1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * float.c |
4 | * Functions for the built-in floating-point types. |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/utils/adt/float.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | #include "postgres.h" |
16 | |
17 | #include <ctype.h> |
18 | #include <float.h> |
19 | #include <math.h> |
20 | #include <limits.h> |
21 | |
22 | #include "catalog/pg_type.h" |
23 | #include "common/int.h" |
24 | #include "common/shortest_dec.h" |
25 | #include "libpq/pqformat.h" |
26 | #include "miscadmin.h" |
27 | #include "utils/array.h" |
28 | #include "utils/float.h" |
29 | #include "utils/fmgrprotos.h" |
30 | #include "utils/sortsupport.h" |
31 | #include "utils/timestamp.h" |
32 | |
33 | |
34 | /* |
35 | * Configurable GUC parameter |
36 | * |
37 | * If >0, use shortest-decimal format for output; this is both the default and |
38 | * allows for compatibility with clients that explicitly set a value here to |
39 | * get round-trip-accurate results. If 0 or less, then use the old, slow, |
40 | * decimal rounding method. |
41 | */ |
42 | int = 1; |
43 | |
44 | /* Cached constants for degree-based trig functions */ |
45 | static bool degree_consts_set = false; |
46 | static float8 sin_30 = 0; |
47 | static float8 one_minus_cos_60 = 0; |
48 | static float8 asin_0_5 = 0; |
49 | static float8 acos_0_5 = 0; |
50 | static float8 atan_1_0 = 0; |
51 | static float8 tan_45 = 0; |
52 | static float8 cot_45 = 0; |
53 | |
54 | /* |
55 | * These are intentionally not static; don't "fix" them. They will never |
56 | * be referenced by other files, much less changed; but we don't want the |
57 | * compiler to know that, else it might try to precompute expressions |
58 | * involving them. See comments for init_degree_constants(). |
59 | */ |
60 | float8 degree_c_thirty = 30.0; |
61 | float8 degree_c_forty_five = 45.0; |
62 | float8 degree_c_sixty = 60.0; |
63 | float8 degree_c_one_half = 0.5; |
64 | float8 degree_c_one = 1.0; |
65 | |
66 | /* State for drandom() and setseed() */ |
67 | static bool drandom_seed_set = false; |
68 | static unsigned short drandom_seed[3] = {0, 0, 0}; |
69 | |
70 | /* Local function prototypes */ |
71 | static double sind_q1(double x); |
72 | static double cosd_q1(double x); |
73 | static void init_degree_constants(void); |
74 | |
75 | #ifndef HAVE_CBRT |
76 | /* |
77 | * Some machines (in particular, some versions of AIX) have an extern |
78 | * declaration for cbrt() in <math.h> but fail to provide the actual |
79 | * function, which causes configure to not set HAVE_CBRT. Furthermore, |
80 | * their compilers spit up at the mismatch between extern declaration |
81 | * and static definition. We work around that here by the expedient |
82 | * of a #define to make the actual name of the static function different. |
83 | */ |
84 | #define cbrt my_cbrt |
85 | static double cbrt(double x); |
86 | #endif /* HAVE_CBRT */ |
87 | |
88 | |
89 | /* |
90 | * Returns -1 if 'val' represents negative infinity, 1 if 'val' |
91 | * represents (positive) infinity, and 0 otherwise. On some platforms, |
92 | * this is equivalent to the isinf() macro, but not everywhere: C99 |
93 | * does not specify that isinf() needs to distinguish between positive |
94 | * and negative infinity. |
95 | */ |
96 | int |
97 | is_infinite(double val) |
98 | { |
99 | int inf = isinf(val); |
100 | |
101 | if (inf == 0) |
102 | return 0; |
103 | else if (val > 0) |
104 | return 1; |
105 | else |
106 | return -1; |
107 | } |
108 | |
109 | |
110 | /* ========== USER I/O ROUTINES ========== */ |
111 | |
112 | |
113 | /* |
114 | * float4in - converts "num" to float4 |
115 | * |
116 | * Note that this code now uses strtof(), where it used to use strtod(). |
117 | * |
118 | * The motivation for using strtof() is to avoid a double-rounding problem: |
119 | * for certain decimal inputs, if you round the input correctly to a double, |
120 | * and then round the double to a float, the result is incorrect in that it |
121 | * does not match the result of rounding the decimal value to float directly. |
122 | * |
123 | * One of the best examples is 7.038531e-26: |
124 | * |
125 | * 0xAE43FDp-107 = 7.03853069185120912085...e-26 |
126 | * midpoint 7.03853100000000022281...e-26 |
127 | * 0xAE43FEp-107 = 7.03853130814879132477...e-26 |
128 | * |
129 | * making 0xAE43FDp-107 the correct float result, but if you do the conversion |
130 | * via a double, you get |
131 | * |
132 | * 0xAE43FD.7FFFFFF8p-107 = 7.03853099999999907487...e-26 |
133 | * midpoint 7.03853099999999964884...e-26 |
134 | * 0xAE43FD.80000000p-107 = 7.03853100000000022281...e-26 |
135 | * 0xAE43FD.80000008p-107 = 7.03853100000000137076...e-26 |
136 | * |
137 | * so the value rounds to the double exactly on the midpoint between the two |
138 | * nearest floats, and then rounding again to a float gives the incorrect |
139 | * result of 0xAE43FEp-107. |
140 | * |
141 | */ |
142 | Datum |
143 | float4in(PG_FUNCTION_ARGS) |
144 | { |
145 | char *num = PG_GETARG_CSTRING(0); |
146 | char *orig_num; |
147 | float val; |
148 | char *endptr; |
149 | |
150 | /* |
151 | * endptr points to the first character _after_ the sequence we recognized |
152 | * as a valid floating point number. orig_num points to the original input |
153 | * string. |
154 | */ |
155 | orig_num = num; |
156 | |
157 | /* skip leading whitespace */ |
158 | while (*num != '\0' && isspace((unsigned char) *num)) |
159 | num++; |
160 | |
161 | /* |
162 | * Check for an empty-string input to begin with, to avoid the vagaries of |
163 | * strtod() on different platforms. |
164 | */ |
165 | if (*num == '\0') |
166 | ereport(ERROR, |
167 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
168 | errmsg("invalid input syntax for type %s: \"%s\"" , |
169 | "real" , orig_num))); |
170 | |
171 | errno = 0; |
172 | val = strtof(num, &endptr); |
173 | |
174 | /* did we not see anything that looks like a double? */ |
175 | if (endptr == num || errno != 0) |
176 | { |
177 | int save_errno = errno; |
178 | |
179 | /* |
180 | * C99 requires that strtof() accept NaN, [+-]Infinity, and [+-]Inf, |
181 | * but not all platforms support all of these (and some accept them |
182 | * but set ERANGE anyway...) Therefore, we check for these inputs |
183 | * ourselves if strtof() fails. |
184 | * |
185 | * Note: C99 also requires hexadecimal input as well as some extended |
186 | * forms of NaN, but we consider these forms unportable and don't try |
187 | * to support them. You can use 'em if your strtof() takes 'em. |
188 | */ |
189 | if (pg_strncasecmp(num, "NaN" , 3) == 0) |
190 | { |
191 | val = get_float4_nan(); |
192 | endptr = num + 3; |
193 | } |
194 | else if (pg_strncasecmp(num, "Infinity" , 8) == 0) |
195 | { |
196 | val = get_float4_infinity(); |
197 | endptr = num + 8; |
198 | } |
199 | else if (pg_strncasecmp(num, "+Infinity" , 9) == 0) |
200 | { |
201 | val = get_float4_infinity(); |
202 | endptr = num + 9; |
203 | } |
204 | else if (pg_strncasecmp(num, "-Infinity" , 9) == 0) |
205 | { |
206 | val = -get_float4_infinity(); |
207 | endptr = num + 9; |
208 | } |
209 | else if (pg_strncasecmp(num, "inf" , 3) == 0) |
210 | { |
211 | val = get_float4_infinity(); |
212 | endptr = num + 3; |
213 | } |
214 | else if (pg_strncasecmp(num, "+inf" , 4) == 0) |
215 | { |
216 | val = get_float4_infinity(); |
217 | endptr = num + 4; |
218 | } |
219 | else if (pg_strncasecmp(num, "-inf" , 4) == 0) |
220 | { |
221 | val = -get_float4_infinity(); |
222 | endptr = num + 4; |
223 | } |
224 | else if (save_errno == ERANGE) |
225 | { |
226 | /* |
227 | * Some platforms return ERANGE for denormalized numbers (those |
228 | * that are not zero, but are too close to zero to have full |
229 | * precision). We'd prefer not to throw error for that, so try to |
230 | * detect whether it's a "real" out-of-range condition by checking |
231 | * to see if the result is zero or huge. |
232 | * |
233 | * Use isinf() rather than HUGE_VALF on VS2013 because it |
234 | * generates a spurious overflow warning for -HUGE_VALF. Also use |
235 | * isinf() if HUGE_VALF is missing. |
236 | */ |
237 | if (val == 0.0 || |
238 | #if !defined(HUGE_VALF) || (defined(_MSC_VER) && (_MSC_VER < 1900)) |
239 | isinf(val) |
240 | #else |
241 | (val >= HUGE_VALF || val <= -HUGE_VALF) |
242 | #endif |
243 | ) |
244 | ereport(ERROR, |
245 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
246 | errmsg("\"%s\" is out of range for type real" , |
247 | orig_num))); |
248 | } |
249 | else |
250 | ereport(ERROR, |
251 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
252 | errmsg("invalid input syntax for type %s: \"%s\"" , |
253 | "real" , orig_num))); |
254 | } |
255 | #ifdef HAVE_BUGGY_SOLARIS_STRTOD |
256 | else |
257 | { |
258 | /* |
259 | * Many versions of Solaris have a bug wherein strtod sets endptr to |
260 | * point one byte beyond the end of the string when given "inf" or |
261 | * "infinity". |
262 | */ |
263 | if (endptr != num && endptr[-1] == '\0') |
264 | endptr--; |
265 | } |
266 | #endif /* HAVE_BUGGY_SOLARIS_STRTOD */ |
267 | |
268 | /* skip trailing whitespace */ |
269 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
270 | endptr++; |
271 | |
272 | /* if there is any junk left at the end of the string, bail out */ |
273 | if (*endptr != '\0') |
274 | ereport(ERROR, |
275 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
276 | errmsg("invalid input syntax for type %s: \"%s\"" , |
277 | "real" , orig_num))); |
278 | |
279 | PG_RETURN_FLOAT4(val); |
280 | } |
281 | |
282 | /* |
283 | * float4out - converts a float4 number to a string |
284 | * using a standard output format |
285 | */ |
286 | Datum |
287 | float4out(PG_FUNCTION_ARGS) |
288 | { |
289 | float4 num = PG_GETARG_FLOAT4(0); |
290 | char *ascii = (char *) palloc(32); |
291 | int ndig = FLT_DIG + extra_float_digits; |
292 | |
293 | if (extra_float_digits > 0) |
294 | { |
295 | float_to_shortest_decimal_buf(num, ascii); |
296 | PG_RETURN_CSTRING(ascii); |
297 | } |
298 | |
299 | (void) pg_strfromd(ascii, 32, ndig, num); |
300 | PG_RETURN_CSTRING(ascii); |
301 | } |
302 | |
303 | /* |
304 | * float4recv - converts external binary format to float4 |
305 | */ |
306 | Datum |
307 | float4recv(PG_FUNCTION_ARGS) |
308 | { |
309 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
310 | |
311 | PG_RETURN_FLOAT4(pq_getmsgfloat4(buf)); |
312 | } |
313 | |
314 | /* |
315 | * float4send - converts float4 to binary format |
316 | */ |
317 | Datum |
318 | float4send(PG_FUNCTION_ARGS) |
319 | { |
320 | float4 num = PG_GETARG_FLOAT4(0); |
321 | StringInfoData buf; |
322 | |
323 | pq_begintypsend(&buf); |
324 | pq_sendfloat4(&buf, num); |
325 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
326 | } |
327 | |
328 | /* |
329 | * float8in - converts "num" to float8 |
330 | */ |
331 | Datum |
332 | float8in(PG_FUNCTION_ARGS) |
333 | { |
334 | char *num = PG_GETARG_CSTRING(0); |
335 | |
336 | PG_RETURN_FLOAT8(float8in_internal(num, NULL, "double precision" , num)); |
337 | } |
338 | |
339 | /* Convenience macro: set *have_error flag (if provided) or throw error */ |
340 | #define RETURN_ERROR(throw_error) \ |
341 | do { \ |
342 | if (have_error) { \ |
343 | *have_error = true; \ |
344 | return 0.0; \ |
345 | } else { \ |
346 | throw_error; \ |
347 | } \ |
348 | } while (0) |
349 | |
350 | /* |
351 | * float8in_internal_opt_error - guts of float8in() |
352 | * |
353 | * This is exposed for use by functions that want a reasonably |
354 | * platform-independent way of inputting doubles. The behavior is |
355 | * essentially like strtod + ereport on error, but note the following |
356 | * differences: |
357 | * 1. Both leading and trailing whitespace are skipped. |
358 | * 2. If endptr_p is NULL, we throw error if there's trailing junk. |
359 | * Otherwise, it's up to the caller to complain about trailing junk. |
360 | * 3. In event of a syntax error, the report mentions the given type_name |
361 | * and prints orig_string as the input; this is meant to support use of |
362 | * this function with types such as "box" and "point", where what we are |
363 | * parsing here is just a substring of orig_string. |
364 | * |
365 | * "num" could validly be declared "const char *", but that results in an |
366 | * unreasonable amount of extra casting both here and in callers, so we don't. |
367 | * |
368 | * When "*have_error" flag is provided, it's set instead of throwing an |
369 | * error. This is helpful when caller need to handle errors by itself. |
370 | */ |
371 | double |
372 | float8in_internal_opt_error(char *num, char **endptr_p, |
373 | const char *type_name, const char *orig_string, |
374 | bool *have_error) |
375 | { |
376 | double val; |
377 | char *endptr; |
378 | |
379 | /* skip leading whitespace */ |
380 | while (*num != '\0' && isspace((unsigned char) *num)) |
381 | num++; |
382 | |
383 | /* |
384 | * Check for an empty-string input to begin with, to avoid the vagaries of |
385 | * strtod() on different platforms. |
386 | */ |
387 | if (*num == '\0') |
388 | RETURN_ERROR(ereport(ERROR, |
389 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
