| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * syncrep.c |
| 4 | * |
| 5 | * Synchronous replication is new as of PostgreSQL 9.1. |
| 6 | * |
| 7 | * If requested, transaction commits wait until their commit LSN are |
| 8 | * acknowledged by the synchronous standbys. |
| 9 | * |
| 10 | * This module contains the code for waiting and release of backends. |
| 11 | * All code in this module executes on the primary. The core streaming |
| 12 | * replication transport remains within WALreceiver/WALsender modules. |
| 13 | * |
| 14 | * The essence of this design is that it isolates all logic about |
| 15 | * waiting/releasing onto the primary. The primary defines which standbys |
| 16 | * it wishes to wait for. The standbys are completely unaware of the |
| 17 | * durability requirements of transactions on the primary, reducing the |
| 18 | * complexity of the code and streamlining both standby operations and |
| 19 | * network bandwidth because there is no requirement to ship |
| 20 | * per-transaction state information. |
| 21 | * |
| 22 | * Replication is either synchronous or not synchronous (async). If it is |
| 23 | * async, we just fastpath out of here. If it is sync, then we wait for |
| 24 | * the write, flush or apply location on the standby before releasing |
| 25 | * the waiting backend. Further complexity in that interaction is |
| 26 | * expected in later releases. |
| 27 | * |
| 28 | * The best performing way to manage the waiting backends is to have a |
| 29 | * single ordered queue of waiting backends, so that we can avoid |
| 30 | * searching the through all waiters each time we receive a reply. |
| 31 | * |
| 32 | * In 9.5 or before only a single standby could be considered as |
| 33 | * synchronous. In 9.6 we support a priority-based multiple synchronous |
| 34 | * standbys. In 10.0 a quorum-based multiple synchronous standbys is also |
| 35 | * supported. The number of synchronous standbys that transactions |
| 36 | * must wait for replies from is specified in synchronous_standby_names. |
| 37 | * This parameter also specifies a list of standby names and the method |
| 38 | * (FIRST and ANY) to choose synchronous standbys from the listed ones. |
| 39 | * |
| 40 | * The method FIRST specifies a priority-based synchronous replication |
| 41 | * and makes transaction commits wait until their WAL records are |
| 42 | * replicated to the requested number of synchronous standbys chosen based |
| 43 | * on their priorities. The standbys whose names appear earlier in the list |
| 44 | * are given higher priority and will be considered as synchronous. |
| 45 | * Other standby servers appearing later in this list represent potential |
| 46 | * synchronous standbys. If any of the current synchronous standbys |
| 47 | * disconnects for whatever reason, it will be replaced immediately with |
| 48 | * the next-highest-priority standby. |
| 49 | * |
| 50 | * The method ANY specifies a quorum-based synchronous replication |
| 51 | * and makes transaction commits wait until their WAL records are |
| 52 | * replicated to at least the requested number of synchronous standbys |
| 53 | * in the list. All the standbys appearing in the list are considered as |
| 54 | * candidates for quorum synchronous standbys. |
| 55 | * |
| 56 | * If neither FIRST nor ANY is specified, FIRST is used as the method. |
| 57 | * This is for backward compatibility with 9.6 or before where only a |
| 58 | * priority-based sync replication was supported. |
| 59 | * |
| 60 | * Before the standbys chosen from synchronous_standby_names can |
| 61 | * become the synchronous standbys they must have caught up with |
| 62 | * the primary; that may take some time. Once caught up, |
| 63 | * the standbys which are considered as synchronous at that moment |
| 64 | * will release waiters from the queue. |
| 65 | * |
| 66 | * Portions Copyright (c) 2010-2019, PostgreSQL Global Development Group |
| 67 | * |
| 68 | * IDENTIFICATION |
| 69 | * src/backend/replication/syncrep.c |
| 70 | * |
| 71 | *------------------------------------------------------------------------- |
| 72 | */ |
| 73 | #include "postgres.h" |
| 74 | |
| 75 | #include <unistd.h> |
| 76 | |
| 77 | #include "access/xact.h" |
| 78 | #include "miscadmin.h" |
| 79 | #include "pgstat.h" |
| 80 | #include "replication/syncrep.h" |
| 81 | #include "replication/walsender.h" |
| 82 | #include "replication/walsender_private.h" |
| 83 | #include "storage/pmsignal.h" |
| 84 | #include "storage/proc.h" |
| 85 | #include "tcop/tcopprot.h" |
| 86 | #include "utils/builtins.h" |
| 87 | #include "utils/ps_status.h" |
| 88 | |
| 89 | /* User-settable parameters for sync rep */ |
| 90 | char *SyncRepStandbyNames; |
| 91 | |
| 92 | #define SyncStandbysDefined() \ |
| 93 | (SyncRepStandbyNames != NULL && SyncRepStandbyNames[0] != '\0') |
| 94 | |
| 95 | static bool announce_next_takeover = true; |
| 96 | |
| 97 | SyncRepConfigData *SyncRepConfig = NULL; |
| 98 | static int SyncRepWaitMode = SYNC_REP_NO_WAIT; |
| 99 | |
| 100 | static void SyncRepQueueInsert(int mode); |
| 101 | static void SyncRepCancelWait(void); |
| 102 | static int SyncRepWakeQueue(bool all, int mode); |
| 103 | |
| 104 | static bool SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, |
| 105 | XLogRecPtr *flushPtr, |
| 106 | XLogRecPtr *applyPtr, |
| 107 | bool *am_sync); |
| 108 | static void SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr, |
| 109 | XLogRecPtr *flushPtr, |
| 110 | XLogRecPtr *applyPtr, |
| 111 | List *sync_standbys); |
| 112 | static void SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr, |
| 113 | XLogRecPtr *flushPtr, |
| 114 | XLogRecPtr *applyPtr, |
