| 613 | a = sortarray[i]; |
| 614 | a->inchain = sortarray[i + 1]; |
| 615 | a->inchainRev = sortarray[i - 1]; |
| 616 | } |
| 617 | a = sortarray[i]; |
| 618 | a->inchain = NULL; |
| 619 | a->inchainRev = sortarray[i - 1]; |
| 620 | FREE(sortarray); |
| 621 | } |
| 622 | |
| 623 | static int |
| 624 | sortins_cmp(const void *a, const void *b) |
| 625 | { |
| 626 | const struct arc *aa = *((const struct arc *const *) a); |
| 627 | const struct arc *bb = *((const struct arc *const *) b); |
| 628 | |
| 629 | /* we check the fields in the order they are most likely to be different */ |
| 630 | if (aa->from->no < bb->from->no) |
| 631 | return -1; |
| 632 | if (aa->from->no > bb->from->no) |
| 633 | return 1; |
| 634 | if (aa->co < bb->co) |
| 635 | return -1; |
| 636 | if (aa->co > bb->co) |
| 637 | return 1; |
| 638 | if (aa->type < bb->type) |
| 639 | return -1; |
| 640 | if (aa->type > bb->type) |
| 641 | return 1; |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * sortouts - sort the out arcs of a state by to/color/type |
| 647 | */ |
| 648 | static void |
| 649 | sortouts(struct nfa *nfa, |
| 650 | struct state *s) |
| 651 | { |
| 652 | struct arc **sortarray; |
| 653 | struct arc *a; |
| 654 | int n = s->nouts; |
| 655 | int i; |
| 656 | |
| 657 | if (n <= 1) |
| 658 | return; /* nothing to do */ |
| 659 | /* make an array of arc pointers ... */ |
| 660 | sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *)); |
| 661 | if (sortarray == NULL) |
| 662 | { |
| 663 | NERR(REG_ESPACE); |
| 664 | return; |
| 665 | } |
| 666 | i = 0; |
| 667 | for (a = s->outs; a != NULL; a = a->outchain) |
| 668 | sortarray[i++] = a; |
| 669 | assert(i == n); |
| 670 | /* ... sort the array */ |
| 671 | qsort(sortarray, n, sizeof(struct arc *), sortouts_cmp); |
| 672 | /* ... and rebuild arc list in order */ |
| 673 | /* it seems worth special-casing first and last items to simplify loop */ |
| 674 | a = sortarray[0]; |
| 675 | s->outs = a; |
| 676 | a->outchain = sortarray[1]; |
| 677 | a->outchainRev = NULL; |
| 678 | for (i = 1; i < n - 1; i++) |
| 679 | { |
| 680 | a = sortarray[i]; |
| 681 | a->outchain = sortarray[i + 1]; |
| 682 | a->outchainRev = sortarray[i - 1]; |
| 683 | } |
| 684 | a = sortarray[i]; |
| 685 | a->outchain = NULL; |
| 686 | a->outchainRev = sortarray[i - 1]; |
| 687 | FREE(sortarray); |
| 688 | } |
| 689 | |
| 690 | static int |
| 691 | sortouts_cmp(const void *a, const void *b) |
| 692 | { |
| 693 | const struct arc *aa = *((const struct arc *const *) a); |
| 694 | const struct arc *bb = *((const struct arc *const *) b); |
| 695 | |
| 696 | /* we check the fields in the order they are most likely to be different */ |
| 697 | if (aa->to->no < bb->to->no) |
| 698 | return -1; |
| 699 | if (aa->to->no > bb->to->no) |
| 700 | return 1; |
| 701 | if (aa->co < bb->co) |
| 702 | return -1; |
| 703 | if (aa->co > bb->co) |
| 704 | return 1; |
| 705 | if (aa->type < bb->type) |
| 706 | return -1; |
| 707 | if (aa->type > bb->type) |
| 708 | return 1; |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * Common decision logic about whether to use arc-by-arc operations or |
| 714 | * sort/merge. If there's just a few source arcs we cannot recoup the |
| 715 | * cost of sorting the destination arc list, no matter how large it is. |
| 716 | * Otherwise, limit the number of arc-by-arc comparisons to about 1000 |
| 717 | * (a somewhat arbitrary choice, but the breakeven point would probably |
| 718 | * be machine dependent anyway). |
| 719 | */ |
| 720 | #define BULK_ARC_OP_USE_SORT(nsrcarcs, ndestarcs) \ |
| 721 | ((nsrcarcs) < 4 ? 0 : ((nsrcarcs) > 32 || (ndestarcs) > 32)) |
| 722 | |
| 723 | /* |
| 724 | * moveins - move all in arcs of a state to another state |
| 725 | * |
| 726 | * You might think this could be done better by just updating the |
| 727 | * existing arcs, and you would be right if it weren't for the need |
| 728 | * for duplicate suppression, which makes it easier to just make new |
| 729 | * ones to exploit the suppression built into newarc. |
| 730 | * |
| 731 | * However, if we have a whole lot of arcs to deal with, retail duplicate |
| 732 | * checks become too slow. In that case we proceed by sorting and merging |
| 733 | * the arc lists, and then we can indeed just update the arcs in-place. |
| 734 | */ |
| 735 | static void |
| 736 | moveins(struct nfa *nfa, |
| 737 | struct state *oldState, |
| 738 | struct state *newState) |
| 739 | { |
| 740 | assert(oldState != newState); |
| 741 | |
| 742 | if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins)) |
| 743 | { |
| 744 | /* With not too many arcs, just do them one at a time */ |
| 745 | struct arc *a; |
| 746 | |
| 747 | while ((a = oldState->ins) != NULL) |
| 748 | { |
| 749 | cparc(nfa, a, a->from, newState); |
| 750 | freearc(nfa, a); |
| 751 | } |
| 752 | } |
| 753 | else |
| 754 | { |
| 755 | /* |
| 756 | * With many arcs, use a sort-merge approach. Note changearctarget() |
| 757 | * will put the arc onto the front of newState's chain, so it does not |
| 758 | * break our walk through the sorted part of the chain. |
| 759 | */ |
| 760 | struct arc *oa; |
| 761 | struct arc *na; |
| 762 | |
| 763 | /* |
| 764 | * Because we bypass newarc() in this code path, we'd better include a |
| 765 | * cancel check. |
| 766 | */ |
| 767 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 768 | { |
| 769 | NERR(REG_CANCEL); |
| 770 | return; |
| 771 | } |
| 772 | |
| 773 | sortins(nfa, oldState); |
| 774 | sortins(nfa, newState); |
| 775 | if (NISERR()) |
| 776 | return; /* might have failed to sort */ |
| 777 | oa = oldState->ins; |
| 778 | na = newState->ins; |
| 779 | while (oa != NULL && na != NULL) |
| 780 | { |
| 781 | struct arc *a = oa; |
| 782 | |
| 783 | switch (sortins_cmp(&oa, &na)) |
| 784 | { |
| 785 | case -1: |
| 786 | /* newState does not have anything matching oa */ |
| 787 | oa = oa->inchain; |
| 788 | |
| 789 | /* |
| 790 | * Rather than doing createarc+freearc, we can just unlink |
| 791 | * and relink the existing arc struct. |
| 792 | */ |
| 793 | changearctarget(a, newState); |
| 794 | break; |
| 795 | case 0: |
| 796 | /* match, advance in both lists */ |
| 797 | oa = oa->inchain; |
| 798 | na = na->inchain; |
| 799 | /* ... and drop duplicate arc from oldState */ |
| 800 | freearc(nfa, a); |
| 801 | break; |
| 802 | case +1: |
| 803 | /* advance only na; oa might have a match later */ |
| 804 | na = na->inchain; |
| 805 | break; |
| 806 | default: |
| 807 | assert(NOTREACHED); |
| 808 | } |
| 809 | } |
| 810 | while (oa != NULL) |
| 811 | { |
| 812 | /* newState does not have anything matching oa */ |
| 813 | struct arc *a = oa; |
| 814 | |
| 815 | oa = oa->inchain; |
| 816 | changearctarget(a, newState); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | assert(oldState->nins == 0); |
| 821 | assert(oldState->ins == NULL); |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * copyins - copy in arcs of a state to another state |
| 826 | */ |
| 827 | static void |
| 828 | copyins(struct nfa *nfa, |
| 829 | struct state *oldState, |
| 830 | struct state *newState) |
| 831 | { |
| 832 | assert(oldState != newState); |
| 833 | |
| 834 | if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins)) |
| 835 | { |
| 836 | /* With not too many arcs, just do them one at a time */ |
| 837 | struct arc *a; |
| 838 | |
| 839 | for (a = oldState->ins; a != NULL; a = a->inchain) |
| 840 | cparc(nfa, a, a->from, newState); |
| 841 | } |
| 842 | else |
| 843 | { |
| 844 | /* |
| 845 | * With many arcs, use a sort-merge approach. Note that createarc() |
| 846 | * will put new arcs onto the front of newState's chain, so it does |
| 847 | * not break our walk through the sorted part of the chain. |
| 848 | */ |
| 849 | struct arc *oa; |
| 850 | struct arc *na; |
| 851 | |
| 852 | /* |
| 853 | * Because we bypass newarc() in this code path, we'd better include a |
| 854 | * cancel check. |
| 855 | */ |
| 856 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 857 | { |
| 858 | NERR(REG_CANCEL); |
| 859 | return; |
| 860 | } |
| 861 | |
| 862 | sortins(nfa, oldState); |
| 863 | sortins(nfa, newState); |
| 864 | if (NISERR()) |
| 865 | return; /* might have failed to sort */ |
| 866 | oa = oldState->ins; |
| 867 | na = newState->ins; |
| 868 | while (oa != NULL && na != NULL) |
| 869 | { |
| 870 | struct arc *a = oa; |
| 871 | |
| 872 | switch (sortins_cmp(&oa, &na)) |
| 873 | { |
| 874 | case -1: |
| 875 | /* newState does not have anything matching oa */ |
| 876 | oa = oa->inchain; |
| 877 | createarc(nfa, a->type, a->co, a->from, newState); |
| 878 | break; |
| 879 | case 0: |
| 880 | /* match, advance in both lists */ |
| 881 | oa = oa->inchain; |
| 882 | na = na->inchain; |
| 883 | break; |
| 884 | case +1: |
| 885 | /* advance only na; oa might have a match later */ |
| 886 | na = na->inchain; |
| 887 | break; |
| 888 | default: |
| 889 | assert(NOTREACHED); |
| 890 | } |
| 891 | } |
| 892 | while (oa != NULL) |
| 893 | { |
| 894 | /* newState does not have anything matching oa */ |
| 895 | struct arc *a = oa; |
| 896 | |
| 897 | oa = oa->inchain; |
| 898 | createarc(nfa, a->type, a->co, a->from, newState); |
| 899 | } |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * mergeins - merge a list of inarcs into a state |
| 905 | * |
| 906 | * This is much like copyins, but the source arcs are listed in an array, |
| 907 | * and are not guaranteed unique. It's okay to clobber the array contents. |
| 908 | */ |
| 909 | static void |
| 910 | mergeins(struct nfa *nfa, |
| 911 | struct state *s, |
| 912 | struct arc **arcarray, |
| 913 | int arccount) |
| 914 | { |
| 915 | struct arc *na; |
| 916 | int i; |
| 917 | int j; |
| 918 | |
| 919 | if (arccount <= 0) |
| 920 | return; |
| 921 | |
| 922 | /* |
| 923 | * Because we bypass newarc() in this code path, we'd better include a |
| 924 | * cancel check. |
| 925 | */ |
| 926 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 927 | { |
| 928 | NERR(REG_CANCEL); |
| 929 | return; |
| 930 | } |
| 931 | |
| 932 | /* Sort existing inarcs as well as proposed new ones */ |
| 933 | sortins(nfa, s); |
| 934 | if (NISERR()) |
| 935 | return; /* might have failed to sort */ |
| 936 | |
| 937 | qsort(arcarray, arccount, sizeof(struct arc *), sortins_cmp); |
| 938 | |
| 939 | /* |
| 940 | * arcarray very likely includes dups, so we must eliminate them. (This |
| 941 | * could be folded into the next loop, but it's not worth the trouble.) |
| 942 | */ |
| 943 | j = 0; |
| 944 | for (i = 1; i < arccount; i++) |
| 945 | { |
| 946 | switch (sortins_cmp(&arcarray[j], &arcarray[i])) |
| 947 | { |
| 948 | case -1: |
| 949 | /* non-dup */ |
| 950 | arcarray[++j] = arcarray[i]; |
| 951 | break; |
| 952 | case 0: |
| 953 | /* dup */ |
| 954 | break; |
| 955 | default: |
| 956 | /* trouble */ |
| 957 | assert(NOTREACHED); |
| 958 | } |
| 959 | } |
| 960 | arccount = j + 1; |
| 961 | |
| 962 | /* |
| 963 | * Now merge into s' inchain. Note that createarc() will put new arcs |
| 964 | * onto the front of s's chain, so it does not break our walk through the |
| 965 | * sorted part of the chain. |
| 966 | */ |
| 967 | i = 0; |
| 968 | na = s->ins; |
| 969 | while (i < arccount && na != NULL) |
| 970 | { |
| 971 | struct arc *a = arcarray[i]; |
| 972 | |
| 973 | switch (sortins_cmp(&a, &na)) |
