| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * float.c |
| 4 | * Functions for the built-in floating-point types. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/utils/adt/float.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <ctype.h> |
| 18 | #include <float.h> |
| 19 | #include <math.h> |
| 20 | #include <limits.h> |
| 21 | |
| 22 | #include "catalog/pg_type.h" |
| 23 | #include "common/int.h" |
| 24 | #include "common/shortest_dec.h" |
| 25 | #include "libpq/pqformat.h" |
| 26 | #include "miscadmin.h" |
| 27 | #include "utils/array.h" |
| 28 | #include "utils/float.h" |
| 29 | #include "utils/fmgrprotos.h" |
| 30 | #include "utils/sortsupport.h" |
| 31 | #include "utils/timestamp.h" |
| 32 | |
| 33 | |
| 34 | /* |
| 35 | * Configurable GUC parameter |
| 36 | * |
| 37 | * If >0, use shortest-decimal format for output; this is both the default and |
| 38 | * allows for compatibility with clients that explicitly set a value here to |
| 39 | * get round-trip-accurate results. If 0 or less, then use the old, slow, |
| 40 | * decimal rounding method. |
| 41 | */ |
| 42 | int = 1; |
| 43 | |
| 44 | /* Cached constants for degree-based trig functions */ |
| 45 | static bool degree_consts_set = false; |
| 46 | static float8 sin_30 = 0; |
| 47 | static float8 one_minus_cos_60 = 0; |
| 48 | static float8 asin_0_5 = 0; |
| 49 | static float8 acos_0_5 = 0; |
| 50 | static float8 atan_1_0 = 0; |
| 51 | static float8 tan_45 = 0; |
| 52 | static float8 cot_45 = 0; |
| 53 | |
| 54 | /* |
| 55 | * These are intentionally not static; don't "fix" them. They will never |
| 56 | * be referenced by other files, much less changed; but we don't want the |
| 57 | * compiler to know that, else it might try to precompute expressions |
| 58 | * involving them. See comments for init_degree_constants(). |
| 59 | */ |
| 60 | float8 degree_c_thirty = 30.0; |
| 61 | float8 degree_c_forty_five = 45.0; |
| 62 | float8 degree_c_sixty = 60.0; |
| 63 | float8 degree_c_one_half = 0.5; |
| 64 | float8 degree_c_one = 1.0; |
| 65 | |
| 66 | /* State for drandom() and setseed() */ |
| 67 | static bool drandom_seed_set = false; |
| 68 | static unsigned short drandom_seed[3] = {0, 0, 0}; |
| 69 | |
| 70 | /* Local function prototypes */ |
| 71 | static double sind_q1(double x); |
| 72 | static double cosd_q1(double x); |
| 73 | static void init_degree_constants(void); |
| 74 | |
| 75 | #ifndef HAVE_CBRT |
| 76 | /* |
| 77 | * Some machines (in particular, some versions of AIX) have an extern |
| 78 | * declaration for cbrt() in <math.h> but fail to provide the actual |
| 79 | * function, which causes configure to not set HAVE_CBRT. Furthermore, |
| 80 | * their compilers spit up at the mismatch between extern declaration |
| 81 | * and static definition. We work around that here by the expedient |
| 82 | * of a #define to make the actual name of the static function different. |
| 83 | */ |
| 84 | #define cbrt my_cbrt |
| 85 | static double cbrt(double x); |
| 86 | #endif /* HAVE_CBRT */ |
| 87 | |
| 88 | |
| 89 | /* |
| 90 | * Returns -1 if 'val' represents negative infinity, 1 if 'val' |
| 91 | * represents (positive) infinity, and 0 otherwise. On some platforms, |
| 92 | * this is equivalent to the isinf() macro, but not everywhere: C99 |
| 93 | * does not specify that isinf() needs to distinguish between positive |
| 94 | * and negative infinity. |
| 95 | */ |
| 96 | int |
| 97 | is_infinite(double val) |
| 98 | { |
| 99 | int inf = isinf(val); |
| 100 | |
| 101 | if (inf == 0) |
| 102 | return 0; |
| 103 | else if (val > 0) |
| 104 | return 1; |
| 105 | else |
| 106 | return -1; |
| 107 | } |
| 108 | |
| 109 | |
| 110 | /* ========== USER I/O ROUTINES ========== */ |
| 111 | |
| 112 | |
| 113 | /* |
| 114 | * float4in - converts "num" to float4 |
| 115 | * |
| 116 | * Note that this code now uses strtof(), where it used to use strtod(). |
| 117 | * |
| 118 | * The motivation for using strtof() is to avoid a double-rounding problem: |
| 119 | * for certain decimal inputs, if you round the input correctly to a double, |
| 120 | * and then round the double to a float, the result is incorrect in that it |
| 121 | * does not match the result of rounding the decimal value to float directly. |
| 122 | * |
| 123 | * One of the best examples is 7.038531e-26: |
| 124 | * |
| 125 | * 0xAE43FDp-107 = 7.03853069185120912085...e-26 |
| 126 | * midpoint 7.03853100000000022281...e-26 |
| 127 | * 0xAE43FEp-107 = 7.03853130814879132477...e-26 |
| 128 | * |
| 129 | * making 0xAE43FDp-107 the correct float result, but if you do the conversion |
| 130 | * via a double, you get |
| 131 | * |
| 132 | * 0xAE43FD.7FFFFFF8p-107 = 7.03853099999999907487...e-26 |
| 133 | * midpoint 7.03853099999999964884...e-26 |
| 134 | * 0xAE43FD.80000000p-107 = 7.03853100000000022281...e-26 |
| 135 | * 0xAE43FD.80000008p-107 = 7.03853100000000137076...e-26 |
| 136 | * |
| 137 | * so the value rounds to the double exactly on the midpoint between the two |
| 138 | * nearest floats, and then rounding again to a float gives the incorrect |
| 139 | * result of 0xAE43FEp-107. |
| 140 | * |
| 141 | */ |
| 142 | Datum |
| 143 | float4in(PG_FUNCTION_ARGS) |
| 144 | { |
| 145 | char *num = PG_GETARG_CSTRING(0); |
| 146 | char *orig_num; |
| 147 | float val; |
| 148 | char *endptr; |
| 149 | |
| 150 | /* |
| 151 | * endptr points to the first character _after_ the sequence we recognized |
| 152 | * as a valid floating point number. orig_num points to the original input |
| 153 | * string. |
| 154 | */ |
| 155 | orig_num = num; |
| 156 | |
| 157 | /* skip leading whitespace */ |
| 158 | while (*num != '\0' && isspace((unsigned char) *num)) |
| 159 | num++; |
| 160 | |
| 161 | /* |
| 162 | * Check for an empty-string input to begin with, to avoid the vagaries of |
| 163 | * strtod() on different platforms. |
| 164 | */ |
| 165 | if (*num == '\0') |
| 166 | ereport(ERROR, |
| 167 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 168 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 169 | "real" , orig_num))); |
| 170 | |
| 171 | errno = 0; |
| 172 | val = strtof(num, &endptr); |
| 173 | |
| 174 | /* did we not see anything that looks like a double? */ |
| 175 | if (endptr == num || errno != 0) |
| 176 | { |
| 177 | int save_errno = errno; |
| 178 | |
| 179 | /* |
| 180 | * C99 requires that strtof() accept NaN, [+-]Infinity, and [+-]Inf, |
| 181 | * but not all platforms support all of these (and some accept them |
| 182 | * but set ERANGE anyway...) Therefore, we check for these inputs |
| 183 | * ourselves if strtof() fails. |
| 184 | * |
| 185 | * Note: C99 also requires hexadecimal input as well as some extended |
| 186 | * forms of NaN, but we consider these forms unportable and don't try |
| 187 | * to support them. You can use 'em if your strtof() takes 'em. |
| 188 | */ |
| 189 | if (pg_strncasecmp(num, "NaN" , 3) == 0) |
| 190 | { |
| 191 | val = get_float4_nan(); |
| 192 | endptr = num + 3; |
| 193 | } |
| 194 | else if (pg_strncasecmp(num, "Infinity" , 8) == 0) |
| 195 | { |
| 196 | val = get_float4_infinity(); |
| 197 | endptr = num + 8; |
| 198 | } |
| 199 | else if (pg_strncasecmp(num, "+Infinity" , 9) == 0) |
| 200 | { |
| 201 | val = get_float4_infinity(); |
| 202 | endptr = num + 9; |
| 203 | } |
| 204 | else if (pg_strncasecmp(num, "-Infinity" , 9) == 0) |
| 205 | { |
| 206 | val = -get_float4_infinity(); |
| 207 | endptr = num + 9; |
| 208 | } |
| 209 | else if (pg_strncasecmp(num, "inf" , 3) == 0) |
| 210 | { |
| 211 | val = get_float4_infinity(); |
| 212 | endptr = num + 3; |
| 213 | } |
| 214 | else if (pg_strncasecmp(num, "+inf" , 4) == 0) |
| 215 | { |
| 216 | val = get_float4_infinity(); |
| 217 | endptr = num + 4; |
| 218 | } |
| 219 | else if (pg_strncasecmp(num, "-inf" , 4) == 0) |
| 220 | { |
| 221 | val = -get_float4_infinity(); |
| 222 | endptr = num + 4; |
| 223 | } |
| 224 | else if (save_errno == ERANGE) |
| 225 | { |
| 226 | /* |
| 227 | * Some platforms return ERANGE for denormalized numbers (those |
| 228 | * that are not zero, but are too close to zero to have full |
| 229 | * precision). We'd prefer not to throw error for that, so try to |
| 230 | * detect whether it's a "real" out-of-range condition by checking |
| 231 | * to see if the result is zero or huge. |
| 232 | * |
| 233 | * Use isinf() rather than HUGE_VALF on VS2013 because it |
| 234 | * generates a spurious overflow warning for -HUGE_VALF. Also use |
| 235 | * isinf() if HUGE_VALF is missing. |
| 236 | */ |
| 237 | if (val == 0.0 || |
| 238 | #if !defined(HUGE_VALF) || (defined(_MSC_VER) && (_MSC_VER < 1900)) |
| 239 | isinf(val) |
| 240 | #else |
| 241 | (val >= HUGE_VALF || val <= -HUGE_VALF) |
| 242 | #endif |
| 243 | ) |
| 244 | ereport(ERROR, |
| 245 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 246 | errmsg("\"%s\" is out of range for type real" , |
| 247 | orig_num))); |
| 248 | } |
| 249 | else |
| 250 | ereport(ERROR, |
| 251 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 252 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 253 | "real" , orig_num))); |
| 254 | } |
| 255 | #ifdef HAVE_BUGGY_SOLARIS_STRTOD |
| 256 | else |
| 257 | { |
| 258 | /* |
| 259 | * Many versions of Solaris have a bug wherein strtod sets endptr to |
| 260 | * point one byte beyond the end of the string when given "inf" or |
| 261 | * "infinity". |
| 262 | */ |
| 263 | if (endptr != num && endptr[-1] == '\0') |
| 264 | endptr--; |
| 265 | } |
| 266 | #endif /* HAVE_BUGGY_SOLARIS_STRTOD */ |
| 267 | |
| 268 | /* skip trailing whitespace */ |
| 269 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
| 270 | endptr++; |
| 271 | |
| 272 | /* if there is any junk left at the end of the string, bail out */ |
| 273 | if (*endptr != '\0') |
| 274 | ereport(ERROR, |
| 275 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 276 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 277 | "real" , orig_num))); |
| 278 | |
| 279 | PG_RETURN_FLOAT4(val); |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * float4out - converts a float4 number to a string |
| 284 | * using a standard output format |
| 285 | */ |
| 286 | Datum |
| 287 | float4out(PG_FUNCTION_ARGS) |
| 288 | { |
| 289 | float4 num = PG_GETARG_FLOAT4(0); |
| 290 | char *ascii = (char *) palloc(32); |
| 291 | int ndig = FLT_DIG + extra_float_digits; |
| 292 | |
| 293 | if (extra_float_digits > 0) |
| 294 | { |
| 295 | float_to_shortest_decimal_buf(num, ascii); |
| 296 | PG_RETURN_CSTRING(ascii); |
| 297 | } |
| 298 | |
| 299 | (void) pg_strfromd(ascii, 32, ndig, num); |
| 300 | PG_RETURN_CSTRING(ascii); |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * float4recv - converts external binary format to float4 |
| 305 | */ |
| 306 | Datum |
| 307 | float4recv(PG_FUNCTION_ARGS) |
| 308 | { |
| 309 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 310 | |
| 311 | PG_RETURN_FLOAT4(pq_getmsgfloat4(buf)); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * float4send - converts float4 to binary format |
| 316 | */ |
| 317 | Datum |
| 318 | float4send(PG_FUNCTION_ARGS) |
| 319 | { |
| 320 | float4 num = PG_GETARG_FLOAT4(0); |
| 321 | StringInfoData buf; |
| 322 | |
| 323 | pq_begintypsend(&buf); |
| 324 | pq_sendfloat4(&buf, num); |
| 325 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * float8in - converts "num" to float8 |
| 330 | */ |
| 331 | Datum |
| 332 | float8in(PG_FUNCTION_ARGS) |
| 333 | { |
| 334 | char *num = PG_GETARG_CSTRING(0); |
| 335 | |
| 336 | PG_RETURN_FLOAT8(float8in_internal(num, NULL, "double precision" , num)); |
| 337 | } |
| 338 | |
| 339 | /* Convenience macro: set *have_error flag (if provided) or throw error */ |
| 340 | #define RETURN_ERROR(throw_error) \ |
| 341 | do { \ |
| 342 | if (have_error) { \ |
| 343 | *have_error = true; \ |
| 344 | return 0.0; \ |
| 345 | } else { \ |
| 346 | throw_error; \ |
| 347 | } \ |
| 348 | } while (0) |
| 349 | |
| 350 | /* |
| 351 | * float8in_internal_opt_error - guts of float8in() |
| 352 | * |
| 353 | * This is exposed for use by functions that want a reasonably |
| 354 | * platform-independent way of inputting doubles. The behavior is |
| 355 | * essentially like strtod + ereport on error, but note the following |
| 356 | * differences: |
| 357 | * 1. Both leading and trailing whitespace are skipped. |
| 358 | * 2. If endptr_p is NULL, we throw error if there's trailing junk. |
| 359 | * Otherwise, it's up to the caller to complain about trailing junk. |
| 360 | * 3. In event of a syntax error, the report mentions the given type_name |
| 361 | * and prints orig_string as the input; this is meant to support use of |
| 362 | * this function with types such as "box" and "point", where what we are |
| 363 | * parsing here is just a substring of orig_string. |
| 364 | * |
| 365 | * "num" could validly be declared "const char *", but that results in an |
| 366 | * unreasonable amount of extra casting both here and in callers, so we don't. |
| 367 | * |
| 368 | * When "*have_error" flag is provided, it's set instead of throwing an |
| 369 | * error. This is helpful when caller need to handle errors by itself. |
| 370 | */ |
| 371 | double |
| 372 | float8in_internal_opt_error(char *num, char **endptr_p, |
| 373 | const char *type_name, const char *orig_string, |
| 374 | bool *have_error) |
| 375 | { |
| 376 | double val; |
| 377 | char *endptr; |
| 378 | |
| 379 | /* skip leading whitespace */ |
| 380 | while (*num != '\0' && isspace((unsigned char) *num)) |
| 381 | num++; |
| 382 | |
| 383 | /* |
| 384 | * Check for an empty-string input to begin with, to avoid the vagaries of |
| 385 | * strtod() on different platforms. |
| 386 | */ |
| 387 | if (*num == '\0') |
| 388 | RETURN_ERROR(ereport(ERROR, |
| 389 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 390 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 391 | type_name, orig_string)))); |
| 392 | |
| 393 | errno = 0; |
| 394 | val = strtod(num, &endptr); |
| 395 | |
| 396 | /* did we not see anything that looks like a double? */ |
| 397 | if (endptr == num || errno != 0) |
| 398 | { |
| 399 | int save_errno = errno; |
| 400 | |
| 401 | /* |
| 402 | * C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf, |
| 403 | * but not all platforms support all of these (and some accept them |
| 404 | * but set ERANGE anyway...) Therefore, we check for these inputs |
| 405 | * ourselves if strtod() fails. |
| 406 | * |
| 407 | * Note: C99 also requires hexadecimal input as well as some extended |
| 408 | * forms of NaN, but we consider these forms unportable and don't try |
| 409 | * to support them. You can use 'em if your strtod() takes 'em. |
| 410 | */ |
| 411 | if (pg_strncasecmp(num, "NaN" , 3) == 0) |
| 412 | { |
| 413 | val = get_float8_nan(); |
| 414 | endptr = num + 3; |
| 415 | } |
| 416 | else if (pg_strncasecmp(num, "Infinity" , 8) == 0) |
| 417 | { |
| 418 | val = get_float8_infinity(); |
| 419 | endptr = num + 8; |
| 420 | } |
| 421 | else if (pg_strncasecmp(num, "+Infinity" , 9) == 0) |
| 422 | { |
| 423 | val = get_float8_infinity(); |
| 424 | endptr = num + 9; |
| 425 | } |
| 426 | else if (pg_strncasecmp(num, "-Infinity" , 9) == 0) |
| 427 | { |
| 428 | val = -get_float8_infinity(); |
| 429 | endptr = num + 9; |
| 430 | } |
| 431 | else if (pg_strncasecmp(num, "inf" , 3) == 0) |
| 432 | { |
| 433 | val = get_float8_infinity(); |
| 434 | endptr = num + 3; |
| 435 | } |
| 436 | else if (pg_strncasecmp(num, "+inf" , 4) == 0) |
| 437 | { |
| 438 | val = get_float8_infinity(); |
| 439 | endptr = num + 4; |
| 440 | } |
| 441 | else if (pg_strncasecmp(num, "-inf" , 4) == 0) |
| 442 | { |
| 443 | val = -get_float8_infinity(); |
| 444 | endptr = num + 4; |
| 445 | } |
| 446 | else if (save_errno == ERANGE) |
| 447 | { |
| 448 | /* |
| 449 | * Some platforms return ERANGE for denormalized numbers (those |
| 450 | * that are not zero, but are too close to zero to have full |
| 451 | * precision). We'd prefer not to throw error for that, so try to |
| 452 | * detect whether it's a "real" out-of-range condition by checking |
| 453 | * to see if the result is zero or huge. |
| 454 | * |
| 455 | * On error, we intentionally complain about double precision not |