| 115 | List *sync_standbys, uint8 nth); |
| 116 | static int SyncRepGetStandbyPriority(void); |
| 117 | static List *SyncRepGetSyncStandbysPriority(bool *am_sync); |
| 118 | static List *SyncRepGetSyncStandbysQuorum(bool *am_sync); |
| 119 | static int cmp_lsn(const void *a, const void *b); |
| 120 | |
| 121 | #ifdef USE_ASSERT_CHECKING |
| 122 | static bool SyncRepQueueIsOrderedByLSN(int mode); |
| 123 | #endif |
| 124 | |
| 125 | /* |
| 126 | * =========================================================== |
| 127 | * Synchronous Replication functions for normal user backends |
| 128 | * =========================================================== |
| 129 | */ |
| 130 | |
| 131 | /* |
| 132 | * Wait for synchronous replication, if requested by user. |
| 133 | * |
| 134 | * Initially backends start in state SYNC_REP_NOT_WAITING and then |
| 135 | * change that state to SYNC_REP_WAITING before adding ourselves |
| 136 | * to the wait queue. During SyncRepWakeQueue() a WALSender changes |
| 137 | * the state to SYNC_REP_WAIT_COMPLETE once replication is confirmed. |
| 138 | * This backend then resets its state to SYNC_REP_NOT_WAITING. |
| 139 | * |
| 140 | * 'lsn' represents the LSN to wait for. 'commit' indicates whether this LSN |
| 141 | * represents a commit record. If it doesn't, then we wait only for the WAL |
| 142 | * to be flushed if synchronous_commit is set to the higher level of |
| 143 | * remote_apply, because only commit records provide apply feedback. |
| 144 | */ |
| 145 | void |
| 146 | SyncRepWaitForLSN(XLogRecPtr lsn, bool commit) |
| 147 | { |
| 148 | char *new_status = NULL; |
| 149 | const char *old_status; |
| 150 | int mode; |
| 151 | |
| 152 | /* Cap the level for anything other than commit to remote flush only. */ |
| 153 | if (commit) |
| 154 | mode = SyncRepWaitMode; |
| 155 | else |
| 156 | mode = Min(SyncRepWaitMode, SYNC_REP_WAIT_FLUSH); |
| 157 | |
| 158 | /* |
| 159 | * Fast exit if user has not requested sync replication. |
| 160 | */ |
| 161 | if (!SyncRepRequested()) |
| 162 | return; |
| 163 | |
| 164 | Assert(SHMQueueIsDetached(&(MyProc->syncRepLinks))); |
| 165 | Assert(WalSndCtl != NULL); |
| 166 | |
| 167 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 168 | Assert(MyProc->syncRepState == SYNC_REP_NOT_WAITING); |
| 169 | |
| 170 | /* |
| 171 | * We don't wait for sync rep if WalSndCtl->sync_standbys_defined is not |
| 172 | * set. See SyncRepUpdateSyncStandbysDefined. |
| 173 | * |
| 174 | * Also check that the standby hasn't already replied. Unlikely race |
| 175 | * condition but we'll be fetching that cache line anyway so it's likely |
| 176 | * to be a low cost check. |
| 177 | */ |
| 178 | if (!WalSndCtl->sync_standbys_defined || |
| 179 | lsn <= WalSndCtl->lsn[mode]) |
| 180 | { |
| 181 | LWLockRelease(SyncRepLock); |
| 182 | return; |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | * Set our waitLSN so WALSender will know when to wake us, and add |
| 187 | * ourselves to the queue. |
| 188 | */ |
| 189 | MyProc->waitLSN = lsn; |
| 190 | MyProc->syncRepState = SYNC_REP_WAITING; |
| 191 | SyncRepQueueInsert(mode); |
| 192 | Assert(SyncRepQueueIsOrderedByLSN(mode)); |
| 193 | LWLockRelease(SyncRepLock); |
| 194 | |
| 195 | /* Alter ps display to show waiting for sync rep. */ |
| 196 | if (update_process_title) |
| 197 | { |
| 198 | int len; |
| 199 | |
| 200 | old_status = get_ps_display(&len); |
| 201 | new_status = (char *) palloc(len + 32 + 1); |
| 202 | memcpy(new_status, old_status, len); |
| 203 | sprintf(new_status + len, " waiting for %X/%X" , |
| 204 | (uint32) (lsn >> 32), (uint32) lsn); |
| 205 | set_ps_display(new_status, false); |
| 206 | new_status[len] = '\0'; /* truncate off " waiting ..." */ |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * Wait for specified LSN to be confirmed. |
| 211 | * |
| 212 | * Each proc has its own wait latch, so we perform a normal latch |
| 213 | * check/wait loop here. |
| 214 | */ |
| 215 | for (;;) |
| 216 | { |
| 217 | int rc; |
| 218 | |
| 219 | /* Must reset the latch before testing state. */ |
| 220 | ResetLatch(MyLatch); |
| 221 | |
| 222 | /* |
| 223 | * Acquiring the lock is not needed, the latch ensures proper |
| 224 | * barriers. If it looks like we're done, we must really be done, |
| 225 | * because once walsender changes the state to SYNC_REP_WAIT_COMPLETE, |
| 226 | * it will never update it again, so we can't be seeing a stale value |
| 227 | * in that case. |
| 228 | */ |
| 229 | if (MyProc->syncRepState == SYNC_REP_WAIT_COMPLETE) |
| 230 | break; |
| 231 | |
| 232 | /* |
| 233 | * If a wait for synchronous replication is pending, we can neither |
| 234 | * acknowledge the commit nor raise ERROR or FATAL. The latter would |
| 235 | * lead the client to believe that the transaction aborted, which is |
| 236 | * not true: it's already committed locally. The former is no good |
| 237 | * either: the client has requested synchronous replication, and is |
| 238 | * entitled to assume that an acknowledged commit is also replicated, |
| 239 | * which might not be true. So in this case we issue a WARNING (which |
| 240 | * some clients may be able to interpret) and shut off further output. |
| 241 | * We do NOT reset ProcDiePending, so that the process will die after |
| 242 | * the commit is cleaned up. |
| 243 | */ |
| 244 | if (ProcDiePending) |
| 245 | { |
| 246 | ereport(WARNING, |
| 247 | (errcode(ERRCODE_ADMIN_SHUTDOWN), |
| 248 | errmsg("canceling the wait for synchronous replication and terminating connection due to administrator command" ), |
| 249 | errdetail("The transaction has already committed locally, but might not have been replicated to the standby." ))); |
| 250 | whereToSendOutput = DestNone; |