| 974 | { |
| 975 | case -1: |
| 976 | /* s does not have anything matching a */ |
| 977 | createarc(nfa, a->type, a->co, a->from, s); |
| 978 | i++; |
| 979 | break; |
| 980 | case 0: |
| 981 | /* match, advance in both lists */ |
| 982 | i++; |
| 983 | na = na->inchain; |
| 984 | break; |
| 985 | case +1: |
| 986 | /* advance only na; array might have a match later */ |
| 987 | na = na->inchain; |
| 988 | break; |
| 989 | default: |
| 990 | assert(NOTREACHED); |
| 991 | } |
| 992 | } |
| 993 | while (i < arccount) |
| 994 | { |
| 995 | /* s does not have anything matching a */ |
| 996 | struct arc *a = arcarray[i]; |
| 997 | |
| 998 | createarc(nfa, a->type, a->co, a->from, s); |
| 999 | i++; |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * moveouts - move all out arcs of a state to another state |
| 1005 | */ |
| 1006 | static void |
| 1007 | moveouts(struct nfa *nfa, |
| 1008 | struct state *oldState, |
| 1009 | struct state *newState) |
| 1010 | { |
| 1011 | assert(oldState != newState); |
| 1012 | |
| 1013 | if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts)) |
| 1014 | { |
| 1015 | /* With not too many arcs, just do them one at a time */ |
| 1016 | struct arc *a; |
| 1017 | |
| 1018 | while ((a = oldState->outs) != NULL) |
| 1019 | { |
| 1020 | cparc(nfa, a, newState, a->to); |
| 1021 | freearc(nfa, a); |
| 1022 | } |
| 1023 | } |
| 1024 | else |
| 1025 | { |
| 1026 | /* |
| 1027 | * With many arcs, use a sort-merge approach. Note that createarc() |
| 1028 | * will put new arcs onto the front of newState's chain, so it does |
| 1029 | * not break our walk through the sorted part of the chain. |
| 1030 | */ |
| 1031 | struct arc *oa; |
| 1032 | struct arc *na; |
| 1033 | |
| 1034 | /* |
| 1035 | * Because we bypass newarc() in this code path, we'd better include a |
| 1036 | * cancel check. |
| 1037 | */ |
| 1038 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 1039 | { |
| 1040 | NERR(REG_CANCEL); |
| 1041 | return; |
| 1042 | } |
| 1043 | |
| 1044 | sortouts(nfa, oldState); |
| 1045 | sortouts(nfa, newState); |
| 1046 | if (NISERR()) |
| 1047 | return; /* might have failed to sort */ |
| 1048 | oa = oldState->outs; |
| 1049 | na = newState->outs; |
| 1050 | while (oa != NULL && na != NULL) |
| 1051 | { |
| 1052 | struct arc *a = oa; |
| 1053 | |
| 1054 | switch (sortouts_cmp(&oa, &na)) |
| 1055 | { |
| 1056 | case -1: |
| 1057 | /* newState does not have anything matching oa */ |
| 1058 | oa = oa->outchain; |
| 1059 | createarc(nfa, a->type, a->co, newState, a->to); |
| 1060 | freearc(nfa, a); |
| 1061 | break; |
| 1062 | case 0: |
| 1063 | /* match, advance in both lists */ |
| 1064 | oa = oa->outchain; |
| 1065 | na = na->outchain; |
| 1066 | /* ... and drop duplicate arc from oldState */ |
| 1067 | freearc(nfa, a); |
| 1068 | break; |
| 1069 | case +1: |
| 1070 | /* advance only na; oa might have a match later */ |
| 1071 | na = na->outchain; |
| 1072 | break; |
| 1073 | default: |
| 1074 | assert(NOTREACHED); |
| 1075 | } |
| 1076 | } |
| 1077 | while (oa != NULL) |
| 1078 | { |
| 1079 | /* newState does not have anything matching oa */ |
| 1080 | struct arc *a = oa; |
| 1081 | |
| 1082 | oa = oa->outchain; |
| 1083 | createarc(nfa, a->type, a->co, newState, a->to); |
| 1084 | freearc(nfa, a); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | assert(oldState->nouts == 0); |
| 1089 | assert(oldState->outs == NULL); |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * copyouts - copy out arcs of a state to another state |
| 1094 | */ |
| 1095 | static void |
| 1096 | copyouts(struct nfa *nfa, |
| 1097 | struct state *oldState, |
| 1098 | struct state *newState) |
| 1099 | { |
| 1100 | assert(oldState != newState); |
| 1101 | |
| 1102 | if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts)) |
| 1103 | { |
| 1104 | /* With not too many arcs, just do them one at a time */ |
| 1105 | struct arc *a; |
| 1106 | |
| 1107 | for (a = oldState->outs; a != NULL; a = a->outchain) |
| 1108 | cparc(nfa, a, newState, a->to); |
| 1109 | } |
| 1110 | else |
| 1111 | { |
| 1112 | /* |
| 1113 | * With many arcs, use a sort-merge approach. Note that createarc() |
| 1114 | * will put new arcs onto the front of newState's chain, so it does |
| 1115 | * not break our walk through the sorted part of the chain. |
| 1116 | */ |
| 1117 | struct arc *oa; |
| 1118 | struct arc *na; |
| 1119 | |
| 1120 | /* |
| 1121 | * Because we bypass newarc() in this code path, we'd better include a |
| 1122 | * cancel check. |
| 1123 | */ |
| 1124 | if (CANCEL_REQUESTED(nfa->v->re)) |
| 1125 | { |
| 1126 | NERR(REG_CANCEL); |
| 1127 | return; |
| 1128 | } |
| 1129 | |
| 1130 | sortouts(nfa, oldState); |
| 1131 | sortouts(nfa, newState); |
| 1132 | if (NISERR()) |
| 1133 | return; /* might have failed to sort */ |
| 1134 | oa = oldState->outs; |
| 1135 | na = newState->outs; |
| 1136 | while (oa != NULL && na != NULL) |
| 1137 | { |
| 1138 | struct arc *a = oa; |
| 1139 | |
| 1140 | switch (sortouts_cmp(&oa, &na)) |
| 1141 | { |
| 1142 | case -1: |
| 1143 | /* newState does not have anything matching oa */ |
| 1144 | oa = oa->outchain; |
| 1145 | createarc(nfa, a->type, a->co, newState, a->to); |
| 1146 | break; |
| 1147 | case 0: |
| 1148 | /* match, advance in both lists */ |
| 1149 | oa = oa->outchain; |
| 1150 | na = na->outchain; |
| 1151 | break; |
| 1152 | case +1: |
| 1153 | /* advance only na; oa might have a match later */ |
| 1154 | na = na->outchain; |
| 1155 | break; |
| 1156 | default: |
| 1157 | assert(NOTREACHED); |
| 1158 | } |
| 1159 | } |
| 1160 | while (oa != NULL) |
| 1161 | { |
| 1162 | /* newState does not have anything matching oa */ |
| 1163 | struct arc *a = oa; |
| 1164 | |
| 1165 | oa = oa->outchain; |
| 1166 | createarc(nfa, a->type, a->co, newState, a->to); |
| 1167 | } |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * cloneouts - copy out arcs of a state to another state pair, modifying type |
| 1173 | */ |
| 1174 | static void |
| 1175 | cloneouts(struct nfa *nfa, |
| 1176 | struct state *old, |
| 1177 | struct state *from, |
| 1178 | struct state *to, |
| 1179 | int type) |
| 1180 | { |
| 1181 | struct arc *a; |
| 1182 | |
| 1183 | assert(old != from); |
| 1184 | |
| 1185 | for (a = old->outs; a != NULL; a = a->outchain) |
| 1186 | newarc(nfa, type, a->co, from, to); |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | * delsub - delete a sub-NFA, updating subre pointers if necessary |
| 1191 | * |
| 1192 | * This uses a recursive traversal of the sub-NFA, marking already-seen |
| 1193 | * states using their tmp pointer. |
| 1194 | */ |
| 1195 | static void |
| 1196 | delsub(struct nfa *nfa, |
| 1197 | struct state *lp, /* the sub-NFA goes from here... */ |
| 1198 | struct state *rp) /* ...to here, *not* inclusive */ |
| 1199 | { |
| 1200 | assert(lp != rp); |
| 1201 | |
| 1202 | rp->tmp = rp; /* mark end */ |
| 1203 | |
| 1204 | deltraverse(nfa, lp, lp); |
| 1205 | if (NISERR()) |
| 1206 | return; /* asserts might not hold after failure */ |
| 1207 | assert(lp->nouts == 0 && rp->nins == 0); /* did the job */ |
| 1208 | assert(lp->no != FREESTATE && rp->no != FREESTATE); /* no more */ |
| 1209 | |
| 1210 | rp->tmp = NULL; /* unmark end */ |
| 1211 | lp->tmp = NULL; /* and begin, marked by deltraverse */ |
| 1212 | } |
| 1213 | |
| 1214 | /* |
| 1215 | * deltraverse - the recursive heart of delsub |
| 1216 | * This routine's basic job is to destroy all out-arcs of the state. |
| 1217 | */ |
| 1218 | static void |
| 1219 | deltraverse(struct nfa *nfa, |
| 1220 | struct state *leftend, |
| 1221 | struct state *s) |
| 1222 | { |
| 1223 | struct arc *a; |
| 1224 | struct state *to; |
| 1225 | |
| 1226 | /* Since this is recursive, it could be driven to stack overflow */ |
| 1227 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 1228 | { |
| 1229 | NERR(REG_ETOOBIG); |
| 1230 | return; |
| 1231 | } |
| 1232 | |
| 1233 | if (s->nouts == 0) |
| 1234 | return; /* nothing to do */ |
| 1235 | if (s->tmp != NULL) |
| 1236 | return; /* already in progress */ |
| 1237 | |
| 1238 | s->tmp = s; /* mark as in progress */ |
| 1239 | |
| 1240 | while ((a = s->outs) != NULL) |
| 1241 | { |
| 1242 | to = a->to; |
| 1243 | deltraverse(nfa, leftend, to); |
| 1244 | if (NISERR()) |
| 1245 | return; /* asserts might not hold after failure */ |
| 1246 | assert(to->nouts == 0 || to->tmp != NULL); |
| 1247 | freearc(nfa, a); |
| 1248 | if (to->nins == 0 && to->tmp == NULL) |
| 1249 | { |
| 1250 | assert(to->nouts == 0); |
| 1251 | freestate(nfa, to); |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | assert(s->no != FREESTATE); /* we're still here */ |
| 1256 | assert(s == leftend || s->nins != 0); /* and still reachable */ |
| 1257 | assert(s->nouts == 0); /* but have no outarcs */ |
| 1258 | |
| 1259 | s->tmp = NULL; /* we're done here */ |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * dupnfa - duplicate sub-NFA |
| 1264 | * |
| 1265 | * Another recursive traversal, this time using tmp to point to duplicates |
| 1266 | * as well as mark already-seen states. (You knew there was a reason why |
| 1267 | * it's a state pointer, didn't you? :-)) |
| 1268 | */ |
| 1269 | static void |
| 1270 | dupnfa(struct nfa *nfa, |
| 1271 | struct state *start, /* duplicate of subNFA starting here */ |
| 1272 | struct state *stop, /* and stopping here */ |
| 1273 | struct state *from, /* stringing duplicate from here */ |
| 1274 | struct state *to) /* to here */ |
| 1275 | { |
| 1276 | if (start == stop) |
| 1277 | { |
| 1278 | newarc(nfa, EMPTY, 0, from, to); |
| 1279 | return; |
| 1280 | } |
| 1281 | |
| 1282 | stop->tmp = to; |
| 1283 | duptraverse(nfa, start, from); |
| 1284 | /* done, except for clearing out the tmp pointers */ |
| 1285 | |
| 1286 | stop->tmp = NULL; |
| 1287 | cleartraverse(nfa, start); |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * duptraverse - recursive heart of dupnfa |
| 1292 | */ |
| 1293 | static void |
| 1294 | duptraverse(struct nfa *nfa, |
| 1295 | struct state *s, |
| 1296 | struct state *stmp) /* s's duplicate, or NULL */ |
| 1297 | { |
| 1298 | struct arc *a; |
| 1299 | |
| 1300 | /* Since this is recursive, it could be driven to stack overflow */ |
| 1301 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 1302 | { |
| 1303 | NERR(REG_ETOOBIG); |
| 1304 | return; |
| 1305 | } |
| 1306 | |
| 1307 | if (s->tmp != NULL) |
| 1308 | return; /* already done */ |
| 1309 | |
| 1310 | s->tmp = (stmp == NULL) ? newstate(nfa) : stmp; |
| 1311 | if (s->tmp == NULL) |
| 1312 | { |
| 1313 | assert(NISERR()); |
| 1314 | return; |
| 1315 | } |
| 1316 | |
| 1317 | for (a = s->outs; a != NULL && !NISERR(); a = a->outchain) |
| 1318 | { |
| 1319 | duptraverse(nfa, a->to, (struct state *) NULL); |
| 1320 | if (NISERR()) |
| 1321 | break; |
| 1322 | assert(a->to->tmp != NULL); |
| 1323 | cparc(nfa, a, s->tmp, a->to->tmp); |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * cleartraverse - recursive cleanup for algorithms that leave tmp ptrs set |
| 1329 | */ |
| 1330 | static void |
| 1331 | cleartraverse(struct nfa *nfa, |
| 1332 | struct state *s) |
| 1333 | { |
| 1334 | struct arc *a; |
| 1335 | |
| 1336 | /* Since this is recursive, it could be driven to stack overflow */ |
| 1337 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 1338 | { |
| 1339 | NERR(REG_ETOOBIG); |