390 | errmsg("invalid input syntax for type %s: \"%s\"" , |
391 | type_name, orig_string)))); |
392 | |
393 | errno = 0; |
394 | val = strtod(num, &endptr); |
395 | |
396 | /* did we not see anything that looks like a double? */ |
397 | if (endptr == num || errno != 0) |
398 | { |
399 | int save_errno = errno; |
400 | |
401 | /* |
402 | * C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf, |
403 | * but not all platforms support all of these (and some accept them |
404 | * but set ERANGE anyway...) Therefore, we check for these inputs |
405 | * ourselves if strtod() fails. |
406 | * |
407 | * Note: C99 also requires hexadecimal input as well as some extended |
408 | * forms of NaN, but we consider these forms unportable and don't try |
409 | * to support them. You can use 'em if your strtod() takes 'em. |
410 | */ |
411 | if (pg_strncasecmp(num, "NaN" , 3) == 0) |
412 | { |
413 | val = get_float8_nan(); |
414 | endptr = num + 3; |
415 | } |
416 | else if (pg_strncasecmp(num, "Infinity" , 8) == 0) |
417 | { |
418 | val = get_float8_infinity(); |
419 | endptr = num + 8; |
420 | } |
421 | else if (pg_strncasecmp(num, "+Infinity" , 9) == 0) |
422 | { |
423 | val = get_float8_infinity(); |
424 | endptr = num + 9; |
425 | } |
426 | else if (pg_strncasecmp(num, "-Infinity" , 9) == 0) |
427 | { |
428 | val = -get_float8_infinity(); |
429 | endptr = num + 9; |
430 | } |
431 | else if (pg_strncasecmp(num, "inf" , 3) == 0) |
432 | { |
433 | val = get_float8_infinity(); |
434 | endptr = num + 3; |
435 | } |
436 | else if (pg_strncasecmp(num, "+inf" , 4) == 0) |
437 | { |
438 | val = get_float8_infinity(); |
439 | endptr = num + 4; |
440 | } |
441 | else if (pg_strncasecmp(num, "-inf" , 4) == 0) |
442 | { |
443 | val = -get_float8_infinity(); |
444 | endptr = num + 4; |
445 | } |
446 | else if (save_errno == ERANGE) |
447 | { |
448 | /* |
449 | * Some platforms return ERANGE for denormalized numbers (those |
450 | * that are not zero, but are too close to zero to have full |
451 | * precision). We'd prefer not to throw error for that, so try to |
452 | * detect whether it's a "real" out-of-range condition by checking |
453 | * to see if the result is zero or huge. |
454 | * |
455 | * On error, we intentionally complain about double precision not |
456 | * the given type name, and we print only the part of the string |
457 | * that is the current number. |
458 | */ |
459 | if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL) |
460 | { |
461 | char *errnumber = pstrdup(num); |
462 | |
463 | errnumber[endptr - num] = '\0'; |
464 | RETURN_ERROR(ereport(ERROR, |
465 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
466 | errmsg("\"%s\" is out of range for " |
467 | "type double precision" , |
468 | errnumber)))); |
469 | } |
470 | } |
471 | else |
472 | RETURN_ERROR(ereport(ERROR, |
473 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
474 | errmsg("invalid input syntax for type " |
475 | "%s: \"%s\"" , |
476 | type_name, orig_string)))); |
477 | } |
478 | #ifdef HAVE_BUGGY_SOLARIS_STRTOD |
479 | else |
480 | { |
481 | /* |
482 | * Many versions of Solaris have a bug wherein strtod sets endptr to |
483 | * point one byte beyond the end of the string when given "inf" or |
484 | * "infinity". |
485 | */ |
486 | if (endptr != num && endptr[-1] == '\0') |
487 | endptr--; |
488 | } |
489 | #endif /* HAVE_BUGGY_SOLARIS_STRTOD */ |
490 | |
491 | /* skip trailing whitespace */ |
492 | while (*endptr != '\0' && isspace((unsigned char) *endptr)) |
493 | endptr++; |
494 | |
495 | /* report stopping point if wanted, else complain if not end of string */ |
496 | if (endptr_p) |
497 | *endptr_p = endptr; |
498 | else if (*endptr != '\0') |
499 | RETURN_ERROR(ereport(ERROR, |
500 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
501 | errmsg("invalid input syntax for type " |
502 | "%s: \"%s\"" , |
503 | type_name, orig_string)))); |
504 | |
505 | return val; |
506 | } |
507 | |
508 | /* |
509 | * Interface to float8in_internal_opt_error() without "have_error" argument. |
510 | */ |
511 | double |
512 | float8in_internal(char *num, char **endptr_p, |
513 | const char *type_name, const char *orig_string) |
514 | { |
515 | return float8in_internal_opt_error(num, endptr_p, type_name, |
516 | orig_string, NULL); |
517 | } |
518 | |
519 | |
520 | /* |
521 | * float8out - converts float8 number to a string |
522 | * using a standard output format |
523 | */ |
524 | Datum |
525 | float8out(PG_FUNCTION_ARGS) |
526 | { |
527 | float8 num = PG_GETARG_FLOAT8(0); |
528 | |
529 | PG_RETURN_CSTRING(float8out_internal(num)); |
530 | } |
531 | |
532 | /* |
533 | * float8out_internal - guts of float8out() |
534 | * |
535 | * This is exposed for use by functions that want a reasonably |
536 | * platform-independent way of outputting doubles. |
537 | * The result is always palloc'd. |
538 | */ |
539 | char * |
540 | float8out_internal(double num) |
541 | { |
542 | char *ascii = (char *) palloc(32); |
543 | int ndig = DBL_DIG + extra_float_digits; |
544 | |
545 | if (extra_float_digits > 0) |
546 | { |
547 | double_to_shortest_decimal_buf(num, ascii); |
548 | return ascii; |
549 | } |
550 | |
551 | (void) pg_strfromd(ascii, 32, ndig, num); |
552 | return ascii; |
553 | } |
554 | |
555 | /* |
556 | * float8recv - converts external binary format to float8 |
557 | */ |
558 | Datum |
559 | float8recv(PG_FUNCTION_ARGS) |
560 | { |
561 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
562 | |
563 | PG_RETURN_FLOAT8(pq_getmsgfloat8(buf)); |
564 | } |
565 | |
566 | /* |
567 | * float8send - converts float8 to binary format |
568 | */ |
569 | Datum |
570 | float8send(PG_FUNCTION_ARGS) |
571 | { |
572 | float8 num = PG_GETARG_FLOAT8(0); |
573 | StringInfoData buf; |
574 | |
575 | pq_begintypsend(&buf); |
576 | pq_sendfloat8(&buf, num); |
577 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
578 | } |
579 | |
580 | |
581 | /* ========== PUBLIC ROUTINES ========== */ |
582 | |
583 | |
584 | /* |
585 | * ====================== |
586 | * FLOAT4 BASE OPERATIONS |
587 | * ====================== |
588 | */ |
589 | |
590 | /* |
591 | * float4abs - returns |arg1| (absolute value) |
592 | */ |
593 | Datum |
594 | float4abs(PG_FUNCTION_ARGS) |
595 | { |
596 | float4 arg1 = PG_GETARG_FLOAT4(0); |
597 | |
598 | PG_RETURN_FLOAT4((float4) fabs(arg1)); |
599 | } |
600 | |
601 | /* |
602 | * float4um - returns -arg1 (unary minus) |
603 | */ |
604 | Datum |
605 | float4um(PG_FUNCTION_ARGS) |
606 | { |
607 | float4 arg1 = PG_GETARG_FLOAT4(0); |
608 | float4 result; |
609 | |
610 | result = -arg1; |
611 | PG_RETURN_FLOAT4(result); |
612 | } |
613 | |
614 | Datum |
615 | float4up(PG_FUNCTION_ARGS) |
616 | { |
617 | float4 arg = PG_GETARG_FLOAT4(0); |
618 | |
619 | PG_RETURN_FLOAT4(arg); |
620 | } |
621 | |
622 | Datum |
623 | float4larger(PG_FUNCTION_ARGS) |
624 | { |
625 | float4 arg1 = PG_GETARG_FLOAT4(0); |
626 | float4 arg2 = PG_GETARG_FLOAT4(1); |
627 | float4 result; |
628 | |
629 | if (float4_gt(arg1, arg2)) |
630 | result = arg1; |
631 | else |
632 | result = arg2; |
633 | PG_RETURN_FLOAT4(result); |
634 | } |
635 | |
636 | Datum |
637 | float4smaller(PG_FUNCTION_ARGS) |
638 | { |
639 | float4 arg1 = PG_GETARG_FLOAT4(0); |
640 | float4 arg2 = PG_GETARG_FLOAT4(1); |
641 | float4 result; |
642 | |
643 | if (float4_lt(arg1, arg2)) |
644 | result = arg1; |
645 | else |
646 | result = arg2; |
647 | PG_RETURN_FLOAT4(result); |
648 | } |
649 | |
650 | /* |
651 | * ====================== |
652 | * FLOAT8 BASE OPERATIONS |
653 | * ====================== |
654 | */ |
655 | |
656 | /* |
657 | * float8abs - returns |arg1| (absolute value) |
658 | */ |
659 | Datum |
660 | float8abs(PG_FUNCTION_ARGS) |
661 | { |
662 | float8 arg1 = PG_GETARG_FLOAT8(0); |
663 | |
664 | PG_RETURN_FLOAT8(fabs(arg1)); |
665 | } |
666 | |
667 | |
668 | /* |
669 | * float8um - returns -arg1 (unary minus) |
670 | */ |
671 | Datum |
672 | float8um(PG_FUNCTION_ARGS) |
673 | { |
674 | float8 arg1 = PG_GETARG_FLOAT8(0); |
675 | float8 result; |
676 | |
677 | result = -arg1; |
678 | PG_RETURN_FLOAT8(result); |
679 | } |
680 | |
681 | Datum |
682 | float8up(PG_FUNCTION_ARGS) |
683 | { |
684 | float8 arg = PG_GETARG_FLOAT8(0); |
685 | |
686 | PG_RETURN_FLOAT8(arg); |
687 | } |
688 | |
689 | Datum |
690 | float8larger(PG_FUNCTION_ARGS) |
691 | { |
692 | float8 arg1 = PG_GETARG_FLOAT8(0); |
693 | float8 arg2 = PG_GETARG_FLOAT8(1); |
694 | float8 result; |
695 | |
696 | if (float8_gt(arg1, arg2)) |
697 | result = arg1; |
698 | else |
699 | result = arg2; |
700 | PG_RETURN_FLOAT8(result); |
701 | } |
702 | |
703 | Datum |
704 | float8smaller(PG_FUNCTION_ARGS) |
705 | { |
706 | float8 arg1 = PG_GETARG_FLOAT8(0); |
707 | float8 arg2 = PG_GETARG_FLOAT8(1); |
708 | float8 result; |
709 | |
710 | if (float8_lt(arg1, arg2)) |
711 | result = arg1; |
712 | else |
713 | result = arg2; |
714 | PG_RETURN_FLOAT8(result); |
715 | } |
716 | |
717 | |
718 | /* |
719 | * ==================== |
720 | * ARITHMETIC OPERATORS |
721 | * ==================== |
722 | */ |
723 | |
724 | /* |
725 | * float4pl - returns arg1 + arg2 |
726 | * float4mi - returns arg1 - arg2 |
727 | * float4mul - returns arg1 * arg2 |
728 | * float4div - returns arg1 / arg2 |
729 | */ |
730 | Datum |
731 | float4pl(PG_FUNCTION_ARGS) |
732 | { |
733 | float4 arg1 = PG_GETARG_FLOAT4(0); |
734 | float4 arg2 = PG_GETARG_FLOAT4(1); |
735 | |
736 | PG_RETURN_FLOAT4(float4_pl(arg1, arg2)); |
737 | } |
738 | |
739 | Datum |
740 | float4mi(PG_FUNCTION_ARGS) |
741 | { |
742 | float4 arg1 = PG_GETARG_FLOAT4(0); |
743 | float4 arg2 = PG_GETARG_FLOAT4(1); |
744 | |
745 | PG_RETURN_FLOAT4(float4_mi(arg1, arg2)); |
746 | } |
747 | |
748 | Datum |
749 | float4mul(PG_FUNCTION_ARGS) |
750 | { |
751 | float4 arg1 = PG_GETARG_FLOAT4(0); |
752 | float4 arg2 = PG_GETARG_FLOAT4(1); |
753 | |
754 | PG_RETURN_FLOAT4(float4_mul(arg1, arg2)); |
755 | } |
756 | |
757 | Datum |
758 | float4div(PG_FUNCTION_ARGS) |
759 | { |
760 | float4 arg1 = PG_GETARG_FLOAT4(0); |
761 | float4 arg2 = PG_GETARG_FLOAT4(1); |
762 | |
763 | PG_RETURN_FLOAT4(float4_div(arg1, arg2)); |
764 | } |
765 | |
766 | /* |
767 | * float8pl - returns arg1 + arg2 |
768 | * float8mi - returns arg1 - arg2 |
769 | * float8mul - returns arg1 * arg2 |
770 | * float8div - returns arg1 / arg2 |
771 | */ |
772 | Datum |
773 | float8pl(PG_FUNCTION_ARGS) |
774 | { |
775 | float8 arg1 = PG_GETARG_FLOAT8(0); |
776 | float8 arg2 = PG_GETARG_FLOAT8(1); |
777 | |
778 | PG_RETURN_FLOAT8(float8_pl(arg1, arg2)); |
779 | } |
780 | |
781 | Datum |
782 | float8mi(PG_FUNCTION_ARGS) |
783 | { |
784 | float8 arg1 = PG_GETARG_FLOAT8(0); |
785 | float8 arg2 = PG_GETARG_FLOAT8(1); |
786 | |
787 | PG_RETURN_FLOAT8(float8_mi(arg1, arg2)); |
788 | } |
789 | |
790 | Datum |
791 | float8mul(PG_FUNCTION_ARGS) |
792 | { |
793 | float8 arg1 = PG_GETARG_FLOAT8(0); |
794 | float8 arg2 = PG_GETARG_FLOAT8(1); |
795 | |
796 | PG_RETURN_FLOAT8(float8_mul(arg1, arg2)); |
797 | } |
798 | |
799 | Datum |
800 | float8div(PG_FUNCTION_ARGS) |
801 | { |
802 | float8 arg1 = PG_GETARG_FLOAT8(0); |
803 | float8 arg2 = PG_GETARG_FLOAT8(1); |
804 | |
805 | PG_RETURN_FLOAT8(float8_div(arg1, arg2)); |
806 | } |
807 | |
808 | |
809 | /* |
810 | * ==================== |
811 | * COMPARISON OPERATORS |
812 | * ==================== |
813 | */ |
814 | |
815 | /* |
816 | * float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations |
817 | */ |
818 | int |
819 | float4_cmp_internal(float4 a, float4 b) |
820 | { |
821 | if (float4_gt(a, b)) |
822 | return 1; |
823 | if (float4_lt(a, b)) |
824 | return -1; |
825 | return 0; |
826 | } |
827 | |
828 | Datum |
829 | float4eq(PG_FUNCTION_ARGS) |
830 | { |
831 | float4 arg1 = PG_GETARG_FLOAT4(0); |
832 | float4 arg2 = PG_GETARG_FLOAT4(1); |
833 | |
834 | PG_RETURN_BOOL(float4_eq(arg1, arg2)); |
835 | } |
836 | |
837 | Datum |
838 | float4ne(PG_FUNCTION_ARGS) |
839 | { |
840 | float4 arg1 = PG_GETARG_FLOAT4(0); |
841 | float4 arg2 = PG_GETARG_FLOAT4(1); |
842 | |
843 | PG_RETURN_BOOL(float4_ne(arg1, arg2)); |
844 | } |
845 | |
846 | Datum |
847 | float4lt(PG_FUNCTION_ARGS) |
848 | { |
849 | float4 arg1 = PG_GETARG_FLOAT4(0); |
850 | float4 arg2 = PG_GETARG_FLOAT4(1); |
851 | |
852 | PG_RETURN_BOOL(float4_lt(arg1, arg2)); |
853 | } |
854 | |
855 | Datum |
856 | float4le(PG_FUNCTION_ARGS) |
857 | { |
858 | float4 arg1 = PG_GETARG_FLOAT4(0); |
859 | float4 arg2 = PG_GETARG_FLOAT4(1); |
860 | |
861 | PG_RETURN_BOOL(float4_le(arg1, arg2)); |
862 | } |
863 | |
864 | Datum |
865 | float4gt(PG_FUNCTION_ARGS) |
866 | { |
867 | float4 arg1 = PG_GETARG_FLOAT4(0); |
868 | float4 arg2 = PG_GETARG_FLOAT4(1); |
869 | |
870 | PG_RETURN_BOOL(float4_gt(arg1, arg2)); |
871 | } |
872 | |
873 | Datum |
874 | float4ge(PG_FUNCTION_ARGS) |
875 | { |
876 | float4 arg1 = PG_GETARG_FLOAT4(0); |
877 | float4 arg2 = PG_GETARG_FLOAT4(1); |
878 | |
879 | PG_RETURN_BOOL(float4_ge(arg1, arg2)); |
880 | } |
881 | |
882 | Datum |
883 | btfloat4cmp(PG_FUNCTION_ARGS) |
884 | { |
885 | float4 arg1 = PG_GETARG_FLOAT4(0); |
886 | float4 arg2 = PG_GETARG_FLOAT4(1); |
887 | |
888 | PG_RETURN_INT32(float4_cmp_internal(arg1, arg2)); |