| 456 | * the given type name, and we print only the part of the string |
| 457 | * that is the current number. |
| 458 | */ |
| 459 | if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL) |
| 460 | { |
| 461 | char *errnumber = pstrdup(num); |
| 462 | |
| 463 | errnumber[endptr - num] = '\0'; |
| 464 | RETURN_ERROR(ereport(ERROR, |
| 465 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 466 | errmsg("\"%s\" is out of range for " |
| 467 | "type double precision" , |
| 468 | errnumber)))); |
| 469 | } |
| 470 | } |
| 471 | else |
| 472 | RETURN_ERROR(ereport(ERROR, |
| 473 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 474 | errmsg("invalid input syntax for type " |
| 475 | "%s: \"%s\"" , |
| 476 | type_name, orig_string)))); |
| 477 | } |
| 478 | #ifdef HAVE_BUGGY_SOLARIS_STRTOD |
| 479 | else |
| 480 | { |
| 481 | /* |
| 482 | * Many versions of Solaris have a bug wherein strtod sets endptr to |
| 483 | * point one byte beyond the end of the string when given "inf" or |
| 484 | * "infinity". |
| 485 | */ |
| 486 | if (endptr != num && endptr[-1] == '\0') |
| 487 | endptr--; |
| 488 | } |
| 489 | #endif /* HAVE_BUGGY_SOLARIS_STRTOD */ |
| 490 | |
| 491 | /* skip trailing whitespace */ |
| 492 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
| 493 | endptr++; |
| 494 | |
| 495 | /* report stopping point if wanted, else complain if not end of string */ |
| 496 | if (endptr_p) |
| 497 | *endptr_p = endptr; |
| 498 | else if (*endptr != '\0') |
| 499 | RETURN_ERROR(ereport(ERROR, |
| 500 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 501 | errmsg("invalid input syntax for type " |
| 502 | "%s: \"%s\"" , |
| 503 | type_name, orig_string)))); |
| 504 | |
| 505 | return val; |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * Interface to float8in_internal_opt_error() without "have_error" argument. |
| 510 | */ |
| 511 | double |
| 512 | float8in_internal(char *num, char **endptr_p, |
| 513 | const char *type_name, const char *orig_string) |
| 514 | { |
| 515 | return float8in_internal_opt_error(num, endptr_p, type_name, |
| 516 | orig_string, NULL); |
| 517 | } |
| 518 | |
| 519 | |
| 520 | /* |
| 521 | * float8out - converts float8 number to a string |
| 522 | * using a standard output format |
| 523 | */ |
| 524 | Datum |
| 525 | float8out(PG_FUNCTION_ARGS) |
| 526 | { |
| 527 | float8 num = PG_GETARG_FLOAT8(0); |
| 528 | |
| 529 | PG_RETURN_CSTRING(float8out_internal(num)); |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * float8out_internal - guts of float8out() |
| 534 | * |
| 535 | * This is exposed for use by functions that want a reasonably |
| 536 | * platform-independent way of outputting doubles. |
| 537 | * The result is always palloc'd. |
| 538 | */ |
| 539 | char * |
| 540 | float8out_internal(double num) |
| 541 | { |
| 542 | char *ascii = (char *) palloc(32); |
| 543 | int ndig = DBL_DIG + extra_float_digits; |
| 544 | |
| 545 | if (extra_float_digits > 0) |
| 546 | { |
| 547 | double_to_shortest_decimal_buf(num, ascii); |
| 548 | return ascii; |
| 549 | } |
| 550 | |
| 551 | (void) pg_strfromd(ascii, 32, ndig, num); |
| 552 | return ascii; |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * float8recv - converts external binary format to float8 |
| 557 | */ |
| 558 | Datum |
| 559 | float8recv(PG_FUNCTION_ARGS) |
| 560 | { |
| 561 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 562 | |
| 563 | PG_RETURN_FLOAT8(pq_getmsgfloat8(buf)); |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * float8send - converts float8 to binary format |
| 568 | */ |
| 569 | Datum |
| 570 | float8send(PG_FUNCTION_ARGS) |
| 571 | { |
| 572 | float8 num = PG_GETARG_FLOAT8(0); |
| 573 | StringInfoData buf; |
| 574 | |
| 575 | pq_begintypsend(&buf); |
| 576 | pq_sendfloat8(&buf, num); |
| 577 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 578 | } |
| 579 | |
| 580 | |
| 581 | /* ========== PUBLIC ROUTINES ========== */ |
| 582 | |
| 583 | |
| 584 | /* |
| 585 | * ====================== |
| 586 | * FLOAT4 BASE OPERATIONS |
| 587 | * ====================== |
| 588 | */ |
| 589 | |
| 590 | /* |
| 591 | * float4abs - returns |arg1| (absolute value) |
| 592 | */ |
| 593 | Datum |
| 594 | float4abs(PG_FUNCTION_ARGS) |
| 595 | { |
| 596 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 597 | |
| 598 | PG_RETURN_FLOAT4((float4) fabs(arg1)); |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * float4um - returns -arg1 (unary minus) |
| 603 | */ |
| 604 | Datum |
| 605 | float4um(PG_FUNCTION_ARGS) |
| 606 | { |
| 607 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 608 | float4 result; |
| 609 | |
| 610 | result = -arg1; |
| 611 | PG_RETURN_FLOAT4(result); |
| 612 | } |
| 613 | |
| 614 | Datum |
| 615 | float4up(PG_FUNCTION_ARGS) |
| 616 | { |
| 617 | float4 arg = PG_GETARG_FLOAT4(0); |
| 618 | |
| 619 | PG_RETURN_FLOAT4(arg); |
| 620 | } |
| 621 | |
| 622 | Datum |
| 623 | float4larger(PG_FUNCTION_ARGS) |
| 624 | { |
| 625 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 626 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 627 | float4 result; |
| 628 | |
| 629 | if (float4_gt(arg1, arg2)) |
| 630 | result = arg1; |
| 631 | else |
| 632 | result = arg2; |
| 633 | PG_RETURN_FLOAT4(result); |
| 634 | } |
| 635 | |
| 636 | Datum |
| 637 | float4smaller(PG_FUNCTION_ARGS) |
| 638 | { |
| 639 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 640 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 641 | float4 result; |
| 642 | |
| 643 | if (float4_lt(arg1, arg2)) |
| 644 | result = arg1; |
| 645 | else |
| 646 | result = arg2; |
| 647 | PG_RETURN_FLOAT4(result); |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * ====================== |
| 652 | * FLOAT8 BASE OPERATIONS |
| 653 | * ====================== |
| 654 | */ |
| 655 | |
| 656 | /* |
| 657 | * float8abs - returns |arg1| (absolute value) |
| 658 | */ |
| 659 | Datum |
| 660 | float8abs(PG_FUNCTION_ARGS) |
| 661 | { |
| 662 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 663 | |
| 664 | PG_RETURN_FLOAT8(fabs(arg1)); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | /* |
| 669 | * float8um - returns -arg1 (unary minus) |
| 670 | */ |
| 671 | Datum |
| 672 | float8um(PG_FUNCTION_ARGS) |
| 673 | { |
| 674 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 675 | float8 result; |
| 676 | |
| 677 | result = -arg1; |
| 678 | PG_RETURN_FLOAT8(result); |
| 679 | } |
| 680 | |
| 681 | Datum |
| 682 | float8up(PG_FUNCTION_ARGS) |
| 683 | { |
| 684 | float8 arg = PG_GETARG_FLOAT8(0); |
| 685 | |
| 686 | PG_RETURN_FLOAT8(arg); |
| 687 | } |
| 688 | |
| 689 | Datum |
| 690 | float8larger(PG_FUNCTION_ARGS) |
| 691 | { |
| 692 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 693 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 694 | float8 result; |
| 695 | |
| 696 | if (float8_gt(arg1, arg2)) |
| 697 | result = arg1; |
| 698 | else |
| 699 | result = arg2; |
| 700 | PG_RETURN_FLOAT8(result); |
| 701 | } |
| 702 | |
| 703 | Datum |
| 704 | float8smaller(PG_FUNCTION_ARGS) |
| 705 | { |
| 706 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 707 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 708 | float8 result; |
| 709 | |
| 710 | if (float8_lt(arg1, arg2)) |
| 711 | result = arg1; |
| 712 | else |
| 713 | result = arg2; |
| 714 | PG_RETURN_FLOAT8(result); |
| 715 | } |
| 716 | |
| 717 | |
| 718 | /* |
| 719 | * ==================== |
| 720 | * ARITHMETIC OPERATORS |
| 721 | * ==================== |
| 722 | */ |
| 723 | |
| 724 | /* |
| 725 | * float4pl - returns arg1 + arg2 |
| 726 | * float4mi - returns arg1 - arg2 |
| 727 | * float4mul - returns arg1 * arg2 |
| 728 | * float4div - returns arg1 / arg2 |
| 729 | */ |
| 730 | Datum |
| 731 | float4pl(PG_FUNCTION_ARGS) |
| 732 | { |
| 733 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 734 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 735 | |
| 736 | PG_RETURN_FLOAT4(float4_pl(arg1, arg2)); |
| 737 | } |
| 738 | |
| 739 | Datum |
| 740 | float4mi(PG_FUNCTION_ARGS) |
| 741 | { |
| 742 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 743 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 744 | |
| 745 | PG_RETURN_FLOAT4(float4_mi(arg1, arg2)); |
| 746 | } |
| 747 | |
| 748 | Datum |
| 749 | float4mul(PG_FUNCTION_ARGS) |
| 750 | { |
| 751 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 752 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 753 | |
| 754 | PG_RETURN_FLOAT4(float4_mul(arg1, arg2)); |
| 755 | } |
| 756 | |
| 757 | Datum |
| 758 | float4div(PG_FUNCTION_ARGS) |
| 759 | { |
| 760 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 761 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 762 | |
| 763 | PG_RETURN_FLOAT4(float4_div(arg1, arg2)); |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * float8pl - returns arg1 + arg2 |
| 768 | * float8mi - returns arg1 - arg2 |
| 769 | * float8mul - returns arg1 * arg2 |
| 770 | * float8div - returns arg1 / arg2 |
| 771 | */ |
| 772 | Datum |
| 773 | float8pl(PG_FUNCTION_ARGS) |
| 774 | { |
| 775 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 776 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 777 | |
| 778 | PG_RETURN_FLOAT8(float8_pl(arg1, arg2)); |
| 779 | } |
| 780 | |
| 781 | Datum |
| 782 | float8mi(PG_FUNCTION_ARGS) |
| 783 | { |
| 784 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 785 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 786 | |
| 787 | PG_RETURN_FLOAT8(float8_mi(arg1, arg2)); |
| 788 | } |
| 789 | |
| 790 | Datum |
| 791 | float8mul(PG_FUNCTION_ARGS) |
| 792 | { |
| 793 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 794 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 795 | |
| 796 | PG_RETURN_FLOAT8(float8_mul(arg1, arg2)); |
| 797 | } |
| 798 | |
| 799 | Datum |
| 800 | float8div(PG_FUNCTION_ARGS) |
| 801 | { |
| 802 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 803 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 804 | |
| 805 | PG_RETURN_FLOAT8(float8_div(arg1, arg2)); |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* |
| 810 | * ==================== |
| 811 | * COMPARISON OPERATORS |
| 812 | * ==================== |
| 813 | */ |
| 814 | |
| 815 | /* |
| 816 | * float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations |
| 817 | */ |
| 818 | int |
| 819 | float4_cmp_internal(float4 a, float4 b) |
| 820 | { |
| 821 | if (float4_gt(a, b)) |
| 822 | return 1; |
| 823 | if (float4_lt(a, b)) |
| 824 | return -1; |
| 825 | return 0; |
| 826 | } |
| 827 | |
| 828 | Datum |
| 829 | float4eq(PG_FUNCTION_ARGS) |
| 830 | { |
| 831 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 832 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 833 | |
| 834 | PG_RETURN_BOOL(float4_eq(arg1, arg2)); |
| 835 | } |
| 836 | |
| 837 | Datum |
| 838 | float4ne(PG_FUNCTION_ARGS) |
| 839 | { |
| 840 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 841 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 842 | |
| 843 | PG_RETURN_BOOL(float4_ne(arg1, arg2)); |
| 844 | } |
| 845 | |
| 846 | Datum |
| 847 | float4lt(PG_FUNCTION_ARGS) |
| 848 | { |
| 849 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 850 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 851 | |
| 852 | PG_RETURN_BOOL(float4_lt(arg1, arg2)); |
| 853 | } |
| 854 | |
| 855 | Datum |
| 856 | float4le(PG_FUNCTION_ARGS) |
| 857 | { |
| 858 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 859 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 860 | |
| 861 | PG_RETURN_BOOL(float4_le(arg1, arg2)); |
| 862 | } |
| 863 | |
| 864 | Datum |
| 865 | float4gt(PG_FUNCTION_ARGS) |
| 866 | { |
| 867 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 868 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 869 | |
| 870 | PG_RETURN_BOOL(float4_gt(arg1, arg2)); |
| 871 | } |
| 872 | |
| 873 | Datum |
| 874 | float4ge(PG_FUNCTION_ARGS) |
| 875 | { |
| 876 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 877 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 878 | |
| 879 | PG_RETURN_BOOL(float4_ge(arg1, arg2)); |
| 880 | } |
| 881 | |
| 882 | Datum |
| 883 | btfloat4cmp(PG_FUNCTION_ARGS) |
| 884 | { |
| 885 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 886 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 887 | |
| 888 | PG_RETURN_INT32(float4_cmp_internal(arg1, arg2)); |
| 889 | } |
| 890 | |
| 891 | static int |
| 892 | btfloat4fastcmp(Datum x, Datum y, SortSupport ssup) |
| 893 | { |
| 894 | float4 arg1 = DatumGetFloat4(x); |
| 895 | float4 arg2 = DatumGetFloat4(y); |
| 896 | |
| 897 | return float4_cmp_internal(arg1, arg2); |
| 898 | } |
| 899 | |
| 900 | Datum |
| 901 | btfloat4sortsupport(PG_FUNCTION_ARGS) |
| 902 | { |
| 903 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 904 | |
| 905 | ssup->comparator = btfloat4fastcmp; |
| 906 | PG_RETURN_VOID(); |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations |
| 911 | */ |
| 912 | int |
| 913 | float8_cmp_internal(float8 a, float8 b) |
| 914 | { |
| 915 | if (float8_gt(a, b)) |
| 916 | return 1; |
| 917 | if (float8_lt(a, b)) |
| 918 | return -1; |
| 919 | return 0; |
| 920 | } |
| 921 | |
| 922 | Datum |
| 923 | float8eq(PG_FUNCTION_ARGS) |
| 924 | { |
| 925 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 926 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 927 | |
| 928 | PG_RETURN_BOOL(float8_eq(arg1, arg2)); |
| 929 | } |
| 930 | |
| 931 | Datum |
| 932 | float8ne(PG_FUNCTION_ARGS) |
| 933 | { |
| 934 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 935 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 936 | |
| 937 | PG_RETURN_BOOL(float8_ne(arg1, arg2)); |
| 938 | } |
| 939 | |
| 940 | Datum |
| 941 | float8lt(PG_FUNCTION_ARGS) |
| 942 | { |
| 943 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 944 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 945 | |
| 946 | PG_RETURN_BOOL(float8_lt(arg1, arg2)); |
| 947 | } |
| 948 | |
| 949 | Datum |
| 950 | float8le(PG_FUNCTION_ARGS) |
| 951 | { |
| 952 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 953 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 954 | |
| 955 | PG_RETURN_BOOL(float8_le(arg1, arg2)); |
| 956 | } |
| 957 | |
| 958 | Datum |
| 959 | float8gt(PG_FUNCTION_ARGS) |
| 960 | { |
| 961 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 962 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 963 | |
| 964 | PG_RETURN_BOOL(float8_gt(arg1, arg2)); |
| 965 | } |
| 966 | |
| 967 | Datum |
| 968 | float8ge(PG_FUNCTION_ARGS) |
| 969 | { |
| 970 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 971 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 972 | |
| 973 | PG_RETURN_BOOL(float8_ge(arg1, arg2)); |
| 974 | } |
| 975 | |
| 976 | Datum |
| 977 | btfloat8cmp(PG_FUNCTION_ARGS) |
| 978 | { |
| 979 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 980 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 981 | |
| 982 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
| 983 | } |
| 984 | |
| 985 | static int |
| 986 | btfloat8fastcmp(Datum x, Datum y, SortSupport ssup) |
| 987 | { |
| 988 | float8 arg1 = DatumGetFloat8(x); |
| 989 | float8 arg2 = DatumGetFloat8(y); |
| 990 | |
| 991 | return float8_cmp_internal(arg1, arg2); |
| 992 | } |
| 993 | |
| 994 | Datum |
| 995 | btfloat8sortsupport(PG_FUNCTION_ARGS) |
| 996 | { |
| 997 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 998 | |
| 999 | ssup->comparator = btfloat8fastcmp; |
| 1000 | PG_RETURN_VOID(); |
| 1001 | } |
| 1002 | |
| 1003 | Datum |
| 1004 | btfloat48cmp(PG_FUNCTION_ARGS) |
| 1005 | { |
| 1006 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 1007 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 1008 | |
| 1009 | /* widen float4 to float8 and then compare */ |
| 1010 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
| 1011 | } |
| 1012 | |
| 1013 | Datum |
| 1014 | btfloat84cmp(PG_FUNCTION_ARGS) |
| 1015 | { |
| 1016 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1017 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 1018 | |
| 1019 | /* widen float4 to float8 and then compare */ |
| 1020 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * in_range support function for float8. |