| 1340 | return; |
| 1341 | } |
| 1342 | |
| 1343 | if (s->tmp == NULL) |
| 1344 | return; |
| 1345 | s->tmp = NULL; |
| 1346 | |
| 1347 | for (a = s->outs; a != NULL; a = a->outchain) |
| 1348 | cleartraverse(nfa, a->to); |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * single_color_transition - does getting from s1 to s2 cross one PLAIN arc? |
| 1353 | * |
| 1354 | * If traversing from s1 to s2 requires a single PLAIN match (possibly of any |
| 1355 | * of a set of colors), return a state whose outarc list contains only PLAIN |
| 1356 | * arcs of those color(s). Otherwise return NULL. |
| 1357 | * |
| 1358 | * This is used before optimizing the NFA, so there may be EMPTY arcs, which |
| 1359 | * we should ignore; the possibility of an EMPTY is why the result state could |
| 1360 | * be different from s1. |
| 1361 | * |
| 1362 | * It's worth troubling to handle multiple parallel PLAIN arcs here because a |
| 1363 | * bracket construct such as [abc] might yield either one or several parallel |
| 1364 | * PLAIN arcs depending on earlier atoms in the expression. We'd rather that |
| 1365 | * that implementation detail not create user-visible performance differences. |
| 1366 | */ |
| 1367 | static struct state * |
| 1368 | single_color_transition(struct state *s1, struct state *s2) |
| 1369 | { |
| 1370 | struct arc *a; |
| 1371 | |
| 1372 | /* Ignore leading EMPTY arc, if any */ |
| 1373 | if (s1->nouts == 1 && s1->outs->type == EMPTY) |
| 1374 | s1 = s1->outs->to; |
| 1375 | /* Likewise for any trailing EMPTY arc */ |
| 1376 | if (s2->nins == 1 && s2->ins->type == EMPTY) |
| 1377 | s2 = s2->ins->from; |
| 1378 | /* Perhaps we could have a single-state loop in between, if so reject */ |
| 1379 | if (s1 == s2) |
| 1380 | return NULL; |
| 1381 | /* s1 must have at least one outarc... */ |
| 1382 | if (s1->outs == NULL) |
| 1383 | return NULL; |
| 1384 | /* ... and they must all be PLAIN arcs to s2 */ |
| 1385 | for (a = s1->outs; a != NULL; a = a->outchain) |
| 1386 | { |
| 1387 | if (a->type != PLAIN || a->to != s2) |
| 1388 | return NULL; |
| 1389 | } |
| 1390 | /* OK, return s1 as the possessor of the relevant outarcs */ |
| 1391 | return s1; |
| 1392 | } |
| 1393 | |
| 1394 | /* |
| 1395 | * specialcolors - fill in special colors for an NFA |
| 1396 | */ |
| 1397 | static void |
| 1398 | specialcolors(struct nfa *nfa) |
| 1399 | { |
| 1400 | /* false colors for BOS, BOL, EOS, EOL */ |
| 1401 | if (nfa->parent == NULL) |
| 1402 | { |
| 1403 | nfa->bos[0] = pseudocolor(nfa->cm); |
| 1404 | nfa->bos[1] = pseudocolor(nfa->cm); |
| 1405 | nfa->eos[0] = pseudocolor(nfa->cm); |
| 1406 | nfa->eos[1] = pseudocolor(nfa->cm); |
| 1407 | } |
| 1408 | else |
| 1409 | { |
| 1410 | assert(nfa->parent->bos[0] != COLORLESS); |
| 1411 | nfa->bos[0] = nfa->parent->bos[0]; |
| 1412 | assert(nfa->parent->bos[1] != COLORLESS); |
| 1413 | nfa->bos[1] = nfa->parent->bos[1]; |
| 1414 | assert(nfa->parent->eos[0] != COLORLESS); |
| 1415 | nfa->eos[0] = nfa->parent->eos[0]; |
| 1416 | assert(nfa->parent->eos[1] != COLORLESS); |
| 1417 | nfa->eos[1] = nfa->parent->eos[1]; |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * optimize - optimize an NFA |
| 1423 | * |
| 1424 | * The main goal of this function is not so much "optimization" (though it |
| 1425 | * does try to get rid of useless NFA states) as reducing the NFA to a form |
| 1426 | * the regex executor can handle. The executor, and indeed the cNFA format |
| 1427 | * that is its input, can only handle PLAIN and LACON arcs. The output of |
| 1428 | * the regex parser also includes EMPTY (do-nothing) arcs, as well as |
| 1429 | * ^, $, AHEAD, and BEHIND constraint arcs, which we must get rid of here. |
| 1430 | * We first get rid of EMPTY arcs and then deal with the constraint arcs. |
| 1431 | * The hardest part of either job is to get rid of circular loops of the |
| 1432 | * target arc type. We would have to do that in any case, though, as such a |
| 1433 | * loop would otherwise allow the executor to cycle through the loop endlessly |
| 1434 | * without making any progress in the input string. |
| 1435 | */ |
| 1436 | static long /* re_info bits */ |
| 1437 | optimize(struct nfa *nfa, |
| 1438 | FILE *f) /* for debug output; NULL none */ |
| 1439 | { |
| 1440 | #ifdef REG_DEBUG |
| 1441 | int verbose = (f != NULL) ? 1 : 0; |
| 1442 | |
| 1443 | if (verbose) |
| 1444 | fprintf(f, "\ninitial cleanup:\n" ); |
| 1445 | #endif |
| 1446 | cleanup(nfa); /* may simplify situation */ |
| 1447 | #ifdef REG_DEBUG |
| 1448 | if (verbose) |
| 1449 | dumpnfa(nfa, f); |
| 1450 | if (verbose) |
| 1451 | fprintf(f, "\nempties:\n" ); |
| 1452 | #endif |
| 1453 | fixempties(nfa, f); /* get rid of EMPTY arcs */ |
| 1454 | #ifdef REG_DEBUG |
| 1455 | if (verbose) |
| 1456 | fprintf(f, "\nconstraints:\n" ); |
| 1457 | #endif |
| 1458 | fixconstraintloops(nfa, f); /* get rid of constraint loops */ |
| 1459 | pullback(nfa, f); /* pull back constraints backward */ |
| 1460 | pushfwd(nfa, f); /* push fwd constraints forward */ |
| 1461 | #ifdef REG_DEBUG |
| 1462 | if (verbose) |
| 1463 | fprintf(f, "\nfinal cleanup:\n" ); |
| 1464 | #endif |
| 1465 | cleanup(nfa); /* final tidying */ |
| 1466 | #ifdef REG_DEBUG |
| 1467 | if (verbose) |
| 1468 | dumpnfa(nfa, f); |
| 1469 | #endif |
| 1470 | return analyze(nfa); /* and analysis */ |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * pullback - pull back constraints backward to eliminate them |
| 1475 | */ |
| 1476 | static void |
| 1477 | pullback(struct nfa *nfa, |
| 1478 | FILE *f) /* for debug output; NULL none */ |
| 1479 | { |
| 1480 | struct state *s; |
| 1481 | struct state *nexts; |
| 1482 | struct arc *a; |
| 1483 | struct arc *nexta; |
| 1484 | struct state *intermediates; |
| 1485 | int progress; |
| 1486 | |
| 1487 | /* find and pull until there are no more */ |
| 1488 | do |
| 1489 | { |
| 1490 | progress = 0; |
| 1491 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 1492 | { |
| 1493 | nexts = s->next; |
| 1494 | intermediates = NULL; |
| 1495 | for (a = s->outs; a != NULL && !NISERR(); a = nexta) |
| 1496 | { |
| 1497 | nexta = a->outchain; |
| 1498 | if (a->type == '^' || a->type == BEHIND) |
| 1499 | if (pull(nfa, a, &intermediates)) |
| 1500 | progress = 1; |
| 1501 | } |
| 1502 | /* clear tmp fields of intermediate states created here */ |
| 1503 | while (intermediates != NULL) |
| 1504 | { |
| 1505 | struct state *ns = intermediates->tmp; |
| 1506 | |
| 1507 | intermediates->tmp = NULL; |
| 1508 | intermediates = ns; |
| 1509 | } |
| 1510 | /* if s is now useless, get rid of it */ |
| 1511 | if ((s->nins == 0 || s->nouts == 0) && !s->flag) |
| 1512 | dropstate(nfa, s); |
| 1513 | } |
| 1514 | if (progress && f != NULL) |
| 1515 | dumpnfa(nfa, f); |
| 1516 | } while (progress && !NISERR()); |
| 1517 | if (NISERR()) |
| 1518 | return; |
| 1519 | |
| 1520 | /* |
| 1521 | * Any ^ constraints we were able to pull to the start state can now be |
| 1522 | * replaced by PLAIN arcs referencing the BOS or BOL colors. There should |
| 1523 | * be no other ^ or BEHIND arcs left in the NFA, though we do not check |
| 1524 | * that here (compact() will fail if so). |
| 1525 | */ |
| 1526 | for (a = nfa->pre->outs; a != NULL; a = nexta) |
| 1527 | { |
| 1528 | nexta = a->outchain; |
| 1529 | if (a->type == '^') |
| 1530 | { |
| 1531 | assert(a->co == 0 || a->co == 1); |
| 1532 | newarc(nfa, PLAIN, nfa->bos[a->co], a->from, a->to); |
| 1533 | freearc(nfa, a); |
| 1534 | } |
| 1535 | } |
| 1536 | } |
| 1537 | |
| 1538 | /* |
| 1539 | * pull - pull a back constraint backward past its source state |
| 1540 | * |
| 1541 | * Returns 1 if successful (which it always is unless the source is the |
| 1542 | * start state or we have an internal error), 0 if nothing happened. |
| 1543 | * |
| 1544 | * A significant property of this function is that it deletes no pre-existing |
| 1545 | * states, and no outarcs of the constraint's from state other than the given |
| 1546 | * constraint arc. This makes the loops in pullback() safe, at the cost that |
| 1547 | * we may leave useless states behind. Therefore, we leave it to pullback() |
| 1548 | * to delete such states. |
| 1549 | * |
| 1550 | * If the from state has multiple back-constraint outarcs, and/or multiple |
| 1551 | * compatible constraint inarcs, we only need to create one new intermediate |
| 1552 | * state per combination of predecessor and successor states. *intermediates |
| 1553 | * points to a list of such intermediate states for this from state (chained |
| 1554 | * through their tmp fields). |
| 1555 | */ |
| 1556 | static int |
| 1557 | pull(struct nfa *nfa, |
| 1558 | struct arc *con, |
| 1559 | struct state **intermediates) |
| 1560 | { |
| 1561 | struct state *from = con->from; |
| 1562 | struct state *to = con->to; |
| 1563 | struct arc *a; |
| 1564 | struct arc *nexta; |
| 1565 | struct state *s; |
| 1566 | |
| 1567 | assert(from != to); /* should have gotten rid of this earlier */ |
| 1568 | if (from->flag) /* can't pull back beyond start */ |
| 1569 | return 0; |
| 1570 | if (from->nins == 0) |
| 1571 | { /* unreachable */ |
| 1572 | freearc(nfa, con); |
| 1573 | return 1; |
| 1574 | } |
| 1575 | |
| 1576 | /* |
| 1577 | * First, clone from state if necessary to avoid other outarcs. This may |
| 1578 | * seem wasteful, but it simplifies the logic, and we'll get rid of the |
| 1579 | * clone state again at the bottom. |
| 1580 | */ |
| 1581 | if (from->nouts > 1) |
| 1582 | { |
| 1583 | s = newstate(nfa); |
| 1584 | if (NISERR()) |
| 1585 | return 0; |
| 1586 | copyins(nfa, from, s); /* duplicate inarcs */ |
| 1587 | cparc(nfa, con, s, to); /* move constraint arc */ |
| 1588 | freearc(nfa, con); |
| 1589 | if (NISERR()) |
| 1590 | return 0; |
| 1591 | from = s; |
| 1592 | con = from->outs; |
| 1593 | } |
| 1594 | assert(from->nouts == 1); |
| 1595 | |
| 1596 | /* propagate the constraint into the from state's inarcs */ |
| 1597 | for (a = from->ins; a != NULL && !NISERR(); a = nexta) |
| 1598 | { |
| 1599 | nexta = a->inchain; |
| 1600 | switch (combine(con, a)) |
| 1601 | { |
| 1602 | case INCOMPATIBLE: /* destroy the arc */ |
| 1603 | freearc(nfa, a); |
| 1604 | break; |
| 1605 | case SATISFIED: /* no action needed */ |
| 1606 | break; |
| 1607 | case COMPATIBLE: /* swap the two arcs, more or less */ |
| 1608 | /* need an intermediate state, but might have one already */ |
| 1609 | for (s = *intermediates; s != NULL; s = s->tmp) |
| 1610 | { |
| 1611 | assert(s->nins > 0 && s->nouts > 0); |
| 1612 | if (s->ins->from == a->from && s->outs->to == to) |
| 1613 | break; |
| 1614 | } |
| 1615 | if (s == NULL) |
| 1616 | { |
| 1617 | s = newstate(nfa); |
| 1618 | if (NISERR()) |
| 1619 | return 0; |
| 1620 | s->tmp = *intermediates; |
| 1621 | *intermediates = s; |
| 1622 | } |
| 1623 | cparc(nfa, con, a->from, s); |
| 1624 | cparc(nfa, a, s, to); |
| 1625 | freearc(nfa, a); |
| 1626 | break; |
| 1627 | default: |
| 1628 | assert(NOTREACHED); |
| 1629 | break; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | /* remaining inarcs, if any, incorporate the constraint */ |
| 1634 | moveins(nfa, from, to); |
| 1635 | freearc(nfa, con); |
| 1636 | /* from state is now useless, but we leave it to pullback() to clean up */ |