889 | } |
890 | |
891 | static int |
892 | btfloat4fastcmp(Datum x, Datum y, SortSupport ssup) |
893 | { |
894 | float4 arg1 = DatumGetFloat4(x); |
895 | float4 arg2 = DatumGetFloat4(y); |
896 | |
897 | return float4_cmp_internal(arg1, arg2); |
898 | } |
899 | |
900 | Datum |
901 | btfloat4sortsupport(PG_FUNCTION_ARGS) |
902 | { |
903 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
904 | |
905 | ssup->comparator = btfloat4fastcmp; |
906 | PG_RETURN_VOID(); |
907 | } |
908 | |
909 | /* |
910 | * float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations |
911 | */ |
912 | int |
913 | float8_cmp_internal(float8 a, float8 b) |
914 | { |
915 | if (float8_gt(a, b)) |
916 | return 1; |
917 | if (float8_lt(a, b)) |
918 | return -1; |
919 | return 0; |
920 | } |
921 | |
922 | Datum |
923 | float8eq(PG_FUNCTION_ARGS) |
924 | { |
925 | float8 arg1 = PG_GETARG_FLOAT8(0); |
926 | float8 arg2 = PG_GETARG_FLOAT8(1); |
927 | |
928 | PG_RETURN_BOOL(float8_eq(arg1, arg2)); |
929 | } |
930 | |
931 | Datum |
932 | float8ne(PG_FUNCTION_ARGS) |
933 | { |
934 | float8 arg1 = PG_GETARG_FLOAT8(0); |
935 | float8 arg2 = PG_GETARG_FLOAT8(1); |
936 | |
937 | PG_RETURN_BOOL(float8_ne(arg1, arg2)); |
938 | } |
939 | |
940 | Datum |
941 | float8lt(PG_FUNCTION_ARGS) |
942 | { |
943 | float8 arg1 = PG_GETARG_FLOAT8(0); |
944 | float8 arg2 = PG_GETARG_FLOAT8(1); |
945 | |
946 | PG_RETURN_BOOL(float8_lt(arg1, arg2)); |
947 | } |
948 | |
949 | Datum |
950 | float8le(PG_FUNCTION_ARGS) |
951 | { |
952 | float8 arg1 = PG_GETARG_FLOAT8(0); |
953 | float8 arg2 = PG_GETARG_FLOAT8(1); |
954 | |
955 | PG_RETURN_BOOL(float8_le(arg1, arg2)); |
956 | } |
957 | |
958 | Datum |
959 | float8gt(PG_FUNCTION_ARGS) |
960 | { |
961 | float8 arg1 = PG_GETARG_FLOAT8(0); |
962 | float8 arg2 = PG_GETARG_FLOAT8(1); |
963 | |
964 | PG_RETURN_BOOL(float8_gt(arg1, arg2)); |
965 | } |
966 | |
967 | Datum |
968 | float8ge(PG_FUNCTION_ARGS) |
969 | { |
970 | float8 arg1 = PG_GETARG_FLOAT8(0); |
971 | float8 arg2 = PG_GETARG_FLOAT8(1); |
972 | |
973 | PG_RETURN_BOOL(float8_ge(arg1, arg2)); |
974 | } |
975 | |
976 | Datum |
977 | btfloat8cmp(PG_FUNCTION_ARGS) |
978 | { |
979 | float8 arg1 = PG_GETARG_FLOAT8(0); |
980 | float8 arg2 = PG_GETARG_FLOAT8(1); |
981 | |
982 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
983 | } |
984 | |
985 | static int |
986 | btfloat8fastcmp(Datum x, Datum y, SortSupport ssup) |
987 | { |
988 | float8 arg1 = DatumGetFloat8(x); |
989 | float8 arg2 = DatumGetFloat8(y); |
990 | |
991 | return float8_cmp_internal(arg1, arg2); |
992 | } |
993 | |
994 | Datum |
995 | btfloat8sortsupport(PG_FUNCTION_ARGS) |
996 | { |
997 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
998 | |
999 | ssup->comparator = btfloat8fastcmp; |
1000 | PG_RETURN_VOID(); |
1001 | } |
1002 | |
1003 | Datum |
1004 | btfloat48cmp(PG_FUNCTION_ARGS) |
1005 | { |
1006 | float4 arg1 = PG_GETARG_FLOAT4(0); |
1007 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1008 | |
1009 | /* widen float4 to float8 and then compare */ |
1010 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
1011 | } |
1012 | |
1013 | Datum |
1014 | btfloat84cmp(PG_FUNCTION_ARGS) |
1015 | { |
1016 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1017 | float4 arg2 = PG_GETARG_FLOAT4(1); |
1018 | |
1019 | /* widen float4 to float8 and then compare */ |
1020 | PG_RETURN_INT32(float8_cmp_internal(arg1, arg2)); |
1021 | } |
1022 | |
1023 | /* |
1024 | * in_range support function for float8. |
1025 | * |
1026 | * Note: we needn't supply a float8_float4 variant, as implicit coercion |
1027 | * of the offset value takes care of that scenario just as well. |
1028 | */ |
1029 | Datum |
1030 | in_range_float8_float8(PG_FUNCTION_ARGS) |
1031 | { |
1032 | float8 val = PG_GETARG_FLOAT8(0); |
1033 | float8 base = PG_GETARG_FLOAT8(1); |
1034 | float8 offset = PG_GETARG_FLOAT8(2); |
1035 | bool sub = PG_GETARG_BOOL(3); |
1036 | bool less = PG_GETARG_BOOL(4); |
1037 | float8 sum; |
1038 | |
1039 | /* |
1040 | * Reject negative or NaN offset. Negative is per spec, and NaN is |
1041 | * because appropriate semantics for that seem non-obvious. |
1042 | */ |
1043 | if (isnan(offset) || offset < 0) |
1044 | ereport(ERROR, |
1045 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
1046 | errmsg("invalid preceding or following size in window function" ))); |
1047 | |
1048 | /* |
1049 | * Deal with cases where val and/or base is NaN, following the rule that |
1050 | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
1051 | * affect the conclusion. |
1052 | */ |
1053 | if (isnan(val)) |
1054 | { |
1055 | if (isnan(base)) |
1056 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
1057 | else |
1058 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
1059 | } |
1060 | else if (isnan(base)) |
1061 | { |
1062 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
1063 | } |
1064 | |
1065 | /* |
1066 | * Deal with infinite offset (necessarily +inf, at this point). We must |
1067 | * special-case this because if base happens to be -inf, their sum would |
1068 | * be NaN, which is an overflow-ish condition we should avoid. |
1069 | */ |
1070 | if (isinf(offset)) |
1071 | { |
1072 | PG_RETURN_BOOL(sub ? !less : less); |
1073 | } |
1074 | |
1075 | /* |
1076 | * Otherwise it should be safe to compute base +/- offset. We trust the |
1077 | * FPU to cope if base is +/-inf or the true sum would overflow, and |
1078 | * produce a suitably signed infinity, which will compare properly against |
1079 | * val whether or not that's infinity. |
1080 | */ |
1081 | if (sub) |
1082 | sum = base - offset; |
1083 | else |
1084 | sum = base + offset; |
1085 | |
1086 | if (less) |
1087 | PG_RETURN_BOOL(val <= sum); |
1088 | else |
1089 | PG_RETURN_BOOL(val >= sum); |
1090 | } |
1091 | |
1092 | /* |
1093 | * in_range support function for float4. |
1094 | * |
1095 | * We would need a float4_float8 variant in any case, so we supply that and |
1096 | * let implicit coercion take care of the float4_float4 case. |
1097 | */ |
1098 | Datum |
1099 | in_range_float4_float8(PG_FUNCTION_ARGS) |
1100 | { |
1101 | float4 val = PG_GETARG_FLOAT4(0); |
1102 | float4 base = PG_GETARG_FLOAT4(1); |
1103 | float8 offset = PG_GETARG_FLOAT8(2); |
1104 | bool sub = PG_GETARG_BOOL(3); |
1105 | bool less = PG_GETARG_BOOL(4); |
1106 | float8 sum; |
1107 | |
1108 | /* |
1109 | * Reject negative or NaN offset. Negative is per spec, and NaN is |
1110 | * because appropriate semantics for that seem non-obvious. |
1111 | */ |
1112 | if (isnan(offset) || offset < 0) |
1113 | ereport(ERROR, |
1114 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
1115 | errmsg("invalid preceding or following size in window function" ))); |
1116 | |
1117 | /* |
1118 | * Deal with cases where val and/or base is NaN, following the rule that |
1119 | * NaN sorts after non-NaN (cf float8_cmp_internal). The offset cannot |
1120 | * affect the conclusion. |
1121 | */ |
1122 | if (isnan(val)) |
1123 | { |
1124 | if (isnan(base)) |
1125 | PG_RETURN_BOOL(true); /* NAN = NAN */ |
1126 | else |
1127 | PG_RETURN_BOOL(!less); /* NAN > non-NAN */ |
1128 | } |
1129 | else if (isnan(base)) |
1130 | { |
1131 | PG_RETURN_BOOL(less); /* non-NAN < NAN */ |
1132 | } |
1133 | |
1134 | /* |
1135 | * Deal with infinite offset (necessarily +inf, at this point). We must |
1136 | * special-case this because if base happens to be -inf, their sum would |
1137 | * be NaN, which is an overflow-ish condition we should avoid. |
1138 | */ |
1139 | if (isinf(offset)) |
1140 | { |
1141 | PG_RETURN_BOOL(sub ? !less : less); |
1142 | } |
1143 | |
1144 | /* |
1145 | * Otherwise it should be safe to compute base +/- offset. We trust the |
1146 | * FPU to cope if base is +/-inf or the true sum would overflow, and |
1147 | * produce a suitably signed infinity, which will compare properly against |
1148 | * val whether or not that's infinity. |
1149 | */ |
1150 | if (sub) |
1151 | sum = base - offset; |
1152 | else |
1153 | sum = base + offset; |
1154 | |
1155 | if (less) |
1156 | PG_RETURN_BOOL(val <= sum); |
1157 | else |
1158 | PG_RETURN_BOOL(val >= sum); |
1159 | } |
1160 | |
1161 | |
1162 | /* |
1163 | * =================== |
1164 | * CONVERSION ROUTINES |
1165 | * =================== |
1166 | */ |
1167 | |
1168 | /* |
1169 | * ftod - converts a float4 number to a float8 number |
1170 | */ |
1171 | Datum |
1172 | ftod(PG_FUNCTION_ARGS) |
1173 | { |
1174 | float4 num = PG_GETARG_FLOAT4(0); |
1175 | |
1176 | PG_RETURN_FLOAT8((float8) num); |
1177 | } |
1178 | |
1179 | |
1180 | /* |
1181 | * dtof - converts a float8 number to a float4 number |
1182 | */ |
1183 | Datum |
1184 | dtof(PG_FUNCTION_ARGS) |
1185 | { |
1186 | float8 num = PG_GETARG_FLOAT8(0); |
1187 | |
1188 | check_float4_val((float4) num, isinf(num), num == 0); |
1189 | |
1190 | PG_RETURN_FLOAT4((float4) num); |
1191 | } |
1192 | |
1193 | |
1194 | /* |
1195 | * dtoi4 - converts a float8 number to an int4 number |
1196 | */ |
1197 | Datum |
1198 | dtoi4(PG_FUNCTION_ARGS) |
1199 | { |
1200 | float8 num = PG_GETARG_FLOAT8(0); |
1201 | |
1202 | /* |
1203 | * Get rid of any fractional part in the input. This is so we don't fail |
1204 | * on just-out-of-range values that would round into range. Note |
1205 | * assumption that rint() will pass through a NaN or Inf unchanged. |
1206 | */ |
1207 | num = rint(num); |
1208 | |
1209 | /* |
1210 | * Range check. We must be careful here that the boundary values are |
1211 | * expressed exactly in the float domain. We expect PG_INT32_MIN to be an |
1212 | * exact power of 2, so it will be represented exactly; but PG_INT32_MAX |
1213 | * isn't, and might get rounded off, so avoid using it. |
1214 | */ |
1215 | if (unlikely(num < (float8) PG_INT32_MIN || |
1216 | num >= -((float8) PG_INT32_MIN) || |
1217 | isnan(num))) |
1218 | ereport(ERROR, |
1219 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1220 | errmsg("integer out of range" ))); |
1221 | |
1222 | PG_RETURN_INT32((int32) num); |
1223 | } |
1224 | |
1225 | |
1226 | /* |
1227 | * dtoi2 - converts a float8 number to an int2 number |
1228 | */ |
1229 | Datum |
1230 | dtoi2(PG_FUNCTION_ARGS) |
1231 | { |
1232 | float8 num = PG_GETARG_FLOAT8(0); |
1233 | |
1234 | /* |
1235 | * Get rid of any fractional part in the input. This is so we don't fail |
1236 | * on just-out-of-range values that would round into range. Note |
1237 | * assumption that rint() will pass through a NaN or Inf unchanged. |
1238 | */ |
1239 | num = rint(num); |
1240 | |
1241 | /* |
1242 | * Range check. We must be careful here that the boundary values are |
1243 | * expressed exactly in the float domain. We expect PG_INT16_MIN to be an |
1244 | * exact power of 2, so it will be represented exactly; but PG_INT16_MAX |
1245 | * isn't, and might get rounded off, so avoid using it. |
1246 | */ |
1247 | if (unlikely(num < (float8) PG_INT16_MIN || |
1248 | num >= -((float8) PG_INT16_MIN) || |
1249 | isnan(num))) |
1250 | ereport(ERROR, |
1251 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1252 | errmsg("smallint out of range" ))); |
1253 | |
1254 | PG_RETURN_INT16((int16) num); |
1255 | } |
1256 | |
1257 | |
1258 | /* |
1259 | * i4tod - converts an int4 number to a float8 number |
1260 | */ |
1261 | Datum |
1262 | i4tod(PG_FUNCTION_ARGS) |
1263 | { |
1264 | int32 num = PG_GETARG_INT32(0); |
1265 | |
1266 | PG_RETURN_FLOAT8((float8) num); |
1267 | } |
1268 | |
1269 | |
1270 | /* |
1271 | * i2tod - converts an int2 number to a float8 number |
1272 | */ |
1273 | Datum |
1274 | i2tod(PG_FUNCTION_ARGS) |
1275 | { |
1276 | int16 num = PG_GETARG_INT16(0); |
1277 | |
1278 | PG_RETURN_FLOAT8((float8) num); |
1279 | } |
1280 | |
1281 | |
1282 | /* |
1283 | * ftoi4 - converts a float4 number to an int4 number |
1284 | */ |
1285 | Datum |
1286 | ftoi4(PG_FUNCTION_ARGS) |
1287 | { |
1288 | float4 num = PG_GETARG_FLOAT4(0); |
1289 | |
1290 | /* |
1291 | * Get rid of any fractional part in the input. This is so we don't fail |
1292 | * on just-out-of-range values that would round into range. Note |
1293 | * assumption that rint() will pass through a NaN or Inf unchanged. |
1294 | */ |
1295 | num = rint(num); |
1296 | |
1297 | /* |
1298 | * Range check. We must be careful here that the boundary values are |
1299 | * expressed exactly in the float domain. We expect PG_INT32_MIN to be an |
1300 | * exact power of 2, so it will be represented exactly; but PG_INT32_MAX |
1301 | * isn't, and might get rounded off, so avoid using it. |
1302 | */ |
1303 | if (unlikely(num < (float4) PG_INT32_MIN || |
1304 | num >= -((float4) PG_INT32_MIN) || |
1305 | isnan(num))) |
1306 | ereport(ERROR, |
1307 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1308 | errmsg("integer out of range" ))); |
1309 | |
1310 | PG_RETURN_INT32((int32) num); |
1311 | } |
1312 | |
1313 | |
1314 | /* |
1315 | * ftoi2 - converts a float4 number to an int2 number |
1316 | */ |
1317 | Datum |
1318 | ftoi2(PG_FUNCTION_ARGS) |
1319 | { |
1320 | float4 num = PG_GETARG_FLOAT4(0); |
1321 | |
1322 | /* |
1323 | * Get rid of any fractional part in the input. This is so we don't fail |