| 251 | SyncRepCancelWait(); |
| 252 | break; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * It's unclear what to do if a query cancel interrupt arrives. We |
| 257 | * can't actually abort at this point, but ignoring the interrupt |
| 258 | * altogether is not helpful, so we just terminate the wait with a |
| 259 | * suitable warning. |
| 260 | */ |
| 261 | if (QueryCancelPending) |
| 262 | { |
| 263 | QueryCancelPending = false; |
| 264 | ereport(WARNING, |
| 265 | (errmsg("canceling wait for synchronous replication due to user request" ), |
| 266 | errdetail("The transaction has already committed locally, but might not have been replicated to the standby." ))); |
| 267 | SyncRepCancelWait(); |
| 268 | break; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Wait on latch. Any condition that should wake us up will set the |
| 273 | * latch, so no need for timeout. |
| 274 | */ |
| 275 | rc = WaitLatch(MyLatch, WL_LATCH_SET | WL_POSTMASTER_DEATH, -1, |
| 276 | WAIT_EVENT_SYNC_REP); |
| 277 | |
| 278 | /* |
| 279 | * If the postmaster dies, we'll probably never get an acknowledgment, |
| 280 | * because all the wal sender processes will exit. So just bail out. |
| 281 | */ |
| 282 | if (rc & WL_POSTMASTER_DEATH) |
| 283 | { |
| 284 | ProcDiePending = true; |
| 285 | whereToSendOutput = DestNone; |
| 286 | SyncRepCancelWait(); |
| 287 | break; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * WalSender has checked our LSN and has removed us from queue. Clean up |
| 293 | * state and leave. It's OK to reset these shared memory fields without |
| 294 | * holding SyncRepLock, because any walsenders will ignore us anyway when |
| 295 | * we're not on the queue. We need a read barrier to make sure we see the |
| 296 | * changes to the queue link (this might be unnecessary without |
| 297 | * assertions, but better safe than sorry). |
| 298 | */ |
| 299 | pg_read_barrier(); |
| 300 | Assert(SHMQueueIsDetached(&(MyProc->syncRepLinks))); |
| 301 | MyProc->syncRepState = SYNC_REP_NOT_WAITING; |
| 302 | MyProc->waitLSN = 0; |
| 303 | |
| 304 | if (new_status) |
| 305 | { |
| 306 | /* Reset ps display */ |
| 307 | set_ps_display(new_status, false); |
| 308 | pfree(new_status); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Insert MyProc into the specified SyncRepQueue, maintaining sorted invariant. |
| 314 | * |
| 315 | * Usually we will go at tail of queue, though it's possible that we arrive |
| 316 | * here out of order, so start at tail and work back to insertion point. |
| 317 | */ |
| 318 | static void |
| 319 | SyncRepQueueInsert(int mode) |
| 320 | { |
| 321 | PGPROC *proc; |
| 322 | |
| 323 | Assert(mode >= 0 && mode < NUM_SYNC_REP_WAIT_MODE); |
| 324 | proc = (PGPROC *) SHMQueuePrev(&(WalSndCtl->SyncRepQueue[mode]), |
| 325 | &(WalSndCtl->SyncRepQueue[mode]), |
| 326 | offsetof(PGPROC, syncRepLinks)); |
| 327 | |
| 328 | while (proc) |
| 329 | { |
| 330 | /* |
| 331 | * Stop at the queue element that we should after to ensure the queue |
| 332 | * is ordered by LSN. |
| 333 | */ |
| 334 | if (proc->waitLSN < MyProc->waitLSN) |
| 335 | break; |
| 336 | |
| 337 | proc = (PGPROC *) SHMQueuePrev(&(WalSndCtl->SyncRepQueue[mode]), |
| 338 | &(proc->syncRepLinks), |
| 339 | offsetof(PGPROC, syncRepLinks)); |
| 340 | } |
| 341 | |
| 342 | if (proc) |
| 343 | SHMQueueInsertAfter(&(proc->syncRepLinks), &(MyProc->syncRepLinks)); |
| 344 | else |
| 345 | SHMQueueInsertAfter(&(WalSndCtl->SyncRepQueue[mode]), &(MyProc->syncRepLinks)); |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Acquire SyncRepLock and cancel any wait currently in progress. |
| 350 | */ |
| 351 | static void |
| 352 | SyncRepCancelWait(void) |
| 353 | { |
| 354 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 355 | if (!SHMQueueIsDetached(&(MyProc->syncRepLinks))) |
| 356 | SHMQueueDelete(&(MyProc->syncRepLinks)); |
| 357 | MyProc->syncRepState = SYNC_REP_NOT_WAITING; |
| 358 | LWLockRelease(SyncRepLock); |
| 359 | } |
| 360 | |
| 361 | void |
| 362 | SyncRepCleanupAtProcExit(void) |
| 363 | { |
| 364 | if (!SHMQueueIsDetached(&(MyProc->syncRepLinks))) |
| 365 | { |
| 366 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 367 | SHMQueueDelete(&(MyProc->syncRepLinks)); |
| 368 | LWLockRelease(SyncRepLock); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * =========================================================== |
| 374 | * Synchronous Replication functions for wal sender processes |
| 375 | * =========================================================== |
| 376 | */ |
| 377 | |
| 378 | /* |
| 379 | * Take any action required to initialise sync rep state from config |
| 380 | * data. Called at WALSender startup and after each SIGHUP. |
| 381 | */ |
| 382 | void |
| 383 | SyncRepInitConfig(void) |
| 384 | { |
| 385 | int priority; |
| 386 | |
| 387 | /* |
| 388 | * Determine if we are a potential sync standby and remember the result |
| 389 | * for handling replies from standby. |
| 390 | */ |
| 391 | priority = SyncRepGetStandbyPriority(); |
| 392 | if (MyWalSnd->sync_standby_priority != priority) |
| 393 | { |
| 394 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 395 | MyWalSnd->sync_standby_priority = priority; |
| 396 | LWLockRelease(SyncRepLock); |
| 397 | ereport(DEBUG1, |
| 398 | (errmsg("standby \"%s\" now has synchronous standby priority %u" , |
| 399 | application_name, priority))); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * Update the LSNs on each queue based upon our latest state. This |
| 405 | * implements a simple policy of first-valid-sync-standby-releases-waiter. |
| 406 | * |
| 407 | * Other policies are possible, which would change what we do here and |