| 1637 | return 1; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * pushfwd - push forward constraints forward to eliminate them |
| 1642 | */ |
| 1643 | static void |
| 1644 | pushfwd(struct nfa *nfa, |
| 1645 | FILE *f) /* for debug output; NULL none */ |
| 1646 | { |
| 1647 | struct state *s; |
| 1648 | struct state *nexts; |
| 1649 | struct arc *a; |
| 1650 | struct arc *nexta; |
| 1651 | struct state *intermediates; |
| 1652 | int progress; |
| 1653 | |
| 1654 | /* find and push until there are no more */ |
| 1655 | do |
| 1656 | { |
| 1657 | progress = 0; |
| 1658 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 1659 | { |
| 1660 | nexts = s->next; |
| 1661 | intermediates = NULL; |
| 1662 | for (a = s->ins; a != NULL && !NISERR(); a = nexta) |
| 1663 | { |
| 1664 | nexta = a->inchain; |
| 1665 | if (a->type == '$' || a->type == AHEAD) |
| 1666 | if (push(nfa, a, &intermediates)) |
| 1667 | progress = 1; |
| 1668 | } |
| 1669 | /* clear tmp fields of intermediate states created here */ |
| 1670 | while (intermediates != NULL) |
| 1671 | { |
| 1672 | struct state *ns = intermediates->tmp; |
| 1673 | |
| 1674 | intermediates->tmp = NULL; |
| 1675 | intermediates = ns; |
| 1676 | } |
| 1677 | /* if s is now useless, get rid of it */ |
| 1678 | if ((s->nins == 0 || s->nouts == 0) && !s->flag) |
| 1679 | dropstate(nfa, s); |
| 1680 | } |
| 1681 | if (progress && f != NULL) |
| 1682 | dumpnfa(nfa, f); |
| 1683 | } while (progress && !NISERR()); |
| 1684 | if (NISERR()) |
| 1685 | return; |
| 1686 | |
| 1687 | /* |
| 1688 | * Any $ constraints we were able to push to the post state can now be |
| 1689 | * replaced by PLAIN arcs referencing the EOS or EOL colors. There should |
| 1690 | * be no other $ or AHEAD arcs left in the NFA, though we do not check |
| 1691 | * that here (compact() will fail if so). |
| 1692 | */ |
| 1693 | for (a = nfa->post->ins; a != NULL; a = nexta) |
| 1694 | { |
| 1695 | nexta = a->inchain; |
| 1696 | if (a->type == '$') |
| 1697 | { |
| 1698 | assert(a->co == 0 || a->co == 1); |
| 1699 | newarc(nfa, PLAIN, nfa->eos[a->co], a->from, a->to); |
| 1700 | freearc(nfa, a); |
| 1701 | } |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | /* |
| 1706 | * push - push a forward constraint forward past its destination state |
| 1707 | * |
| 1708 | * Returns 1 if successful (which it always is unless the destination is the |
| 1709 | * post state or we have an internal error), 0 if nothing happened. |
| 1710 | * |
| 1711 | * A significant property of this function is that it deletes no pre-existing |
| 1712 | * states, and no inarcs of the constraint's to state other than the given |
| 1713 | * constraint arc. This makes the loops in pushfwd() safe, at the cost that |
| 1714 | * we may leave useless states behind. Therefore, we leave it to pushfwd() |
| 1715 | * to delete such states. |
| 1716 | * |
| 1717 | * If the to state has multiple forward-constraint inarcs, and/or multiple |
| 1718 | * compatible constraint outarcs, we only need to create one new intermediate |
| 1719 | * state per combination of predecessor and successor states. *intermediates |
| 1720 | * points to a list of such intermediate states for this to state (chained |
| 1721 | * through their tmp fields). |
| 1722 | */ |
| 1723 | static int |
| 1724 | push(struct nfa *nfa, |
| 1725 | struct arc *con, |
| 1726 | struct state **intermediates) |
| 1727 | { |
| 1728 | struct state *from = con->from; |
| 1729 | struct state *to = con->to; |
| 1730 | struct arc *a; |
| 1731 | struct arc *nexta; |
| 1732 | struct state *s; |
| 1733 | |
| 1734 | assert(to != from); /* should have gotten rid of this earlier */ |
| 1735 | if (to->flag) /* can't push forward beyond end */ |
| 1736 | return 0; |
| 1737 | if (to->nouts == 0) |
| 1738 | { /* dead end */ |
| 1739 | freearc(nfa, con); |
| 1740 | return 1; |
| 1741 | } |
| 1742 | |
| 1743 | /* |
| 1744 | * First, clone to state if necessary to avoid other inarcs. This may |
| 1745 | * seem wasteful, but it simplifies the logic, and we'll get rid of the |
| 1746 | * clone state again at the bottom. |
| 1747 | */ |
| 1748 | if (to->nins > 1) |
| 1749 | { |
| 1750 | s = newstate(nfa); |
| 1751 | if (NISERR()) |
| 1752 | return 0; |
| 1753 | copyouts(nfa, to, s); /* duplicate outarcs */ |
| 1754 | cparc(nfa, con, from, s); /* move constraint arc */ |
| 1755 | freearc(nfa, con); |
| 1756 | if (NISERR()) |
| 1757 | return 0; |
| 1758 | to = s; |
| 1759 | con = to->ins; |
| 1760 | } |
| 1761 | assert(to->nins == 1); |
| 1762 | |
| 1763 | /* propagate the constraint into the to state's outarcs */ |
| 1764 | for (a = to->outs; a != NULL && !NISERR(); a = nexta) |
| 1765 | { |
| 1766 | nexta = a->outchain; |
| 1767 | switch (combine(con, a)) |
| 1768 | { |
| 1769 | case INCOMPATIBLE: /* destroy the arc */ |
| 1770 | freearc(nfa, a); |
| 1771 | break; |
| 1772 | case SATISFIED: /* no action needed */ |
| 1773 | break; |
| 1774 | case COMPATIBLE: /* swap the two arcs, more or less */ |
| 1775 | /* need an intermediate state, but might have one already */ |
| 1776 | for (s = *intermediates; s != NULL; s = s->tmp) |
| 1777 | { |
| 1778 | assert(s->nins > 0 && s->nouts > 0); |
| 1779 | if (s->ins->from == from && s->outs->to == a->to) |
| 1780 | break; |
| 1781 | } |
| 1782 | if (s == NULL) |
| 1783 | { |
| 1784 | s = newstate(nfa); |
| 1785 | if (NISERR()) |
| 1786 | return 0; |
| 1787 | s->tmp = *intermediates; |
| 1788 | *intermediates = s; |
| 1789 | } |
| 1790 | cparc(nfa, con, s, a->to); |
| 1791 | cparc(nfa, a, from, s); |
| 1792 | freearc(nfa, a); |
| 1793 | break; |
| 1794 | default: |
| 1795 | assert(NOTREACHED); |
| 1796 | break; |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | /* remaining outarcs, if any, incorporate the constraint */ |
| 1801 | moveouts(nfa, to, from); |
| 1802 | freearc(nfa, con); |
| 1803 | /* to state is now useless, but we leave it to pushfwd() to clean up */ |
| 1804 | return 1; |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * combine - constraint lands on an arc, what happens? |
| 1809 | * |
| 1810 | * #def INCOMPATIBLE 1 // destroys arc |
| 1811 | * #def SATISFIED 2 // constraint satisfied |
| 1812 | * #def COMPATIBLE 3 // compatible but not satisfied yet |
| 1813 | */ |
| 1814 | static int |
| 1815 | combine(struct arc *con, |
| 1816 | struct arc *a) |
| 1817 | { |
| 1818 | #define CA(ct,at) (((ct)<<CHAR_BIT) | (at)) |
| 1819 | |
| 1820 | switch (CA(con->type, a->type)) |
| 1821 | { |
| 1822 | case CA('^', PLAIN): /* newlines are handled separately */ |
| 1823 | case CA('$', PLAIN): |
| 1824 | return INCOMPATIBLE; |
| 1825 | break; |
| 1826 | case CA(AHEAD, PLAIN): /* color constraints meet colors */ |
| 1827 | case CA(BEHIND, PLAIN): |
| 1828 | if (con->co == a->co) |
| 1829 | return SATISFIED; |
| 1830 | return INCOMPATIBLE; |
| 1831 | break; |
| 1832 | case CA('^', '^'): /* collision, similar constraints */ |
| 1833 | case CA('$', '$'): |
| 1834 | case CA(AHEAD, AHEAD): |
| 1835 | case CA(BEHIND, BEHIND): |
| 1836 | if (con->co == a->co) /* true duplication */ |
| 1837 | return SATISFIED; |
| 1838 | return INCOMPATIBLE; |
| 1839 | break; |
| 1840 | case CA('^', BEHIND): /* collision, dissimilar constraints */ |
| 1841 | case CA(BEHIND, '^'): |
| 1842 | case CA('$', AHEAD): |
| 1843 | case CA(AHEAD, '$'): |
| 1844 | return INCOMPATIBLE; |
| 1845 | break; |
| 1846 | case CA('^', '$'): /* constraints passing each other */ |
| 1847 | case CA('^', AHEAD): |
| 1848 | case CA(BEHIND, '$'): |
| 1849 | case CA(BEHIND, AHEAD): |
| 1850 | case CA('$', '^'): |
| 1851 | case CA('$', BEHIND): |
| 1852 | case CA(AHEAD, '^'): |
| 1853 | case CA(AHEAD, BEHIND): |
| 1854 | case CA('^', LACON): |
| 1855 | case CA(BEHIND, LACON): |
| 1856 | case CA('$', LACON): |
| 1857 | case CA(AHEAD, LACON): |
| 1858 | return COMPATIBLE; |
| 1859 | break; |
| 1860 | } |
| 1861 | assert(NOTREACHED); |
| 1862 | return INCOMPATIBLE; /* for benefit of blind compilers */ |
| 1863 | } |
| 1864 | |
| 1865 | /* |
| 1866 | * fixempties - get rid of EMPTY arcs |
| 1867 | */ |
| 1868 | static void |
| 1869 | fixempties(struct nfa *nfa, |
| 1870 | FILE *f) /* for debug output; NULL none */ |
| 1871 | { |
| 1872 | struct state *s; |
| 1873 | struct state *s2; |
| 1874 | struct state *nexts; |
| 1875 | struct arc *a; |
| 1876 | struct arc *nexta; |
| 1877 | int totalinarcs; |
| 1878 | struct arc **inarcsorig; |
| 1879 | struct arc **arcarray; |
| 1880 | int arccount; |
| 1881 | int prevnins; |
| 1882 | int nskip; |
| 1883 | |
| 1884 | /* |
| 1885 | * First, get rid of any states whose sole out-arc is an EMPTY, since |
| 1886 | * they're basically just aliases for their successor. The parsing |
| 1887 | * algorithm creates enough of these that it's worth special-casing this. |
| 1888 | */ |
| 1889 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 1890 | { |
| 1891 | nexts = s->next; |
| 1892 | if (s->flag || s->nouts != 1) |
| 1893 | continue; |
| 1894 | a = s->outs; |
| 1895 | assert(a != NULL && a->outchain == NULL); |
| 1896 | if (a->type != EMPTY) |
| 1897 | continue; |
| 1898 | if (s != a->to) |
| 1899 | moveins(nfa, s, a->to); |
| 1900 | dropstate(nfa, s); |
| 1901 | } |
| 1902 | |
| 1903 | /* |
| 1904 | * Similarly, get rid of any state with a single EMPTY in-arc, by folding |
| 1905 | * it into its predecessor. |
| 1906 | */ |
| 1907 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 1908 | { |
| 1909 | nexts = s->next; |
| 1910 | /* while we're at it, ensure tmp fields are clear for next step */ |
| 1911 | assert(s->tmp == NULL); |
| 1912 | if (s->flag || s->nins != 1) |
| 1913 | continue; |
| 1914 | a = s->ins; |
| 1915 | assert(a != NULL && a->inchain == NULL); |
| 1916 | if (a->type != EMPTY) |
| 1917 | continue; |
| 1918 | if (s != a->from) |
| 1919 | moveouts(nfa, s, a->from); |
| 1920 | dropstate(nfa, s); |
| 1921 | } |
| 1922 | |
| 1923 | if (NISERR()) |
| 1924 | return; |
| 1925 | |
| 1926 | /* |
| 1927 | * For each remaining NFA state, find all other states from which it is |
| 1928 | * reachable by a chain of one or more EMPTY arcs. Then generate new arcs |
| 1929 | * that eliminate the need for each such chain. |
| 1930 | * |
| 1931 | * We could replace a chain of EMPTY arcs that leads from a "from" state |
| 1932 | * to a "to" state either by pushing non-EMPTY arcs forward (linking |
| 1933 | * directly from "from"'s predecessors to "to") or by pulling them back |
| 1934 | * (linking directly from "from" to "to"'s successors). We choose to |
| 1935 | * always do the former; this choice is somewhat arbitrary, but the |
| 1936 | * approach below requires that we uniformly do one or the other. |
| 1937 | * |
| 1938 | * Suppose we have a chain of N successive EMPTY arcs (where N can easily |
| 1939 | * approach the size of the NFA). All of the intermediate states must |
| 1940 | * have additional inarcs and outarcs, else they'd have been removed by |
| 1941 | * the steps above. Assuming their inarcs are mostly not empties, we will |
| 1942 | * add O(N^2) arcs to the NFA, since a non-EMPTY inarc leading to any one |
| 1943 | * state in the chain must be duplicated to lead to all its successor |
| 1944 | * states as well. So there is no hope of doing less than O(N^2) work; |
| 1945 | * however, we should endeavor to keep the big-O cost from being even |
| 1946 | * worse than that, which it can easily become without care. In |