1324 | * on just-out-of-range values that would round into range. Note |
1325 | * assumption that rint() will pass through a NaN or Inf unchanged. |
1326 | */ |
1327 | num = rint(num); |
1328 | |
1329 | /* |
1330 | * Range check. We must be careful here that the boundary values are |
1331 | * expressed exactly in the float domain. We expect PG_INT16_MIN to be an |
1332 | * exact power of 2, so it will be represented exactly; but PG_INT16_MAX |
1333 | * isn't, and might get rounded off, so avoid using it. |
1334 | */ |
1335 | if (unlikely(num < (float4) PG_INT16_MIN || |
1336 | num >= -((float4) PG_INT16_MIN) || |
1337 | isnan(num))) |
1338 | ereport(ERROR, |
1339 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1340 | errmsg("smallint out of range" ))); |
1341 | |
1342 | PG_RETURN_INT16((int16) num); |
1343 | } |
1344 | |
1345 | |
1346 | /* |
1347 | * i4tof - converts an int4 number to a float4 number |
1348 | */ |
1349 | Datum |
1350 | i4tof(PG_FUNCTION_ARGS) |
1351 | { |
1352 | int32 num = PG_GETARG_INT32(0); |
1353 | |
1354 | PG_RETURN_FLOAT4((float4) num); |
1355 | } |
1356 | |
1357 | |
1358 | /* |
1359 | * i2tof - converts an int2 number to a float4 number |
1360 | */ |
1361 | Datum |
1362 | i2tof(PG_FUNCTION_ARGS) |
1363 | { |
1364 | int16 num = PG_GETARG_INT16(0); |
1365 | |
1366 | PG_RETURN_FLOAT4((float4) num); |
1367 | } |
1368 | |
1369 | |
1370 | /* |
1371 | * ======================= |
1372 | * RANDOM FLOAT8 OPERATORS |
1373 | * ======================= |
1374 | */ |
1375 | |
1376 | /* |
1377 | * dround - returns ROUND(arg1) |
1378 | */ |
1379 | Datum |
1380 | dround(PG_FUNCTION_ARGS) |
1381 | { |
1382 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1383 | |
1384 | PG_RETURN_FLOAT8(rint(arg1)); |
1385 | } |
1386 | |
1387 | /* |
1388 | * dceil - returns the smallest integer greater than or |
1389 | * equal to the specified float |
1390 | */ |
1391 | Datum |
1392 | dceil(PG_FUNCTION_ARGS) |
1393 | { |
1394 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1395 | |
1396 | PG_RETURN_FLOAT8(ceil(arg1)); |
1397 | } |
1398 | |
1399 | /* |
1400 | * dfloor - returns the largest integer lesser than or |
1401 | * equal to the specified float |
1402 | */ |
1403 | Datum |
1404 | dfloor(PG_FUNCTION_ARGS) |
1405 | { |
1406 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1407 | |
1408 | PG_RETURN_FLOAT8(floor(arg1)); |
1409 | } |
1410 | |
1411 | /* |
1412 | * dsign - returns -1 if the argument is less than 0, 0 |
1413 | * if the argument is equal to 0, and 1 if the |
1414 | * argument is greater than zero. |
1415 | */ |
1416 | Datum |
1417 | dsign(PG_FUNCTION_ARGS) |
1418 | { |
1419 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1420 | float8 result; |
1421 | |
1422 | if (arg1 > 0) |
1423 | result = 1.0; |
1424 | else if (arg1 < 0) |
1425 | result = -1.0; |
1426 | else |
1427 | result = 0.0; |
1428 | |
1429 | PG_RETURN_FLOAT8(result); |
1430 | } |
1431 | |
1432 | /* |
1433 | * dtrunc - returns truncation-towards-zero of arg1, |
1434 | * arg1 >= 0 ... the greatest integer less |
1435 | * than or equal to arg1 |
1436 | * arg1 < 0 ... the least integer greater |
1437 | * than or equal to arg1 |
1438 | */ |
1439 | Datum |
1440 | dtrunc(PG_FUNCTION_ARGS) |
1441 | { |
1442 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1443 | float8 result; |
1444 | |
1445 | if (arg1 >= 0) |
1446 | result = floor(arg1); |
1447 | else |
1448 | result = -floor(-arg1); |
1449 | |
1450 | PG_RETURN_FLOAT8(result); |
1451 | } |
1452 | |
1453 | |
1454 | /* |
1455 | * dsqrt - returns square root of arg1 |
1456 | */ |
1457 | Datum |
1458 | dsqrt(PG_FUNCTION_ARGS) |
1459 | { |
1460 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1461 | float8 result; |
1462 | |
1463 | if (arg1 < 0) |
1464 | ereport(ERROR, |
1465 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1466 | errmsg("cannot take square root of a negative number" ))); |
1467 | |
1468 | result = sqrt(arg1); |
1469 | |
1470 | check_float8_val(result, isinf(arg1), arg1 == 0); |
1471 | PG_RETURN_FLOAT8(result); |
1472 | } |
1473 | |
1474 | |
1475 | /* |
1476 | * dcbrt - returns cube root of arg1 |
1477 | */ |
1478 | Datum |
1479 | dcbrt(PG_FUNCTION_ARGS) |
1480 | { |
1481 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1482 | float8 result; |
1483 | |
1484 | result = cbrt(arg1); |
1485 | check_float8_val(result, isinf(arg1), arg1 == 0); |
1486 | PG_RETURN_FLOAT8(result); |
1487 | } |
1488 | |
1489 | |
1490 | /* |
1491 | * dpow - returns pow(arg1,arg2) |
1492 | */ |
1493 | Datum |
1494 | dpow(PG_FUNCTION_ARGS) |
1495 | { |
1496 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1497 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1498 | float8 result; |
1499 | |
1500 | /* |
1501 | * The POSIX spec says that NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other |
1502 | * cases with NaN inputs yield NaN (with no error). Many older platforms |
1503 | * get one or more of these cases wrong, so deal with them via explicit |
1504 | * logic rather than trusting pow(3). |
1505 | */ |
1506 | if (isnan(arg1)) |
1507 | { |
1508 | if (isnan(arg2) || arg2 != 0.0) |
1509 | PG_RETURN_FLOAT8(get_float8_nan()); |
1510 | PG_RETURN_FLOAT8(1.0); |
1511 | } |
1512 | if (isnan(arg2)) |
1513 | { |
1514 | if (arg1 != 1.0) |
1515 | PG_RETURN_FLOAT8(get_float8_nan()); |
1516 | PG_RETURN_FLOAT8(1.0); |
1517 | } |
1518 | |
1519 | /* |
1520 | * The SQL spec requires that we emit a particular SQLSTATE error code for |
1521 | * certain error conditions. Specifically, we don't return a |
1522 | * divide-by-zero error code for 0 ^ -1. |
1523 | */ |
1524 | if (arg1 == 0 && arg2 < 0) |
1525 | ereport(ERROR, |
1526 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1527 | errmsg("zero raised to a negative power is undefined" ))); |
1528 | if (arg1 < 0 && floor(arg2) != arg2) |
1529 | ereport(ERROR, |
1530 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
1531 | errmsg("a negative number raised to a non-integer power yields a complex result" ))); |
1532 | |
1533 | /* |
1534 | * pow() sets errno only on some platforms, depending on whether it |
1535 | * follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we try to avoid using |
1536 | * errno. However, some platform/CPU combinations return errno == EDOM |
1537 | * and result == NaN for negative arg1 and very large arg2 (they must be |
1538 | * using something different from our floor() test to decide it's |
1539 | * invalid). Other platforms (HPPA) return errno == ERANGE and a large |
1540 | * (HUGE_VAL) but finite result to signal overflow. |
1541 | */ |
1542 | errno = 0; |
1543 | result = pow(arg1, arg2); |
1544 | if (errno == EDOM && isnan(result)) |
1545 | { |
1546 | if ((fabs(arg1) > 1 && arg2 >= 0) || (fabs(arg1) < 1 && arg2 < 0)) |
1547 | /* The sign of Inf is not significant in this case. */ |
1548 | result = get_float8_infinity(); |
1549 | else if (fabs(arg1) != 1) |
1550 | result = 0; |
1551 | else |
1552 | result = 1; |
1553 | } |
1554 | else if (errno == ERANGE && result != 0 && !isinf(result)) |
1555 | result = get_float8_infinity(); |
1556 | |
1557 | check_float8_val(result, isinf(arg1) || isinf(arg2), arg1 == 0); |
1558 | PG_RETURN_FLOAT8(result); |
1559 | } |
1560 | |
1561 | |
1562 | /* |
1563 | * dexp - returns the exponential function of arg1 |
1564 | */ |
1565 | Datum |
1566 | dexp(PG_FUNCTION_ARGS) |
1567 | { |
1568 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1569 | float8 result; |
1570 | |
1571 | errno = 0; |
1572 | result = exp(arg1); |
1573 | if (errno == ERANGE && result != 0 && !isinf(result)) |
1574 | result = get_float8_infinity(); |
1575 | |
1576 | check_float8_val(result, isinf(arg1), false); |
1577 | PG_RETURN_FLOAT8(result); |
1578 | } |
1579 | |
1580 | |
1581 | /* |
1582 | * dlog1 - returns the natural logarithm of arg1 |
1583 | */ |
1584 | Datum |
1585 | dlog1(PG_FUNCTION_ARGS) |
1586 | { |
1587 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1588 | float8 result; |
1589 | |
1590 | /* |
1591 | * Emit particular SQLSTATE error codes for ln(). This is required by the |
1592 | * SQL standard. |
1593 | */ |
1594 | if (arg1 == 0.0) |
1595 | ereport(ERROR, |
1596 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1597 | errmsg("cannot take logarithm of zero" ))); |
1598 | if (arg1 < 0) |
1599 | ereport(ERROR, |
1600 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1601 | errmsg("cannot take logarithm of a negative number" ))); |
1602 | |
1603 | result = log(arg1); |
1604 | |
1605 | check_float8_val(result, isinf(arg1), arg1 == 1); |
1606 | PG_RETURN_FLOAT8(result); |
1607 | } |
1608 | |
1609 | |
1610 | /* |
1611 | * dlog10 - returns the base 10 logarithm of arg1 |
1612 | */ |
1613 | Datum |
1614 | dlog10(PG_FUNCTION_ARGS) |
1615 | { |
1616 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1617 | float8 result; |
1618 | |
1619 | /* |
1620 | * Emit particular SQLSTATE error codes for log(). The SQL spec doesn't |
1621 | * define log(), but it does define ln(), so it makes sense to emit the |
1622 | * same error code for an analogous error condition. |
1623 | */ |
1624 | if (arg1 == 0.0) |
1625 | ereport(ERROR, |
1626 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1627 | errmsg("cannot take logarithm of zero" ))); |
1628 | if (arg1 < 0) |
1629 | ereport(ERROR, |
1630 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
1631 | errmsg("cannot take logarithm of a negative number" ))); |
1632 | |
1633 | result = log10(arg1); |
1634 | |
1635 | check_float8_val(result, isinf(arg1), arg1 == 1); |
1636 | PG_RETURN_FLOAT8(result); |
1637 | } |
1638 | |
1639 | |
1640 | /* |
1641 | * dacos - returns the arccos of arg1 (radians) |
1642 | */ |
1643 | Datum |
1644 | dacos(PG_FUNCTION_ARGS) |
1645 | { |
1646 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1647 | float8 result; |
1648 | |
1649 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1650 | if (isnan(arg1)) |
1651 | PG_RETURN_FLOAT8(get_float8_nan()); |
1652 | |
1653 | /* |
1654 | * The principal branch of the inverse cosine function maps values in the |
1655 | * range [-1, 1] to values in the range [0, Pi], so we should reject any |
1656 | * inputs outside that range and the result will always be finite. |
1657 | */ |
1658 | if (arg1 < -1.0 || arg1 > 1.0) |
1659 | ereport(ERROR, |
1660 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1661 | errmsg("input is out of range" ))); |
1662 | |
1663 | result = acos(arg1); |
1664 | |
1665 | check_float8_val(result, false, true); |
1666 | PG_RETURN_FLOAT8(result); |
1667 | } |
1668 | |
1669 | |
1670 | /* |
1671 | * dasin - returns the arcsin of arg1 (radians) |
1672 | */ |
1673 | Datum |
1674 | dasin(PG_FUNCTION_ARGS) |
1675 | { |
1676 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1677 | float8 result; |
1678 | |
1679 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1680 | if (isnan(arg1)) |
1681 | PG_RETURN_FLOAT8(get_float8_nan()); |
1682 | |
1683 | /* |
1684 | * The principal branch of the inverse sine function maps values in the |
1685 | * range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject |
1686 | * any inputs outside that range and the result will always be finite. |
1687 | */ |
1688 | if (arg1 < -1.0 || arg1 > 1.0) |
1689 | ereport(ERROR, |
1690 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1691 | errmsg("input is out of range" ))); |
1692 | |
1693 | result = asin(arg1); |
1694 | |
1695 | check_float8_val(result, false, true); |
1696 | PG_RETURN_FLOAT8(result); |
1697 | } |
1698 | |
1699 | |
1700 | /* |
1701 | * datan - returns the arctan of arg1 (radians) |
1702 | */ |
1703 | Datum |
1704 | datan(PG_FUNCTION_ARGS) |
1705 | { |
1706 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1707 | float8 result; |
1708 | |
1709 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1710 | if (isnan(arg1)) |
1711 | PG_RETURN_FLOAT8(get_float8_nan()); |
1712 | |
1713 | /* |
1714 | * The principal branch of the inverse tangent function maps all inputs to |
1715 | * values in the range [-Pi/2, Pi/2], so the result should always be |
1716 | * finite, even if the input is infinite. |
1717 | */ |
1718 | result = atan(arg1); |
1719 | |
1720 | check_float8_val(result, false, true); |
1721 | PG_RETURN_FLOAT8(result); |
1722 | } |
1723 | |
1724 | |
1725 | /* |
1726 | * atan2 - returns the arctan of arg1/arg2 (radians) |
1727 | */ |
1728 | Datum |
1729 | datan2(PG_FUNCTION_ARGS) |
1730 | { |
1731 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1732 | float8 arg2 = PG_GETARG_FLOAT8(1); |
1733 | float8 result; |
1734 | |
1735 | /* Per the POSIX spec, return NaN if either input is NaN */ |
1736 | if (isnan(arg1) || isnan(arg2)) |
1737 | PG_RETURN_FLOAT8(get_float8_nan()); |
1738 | |
1739 | /* |
1740 | * atan2 maps all inputs to values in the range [-Pi, Pi], so the result |
1741 | * should always be finite, even if the inputs are infinite. |
1742 | */ |
1743 | result = atan2(arg1, arg2); |
1744 | |
1745 | check_float8_val(result, false, true); |
1746 | PG_RETURN_FLOAT8(result); |
1747 | } |
1748 | |
1749 | |
1750 | /* |
1751 | * dcos - returns the cosine of arg1 (radians) |
1752 | */ |
1753 | Datum |
1754 | dcos(PG_FUNCTION_ARGS) |
1755 | { |