| 408 | * perhaps also which information we store as well. |
| 409 | */ |
| 410 | void |
| 411 | SyncRepReleaseWaiters(void) |
| 412 | { |
| 413 | volatile WalSndCtlData *walsndctl = WalSndCtl; |
| 414 | XLogRecPtr writePtr; |
| 415 | XLogRecPtr flushPtr; |
| 416 | XLogRecPtr applyPtr; |
| 417 | bool got_recptr; |
| 418 | bool am_sync; |
| 419 | int numwrite = 0; |
| 420 | int numflush = 0; |
| 421 | int numapply = 0; |
| 422 | |
| 423 | /* |
| 424 | * If this WALSender is serving a standby that is not on the list of |
| 425 | * potential sync standbys then we have nothing to do. If we are still |
| 426 | * starting up, still running base backup or the current flush position is |
| 427 | * still invalid, then leave quickly also. Streaming or stopping WAL |
| 428 | * senders are allowed to release waiters. |
| 429 | */ |
| 430 | if (MyWalSnd->sync_standby_priority == 0 || |
| 431 | (MyWalSnd->state != WALSNDSTATE_STREAMING && |
| 432 | MyWalSnd->state != WALSNDSTATE_STOPPING) || |
| 433 | XLogRecPtrIsInvalid(MyWalSnd->flush)) |
| 434 | { |
| 435 | announce_next_takeover = true; |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * We're a potential sync standby. Release waiters if there are enough |
| 441 | * sync standbys and we are considered as sync. |
| 442 | */ |
| 443 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 444 | |
| 445 | /* |
| 446 | * Check whether we are a sync standby or not, and calculate the synced |
| 447 | * positions among all sync standbys. |
| 448 | */ |
| 449 | got_recptr = SyncRepGetSyncRecPtr(&writePtr, &flushPtr, &applyPtr, &am_sync); |
| 450 | |
| 451 | /* |
| 452 | * If we are managing a sync standby, though we weren't prior to this, |
| 453 | * then announce we are now a sync standby. |
| 454 | */ |
| 455 | if (announce_next_takeover && am_sync) |
| 456 | { |
| 457 | announce_next_takeover = false; |
| 458 | |
| 459 | if (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) |
| 460 | ereport(LOG, |
| 461 | (errmsg("standby \"%s\" is now a synchronous standby with priority %u" , |
| 462 | application_name, MyWalSnd->sync_standby_priority))); |
| 463 | else |
| 464 | ereport(LOG, |
| 465 | (errmsg("standby \"%s\" is now a candidate for quorum synchronous standby" , |
| 466 | application_name))); |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * If the number of sync standbys is less than requested or we aren't |
| 471 | * managing a sync standby then just leave. |
| 472 | */ |
| 473 | if (!got_recptr || !am_sync) |
| 474 | { |
| 475 | LWLockRelease(SyncRepLock); |
| 476 | announce_next_takeover = !am_sync; |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Set the lsn first so that when we wake backends they will release up to |
| 482 | * this location. |
| 483 | */ |
| 484 | if (walsndctl->lsn[SYNC_REP_WAIT_WRITE] < writePtr) |
| 485 | { |
| 486 | walsndctl->lsn[SYNC_REP_WAIT_WRITE] = writePtr; |
| 487 | numwrite = SyncRepWakeQueue(false, SYNC_REP_WAIT_WRITE); |
| 488 | } |
| 489 | if (walsndctl->lsn[SYNC_REP_WAIT_FLUSH] < flushPtr) |
| 490 | { |
| 491 | walsndctl->lsn[SYNC_REP_WAIT_FLUSH] = flushPtr; |
| 492 | numflush = SyncRepWakeQueue(false, SYNC_REP_WAIT_FLUSH); |
| 493 | } |
| 494 | if (walsndctl->lsn[SYNC_REP_WAIT_APPLY] < applyPtr) |
| 495 | { |
| 496 | walsndctl->lsn[SYNC_REP_WAIT_APPLY] = applyPtr; |
| 497 | numapply = SyncRepWakeQueue(false, SYNC_REP_WAIT_APPLY); |
| 498 | } |
| 499 | |
| 500 | LWLockRelease(SyncRepLock); |
| 501 | |
| 502 | elog(DEBUG3, "released %d procs up to write %X/%X, %d procs up to flush %X/%X, %d procs up to apply %X/%X" , |
| 503 | numwrite, (uint32) (writePtr >> 32), (uint32) writePtr, |
| 504 | numflush, (uint32) (flushPtr >> 32), (uint32) flushPtr, |
| 505 | numapply, (uint32) (applyPtr >> 32), (uint32) applyPtr); |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * Calculate the synced Write, Flush and Apply positions among sync standbys. |
| 510 | * |
| 511 | * Return false if the number of sync standbys is less than |
| 512 | * synchronous_standby_names specifies. Otherwise return true and |
| 513 | * store the positions into *writePtr, *flushPtr and *applyPtr. |
| 514 | * |
| 515 | * On return, *am_sync is set to true if this walsender is connecting to |
| 516 | * sync standby. Otherwise it's set to false. |
| 517 | */ |
| 518 | static bool |
| 519 | SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, |
| 520 | XLogRecPtr *applyPtr, bool *am_sync) |
| 521 | { |
| 522 | List *sync_standbys; |
| 523 | |
| 524 | *writePtr = InvalidXLogRecPtr; |
| 525 | *flushPtr = InvalidXLogRecPtr; |
| 526 | *applyPtr = InvalidXLogRecPtr; |
| 527 | *am_sync = false; |
| 528 | |
| 529 | /* Get standbys that are considered as synchronous at this moment */ |
| 530 | sync_standbys = SyncRepGetSyncStandbys(am_sync); |
| 531 | |
| 532 | /* |
| 533 | * Quick exit if we are not managing a sync standby or there are not |
| 534 | * enough synchronous standbys. |
| 535 | */ |
| 536 | if (!(*am_sync) || |
| 537 | SyncRepConfig == NULL || |
| 538 | list_length(sync_standbys) < SyncRepConfig->num_sync) |
| 539 | { |
| 540 | list_free(sync_standbys); |
| 541 | return false; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * In a priority-based sync replication, the synced positions are the |
| 546 | * oldest ones among sync standbys. In a quorum-based, they are the Nth |
| 547 | * latest ones. |
| 548 | * |
| 549 | * SyncRepGetNthLatestSyncRecPtr() also can calculate the oldest |
| 550 | * positions. But we use SyncRepGetOldestSyncRecPtr() for that calculation |
| 551 | * because it's a bit more efficient. |
| 552 | * |
| 553 | * XXX If the numbers of current and requested sync standbys are the same, |