| 1947 | * particular, suppose we were to copy all S1's inarcs forward to S2, and |
| 1948 | * then also to S3, and then later we consider pushing S2's inarcs forward |
| 1949 | * to S3. If we include the arcs already copied from S1 in that, we'd be |
| 1950 | * doing O(N^3) work. (The duplicate-arc elimination built into newarc() |
| 1951 | * and its cohorts would get rid of the extra arcs, but not without cost.) |
| 1952 | * |
| 1953 | * We can avoid this cost by treating only arcs that existed at the start |
| 1954 | * of this phase as candidates to be pushed forward. To identify those, |
| 1955 | * we remember the first inarc each state had to start with. We rely on |
| 1956 | * the fact that newarc() and friends put new arcs on the front of their |
| 1957 | * to-states' inchains, and that this phase never deletes arcs, so that |
| 1958 | * the original arcs must be the last arcs in their to-states' inchains. |
| 1959 | * |
| 1960 | * So the process here is that, for each state in the NFA, we gather up |
| 1961 | * all non-EMPTY inarcs of states that can reach the target state via |
| 1962 | * EMPTY arcs. We then sort, de-duplicate, and merge these arcs into the |
| 1963 | * target state's inchain. (We can safely use sort-merge for this as long |
| 1964 | * as we update each state's original-arcs pointer after we add arcs to |
| 1965 | * it; the sort step of mergeins probably changed the order of the old |
| 1966 | * arcs.) |
| 1967 | * |
| 1968 | * Another refinement worth making is that, because we only add non-EMPTY |
| 1969 | * arcs during this phase, and all added arcs have the same from-state as |
| 1970 | * the non-EMPTY arc they were cloned from, we know ahead of time that any |
| 1971 | * states having only EMPTY outarcs will be useless for lack of outarcs |
| 1972 | * after we drop the EMPTY arcs. (They cannot gain non-EMPTY outarcs if |
| 1973 | * they had none to start with.) So we need not bother to update the |
| 1974 | * inchains of such states at all. |
| 1975 | */ |
| 1976 | |
| 1977 | /* Remember the states' first original inarcs */ |
| 1978 | /* ... and while at it, count how many old inarcs there are altogether */ |
| 1979 | inarcsorig = (struct arc **) MALLOC(nfa->nstates * sizeof(struct arc *)); |
| 1980 | if (inarcsorig == NULL) |
| 1981 | { |
| 1982 | NERR(REG_ESPACE); |
| 1983 | return; |
| 1984 | } |
| 1985 | totalinarcs = 0; |
| 1986 | for (s = nfa->states; s != NULL; s = s->next) |
| 1987 | { |
| 1988 | inarcsorig[s->no] = s->ins; |
| 1989 | totalinarcs += s->nins; |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * Create a workspace for accumulating the inarcs to be added to the |
| 1994 | * current target state. totalinarcs is probably a considerable |
| 1995 | * overestimate of the space needed, but the NFA is unlikely to be large |
| 1996 | * enough at this point to make it worth being smarter. |
| 1997 | */ |
| 1998 | arcarray = (struct arc **) MALLOC(totalinarcs * sizeof(struct arc *)); |
| 1999 | if (arcarray == NULL) |
| 2000 | { |
| 2001 | NERR(REG_ESPACE); |
| 2002 | FREE(inarcsorig); |
| 2003 | return; |
| 2004 | } |
| 2005 | |
| 2006 | /* And iterate over the target states */ |
| 2007 | for (s = nfa->states; s != NULL && !NISERR(); s = s->next) |
| 2008 | { |
| 2009 | /* Ignore target states without non-EMPTY outarcs, per note above */ |
| 2010 | if (!s->flag && !hasnonemptyout(s)) |
| 2011 | continue; |
| 2012 | |
| 2013 | /* Find predecessor states and accumulate their original inarcs */ |
| 2014 | arccount = 0; |
| 2015 | for (s2 = emptyreachable(nfa, s, s, inarcsorig); s2 != s; s2 = nexts) |
| 2016 | { |
| 2017 | /* Add s2's original inarcs to arcarray[], but ignore empties */ |
| 2018 | for (a = inarcsorig[s2->no]; a != NULL; a = a->inchain) |
| 2019 | { |
| 2020 | if (a->type != EMPTY) |
| 2021 | arcarray[arccount++] = a; |
| 2022 | } |
| 2023 | |
| 2024 | /* Reset the tmp fields as we walk back */ |
| 2025 | nexts = s2->tmp; |
| 2026 | s2->tmp = NULL; |
| 2027 | } |
| 2028 | s->tmp = NULL; |
| 2029 | assert(arccount <= totalinarcs); |
| 2030 | |
| 2031 | /* Remember how many original inarcs this state has */ |
| 2032 | prevnins = s->nins; |
| 2033 | |
| 2034 | /* Add non-duplicate inarcs to target state */ |
| 2035 | mergeins(nfa, s, arcarray, arccount); |
| 2036 | |
| 2037 | /* Now we must update the state's inarcsorig pointer */ |
| 2038 | nskip = s->nins - prevnins; |
| 2039 | a = s->ins; |
| 2040 | while (nskip-- > 0) |
| 2041 | a = a->inchain; |
| 2042 | inarcsorig[s->no] = a; |
| 2043 | } |
| 2044 | |
| 2045 | FREE(arcarray); |
| 2046 | FREE(inarcsorig); |
| 2047 | |
| 2048 | if (NISERR()) |
| 2049 | return; |
| 2050 | |
| 2051 | /* |
| 2052 | * Now remove all the EMPTY arcs, since we don't need them anymore. |
| 2053 | */ |
| 2054 | for (s = nfa->states; s != NULL; s = s->next) |
| 2055 | { |
| 2056 | for (a = s->outs; a != NULL; a = nexta) |
| 2057 | { |
| 2058 | nexta = a->outchain; |
| 2059 | if (a->type == EMPTY) |
| 2060 | freearc(nfa, a); |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | /* |
| 2065 | * And remove any states that have become useless. (This cleanup is not |
| 2066 | * very thorough, and would be even less so if we tried to combine it with |
| 2067 | * the previous step; but cleanup() will take care of anything we miss.) |
| 2068 | */ |
| 2069 | for (s = nfa->states; s != NULL; s = nexts) |
| 2070 | { |
| 2071 | nexts = s->next; |
| 2072 | if ((s->nins == 0 || s->nouts == 0) && !s->flag) |
| 2073 | dropstate(nfa, s); |
| 2074 | } |
| 2075 | |
| 2076 | if (f != NULL) |
| 2077 | dumpnfa(nfa, f); |
| 2078 | } |
| 2079 | |
| 2080 | /* |
| 2081 | * emptyreachable - recursively find all states that can reach s by EMPTY arcs |
| 2082 | * |
| 2083 | * The return value is the last such state found. Its tmp field links back |
| 2084 | * to the next-to-last such state, and so on back to s, so that all these |
| 2085 | * states can be located without searching the whole NFA. |
| 2086 | * |
| 2087 | * Since this is only used in fixempties(), we pass in the inarcsorig[] array |
| 2088 | * maintained by that function. This lets us skip over all new inarcs, which |
| 2089 | * are certainly not EMPTY arcs. |
| 2090 | * |
| 2091 | * The maximum recursion depth here is equal to the length of the longest |
| 2092 | * loop-free chain of EMPTY arcs, which is surely no more than the size of |
| 2093 | * the NFA ... but that could still be enough to cause trouble. |
| 2094 | */ |
| 2095 | static struct state * |
| 2096 | emptyreachable(struct nfa *nfa, |
| 2097 | struct state *s, |
| 2098 | struct state *lastfound, |
| 2099 | struct arc **inarcsorig) |
| 2100 | { |
| 2101 | struct arc *a; |
| 2102 | |
| 2103 | /* Since this is recursive, it could be driven to stack overflow */ |
| 2104 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 2105 | { |
| 2106 | NERR(REG_ETOOBIG); |
| 2107 | return lastfound; |
| 2108 | } |
| 2109 | |
| 2110 | s->tmp = lastfound; |
| 2111 | lastfound = s; |
| 2112 | for (a = inarcsorig[s->no]; a != NULL; a = a->inchain) |
| 2113 | { |
| 2114 | if (a->type == EMPTY && a->from->tmp == NULL) |
| 2115 | lastfound = emptyreachable(nfa, a->from, lastfound, inarcsorig); |
| 2116 | } |
| 2117 | return lastfound; |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * isconstraintarc - detect whether an arc is of a constraint type |
| 2122 | */ |
| 2123 | static inline int |
| 2124 | isconstraintarc(struct arc *a) |
| 2125 | { |
| 2126 | switch (a->type) |
| 2127 | { |
| 2128 | case '^': |
| 2129 | case '$': |
| 2130 | case BEHIND: |
| 2131 | case AHEAD: |
| 2132 | case LACON: |
| 2133 | return 1; |
| 2134 | } |
| 2135 | return 0; |
| 2136 | } |
| 2137 | |
| 2138 | /* |
| 2139 | * hasconstraintout - does state have a constraint out arc? |
| 2140 | */ |
| 2141 | static int |
| 2142 | hasconstraintout(struct state *s) |
| 2143 | { |
| 2144 | struct arc *a; |
| 2145 | |
| 2146 | for (a = s->outs; a != NULL; a = a->outchain) |
| 2147 | { |
| 2148 | if (isconstraintarc(a)) |
| 2149 | return 1; |
| 2150 | } |
| 2151 | return 0; |
| 2152 | } |
| 2153 | |
| 2154 | /* |
| 2155 | * fixconstraintloops - get rid of loops containing only constraint arcs |
| 2156 | * |
| 2157 | * A loop of states that contains only constraint arcs is useless, since |
| 2158 | * passing around the loop represents no forward progress. Moreover, it |
| 2159 | * would cause infinite looping in pullback/pushfwd, so we need to get rid |
| 2160 | * of such loops before doing that. |
| 2161 | */ |
| 2162 | static void |
| 2163 | fixconstraintloops(struct nfa *nfa, |
| 2164 | FILE *f) /* for debug output; NULL none */ |
| 2165 | { |
| 2166 | struct state *s; |
| 2167 | struct state *nexts; |
| 2168 | struct arc *a; |
| 2169 | struct arc *nexta; |
| 2170 | int hasconstraints; |
| 2171 | |
| 2172 | /* |
| 2173 | * In the trivial case of a state that loops to itself, we can just drop |
| 2174 | * the constraint arc altogether. This is worth special-casing because |
| 2175 | * such loops are far more common than loops containing multiple states. |
| 2176 | * While we're at it, note whether any constraint arcs survive. |
| 2177 | */ |
| 2178 | hasconstraints = 0; |
| 2179 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 2180 | { |
| 2181 | nexts = s->next; |
| 2182 | /* while we're at it, ensure tmp fields are clear for next step */ |
| 2183 | assert(s->tmp == NULL); |
| 2184 | for (a = s->outs; a != NULL && !NISERR(); a = nexta) |
| 2185 | { |
| 2186 | nexta = a->outchain; |
| 2187 | if (isconstraintarc(a)) |
| 2188 | { |
| 2189 | if (a->to == s) |
| 2190 | freearc(nfa, a); |
| 2191 | else |
| 2192 | hasconstraints = 1; |
| 2193 | } |
| 2194 | } |
| 2195 | /* If we removed all the outarcs, the state is useless. */ |
| 2196 | if (s->nouts == 0 && !s->flag) |
| 2197 | dropstate(nfa, s); |
| 2198 | } |
| 2199 | |
| 2200 | /* Nothing to do if no remaining constraint arcs */ |
| 2201 | if (NISERR() || !hasconstraints) |
| 2202 | return; |
| 2203 | |
| 2204 | /* |
| 2205 | * Starting from each remaining NFA state, search outwards for a |
| 2206 | * constraint loop. If we find a loop, break the loop, then start the |
| 2207 | * search over. (We could possibly retain some state from the first scan, |
| 2208 | * but it would complicate things greatly, and multi-state constraint |
| 2209 | * loops are rare enough that it's not worth optimizing the case.) |
| 2210 | */ |
| 2211 | restart: |
| 2212 | for (s = nfa->states; s != NULL && !NISERR(); s = s->next) |
| 2213 | { |
| 2214 | if (findconstraintloop(nfa, s)) |
| 2215 | goto restart; |
| 2216 | } |
| 2217 | |
| 2218 | if (NISERR()) |
| 2219 | return; |
| 2220 | |
| 2221 | /* |
| 2222 | * Now remove any states that have become useless. (This cleanup is not |
| 2223 | * very thorough, and would be even less so if we tried to combine it with |
| 2224 | * the previous step; but cleanup() will take care of anything we miss.) |
| 2225 | * |
| 2226 | * Because findconstraintloop intentionally doesn't reset all tmp fields, |
| 2227 | * we have to clear them after it's done. This is a convenient place to |
| 2228 | * do that, too. |
| 2229 | */ |
| 2230 | for (s = nfa->states; s != NULL; s = nexts) |
| 2231 | { |
| 2232 | nexts = s->next; |
| 2233 | s->tmp = NULL; |
| 2234 | if ((s->nins == 0 || s->nouts == 0) && !s->flag) |