| 1025 | * |
| 1026 | * Note: we needn't supply a float8_float4 variant, as implicit coercion |
| 1027 | * of the offset value takes care of that scenario just as well. |
| 1028 | */ |
| 1029 | Datum |
| 1030 | in_range_float8_float8(PG_FUNCTION_ARGS) |
| 1031 | { |
| 1032 | float8 val = PG_GETARG_FLOAT8(0); |
| 1033 | float8 base = PG_GETARG_FLOAT8(1); |
| 1034 | float8 offset = PG_GETARG_FLOAT8(2); |
| 1035 | bool sub = PG_GETARG_BOOL(3); |
| 1036 | bool less = PG_GETARG_BOOL(4); |
| 1037 | float8 sum; |
| 1038 | |
| 1039 | /* |
| 1040 | * Reject negative or NaN offset. Negative is per spec, and NaN is |
| 1041 | * because appropriate semantics for that seem non-obvious. |
| 1042 | */ |
| 1043 | if (isnan(offset) || offset < 0) |
| 1044 | ereport(ERROR, |
| 1045 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 1046 | errmsg("invalid preceding or following size in window function" ))); |
| 1047 | |
| 1048 | /* |
| 1049 | * Deal with cases where val and/or base is NaN, following the rule that |
| 1050 | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
| 1051 | * affect the conclusion. |
| 1052 | */ |
| 1053 | if (isnan(val)) |
| 1054 | { |
| 1055 | if (isnan(base)) |
| 1056 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
| 1057 | else |
| 1058 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
| 1059 | } |
| 1060 | else if (isnan(base)) |
| 1061 | { |
| 1062 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * Deal with infinite offset (necessarily +inf, at this point). We must |
| 1067 | * special-case this because if base happens to be -inf, their sum would |
| 1068 | * be NaN, which is an overflow-ish condition we should avoid. |
| 1069 | */ |
| 1070 | if (isinf(offset)) |
| 1071 | { |
| 1072 | PG_RETURN_BOOL(sub ? !less : less); |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * Otherwise it should be safe to compute base +/- offset. We trust the |
| 1077 | * FPU to cope if base is +/-inf or the true sum would overflow, and |
| 1078 | * produce a suitably signed infinity, which will compare properly against |
| 1079 | * val whether or not that's infinity. |
| 1080 | */ |
| 1081 | if (sub) |
| 1082 | sum = base - offset; |
| 1083 | else |
| 1084 | sum = base + offset; |
| 1085 | |
| 1086 | if (less) |
| 1087 | PG_RETURN_BOOL(val <= sum); |
| 1088 | else |
| 1089 | PG_RETURN_BOOL(val >= sum); |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * in_range support function for float4. |
| 1094 | * |
| 1095 | * We would need a float4_float8 variant in any case, so we supply that and |
| 1096 | * let implicit coercion take care of the float4_float4 case. |
| 1097 | */ |
| 1098 | Datum |
| 1099 | in_range_float4_float8(PG_FUNCTION_ARGS) |
| 1100 | { |
| 1101 | float4 val = PG_GETARG_FLOAT4(0); |
| 1102 | float4 base = PG_GETARG_FLOAT4(1); |
| 1103 | float8 offset = PG_GETARG_FLOAT8(2); |
| 1104 | bool sub = PG_GETARG_BOOL(3); |
| 1105 | bool less = PG_GETARG_BOOL(4); |
| 1106 | float8 sum; |
| 1107 | |
| 1108 | /* |
| 1109 | * Reject negative or NaN offset. Negative is per spec, and NaN is |
| 1110 | * because appropriate semantics for that seem non-obvious. |
| 1111 | */ |
| 1112 | if (isnan(offset) || offset < 0) |
| 1113 | ereport(ERROR, |
| 1114 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 1115 | errmsg("invalid preceding or following size in window function" ))); |
| 1116 | |
| 1117 | /* |
| 1118 | * Deal with cases where val and/or base is NaN, following the rule that |
| 1119 | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
| 1120 | * affect the conclusion. |
| 1121 | */ |
| 1122 | if (isnan(val)) |
| 1123 | { |
| 1124 | if (isnan(base)) |
| 1125 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
| 1126 | else |
| 1127 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
| 1128 | } |
| 1129 | else if (isnan(base)) |
| 1130 | { |
| 1131 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
| 1132 | } |
| 1133 | |
| 1134 | /* |
| 1135 | * Deal with infinite offset (necessarily +inf, at this point). We must |
| 1136 | * special-case this because if base happens to be -inf, their sum would |
| 1137 | * be NaN, which is an overflow-ish condition we should avoid. |
| 1138 | */ |
| 1139 | if (isinf(offset)) |
| 1140 | { |
| 1141 | PG_RETURN_BOOL(sub ? !less : less); |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * Otherwise it should be safe to compute base +/- offset. We trust the |
| 1146 | * FPU to cope if base is +/-inf or the true sum would overflow, and |
| 1147 | * produce a suitably signed infinity, which will compare properly against |
| 1148 | * val whether or not that's infinity. |
| 1149 | */ |
| 1150 | if (sub) |
| 1151 | sum = base - offset; |
| 1152 | else |
| 1153 | sum = base + offset; |
| 1154 | |
| 1155 | if (less) |
| 1156 | PG_RETURN_BOOL(val <= sum); |
| 1157 | else |
| 1158 | PG_RETURN_BOOL(val >= sum); |
| 1159 | } |
| 1160 | |
| 1161 | |
| 1162 | /* |
| 1163 | * =================== |
| 1164 | * CONVERSION ROUTINES |
| 1165 | * =================== |
| 1166 | */ |
| 1167 | |
| 1168 | /* |
| 1169 | * ftod - converts a float4 number to a float8 number |
| 1170 | */ |
| 1171 | Datum |
| 1172 | ftod(PG_FUNCTION_ARGS) |
| 1173 | { |
| 1174 | float4 num = PG_GETARG_FLOAT4(0); |
| 1175 | |
| 1176 | PG_RETURN_FLOAT8((float8) num); |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | /* |
| 1181 | * dtof - converts a float8 number to a float4 number |
| 1182 | */ |
| 1183 | Datum |
| 1184 | dtof(PG_FUNCTION_ARGS) |
| 1185 | { |
| 1186 | float8 num = PG_GETARG_FLOAT8(0); |
| 1187 | |
| 1188 | check_float4_val((float4) num, isinf(num), num == 0); |
| 1189 | |
| 1190 | PG_RETURN_FLOAT4((float4) num); |
| 1191 | } |
| 1192 | |
| 1193 | |
| 1194 | /* |
| 1195 | * dtoi4 - converts a float8 number to an int4 number |
| 1196 | */ |
| 1197 | Datum |
| 1198 | dtoi4(PG_FUNCTION_ARGS) |
| 1199 | { |
| 1200 | float8 num = PG_GETARG_FLOAT8(0); |
| 1201 | |
| 1202 | /* |
| 1203 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1204 | * on just-out-of-range values that would round into range. Note |
| 1205 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1206 | */ |
| 1207 | num = rint(num); |
| 1208 | |
| 1209 | /* |
| 1210 | * Range check. We must be careful here that the boundary values are |
| 1211 | * expressed exactly in the float domain. We expect PG_INT32_MIN to be an |
| 1212 | * exact power of 2, so it will be represented exactly; but PG_INT32_MAX |
| 1213 | * isn't, and might get rounded off, so avoid using it. |
| 1214 | */ |
| 1215 | if (unlikely(num < (float8) PG_INT32_MIN || |
| 1216 | num >= -((float8) PG_INT32_MIN) || |
| 1217 | isnan(num))) |
| 1218 | ereport(ERROR, |
| 1219 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1220 | errmsg("integer out of range" ))); |
| 1221 | |
| 1222 | PG_RETURN_INT32((int32) num); |
| 1223 | } |
| 1224 | |
| 1225 | |
| 1226 | /* |
| 1227 | * dtoi2 - converts a float8 number to an int2 number |
| 1228 | */ |
| 1229 | Datum |
| 1230 | dtoi2(PG_FUNCTION_ARGS) |
| 1231 | { |
| 1232 | float8 num = PG_GETARG_FLOAT8(0); |
| 1233 | |
| 1234 | /* |
| 1235 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1236 | * on just-out-of-range values that would round into range. Note |
| 1237 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1238 | */ |
| 1239 | num = rint(num); |
| 1240 | |
| 1241 | /* |
| 1242 | * Range check. We must be careful here that the boundary values are |
| 1243 | * expressed exactly in the float domain. We expect PG_INT16_MIN to be an |
| 1244 | * exact power of 2, so it will be represented exactly; but PG_INT16_MAX |
| 1245 | * isn't, and might get rounded off, so avoid using it. |
| 1246 | */ |
| 1247 | if (unlikely(num < (float8) PG_INT16_MIN || |
| 1248 | num >= -((float8) PG_INT16_MIN) || |
| 1249 | isnan(num))) |
| 1250 | ereport(ERROR, |
| 1251 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1252 | errmsg("smallint out of range" ))); |
| 1253 | |
| 1254 | PG_RETURN_INT16((int16) num); |
| 1255 | } |
| 1256 | |
| 1257 | |
| 1258 | /* |
| 1259 | * i4tod - converts an int4 number to a float8 number |
| 1260 | */ |
| 1261 | Datum |
| 1262 | i4tod(PG_FUNCTION_ARGS) |
| 1263 | { |
| 1264 | int32 num = PG_GETARG_INT32(0); |
| 1265 | |
| 1266 | PG_RETURN_FLOAT8((float8) num); |
| 1267 | } |
| 1268 | |
| 1269 | |
| 1270 | /* |
| 1271 | * i2tod - converts an int2 number to a float8 number |
| 1272 | */ |
| 1273 | Datum |
| 1274 | i2tod(PG_FUNCTION_ARGS) |
| 1275 | { |
| 1276 | int16 num = PG_GETARG_INT16(0); |
| 1277 | |
| 1278 | PG_RETURN_FLOAT8((float8) num); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | /* |
| 1283 | * ftoi4 - converts a float4 number to an int4 number |
| 1284 | */ |
| 1285 | Datum |
| 1286 | ftoi4(PG_FUNCTION_ARGS) |
| 1287 | { |
| 1288 | float4 num = PG_GETARG_FLOAT4(0); |
| 1289 | |
| 1290 | /* |
| 1291 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1292 | * on just-out-of-range values that would round into range. Note |
| 1293 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1294 | */ |
| 1295 | num = rint(num); |
| 1296 | |
| 1297 | /* |
| 1298 | * Range check. We must be careful here that the boundary values are |
| 1299 | * expressed exactly in the float domain. We expect PG_INT32_MIN to be an |
| 1300 | * exact power of 2, so it will be represented exactly; but PG_INT32_MAX |
| 1301 | * isn't, and might get rounded off, so avoid using it. |
| 1302 | */ |
| 1303 | if (unlikely(num < (float4) PG_INT32_MIN || |
| 1304 | num >= -((float4) PG_INT32_MIN) || |
| 1305 | isnan(num))) |
| 1306 | ereport(ERROR, |
| 1307 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1308 | errmsg("integer out of range" ))); |
| 1309 | |
| 1310 | PG_RETURN_INT32((int32) num); |
| 1311 | } |
| 1312 | |
| 1313 | |
| 1314 | /* |
| 1315 | * ftoi2 - converts a float4 number to an int2 number |
| 1316 | */ |
| 1317 | Datum |
| 1318 | ftoi2(PG_FUNCTION_ARGS) |
| 1319 | { |
| 1320 | float4 num = PG_GETARG_FLOAT4(0); |
| 1321 | |
| 1322 | /* |
| 1323 | * Get rid of any fractional part in the input. This is so we don't fail |
| 1324 | * on just-out-of-range values that would round into range. Note |
| 1325 | * assumption that rint() will pass through a NaN or Inf unchanged. |
| 1326 | */ |
| 1327 | num = rint(num); |
| 1328 | |
| 1329 | /* |
| 1330 | * Range check. We must be careful here that the boundary values are |
| 1331 | * expressed exactly in the float domain. We expect PG_INT16_MIN to be an |
| 1332 | * exact power of 2, so it will be represented exactly; but PG_INT16_MAX |
| 1333 | * isn't, and might get rounded off, so avoid using it. |
| 1334 | */ |
| 1335 | if (unlikely(num < (float4) PG_INT16_MIN || |
| 1336 | num >= -((float4) PG_INT16_MIN) || |
| 1337 | isnan(num))) |
| 1338 | ereport(ERROR, |
| 1339 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1340 | errmsg("smallint out of range" ))); |
| 1341 | |
| 1342 | PG_RETURN_INT16((int16) num); |
| 1343 | } |
| 1344 | |
| 1345 | |
| 1346 | /* |
| 1347 | * i4tof - converts an int4 number to a float4 number |
| 1348 | */ |
| 1349 | Datum |
| 1350 | i4tof(PG_FUNCTION_ARGS) |
| 1351 | { |
| 1352 | int32 num = PG_GETARG_INT32(0); |
| 1353 | |
| 1354 | PG_RETURN_FLOAT4((float4) num); |
| 1355 | } |
| 1356 | |
| 1357 | |
| 1358 | /* |
| 1359 | * i2tof - converts an int2 number to a float4 number |
| 1360 | */ |
| 1361 | Datum |
| 1362 | i2tof(PG_FUNCTION_ARGS) |
| 1363 | { |
| 1364 | int16 num = PG_GETARG_INT16(0); |
| 1365 | |
| 1366 | PG_RETURN_FLOAT4((float4) num); |
| 1367 | } |
| 1368 | |
| 1369 | |
| 1370 | /* |
| 1371 | * ======================= |
| 1372 | * RANDOM FLOAT8 OPERATORS |
| 1373 | * ======================= |
| 1374 | */ |
| 1375 | |
| 1376 | /* |
| 1377 | * dround - returns ROUND(arg1) |
| 1378 | */ |
| 1379 | Datum |
| 1380 | dround(PG_FUNCTION_ARGS) |
| 1381 | { |
| 1382 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1383 | |
| 1384 | PG_RETURN_FLOAT8(rint(arg1)); |
| 1385 | } |
| 1386 | |
| 1387 | /* |
| 1388 | * dceil - returns the smallest integer greater than or |
| 1389 | * equal to the specified float |
| 1390 | */ |
| 1391 | Datum |
| 1392 | dceil(PG_FUNCTION_ARGS) |
| 1393 | { |
| 1394 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1395 | |
| 1396 | PG_RETURN_FLOAT8(ceil(arg1)); |
| 1397 | } |
| 1398 | |
| 1399 | /* |
| 1400 | * dfloor - returns the largest integer lesser than or |
| 1401 | * equal to the specified float |
| 1402 | */ |
| 1403 | Datum |
| 1404 | dfloor(PG_FUNCTION_ARGS) |
| 1405 | { |
| 1406 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1407 | |
| 1408 | PG_RETURN_FLOAT8(floor(arg1)); |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * dsign - returns -1 if the argument is less than 0, 0 |
| 1413 | * if the argument is equal to 0, and 1 if the |
| 1414 | * argument is greater than zero. |
| 1415 | */ |
| 1416 | Datum |
| 1417 | dsign(PG_FUNCTION_ARGS) |
| 1418 | { |
| 1419 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1420 | float8 result; |
| 1421 | |
| 1422 | if (arg1 > 0) |
| 1423 | result = 1.0; |
| 1424 | else if (arg1 < 0) |
| 1425 | result = -1.0; |
| 1426 | else |
| 1427 | result = 0.0; |
| 1428 | |
| 1429 | PG_RETURN_FLOAT8(result); |
| 1430 | } |
| 1431 | |
| 1432 | /* |
| 1433 | * dtrunc - returns truncation-towards-zero of arg1, |
| 1434 | * arg1 >= 0 ... the greatest integer less |
| 1435 | * than or equal to arg1 |
| 1436 | * arg1 < 0 ... the least integer greater |
| 1437 | * than or equal to arg1 |
| 1438 | */ |
| 1439 | Datum |
| 1440 | dtrunc(PG_FUNCTION_ARGS) |
| 1441 | { |
| 1442 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1443 | float8 result; |
| 1444 | |
| 1445 | if (arg1 >= 0) |
| 1446 | result = floor(arg1); |
| 1447 | else |
| 1448 | result = -floor(-arg1); |
| 1449 | |
| 1450 | PG_RETURN_FLOAT8(result); |
| 1451 | } |
| 1452 | |
| 1453 | |
| 1454 | /* |
| 1455 | * dsqrt - returns square root of arg1 |
| 1456 | */ |
| 1457 | Datum |
| 1458 | dsqrt(PG_FUNCTION_ARGS) |
| 1459 | { |
| 1460 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1461 | float8 result; |
| 1462 | |
| 1463 | if (arg1 < 0) |
| 1464 | ereport(ERROR, |
| 1465 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 1466 | errmsg("cannot take square root of a negative number" ))); |
| 1467 | |
| 1468 | result = sqrt(arg1); |
| 1469 | |
| 1470 | check_float8_val(result, isinf(arg1), arg1 == 0); |
| 1471 | PG_RETURN_FLOAT8(result); |
| 1472 | } |
| 1473 | |
| 1474 | |
| 1475 | /* |
| 1476 | * dcbrt - returns cube root of arg1 |
| 1477 | */ |
| 1478 | Datum |
| 1479 | dcbrt(PG_FUNCTION_ARGS) |
| 1480 | { |
| 1481 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1482 | float8 result; |
| 1483 | |
| 1484 | result = cbrt(arg1); |
| 1485 | check_float8_val(result, isinf(arg1), arg1 == 0); |
| 1486 | PG_RETURN_FLOAT8(result); |
| 1487 | } |
| 1488 | |
| 1489 | |
| 1490 | /* |
| 1491 | * dpow - returns pow(arg1,arg2) |
| 1492 | */ |
| 1493 | Datum |
| 1494 | dpow(PG_FUNCTION_ARGS) |
| 1495 | { |
| 1496 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1497 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 1498 | float8 result; |
| 1499 | |
| 1500 | /* |
| 1501 | * The POSIX spec says that NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other |
| 1502 | * cases with NaN inputs yield NaN (with no error). Many older platforms |
| 1503 | * get one or more of these cases wrong, so deal with them via explicit |
| 1504 | * logic rather than trusting pow(3). |
| 1505 | */ |
| 1506 | if (isnan(arg1)) |
| 1507 | { |
| 1508 | if (isnan(arg2) || arg2 != 0.0) |
| 1509 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1510 | PG_RETURN_FLOAT8(1.0); |
| 1511 | } |
| 1512 | if (isnan(arg2)) |
| 1513 | { |
| 1514 | if (arg1 != 1.0) |
| 1515 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1516 | PG_RETURN_FLOAT8(1.0); |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * The SQL spec requires that we emit a particular SQLSTATE error code for |
| 1521 | * certain error conditions. Specifically, we don't return a |
| 1522 | * divide-by-zero error code for 0 ^ -1. |
| 1523 | */ |
| 1524 | if (arg1 == 0 && arg2 < 0) |