1756 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1757 | float8 result; |
1758 | |
1759 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1760 | if (isnan(arg1)) |
1761 | PG_RETURN_FLOAT8(get_float8_nan()); |
1762 | |
1763 | /* |
1764 | * cos() is periodic and so theoretically can work for all finite inputs, |
1765 | * but some implementations may choose to throw error if the input is so |
1766 | * large that there are no significant digits in the result. So we should |
1767 | * check for errors. POSIX allows an error to be reported either via |
1768 | * errno or via fetestexcept(), but currently we only support checking |
1769 | * errno. (fetestexcept() is rumored to report underflow unreasonably |
1770 | * early on some platforms, so it's not clear that believing it would be a |
1771 | * net improvement anyway.) |
1772 | * |
1773 | * For infinite inputs, POSIX specifies that the trigonometric functions |
1774 | * should return a domain error; but we won't notice that unless the |
1775 | * platform reports via errno, so also explicitly test for infinite |
1776 | * inputs. |
1777 | */ |
1778 | errno = 0; |
1779 | result = cos(arg1); |
1780 | if (errno != 0 || isinf(arg1)) |
1781 | ereport(ERROR, |
1782 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1783 | errmsg("input is out of range" ))); |
1784 | |
1785 | check_float8_val(result, false, true); |
1786 | PG_RETURN_FLOAT8(result); |
1787 | } |
1788 | |
1789 | |
1790 | /* |
1791 | * dcot - returns the cotangent of arg1 (radians) |
1792 | */ |
1793 | Datum |
1794 | dcot(PG_FUNCTION_ARGS) |
1795 | { |
1796 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1797 | float8 result; |
1798 | |
1799 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1800 | if (isnan(arg1)) |
1801 | PG_RETURN_FLOAT8(get_float8_nan()); |
1802 | |
1803 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1804 | errno = 0; |
1805 | result = tan(arg1); |
1806 | if (errno != 0 || isinf(arg1)) |
1807 | ereport(ERROR, |
1808 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1809 | errmsg("input is out of range" ))); |
1810 | |
1811 | result = 1.0 / result; |
1812 | check_float8_val(result, true /* cot(0) == Inf */ , true); |
1813 | PG_RETURN_FLOAT8(result); |
1814 | } |
1815 | |
1816 | |
1817 | /* |
1818 | * dsin - returns the sine of arg1 (radians) |
1819 | */ |
1820 | Datum |
1821 | dsin(PG_FUNCTION_ARGS) |
1822 | { |
1823 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1824 | float8 result; |
1825 | |
1826 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1827 | if (isnan(arg1)) |
1828 | PG_RETURN_FLOAT8(get_float8_nan()); |
1829 | |
1830 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1831 | errno = 0; |
1832 | result = sin(arg1); |
1833 | if (errno != 0 || isinf(arg1)) |
1834 | ereport(ERROR, |
1835 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1836 | errmsg("input is out of range" ))); |
1837 | |
1838 | check_float8_val(result, false, true); |
1839 | PG_RETURN_FLOAT8(result); |
1840 | } |
1841 | |
1842 | |
1843 | /* |
1844 | * dtan - returns the tangent of arg1 (radians) |
1845 | */ |
1846 | Datum |
1847 | dtan(PG_FUNCTION_ARGS) |
1848 | { |
1849 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1850 | float8 result; |
1851 | |
1852 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1853 | if (isnan(arg1)) |
1854 | PG_RETURN_FLOAT8(get_float8_nan()); |
1855 | |
1856 | /* Be sure to throw an error if the input is infinite --- see dcos() */ |
1857 | errno = 0; |
1858 | result = tan(arg1); |
1859 | if (errno != 0 || isinf(arg1)) |
1860 | ereport(ERROR, |
1861 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1862 | errmsg("input is out of range" ))); |
1863 | |
1864 | check_float8_val(result, true /* tan(pi/2) == Inf */ , true); |
1865 | PG_RETURN_FLOAT8(result); |
1866 | } |
1867 | |
1868 | |
1869 | /* ========== DEGREE-BASED TRIGONOMETRIC FUNCTIONS ========== */ |
1870 | |
1871 | |
1872 | /* |
1873 | * Initialize the cached constants declared at the head of this file |
1874 | * (sin_30 etc). The fact that we need those at all, let alone need this |
1875 | * Rube-Goldberg-worthy method of initializing them, is because there are |
1876 | * compilers out there that will precompute expressions such as sin(constant) |
1877 | * using a sin() function different from what will be used at runtime. If we |
1878 | * want exact results, we must ensure that none of the scaling constants used |
1879 | * in the degree-based trig functions are computed that way. To do so, we |
1880 | * compute them from the variables degree_c_thirty etc, which are also really |
1881 | * constants, but the compiler cannot assume that. |
1882 | * |
1883 | * Other hazards we are trying to forestall with this kluge include the |
1884 | * possibility that compilers will rearrange the expressions, or compute |
1885 | * some intermediate results in registers wider than a standard double. |
1886 | * |
1887 | * In the places where we use these constants, the typical pattern is like |
1888 | * volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
1889 | * return (sin_x / sin_30); |
1890 | * where we hope to get a value of exactly 1.0 from the division when x = 30. |
1891 | * The volatile temporary variable is needed on machines with wide float |
1892 | * registers, to ensure that the result of sin(x) is rounded to double width |
1893 | * the same as the value of sin_30 has been. Experimentation with gcc shows |
1894 | * that marking the temp variable volatile is necessary to make the store and |
1895 | * reload actually happen; hopefully the same trick works for other compilers. |
1896 | * (gcc's documentation suggests using the -ffloat-store compiler switch to |
1897 | * ensure this, but that is compiler-specific and it also pessimizes code in |
1898 | * many places where we don't care about this.) |
1899 | */ |
1900 | static void |
1901 | init_degree_constants(void) |
1902 | { |
1903 | sin_30 = sin(degree_c_thirty * RADIANS_PER_DEGREE); |
1904 | one_minus_cos_60 = 1.0 - cos(degree_c_sixty * RADIANS_PER_DEGREE); |
1905 | asin_0_5 = asin(degree_c_one_half); |
1906 | acos_0_5 = acos(degree_c_one_half); |
1907 | atan_1_0 = atan(degree_c_one); |
1908 | tan_45 = sind_q1(degree_c_forty_five) / cosd_q1(degree_c_forty_five); |
1909 | cot_45 = cosd_q1(degree_c_forty_five) / sind_q1(degree_c_forty_five); |
1910 | degree_consts_set = true; |
1911 | } |
1912 | |
1913 | #define INIT_DEGREE_CONSTANTS() \ |
1914 | do { \ |
1915 | if (!degree_consts_set) \ |
1916 | init_degree_constants(); \ |
1917 | } while(0) |
1918 | |
1919 | |
1920 | /* |
1921 | * asind_q1 - returns the inverse sine of x in degrees, for x in |
1922 | * the range [0, 1]. The result is an angle in the |
1923 | * first quadrant --- [0, 90] degrees. |
1924 | * |
1925 | * For the 3 special case inputs (0, 0.5 and 1), this |
1926 | * function will return exact values (0, 30 and 90 |
1927 | * degrees respectively). |
1928 | */ |
1929 | static double |
1930 | asind_q1(double x) |
1931 | { |
1932 | /* |
1933 | * Stitch together inverse sine and cosine functions for the ranges [0, |
1934 | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
1935 | * exactly 30 for x=0.5, so the result is a continuous monotonic function |
1936 | * over the full range. |
1937 | */ |
1938 | if (x <= 0.5) |
1939 | { |
1940 | volatile float8 asin_x = asin(x); |
1941 | |
1942 | return (asin_x / asin_0_5) * 30.0; |
1943 | } |
1944 | else |
1945 | { |
1946 | volatile float8 acos_x = acos(x); |
1947 | |
1948 | return 90.0 - (acos_x / acos_0_5) * 60.0; |
1949 | } |
1950 | } |
1951 | |
1952 | |
1953 | /* |
1954 | * acosd_q1 - returns the inverse cosine of x in degrees, for x in |
1955 | * the range [0, 1]. The result is an angle in the |
1956 | * first quadrant --- [0, 90] degrees. |
1957 | * |
1958 | * For the 3 special case inputs (0, 0.5 and 1), this |
1959 | * function will return exact values (0, 60 and 90 |
1960 | * degrees respectively). |
1961 | */ |
1962 | static double |
1963 | acosd_q1(double x) |
1964 | { |
1965 | /* |
1966 | * Stitch together inverse sine and cosine functions for the ranges [0, |
1967 | * 0.5] and (0.5, 1]. Each expression below is guaranteed to return |
1968 | * exactly 60 for x=0.5, so the result is a continuous monotonic function |
1969 | * over the full range. |
1970 | */ |
1971 | if (x <= 0.5) |
1972 | { |
1973 | volatile float8 asin_x = asin(x); |
1974 | |
1975 | return 90.0 - (asin_x / asin_0_5) * 30.0; |
1976 | } |
1977 | else |
1978 | { |
1979 | volatile float8 acos_x = acos(x); |
1980 | |
1981 | return (acos_x / acos_0_5) * 60.0; |
1982 | } |
1983 | } |
1984 | |
1985 | |
1986 | /* |
1987 | * dacosd - returns the arccos of arg1 (degrees) |
1988 | */ |
1989 | Datum |
1990 | dacosd(PG_FUNCTION_ARGS) |
1991 | { |
1992 | float8 arg1 = PG_GETARG_FLOAT8(0); |
1993 | float8 result; |
1994 | |
1995 | /* Per the POSIX spec, return NaN if the input is NaN */ |
1996 | if (isnan(arg1)) |
1997 | PG_RETURN_FLOAT8(get_float8_nan()); |
1998 | |
1999 | INIT_DEGREE_CONSTANTS(); |
2000 | |
2001 | /* |
2002 | * The principal branch of the inverse cosine function maps values in the |
2003 | * range [-1, 1] to values in the range [0, 180], so we should reject any |
2004 | * inputs outside that range and the result will always be finite. |
2005 | */ |
2006 | if (arg1 < -1.0 || arg1 > 1.0) |
2007 | ereport(ERROR, |
2008 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2009 | errmsg("input is out of range" ))); |
2010 | |
2011 | if (arg1 >= 0.0) |
2012 | result = acosd_q1(arg1); |
2013 | else |
2014 | result = 90.0 + asind_q1(-arg1); |
2015 | |
2016 | check_float8_val(result, false, true); |
2017 | PG_RETURN_FLOAT8(result); |
2018 | } |
2019 | |
2020 | |
2021 | /* |
2022 | * dasind - returns the arcsin of arg1 (degrees) |
2023 | */ |
2024 | Datum |
2025 | dasind(PG_FUNCTION_ARGS) |
2026 | { |
2027 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2028 | float8 result; |
2029 | |
2030 | /* Per the POSIX spec, return NaN if the input is NaN */ |
2031 | if (isnan(arg1)) |
2032 | PG_RETURN_FLOAT8(get_float8_nan()); |
2033 | |
2034 | INIT_DEGREE_CONSTANTS(); |
2035 | |
2036 | /* |
2037 | * The principal branch of the inverse sine function maps values in the |
2038 | * range [-1, 1] to values in the range [-90, 90], so we should reject any |
2039 | * inputs outside that range and the result will always be finite. |
2040 | */ |
2041 | if (arg1 < -1.0 || arg1 > 1.0) |
2042 | ereport(ERROR, |
2043 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2044 | errmsg("input is out of range" ))); |
2045 | |
2046 | if (arg1 >= 0.0) |
2047 | result = asind_q1(arg1); |
2048 | else |
2049 | result = -asind_q1(-arg1); |
2050 | |
2051 | check_float8_val(result, false, true); |
2052 | PG_RETURN_FLOAT8(result); |
2053 | } |
2054 | |
2055 | |
2056 | /* |
2057 | * datand - returns the arctan of arg1 (degrees) |
2058 | */ |
2059 | Datum |
2060 | datand(PG_FUNCTION_ARGS) |
2061 | { |
2062 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2063 | float8 result; |
2064 | volatile float8 atan_arg1; |
2065 | |
2066 | /* Per the POSIX spec, return NaN if the input is NaN */ |
2067 | if (isnan(arg1)) |
2068 | PG_RETURN_FLOAT8(get_float8_nan()); |
2069 | |
2070 | INIT_DEGREE_CONSTANTS(); |
2071 | |
2072 | /* |
2073 | * The principal branch of the inverse tangent function maps all inputs to |
2074 | * values in the range [-90, 90], so the result should always be finite, |
2075 | * even if the input is infinite. Additionally, we take care to ensure |
2076 | * than when arg1 is 1, the result is exactly 45. |
2077 | */ |
2078 | atan_arg1 = atan(arg1); |
2079 | result = (atan_arg1 / atan_1_0) * 45.0; |
2080 | |
2081 | check_float8_val(result, false, true); |
2082 | PG_RETURN_FLOAT8(result); |
2083 | } |
2084 | |
2085 | |
2086 | /* |
2087 | * atan2d - returns the arctan of arg1/arg2 (degrees) |
2088 | */ |
2089 | Datum |
2090 | datan2d(PG_FUNCTION_ARGS) |
2091 | { |
2092 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2093 | float8 arg2 = PG_GETARG_FLOAT8(1); |
2094 | float8 result; |
2095 | volatile float8 atan2_arg1_arg2; |
2096 | |
2097 | /* Per the POSIX spec, return NaN if either input is NaN */ |
2098 | if (isnan(arg1) || isnan(arg2)) |
2099 | PG_RETURN_FLOAT8(get_float8_nan()); |
2100 | |
2101 | INIT_DEGREE_CONSTANTS(); |
2102 | |
2103 | /* |
2104 | * atan2d maps all inputs to values in the range [-180, 180], so the |
2105 | * result should always be finite, even if the inputs are infinite. |
2106 | * |
2107 | * Note: this coding assumes that atan(1.0) is a suitable scaling constant |
2108 | * to get an exact result from atan2(). This might well fail on us at |
2109 | * some point, requiring us to decide exactly what inputs we think we're |
2110 | * going to guarantee an exact result for. |
2111 | */ |
2112 | atan2_arg1_arg2 = atan2(arg1, arg2); |
2113 | result = (atan2_arg1_arg2 / atan_1_0) * 45.0; |
2114 | |
2115 | check_float8_val(result, false, true); |
2116 | PG_RETURN_FLOAT8(result); |
2117 | } |
2118 | |
2119 | |
2120 | /* |
2121 | * sind_0_to_30 - returns the sine of an angle that lies between 0 and |