| 2235 | dropstate(nfa, s); |
| 2236 | } |
| 2237 | |
| 2238 | if (f != NULL) |
| 2239 | dumpnfa(nfa, f); |
| 2240 | } |
| 2241 | |
| 2242 | /* |
| 2243 | * findconstraintloop - recursively find a loop of constraint arcs |
| 2244 | * |
| 2245 | * If we find a loop, break it by calling breakconstraintloop(), then |
| 2246 | * return 1; otherwise return 0. |
| 2247 | * |
| 2248 | * State tmp fields are guaranteed all NULL on a success return, because |
| 2249 | * breakconstraintloop does that. After a failure return, any state that |
| 2250 | * is known not to be part of a loop is marked with s->tmp == s; this allows |
| 2251 | * us not to have to re-prove that fact on later calls. (This convention is |
| 2252 | * workable because we already eliminated single-state loops.) |
| 2253 | * |
| 2254 | * Note that the found loop doesn't necessarily include the first state we |
| 2255 | * are called on. Any loop reachable from that state will do. |
| 2256 | * |
| 2257 | * The maximum recursion depth here is one more than the length of the longest |
| 2258 | * loop-free chain of constraint arcs, which is surely no more than the size |
| 2259 | * of the NFA ... but that could still be enough to cause trouble. |
| 2260 | */ |
| 2261 | static int |
| 2262 | findconstraintloop(struct nfa *nfa, struct state *s) |
| 2263 | { |
| 2264 | struct arc *a; |
| 2265 | |
| 2266 | /* Since this is recursive, it could be driven to stack overflow */ |
| 2267 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 2268 | { |
| 2269 | NERR(REG_ETOOBIG); |
| 2270 | return 1; /* to exit as quickly as possible */ |
| 2271 | } |
| 2272 | |
| 2273 | if (s->tmp != NULL) |
| 2274 | { |
| 2275 | /* Already proven uninteresting? */ |
| 2276 | if (s->tmp == s) |
| 2277 | return 0; |
| 2278 | /* Found a loop involving s */ |
| 2279 | breakconstraintloop(nfa, s); |
| 2280 | /* The tmp fields have been cleaned up by breakconstraintloop */ |
| 2281 | return 1; |
| 2282 | } |
| 2283 | for (a = s->outs; a != NULL; a = a->outchain) |
| 2284 | { |
| 2285 | if (isconstraintarc(a)) |
| 2286 | { |
| 2287 | struct state *sto = a->to; |
| 2288 | |
| 2289 | assert(sto != s); |
| 2290 | s->tmp = sto; |
| 2291 | if (findconstraintloop(nfa, sto)) |
| 2292 | return 1; |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | /* |
| 2297 | * If we get here, no constraint loop exists leading out from s. Mark it |
| 2298 | * with s->tmp == s so we need not rediscover that fact again later. |
| 2299 | */ |
| 2300 | s->tmp = s; |
| 2301 | return 0; |
| 2302 | } |
| 2303 | |
| 2304 | /* |
| 2305 | * breakconstraintloop - break a loop of constraint arcs |
| 2306 | * |
| 2307 | * sinitial is any one member state of the loop. Each loop member's tmp |
| 2308 | * field links to its successor within the loop. (Note that this function |
| 2309 | * will reset all the tmp fields to NULL.) |
| 2310 | * |
| 2311 | * We can break the loop by, for any one state S1 in the loop, cloning its |
| 2312 | * loop successor state S2 (and possibly following states), and then moving |
| 2313 | * all S1->S2 constraint arcs to point to the cloned S2. The cloned S2 should |
| 2314 | * copy any non-constraint outarcs of S2. Constraint outarcs should be |
| 2315 | * dropped if they point back to S1, else they need to be copied as arcs to |
| 2316 | * similarly cloned states S3, S4, etc. In general, each cloned state copies |
| 2317 | * non-constraint outarcs, drops constraint outarcs that would lead to itself |
| 2318 | * or any earlier cloned state, and sends other constraint outarcs to newly |
| 2319 | * cloned states. No cloned state will have any inarcs that aren't constraint |
| 2320 | * arcs or do not lead from S1 or earlier-cloned states. It's okay to drop |
| 2321 | * constraint back-arcs since they would not take us to any state we've not |
| 2322 | * already been in; therefore, no new constraint loop is created. In this way |
| 2323 | * we generate a modified NFA that can still represent every useful state |
| 2324 | * sequence, but not sequences that represent state loops with no consumption |
| 2325 | * of input data. Note that the set of cloned states will certainly include |
| 2326 | * all of the loop member states other than S1, and it may also include |
| 2327 | * non-loop states that are reachable from S2 via constraint arcs. This is |
| 2328 | * important because there is no guarantee that findconstraintloop found a |
| 2329 | * maximal loop (and searching for one would be NP-hard, so don't try). |
| 2330 | * Frequently the "non-loop states" are actually part of a larger loop that |
| 2331 | * we didn't notice, and indeed there may be several overlapping loops. |
| 2332 | * This technique ensures convergence in such cases, while considering only |
| 2333 | * the originally-found loop does not. |
| 2334 | * |
| 2335 | * If there is only one S1->S2 constraint arc, then that constraint is |
| 2336 | * certainly satisfied when we enter any of the clone states. This means that |
| 2337 | * in the common case where many of the constraint arcs are identically |
| 2338 | * labeled, we can merge together clone states linked by a similarly-labeled |
| 2339 | * constraint: if we can get to the first one we can certainly get to the |
| 2340 | * second, so there's no need to distinguish. This greatly reduces the number |
| 2341 | * of new states needed, so we preferentially break the given loop at a state |
| 2342 | * pair where this is true. |
| 2343 | * |
| 2344 | * Furthermore, it's fairly common to find that a cloned successor state has |
| 2345 | * no outarcs, especially if we're a bit aggressive about removing unnecessary |
| 2346 | * outarcs. If that happens, then there is simply not any interesting state |
| 2347 | * that can be reached through the predecessor's loop arcs, which means we can |
| 2348 | * break the loop just by removing those loop arcs, with no new states added. |
| 2349 | */ |
| 2350 | static void |
| 2351 | breakconstraintloop(struct nfa *nfa, struct state *sinitial) |
| 2352 | { |
| 2353 | struct state *s; |
| 2354 | struct state *shead; |
| 2355 | struct state *stail; |
| 2356 | struct state *sclone; |
| 2357 | struct state *nexts; |
| 2358 | struct arc *refarc; |
| 2359 | struct arc *a; |
| 2360 | struct arc *nexta; |
| 2361 | |
| 2362 | /* |
| 2363 | * Start by identifying which loop step we want to break at. |
| 2364 | * Preferentially this is one with only one constraint arc. (XXX are |
| 2365 | * there any other secondary heuristics we want to use here?) Set refarc |
| 2366 | * to point to the selected lone constraint arc, if there is one. |
| 2367 | */ |
| 2368 | refarc = NULL; |
| 2369 | s = sinitial; |
| 2370 | do |
| 2371 | { |
| 2372 | nexts = s->tmp; |
| 2373 | assert(nexts != s); /* should not see any one-element loops */ |
| 2374 | if (refarc == NULL) |
| 2375 | { |
| 2376 | int narcs = 0; |
| 2377 | |
| 2378 | for (a = s->outs; a != NULL; a = a->outchain) |
| 2379 | { |
| 2380 | if (a->to == nexts && isconstraintarc(a)) |
| 2381 | { |
| 2382 | refarc = a; |
| 2383 | narcs++; |
| 2384 | } |
| 2385 | } |
| 2386 | assert(narcs > 0); |
| 2387 | if (narcs > 1) |
| 2388 | refarc = NULL; /* multiple constraint arcs here, no good */ |
| 2389 | } |
| 2390 | s = nexts; |
| 2391 | } while (s != sinitial); |
| 2392 | |
| 2393 | if (refarc) |
| 2394 | { |
| 2395 | /* break at the refarc */ |
| 2396 | shead = refarc->from; |
| 2397 | stail = refarc->to; |
| 2398 | assert(stail == shead->tmp); |
| 2399 | } |
| 2400 | else |
| 2401 | { |
| 2402 | /* for lack of a better idea, break after sinitial */ |
| 2403 | shead = sinitial; |
| 2404 | stail = sinitial->tmp; |
| 2405 | } |
| 2406 | |
| 2407 | /* |
| 2408 | * Reset the tmp fields so that we can use them for local storage in |
| 2409 | * clonesuccessorstates. (findconstraintloop won't mind, since it's just |
| 2410 | * going to abandon its search anyway.) |
| 2411 | */ |
| 2412 | for (s = nfa->states; s != NULL; s = s->next) |
| 2413 | s->tmp = NULL; |
| 2414 | |
| 2415 | /* |
| 2416 | * Recursively build clone state(s) as needed. |
| 2417 | */ |
| 2418 | sclone = newstate(nfa); |
| 2419 | if (sclone == NULL) |
| 2420 | { |
| 2421 | assert(NISERR()); |
| 2422 | return; |
| 2423 | } |
| 2424 | |
| 2425 | clonesuccessorstates(nfa, stail, sclone, shead, refarc, |
| 2426 | NULL, NULL, nfa->nstates); |
| 2427 | |
| 2428 | if (NISERR()) |
| 2429 | return; |
| 2430 | |
| 2431 | /* |
| 2432 | * It's possible that sclone has no outarcs at all, in which case it's |
| 2433 | * useless. (We don't try extremely hard to get rid of useless states |
| 2434 | * here, but this is an easy and fairly common case.) |
| 2435 | */ |
| 2436 | if (sclone->nouts == 0) |
| 2437 | { |
| 2438 | freestate(nfa, sclone); |
| 2439 | sclone = NULL; |
| 2440 | } |
| 2441 | |
| 2442 | /* |
| 2443 | * Move shead's constraint-loop arcs to point to sclone, or just drop them |
| 2444 | * if we discovered we don't need sclone. |
| 2445 | */ |
| 2446 | for (a = shead->outs; a != NULL; a = nexta) |
| 2447 | { |
| 2448 | nexta = a->outchain; |
| 2449 | if (a->to == stail && isconstraintarc(a)) |
| 2450 | { |
| 2451 | if (sclone) |
| 2452 | cparc(nfa, a, shead, sclone); |
| 2453 | freearc(nfa, a); |
| 2454 | if (NISERR()) |
| 2455 | break; |
| 2456 | } |
| 2457 | } |
| 2458 | } |
| 2459 | |
| 2460 | /* |
| 2461 | * clonesuccessorstates - create a tree of constraint-arc successor states |
| 2462 | * |
| 2463 | * ssource is the state to be cloned, and sclone is the state to copy its |
| 2464 | * outarcs into. sclone's inarcs, if any, should already be set up. |
| 2465 | * |
| 2466 | * spredecessor is the original predecessor state that we are trying to build |
| 2467 | * successors for (it may not be the immediate predecessor of ssource). |
| 2468 | * refarc, if not NULL, is the original constraint arc that is known to have |
| 2469 | * been traversed out of spredecessor to reach the successor(s). |
| 2470 | * |
| 2471 | * For each cloned successor state, we transiently create a "donemap" that is |
| 2472 | * a boolean array showing which source states we've already visited for this |
| 2473 | * clone state. This prevents infinite recursion as well as useless repeat |
| 2474 | * visits to the same state subtree (which can add up fast, since typical NFAs |
| 2475 | * have multiple redundant arc pathways). Each donemap is a char array |
| 2476 | * indexed by state number. The donemaps are all of the same size "nstates", |
| 2477 | * which is nfa->nstates as of the start of the recursion. This is enough to |
| 2478 | * have entries for all pre-existing states, but *not* entries for clone |
| 2479 | * states created during the recursion. That's okay since we have no need to |
| 2480 | * mark those. |
| 2481 | * |
| 2482 | * curdonemap is NULL when recursing to a new sclone state, or sclone's |
| 2483 | * donemap when we are recursing without having created a new state (which we |
| 2484 | * do when we decide we can merge a successor state into the current clone |
| 2485 | * state). outerdonemap is NULL at the top level and otherwise the parent |
| 2486 | * clone state's donemap. |
| 2487 | * |
| 2488 | * The successor states we create and fill here form a strict tree structure, |
| 2489 | * with each state having exactly one predecessor, except that the toplevel |