| 554 | * we can use SyncRepGetOldestSyncRecPtr() to calculate the synced |
| 555 | * positions even in a quorum-based sync replication. |
| 556 | */ |
| 557 | if (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) |
| 558 | { |
| 559 | SyncRepGetOldestSyncRecPtr(writePtr, flushPtr, applyPtr, |
| 560 | sync_standbys); |
| 561 | } |
| 562 | else |
| 563 | { |
| 564 | SyncRepGetNthLatestSyncRecPtr(writePtr, flushPtr, applyPtr, |
| 565 | sync_standbys, SyncRepConfig->num_sync); |
| 566 | } |
| 567 | |
| 568 | list_free(sync_standbys); |
| 569 | return true; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Calculate the oldest Write, Flush and Apply positions among sync standbys. |
| 574 | */ |
| 575 | static void |
| 576 | SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, |
| 577 | XLogRecPtr *applyPtr, List *sync_standbys) |
| 578 | { |
| 579 | ListCell *cell; |
| 580 | |
| 581 | /* |
| 582 | * Scan through all sync standbys and calculate the oldest Write, Flush |
| 583 | * and Apply positions. |
| 584 | */ |
| 585 | foreach(cell, sync_standbys) |
| 586 | { |
| 587 | WalSnd *walsnd = &WalSndCtl->walsnds[lfirst_int(cell)]; |
| 588 | XLogRecPtr write; |
| 589 | XLogRecPtr flush; |
| 590 | XLogRecPtr apply; |
| 591 | |
| 592 | SpinLockAcquire(&walsnd->mutex); |
| 593 | write = walsnd->write; |
| 594 | flush = walsnd->flush; |
| 595 | apply = walsnd->apply; |
| 596 | SpinLockRelease(&walsnd->mutex); |
| 597 | |
| 598 | if (XLogRecPtrIsInvalid(*writePtr) || *writePtr > write) |
| 599 | *writePtr = write; |
| 600 | if (XLogRecPtrIsInvalid(*flushPtr) || *flushPtr > flush) |
| 601 | *flushPtr = flush; |
| 602 | if (XLogRecPtrIsInvalid(*applyPtr) || *applyPtr > apply) |
| 603 | *applyPtr = apply; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Calculate the Nth latest Write, Flush and Apply positions among sync |
| 609 | * standbys. |
| 610 | */ |
| 611 | static void |
| 612 | SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, |
| 613 | XLogRecPtr *applyPtr, List *sync_standbys, uint8 nth) |
| 614 | { |
| 615 | ListCell *cell; |
| 616 | XLogRecPtr *write_array; |
| 617 | XLogRecPtr *flush_array; |
| 618 | XLogRecPtr *apply_array; |
| 619 | int len; |
| 620 | int i = 0; |
| 621 | |
| 622 | len = list_length(sync_standbys); |
| 623 | write_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len); |
| 624 | flush_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len); |
| 625 | apply_array = (XLogRecPtr *) palloc(sizeof(XLogRecPtr) * len); |
| 626 | |
| 627 | foreach(cell, sync_standbys) |
| 628 | { |
| 629 | WalSnd *walsnd = &WalSndCtl->walsnds[lfirst_int(cell)]; |
| 630 | |
| 631 | SpinLockAcquire(&walsnd->mutex); |
| 632 | write_array[i] = walsnd->write; |
| 633 | flush_array[i] = walsnd->flush; |
| 634 | apply_array[i] = walsnd->apply; |
| 635 | SpinLockRelease(&walsnd->mutex); |
| 636 | |
| 637 | i++; |
| 638 | } |
| 639 | |
| 640 | /* Sort each array in descending order */ |
| 641 | qsort(write_array, len, sizeof(XLogRecPtr), cmp_lsn); |
| 642 | qsort(flush_array, len, sizeof(XLogRecPtr), cmp_lsn); |
| 643 | qsort(apply_array, len, sizeof(XLogRecPtr), cmp_lsn); |
| 644 | |
| 645 | /* Get Nth latest Write, Flush, Apply positions */ |
| 646 | *writePtr = write_array[nth - 1]; |
| 647 | *flushPtr = flush_array[nth - 1]; |
| 648 | *applyPtr = apply_array[nth - 1]; |
| 649 | |
| 650 | pfree(write_array); |
| 651 | pfree(flush_array); |
| 652 | pfree(apply_array); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Compare lsn in order to sort array in descending order. |
| 657 | */ |
| 658 | static int |
| 659 | cmp_lsn(const void *a, const void *b) |
| 660 | { |
| 661 | XLogRecPtr lsn1 = *((const XLogRecPtr *) a); |
| 662 | XLogRecPtr lsn2 = *((const XLogRecPtr *) b); |
| 663 | |
| 664 | if (lsn1 > lsn2) |
| 665 | return -1; |
| 666 | else if (lsn1 == lsn2) |
| 667 | return 0; |
| 668 | else |
| 669 | return 1; |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * Return the list of sync standbys, or NIL if no sync standby is connected. |
| 674 | * |
| 675 | * The caller must hold SyncRepLock. |
| 676 | * |
| 677 | * On return, *am_sync is set to true if this walsender is connecting to |
| 678 | * sync standby. Otherwise it's set to false. |
| 679 | */ |
| 680 | List * |
| 681 | SyncRepGetSyncStandbys(bool *am_sync) |
| 682 | { |
| 683 | /* Set default result */ |
| 684 | if (am_sync != NULL) |
| 685 | *am_sync = false; |
| 686 | |
| 687 | /* Quick exit if sync replication is not requested */ |
| 688 | if (SyncRepConfig == NULL) |
| 689 | return NIL; |
| 690 | |
| 691 | return (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) ? |
| 692 | SyncRepGetSyncStandbysPriority(am_sync) : |
| 693 | SyncRepGetSyncStandbysQuorum(am_sync); |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | * Return the list of all the candidates for quorum sync standbys, |
| 698 | * or NIL if no such standby is connected. |
| 699 | * |
| 700 | * The caller must hold SyncRepLock. This function must be called only in |
| 701 | * a quorum-based sync replication. |
| 702 | * |
| 703 | * On return, *am_sync is set to true if this walsender is connecting to |
| 704 | * sync standby. Otherwise it's set to false. |
| 705 | */ |
| 706 | static List * |
| 707 | SyncRepGetSyncStandbysQuorum(bool *am_sync) |
| 708 | { |
| 709 | List *result = NIL; |
| 710 | int i; |
| 711 | volatile WalSnd *walsnd; /* Use volatile pointer to prevent code |
| 712 | * rearrangement */ |
| 713 | |
| 714 | Assert(SyncRepConfig->syncrep_method == SYNC_REP_QUORUM); |
| 715 | |
| 716 | for (i = 0; i < max_wal_senders; i++) |
| 717 | { |
| 718 | XLogRecPtr flush; |
| 719 | WalSndState state; |
| 720 | int pid; |
| 721 | |
| 722 | walsnd = &WalSndCtl->walsnds[i]; |