2122 | * 30 degrees. This will return exactly 0 when x is 0, |
2123 | * and exactly 0.5 when x is 30 degrees. |
2124 | */ |
2125 | static double |
2126 | sind_0_to_30(double x) |
2127 | { |
2128 | volatile float8 sin_x = sin(x * RADIANS_PER_DEGREE); |
2129 | |
2130 | return (sin_x / sin_30) / 2.0; |
2131 | } |
2132 | |
2133 | |
2134 | /* |
2135 | * cosd_0_to_60 - returns the cosine of an angle that lies between 0 |
2136 | * and 60 degrees. This will return exactly 1 when x |
2137 | * is 0, and exactly 0.5 when x is 60 degrees. |
2138 | */ |
2139 | static double |
2140 | cosd_0_to_60(double x) |
2141 | { |
2142 | volatile float8 one_minus_cos_x = 1.0 - cos(x * RADIANS_PER_DEGREE); |
2143 | |
2144 | return 1.0 - (one_minus_cos_x / one_minus_cos_60) / 2.0; |
2145 | } |
2146 | |
2147 | |
2148 | /* |
2149 | * sind_q1 - returns the sine of an angle in the first quadrant |
2150 | * (0 to 90 degrees). |
2151 | */ |
2152 | static double |
2153 | sind_q1(double x) |
2154 | { |
2155 | /* |
2156 | * Stitch together the sine and cosine functions for the ranges [0, 30] |
2157 | * and (30, 90]. These guarantee to return exact answers at their |
2158 | * endpoints, so the overall result is a continuous monotonic function |
2159 | * that gives exact results when x = 0, 30 and 90 degrees. |
2160 | */ |
2161 | if (x <= 30.0) |
2162 | return sind_0_to_30(x); |
2163 | else |
2164 | return cosd_0_to_60(90.0 - x); |
2165 | } |
2166 | |
2167 | |
2168 | /* |
2169 | * cosd_q1 - returns the cosine of an angle in the first quadrant |
2170 | * (0 to 90 degrees). |
2171 | */ |
2172 | static double |
2173 | cosd_q1(double x) |
2174 | { |
2175 | /* |
2176 | * Stitch together the sine and cosine functions for the ranges [0, 60] |
2177 | * and (60, 90]. These guarantee to return exact answers at their |
2178 | * endpoints, so the overall result is a continuous monotonic function |
2179 | * that gives exact results when x = 0, 60 and 90 degrees. |
2180 | */ |
2181 | if (x <= 60.0) |
2182 | return cosd_0_to_60(x); |
2183 | else |
2184 | return sind_0_to_30(90.0 - x); |
2185 | } |
2186 | |
2187 | |
2188 | /* |
2189 | * dcosd - returns the cosine of arg1 (degrees) |
2190 | */ |
2191 | Datum |
2192 | dcosd(PG_FUNCTION_ARGS) |
2193 | { |
2194 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2195 | float8 result; |
2196 | int sign = 1; |
2197 | |
2198 | /* |
2199 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2200 | * if the input is infinite. |
2201 | */ |
2202 | if (isnan(arg1)) |
2203 | PG_RETURN_FLOAT8(get_float8_nan()); |
2204 | |
2205 | if (isinf(arg1)) |
2206 | ereport(ERROR, |
2207 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2208 | errmsg("input is out of range" ))); |
2209 | |
2210 | INIT_DEGREE_CONSTANTS(); |
2211 | |
2212 | /* Reduce the range of the input to [0,90] degrees */ |
2213 | arg1 = fmod(arg1, 360.0); |
2214 | |
2215 | if (arg1 < 0.0) |
2216 | { |
2217 | /* cosd(-x) = cosd(x) */ |
2218 | arg1 = -arg1; |
2219 | } |
2220 | |
2221 | if (arg1 > 180.0) |
2222 | { |
2223 | /* cosd(360-x) = cosd(x) */ |
2224 | arg1 = 360.0 - arg1; |
2225 | } |
2226 | |
2227 | if (arg1 > 90.0) |
2228 | { |
2229 | /* cosd(180-x) = -cosd(x) */ |
2230 | arg1 = 180.0 - arg1; |
2231 | sign = -sign; |
2232 | } |
2233 | |
2234 | result = sign * cosd_q1(arg1); |
2235 | |
2236 | check_float8_val(result, false, true); |
2237 | PG_RETURN_FLOAT8(result); |
2238 | } |
2239 | |
2240 | |
2241 | /* |
2242 | * dcotd - returns the cotangent of arg1 (degrees) |
2243 | */ |
2244 | Datum |
2245 | dcotd(PG_FUNCTION_ARGS) |
2246 | { |
2247 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2248 | float8 result; |
2249 | volatile float8 cot_arg1; |
2250 | int sign = 1; |
2251 | |
2252 | /* |
2253 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2254 | * if the input is infinite. |
2255 | */ |
2256 | if (isnan(arg1)) |
2257 | PG_RETURN_FLOAT8(get_float8_nan()); |
2258 | |
2259 | if (isinf(arg1)) |
2260 | ereport(ERROR, |
2261 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2262 | errmsg("input is out of range" ))); |
2263 | |
2264 | INIT_DEGREE_CONSTANTS(); |
2265 | |
2266 | /* Reduce the range of the input to [0,90] degrees */ |
2267 | arg1 = fmod(arg1, 360.0); |
2268 | |
2269 | if (arg1 < 0.0) |
2270 | { |
2271 | /* cotd(-x) = -cotd(x) */ |
2272 | arg1 = -arg1; |
2273 | sign = -sign; |
2274 | } |
2275 | |
2276 | if (arg1 > 180.0) |
2277 | { |
2278 | /* cotd(360-x) = -cotd(x) */ |
2279 | arg1 = 360.0 - arg1; |
2280 | sign = -sign; |
2281 | } |
2282 | |
2283 | if (arg1 > 90.0) |
2284 | { |
2285 | /* cotd(180-x) = -cotd(x) */ |
2286 | arg1 = 180.0 - arg1; |
2287 | sign = -sign; |
2288 | } |
2289 | |
2290 | cot_arg1 = cosd_q1(arg1) / sind_q1(arg1); |
2291 | result = sign * (cot_arg1 / cot_45); |
2292 | |
2293 | /* |
2294 | * On some machines we get cotd(270) = minus zero, but this isn't always |
2295 | * true. For portability, and because the user constituency for this |
2296 | * function probably doesn't want minus zero, force it to plain zero. |
2297 | */ |
2298 | if (result == 0.0) |
2299 | result = 0.0; |
2300 | |
2301 | check_float8_val(result, true /* cotd(0) == Inf */ , true); |
2302 | PG_RETURN_FLOAT8(result); |
2303 | } |
2304 | |
2305 | |
2306 | /* |
2307 | * dsind - returns the sine of arg1 (degrees) |
2308 | */ |
2309 | Datum |
2310 | dsind(PG_FUNCTION_ARGS) |
2311 | { |
2312 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2313 | float8 result; |
2314 | int sign = 1; |
2315 | |
2316 | /* |
2317 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2318 | * if the input is infinite. |
2319 | */ |
2320 | if (isnan(arg1)) |
2321 | PG_RETURN_FLOAT8(get_float8_nan()); |
2322 | |
2323 | if (isinf(arg1)) |
2324 | ereport(ERROR, |
2325 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2326 | errmsg("input is out of range" ))); |
2327 | |
2328 | INIT_DEGREE_CONSTANTS(); |
2329 | |
2330 | /* Reduce the range of the input to [0,90] degrees */ |
2331 | arg1 = fmod(arg1, 360.0); |
2332 | |
2333 | if (arg1 < 0.0) |
2334 | { |
2335 | /* sind(-x) = -sind(x) */ |
2336 | arg1 = -arg1; |
2337 | sign = -sign; |
2338 | } |
2339 | |
2340 | if (arg1 > 180.0) |
2341 | { |
2342 | /* sind(360-x) = -sind(x) */ |
2343 | arg1 = 360.0 - arg1; |
2344 | sign = -sign; |
2345 | } |
2346 | |
2347 | if (arg1 > 90.0) |
2348 | { |
2349 | /* sind(180-x) = sind(x) */ |
2350 | arg1 = 180.0 - arg1; |
2351 | } |
2352 | |
2353 | result = sign * sind_q1(arg1); |
2354 | |
2355 | check_float8_val(result, false, true); |
2356 | PG_RETURN_FLOAT8(result); |
2357 | } |
2358 | |
2359 | |
2360 | /* |
2361 | * dtand - returns the tangent of arg1 (degrees) |
2362 | */ |
2363 | Datum |
2364 | dtand(PG_FUNCTION_ARGS) |
2365 | { |
2366 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2367 | float8 result; |
2368 | volatile float8 tan_arg1; |
2369 | int sign = 1; |
2370 | |
2371 | /* |
2372 | * Per the POSIX spec, return NaN if the input is NaN and throw an error |
2373 | * if the input is infinite. |
2374 | */ |
2375 | if (isnan(arg1)) |
2376 | PG_RETURN_FLOAT8(get_float8_nan()); |
2377 | |
2378 | if (isinf(arg1)) |
2379 | ereport(ERROR, |
2380 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2381 | errmsg("input is out of range" ))); |
2382 | |
2383 | INIT_DEGREE_CONSTANTS(); |
2384 | |
2385 | /* Reduce the range of the input to [0,90] degrees */ |
2386 | arg1 = fmod(arg1, 360.0); |
2387 | |
2388 | if (arg1 < 0.0) |
2389 | { |
2390 | /* tand(-x) = -tand(x) */ |
2391 | arg1 = -arg1; |
2392 | sign = -sign; |
2393 | } |
2394 | |
2395 | if (arg1 > 180.0) |
2396 | { |
2397 | /* tand(360-x) = -tand(x) */ |
2398 | arg1 = 360.0 - arg1; |
2399 | sign = -sign; |
2400 | } |
2401 | |
2402 | if (arg1 > 90.0) |
2403 | { |
2404 | /* tand(180-x) = -tand(x) */ |
2405 | arg1 = 180.0 - arg1; |
2406 | sign = -sign; |
2407 | } |
2408 | |
2409 | tan_arg1 = sind_q1(arg1) / cosd_q1(arg1); |
2410 | result = sign * (tan_arg1 / tan_45); |
2411 | |
2412 | /* |
2413 | * On some machines we get tand(180) = minus zero, but this isn't always |
2414 | * true. For portability, and because the user constituency for this |
2415 | * function probably doesn't want minus zero, force it to plain zero. |
2416 | */ |
2417 | if (result == 0.0) |
2418 | result = 0.0; |
2419 | |
2420 | check_float8_val(result, true /* tand(90) == Inf */ , true); |
2421 | PG_RETURN_FLOAT8(result); |
2422 | } |
2423 | |
2424 | |
2425 | /* |
2426 | * degrees - returns degrees converted from radians |
2427 | */ |
2428 | Datum |
2429 | degrees(PG_FUNCTION_ARGS) |
2430 | { |
2431 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2432 | |
2433 | PG_RETURN_FLOAT8(float8_div(arg1, RADIANS_PER_DEGREE)); |
2434 | } |
2435 | |
2436 | |
2437 | /* |
2438 | * dpi - returns the constant PI |
2439 | */ |
2440 | Datum |
2441 | dpi(PG_FUNCTION_ARGS) |
2442 | { |
2443 | PG_RETURN_FLOAT8(M_PI); |
2444 | } |
2445 | |
2446 | |
2447 | /* |
2448 | * radians - returns radians converted from degrees |
2449 | */ |
2450 | Datum |
2451 | radians(PG_FUNCTION_ARGS) |
2452 | { |
2453 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2454 | |
2455 | PG_RETURN_FLOAT8(float8_mul(arg1, RADIANS_PER_DEGREE)); |
2456 | } |
2457 | |
2458 | |
2459 | /* ========== HYPERBOLIC FUNCTIONS ========== */ |
2460 | |
2461 | |
2462 | /* |
2463 | * dsinh - returns the hyperbolic sine of arg1 |
2464 | */ |
2465 | Datum |
2466 | dsinh(PG_FUNCTION_ARGS) |
2467 | { |
2468 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2469 | float8 result; |
2470 | |
2471 | errno = 0; |
2472 | result = sinh(arg1); |
2473 | |
2474 | /* |
2475 | * if an ERANGE error occurs, it means there is an overflow. For sinh, |
2476 | * the result should be either -infinity or infinity, depending on the |
2477 | * sign of arg1. |
2478 | */ |
2479 | if (errno == ERANGE) |
2480 | { |
2481 | if (arg1 < 0) |
2482 | result = -get_float8_infinity(); |
2483 | else |
2484 | result = get_float8_infinity(); |
2485 | } |
2486 | |
2487 | check_float8_val(result, true, true); |
2488 | PG_RETURN_FLOAT8(result); |
2489 | } |
2490 | |
2491 | |
2492 | /* |
2493 | * dcosh - returns the hyperbolic cosine of arg1 |
2494 | */ |
2495 | Datum |
2496 | dcosh(PG_FUNCTION_ARGS) |
2497 | { |
2498 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2499 | float8 result; |
2500 | |
2501 | errno = 0; |
2502 | result = cosh(arg1); |
2503 | |
2504 | /* |
2505 | * if an ERANGE error occurs, it means there is an overflow. As cosh is |
2506 | * always positive, it always means the result is positive infinity. |
2507 | */ |
2508 | if (errno == ERANGE) |
2509 | result = get_float8_infinity(); |
2510 | |
2511 | check_float8_val(result, true, false); |
2512 | PG_RETURN_FLOAT8(result); |
2513 | } |
2514 | |
2515 | /* |
2516 | * dtanh - returns the hyperbolic tangent of arg1 |
2517 | */ |
2518 | Datum |
2519 | dtanh(PG_FUNCTION_ARGS) |
2520 | { |
2521 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2522 | float8 result; |
2523 | |
2524 | /* |
2525 | * For tanh, we don't need an errno check because it never overflows. |
2526 | */ |
2527 | result = tanh(arg1); |
2528 | |
2529 | check_float8_val(result, false, true); |
2530 | PG_RETURN_FLOAT8(result); |
2531 | } |
2532 | |
2533 | /* |
2534 | * dasinh - returns the inverse hyperbolic sine of arg1 |
2535 | */ |
2536 | Datum |
2537 | dasinh(PG_FUNCTION_ARGS) |
2538 | { |
2539 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2540 | float8 result; |
2541 | |
2542 | /* |
2543 | * For asinh, we don't need an errno check because it never overflows. |
2544 | */ |
2545 | result = asinh(arg1); |
2546 | |
2547 | check_float8_val(result, true, true); |
2548 | PG_RETURN_FLOAT8(result); |
2549 | } |
2550 | |
2551 | /* |
2552 | * dacosh - returns the inverse hyperbolic cosine of arg1 |
2553 | */ |
2554 | Datum |
2555 | dacosh(PG_FUNCTION_ARGS) |
2556 | { |
2557 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2558 | float8 result; |
2559 | |
2560 | /* |
2561 | * acosh is only defined for inputs >= 1.0. By checking this ourselves, |
2562 | * we need not worry about checking for an EDOM error, which is a good |
2563 | * thing because some implementations will report that for NaN. Otherwise, |
2564 | * no error is possible. |
2565 | */ |
2566 | if (arg1 < 1.0) |
2567 | ereport(ERROR, |
2568 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2569 | errmsg("input is out of range" ))); |
2570 | |
2571 | result = acosh(arg1); |
2572 | |
2573 | check_float8_val(result, true, true); |
2574 | PG_RETURN_FLOAT8(result); |
2575 | } |
2576 | |
2577 | /* |
2578 | * datanh - returns the inverse hyperbolic tangent of arg1 |
2579 | */ |
2580 | Datum |
2581 | datanh(PG_FUNCTION_ARGS) |
2582 | { |
2583 | float8 arg1 = PG_GETARG_FLOAT8(0); |
2584 | float8 result; |
2585 | |
2586 | /* |
2587 | * atanh is only defined for inputs between -1 and 1. By checking this |
2588 | * ourselves, we need not worry about checking for an EDOM error, which is |
2589 | * a good thing because some implementations will report that for NaN. |
2590 | */ |
2591 | if (arg1 < -1.0 || arg1 > 1.0) |
2592 | ereport(ERROR, |
2593 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2594 | errmsg("input is out of range" ))); |
2595 | |