| 2490 | * state has no inarcs as yet (breakconstraintloop will add its inarcs from |
| 2491 | * spredecessor after we're done). Thus, we can examine sclone's inarcs back |
| 2492 | * to the root, plus refarc if any, to identify the set of constraints already |
| 2493 | * known valid at the current point. This allows us to avoid generating extra |
| 2494 | * successor states. |
| 2495 | */ |
| 2496 | static void |
| 2497 | clonesuccessorstates(struct nfa *nfa, |
| 2498 | struct state *ssource, |
| 2499 | struct state *sclone, |
| 2500 | struct state *spredecessor, |
| 2501 | struct arc *refarc, |
| 2502 | char *curdonemap, |
| 2503 | char *outerdonemap, |
| 2504 | int nstates) |
| 2505 | { |
| 2506 | char *donemap; |
| 2507 | struct arc *a; |
| 2508 | |
| 2509 | /* Since this is recursive, it could be driven to stack overflow */ |
| 2510 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 2511 | { |
| 2512 | NERR(REG_ETOOBIG); |
| 2513 | return; |
| 2514 | } |
| 2515 | |
| 2516 | /* If this state hasn't already got a donemap, create one */ |
| 2517 | donemap = curdonemap; |
| 2518 | if (donemap == NULL) |
| 2519 | { |
| 2520 | donemap = (char *) MALLOC(nstates * sizeof(char)); |
| 2521 | if (donemap == NULL) |
| 2522 | { |
| 2523 | NERR(REG_ESPACE); |
| 2524 | return; |
| 2525 | } |
| 2526 | |
| 2527 | if (outerdonemap != NULL) |
| 2528 | { |
| 2529 | /* |
| 2530 | * Not at outermost recursion level, so copy the outer level's |
| 2531 | * donemap; this ensures that we see states in process of being |
| 2532 | * visited at outer levels, or already merged into predecessor |
| 2533 | * states, as ones we shouldn't traverse back to. |
| 2534 | */ |
| 2535 | memcpy(donemap, outerdonemap, nstates * sizeof(char)); |
| 2536 | } |
| 2537 | else |
| 2538 | { |
| 2539 | /* At outermost level, only spredecessor is off-limits */ |
| 2540 | memset(donemap, 0, nstates * sizeof(char)); |
| 2541 | assert(spredecessor->no < nstates); |
| 2542 | donemap[spredecessor->no] = 1; |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | /* Mark ssource as visited in the donemap */ |
| 2547 | assert(ssource->no < nstates); |
| 2548 | assert(donemap[ssource->no] == 0); |
| 2549 | donemap[ssource->no] = 1; |
| 2550 | |
| 2551 | /* |
| 2552 | * We proceed by first cloning all of ssource's outarcs, creating new |
| 2553 | * clone states as needed but not doing more with them than that. Then in |
| 2554 | * a second pass, recurse to process the child clone states. This allows |
| 2555 | * us to have only one child clone state per reachable source state, even |
| 2556 | * when there are multiple outarcs leading to the same state. Also, when |
| 2557 | * we do visit a child state, its set of inarcs is known exactly, which |
| 2558 | * makes it safe to apply the constraint-is-already-checked optimization. |
| 2559 | * Also, this ensures that we've merged all the states we can into the |
| 2560 | * current clone before we recurse to any children, thus possibly saving |
| 2561 | * them from making extra images of those states. |
| 2562 | * |
| 2563 | * While this function runs, child clone states of the current state are |
| 2564 | * marked by setting their tmp fields to point to the original state they |
| 2565 | * were cloned from. This makes it possible to detect multiple outarcs |
| 2566 | * leading to the same state, and also makes it easy to distinguish clone |
| 2567 | * states from original states (which will have tmp == NULL). |
| 2568 | */ |
| 2569 | for (a = ssource->outs; a != NULL && !NISERR(); a = a->outchain) |
| 2570 | { |
| 2571 | struct state *sto = a->to; |
| 2572 | |
| 2573 | /* |
| 2574 | * We do not consider cloning successor states that have no constraint |
| 2575 | * outarcs; just link to them as-is. They cannot be part of a |
| 2576 | * constraint loop so there is no need to make copies. In particular, |
| 2577 | * this rule keeps us from trying to clone the post state, which would |
| 2578 | * be a bad idea. |
| 2579 | */ |
| 2580 | if (isconstraintarc(a) && hasconstraintout(sto)) |
| 2581 | { |
| 2582 | struct state *prevclone; |
| 2583 | int canmerge; |
| 2584 | struct arc *a2; |
| 2585 | |
| 2586 | /* |
| 2587 | * Back-link constraint arcs must not be followed. Nor is there a |
| 2588 | * need to revisit states previously merged into this clone. |
| 2589 | */ |
| 2590 | assert(sto->no < nstates); |
| 2591 | if (donemap[sto->no] != 0) |
| 2592 | continue; |
| 2593 | |
| 2594 | /* |
| 2595 | * Check whether we already have a child clone state for this |
| 2596 | * source state. |
| 2597 | */ |
| 2598 | prevclone = NULL; |
| 2599 | for (a2 = sclone->outs; a2 != NULL; a2 = a2->outchain) |
| 2600 | { |
| 2601 | if (a2->to->tmp == sto) |
| 2602 | { |
| 2603 | prevclone = a2->to; |
| 2604 | break; |
| 2605 | } |
| 2606 | } |
| 2607 | |
| 2608 | /* |
| 2609 | * If this arc is labeled the same as refarc, or the same as any |
| 2610 | * arc we must have traversed to get to sclone, then no additional |
| 2611 | * constraints need to be met to get to sto, so we should just |
| 2612 | * merge its outarcs into sclone. |
| 2613 | */ |
| 2614 | if (refarc && a->type == refarc->type && a->co == refarc->co) |
| 2615 | canmerge = 1; |
| 2616 | else |
| 2617 | { |
| 2618 | struct state *s; |
| 2619 | |
| 2620 | canmerge = 0; |
| 2621 | for (s = sclone; s->ins; s = s->ins->from) |
| 2622 | { |
| 2623 | if (s->nins == 1 && |
| 2624 | a->type == s->ins->type && a->co == s->ins->co) |
| 2625 | { |
| 2626 | canmerge = 1; |
| 2627 | break; |
| 2628 | } |
| 2629 | } |
| 2630 | } |
| 2631 | |
| 2632 | if (canmerge) |
| 2633 | { |
| 2634 | /* |
| 2635 | * We can merge into sclone. If we previously made a child |
| 2636 | * clone state, drop it; there's no need to visit it. (This |
| 2637 | * can happen if ssource has multiple pathways to sto, and we |
| 2638 | * only just now found one that is provably a no-op.) |
| 2639 | */ |
| 2640 | if (prevclone) |
| 2641 | dropstate(nfa, prevclone); /* kills our outarc, too */ |
| 2642 | |
| 2643 | /* Recurse to merge sto's outarcs into sclone */ |
| 2644 | clonesuccessorstates(nfa, |
| 2645 | sto, |
| 2646 | sclone, |
| 2647 | spredecessor, |
| 2648 | refarc, |
| 2649 | donemap, |
| 2650 | outerdonemap, |
| 2651 | nstates); |
| 2652 | /* sto should now be marked as previously visited */ |
| 2653 | assert(NISERR() || donemap[sto->no] == 1); |
| 2654 | } |
| 2655 | else if (prevclone) |
| 2656 | { |
| 2657 | /* |
| 2658 | * We already have a clone state for this successor, so just |
| 2659 | * make another arc to it. |
| 2660 | */ |
| 2661 | cparc(nfa, a, sclone, prevclone); |
| 2662 | } |
| 2663 | else |
| 2664 | { |
| 2665 | /* |
| 2666 | * We need to create a new successor clone state. |
| 2667 | */ |
| 2668 | struct state *stoclone; |
| 2669 | |
| 2670 | stoclone = newstate(nfa); |
| 2671 | if (stoclone == NULL) |
| 2672 | { |
| 2673 | assert(NISERR()); |
| 2674 | break; |
| 2675 | } |
| 2676 | /* Mark it as to what it's a clone of */ |
| 2677 | stoclone->tmp = sto; |
| 2678 | /* ... and add the outarc leading to it */ |
| 2679 | cparc(nfa, a, sclone, stoclone); |
| 2680 | } |
| 2681 | } |
| 2682 | else |
| 2683 | { |
| 2684 | /* |
| 2685 | * Non-constraint outarcs just get copied to sclone, as do outarcs |
| 2686 | * leading to states with no constraint outarc. |
| 2687 | */ |
| 2688 | cparc(nfa, a, sclone, sto); |
| 2689 | } |
| 2690 | } |
| 2691 | |
| 2692 | /* |
| 2693 | * If we are at outer level for this clone state, recurse to all its child |
| 2694 | * clone states, clearing their tmp fields as we go. (If we're not |
| 2695 | * outermost for sclone, leave this to be done by the outer call level.) |
| 2696 | * Note that if we have multiple outarcs leading to the same clone state, |
| 2697 | * it will only be recursed-to once. |
| 2698 | */ |
| 2699 | if (curdonemap == NULL) |
| 2700 | { |
| 2701 | for (a = sclone->outs; a != NULL && !NISERR(); a = a->outchain) |
| 2702 | { |
| 2703 | struct state *stoclone = a->to; |
| 2704 | struct state *sto = stoclone->tmp; |
| 2705 | |
| 2706 | if (sto != NULL) |
| 2707 | { |
| 2708 | stoclone->tmp = NULL; |
| 2709 | clonesuccessorstates(nfa, |
| 2710 | sto, |
| 2711 | stoclone, |
| 2712 | spredecessor, |
| 2713 | refarc, |
| 2714 | NULL, |
| 2715 | donemap, |
| 2716 | nstates); |
| 2717 | } |
| 2718 | } |
| 2719 | |
| 2720 | /* Don't forget to free sclone's donemap when done with it */ |
| 2721 | FREE(donemap); |
| 2722 | } |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * cleanup - clean up NFA after optimizations |
| 2727 | */ |
| 2728 | static void |
| 2729 | cleanup(struct nfa *nfa) |
| 2730 | { |
| 2731 | struct state *s; |
| 2732 | struct state *nexts; |
| 2733 | int n; |
| 2734 | |
| 2735 | if (NISERR()) |
| 2736 | return; |
| 2737 | |
| 2738 | /* clear out unreachable or dead-end states */ |
| 2739 | /* use pre to mark reachable, then post to mark can-reach-post */ |
| 2740 | markreachable(nfa, nfa->pre, (struct state *) NULL, nfa->pre); |
| 2741 | markcanreach(nfa, nfa->post, nfa->pre, nfa->post); |
| 2742 | for (s = nfa->states; s != NULL && !NISERR(); s = nexts) |
| 2743 | { |
| 2744 | nexts = s->next; |
| 2745 | if (s->tmp != nfa->post && !s->flag) |
| 2746 | dropstate(nfa, s); |
| 2747 | } |
| 2748 | assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == nfa->post); |
| 2749 | cleartraverse(nfa, nfa->pre); |
| 2750 | assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == NULL); |
| 2751 | /* the nins==0 (final unreachable) case will be caught later */ |
| 2752 | |
| 2753 | /* renumber surviving states */ |
| 2754 | n = 0; |
| 2755 | for (s = nfa->states; s != NULL; s = s->next) |
| 2756 | s->no = n++; |
| 2757 | nfa->nstates = n; |
| 2758 | } |
| 2759 | |
| 2760 | /* |
| 2761 | * markreachable - recursive marking of reachable states |
| 2762 | */ |
| 2763 | static void |
| 2764 | markreachable(struct nfa *nfa, |
| 2765 | struct state *s, |
| 2766 | struct state *okay, /* consider only states with this mark */ |
| 2767 | struct state *mark) /* the value to mark with */ |
| 2768 | { |
| 2769 | struct arc *a; |
| 2770 | |
| 2771 | /* Since this is recursive, it could be driven to stack overflow */ |
| 2772 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 2773 | { |
| 2774 | NERR(REG_ETOOBIG); |
| 2775 | return; |
| 2776 | } |
| 2777 | |
| 2778 | if (s->tmp != okay) |
| 2779 | return; |
| 2780 | s->tmp = mark; |
| 2781 | |
| 2782 | for (a = s->outs; a != NULL; a = a->outchain) |
| 2783 | markreachable(nfa, a->to, okay, mark); |
| 2784 | } |
| 2785 | |
| 2786 | /* |
| 2787 | * markcanreach - recursive marking of states which can reach here |
| 2788 | */ |
| 2789 | static void |
| 2790 | markcanreach(struct nfa *nfa, |
| 2791 | struct state *s, |
| 2792 | struct state *okay, /* consider only states with this mark */ |
| 2793 | struct state *mark) /* the value to mark with */ |
| 2794 | { |
| 2795 | struct arc *a; |
| 2796 | |
| 2797 | /* Since this is recursive, it could be driven to stack overflow */ |
| 2798 | if (STACK_TOO_DEEP(nfa->v->re)) |
| 2799 | { |
| 2800 | NERR(REG_ETOOBIG); |
| 2801 | return; |
| 2802 | } |
| 2803 | |
| 2804 | if (s->tmp != okay) |
| 2805 | return; |
| 2806 | s->tmp = mark; |
| 2807 | |
| 2808 | for (a = s->ins; a != NULL; a = a->inchain) |
| 2809 | markcanreach(nfa, a->from, okay, mark); |
| 2810 | } |
| 2811 | |
| 2812 | /* |