| 1525 | ereport(ERROR, |
| 1526 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 1527 | errmsg("zero raised to a negative power is undefined" ))); |
| 1528 | if (arg1 < 0 && floor(arg2) != arg2) |
| 1529 | ereport(ERROR, |
| 1530 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 1531 | errmsg("a negative number raised to a non-integer power yields a complex result" ))); |
| 1532 | |
| 1533 | /* |
| 1534 | * pow() sets errno only on some platforms, depending on whether it |
| 1535 | * follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we try to avoid using |
| 1536 | * errno. However, some platform/CPU combinations return errno == EDOM |
| 1537 | * and result == NaN for negative arg1 and very large arg2 (they must be |
| 1538 | * using something different from our floor() test to decide it's |
| 1539 | * invalid). Other platforms (HPPA) return errno == ERANGE and a large |
| 1540 | * (HUGE_VAL) but finite result to signal overflow. |
| 1541 | */ |
| 1542 | errno = 0; |
| 1543 | result = pow(arg1, arg2); |
| 1544 | if (errno == EDOM && isnan(result)) |
| 1545 | { |
| 1546 | if ((fabs(arg1) > 1 && arg2 >= 0) || (fabs(arg1) < 1 && arg2 < 0)) |
| 1547 | /* The sign of Inf is not significant in this case. */ |
| 1548 | result = get_float8_infinity(); |
| 1549 | else if (fabs(arg1) != 1) |
| 1550 | result = 0; |
| 1551 | else |
| 1552 | result = 1; |
| 1553 | } |
| 1554 | else if (errno == ERANGE && result != 0 && !isinf(result)) |
| 1555 | result = get_float8_infinity(); |
| 1556 | |
| 1557 | check_float8_val(result, isinf(arg1) || isinf(arg2), arg1 == 0); |
| 1558 | PG_RETURN_FLOAT8(result); |
| 1559 | } |
| 1560 | |
| 1561 | |
| 1562 | /* |
| 1563 | * dexp - returns the exponential function of arg1 |
| 1564 | */ |
| 1565 | Datum |
| 1566 | dexp(PG_FUNCTION_ARGS) |
| 1567 | { |
| 1568 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1569 | float8 result; |
| 1570 | |
| 1571 | errno = 0; |
| 1572 | result = exp(arg1); |
| 1573 | if (errno == ERANGE && result != 0 && !isinf(result)) |
| 1574 | result = get_float8_infinity(); |
| 1575 | |
| 1576 | check_float8_val(result, isinf(arg1), false); |
| 1577 | PG_RETURN_FLOAT8(result); |
| 1578 | } |
| 1579 | |
| 1580 | |
| 1581 | /* |
| 1582 | * dlog1 - returns the natural logarithm of arg1 |
| 1583 | */ |
| 1584 | Datum |
| 1585 | dlog1(PG_FUNCTION_ARGS) |
| 1586 | { |
| 1587 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1588 | float8 result; |
| 1589 | |
| 1590 | /* |
| 1591 | * Emit particular SQLSTATE error codes for ln(). This is required by the |
| 1592 | * SQL standard. |
| 1593 | */ |
| 1594 | if (arg1 == 0.0) |
| 1595 | ereport(ERROR, |
| 1596 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 1597 | errmsg("cannot take logarithm of zero" ))); |
| 1598 | if (arg1 < 0) |
| 1599 | ereport(ERROR, |
| 1600 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 1601 | errmsg("cannot take logarithm of a negative number" ))); |
| 1602 | |
| 1603 | result = log(arg1); |
| 1604 | |
| 1605 | check_float8_val(result, isinf(arg1), arg1 == 1); |
| 1606 | PG_RETURN_FLOAT8(result); |
| 1607 | } |
| 1608 | |
| 1609 | |
| 1610 | /* |
| 1611 | * dlog10 - returns the base 10 logarithm of arg1 |
| 1612 | */ |
| 1613 | Datum |
| 1614 | dlog10(PG_FUNCTION_ARGS) |
| 1615 | { |
| 1616 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1617 | float8 result; |
| 1618 | |
| 1619 | /* |
| 1620 | * Emit particular SQLSTATE error codes for log(). The SQL spec doesn't |
| 1621 | * define log(), but it does define ln(), so it makes sense to emit the |
| 1622 | * same error code for an analogous error condition. |
| 1623 | */ |
| 1624 | if (arg1 == 0.0) |
| 1625 | ereport(ERROR, |
| 1626 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 1627 | errmsg("cannot take logarithm of zero" ))); |
| 1628 | if (arg1 < 0) |
| 1629 | ereport(ERROR, |
| 1630 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 1631 | errmsg("cannot take logarithm of a negative number" ))); |
| 1632 | |
| 1633 | result = log10(arg1); |
| 1634 | |
| 1635 | check_float8_val(result, isinf(arg1), arg1 == 1); |
| 1636 | PG_RETURN_FLOAT8(result); |
| 1637 | } |
| 1638 | |
| 1639 | |
| 1640 | /* |
| 1641 | * dacos - returns the arccos of arg1 (radians) |
| 1642 | */ |
| 1643 | Datum |
| 1644 | dacos(PG_FUNCTION_ARGS) |
| 1645 | { |
| 1646 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1647 | float8 result; |
| 1648 | |
| 1649 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1650 | if (isnan(arg1)) |
| 1651 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1652 | |
| 1653 | /* |
| 1654 | * The principal branch of the inverse cosine function maps values in the |
| 1655 | * range [-1, 1] to values in the range [0, Pi], so we should reject any |
| 1656 | * inputs outside that range and the result will always be finite. |
| 1657 | */ |
| 1658 | if (arg1 < -1.0 || arg1 > 1.0) |
| 1659 | ereport(ERROR, |
| 1660 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1661 | errmsg("input is out of range" ))); |
| 1662 | |
| 1663 | result = acos(arg1); |
| 1664 | |
| 1665 | check_float8_val(result, false, true); |
| 1666 | PG_RETURN_FLOAT8(result); |
| 1667 | } |
| 1668 | |
| 1669 | |
| 1670 | /* |
| 1671 | * dasin - returns the arcsin of arg1 (radians) |
| 1672 | */ |
| 1673 | Datum |
| 1674 | dasin(PG_FUNCTION_ARGS) |
| 1675 | { |
| 1676 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1677 | float8 result; |
| 1678 | |
| 1679 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1680 | if (isnan(arg1)) |
| 1681 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1682 | |
| 1683 | /* |
| 1684 | * The principal branch of the inverse sine function maps values in the |
| 1685 | * range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject |
| 1686 | * any inputs outside that range and the result will always be finite. |
| 1687 | */ |
| 1688 | if (arg1 < -1.0 || arg1 > 1.0) |
| 1689 | ereport(ERROR, |
| 1690 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1691 | errmsg("input is out of range" ))); |
| 1692 | |
| 1693 | result = asin(arg1); |
| 1694 | |
| 1695 | check_float8_val(result, false, true); |
| 1696 | PG_RETURN_FLOAT8(result); |
| 1697 | } |
| 1698 | |
| 1699 | |
| 1700 | /* |
| 1701 | * datan - returns the arctan of arg1 (radians) |
| 1702 | */ |
| 1703 | Datum |
| 1704 | datan(PG_FUNCTION_ARGS) |
| 1705 | { |
| 1706 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1707 | float8 result; |
| 1708 | |
| 1709 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1710 | if (isnan(arg1)) |
| 1711 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1712 | |
| 1713 | /* |
| 1714 | * The principal branch of the inverse tangent function maps all inputs to |
| 1715 | * values in the range [-Pi/2, Pi/2], so the result should always be |
| 1716 | * finite, even if the input is infinite. |
| 1717 | */ |
| 1718 | result = atan(arg1); |
| 1719 | |
| 1720 | check_float8_val(result, false, true); |
| 1721 | PG_RETURN_FLOAT8(result); |
| 1722 | } |
| 1723 | |
| 1724 | |
| 1725 | /* |
| 1726 | * atan2 - returns the arctan of arg1/arg2 (radians) |
| 1727 | */ |
| 1728 | Datum |
| 1729 | datan2(PG_FUNCTION_ARGS) |
| 1730 | { |
| 1731 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1732 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 1733 | float8 result; |
| 1734 | |
| 1735 | /* Per the POSIX spec, return NaN if either input is NaN */ |
| 1736 | if (isnan(arg1) || isnan(arg2)) |
| 1737 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1738 | |
| 1739 | /* |
| 1740 | * atan2 maps all inputs to values in the range [-Pi, Pi], so the result |
| 1741 | * should always be finite, even if the inputs are infinite. |
| 1742 | */ |
| 1743 | result = atan2(arg1, arg2); |
| 1744 | |
| 1745 | check_float8_val(result, false, true); |
| 1746 | PG_RETURN_FLOAT8(result); |
| 1747 | } |
| 1748 | |
| 1749 | |
| 1750 | /* |
| 1751 | * dcos - returns the cosine of arg1 (radians) |
| 1752 | */ |
| 1753 | Datum |
| 1754 | dcos(PG_FUNCTION_ARGS) |
| 1755 | { |
| 1756 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1757 | float8 result; |
| 1758 | |
| 1759 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1760 | if (isnan(arg1)) |
| 1761 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1762 | |
| 1763 | /* |
| 1764 | * cos() is periodic and so theoretically can work for all finite inputs, |
| 1765 | * but some implementations may choose to throw error if the input is so |
| 1766 | * large that there are no significant digits in the result. So we should |
| 1767 | * check for errors. POSIX allows an error to be reported either via |
| 1768 | * errno or via fetestexcept(), but currently we only support checking |
| 1769 | * errno. (fetestexcept() is rumored to report underflow unreasonably |
| 1770 | * early on some platforms, so it's not clear that believing it would be a |
| 1771 | * net improvement anyway.) |
| 1772 | * |
| 1773 | * For infinite inputs, POSIX specifies that the trigonometric functions |
| 1774 | * should return a domain error; but we won't notice that unless the |
| 1775 | * platform reports via errno, so also explicitly test for infinite |
| 1776 | * inputs. |
| 1777 | */ |
| 1778 | errno = 0; |
| 1779 | result = cos(arg1); |
| 1780 | if (errno != 0 || isinf(arg1)) |
| 1781 | ereport(ERROR, |
| 1782 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1783 | errmsg("input is out of range" ))); |
| 1784 | |
| 1785 | check_float8_val(result, false, true); |
| 1786 | PG_RETURN_FLOAT8(result); |
| 1787 | } |
| 1788 | |
| 1789 | |
| 1790 | /* |
| 1791 | * dcot - returns the cotangent of arg1 (radians) |
| 1792 | */ |
| 1793 | Datum |
| 1794 | dcot(PG_FUNCTION_ARGS) |
| 1795 | { |
| 1796 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1797 | float8 result; |
| 1798 | |
| 1799 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1800 | if (isnan(arg1)) |
| 1801 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1802 | |
| 1803 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
| 1804 | errno = 0; |
| 1805 | result = tan(arg1); |
| 1806 | if (errno != 0 || isinf(arg1)) |
| 1807 | ereport(ERROR, |
| 1808 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1809 | errmsg("input is out of range" ))); |
| 1810 | |
| 1811 | result = 1.0 / result; |
| 1812 | check_float8_val(result, true /* cot(0) == Inf */ , true); |
| 1813 | PG_RETURN_FLOAT8(result); |
| 1814 | } |
| 1815 | |
| 1816 | |
| 1817 | /* |
| 1818 | * dsin - returns the sine of arg1 (radians) |
| 1819 | */ |
| 1820 | Datum |
| 1821 | dsin(PG_FUNCTION_ARGS) |
| 1822 | { |
| 1823 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1824 | float8 result; |
| 1825 | |
| 1826 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1827 | if (isnan(arg1)) |
| 1828 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1829 | |
| 1830 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
| 1831 | errno = 0; |
| 1832 | result = sin(arg1); |
| 1833 | if (errno != 0 || isinf(arg1)) |
| 1834 | ereport(ERROR, |
| 1835 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1836 | errmsg("input is out of range" ))); |
| 1837 | |
| 1838 | check_float8_val(result, false, true); |
| 1839 | PG_RETURN_FLOAT8(result); |
| 1840 | } |
| 1841 | |
| 1842 | |
| 1843 | /* |
| 1844 | * dtan - returns the tangent of arg1 (radians) |
| 1845 | */ |
| 1846 | Datum |
| 1847 | dtan(PG_FUNCTION_ARGS) |
| 1848 | { |
| 1849 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1850 | float8 result; |
| 1851 | |
| 1852 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1853 | if (isnan(arg1)) |
| 1854 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1855 | |
| 1856 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
| 1857 | errno = 0; |
| 1858 | result = tan(arg1); |
| 1859 | if (errno != 0 || isinf(arg1)) |
| 1860 | ereport(ERROR, |
| 1861 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1862 | errmsg("input is out of range" ))); |
| 1863 | |
| 1864 | check_float8_val(result, true /* tan(pi/2) == Inf */ , true); |
| 1865 | PG_RETURN_FLOAT8(result); |
| 1866 | } |
| 1867 | |
| 1868 | |
| 1869 | /* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */ |
| 1870 | |
| 1871 | |
| 1872 | /* |
| 1873 | * Initialize the cached constants declared at the head of this file |
| 1874 | * (sin_30 etc). The fact that we need those at all, let alone need this |
| 1875 | * Rube-Goldberg-worthy method of initializing them, is because there are |
| 1876 | * compilers out there that will precompute expressions such as sin(constant) |
| 1877 | * using a sin() function different from what will be used at runtime. If we |
| 1878 | * want exact results, we must ensure that none of the scaling constants used |
| 1879 | * in the degree-based trig functions are computed that way. To do so, we |
| 1880 | * compute them from the variables degree_c_thirty etc, which are also really |
| 1881 | * constants, but the compiler cannot assume that. |
| 1882 | * |
| 1883 | * Other hazards we are trying to forestall with this kluge include the |
| 1884 | * possibility that compilers will rearrange the expressions, or compute |
| 1885 | * some intermediate results in registers wider than a standard double. |
| 1886 | * |
| 1887 | * In the places where we use these constants, the typical pattern is like |
| 1888 | * volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
| 1889 | * return (sin_x / sin_30); |
| 1890 | * where we hope to get a value of exactly 1.0 from the division when x = 30. |
| 1891 | * The volatile temporary variable is needed on machines with wide float |
| 1892 | * registers, to ensure that the result of sin(x) is rounded to double width |
| 1893 | * the same as the value of sin_30 has been. Experimentation with gcc shows |
| 1894 | * that marking the temp variable volatile is necessary to make the store and |
| 1895 | * reload actually happen; hopefully the same trick works for other compilers. |
| 1896 | * (gcc's documentation suggests using the -ffloat-store compiler switch to |
| 1897 | * ensure this, but that is compiler-specific and it also pessimizes code in |
| 1898 | * many places where we don't care about this.) |
| 1899 | */ |
| 1900 | static void |
| 1901 | init_degree_constants(void) |
| 1902 | { |
| 1903 | sin_30 = sin(degree_c_thirty * RADIANS_PER_DEGREE); |
| 1904 | one_minus_cos_60 = 1.0 - cos(degree_c_sixty * RADIANS_PER_DEGREE); |
| 1905 | asin_0_5 = asin(degree_c_one_half); |
| 1906 | acos_0_5 = acos(degree_c_one_half); |
| 1907 | atan_1_0 = atan(degree_c_one); |
| 1908 | tan_45 = sind_q1(degree_c_forty_five) / cosd_q1(degree_c_forty_five); |
| 1909 | cot_45 = cosd_q1(degree_c_forty_five) / sind_q1(degree_c_forty_five); |
| 1910 | degree_consts_set = true; |
| 1911 | } |
| 1912 | |
| 1913 | #define INIT_DEGREE_CONSTANTS() \ |
| 1914 | do { \ |
| 1915 | if (!degree_consts_set) \ |
| 1916 | init_degree_constants(); \ |
| 1917 | } while(0) |
| 1918 | |
| 1919 | |
| 1920 | /* |
| 1921 | * asind_q1 - returns the inverse sine of x in degrees, for x in |
| 1922 | * the range [0, 1]. The result is an angle in the |
| 1923 | * first quadrant --- [0, 90] degrees. |
| 1924 | * |
| 1925 | * For the 3 special case inputs (0, 0.5 and 1), this |
| 1926 | * function will return exact values (0, 30 and 90 |
| 1927 | * degrees respectively). |
| 1928 | */ |
| 1929 | static double |
| 1930 | asind_q1(double x) |
| 1931 | { |
| 1932 | /* |
| 1933 | * Stitch together inverse sine and cosine functions for the ranges [0, |
| 1934 | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
| 1935 | * exactly 30 for x=0.5, so the result is a continuous monotonic function |
| 1936 | * over the full range. |
| 1937 | */ |
| 1938 | if (x <= 0.5) |
| 1939 | { |
| 1940 | volatile float8 asin_x = asin(x); |
| 1941 | |
| 1942 | return (asin_x / asin_0_5) * 30.0; |
| 1943 | } |
| 1944 | else |
| 1945 | { |
| 1946 | volatile float8 acos_x = acos(x); |
| 1947 | |
| 1948 | return 90.0 - (acos_x / acos_0_5) * 60.0; |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | |
| 1953 | /* |
| 1954 | * acosd_q1 - returns the inverse cosine of x in degrees, for x in |
| 1955 | * the range [0, 1]. The result is an angle in the |