2596 | /* |
2597 | * Also handle the infinity cases ourselves; this is helpful because old |
2598 | * glibc versions may produce the wrong errno for this. All other inputs |
2599 | * cannot produce an error. |
2600 | */ |
2601 | if (arg1 == -1.0) |
2602 | result = -get_float8_infinity(); |
2603 | else if (arg1 == 1.0) |
2604 | result = get_float8_infinity(); |
2605 | else |
2606 | result = atanh(arg1); |
2607 | |
2608 | check_float8_val(result, true, true); |
2609 | PG_RETURN_FLOAT8(result); |
2610 | } |
2611 | |
2612 | |
2613 | /* |
2614 | * drandom - returns a random number |
2615 | */ |
2616 | Datum |
2617 | drandom(PG_FUNCTION_ARGS) |
2618 | { |
2619 | float8 result; |
2620 | |
2621 | /* Initialize random seed, if not done yet in this process */ |
2622 | if (unlikely(!drandom_seed_set)) |
2623 | { |
2624 | /* |
2625 | * If possible, initialize the seed using high-quality random bits. |
2626 | * Should that fail for some reason, we fall back on a lower-quality |
2627 | * seed based on current time and PID. |
2628 | */ |
2629 | if (!pg_strong_random(drandom_seed, sizeof(drandom_seed))) |
2630 | { |
2631 | TimestampTz now = GetCurrentTimestamp(); |
2632 | uint64 iseed; |
2633 | |
2634 | /* Mix the PID with the most predictable bits of the timestamp */ |
2635 | iseed = (uint64) now ^ ((uint64) MyProcPid << 32); |
2636 | drandom_seed[0] = (unsigned short) iseed; |
2637 | drandom_seed[1] = (unsigned short) (iseed >> 16); |
2638 | drandom_seed[2] = (unsigned short) (iseed >> 32); |
2639 | } |
2640 | drandom_seed_set = true; |
2641 | } |
2642 | |
2643 | /* pg_erand48 produces desired result range [0.0 - 1.0) */ |
2644 | result = pg_erand48(drandom_seed); |
2645 | |
2646 | PG_RETURN_FLOAT8(result); |
2647 | } |
2648 | |
2649 | |
2650 | /* |
2651 | * setseed - set seed for the random number generator |
2652 | */ |
2653 | Datum |
2654 | setseed(PG_FUNCTION_ARGS) |
2655 | { |
2656 | float8 seed = PG_GETARG_FLOAT8(0); |
2657 | uint64 iseed; |
2658 | |
2659 | if (seed < -1 || seed > 1 || isnan(seed)) |
2660 | ereport(ERROR, |
2661 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
2662 | errmsg("setseed parameter %g is out of allowed range [-1,1]" , |
2663 | seed))); |
2664 | |
2665 | /* Use sign bit + 47 fractional bits to fill drandom_seed[] */ |
2666 | iseed = (int64) (seed * (float8) UINT64CONST(0x7FFFFFFFFFFF)); |
2667 | drandom_seed[0] = (unsigned short) iseed; |
2668 | drandom_seed[1] = (unsigned short) (iseed >> 16); |
2669 | drandom_seed[2] = (unsigned short) (iseed >> 32); |
2670 | drandom_seed_set = true; |
2671 | |
2672 | PG_RETURN_VOID(); |
2673 | } |
2674 | |
2675 | |
2676 | |
2677 | /* |
2678 | * ========================= |
2679 | * FLOAT AGGREGATE OPERATORS |
2680 | * ========================= |
2681 | * |
2682 | * float8_accum - accumulate for AVG(), variance aggregates, etc. |
2683 | * float4_accum - same, but input data is float4 |
2684 | * float8_avg - produce final result for float AVG() |
2685 | * float8_var_samp - produce final result for float VAR_SAMP() |
2686 | * float8_var_pop - produce final result for float VAR_POP() |
2687 | * float8_stddev_samp - produce final result for float STDDEV_SAMP() |
2688 | * float8_stddev_pop - produce final result for float STDDEV_POP() |
2689 | * |
2690 | * The naive schoolbook implementation of these aggregates works by |
2691 | * accumulating sum(X) and sum(X^2). However, this approach suffers from |
2692 | * large rounding errors in the final computation of quantities like the |
2693 | * population variance (N*sum(X^2) - sum(X)^2) / N^2, since each of the |
2694 | * intermediate terms is potentially very large, while the difference is often |
2695 | * quite small. |
2696 | * |
2697 | * Instead we use the Youngs-Cramer algorithm [1] which works by accumulating |
2698 | * Sx=sum(X) and Sxx=sum((X-Sx/N)^2), using a numerically stable algorithm to |
2699 | * incrementally update those quantities. The final computations of each of |
2700 | * the aggregate values is then trivial and gives more accurate results (for |
2701 | * example, the population variance is just Sxx/N). This algorithm is also |
2702 | * fairly easy to generalize to allow parallel execution without loss of |
2703 | * precision (see, for example, [2]). For more details, and a comparison of |
2704 | * this with other algorithms, see [3]. |
2705 | * |
2706 | * The transition datatype for all these aggregates is a 3-element array |
2707 | * of float8, holding the values N, Sx, Sxx in that order. |
2708 | * |
2709 | * Note that we represent N as a float to avoid having to build a special |
2710 | * datatype. Given a reasonable floating-point implementation, there should |
2711 | * be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the |
2712 | * user will have doubtless lost interest anyway...) |
2713 | * |
2714 | * [1] Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms, |
2715 | * E. A. Youngs and E. M. Cramer, Technometrics Vol 13, No 3, August 1971. |
2716 | * |
2717 | * [2] Updating Formulae and a Pairwise Algorithm for Computing Sample |
2718 | * Variances, T. F. Chan, G. H. Golub & R. J. LeVeque, COMPSTAT 1982. |
2719 | * |
2720 | * [3] Numerically Stable Parallel Computation of (Co-)Variance, Erich |
2721 | * Schubert and Michael Gertz, Proceedings of the 30th International |
2722 | * Conference on Scientific and Statistical Database Management, 2018. |
2723 | */ |
2724 | |
2725 | static float8 * |
2726 | check_float8_array(ArrayType *transarray, const char *caller, int n) |
2727 | { |
2728 | /* |
2729 | * We expect the input to be an N-element float array; verify that. We |
2730 | * don't need to use deconstruct_array() since the array data is just |
2731 | * going to look like a C array of N float8 values. |
2732 | */ |
2733 | if (ARR_NDIM(transarray) != 1 || |
2734 | ARR_DIMS(transarray)[0] != n || |
2735 | ARR_HASNULL(transarray) || |
2736 | ARR_ELEMTYPE(transarray) != FLOAT8OID) |
2737 | elog(ERROR, "%s: expected %d-element float8 array" , caller, n); |
2738 | return (float8 *) ARR_DATA_PTR(transarray); |
2739 | } |
2740 | |
2741 | /* |
2742 | * float8_combine |
2743 | * |
2744 | * An aggregate combine function used to combine two 3 fields |
2745 | * aggregate transition data into a single transition data. |
2746 | * This function is used only in two stage aggregation and |
2747 | * shouldn't be called outside aggregate context. |
2748 | */ |
2749 | Datum |
2750 | float8_combine(PG_FUNCTION_ARGS) |
2751 | { |
2752 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
2753 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
2754 | float8 *transvalues1; |
2755 | float8 *transvalues2; |
2756 | float8 N1, |
2757 | Sx1, |
2758 | Sxx1, |
2759 | N2, |
2760 | Sx2, |
2761 | Sxx2, |
2762 | tmp, |
2763 | N, |
2764 | Sx, |
2765 | Sxx; |
2766 | |
2767 | transvalues1 = check_float8_array(transarray1, "float8_combine" , 3); |
2768 | transvalues2 = check_float8_array(transarray2, "float8_combine" , 3); |
2769 | |
2770 | N1 = transvalues1[0]; |
2771 | Sx1 = transvalues1[1]; |
2772 | Sxx1 = transvalues1[2]; |
2773 | |
2774 | N2 = transvalues2[0]; |
2775 | Sx2 = transvalues2[1]; |
2776 | Sxx2 = transvalues2[2]; |
2777 | |
2778 | /*-------------------- |
2779 | * The transition values combine using a generalization of the |
2780 | * Youngs-Cramer algorithm as follows: |
2781 | * |
2782 | * N = N1 + N2 |
2783 | * Sx = Sx1 + Sx2 |
2784 | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N; |
2785 | * |
2786 | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
2787 | * since those cases are trivial, and we then don't need to worry about |
2788 | * division-by-zero errors in the general case. |
2789 | *-------------------- |
2790 | */ |
2791 | if (N1 == 0.0) |
2792 | { |
2793 | N = N2; |
2794 | Sx = Sx2; |
2795 | Sxx = Sxx2; |
2796 | } |
2797 | else if (N2 == 0.0) |
2798 | { |
2799 | N = N1; |
2800 | Sx = Sx1; |
2801 | Sxx = Sxx1; |
2802 | } |
2803 | else |
2804 | { |
2805 | N = N1 + N2; |
2806 | Sx = float8_pl(Sx1, Sx2); |
2807 | tmp = Sx1 / N1 - Sx2 / N2; |
2808 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp * tmp / N; |
2809 | check_float8_val(Sxx, isinf(Sxx1) || isinf(Sxx2), true); |
2810 | } |
2811 | |
2812 | /* |
2813 | * If we're invoked as an aggregate, we can cheat and modify our first |
2814 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
2815 | * new array with the updated transition data and return it. |
2816 | */ |
2817 | if (AggCheckCallContext(fcinfo, NULL)) |
2818 | { |
2819 | transvalues1[0] = N; |
2820 | transvalues1[1] = Sx; |
2821 | transvalues1[2] = Sxx; |
2822 | |
2823 | PG_RETURN_ARRAYTYPE_P(transarray1); |
2824 | } |
2825 | else |
2826 | { |
2827 | Datum transdatums[3]; |
2828 | ArrayType *result; |
2829 | |
2830 | transdatums[0] = Float8GetDatumFast(N); |
2831 | transdatums[1] = Float8GetDatumFast(Sx); |
2832 | transdatums[2] = Float8GetDatumFast(Sxx); |
2833 | |
2834 | result = construct_array(transdatums, 3, |
2835 | FLOAT8OID, |
2836 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
2837 | |
2838 | PG_RETURN_ARRAYTYPE_P(result); |
2839 | } |
2840 | } |
2841 | |
2842 | Datum |
2843 | float8_accum(PG_FUNCTION_ARGS) |
2844 | { |
2845 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
2846 | float8 newval = PG_GETARG_FLOAT8(1); |
2847 | float8 *transvalues; |
2848 | float8 N, |
2849 | Sx, |
2850 | Sxx, |
2851 | tmp; |
2852 | |
2853 | transvalues = check_float8_array(transarray, "float8_accum" , 3); |
2854 | N = transvalues[0]; |
2855 | Sx = transvalues[1]; |
2856 | Sxx = transvalues[2]; |
2857 | |
2858 | /* |
2859 | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
2860 | * transition values. |
2861 | */ |
2862 | N += 1.0; |
2863 | Sx += newval; |
2864 | if (transvalues[0] > 0.0) |
2865 | { |
2866 | tmp = newval * N - Sx; |
2867 | Sxx += tmp * tmp / (N * transvalues[0]); |
2868 | |
2869 | /* |
2870 | * Overflow check. We only report an overflow error when finite |
2871 | * inputs lead to infinite results. Note also that Sxx should be NaN |
2872 | * if any of the inputs are infinite, so we intentionally prevent Sxx |
2873 | * from becoming infinite. |
2874 | */ |
2875 | if (isinf(Sx) || isinf(Sxx)) |
2876 | { |
2877 | if (!isinf(transvalues[1]) && !isinf(newval)) |
2878 | ereport(ERROR, |
2879 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2880 | errmsg("value out of range: overflow" ))); |
2881 | |
2882 | Sxx = get_float8_nan(); |
2883 | } |
2884 | } |
2885 | |
2886 | /* |
2887 | * If we're invoked as an aggregate, we can cheat and modify our first |
2888 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
2889 | * new array with the updated transition data and return it. |
2890 | */ |
2891 | if (AggCheckCallContext(fcinfo, NULL)) |
2892 | { |
2893 | transvalues[0] = N; |
2894 | transvalues[1] = Sx; |
2895 | transvalues[2] = Sxx; |
2896 | |
2897 | PG_RETURN_ARRAYTYPE_P(transarray); |
2898 | } |
2899 | else |
2900 | { |
2901 | Datum transdatums[3]; |
2902 | ArrayType *result; |
2903 | |
2904 | transdatums[0] = Float8GetDatumFast(N); |
2905 | transdatums[1] = Float8GetDatumFast(Sx); |
2906 | transdatums[2] = Float8GetDatumFast(Sxx); |
2907 | |
2908 | result = construct_array(transdatums, 3, |
2909 | FLOAT8OID, |
2910 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
2911 | |
2912 | PG_RETURN_ARRAYTYPE_P(result); |
2913 | } |
2914 | } |
2915 | |
2916 | Datum |
2917 | float4_accum(PG_FUNCTION_ARGS) |
2918 | { |
2919 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
2920 | |
2921 | /* do computations as float8 */ |
2922 | float8 newval = PG_GETARG_FLOAT4(1); |
2923 | float8 *transvalues; |
2924 | float8 N, |
2925 | Sx, |
2926 | Sxx, |
2927 | tmp; |
2928 | |
2929 | transvalues = check_float8_array(transarray, "float4_accum" , 3); |
2930 | N = transvalues[0]; |
2931 | Sx = transvalues[1]; |
2932 | Sxx = transvalues[2]; |
2933 | |
2934 | /* |
2935 | * Use the Youngs-Cramer algorithm to incorporate the new value into the |
2936 | * transition values. |
2937 | */ |
2938 | N += 1.0; |
2939 | Sx += newval; |
2940 | if (transvalues[0] > 0.0) |
2941 | { |
2942 | tmp = newval * N - Sx; |
2943 | Sxx += tmp * tmp / (N * transvalues[0]); |
2944 | |
2945 | /* |
2946 | * Overflow check. We only report an overflow error when finite |
2947 | * inputs lead to infinite results. Note also that Sxx should be NaN |
2948 | * if any of the inputs are infinite, so we intentionally prevent Sxx |
2949 | * from becoming infinite. |
2950 | */ |
2951 | if (isinf(Sx) || isinf(Sxx)) |
2952 | { |
2953 | if (!isinf(transvalues[1]) && !isinf(newval)) |
2954 | ereport(ERROR, |
2955 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
2956 | errmsg("value out of range: overflow" ))); |
2957 | |
2958 | Sxx = get_float8_nan(); |
2959 | } |
2960 | } |
2961 | |
2962 | /* |
2963 | * If we're invoked as an aggregate, we can cheat and modify our first |
2964 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
2965 | * new array with the updated transition data and return it. |
2966 | */ |
2967 | if (AggCheckCallContext(fcinfo, NULL)) |
2968 | { |
2969 | transvalues[0] = N; |
2970 | transvalues[1] = Sx; |
2971 | transvalues[2] = Sxx; |
2972 | |