| 2813 | * analyze - ascertain potentially-useful facts about an optimized NFA |
| 2814 | */ |
| 2815 | static long /* re_info bits to be ORed in */ |
| 2816 | analyze(struct nfa *nfa) |
| 2817 | { |
| 2818 | struct arc *a; |
| 2819 | struct arc *aa; |
| 2820 | |
| 2821 | if (NISERR()) |
| 2822 | return 0; |
| 2823 | |
| 2824 | if (nfa->pre->outs == NULL) |
| 2825 | return REG_UIMPOSSIBLE; |
| 2826 | for (a = nfa->pre->outs; a != NULL; a = a->outchain) |
| 2827 | for (aa = a->to->outs; aa != NULL; aa = aa->outchain) |
| 2828 | if (aa->to == nfa->post) |
| 2829 | return REG_UEMPTYMATCH; |
| 2830 | return 0; |
| 2831 | } |
| 2832 | |
| 2833 | /* |
| 2834 | * compact - construct the compact representation of an NFA |
| 2835 | */ |
| 2836 | static void |
| 2837 | compact(struct nfa *nfa, |
| 2838 | struct cnfa *cnfa) |
| 2839 | { |
| 2840 | struct state *s; |
| 2841 | struct arc *a; |
| 2842 | size_t nstates; |
| 2843 | size_t narcs; |
| 2844 | struct carc *ca; |
| 2845 | struct carc *first; |
| 2846 | |
| 2847 | assert(!NISERR()); |
| 2848 | |
| 2849 | nstates = 0; |
| 2850 | narcs = 0; |
| 2851 | for (s = nfa->states; s != NULL; s = s->next) |
| 2852 | { |
| 2853 | nstates++; |
| 2854 | narcs += s->nouts + 1; /* need one extra for endmarker */ |
| 2855 | } |
| 2856 | |
| 2857 | cnfa->stflags = (char *) MALLOC(nstates * sizeof(char)); |
| 2858 | cnfa->states = (struct carc **) MALLOC(nstates * sizeof(struct carc *)); |
| 2859 | cnfa->arcs = (struct carc *) MALLOC(narcs * sizeof(struct carc)); |
| 2860 | if (cnfa->stflags == NULL || cnfa->states == NULL || cnfa->arcs == NULL) |
| 2861 | { |
| 2862 | if (cnfa->stflags != NULL) |
| 2863 | FREE(cnfa->stflags); |
| 2864 | if (cnfa->states != NULL) |
| 2865 | FREE(cnfa->states); |
| 2866 | if (cnfa->arcs != NULL) |
| 2867 | FREE(cnfa->arcs); |
| 2868 | NERR(REG_ESPACE); |
| 2869 | return; |
| 2870 | } |
| 2871 | cnfa->nstates = nstates; |
| 2872 | cnfa->pre = nfa->pre->no; |
| 2873 | cnfa->post = nfa->post->no; |
| 2874 | cnfa->bos[0] = nfa->bos[0]; |
| 2875 | cnfa->bos[1] = nfa->bos[1]; |
| 2876 | cnfa->eos[0] = nfa->eos[0]; |
| 2877 | cnfa->eos[1] = nfa->eos[1]; |
| 2878 | cnfa->ncolors = maxcolor(nfa->cm) + 1; |
| 2879 | cnfa->flags = 0; |
| 2880 | |
| 2881 | ca = cnfa->arcs; |
| 2882 | for (s = nfa->states; s != NULL; s = s->next) |
| 2883 | { |
| 2884 | assert((size_t) s->no < nstates); |
| 2885 | cnfa->stflags[s->no] = 0; |
| 2886 | cnfa->states[s->no] = ca; |
| 2887 | first = ca; |
| 2888 | for (a = s->outs; a != NULL; a = a->outchain) |
| 2889 | switch (a->type) |
| 2890 | { |
| 2891 | case PLAIN: |
| 2892 | ca->co = a->co; |
| 2893 | ca->to = a->to->no; |
| 2894 | ca++; |
| 2895 | break; |
| 2896 | case LACON: |
| 2897 | assert(s->no != cnfa->pre); |
| 2898 | ca->co = (color) (cnfa->ncolors + a->co); |
| 2899 | ca->to = a->to->no; |
| 2900 | ca++; |
| 2901 | cnfa->flags |= HASLACONS; |
| 2902 | break; |
| 2903 | default: |
| 2904 | NERR(REG_ASSERT); |
| 2905 | break; |
| 2906 | } |
| 2907 | carcsort(first, ca - first); |
| 2908 | ca->co = COLORLESS; |
| 2909 | ca->to = 0; |
| 2910 | ca++; |
| 2911 | } |
| 2912 | assert(ca == &cnfa->arcs[narcs]); |
| 2913 | assert(cnfa->nstates != 0); |
| 2914 | |
| 2915 | /* mark no-progress states */ |
| 2916 | for (a = nfa->pre->outs; a != NULL; a = a->outchain) |
| 2917 | cnfa->stflags[a->to->no] = CNFA_NOPROGRESS; |
| 2918 | cnfa->stflags[nfa->pre->no] = CNFA_NOPROGRESS; |
| 2919 | } |
| 2920 | |
| 2921 | /* |
| 2922 | * carcsort - sort compacted-NFA arcs by color |
| 2923 | */ |
| 2924 | static void |
| 2925 | carcsort(struct carc *first, size_t n) |
| 2926 | { |
| 2927 | if (n > 1) |
| 2928 | qsort(first, n, sizeof(struct carc), carc_cmp); |
| 2929 | } |
| 2930 | |
| 2931 | static int |
| 2932 | carc_cmp(const void *a, const void *b) |
| 2933 | { |
| 2934 | const struct carc *aa = (const struct carc *) a; |
| 2935 | const struct carc *bb = (const struct carc *) b; |
| 2936 | |
| 2937 | if (aa->co < bb->co) |
| 2938 | return -1; |
| 2939 | if (aa->co > bb->co) |
| 2940 | return +1; |
| 2941 | if (aa->to < bb->to) |
| 2942 | return -1; |
| 2943 | if (aa->to > bb->to) |
| 2944 | return +1; |
| 2945 | return 0; |
| 2946 | } |
| 2947 | |
| 2948 | /* |
| 2949 | * freecnfa - free a compacted NFA |
| 2950 | */ |
| 2951 | static void |
| 2952 | freecnfa(struct cnfa *cnfa) |
| 2953 | { |
| 2954 | assert(cnfa->nstates != 0); /* not empty already */ |
| 2955 | cnfa->nstates = 0; |
| 2956 | FREE(cnfa->stflags); |
| 2957 | FREE(cnfa->states); |
| 2958 | FREE(cnfa->arcs); |
| 2959 | } |
| 2960 | |
| 2961 | /* |
| 2962 | * dumpnfa - dump an NFA in human-readable form |
| 2963 | */ |
| 2964 | static void |
| 2965 | dumpnfa(struct nfa *nfa, |
| 2966 | FILE *f) |
| 2967 | { |
| 2968 | #ifdef REG_DEBUG |
| 2969 | struct state *s; |
| 2970 | int nstates = 0; |
| 2971 | int narcs = 0; |
| 2972 | |
| 2973 | fprintf(f, "pre %d, post %d" , nfa->pre->no, nfa->post->no); |
| 2974 | if (nfa->bos[0] != COLORLESS) |
| 2975 | fprintf(f, ", bos [%ld]" , (long) nfa->bos[0]); |
| 2976 | if (nfa->bos[1] != COLORLESS) |
| 2977 | fprintf(f, ", bol [%ld]" , (long) nfa->bos[1]); |
| 2978 | if (nfa->eos[0] != COLORLESS) |
| 2979 | fprintf(f, ", eos [%ld]" , (long) nfa->eos[0]); |
| 2980 | if (nfa->eos[1] != COLORLESS) |
| 2981 | fprintf(f, ", eol [%ld]" , (long) nfa->eos[1]); |
| 2982 | fprintf(f, "\n" ); |
| 2983 | for (s = nfa->states; s != NULL; s = s->next) |
| 2984 | { |
| 2985 | dumpstate(s, f); |
| 2986 | nstates++; |
| 2987 | narcs += s->nouts; |
| 2988 | } |
| 2989 | fprintf(f, "total of %d states, %d arcs\n" , nstates, narcs); |
| 2990 | if (nfa->parent == NULL) |
| 2991 | dumpcolors(nfa->cm, f); |
| 2992 | fflush(f); |
| 2993 | #endif |
| 2994 | } |
| 2995 | |
| 2996 | #ifdef REG_DEBUG /* subordinates of dumpnfa */ |
| 2997 | |
| 2998 | /* |
| 2999 | * dumpstate - dump an NFA state in human-readable form |
| 3000 | */ |
| 3001 | static void |
| 3002 | dumpstate(struct state *s, |
| 3003 | FILE *f) |
| 3004 | { |
| 3005 | struct arc *a; |
| 3006 | |
| 3007 | fprintf(f, "%d%s%c" , s->no, (s->tmp != NULL) ? "T" : "" , |
| 3008 | (s->flag) ? s->flag : '.'); |
| 3009 | if (s->prev != NULL && s->prev->next != s) |
| 3010 | fprintf(f, "\tstate chain bad\n" ); |
| 3011 | if (s->nouts == 0) |
| 3012 | fprintf(f, "\tno out arcs\n" ); |
| 3013 | else |
| 3014 | dumparcs(s, f); |
| 3015 | fflush(f); |
| 3016 | for (a = s->ins; a != NULL; a = a->inchain) |
| 3017 | { |
| 3018 | if (a->to != s) |
| 3019 | fprintf(f, "\tlink from %d to %d on %d's in-chain\n" , |
| 3020 | a->from->no, a->to->no, s->no); |
| 3021 | } |
| 3022 | } |
| 3023 | |
| 3024 | /* |
| 3025 | * dumparcs - dump out-arcs in human-readable form |
| 3026 | */ |
| 3027 | static void |
| 3028 | dumparcs(struct state *s, |
| 3029 | FILE *f) |
| 3030 | { |
| 3031 | int pos; |
| 3032 | struct arc *a; |
| 3033 | |
| 3034 | /* printing oldest arcs first is usually clearer */ |
| 3035 | a = s->outs; |
| 3036 | assert(a != NULL); |
| 3037 | while (a->outchain != NULL) |
| 3038 | a = a->outchain; |
| 3039 | pos = 1; |
| 3040 | do |
| 3041 | { |
| 3042 | dumparc(a, s, f); |
| 3043 | if (pos == 5) |
| 3044 | { |
| 3045 | fprintf(f, "\n" ); |
| 3046 | pos = 1; |
| 3047 | } |
| 3048 | else |
| 3049 | pos++; |
| 3050 | a = a->outchainRev; |
| 3051 | } while (a != NULL); |
| 3052 | if (pos != 1) |
| 3053 | fprintf(f, "\n" ); |
| 3054 | } |
| 3055 | |
| 3056 | /* |
| 3057 | * dumparc - dump one outarc in readable form, including prefixing tab |
| 3058 | */ |
| 3059 | static void |
| 3060 | dumparc(struct arc *a, |
| 3061 | struct state *s, |
| 3062 | FILE *f) |
| 3063 | { |
| 3064 | struct arc *aa; |
| 3065 | struct arcbatch *ab; |
| 3066 | |
| 3067 | fprintf(f, "\t" ); |
| 3068 | switch (a->type) |
| 3069 | { |
| 3070 | case PLAIN: |
| 3071 | fprintf(f, "[%ld]" , (long) a->co); |
| 3072 | break; |
| 3073 | case AHEAD: |
| 3074 | fprintf(f, ">%ld>" , (long) a->co); |
| 3075 | break; |
| 3076 | case BEHIND: |
| 3077 | fprintf(f, "<%ld<" , (long) a->co); |
| 3078 | break; |
| 3079 | case LACON: |
| 3080 | fprintf(f, ":%ld:" , (long) a->co); |
| 3081 | break; |
| 3082 | case '^': |
| 3083 | case '$': |
| 3084 | fprintf(f, "%c%d" , a->type, (int) a->co); |
| 3085 | break; |
| 3086 | case EMPTY: |
| 3087 | break; |
| 3088 | default: |
| 3089 | fprintf(f, "0x%x/0%lo" , a->type, (long) a->co); |
| 3090 | break; |
| 3091 | } |
| 3092 | if (a->from != s) |
| 3093 | fprintf(f, "?%d?" , a->from->no); |
| 3094 | for (ab = &a->from->oas; ab != NULL; ab = ab->next) |
| 3095 | { |
| 3096 | for (aa = &ab->a[0]; aa < &ab->a[ABSIZE]; aa++) |
| 3097 | if (aa == a) |
| 3098 | break; /* NOTE BREAK OUT */ |
| 3099 | if (aa < &ab->a[ABSIZE]) /* propagate break */ |
| 3100 | break; /* NOTE BREAK OUT */ |
| 3101 | } |
| 3102 | if (ab == NULL) |
| 3103 | fprintf(f, "?!?" ); /* not in allocated space */ |
| 3104 | fprintf(f, "->" ); |
| 3105 | if (a->to == NULL) |
| 3106 | { |
| 3107 | fprintf(f, "NULL" ); |
| 3108 | return; |
| 3109 | } |
| 3110 | fprintf(f, "%d" , a->to->no); |
| 3111 | for (aa = a->to->ins; aa != NULL; aa = aa->inchain) |
| 3112 | if (aa == a) |
| 3113 | break; /* NOTE BREAK OUT */ |
| 3114 | if (aa == NULL) |
| 3115 | fprintf(f, "?!?" ); /* missing from in-chain */ |
| 3116 | } |
| 3117 | #endif /* REG_DEBUG */ |
| 3118 | |
| 3119 | /* |
| 3120 | * dumpcnfa - dump a compacted NFA in human-readable form |
| 3121 | */ |
| 3122 | #ifdef REG_DEBUG |
| 3123 | static void |
| 3124 | dumpcnfa(struct cnfa *cnfa, |
| 3125 | FILE *f) |
| 3126 | { |
| 3127 | int st; |
| 3128 | |
| 3129 | fprintf(f, "pre %d, post %d" , cnfa->pre, cnfa->post); |
| 3130 | if (cnfa->bos[0] != COLORLESS) |
| 3131 | fprintf(f, ", bos [%ld]" , (long) cnfa->bos[0]); |
| 3132 | if (cnfa->bos[1] != COLORLESS) |
| 3133 | fprintf(f, ", bol [%ld]" , (long) cnfa->bos[1]); |
| 3134 | if (cnfa->eos[0] != COLORLESS) |
| 3135 | fprintf(f, ", eos [%ld]" , (long) cnfa->eos[0]); |
| 3136 | if (cnfa->eos[1] != COLORLESS) |
| 3137 | fprintf(f, ", eol [%ld]" , (long) cnfa->eos[1]); |
| 3138 | if (cnfa->flags & HASLACONS) |
| 3139 | fprintf(f, ", haslacons" ); |
| 3140 | fprintf(f, "\n" ); |
| 3141 | for (st = 0; st < cnfa->nstates; st++) |
| 3142 | dumpcstate(st, cnfa, f); |
| 3143 | fflush(f); |
| 3144 | } |
| 3145 | #endif |
| 3146 | |
| 3147 | #ifdef REG_DEBUG /* subordinates of dumpcnfa */ |
| 3148 | |
| 3149 | /* |
| 3150 | * dumpcstate - dump a compacted-NFA state in human-readable form |
| 3151 | */ |
| 3152 | static void |
| 3153 | dumpcstate(int st, |
| 3154 | struct cnfa *cnfa, |
| 3155 | FILE *f) |
| 3156 | { |
| 3157 | struct carc *ca; |
| 3158 | int pos; |
| 3159 | |
| 3160 | fprintf(f, "%d%s" , st, (cnfa->stflags[st] & CNFA_NOPROGRESS) ? ":" : "." ); |
| 3161 | pos = 1; |
| 3162 | for (ca = cnfa->states[st]; ca->co != COLORLESS; ca++) |
| 3163 | { |
| 3164 | if (ca->co < cnfa->ncolors) |
| 3165 | fprintf(f, "\t[%ld]->%d" , (long) ca->co, ca->to); |
| 3166 | else |
| 3167 | fprintf(f, "\t:%ld:->%d" , (long) (ca->co - cnfa->ncolors), ca->to); |
| 3168 | if (pos == 5) |
| 3169 | { |
| 3170 | fprintf(f, "\n" ); |
| 3171 | pos = 1; |
| 3172 | } |
| 3173 | else |
| 3174 | pos++; |
| 3175 | } |
| 3176 | if (ca == cnfa->states[st] || pos != 1) |
| 3177 | fprintf(f, "\n" ); |
| 3178 | fflush(f); |
| 3179 | } |
| 3180 | |
| 3181 | #endif /* REG_DEBUG */ |
| 3182 | |