| 1956 | * first quadrant --- [0, 90] degrees. |
| 1957 | * |
| 1958 | * For the 3 special case inputs (0, 0.5 and 1), this |
| 1959 | * function will return exact values (0, 60 and 90 |
| 1960 | * degrees respectively). |
| 1961 | */ |
| 1962 | static double |
| 1963 | acosd_q1(double x) |
| 1964 | { |
| 1965 | /* |
| 1966 | * Stitch together inverse sine and cosine functions for the ranges [0, |
| 1967 | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
| 1968 | * exactly 60 for x=0.5, so the result is a continuous monotonic function |
| 1969 | * over the full range. |
| 1970 | */ |
| 1971 | if (x <= 0.5) |
| 1972 | { |
| 1973 | volatile float8 asin_x = asin(x); |
| 1974 | |
| 1975 | return 90.0 - (asin_x / asin_0_5) * 30.0; |
| 1976 | } |
| 1977 | else |
| 1978 | { |
| 1979 | volatile float8 acos_x = acos(x); |
| 1980 | |
| 1981 | return (acos_x / acos_0_5) * 60.0; |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | |
| 1986 | /* |
| 1987 | * dacosd - returns the arccos of arg1 (degrees) |
| 1988 | */ |
| 1989 | Datum |
| 1990 | dacosd(PG_FUNCTION_ARGS) |
| 1991 | { |
| 1992 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 1993 | float8 result; |
| 1994 | |
| 1995 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 1996 | if (isnan(arg1)) |
| 1997 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 1998 | |
| 1999 | INIT_DEGREE_CONSTANTS(); |
| 2000 | |
| 2001 | /* |
| 2002 | * The principal branch of the inverse cosine function maps values in the |
| 2003 | * range [-1, 1] to values in the range [0, 180], so we should reject any |
| 2004 | * inputs outside that range and the result will always be finite. |
| 2005 | */ |
| 2006 | if (arg1 < -1.0 || arg1 > 1.0) |
| 2007 | ereport(ERROR, |
| 2008 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2009 | errmsg("input is out of range" ))); |
| 2010 | |
| 2011 | if (arg1 >= 0.0) |
| 2012 | result = acosd_q1(arg1); |
| 2013 | else |
| 2014 | result = 90.0 + asind_q1(-arg1); |
| 2015 | |
| 2016 | check_float8_val(result, false, true); |
| 2017 | PG_RETURN_FLOAT8(result); |
| 2018 | } |
| 2019 | |
| 2020 | |
| 2021 | /* |
| 2022 | * dasind - returns the arcsin of arg1 (degrees) |
| 2023 | */ |
| 2024 | Datum |
| 2025 | dasind(PG_FUNCTION_ARGS) |
| 2026 | { |
| 2027 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2028 | float8 result; |
| 2029 | |
| 2030 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 2031 | if (isnan(arg1)) |
| 2032 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2033 | |
| 2034 | INIT_DEGREE_CONSTANTS(); |
| 2035 | |
| 2036 | /* |
| 2037 | * The principal branch of the inverse sine function maps values in the |
| 2038 | * range [-1, 1] to values in the range [-90, 90], so we should reject any |
| 2039 | * inputs outside that range and the result will always be finite. |
| 2040 | */ |
| 2041 | if (arg1 < -1.0 || arg1 > 1.0) |
| 2042 | ereport(ERROR, |
| 2043 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2044 | errmsg("input is out of range" ))); |
| 2045 | |
| 2046 | if (arg1 >= 0.0) |
| 2047 | result = asind_q1(arg1); |
| 2048 | else |
| 2049 | result = -asind_q1(-arg1); |
| 2050 | |
| 2051 | check_float8_val(result, false, true); |
| 2052 | PG_RETURN_FLOAT8(result); |
| 2053 | } |
| 2054 | |
| 2055 | |
| 2056 | /* |
| 2057 | * datand - returns the arctan of arg1 (degrees) |
| 2058 | */ |
| 2059 | Datum |
| 2060 | datand(PG_FUNCTION_ARGS) |
| 2061 | { |
| 2062 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2063 | float8 result; |
| 2064 | volatile float8 atan_arg1; |
| 2065 | |
| 2066 | /* Per the POSIX spec, return NaN if the input is NaN */ |
| 2067 | if (isnan(arg1)) |
| 2068 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2069 | |
| 2070 | INIT_DEGREE_CONSTANTS(); |
| 2071 | |
| 2072 | /* |
| 2073 | * The principal branch of the inverse tangent function maps all inputs to |
| 2074 | * values in the range [-90, 90], so the result should always be finite, |
| 2075 | * even if the input is infinite. Additionally, we take care to ensure |
| 2076 | * than when arg1 is 1, the result is exactly 45. |
| 2077 | */ |
| 2078 | atan_arg1 = atan(arg1); |
| 2079 | result = (atan_arg1 / atan_1_0) * 45.0; |
| 2080 | |
| 2081 | check_float8_val(result, false, true); |
| 2082 | PG_RETURN_FLOAT8(result); |
| 2083 | } |
| 2084 | |
| 2085 | |
| 2086 | /* |
| 2087 | * atan2d - returns the arctan of arg1/arg2 (degrees) |
| 2088 | */ |
| 2089 | Datum |
| 2090 | datan2d(PG_FUNCTION_ARGS) |
| 2091 | { |
| 2092 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2093 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 2094 | float8 result; |
| 2095 | volatile float8 atan2_arg1_arg2; |
| 2096 | |
| 2097 | /* Per the POSIX spec, return NaN if either input is NaN */ |
| 2098 | if (isnan(arg1) || isnan(arg2)) |
| 2099 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2100 | |
| 2101 | INIT_DEGREE_CONSTANTS(); |
| 2102 | |
| 2103 | /* |
| 2104 | * atan2d maps all inputs to values in the range [-180, 180], so the |
| 2105 | * result should always be finite, even if the inputs are infinite. |
| 2106 | * |
| 2107 | * Note: this coding assumes that atan(1.0) is a suitable scaling constant |
| 2108 | * to get an exact result from atan2(). This might well fail on us at |
| 2109 | * some point, requiring us to decide exactly what inputs we think we're |
| 2110 | * going to guarantee an exact result for. |
| 2111 | */ |
| 2112 | atan2_arg1_arg2 = atan2(arg1, arg2); |
| 2113 | result = (atan2_arg1_arg2 / atan_1_0) * 45.0; |
| 2114 | |
| 2115 | check_float8_val(result, false, true); |
| 2116 | PG_RETURN_FLOAT8(result); |
| 2117 | } |
| 2118 | |
| 2119 | |
| 2120 | /* |
| 2121 | * sind_0_to_30 - returns the sine of an angle that lies between 0 and |
| 2122 | * 30 degrees. This will return exactly 0 when x is 0, |
| 2123 | * and exactly 0.5 when x is 30 degrees. |
| 2124 | */ |
| 2125 | static double |
| 2126 | sind_0_to_30(double x) |
| 2127 | { |
| 2128 | volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
| 2129 | |
| 2130 | return (sin_x / sin_30) / 2.0; |
| 2131 | } |
| 2132 | |
| 2133 | |
| 2134 | /* |
| 2135 | * cosd_0_to_60 - returns the cosine of an angle that lies between 0 |
| 2136 | * and 60 degrees. This will return exactly 1 when x |
| 2137 | * is 0, and exactly 0.5 when x is 60 degrees. |
| 2138 | */ |
| 2139 | static double |
| 2140 | cosd_0_to_60(double x) |
| 2141 | { |
| 2142 | volatile float8 one_minus_cos_x = 1.0 - cos(x * RADIANS_PER_DEGREE); |
| 2143 | |
| 2144 | return 1.0 - (one_minus_cos_x / one_minus_cos_60) / 2.0; |
| 2145 | } |
| 2146 | |
| 2147 | |
| 2148 | /* |
| 2149 | * sind_q1 - returns the sine of an angle in the first quadrant |
| 2150 | * (0 to 90 degrees). |
| 2151 | */ |
| 2152 | static double |
| 2153 | sind_q1(double x) |
| 2154 | { |
| 2155 | /* |
| 2156 | * Stitch together the sine and cosine functions for the ranges [0, 30] |
| 2157 | * and (30, 90]. These guarantee to return exact answers at their |
| 2158 | * endpoints, so the overall result is a continuous monotonic function |
| 2159 | * that gives exact results when x = 0, 30 and 90 degrees. |
| 2160 | */ |
| 2161 | if (x <= 30.0) |
| 2162 | return sind_0_to_30(x); |
| 2163 | else |
| 2164 | return cosd_0_to_60(90.0 - x); |
| 2165 | } |
| 2166 | |
| 2167 | |
| 2168 | /* |
| 2169 | * cosd_q1 - returns the cosine of an angle in the first quadrant |
| 2170 | * (0 to 90 degrees). |
| 2171 | */ |
| 2172 | static double |
| 2173 | cosd_q1(double x) |
| 2174 | { |
| 2175 | /* |
| 2176 | * Stitch together the sine and cosine functions for the ranges [0, 60] |
| 2177 | * and (60, 90]. These guarantee to return exact answers at their |
| 2178 | * endpoints, so the overall result is a continuous monotonic function |
| 2179 | * that gives exact results when x = 0, 60 and 90 degrees. |
| 2180 | */ |
| 2181 | if (x <= 60.0) |
| 2182 | return cosd_0_to_60(x); |
| 2183 | else |
| 2184 | return sind_0_to_30(90.0 - x); |
| 2185 | } |
| 2186 | |
| 2187 | |
| 2188 | /* |
| 2189 | * dcosd - returns the cosine of arg1 (degrees) |
| 2190 | */ |
| 2191 | Datum |
| 2192 | dcosd(PG_FUNCTION_ARGS) |
| 2193 | { |
| 2194 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2195 | float8 result; |
| 2196 | int sign = 1; |
| 2197 | |
| 2198 | /* |
| 2199 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
| 2200 | * if the input is infinite. |
| 2201 | */ |
| 2202 | if (isnan(arg1)) |
| 2203 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2204 | |
| 2205 | if (isinf(arg1)) |
| 2206 | ereport(ERROR, |
| 2207 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2208 | errmsg("input is out of range" ))); |
| 2209 | |
| 2210 | INIT_DEGREE_CONSTANTS(); |
| 2211 | |
| 2212 | /* Reduce the range of the input to [0,90] degrees */ |
| 2213 | arg1 = fmod(arg1, 360.0); |
| 2214 | |
| 2215 | if (arg1 < 0.0) |
| 2216 | { |
| 2217 | /* cosd(-x) = cosd(x) */ |
| 2218 | arg1 = -arg1; |
| 2219 | } |
| 2220 | |
| 2221 | if (arg1 > 180.0) |
| 2222 | { |
| 2223 | /* cosd(360-x) = cosd(x) */ |
| 2224 | arg1 = 360.0 - arg1; |
| 2225 | } |
| 2226 | |
| 2227 | if (arg1 > 90.0) |
| 2228 | { |
| 2229 | /* cosd(180-x) = -cosd(x) */ |
| 2230 | arg1 = 180.0 - arg1; |
| 2231 | sign = -sign; |
| 2232 | } |
| 2233 | |
| 2234 | result = sign * cosd_q1(arg1); |
| 2235 | |
| 2236 | check_float8_val(result, false, true); |
| 2237 | PG_RETURN_FLOAT8(result); |
| 2238 | } |
| 2239 | |
| 2240 | |
| 2241 | /* |
| 2242 | * dcotd - returns the cotangent of arg1 (degrees) |
| 2243 | */ |
| 2244 | Datum |
| 2245 | dcotd(PG_FUNCTION_ARGS) |
| 2246 | { |
| 2247 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2248 | float8 result; |
| 2249 | volatile float8 cot_arg1; |
| 2250 | int sign = 1; |
| 2251 | |
| 2252 | /* |
| 2253 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
| 2254 | * if the input is infinite. |
| 2255 | */ |
| 2256 | if (isnan(arg1)) |
| 2257 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2258 | |
| 2259 | if (isinf(arg1)) |
| 2260 | ereport(ERROR, |
| 2261 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2262 | errmsg("input is out of range" ))); |
| 2263 | |
| 2264 | INIT_DEGREE_CONSTANTS(); |
| 2265 | |
| 2266 | /* Reduce the range of the input to [0,90] degrees */ |
| 2267 | arg1 = fmod(arg1, 360.0); |
| 2268 | |
| 2269 | if (arg1 < 0.0) |
| 2270 | { |
| 2271 | /* cotd(-x) = -cotd(x) */ |
| 2272 | arg1 = -arg1; |
| 2273 | sign = -sign; |
| 2274 | } |
| 2275 | |
| 2276 | if (arg1 > 180.0) |
| 2277 | { |
| 2278 | /* cotd(360-x) = -cotd(x) */ |
| 2279 | arg1 = 360.0 - arg1; |
| 2280 | sign = -sign; |
| 2281 | } |
| 2282 | |
| 2283 | if (arg1 > 90.0) |
| 2284 | { |
| 2285 | /* cotd(180-x) = -cotd(x) */ |
| 2286 | arg1 = 180.0 - arg1; |
| 2287 | sign = -sign; |
| 2288 | } |
| 2289 | |
| 2290 | cot_arg1 = cosd_q1(arg1) / sind_q1(arg1); |
| 2291 | result = sign * (cot_arg1 / cot_45); |
| 2292 | |
| 2293 | /* |
| 2294 | * On some machines we get cotd(270) = minus zero, but this isn't always |
| 2295 | * true. For portability, and because the user constituency for this |
| 2296 | * function probably doesn't want minus zero, force it to plain zero. |
| 2297 | */ |
| 2298 | if (result == 0.0) |
| 2299 | result = 0.0; |
| 2300 | |
| 2301 | check_float8_val(result, true /* cotd(0) == Inf */ , true); |
| 2302 | PG_RETURN_FLOAT8(result); |
| 2303 | } |
| 2304 | |
| 2305 | |
| 2306 | /* |
| 2307 | * dsind - returns the sine of arg1 (degrees) |
| 2308 | */ |
| 2309 | Datum |
| 2310 | dsind(PG_FUNCTION_ARGS) |
| 2311 | { |
| 2312 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2313 | float8 result; |
| 2314 | int sign = 1; |
| 2315 | |
| 2316 | /* |
| 2317 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
| 2318 | * if the input is infinite. |
| 2319 | */ |
| 2320 | if (isnan(arg1)) |
| 2321 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2322 | |
| 2323 | if (isinf(arg1)) |
| 2324 | ereport(ERROR, |
| 2325 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2326 | errmsg("input is out of range" ))); |
| 2327 | |
| 2328 | INIT_DEGREE_CONSTANTS(); |
| 2329 | |
| 2330 | /* Reduce the range of the input to [0,90] degrees */ |
| 2331 | arg1 = fmod(arg1, 360.0); |
| 2332 | |
| 2333 | if (arg1 < 0.0) |
| 2334 | { |
| 2335 | /* sind(-x) = -sind(x) */ |
| 2336 | arg1 = -arg1; |
| 2337 | sign = -sign; |
| 2338 | } |
| 2339 | |
| 2340 | if (arg1 > 180.0) |
| 2341 | { |
| 2342 | /* sind(360-x) = -sind(x) */ |
| 2343 | arg1 = 360.0 - arg1; |
| 2344 | sign = -sign; |
| 2345 | } |
| 2346 | |
| 2347 | if (arg1 > 90.0) |
| 2348 | { |
| 2349 | /* sind(180-x) = sind(x) */ |
| 2350 | arg1 = 180.0 - arg1; |
| 2351 | } |
| 2352 | |
| 2353 | result = sign * sind_q1(arg1); |
| 2354 | |
| 2355 | check_float8_val(result, false, true); |
| 2356 | PG_RETURN_FLOAT8(result); |
| 2357 | } |
| 2358 | |
| 2359 | |
| 2360 | /* |
| 2361 | * dtand - returns the tangent of arg1 (degrees) |
| 2362 | */ |
| 2363 | Datum |
| 2364 | dtand(PG_FUNCTION_ARGS) |
| 2365 | { |
| 2366 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2367 | float8 result; |
| 2368 | volatile float8 tan_arg1; |
| 2369 | int sign = 1; |
| 2370 | |
| 2371 | /* |
| 2372 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
| 2373 | * if the input is infinite. |
| 2374 | */ |
| 2375 | if (isnan(arg1)) |
| 2376 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 2377 | |
| 2378 | if (isinf(arg1)) |
| 2379 | ereport(ERROR, |
| 2380 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2381 | errmsg("input is out of range" ))); |
| 2382 | |
| 2383 | INIT_DEGREE_CONSTANTS(); |
| 2384 | |
| 2385 | /* Reduce the range of the input to [0,90] degrees */ |
| 2386 | arg1 = fmod(arg1, 360.0); |
| 2387 | |
| 2388 | if (arg1 < 0.0) |
| 2389 | { |
| 2390 | /* tand(-x) = -tand(x) */ |
| 2391 | arg1 = -arg1; |
| 2392 | sign = -sign; |
| 2393 | } |
| 2394 | |
| 2395 | if (arg1 > 180.0) |
| 2396 | { |
| 2397 | /* tand(360-x) = -tand(x) */ |
| 2398 | arg1 = 360.0 - arg1; |
| 2399 | sign = -sign; |
| 2400 | } |
| 2401 | |
| 2402 | if (arg1 > 90.0) |
| 2403 | { |
| 2404 | /* tand(180-x) = -tand(x) */ |
| 2405 | arg1 = 180.0 - arg1; |
| 2406 | sign = -sign; |
| 2407 | } |
| 2408 | |
| 2409 | tan_arg1 = sind_q1(arg1) / cosd_q1(arg1); |
| 2410 | result = sign * (tan_arg1 / tan_45); |
| 2411 | |
| 2412 | /* |
| 2413 | * On some machines we get tand(180) = minus zero, but this isn't always |
| 2414 | * true. For portability, and because the user constituency for this |
| 2415 | * function probably doesn't want minus zero, force it to plain zero. |
| 2416 | */ |
| 2417 | if (result == 0.0) |
| 2418 | result = 0.0; |
| 2419 | |
| 2420 | check_float8_val(result, true /* tand(90) == Inf */ , true); |
| 2421 | PG_RETURN_FLOAT8(result); |
| 2422 | } |
| 2423 | |
| 2424 | |
| 2425 | /* |
| 2426 | * degrees - returns degrees converted from radians |
| 2427 | */ |
| 2428 | Datum |
| 2429 | degrees(PG_FUNCTION_ARGS) |
| 2430 | { |
| 2431 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2432 | |
| 2433 | PG_RETURN_FLOAT8(float8_div(arg1, RADIANS_PER_DEGREE)); |
| 2434 | } |
| 2435 | |
| 2436 | |
| 2437 | /* |
| 2438 | * dpi - returns the constant PI |
| 2439 | */ |
| 2440 | Datum |
| 2441 | dpi(PG_FUNCTION_ARGS) |
| 2442 | { |
| 2443 | PG_RETURN_FLOAT8(M_PI); |
| 2444 | } |
| 2445 | |
| 2446 | |
| 2447 | /* |
| 2448 | * radians - returns radians converted from degrees |
| 2449 | */ |
| 2450 | Datum |
| 2451 | radians(PG_FUNCTION_ARGS) |
| 2452 | { |
| 2453 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2454 | |
| 2455 | PG_RETURN_FLOAT8(float8_mul(arg1, RADIANS_PER_DEGREE)); |
| 2456 | } |
| 2457 | |
| 2458 | |
| 2459 | /* ========== HYPERBOLIC FUNCTIONS ========== */ |
| 2460 | |
| 2461 | |
| 2462 | /* |
| 2463 | * dsinh - returns the hyperbolic sine of arg1 |
| 2464 | */ |
| 2465 | Datum |
| 2466 | dsinh(PG_FUNCTION_ARGS) |
| 2467 | { |
| 2468 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2469 | float8 result; |
| 2470 | |
| 2471 | errno = 0; |
| 2472 | result = sinh(arg1); |
| 2473 | |
| 2474 | /* |
| 2475 | * if an ERANGE error occurs, it means there is an overflow. For sinh, |
| 2476 | * the result should be either -infinity or infinity, depending on the |
| 2477 | * sign of arg1. |
| 2478 | */ |