| 723 | |
| 724 | SpinLockAcquire(&walsnd->mutex); |
| 725 | pid = walsnd->pid; |
| 726 | flush = walsnd->flush; |
| 727 | state = walsnd->state; |
| 728 | SpinLockRelease(&walsnd->mutex); |
| 729 | |
| 730 | /* Must be active */ |
| 731 | if (pid == 0) |
| 732 | continue; |
| 733 | |
| 734 | /* Must be streaming or stopping */ |
| 735 | if (state != WALSNDSTATE_STREAMING && |
| 736 | state != WALSNDSTATE_STOPPING) |
| 737 | continue; |
| 738 | |
| 739 | /* Must be synchronous */ |
| 740 | if (walsnd->sync_standby_priority == 0) |
| 741 | continue; |
| 742 | |
| 743 | /* Must have a valid flush position */ |
| 744 | if (XLogRecPtrIsInvalid(flush)) |
| 745 | continue; |
| 746 | |
| 747 | /* |
| 748 | * Consider this standby as a candidate for quorum sync standbys and |
| 749 | * append it to the result. |
| 750 | */ |
| 751 | result = lappend_int(result, i); |
| 752 | if (am_sync != NULL && walsnd == MyWalSnd) |
| 753 | *am_sync = true; |
| 754 | } |
| 755 | |
| 756 | return result; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * Return the list of sync standbys chosen based on their priorities, |
| 761 | * or NIL if no sync standby is connected. |
| 762 | * |
| 763 | * If there are multiple standbys with the same priority, |
| 764 | * the first one found is selected preferentially. |
| 765 | * |
| 766 | * The caller must hold SyncRepLock. This function must be called only in |
| 767 | * a priority-based sync replication. |
| 768 | * |
| 769 | * On return, *am_sync is set to true if this walsender is connecting to |
| 770 | * sync standby. Otherwise it's set to false. |
| 771 | */ |
| 772 | static List * |
| 773 | SyncRepGetSyncStandbysPriority(bool *am_sync) |
| 774 | { |
| 775 | List *result = NIL; |
| 776 | List *pending = NIL; |
| 777 | int lowest_priority; |
| 778 | int next_highest_priority; |
| 779 | int this_priority; |
| 780 | int priority; |
| 781 | int i; |
| 782 | bool am_in_pending = false; |
| 783 | volatile WalSnd *walsnd; /* Use volatile pointer to prevent code |
| 784 | * rearrangement */ |
| 785 | |
| 786 | Assert(SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY); |
| 787 | |
| 788 | lowest_priority = SyncRepConfig->nmembers; |
| 789 | next_highest_priority = lowest_priority + 1; |
| 790 | |
| 791 | /* |
| 792 | * Find the sync standbys which have the highest priority (i.e, 1). Also |
| 793 | * store all the other potential sync standbys into the pending list, in |
| 794 | * order to scan it later and find other sync standbys from it quickly. |
| 795 | */ |
| 796 | for (i = 0; i < max_wal_senders; i++) |
| 797 | { |
| 798 | XLogRecPtr flush; |
| 799 | WalSndState state; |
| 800 | int pid; |
| 801 | |
| 802 | walsnd = &WalSndCtl->walsnds[i]; |
| 803 | |
| 804 | SpinLockAcquire(&walsnd->mutex); |
| 805 | pid = walsnd->pid; |
| 806 | flush = walsnd->flush; |
| 807 | state = walsnd->state; |
| 808 | SpinLockRelease(&walsnd->mutex); |
| 809 | |
| 810 | /* Must be active */ |
| 811 | if (pid == 0) |
| 812 | continue; |
| 813 | |
| 814 | /* Must be streaming or stopping */ |
| 815 | if (state != WALSNDSTATE_STREAMING && |
| 816 | state != WALSNDSTATE_STOPPING) |
| 817 | continue; |
| 818 | |
| 819 | /* Must be synchronous */ |
| 820 | this_priority = walsnd->sync_standby_priority; |
| 821 | if (this_priority == 0) |
| 822 | continue; |
| 823 | |
| 824 | /* Must have a valid flush position */ |
| 825 | if (XLogRecPtrIsInvalid(flush)) |
| 826 | continue; |
| 827 | |
| 828 | /* |
| 829 | * If the priority is equal to 1, consider this standby as sync and |
| 830 | * append it to the result. Otherwise append this standby to the |
| 831 | * pending list to check if it's actually sync or not later. |
| 832 | */ |
| 833 | if (this_priority == 1) |
| 834 | { |
| 835 | result = lappend_int(result, i); |
| 836 | if (am_sync != NULL && walsnd == MyWalSnd) |
| 837 | *am_sync = true; |
| 838 | if (list_length(result) == SyncRepConfig->num_sync) |
| 839 | { |
| 840 | list_free(pending); |
| 841 | return result; /* Exit if got enough sync standbys */ |
| 842 | } |
| 843 | } |
| 844 | else |
| 845 | { |
| 846 | pending = lappend_int(pending, i); |
| 847 | if (am_sync != NULL && walsnd == MyWalSnd) |
| 848 | am_in_pending = true; |
| 849 | |
| 850 | /* |
| 851 | * Track the highest priority among the standbys in the pending |
| 852 | * list, in order to use it as the starting priority for later |
| 853 | * scan of the list. This is useful to find quickly the sync |
| 854 | * standbys from the pending list later because we can skip |
| 855 | * unnecessary scans for the unused priorities. |
| 856 | */ |
| 857 | if (this_priority < next_highest_priority) |
| 858 | next_highest_priority = this_priority; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * Consider all pending standbys as sync if the number of them plus |
| 864 | * already-found sync ones is lower than the configuration requests. |
| 865 | */ |
| 866 | if (list_length(result) + list_length(pending) <= SyncRepConfig->num_sync) |
| 867 | { |
| 868 | bool needfree = (result != NIL && pending != NIL); |
| 869 | |
| 870 | /* |
| 871 | * Set *am_sync to true if this walsender is in the pending list |
| 872 | * because all pending standbys are considered as sync. |
| 873 | */ |
| 874 | if (am_sync != NULL && !(*am_sync)) |
| 875 | *am_sync = am_in_pending; |
| 876 | |
| 877 | result = list_concat(result, pending); |
| 878 | if (needfree) |
| 879 | pfree(pending); |
| 880 | return result; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * Find the sync standbys from the pending list. |
| 885 | */ |
| 886 | priority = next_highest_priority; |
| 887 | while (priority <= lowest_priority) |
| 888 | { |
| 889 | ListCell *cell; |