| 2479 | if (errno == ERANGE) |
| 2480 | { |
| 2481 | if (arg1 < 0) |
| 2482 | result = -get_float8_infinity(); |
| 2483 | else |
| 2484 | result = get_float8_infinity(); |
| 2485 | } |
| 2486 | |
| 2487 | check_float8_val(result, true, true); |
| 2488 | PG_RETURN_FLOAT8(result); |
| 2489 | } |
| 2490 | |
| 2491 | |
| 2492 | /* |
| 2493 | * dcosh - returns the hyperbolic cosine of arg1 |
| 2494 | */ |
| 2495 | Datum |
| 2496 | dcosh(PG_FUNCTION_ARGS) |
| 2497 | { |
| 2498 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2499 | float8 result; |
| 2500 | |
| 2501 | errno = 0; |
| 2502 | result = cosh(arg1); |
| 2503 | |
| 2504 | /* |
| 2505 | * if an ERANGE error occurs, it means there is an overflow. As cosh is |
| 2506 | * always positive, it always means the result is positive infinity. |
| 2507 | */ |
| 2508 | if (errno == ERANGE) |
| 2509 | result = get_float8_infinity(); |
| 2510 | |
| 2511 | check_float8_val(result, true, false); |
| 2512 | PG_RETURN_FLOAT8(result); |
| 2513 | } |
| 2514 | |
| 2515 | /* |
| 2516 | * dtanh - returns the hyperbolic tangent of arg1 |
| 2517 | */ |
| 2518 | Datum |
| 2519 | dtanh(PG_FUNCTION_ARGS) |
| 2520 | { |
| 2521 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2522 | float8 result; |
| 2523 | |
| 2524 | /* |
| 2525 | * For tanh, we don't need an errno check because it never overflows. |
| 2526 | */ |
| 2527 | result = tanh(arg1); |
| 2528 | |
| 2529 | check_float8_val(result, false, true); |
| 2530 | PG_RETURN_FLOAT8(result); |
| 2531 | } |
| 2532 | |
| 2533 | /* |
| 2534 | * dasinh - returns the inverse hyperbolic sine of arg1 |
| 2535 | */ |
| 2536 | Datum |
| 2537 | dasinh(PG_FUNCTION_ARGS) |
| 2538 | { |
| 2539 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2540 | float8 result; |
| 2541 | |
| 2542 | /* |
| 2543 | * For asinh, we don't need an errno check because it never overflows. |
| 2544 | */ |
| 2545 | result = asinh(arg1); |
| 2546 | |
| 2547 | check_float8_val(result, true, true); |
| 2548 | PG_RETURN_FLOAT8(result); |
| 2549 | } |
| 2550 | |
| 2551 | /* |
| 2552 | * dacosh - returns the inverse hyperbolic cosine of arg1 |
| 2553 | */ |
| 2554 | Datum |
| 2555 | dacosh(PG_FUNCTION_ARGS) |
| 2556 | { |
| 2557 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2558 | float8 result; |
| 2559 | |
| 2560 | /* |
| 2561 | * acosh is only defined for inputs >= 1.0. By checking this ourselves, |
| 2562 | * we need not worry about checking for an EDOM error, which is a good |
| 2563 | * thing because some implementations will report that for NaN. Otherwise, |
| 2564 | * no error is possible. |
| 2565 | */ |
| 2566 | if (arg1 < 1.0) |
| 2567 | ereport(ERROR, |
| 2568 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2569 | errmsg("input is out of range" ))); |
| 2570 | |
| 2571 | result = acosh(arg1); |
| 2572 | |
| 2573 | check_float8_val(result, true, true); |
| 2574 | PG_RETURN_FLOAT8(result); |
| 2575 | } |
| 2576 | |
| 2577 | /* |
| 2578 | * datanh - returns the inverse hyperbolic tangent of arg1 |
| 2579 | */ |
| 2580 | Datum |
| 2581 | datanh(PG_FUNCTION_ARGS) |
| 2582 | { |
| 2583 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 2584 | float8 result; |
| 2585 | |
| 2586 | /* |
| 2587 | * atanh is only defined for inputs between -1 and 1. By checking this |
| 2588 | * ourselves, we need not worry about checking for an EDOM error, which is |
| 2589 | * a good thing because some implementations will report that for NaN. |
| 2590 | */ |
| 2591 | if (arg1 < -1.0 || arg1 > 1.0) |
| 2592 | ereport(ERROR, |
| 2593 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2594 | errmsg("input is out of range" ))); |
| 2595 | |
| 2596 | /* |
| 2597 | * Also handle the infinity cases ourselves; this is helpful because old |
| 2598 | * glibc versions may produce the wrong errno for this. All other inputs |
| 2599 | * cannot produce an error. |
| 2600 | */ |
| 2601 | if (arg1 == -1.0) |
| 2602 | result = -get_float8_infinity(); |
| 2603 | else if (arg1 == 1.0) |
| 2604 | result = get_float8_infinity(); |
| 2605 | else |
| 2606 | result = atanh(arg1); |
| 2607 | |
| 2608 | check_float8_val(result, true, true); |
| 2609 | PG_RETURN_FLOAT8(result); |
| 2610 | } |
| 2611 | |
| 2612 | |
| 2613 | /* |
| 2614 | * drandom - returns a random number |
| 2615 | */ |
| 2616 | Datum |
| 2617 | drandom(PG_FUNCTION_ARGS) |
| 2618 | { |
| 2619 | float8 result; |
| 2620 | |
| 2621 | /* Initialize random seed, if not done yet in this process */ |
| 2622 | if (unlikely(!drandom_seed_set)) |
| 2623 | { |
| 2624 | /* |
| 2625 | * If possible, initialize the seed using high-quality random bits. |
| 2626 | * Should that fail for some reason, we fall back on a lower-quality |
| 2627 | * seed based on current time and PID. |
| 2628 | */ |
| 2629 | if (!pg_strong_random(drandom_seed, sizeof(drandom_seed))) |
| 2630 | { |
| 2631 | TimestampTz now = GetCurrentTimestamp(); |
| 2632 | uint64 iseed; |
| 2633 | |
| 2634 | /* Mix the PID with the most predictable bits of the timestamp */ |
| 2635 | iseed = (uint64) now ^ ((uint64) MyProcPid << 32); |
| 2636 | drandom_seed[0] = (unsigned short) iseed; |
| 2637 | drandom_seed[1] = (unsigned short) (iseed >> 16); |
| 2638 | drandom_seed[2] = (unsigned short) (iseed >> 32); |
| 2639 | } |
| 2640 | drandom_seed_set = true; |
| 2641 | } |
| 2642 | |
| 2643 | /* pg_erand48 produces desired result range [0.0 - 1.0) */ |
| 2644 | result = pg_erand48(drandom_seed); |
| 2645 | |
| 2646 | PG_RETURN_FLOAT8(result); |
| 2647 | } |
| 2648 | |
| 2649 | |
| 2650 | /* |
| 2651 | * setseed - set seed for the random number generator |
| 2652 | */ |
| 2653 | Datum |
| 2654 | setseed(PG_FUNCTION_ARGS) |
| 2655 | { |
| 2656 | float8 seed = PG_GETARG_FLOAT8(0); |
| 2657 | uint64 iseed; |
| 2658 | |
| 2659 | if (seed < -1 || seed > 1 || isnan(seed)) |
| 2660 | ereport(ERROR, |
| 2661 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 2662 | errmsg("setseed parameter %g is out of allowed range [-1,1]" , |
| 2663 | seed))); |
| 2664 | |
| 2665 | /* Use sign bit + 47 fractional bits to fill drandom_seed[] */ |
| 2666 | iseed = (int64) (seed * (float8) UINT64CONST(0x7FFFFFFFFFFF)); |
| 2667 | drandom_seed[0] = (unsigned short) iseed; |
| 2668 | drandom_seed[1] = (unsigned short) (iseed >> 16); |
| 2669 | drandom_seed[2] = (unsigned short) (iseed >> 32); |
| 2670 | drandom_seed_set = true; |
| 2671 | |
| 2672 | PG_RETURN_VOID(); |
| 2673 | } |
| 2674 | |
| 2675 | |
| 2676 | |
| 2677 | /* |
| 2678 | * ========================= |
| 2679 | * FLOAT AGGREGATE OPERATORS |
| 2680 | * ========================= |
| 2681 | * |
| 2682 | * float8_accum - accumulate for AVG(), variance aggregates, etc. |
| 2683 | * float4_accum - same, but input data is float4 |
| 2684 | * float8_avg - produce final result for float AVG() |
| 2685 | * float8_var_samp - produce final result for float VAR_SAMP() |
| 2686 | * float8_var_pop - produce final result for float VAR_POP() |
| 2687 | * float8_stddev_samp - produce final result for float STDDEV_SAMP() |
| 2688 | * float8_stddev_pop - produce final result for float STDDEV_POP() |
| 2689 | * |
| 2690 | * The naive schoolbook implementation of these aggregates works by |
| 2691 | * accumulating sum(X) and sum(X^2). However, this approach suffers from |
| 2692 | * large rounding errors in the final computation of quantities like the |
| 2693 | * population variance (N*sum(X^2) - sum(X)^2) / N^2, since each of the |
| 2694 | * intermediate terms is potentially very large, while the difference is often |
| 2695 | * quite small. |
| 2696 | * |
| 2697 | * Instead we use the Youngs-Cramer algorithm [1] which works by accumulating |
| 2698 | * Sx=sum(X) and Sxx=sum((X-Sx/N)^2), using a numerically stable algorithm to |
| 2699 | * incrementally update those quantities. The final computations of each of |
| 2700 | * the aggregate values is then trivial and gives more accurate results (for |
| 2701 | * example, the population variance is just Sxx/N). This algorithm is also |
| 2702 | * fairly easy to generalize to allow parallel execution without loss of |
| 2703 | * precision (see, for example, [2]). For more details, and a comparison of |
| 2704 | * this with other algorithms, see [3]. |
| 2705 | * |
| 2706 | * The transition datatype for all these aggregates is a 3-element array |
| 2707 | * of float8, holding the values N, Sx, Sxx in that order. |
| 2708 | * |
| 2709 | * Note that we represent N as a float to avoid having to build a special |
| 2710 | * datatype. Given a reasonable floating-point implementation, there should |
| 2711 | * be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the |
| 2712 | * user will have doubtless lost interest anyway...) |
| 2713 | * |
| 2714 | * [1] Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms, |
| 2715 | * E. A. Youngs and E. M. Cramer, Technometrics Vol 13, No 3, August 1971. |
| 2716 | * |
| 2717 | * [2] Updating Formulae and a Pairwise Algorithm for Computing Sample |
| 2718 | * Variances, T. F. Chan, G. H. Golub & R. J. LeVeque, COMPSTAT 1982. |
| 2719 | * |
| 2720 | * [3] Numerically Stable Parallel Computation of (Co-)Variance, Erich |
| 2721 | * Schubert and Michael Gertz, Proceedings of the 30th International |
| 2722 | * Conference on Scientific and Statistical Database Management, 2018. |
| 2723 | */ |
| 2724 | |
| 2725 | static float8 * |
| 2726 | check_float8_array(ArrayType *transarray, const char *caller, int n) |
| 2727 | { |
| 2728 | /* |
| 2729 | * We expect the input to be an N-element float array; verify that. We |
| 2730 | * don't need to use deconstruct_array() since the array data is just |
| 2731 | * going to look like a C array of N float8 values. |
| 2732 | */ |
| 2733 | if (ARR_NDIM(transarray) != 1 || |
| 2734 | ARR_DIMS(transarray)[0] != n || |
| 2735 | ARR_HASNULL(transarray) || |
| 2736 | ARR_ELEMTYPE(transarray) != FLOAT8OID) |
| 2737 | elog(ERROR, "%s: expected %d-element float8 array" , caller, n); |
| 2738 | return (float8 *) ARR_DATA_PTR(transarray); |
| 2739 | } |
| 2740 | |
| 2741 | /* |
| 2742 | * float8_combine |
| 2743 | * |
| 2744 | * An aggregate combine function used to combine two 3 fields |
| 2745 | * aggregate transition data into a single transition data. |
| 2746 | * This function is used only in two stage aggregation and |
| 2747 | * shouldn't be called outside aggregate context. |
| 2748 | */ |
| 2749 | Datum |
| 2750 | float8_combine(PG_FUNCTION_ARGS) |
| 2751 | { |
| 2752 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
| 2753 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
| 2754 | float8 *transvalues1; |
| 2755 | float8 *transvalues2; |
| 2756 | float8 N1, |
| 2757 | Sx1, |
| 2758 | Sxx1, |
| 2759 | N2, |
| 2760 | Sx2, |
| 2761 | Sxx2, |
| 2762 | tmp, |
| 2763 | N, |
| 2764 | Sx, |
| 2765 | Sxx; |
| 2766 | |
| 2767 | transvalues1 = check_float8_array(transarray1, "float8_combine" , 3); |
| 2768 | transvalues2 = check_float8_array(transarray2, "float8_combine" , 3); |
| 2769 | |
| 2770 | N1 = transvalues1[0]; |
| 2771 | Sx1 = transvalues1[1]; |
| 2772 | Sxx1 = transvalues1[2]; |
| 2773 | |
| 2774 | N2 = transvalues2[0]; |
| 2775 | Sx2 = transvalues2[1]; |
| 2776 | Sxx2 = transvalues2[2]; |
| 2777 | |
| 2778 | /*-------------------- |
| 2779 | * The transition values combine using a generalization of the |
| 2780 | * Youngs-Cramer algorithm as follows: |
| 2781 | * |
| 2782 | * N = N1 + N2 |
| 2783 | * Sx = Sx1 + Sx2 |
| 2784 | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N; |
| 2785 | * |
| 2786 | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
| 2787 | * since those cases are trivial, and we then don't need to worry about |
| 2788 | * division-by-zero errors in the general case. |
| 2789 | *-------------------- |
| 2790 | */ |
| 2791 | if (N1 == 0.0) |
| 2792 | { |
| 2793 | N = N2; |
| 2794 | Sx = Sx2; |
| 2795 | Sxx = Sxx2; |
| 2796 | } |
| 2797 | else if (N2 == 0.0) |
| 2798 | { |
| 2799 | N = N1; |
| 2800 | Sx = Sx1; |
| 2801 | Sxx = Sxx1; |
| 2802 | } |
| 2803 | else |
| 2804 | { |
| 2805 | N = N1 + N2; |
| 2806 | Sx = float8_pl(Sx1, Sx2); |
| 2807 | tmp = Sx1 / N1 - Sx2 / N2; |
| 2808 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp * tmp / N; |
| 2809 | check_float8_val(Sxx, isinf(Sxx1) || isinf(Sxx2), true); |
| 2810 | } |
| 2811 | |
| 2812 | /* |
| 2813 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 2814 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
| 2815 | * new array with the updated transition data and return it. |
| 2816 | */ |
| 2817 | if (AggCheckCallContext(fcinfo, NULL)) |
| 2818 | { |
| 2819 | transvalues1[0] = N; |
| 2820 | transvalues1[1] = Sx; |
| 2821 | transvalues1[2] = Sxx; |
| 2822 | |
| 2823 | PG_RETURN_ARRAYTYPE_P(transarray1); |
| 2824 | } |
| 2825 | else |
| 2826 | { |
| 2827 | Datum transdatums[3]; |
| 2828 | ArrayType *result; |
| 2829 | |
| 2830 | transdatums[0] = Float8GetDatumFast(N); |
| 2831 | transdatums[1] = Float8GetDatumFast(Sx); |
| 2832 | transdatums[2] = Float8GetDatumFast(Sxx); |
| 2833 | |
| 2834 | result = construct_array(transdatums, 3, |
| 2835 | FLOAT8OID, |
| 2836 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
| 2837 | |
| 2838 | PG_RETURN_ARRAYTYPE_P(result); |
| 2839 | } |
| 2840 | } |
| 2841 | |
| 2842 | Datum |
| 2843 | float8_accum(PG_FUNCTION_ARGS) |
| 2844 | { |
| 2845 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 2846 | float8 newval = PG_GETARG_FLOAT8(1); |
| 2847 | float8 *transvalues; |
| 2848 | float8 N, |
| 2849 | Sx, |
| 2850 | Sxx, |
| 2851 | tmp; |
| 2852 | |
| 2853 | transvalues = check_float8_array(transarray, "float8_accum" , 3); |
| 2854 | N = transvalues[0]; |
| 2855 | Sx = transvalues[1]; |
| 2856 | Sxx = transvalues[2]; |
| 2857 | |
| 2858 | /* |
| 2859 | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
| 2860 | * transition values. |
| 2861 | */ |
| 2862 | N += 1.0; |
| 2863 | Sx += newval; |
| 2864 | if (transvalues[0] > 0.0) |
| 2865 | { |
| 2866 | tmp = newval * N - Sx; |
| 2867 | Sxx += tmp * tmp / (N * transvalues[0]); |
| 2868 | |
| 2869 | /* |
| 2870 | * Overflow check. We only report an overflow error when finite |
| 2871 | * inputs lead to infinite results. Note also that Sxx should be NaN |
| 2872 | * if any of the inputs are infinite, so we intentionally prevent Sxx |
| 2873 | * from becoming infinite. |
| 2874 | */ |
| 2875 | if (isinf(Sx) || isinf(Sxx)) |
| 2876 | { |
| 2877 | if (!isinf(transvalues[1]) && !isinf(newval)) |
| 2878 | ereport(ERROR, |
| 2879 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2880 | errmsg("value out of range: overflow" ))); |
| 2881 | |
| 2882 | Sxx = get_float8_nan(); |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | /* |
| 2887 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 2888 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
| 2889 | * new array with the updated transition data and return it. |
| 2890 | */ |
| 2891 | if (AggCheckCallContext(fcinfo, NULL)) |
| 2892 | { |
| 2893 | transvalues[0] = N; |
| 2894 | transvalues[1] = Sx; |
| 2895 | transvalues[2] = Sxx; |
| 2896 | |
| 2897 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 2898 | } |
| 2899 | else |
| 2900 | { |
| 2901 | Datum transdatums[3]; |
| 2902 | ArrayType *result; |
| 2903 | |
| 2904 | transdatums[0] = Float8GetDatumFast(N); |
| 2905 | transdatums[1] = Float8GetDatumFast(Sx); |
| 2906 | transdatums[2] = Float8GetDatumFast(Sxx); |
| 2907 | |
| 2908 | result = construct_array(transdatums, 3, |
| 2909 | FLOAT8OID, |
| 2910 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
| 2911 | |
| 2912 | PG_RETURN_ARRAYTYPE_P(result); |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | Datum |
| 2917 | float4_accum(PG_FUNCTION_ARGS) |
| 2918 | { |
| 2919 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 2920 | |
| 2921 | /* do computations as float8 */ |
| 2922 | float8 newval = PG_GETARG_FLOAT4(1); |
| 2923 | float8 *transvalues; |
| 2924 | float8 N, |
| 2925 | Sx, |
| 2926 | Sxx, |
| 2927 | tmp; |
| 2928 | |
| 2929 | transvalues = check_float8_array(transarray, "float4_accum" , 3); |
| 2930 | N = transvalues[0]; |
| 2931 | Sx = transvalues[1]; |
| 2932 | Sxx = transvalues[2]; |
| 2933 | |
| 2934 | /* |
| 2935 | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
| 2936 | * transition values. |
| 2937 | */ |
| 2938 | N += 1.0; |
| 2939 | Sx += newval; |
| 2940 | if (transvalues[0] > 0.0) |
| 2941 | { |
| 2942 | tmp = newval * N - Sx; |
| 2943 | Sxx += tmp * tmp / (N * transvalues[0]); |
| 2944 | |
| 2945 | /* |
| 2946 | * Overflow check. We only report an overflow error when finite |
| 2947 | * inputs lead to infinite results. Note also that Sxx should be NaN |
| 2948 | * if any of the inputs are infinite, so we intentionally prevent Sxx |
| 2949 | * from becoming infinite. |
| 2950 | */ |
| 2951 | if (isinf(Sx) || isinf(Sxx)) |
| 2952 | { |
| 2953 | if (!isinf(transvalues[1]) && !isinf(newval)) |
| 2954 | ereport(ERROR, |
| 2955 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2956 | errmsg("value out of range: overflow" ))); |
| 2957 | |
| 2958 | Sxx = get_float8_nan(); |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | /* |
| 2963 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 2964 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
| 2965 | * new array with the updated transition data and return it. |
| 2966 | */ |
| 2967 | if (AggCheckCallContext(fcinfo, NULL)) |
| 2968 | { |
| 2969 | transvalues[0] = N; |
| 2970 | transvalues[1] = Sx; |
| 2971 | transvalues[2] = Sxx; |
| 2972 | |
| 2973 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 2974 | } |
| 2975 | else |
| 2976 | { |
| 2977 | Datum transdatums[3]; |
| 2978 | ArrayType *result; |
| 2979 | |
| 2980 | transdatums[0] = Float8GetDatumFast(N); |
| 2981 | transdatums[1] = Float8GetDatumFast(Sx); |
| 2982 | transdatums[2] = Float8GetDatumFast(Sxx); |
| 2983 | |
| 2984 | result = construct_array(transdatums, 3, |
| 2985 | FLOAT8OID, |
| 2986 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
| 2987 | |
| 2988 | PG_RETURN_ARRAYTYPE_P(result); |
| 2989 | } |
| 2990 | } |
| 2991 | |
| 2992 | Datum |
| 2993 | float8_avg(PG_FUNCTION_ARGS) |
| 2994 | { |
| 2995 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 2996 | float8 *transvalues; |
| 2997 | float8 N, |
| 2998 | Sx; |
| 2999 | |
| 3000 | transvalues = check_float8_array(transarray, "float8_avg" , 3); |
| 3001 | N = transvalues[0]; |
| 3002 | Sx = transvalues[1]; |
| 3003 | /* ignore Sxx */ |
| 3004 | |
| 3005 | /* SQL defines AVG of no values to be NULL */ |
| 3006 | if (N == 0.0) |
| 3007 | PG_RETURN_NULL(); |
| 3008 | |
| 3009 | PG_RETURN_FLOAT8(Sx / N); |
| 3010 | } |
| 3011 | |
| 3012 | Datum |
| 3013 | float8_var_pop(PG_FUNCTION_ARGS) |
| 3014 | { |
| 3015 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3016 | float8 *transvalues; |
| 3017 | float8 N, |
| 3018 | Sxx; |
| 3019 | |
| 3020 | transvalues = check_float8_array(transarray, "float8_var_pop" , 3); |
| 3021 | N = transvalues[0]; |
| 3022 | /* ignore Sx */ |
| 3023 | Sxx = transvalues[2]; |
| 3024 | |
| 3025 | /* Population variance is undefined when N is 0, so return NULL */ |
| 3026 | if (N == 0.0) |
| 3027 | PG_RETURN_NULL(); |
| 3028 | |
| 3029 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3030 | |
| 3031 | PG_RETURN_FLOAT8(Sxx / N); |
| 3032 | } |
| 3033 | |
| 3034 | Datum |
| 3035 | float8_var_samp(PG_FUNCTION_ARGS) |
| 3036 | { |
| 3037 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3038 | float8 *transvalues; |
| 3039 | float8 N, |
| 3040 | Sxx; |
| 3041 | |
| 3042 | transvalues = check_float8_array(transarray, "float8_var_samp" , 3); |
| 3043 | N = transvalues[0]; |
| 3044 | /* ignore Sx */ |
| 3045 | Sxx = transvalues[2]; |
| 3046 | |
| 3047 | /* Sample variance is undefined when N is 0 or 1, so return NULL */ |
| 3048 | if (N <= 1.0) |
| 3049 | PG_RETURN_NULL(); |
| 3050 | |
| 3051 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3052 | |
| 3053 | PG_RETURN_FLOAT8(Sxx / (N - 1.0)); |
| 3054 | } |
| 3055 | |
| 3056 | Datum |
| 3057 | float8_stddev_pop(PG_FUNCTION_ARGS) |
| 3058 | { |
| 3059 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3060 | float8 *transvalues; |
| 3061 | float8 N, |
| 3062 | Sxx; |
| 3063 | |
| 3064 | transvalues = check_float8_array(transarray, "float8_stddev_pop" , 3); |
| 3065 | N = transvalues[0]; |
| 3066 | /* ignore Sx */ |
| 3067 | Sxx = transvalues[2]; |
| 3068 | |
| 3069 | /* Population stddev is undefined when N is 0, so return NULL */ |
| 3070 | if (N == 0.0) |
| 3071 | PG_RETURN_NULL(); |
| 3072 | |
| 3073 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3074 | |
| 3075 | PG_RETURN_FLOAT8(sqrt(Sxx / N)); |
| 3076 | } |
| 3077 | |
| 3078 | Datum |
| 3079 | float8_stddev_samp(PG_FUNCTION_ARGS) |
| 3080 | { |
| 3081 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3082 | float8 *transvalues; |
| 3083 | float8 N, |
| 3084 | Sxx; |
| 3085 | |
| 3086 | transvalues = check_float8_array(transarray, "float8_stddev_samp" , 3); |
| 3087 | N = transvalues[0]; |
| 3088 | /* ignore Sx */ |
| 3089 | Sxx = transvalues[2]; |
| 3090 | |
| 3091 | /* Sample stddev is undefined when N is 0 or 1, so return NULL */ |
| 3092 | if (N <= 1.0) |
| 3093 | PG_RETURN_NULL(); |
| 3094 | |
| 3095 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3096 | |
| 3097 | PG_RETURN_FLOAT8(sqrt(Sxx / (N - 1.0))); |
| 3098 | } |
| 3099 | |
| 3100 | /* |
| 3101 | * ========================= |
| 3102 | * SQL2003 BINARY AGGREGATES |
| 3103 | * ========================= |
| 3104 | * |
| 3105 | * As with the preceding aggregates, we use the Youngs-Cramer algorithm to |
| 3106 | * reduce rounding errors in the aggregate final functions. |
| 3107 | * |
| 3108 | * The transition datatype for all these aggregates is a 6-element array of |
| 3109 | * float8, holding the values N, Sx=sum(X), Sxx=sum((X-Sx/N)^2), Sy=sum(Y), |
| 3110 | * Syy=sum((Y-Sy/N)^2), Sxy=sum((X-Sx/N)*(Y-Sy/N)) in that order. |
| 3111 | * |
| 3112 | * Note that Y is the first argument to all these aggregates! |
| 3113 | * |
| 3114 | * It might seem attractive to optimize this by having multiple accumulator |
| 3115 | * functions that only calculate the sums actually needed. But on most |
| 3116 | * modern machines, a couple of extra floating-point multiplies will be |
| 3117 | * insignificant compared to the other per-tuple overhead, so I've chosen |
| 3118 | * to minimize code space instead. |
| 3119 | */ |
| 3120 | |
| 3121 | Datum |
| 3122 | float8_regr_accum(PG_FUNCTION_ARGS) |
| 3123 | { |
| 3124 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3125 | float8 newvalY = PG_GETARG_FLOAT8(1); |
| 3126 | float8 newvalX = PG_GETARG_FLOAT8(2); |
| 3127 | float8 *transvalues; |
| 3128 | float8 N, |
| 3129 | Sx, |
| 3130 | Sxx, |
| 3131 | Sy, |
| 3132 | Syy, |
| 3133 | Sxy, |
| 3134 | tmpX, |
| 3135 | tmpY, |
| 3136 | scale; |
| 3137 | |
| 3138 | transvalues = check_float8_array(transarray, "float8_regr_accum" , 6); |
| 3139 | N = transvalues[0]; |
| 3140 | Sx = transvalues[1]; |
| 3141 | Sxx = transvalues[2]; |
| 3142 | Sy = transvalues[3]; |
| 3143 | Syy = transvalues[4]; |
| 3144 | Sxy = transvalues[5]; |
| 3145 | |
| 3146 | /* |
| 3147 | * Use the Youngs-Cramer algorithm to incorporate the new values into the |
| 3148 | * transition values. |
| 3149 | */ |
| 3150 | N += 1.0; |
| 3151 | Sx += newvalX; |
| 3152 | Sy += newvalY; |
| 3153 | if (transvalues[0] > 0.0) |
| 3154 | { |
| 3155 | tmpX = newvalX * N - Sx; |
| 3156 | tmpY = newvalY * N - Sy; |
| 3157 | scale = 1.0 / (N * transvalues[0]); |
| 3158 | Sxx += tmpX * tmpX * scale; |
| 3159 | Syy += tmpY * tmpY * scale; |
| 3160 | Sxy += tmpX * tmpY * scale; |
| 3161 | |
| 3162 | /* |
| 3163 | * Overflow check. We only report an overflow error when finite |
| 3164 | * inputs lead to infinite results. Note also that Sxx, Syy and Sxy |
| 3165 | * should be NaN if any of the relevant inputs are infinite, so we |
| 3166 | * intentionally prevent them from becoming infinite. |
| 3167 | */ |
| 3168 | if (isinf(Sx) || isinf(Sxx) || isinf(Sy) || isinf(Syy) || isinf(Sxy)) |
| 3169 | { |
| 3170 | if (((isinf(Sx) || isinf(Sxx)) && |
| 3171 | !isinf(transvalues[1]) && !isinf(newvalX)) || |
| 3172 | ((isinf(Sy) || isinf(Syy)) && |
| 3173 | !isinf(transvalues[3]) && !isinf(newvalY)) || |
| 3174 | (isinf(Sxy) && |
| 3175 | !isinf(transvalues[1]) && !isinf(newvalX) && |
| 3176 | !isinf(transvalues[3]) && !isinf(newvalY))) |
| 3177 | ereport(ERROR, |
| 3178 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3179 | errmsg("value out of range: overflow" ))); |
| 3180 | |
| 3181 | if (isinf(Sxx)) |
| 3182 | Sxx = get_float8_nan(); |
| 3183 | if (isinf(Syy)) |
| 3184 | Syy = get_float8_nan(); |
| 3185 | if (isinf(Sxy)) |
| 3186 | Sxy = get_float8_nan(); |
| 3187 | } |
| 3188 | } |
| 3189 | |
| 3190 | /* |
| 3191 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 3192 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
| 3193 | * new array with the updated transition data and return it. |
| 3194 | */ |
| 3195 | if (AggCheckCallContext(fcinfo, NULL)) |
| 3196 | { |
| 3197 | transvalues[0] = N; |
| 3198 | transvalues[1] = Sx; |
| 3199 | transvalues[2] = Sxx; |
| 3200 | transvalues[3] = Sy; |
| 3201 | transvalues[4] = Syy; |
| 3202 | transvalues[5] = Sxy; |
| 3203 | |
| 3204 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 3205 | } |
| 3206 | else |
| 3207 | { |
| 3208 | Datum transdatums[6]; |
| 3209 | ArrayType *result; |
| 3210 | |
| 3211 | transdatums[0] = Float8GetDatumFast(N); |
| 3212 | transdatums[1] = Float8GetDatumFast(Sx); |
| 3213 | transdatums[2] = Float8GetDatumFast(Sxx); |
| 3214 | transdatums[3] = Float8GetDatumFast(Sy); |
| 3215 | transdatums[4] = Float8GetDatumFast(Syy); |
| 3216 | transdatums[5] = Float8GetDatumFast(Sxy); |
| 3217 | |
| 3218 | result = construct_array(transdatums, 6, |
| 3219 | FLOAT8OID, |
| 3220 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
| 3221 | |
| 3222 | PG_RETURN_ARRAYTYPE_P(result); |
| 3223 | } |
| 3224 | } |
| 3225 | |
| 3226 | /* |
| 3227 | * float8_regr_combine |
| 3228 | * |
| 3229 | * An aggregate combine function used to combine two 6 fields |
| 3230 | * aggregate transition data into a single transition data. |
| 3231 | * This function is used only in two stage aggregation and |
| 3232 | * shouldn't be called outside aggregate context. |
| 3233 | */ |
| 3234 | Datum |
| 3235 | float8_regr_combine(PG_FUNCTION_ARGS) |
| 3236 | { |
| 3237 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
| 3238 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
| 3239 | float8 *transvalues1; |
| 3240 | float8 *transvalues2; |
| 3241 | float8 N1, |
| 3242 | Sx1, |
| 3243 | Sxx1, |
| 3244 | Sy1, |
| 3245 | Syy1, |
| 3246 | Sxy1, |
| 3247 | N2, |
| 3248 | Sx2, |
| 3249 | Sxx2, |
| 3250 | Sy2, |
| 3251 | Syy2, |
| 3252 | Sxy2, |
| 3253 | tmp1, |
| 3254 | tmp2, |
| 3255 | N, |
| 3256 | Sx, |
| 3257 | Sxx, |
| 3258 | Sy, |
| 3259 | Syy, |
| 3260 | Sxy; |
| 3261 | |
| 3262 | transvalues1 = check_float8_array(transarray1, "float8_regr_combine" , 6); |
| 3263 | transvalues2 = check_float8_array(transarray2, "float8_regr_combine" , 6); |
| 3264 | |
| 3265 | N1 = transvalues1[0]; |
| 3266 | Sx1 = transvalues1[1]; |
| 3267 | Sxx1 = transvalues1[2]; |
| 3268 | Sy1 = transvalues1[3]; |
| 3269 | Syy1 = transvalues1[4]; |
| 3270 | Sxy1 = transvalues1[5]; |
| 3271 | |
| 3272 | N2 = transvalues2[0]; |
| 3273 | Sx2 = transvalues2[1]; |
| 3274 | Sxx2 = transvalues2[2]; |
| 3275 | Sy2 = transvalues2[3]; |
| 3276 | Syy2 = transvalues2[4]; |
| 3277 | Sxy2 = transvalues2[5]; |
| 3278 | |
| 3279 | /*-------------------- |
| 3280 | * The transition values combine using a generalization of the |
| 3281 | * Youngs-Cramer algorithm as follows: |
| 3282 | * |
| 3283 | * N = N1 + N2 |
| 3284 | * Sx = Sx1 + Sx2 |
| 3285 | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N |
| 3286 | * Sy = Sy1 + Sy2 |
| 3287 | * Syy = Syy1 + Syy2 + N1 * N2 * (Sy1/N1 - Sy2/N2)^2 / N |
| 3288 | * Sxy = Sxy1 + Sxy2 + N1 * N2 * (Sx1/N1 - Sx2/N2) * (Sy1/N1 - Sy2/N2) / N |
| 3289 | * |
| 3290 | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
| 3291 | * since those cases are trivial, and we then don't need to worry about |
| 3292 | * division-by-zero errors in the general case. |
| 3293 | *-------------------- |
| 3294 | */ |
| 3295 | if (N1 == 0.0) |
| 3296 | { |
| 3297 | N = N2; |
| 3298 | Sx = Sx2; |
| 3299 | Sxx = Sxx2; |
| 3300 | Sy = Sy2; |
| 3301 | Syy = Syy2; |
| 3302 | Sxy = Sxy2; |
| 3303 | } |
| 3304 | else if (N2 == 0.0) |
| 3305 | { |
| 3306 | N = N1; |
| 3307 | Sx = Sx1; |
| 3308 | Sxx = Sxx1; |
| 3309 | Sy = Sy1; |
| 3310 | Syy = Syy1; |
| 3311 | Sxy = Sxy1; |
| 3312 | } |
| 3313 | else |
| 3314 | { |
| 3315 | N = N1 + N2; |
| 3316 | Sx = float8_pl(Sx1, Sx2); |
| 3317 | tmp1 = Sx1 / N1 - Sx2 / N2; |
| 3318 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp1 * tmp1 / N; |
| 3319 | check_float8_val(Sxx, isinf(Sxx1) || isinf(Sxx2), true); |
| 3320 | Sy = float8_pl(Sy1, Sy2); |
| 3321 | tmp2 = Sy1 / N1 - Sy2 / N2; |
| 3322 | Syy = Syy1 + Syy2 + N1 * N2 * tmp2 * tmp2 / N; |
| 3323 | check_float8_val(Syy, isinf(Syy1) || isinf(Syy2), true); |
| 3324 | Sxy = Sxy1 + Sxy2 + N1 * N2 * tmp1 * tmp2 / N; |
| 3325 | check_float8_val(Sxy, isinf(Sxy1) || isinf(Sxy2), true); |
| 3326 | } |
| 3327 | |
| 3328 | /* |
| 3329 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 3330 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
| 3331 | * new array with the updated transition data and return it. |
| 3332 | */ |
| 3333 | if (AggCheckCallContext(fcinfo, NULL)) |
| 3334 | { |
| 3335 | transvalues1[0] = N; |
| 3336 | transvalues1[1] = Sx; |
| 3337 | transvalues1[2] = Sxx; |
| 3338 | transvalues1[3] = Sy; |
| 3339 | transvalues1[4] = Syy; |
| 3340 | transvalues1[5] = Sxy; |
| 3341 | |
| 3342 | PG_RETURN_ARRAYTYPE_P(transarray1); |
| 3343 | } |
| 3344 | else |
| 3345 | { |
| 3346 | Datum transdatums[6]; |
| 3347 | ArrayType *result; |
| 3348 | |
| 3349 | transdatums[0] = Float8GetDatumFast(N); |
| 3350 | transdatums[1] = Float8GetDatumFast(Sx); |
| 3351 | transdatums[2] = Float8GetDatumFast(Sxx); |
| 3352 | transdatums[3] = Float8GetDatumFast(Sy); |
| 3353 | transdatums[4] = Float8GetDatumFast(Syy); |
| 3354 | transdatums[5] = Float8GetDatumFast(Sxy); |
| 3355 | |
| 3356 | result = construct_array(transdatums, 6, |
| 3357 | FLOAT8OID, |
| 3358 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
| 3359 | |
| 3360 | PG_RETURN_ARRAYTYPE_P(result); |
| 3361 | } |
| 3362 | } |
| 3363 | |
| 3364 | |
| 3365 | Datum |
| 3366 | float8_regr_sxx(PG_FUNCTION_ARGS) |
| 3367 | { |
| 3368 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3369 | float8 *transvalues; |
| 3370 | float8 N, |
| 3371 | Sxx; |
| 3372 | |
| 3373 | transvalues = check_float8_array(transarray, "float8_regr_sxx" , 6); |
| 3374 | N = transvalues[0]; |
| 3375 | Sxx = transvalues[2]; |
| 3376 | |
| 3377 | /* if N is 0 we should return NULL */ |
| 3378 | if (N < 1.0) |
| 3379 | PG_RETURN_NULL(); |
| 3380 | |
| 3381 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3382 | |
| 3383 | PG_RETURN_FLOAT8(Sxx); |
| 3384 | } |
| 3385 | |
| 3386 | Datum |
| 3387 | float8_regr_syy(PG_FUNCTION_ARGS) |
| 3388 | { |
| 3389 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3390 | float8 *transvalues; |
| 3391 | float8 N, |
| 3392 | Syy; |
| 3393 | |
| 3394 | transvalues = check_float8_array(transarray, "float8_regr_syy" , 6); |
| 3395 | N = transvalues[0]; |
| 3396 | Syy = transvalues[4]; |
| 3397 | |
| 3398 | /* if N is 0 we should return NULL */ |
| 3399 | if (N < 1.0) |
| 3400 | PG_RETURN_NULL(); |
| 3401 | |
| 3402 | /* Note that Syy is guaranteed to be non-negative */ |
| 3403 | |
| 3404 | PG_RETURN_FLOAT8(Syy); |
| 3405 | } |
| 3406 | |
| 3407 | Datum |
| 3408 | float8_regr_sxy(PG_FUNCTION_ARGS) |
| 3409 | { |
| 3410 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3411 | float8 *transvalues; |
| 3412 | float8 N, |
| 3413 | Sxy; |
| 3414 | |
| 3415 | transvalues = check_float8_array(transarray, "float8_regr_sxy" , 6); |
| 3416 | N = transvalues[0]; |
| 3417 | Sxy = transvalues[5]; |
| 3418 | |
| 3419 | /* if N is 0 we should return NULL */ |
| 3420 | if (N < 1.0) |
| 3421 | PG_RETURN_NULL(); |
| 3422 | |
| 3423 | /* A negative result is valid here */ |
| 3424 | |
| 3425 | PG_RETURN_FLOAT8(Sxy); |
| 3426 | } |
| 3427 | |
| 3428 | Datum |
| 3429 | float8_regr_avgx(PG_FUNCTION_ARGS) |