| 890 | ListCell *prev = NULL; |
| 891 | ListCell *next; |
| 892 | |
| 893 | next_highest_priority = lowest_priority + 1; |
| 894 | |
| 895 | for (cell = list_head(pending); cell != NULL; cell = next) |
| 896 | { |
| 897 | i = lfirst_int(cell); |
| 898 | walsnd = &WalSndCtl->walsnds[i]; |
| 899 | |
| 900 | next = lnext(cell); |
| 901 | |
| 902 | this_priority = walsnd->sync_standby_priority; |
| 903 | if (this_priority == priority) |
| 904 | { |
| 905 | result = lappend_int(result, i); |
| 906 | if (am_sync != NULL && walsnd == MyWalSnd) |
| 907 | *am_sync = true; |
| 908 | |
| 909 | /* |
| 910 | * We should always exit here after the scan of pending list |
| 911 | * starts because we know that the list has enough elements to |
| 912 | * reach SyncRepConfig->num_sync. |
| 913 | */ |
| 914 | if (list_length(result) == SyncRepConfig->num_sync) |
| 915 | { |
| 916 | list_free(pending); |
| 917 | return result; /* Exit if got enough sync standbys */ |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Remove the entry for this sync standby from the list to |
| 922 | * prevent us from looking at the same entry again. |
| 923 | */ |
| 924 | pending = list_delete_cell(pending, cell, prev); |
| 925 | |
| 926 | continue; |
| 927 | } |
| 928 | |
| 929 | if (this_priority < next_highest_priority) |
| 930 | next_highest_priority = this_priority; |
| 931 | |
| 932 | prev = cell; |
| 933 | } |
| 934 | |
| 935 | priority = next_highest_priority; |
| 936 | } |
| 937 | |
| 938 | /* never reached, but keep compiler quiet */ |
| 939 | Assert(false); |
| 940 | return result; |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Check if we are in the list of sync standbys, and if so, determine |
| 945 | * priority sequence. Return priority if set, or zero to indicate that |
| 946 | * we are not a potential sync standby. |
| 947 | * |
| 948 | * Compare the parameter SyncRepStandbyNames against the application_name |
| 949 | * for this WALSender, or allow any name if we find a wildcard "*". |
| 950 | */ |
| 951 | static int |
| 952 | SyncRepGetStandbyPriority(void) |
| 953 | { |
| 954 | const char *standby_name; |
| 955 | int priority; |
| 956 | bool found = false; |
| 957 | |
| 958 | /* |
| 959 | * Since synchronous cascade replication is not allowed, we always set the |
| 960 | * priority of cascading walsender to zero. |
| 961 | */ |
| 962 | if (am_cascading_walsender) |
| 963 | return 0; |
| 964 | |
| 965 | if (!SyncStandbysDefined() || SyncRepConfig == NULL) |
| 966 | return 0; |
| 967 | |
| 968 | standby_name = SyncRepConfig->member_names; |
| 969 | for (priority = 1; priority <= SyncRepConfig->nmembers; priority++) |
| 970 | { |
| 971 | if (pg_strcasecmp(standby_name, application_name) == 0 || |
| 972 | strcmp(standby_name, "*" ) == 0) |
| 973 | { |
| 974 | found = true; |
| 975 | break; |
| 976 | } |
| 977 | standby_name += strlen(standby_name) + 1; |
| 978 | } |
| 979 | |
| 980 | if (!found) |
| 981 | return 0; |
| 982 | |
| 983 | /* |
| 984 | * In quorum-based sync replication, all the standbys in the list have the |
| 985 | * same priority, one. |
| 986 | */ |
| 987 | return (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) ? priority : 1; |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * Walk the specified queue from head. Set the state of any backends that |
| 992 | * need to be woken, remove them from the queue, and then wake them. |
| 993 | * Pass all = true to wake whole queue; otherwise, just wake up to |
| 994 | * the walsender's LSN. |
| 995 | * |
| 996 | * Must hold SyncRepLock. |
| 997 | */ |
| 998 | static int |
| 999 | SyncRepWakeQueue(bool all, int mode) |
| 1000 | { |
| 1001 | volatile WalSndCtlData *walsndctl = WalSndCtl; |
| 1002 | PGPROC *proc = NULL; |
| 1003 | PGPROC *thisproc = NULL; |
| 1004 | int numprocs = 0; |
| 1005 | |
| 1006 | Assert(mode >= 0 && mode < NUM_SYNC_REP_WAIT_MODE); |
| 1007 | Assert(SyncRepQueueIsOrderedByLSN(mode)); |
| 1008 | |
| 1009 | proc = (PGPROC *) SHMQueueNext(&(WalSndCtl->SyncRepQueue[mode]), |
| 1010 | &(WalSndCtl->SyncRepQueue[mode]), |
| 1011 | offsetof(PGPROC, syncRepLinks)); |
| 1012 | |
| 1013 | while (proc) |
| 1014 | { |
| 1015 | /* |
| 1016 | * Assume the queue is ordered by LSN |
| 1017 | */ |
| 1018 | if (!all && walsndctl->lsn[mode] < proc->waitLSN) |
| 1019 | return numprocs; |
| 1020 | |
| 1021 | /* |
| 1022 | * Move to next proc, so we can delete thisproc from the queue. |
| 1023 | * thisproc is valid, proc may be NULL after this. |
| 1024 | */ |
| 1025 | thisproc = proc; |
| 1026 | proc = (PGPROC *) SHMQueueNext(&(WalSndCtl->SyncRepQueue[mode]), |
| 1027 | &(proc->syncRepLinks), |
| 1028 | offsetof(PGPROC, syncRepLinks)); |
| 1029 | |
| 1030 | /* |
| 1031 | * Remove thisproc from queue. |
| 1032 | */ |
| 1033 | SHMQueueDelete(&(thisproc->syncRepLinks)); |
| 1034 | |
| 1035 | /* |
| 1036 | * SyncRepWaitForLSN() reads syncRepState without holding the lock, so |
| 1037 | * make sure that it sees the queue link being removed before the |
| 1038 | * syncRepState change. |
| 1039 | */ |
| 1040 | pg_write_barrier(); |
| 1041 | |
| 1042 | /* |
| 1043 | * Set state to complete; see SyncRepWaitForLSN() for discussion of |
| 1044 | * the various states. |
| 1045 | */ |
| 1046 | thisproc->syncRepState = SYNC_REP_WAIT_COMPLETE; |
| 1047 | |
| 1048 | /* |
| 1049 | * Wake only when we have set state and removed from queue. |
| 1050 | */ |
| 1051 | SetLatch(&(thisproc->procLatch)); |
| 1052 | |
| 1053 | numprocs++; |
| 1054 | } |
| 1055 | |
| 1056 | return numprocs; |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * The checkpointer calls this as needed to update the shared |
| 1061 | * sync_standbys_defined flag, so that backends don't remain permanently wedged |