| 3430 | { |
| 3431 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3432 | float8 *transvalues; |
| 3433 | float8 N, |
| 3434 | Sx; |
| 3435 | |
| 3436 | transvalues = check_float8_array(transarray, "float8_regr_avgx" , 6); |
| 3437 | N = transvalues[0]; |
| 3438 | Sx = transvalues[1]; |
| 3439 | |
| 3440 | /* if N is 0 we should return NULL */ |
| 3441 | if (N < 1.0) |
| 3442 | PG_RETURN_NULL(); |
| 3443 | |
| 3444 | PG_RETURN_FLOAT8(Sx / N); |
| 3445 | } |
| 3446 | |
| 3447 | Datum |
| 3448 | float8_regr_avgy(PG_FUNCTION_ARGS) |
| 3449 | { |
| 3450 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3451 | float8 *transvalues; |
| 3452 | float8 N, |
| 3453 | Sy; |
| 3454 | |
| 3455 | transvalues = check_float8_array(transarray, "float8_regr_avgy" , 6); |
| 3456 | N = transvalues[0]; |
| 3457 | Sy = transvalues[3]; |
| 3458 | |
| 3459 | /* if N is 0 we should return NULL */ |
| 3460 | if (N < 1.0) |
| 3461 | PG_RETURN_NULL(); |
| 3462 | |
| 3463 | PG_RETURN_FLOAT8(Sy / N); |
| 3464 | } |
| 3465 | |
| 3466 | Datum |
| 3467 | float8_covar_pop(PG_FUNCTION_ARGS) |
| 3468 | { |
| 3469 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3470 | float8 *transvalues; |
| 3471 | float8 N, |
| 3472 | Sxy; |
| 3473 | |
| 3474 | transvalues = check_float8_array(transarray, "float8_covar_pop" , 6); |
| 3475 | N = transvalues[0]; |
| 3476 | Sxy = transvalues[5]; |
| 3477 | |
| 3478 | /* if N is 0 we should return NULL */ |
| 3479 | if (N < 1.0) |
| 3480 | PG_RETURN_NULL(); |
| 3481 | |
| 3482 | PG_RETURN_FLOAT8(Sxy / N); |
| 3483 | } |
| 3484 | |
| 3485 | Datum |
| 3486 | float8_covar_samp(PG_FUNCTION_ARGS) |
| 3487 | { |
| 3488 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3489 | float8 *transvalues; |
| 3490 | float8 N, |
| 3491 | Sxy; |
| 3492 | |
| 3493 | transvalues = check_float8_array(transarray, "float8_covar_samp" , 6); |
| 3494 | N = transvalues[0]; |
| 3495 | Sxy = transvalues[5]; |
| 3496 | |
| 3497 | /* if N is <= 1 we should return NULL */ |
| 3498 | if (N < 2.0) |
| 3499 | PG_RETURN_NULL(); |
| 3500 | |
| 3501 | PG_RETURN_FLOAT8(Sxy / (N - 1.0)); |
| 3502 | } |
| 3503 | |
| 3504 | Datum |
| 3505 | float8_corr(PG_FUNCTION_ARGS) |
| 3506 | { |
| 3507 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3508 | float8 *transvalues; |
| 3509 | float8 N, |
| 3510 | Sxx, |
| 3511 | Syy, |
| 3512 | Sxy; |
| 3513 | |
| 3514 | transvalues = check_float8_array(transarray, "float8_corr" , 6); |
| 3515 | N = transvalues[0]; |
| 3516 | Sxx = transvalues[2]; |
| 3517 | Syy = transvalues[4]; |
| 3518 | Sxy = transvalues[5]; |
| 3519 | |
| 3520 | /* if N is 0 we should return NULL */ |
| 3521 | if (N < 1.0) |
| 3522 | PG_RETURN_NULL(); |
| 3523 | |
| 3524 | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
| 3525 | |
| 3526 | /* per spec, return NULL for horizontal and vertical lines */ |
| 3527 | if (Sxx == 0 || Syy == 0) |
| 3528 | PG_RETURN_NULL(); |
| 3529 | |
| 3530 | PG_RETURN_FLOAT8(Sxy / sqrt(Sxx * Syy)); |
| 3531 | } |
| 3532 | |
| 3533 | Datum |
| 3534 | float8_regr_r2(PG_FUNCTION_ARGS) |
| 3535 | { |
| 3536 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3537 | float8 *transvalues; |
| 3538 | float8 N, |
| 3539 | Sxx, |
| 3540 | Syy, |
| 3541 | Sxy; |
| 3542 | |
| 3543 | transvalues = check_float8_array(transarray, "float8_regr_r2" , 6); |
| 3544 | N = transvalues[0]; |
| 3545 | Sxx = transvalues[2]; |
| 3546 | Syy = transvalues[4]; |
| 3547 | Sxy = transvalues[5]; |
| 3548 | |
| 3549 | /* if N is 0 we should return NULL */ |
| 3550 | if (N < 1.0) |
| 3551 | PG_RETURN_NULL(); |
| 3552 | |
| 3553 | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
| 3554 | |
| 3555 | /* per spec, return NULL for a vertical line */ |
| 3556 | if (Sxx == 0) |
| 3557 | PG_RETURN_NULL(); |
| 3558 | |
| 3559 | /* per spec, return 1.0 for a horizontal line */ |
| 3560 | if (Syy == 0) |
| 3561 | PG_RETURN_FLOAT8(1.0); |
| 3562 | |
| 3563 | PG_RETURN_FLOAT8((Sxy * Sxy) / (Sxx * Syy)); |
| 3564 | } |
| 3565 | |
| 3566 | Datum |
| 3567 | float8_regr_slope(PG_FUNCTION_ARGS) |
| 3568 | { |
| 3569 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3570 | float8 *transvalues; |
| 3571 | float8 N, |
| 3572 | Sxx, |
| 3573 | Sxy; |
| 3574 | |
| 3575 | transvalues = check_float8_array(transarray, "float8_regr_slope" , 6); |
| 3576 | N = transvalues[0]; |
| 3577 | Sxx = transvalues[2]; |
| 3578 | Sxy = transvalues[5]; |
| 3579 | |
| 3580 | /* if N is 0 we should return NULL */ |
| 3581 | if (N < 1.0) |
| 3582 | PG_RETURN_NULL(); |
| 3583 | |
| 3584 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3585 | |
| 3586 | /* per spec, return NULL for a vertical line */ |
| 3587 | if (Sxx == 0) |
| 3588 | PG_RETURN_NULL(); |
| 3589 | |
| 3590 | PG_RETURN_FLOAT8(Sxy / Sxx); |
| 3591 | } |
| 3592 | |
| 3593 | Datum |
| 3594 | float8_regr_intercept(PG_FUNCTION_ARGS) |
| 3595 | { |
| 3596 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 3597 | float8 *transvalues; |
| 3598 | float8 N, |
| 3599 | Sx, |
| 3600 | Sxx, |
| 3601 | Sy, |
| 3602 | Sxy; |
| 3603 | |
| 3604 | transvalues = check_float8_array(transarray, "float8_regr_intercept" , 6); |
| 3605 | N = transvalues[0]; |
| 3606 | Sx = transvalues[1]; |
| 3607 | Sxx = transvalues[2]; |
| 3608 | Sy = transvalues[3]; |
| 3609 | Sxy = transvalues[5]; |
| 3610 | |
| 3611 | /* if N is 0 we should return NULL */ |
| 3612 | if (N < 1.0) |
| 3613 | PG_RETURN_NULL(); |
| 3614 | |
| 3615 | /* Note that Sxx is guaranteed to be non-negative */ |
| 3616 | |
| 3617 | /* per spec, return NULL for a vertical line */ |
| 3618 | if (Sxx == 0) |
| 3619 | PG_RETURN_NULL(); |
| 3620 | |
| 3621 | PG_RETURN_FLOAT8((Sy - Sx * Sxy / Sxx) / N); |
| 3622 | } |
| 3623 | |
| 3624 | |
| 3625 | /* |
| 3626 | * ==================================== |
| 3627 | * MIXED-PRECISION ARITHMETIC OPERATORS |
| 3628 | * ==================================== |
| 3629 | */ |
| 3630 | |
| 3631 | /* |
| 3632 | * float48pl - returns arg1 + arg2 |
| 3633 | * float48mi - returns arg1 - arg2 |
| 3634 | * float48mul - returns arg1 * arg2 |
| 3635 | * float48div - returns arg1 / arg2 |
| 3636 | */ |
| 3637 | Datum |
| 3638 | float48pl(PG_FUNCTION_ARGS) |
| 3639 | { |
| 3640 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3641 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3642 | |
| 3643 | PG_RETURN_FLOAT8(float8_pl((float8) arg1, arg2)); |
| 3644 | } |
| 3645 | |
| 3646 | Datum |
| 3647 | float48mi(PG_FUNCTION_ARGS) |
| 3648 | { |
| 3649 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3650 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3651 | |
| 3652 | PG_RETURN_FLOAT8(float8_mi((float8) arg1, arg2)); |
| 3653 | } |
| 3654 | |
| 3655 | Datum |
| 3656 | float48mul(PG_FUNCTION_ARGS) |
| 3657 | { |
| 3658 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3659 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3660 | |
| 3661 | PG_RETURN_FLOAT8(float8_mul((float8) arg1, arg2)); |
| 3662 | } |
| 3663 | |
| 3664 | Datum |
| 3665 | float48div(PG_FUNCTION_ARGS) |
| 3666 | { |
| 3667 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3668 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3669 | |
| 3670 | PG_RETURN_FLOAT8(float8_div((float8) arg1, arg2)); |
| 3671 | } |
| 3672 | |
| 3673 | /* |
| 3674 | * float84pl - returns arg1 + arg2 |
| 3675 | * float84mi - returns arg1 - arg2 |
| 3676 | * float84mul - returns arg1 * arg2 |
| 3677 | * float84div - returns arg1 / arg2 |
| 3678 | */ |
| 3679 | Datum |
| 3680 | float84pl(PG_FUNCTION_ARGS) |
| 3681 | { |
| 3682 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3683 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3684 | |
| 3685 | PG_RETURN_FLOAT8(float8_pl(arg1, (float8) arg2)); |
| 3686 | } |
| 3687 | |
| 3688 | Datum |
| 3689 | float84mi(PG_FUNCTION_ARGS) |
| 3690 | { |
| 3691 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3692 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3693 | |
| 3694 | PG_RETURN_FLOAT8(float8_mi(arg1, (float8) arg2)); |
| 3695 | } |
| 3696 | |
| 3697 | Datum |
| 3698 | float84mul(PG_FUNCTION_ARGS) |
| 3699 | { |
| 3700 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3701 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3702 | |
| 3703 | PG_RETURN_FLOAT8(float8_mul(arg1, (float8) arg2)); |
| 3704 | } |
| 3705 | |
| 3706 | Datum |
| 3707 | float84div(PG_FUNCTION_ARGS) |
| 3708 | { |
| 3709 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3710 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3711 | |
| 3712 | PG_RETURN_FLOAT8(float8_div(arg1, (float8) arg2)); |
| 3713 | } |
| 3714 | |
| 3715 | /* |
| 3716 | * ==================== |
| 3717 | * COMPARISON OPERATORS |
| 3718 | * ==================== |
| 3719 | */ |
| 3720 | |
| 3721 | /* |
| 3722 | * float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations |
| 3723 | */ |
| 3724 | Datum |
| 3725 | float48eq(PG_FUNCTION_ARGS) |
| 3726 | { |
| 3727 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3728 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3729 | |
| 3730 | PG_RETURN_BOOL(float8_eq((float8) arg1, arg2)); |
| 3731 | } |
| 3732 | |
| 3733 | Datum |
| 3734 | float48ne(PG_FUNCTION_ARGS) |
| 3735 | { |
| 3736 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3737 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3738 | |
| 3739 | PG_RETURN_BOOL(float8_ne((float8) arg1, arg2)); |
| 3740 | } |
| 3741 | |
| 3742 | Datum |
| 3743 | float48lt(PG_FUNCTION_ARGS) |
| 3744 | { |
| 3745 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3746 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3747 | |
| 3748 | PG_RETURN_BOOL(float8_lt((float8) arg1, arg2)); |
| 3749 | } |
| 3750 | |
| 3751 | Datum |
| 3752 | float48le(PG_FUNCTION_ARGS) |
| 3753 | { |
| 3754 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3755 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3756 | |
| 3757 | PG_RETURN_BOOL(float8_le((float8) arg1, arg2)); |
| 3758 | } |
| 3759 | |
| 3760 | Datum |
| 3761 | float48gt(PG_FUNCTION_ARGS) |
| 3762 | { |
| 3763 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3764 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3765 | |
| 3766 | PG_RETURN_BOOL(float8_gt((float8) arg1, arg2)); |
| 3767 | } |
| 3768 | |
| 3769 | Datum |
| 3770 | float48ge(PG_FUNCTION_ARGS) |
| 3771 | { |
| 3772 | float4 arg1 = PG_GETARG_FLOAT4(0); |
| 3773 | float8 arg2 = PG_GETARG_FLOAT8(1); |
| 3774 | |
| 3775 | PG_RETURN_BOOL(float8_ge((float8) arg1, arg2)); |
| 3776 | } |
| 3777 | |
| 3778 | /* |
| 3779 | * float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations |
| 3780 | */ |
| 3781 | Datum |
| 3782 | float84eq(PG_FUNCTION_ARGS) |
| 3783 | { |
| 3784 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3785 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3786 | |
| 3787 | PG_RETURN_BOOL(float8_eq(arg1, (float8) arg2)); |
| 3788 | } |
| 3789 | |
| 3790 | Datum |
| 3791 | float84ne(PG_FUNCTION_ARGS) |
| 3792 | { |
| 3793 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3794 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3795 | |
| 3796 | PG_RETURN_BOOL(float8_ne(arg1, (float8) arg2)); |
| 3797 | } |
| 3798 | |
| 3799 | Datum |
| 3800 | float84lt(PG_FUNCTION_ARGS) |
| 3801 | { |
| 3802 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3803 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3804 | |
| 3805 | PG_RETURN_BOOL(float8_lt(arg1, (float8) arg2)); |
| 3806 | } |
| 3807 | |
| 3808 | Datum |
| 3809 | float84le(PG_FUNCTION_ARGS) |
| 3810 | { |
| 3811 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3812 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3813 | |
| 3814 | PG_RETURN_BOOL(float8_le(arg1, (float8) arg2)); |
| 3815 | } |
| 3816 | |
| 3817 | Datum |
| 3818 | float84gt(PG_FUNCTION_ARGS) |
| 3819 | { |
| 3820 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3821 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3822 | |
| 3823 | PG_RETURN_BOOL(float8_gt(arg1, (float8) arg2)); |
| 3824 | } |
| 3825 | |
| 3826 | Datum |
| 3827 | float84ge(PG_FUNCTION_ARGS) |
| 3828 | { |
| 3829 | float8 arg1 = PG_GETARG_FLOAT8(0); |
| 3830 | float4 arg2 = PG_GETARG_FLOAT4(1); |
| 3831 | |
| 3832 | PG_RETURN_BOOL(float8_ge(arg1, (float8) arg2)); |
| 3833 | } |
| 3834 | |
| 3835 | /* |
| 3836 | * Implements the float8 version of the width_bucket() function |
| 3837 | * defined by SQL2003. See also width_bucket_numeric(). |
| 3838 | * |
| 3839 | * 'bound1' and 'bound2' are the lower and upper bounds of the |
| 3840 | * histogram's range, respectively. 'count' is the number of buckets |
| 3841 | * in the histogram. width_bucket() returns an integer indicating the |
| 3842 | * bucket number that 'operand' belongs to in an equiwidth histogram |
| 3843 | * with the specified characteristics. An operand smaller than the |
| 3844 | * lower bound is assigned to bucket 0. An operand greater than the |
| 3845 | * upper bound is assigned to an additional bucket (with number |
| 3846 | * count+1). We don't allow "NaN" for any of the float8 inputs, and we |
| 3847 | * don't allow either of the histogram bounds to be +/- infinity. |
| 3848 | */ |
| 3849 | Datum |
| 3850 | width_bucket_float8(PG_FUNCTION_ARGS) |
| 3851 | { |
| 3852 | float8 operand = PG_GETARG_FLOAT8(0); |
| 3853 | float8 bound1 = PG_GETARG_FLOAT8(1); |
| 3854 | float8 bound2 = PG_GETARG_FLOAT8(2); |
| 3855 | int32 count = PG_GETARG_INT32(3); |
| 3856 | int32 result; |
| 3857 | |
| 3858 | if (count <= 0.0) |
| 3859 | ereport(ERROR, |
| 3860 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 3861 | errmsg("count must be greater than zero" ))); |
| 3862 | |
| 3863 | if (isnan(operand) || isnan(bound1) || isnan(bound2)) |
| 3864 | ereport(ERROR, |
| 3865 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 3866 | errmsg("operand, lower bound, and upper bound cannot be NaN" ))); |
| 3867 | |
| 3868 | /* Note that we allow "operand" to be infinite */ |
| 3869 | if (isinf(bound1) || isinf(bound2)) |
| 3870 | ereport(ERROR, |
| 3871 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 3872 | errmsg("lower and upper bounds must be finite" ))); |
| 3873 | |
| 3874 | if (bound1 < bound2) |
| 3875 | { |
| 3876 | if (operand < bound1) |
| 3877 | result = 0; |
| 3878 | else if (operand >= bound2) |
| 3879 | { |
| 3880 | if (pg_add_s32_overflow(count, 1, &result)) |
| 3881 | ereport(ERROR, |
| 3882 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3883 | errmsg("integer out of range" ))); |
| 3884 | } |
| 3885 | else |
| 3886 | result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1; |
| 3887 | } |
| 3888 | else if (bound1 > bound2) |
| 3889 | { |
| 3890 | if (operand > bound1) |
| 3891 | result = 0; |
| 3892 | else if (operand <= bound2) |
| 3893 | { |
| 3894 | if (pg_add_s32_overflow(count, 1, &result)) |
| 3895 | ereport(ERROR, |
| 3896 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3897 | errmsg("integer out of range" ))); |
| 3898 | } |
| 3899 | else |
| 3900 | result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1; |
| 3901 | } |
| 3902 | else |
| 3903 | { |
| 3904 | ereport(ERROR, |
| 3905 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 3906 | errmsg("lower bound cannot equal upper bound" ))); |
| 3907 | result = 0; /* keep the compiler quiet */ |
| 3908 | } |
| 3909 | |
| 3910 | PG_RETURN_INT32(result); |
| 3911 | } |
| 3912 | |
| 3913 | /* ========== PRIVATE ROUTINES ========== */ |
| 3914 | |
| 3915 | #ifndef HAVE_CBRT |
| 3916 | |
| 3917 | static double |
| 3918 | cbrt(double x) |
| 3919 | { |
| 3920 | int isneg = (x < 0.0); |
| 3921 | double absx = fabs(x); |
| 3922 | double tmpres = pow(absx, (double) 1.0 / (double) 3.0); |
| 3923 | |
| 3924 | /* |
| 3925 | * The result is somewhat inaccurate --- not really pow()'s fault, as the |
| 3926 | * exponent it's handed contains roundoff error. We can improve the |
| 3927 | * accuracy by doing one iteration of Newton's formula. Beware of zero |
| 3928 | * input however. |
| 3929 | */ |
| 3930 | if (tmpres > 0.0) |
| 3931 | tmpres -= (tmpres - absx / (tmpres * tmpres)) / (double) 3.0; |
| 3932 | |
| 3933 | return isneg ? -tmpres : tmpres; |
| 3934 | } |
| 3935 | |
| 3936 | #endif /* !HAVE_CBRT */ |
| 3937 | |