| 1062 | * if synchronous_standby_names is unset. It's safe to check the current value |
| 1063 | * without the lock, because it's only ever updated by one process. But we |
| 1064 | * must take the lock to change it. |
| 1065 | */ |
| 1066 | void |
| 1067 | SyncRepUpdateSyncStandbysDefined(void) |
| 1068 | { |
| 1069 | bool sync_standbys_defined = SyncStandbysDefined(); |
| 1070 | |
| 1071 | if (sync_standbys_defined != WalSndCtl->sync_standbys_defined) |
| 1072 | { |
| 1073 | LWLockAcquire(SyncRepLock, LW_EXCLUSIVE); |
| 1074 | |
| 1075 | /* |
| 1076 | * If synchronous_standby_names has been reset to empty, it's futile |
| 1077 | * for backends to continue to waiting. Since the user no longer |
| 1078 | * wants synchronous replication, we'd better wake them up. |
| 1079 | */ |
| 1080 | if (!sync_standbys_defined) |
| 1081 | { |
| 1082 | int i; |
| 1083 | |
| 1084 | for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++) |
| 1085 | SyncRepWakeQueue(true, i); |
| 1086 | } |
| 1087 | |
| 1088 | /* |
| 1089 | * Only allow people to join the queue when there are synchronous |
| 1090 | * standbys defined. Without this interlock, there's a race |
| 1091 | * condition: we might wake up all the current waiters; then, some |
| 1092 | * backend that hasn't yet reloaded its config might go to sleep on |
| 1093 | * the queue (and never wake up). This prevents that. |
| 1094 | */ |
| 1095 | WalSndCtl->sync_standbys_defined = sync_standbys_defined; |
| 1096 | |
| 1097 | LWLockRelease(SyncRepLock); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | #ifdef USE_ASSERT_CHECKING |
| 1102 | static bool |
| 1103 | SyncRepQueueIsOrderedByLSN(int mode) |
| 1104 | { |
| 1105 | PGPROC *proc = NULL; |
| 1106 | XLogRecPtr lastLSN; |
| 1107 | |
| 1108 | Assert(mode >= 0 && mode < NUM_SYNC_REP_WAIT_MODE); |
| 1109 | |
| 1110 | lastLSN = 0; |
| 1111 | |
| 1112 | proc = (PGPROC *) SHMQueueNext(&(WalSndCtl->SyncRepQueue[mode]), |
| 1113 | &(WalSndCtl->SyncRepQueue[mode]), |
| 1114 | offsetof(PGPROC, syncRepLinks)); |
| 1115 | |
| 1116 | while (proc) |
| 1117 | { |
| 1118 | /* |
| 1119 | * Check the queue is ordered by LSN and that multiple procs don't |
| 1120 | * have matching LSNs |
| 1121 | */ |
| 1122 | if (proc->waitLSN <= lastLSN) |
| 1123 | return false; |
| 1124 | |
| 1125 | lastLSN = proc->waitLSN; |
| 1126 | |
| 1127 | proc = (PGPROC *) SHMQueueNext(&(WalSndCtl->SyncRepQueue[mode]), |
| 1128 | &(proc->syncRepLinks), |
| 1129 | offsetof(PGPROC, syncRepLinks)); |
| 1130 | } |
| 1131 | |
| 1132 | return true; |
| 1133 | } |
| 1134 | #endif |
| 1135 | |
| 1136 | /* |
| 1137 | * =========================================================== |
| 1138 | * Synchronous Replication functions executed by any process |
| 1139 | * =========================================================== |
| 1140 | */ |
| 1141 | |
| 1142 | bool |
| 1143 | check_synchronous_standby_names(char **newval, void **, GucSource source) |
| 1144 | { |
| 1145 | if (*newval != NULL && (*newval)[0] != '\0') |
| 1146 | { |
| 1147 | int parse_rc; |
| 1148 | SyncRepConfigData *pconf; |
| 1149 | |
| 1150 | /* Reset communication variables to ensure a fresh start */ |
| 1151 | syncrep_parse_result = NULL; |
| 1152 | syncrep_parse_error_msg = NULL; |
| 1153 | |
| 1154 | /* Parse the synchronous_standby_names string */ |
| 1155 | syncrep_scanner_init(*newval); |
| 1156 | parse_rc = syncrep_yyparse(); |
| 1157 | syncrep_scanner_finish(); |
| 1158 | |
| 1159 | if (parse_rc != 0 || syncrep_parse_result == NULL) |
| 1160 | { |
| 1161 | GUC_check_errcode(ERRCODE_SYNTAX_ERROR); |
| 1162 | if (syncrep_parse_error_msg) |
| 1163 | GUC_check_errdetail("%s" , syncrep_parse_error_msg); |
| 1164 | else |
| 1165 | GUC_check_errdetail("synchronous_standby_names parser failed" ); |
| 1166 | return false; |
| 1167 | } |
| 1168 | |
| 1169 | if (syncrep_parse_result->num_sync <= 0) |
| 1170 | { |
| 1171 | GUC_check_errmsg("number of synchronous standbys (%d) must be greater than zero" , |
| 1172 | syncrep_parse_result->num_sync); |
| 1173 | return false; |
| 1174 | } |
| 1175 | |
| 1176 | /* GUC extra value must be malloc'd, not palloc'd */ |
| 1177 | pconf = (SyncRepConfigData *) |
| 1178 | malloc(syncrep_parse_result->config_size); |
| 1179 | if (pconf == NULL) |
| 1180 | return false; |
| 1181 | memcpy(pconf, syncrep_parse_result, syncrep_parse_result->config_size); |
| 1182 | |
| 1183 | *extra = (void *) pconf; |
| 1184 | |
| 1185 | /* |
| 1186 | * We need not explicitly clean up syncrep_parse_result. It, and any |
| 1187 | * other cruft generated during parsing, will be freed when the |
| 1188 | * current memory context is deleted. (This code is generally run in |
| 1189 | * a short-lived context used for config file processing, so that will |
| 1190 | * not be very long.) |
| 1191 | */ |
| 1192 | } |
| 1193 | else |
| 1194 | *extra = NULL; |
| 1195 | |
| 1196 | return true; |
| 1197 | } |
| 1198 | |
| 1199 | void |
| 1200 | assign_synchronous_standby_names(const char *newval, void *) |
| 1201 | { |
| 1202 | SyncRepConfig = (SyncRepConfigData *) extra; |
| 1203 | } |
| 1204 | |
| 1205 | void |
| 1206 | assign_synchronous_commit(int newval, void *) |
| 1207 | { |
| 1208 | switch (newval) |
| 1209 | { |
| 1210 | case SYNCHRONOUS_COMMIT_REMOTE_WRITE: |
| 1211 | SyncRepWaitMode = SYNC_REP_WAIT_WRITE; |
| 1212 | break; |
| 1213 | case SYNCHRONOUS_COMMIT_REMOTE_FLUSH: |
| 1214 | SyncRepWaitMode = SYNC_REP_WAIT_FLUSH; |
| 1215 | break; |
| 1216 | case SYNCHRONOUS_COMMIT_REMOTE_APPLY: |
| 1217 | SyncRepWaitMode = SYNC_REP_WAIT_APPLY; |
| 1218 | break; |
| 1219 | default: |
| 1220 | SyncRepWaitMode = SYNC_REP_NO_WAIT; |
| 1221 | break; |
| 1222 | } |
| 1223 | } |
| 1224 | |