2973 | PG_RETURN_ARRAYTYPE_P(transarray); |
2974 | } |
2975 | else |
2976 | { |
2977 | Datum transdatums[3]; |
2978 | ArrayType *result; |
2979 | |
2980 | transdatums[0] = Float8GetDatumFast(N); |
2981 | transdatums[1] = Float8GetDatumFast(Sx); |
2982 | transdatums[2] = Float8GetDatumFast(Sxx); |
2983 | |
2984 | result = construct_array(transdatums, 3, |
2985 | FLOAT8OID, |
2986 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
2987 | |
2988 | PG_RETURN_ARRAYTYPE_P(result); |
2989 | } |
2990 | } |
2991 | |
2992 | Datum |
2993 | float8_avg(PG_FUNCTION_ARGS) |
2994 | { |
2995 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
2996 | float8 *transvalues; |
2997 | float8 N, |
2998 | Sx; |
2999 | |
3000 | transvalues = check_float8_array(transarray, "float8_avg" , 3); |
3001 | N = transvalues[0]; |
3002 | Sx = transvalues[1]; |
3003 | /* ignore Sxx */ |
3004 | |
3005 | /* SQL defines AVG of no values to be NULL */ |
3006 | if (N == 0.0) |
3007 | PG_RETURN_NULL(); |
3008 | |
3009 | PG_RETURN_FLOAT8(Sx / N); |
3010 | } |
3011 | |
3012 | Datum |
3013 | float8_var_pop(PG_FUNCTION_ARGS) |
3014 | { |
3015 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3016 | float8 *transvalues; |
3017 | float8 N, |
3018 | Sxx; |
3019 | |
3020 | transvalues = check_float8_array(transarray, "float8_var_pop" , 3); |
3021 | N = transvalues[0]; |
3022 | /* ignore Sx */ |
3023 | Sxx = transvalues[2]; |
3024 | |
3025 | /* Population variance is undefined when N is 0, so return NULL */ |
3026 | if (N == 0.0) |
3027 | PG_RETURN_NULL(); |
3028 | |
3029 | /* Note that Sxx is guaranteed to be non-negative */ |
3030 | |
3031 | PG_RETURN_FLOAT8(Sxx / N); |
3032 | } |
3033 | |
3034 | Datum |
3035 | float8_var_samp(PG_FUNCTION_ARGS) |
3036 | { |
3037 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3038 | float8 *transvalues; |
3039 | float8 N, |
3040 | Sxx; |
3041 | |
3042 | transvalues = check_float8_array(transarray, "float8_var_samp" , 3); |
3043 | N = transvalues[0]; |
3044 | /* ignore Sx */ |
3045 | Sxx = transvalues[2]; |
3046 | |
3047 | /* Sample variance is undefined when N is 0 or 1, so return NULL */ |
3048 | if (N <= 1.0) |
3049 | PG_RETURN_NULL(); |
3050 | |
3051 | /* Note that Sxx is guaranteed to be non-negative */ |
3052 | |
3053 | PG_RETURN_FLOAT8(Sxx / (N - 1.0)); |
3054 | } |
3055 | |
3056 | Datum |
3057 | float8_stddev_pop(PG_FUNCTION_ARGS) |
3058 | { |
3059 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3060 | float8 *transvalues; |
3061 | float8 N, |
3062 | Sxx; |
3063 | |
3064 | transvalues = check_float8_array(transarray, "float8_stddev_pop" , 3); |
3065 | N = transvalues[0]; |
3066 | /* ignore Sx */ |
3067 | Sxx = transvalues[2]; |
3068 | |
3069 | /* Population stddev is undefined when N is 0, so return NULL */ |
3070 | if (N == 0.0) |
3071 | PG_RETURN_NULL(); |
3072 | |
3073 | /* Note that Sxx is guaranteed to be non-negative */ |
3074 | |
3075 | PG_RETURN_FLOAT8(sqrt(Sxx / N)); |
3076 | } |
3077 | |
3078 | Datum |
3079 | float8_stddev_samp(PG_FUNCTION_ARGS) |
3080 | { |
3081 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3082 | float8 *transvalues; |
3083 | float8 N, |
3084 | Sxx; |
3085 | |
3086 | transvalues = check_float8_array(transarray, "float8_stddev_samp" , 3); |
3087 | N = transvalues[0]; |
3088 | /* ignore Sx */ |
3089 | Sxx = transvalues[2]; |
3090 | |
3091 | /* Sample stddev is undefined when N is 0 or 1, so return NULL */ |
3092 | if (N <= 1.0) |
3093 | PG_RETURN_NULL(); |
3094 | |
3095 | /* Note that Sxx is guaranteed to be non-negative */ |
3096 | |
3097 | PG_RETURN_FLOAT8(sqrt(Sxx / (N - 1.0))); |
3098 | } |
3099 | |
3100 | /* |
3101 | * ========================= |
3102 | * SQL2003 BINARY AGGREGATES |
3103 | * ========================= |
3104 | * |
3105 | * As with the preceding aggregates, we use the Youngs-Cramer algorithm to |
3106 | * reduce rounding errors in the aggregate final functions. |
3107 | * |
3108 | * The transition datatype for all these aggregates is a 6-element array of |
3109 | * float8, holding the values N, Sx=sum(X), Sxx=sum((X-Sx/N)^2), Sy=sum(Y), |
3110 | * Syy=sum((Y-Sy/N)^2), Sxy=sum((X-Sx/N)*(Y-Sy/N)) in that order. |
3111 | * |
3112 | * Note that Y is the first argument to all these aggregates! |
3113 | * |
3114 | * It might seem attractive to optimize this by having multiple accumulator |
3115 | * functions that only calculate the sums actually needed. But on most |
3116 | * modern machines, a couple of extra floating-point multiplies will be |
3117 | * insignificant compared to the other per-tuple overhead, so I've chosen |
3118 | * to minimize code space instead. |
3119 | */ |
3120 | |
3121 | Datum |
3122 | float8_regr_accum(PG_FUNCTION_ARGS) |
3123 | { |
3124 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3125 | float8 newvalY = PG_GETARG_FLOAT8(1); |
3126 | float8 newvalX = PG_GETARG_FLOAT8(2); |
3127 | float8 *transvalues; |
3128 | float8 N, |
3129 | Sx, |
3130 | Sxx, |
3131 | Sy, |
3132 | Syy, |
3133 | Sxy, |
3134 | tmpX, |
3135 | tmpY, |
3136 | scale; |
3137 | |
3138 | transvalues = check_float8_array(transarray, "float8_regr_accum" , 6); |
3139 | N = transvalues[0]; |
3140 | Sx = transvalues[1]; |
3141 | Sxx = transvalues[2]; |
3142 | Sy = transvalues[3]; |
3143 | Syy = transvalues[4]; |
3144 | Sxy = transvalues[5]; |
3145 | |
3146 | /* |
3147 | * Use the Youngs-Cramer algorithm to incorporate the new values into the |
3148 | * transition values. |
3149 | */ |
3150 | N += 1.0; |
3151 | Sx += newvalX; |
3152 | Sy += newvalY; |
3153 | if (transvalues[0] > 0.0) |
3154 | { |
3155 | tmpX = newvalX * N - Sx; |
3156 | tmpY = newvalY * N - Sy; |
3157 | scale = 1.0 / (N * transvalues[0]); |
3158 | Sxx += tmpX * tmpX * scale; |
3159 | Syy += tmpY * tmpY * scale; |
3160 | Sxy += tmpX * tmpY * scale; |
3161 | |
3162 | /* |
3163 | * Overflow check. We only report an overflow error when finite |
3164 | * inputs lead to infinite results. Note also that Sxx, Syy and Sxy |
3165 | * should be NaN if any of the relevant inputs are infinite, so we |
3166 | * intentionally prevent them from becoming infinite. |
3167 | */ |
3168 | if (isinf(Sx) || isinf(Sxx) || isinf(Sy) || isinf(Syy) || isinf(Sxy)) |
3169 | { |
3170 | if (((isinf(Sx) || isinf(Sxx)) && |
3171 | !isinf(transvalues[1]) && !isinf(newvalX)) || |
3172 | ((isinf(Sy) || isinf(Syy)) && |
3173 | !isinf(transvalues[3]) && !isinf(newvalY)) || |
3174 | (isinf(Sxy) && |
3175 | !isinf(transvalues[1]) && !isinf(newvalX) && |
3176 | !isinf(transvalues[3]) && !isinf(newvalY))) |
3177 | ereport(ERROR, |
3178 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
3179 | errmsg("value out of range: overflow" ))); |
3180 | |
3181 | if (isinf(Sxx)) |
3182 | Sxx = get_float8_nan(); |
3183 | if (isinf(Syy)) |
3184 | Syy = get_float8_nan(); |
3185 | if (isinf(Sxy)) |
3186 | Sxy = get_float8_nan(); |
3187 | } |
3188 | } |
3189 | |
3190 | /* |
3191 | * If we're invoked as an aggregate, we can cheat and modify our first |
3192 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3193 | * new array with the updated transition data and return it. |
3194 | */ |
3195 | if (AggCheckCallContext(fcinfo, NULL)) |
3196 | { |
3197 | transvalues[0] = N; |
3198 | transvalues[1] = Sx; |
3199 | transvalues[2] = Sxx; |
3200 | transvalues[3] = Sy; |
3201 | transvalues[4] = Syy; |
3202 | transvalues[5] = Sxy; |
3203 | |
3204 | PG_RETURN_ARRAYTYPE_P(transarray); |
3205 | } |
3206 | else |
3207 | { |
3208 | Datum transdatums[6]; |
3209 | ArrayType *result; |
3210 | |
3211 | transdatums[0] = Float8GetDatumFast(N); |
3212 | transdatums[1] = Float8GetDatumFast(Sx); |
3213 | transdatums[2] = Float8GetDatumFast(Sxx); |
3214 | transdatums[3] = Float8GetDatumFast(Sy); |
3215 | transdatums[4] = Float8GetDatumFast(Syy); |
3216 | transdatums[5] = Float8GetDatumFast(Sxy); |
3217 | |
3218 | result = construct_array(transdatums, 6, |
3219 | FLOAT8OID, |
3220 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
3221 | |
3222 | PG_RETURN_ARRAYTYPE_P(result); |
3223 | } |
3224 | } |
3225 | |
3226 | /* |
3227 | * float8_regr_combine |
3228 | * |
3229 | * An aggregate combine function used to combine two 6 fields |
3230 | * aggregate transition data into a single transition data. |
3231 | * This function is used only in two stage aggregation and |
3232 | * shouldn't be called outside aggregate context. |
3233 | */ |
3234 | Datum |
3235 | float8_regr_combine(PG_FUNCTION_ARGS) |
3236 | { |
3237 | ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
3238 | ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
3239 | float8 *transvalues1; |
3240 | float8 *transvalues2; |
3241 | float8 N1, |
3242 | Sx1, |
3243 | Sxx1, |
3244 | Sy1, |
3245 | Syy1, |
3246 | Sxy1, |
3247 | N2, |
3248 | Sx2, |
3249 | Sxx2, |
3250 | Sy2, |
3251 | Syy2, |
3252 | Sxy2, |
3253 | tmp1, |
3254 | tmp2, |
3255 | N, |
3256 | Sx, |
3257 | Sxx, |
3258 | Sy, |
3259 | Syy, |
3260 | Sxy; |
3261 | |
3262 | transvalues1 = check_float8_array(transarray1, "float8_regr_combine" , 6); |
3263 | transvalues2 = check_float8_array(transarray2, "float8_regr_combine" , 6); |
3264 | |
3265 | N1 = transvalues1[0]; |
3266 | Sx1 = transvalues1[1]; |
3267 | Sxx1 = transvalues1[2]; |
3268 | Sy1 = transvalues1[3]; |
3269 | Syy1 = transvalues1[4]; |
3270 | Sxy1 = transvalues1[5]; |
3271 | |
3272 | N2 = transvalues2[0]; |
3273 | Sx2 = transvalues2[1]; |
3274 | Sxx2 = transvalues2[2]; |
3275 | Sy2 = transvalues2[3]; |
3276 | Syy2 = transvalues2[4]; |
3277 | Sxy2 = transvalues2[5]; |
3278 | |
3279 | /*-------------------- |
3280 | * The transition values combine using a generalization of the |
3281 | * Youngs-Cramer algorithm as follows: |
3282 | * |
3283 | * N = N1 + N2 |
3284 | * Sx = Sx1 + Sx2 |
3285 | * Sxx = Sxx1 + Sxx2 + N1 * N2 * (Sx1/N1 - Sx2/N2)^2 / N |
3286 | * Sy = Sy1 + Sy2 |
3287 | * Syy = Syy1 + Syy2 + N1 * N2 * (Sy1/N1 - Sy2/N2)^2 / N |
3288 | * Sxy = Sxy1 + Sxy2 + N1 * N2 * (Sx1/N1 - Sx2/N2) * (Sy1/N1 - Sy2/N2) / N |
3289 | * |
3290 | * It's worth handling the special cases N1 = 0 and N2 = 0 separately |
3291 | * since those cases are trivial, and we then don't need to worry about |
3292 | * division-by-zero errors in the general case. |
3293 | *-------------------- |
3294 | */ |
3295 | if (N1 == 0.0) |
3296 | { |
3297 | N = N2; |
3298 | Sx = Sx2; |
3299 | Sxx = Sxx2; |
3300 | Sy = Sy2; |
3301 | Syy = Syy2; |
3302 | Sxy = Sxy2; |
3303 | } |
3304 | else if (N2 == 0.0) |
3305 | { |
3306 | N = N1; |
3307 | Sx = Sx1; |
3308 | Sxx = Sxx1; |
3309 | Sy = Sy1; |
3310 | Syy = Syy1; |
3311 | Sxy = Sxy1; |
3312 | } |
3313 | else |
3314 | { |
3315 | N = N1 + N2; |
3316 | Sx = float8_pl(Sx1, Sx2); |
3317 | tmp1 = Sx1 / N1 - Sx2 / N2; |
3318 | Sxx = Sxx1 + Sxx2 + N1 * N2 * tmp1 * tmp1 / N; |
3319 | check_float8_val(Sxx, isinf(Sxx1) || isinf(Sxx2), true); |
3320 | Sy = float8_pl(Sy1, Sy2); |
3321 | tmp2 = Sy1 / N1 - Sy2 / N2; |
3322 | Syy = Syy1 + Syy2 + N1 * N2 * tmp2 * tmp2 / N; |
3323 | check_float8_val(Syy, isinf(Syy1) || isinf(Syy2), true); |
3324 | Sxy = Sxy1 + Sxy2 + N1 * N2 * tmp1 * tmp2 / N; |
3325 | check_float8_val(Sxy, isinf(Sxy1) || isinf(Sxy2), true); |
3326 | } |
3327 | |
3328 | /* |
3329 | * If we're invoked as an aggregate, we can cheat and modify our first |
3330 | * parameter in-place to reduce palloc overhead. Otherwise we construct a |
3331 | * new array with the updated transition data and return it. |
3332 | */ |
3333 | if (AggCheckCallContext(fcinfo, NULL)) |
3334 | { |
3335 | transvalues1[0] = N; |
3336 | transvalues1[1] = Sx; |
3337 | transvalues1[2] = Sxx; |
3338 | transvalues1[3] = Sy; |
3339 | transvalues1[4] = Syy; |
3340 | transvalues1[5] = Sxy; |
3341 | |
3342 | PG_RETURN_ARRAYTYPE_P(transarray1); |
3343 | } |
3344 | else |
3345 | { |
3346 | Datum transdatums[6]; |
3347 | ArrayType *result; |
3348 | |
3349 | transdatums[0] = Float8GetDatumFast(N); |
3350 | transdatums[1] = Float8GetDatumFast(Sx); |
3351 | transdatums[2] = Float8GetDatumFast(Sxx); |
3352 | transdatums[3] = Float8GetDatumFast(Sy); |
3353 | transdatums[4] = Float8GetDatumFast(Syy); |
3354 | transdatums[5] = Float8GetDatumFast(Sxy); |
3355 | |
3356 | result = construct_array(transdatums, 6, |
3357 | FLOAT8OID, |
3358 | sizeof(float8), FLOAT8PASSBYVAL, 'd'); |
3359 | |
3360 | PG_RETURN_ARRAYTYPE_P(result); |
3361 | } |
3362 | } |
3363 | |
3364 | |
3365 | Datum |
3366 | float8_regr_sxx(PG_FUNCTION_ARGS) |
3367 | { |
3368 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3369 | float8 *transvalues; |
3370 | float8 N, |
3371 | Sxx; |
3372 | |
3373 | transvalues = check_float8_array(transarray, "float8_regr_sxx" , 6); |
3374 | N = transvalues[0]; |
3375 | Sxx = transvalues[2]; |
3376 | |
3377 | /* if N is 0 we should return NULL */ |
3378 | if (N < 1.0) |
3379 | PG_RETURN_NULL(); |
3380 | |
3381 | /* Note that Sxx is guaranteed to be non-negative */ |
3382 | |
3383 | PG_RETURN_FLOAT8(Sxx); |
3384 | } |
3385 | |
3386 | Datum |
3387 | float8_regr_syy(PG_FUNCTION_ARGS) |
3388 | { |
3389 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3390 | float8 *transvalues; |
3391 | float8 N, |
3392 | Syy; |
3393 | |
3394 | transvalues = check_float8_array(transarray, "float8_regr_syy" , 6); |
3395 | N = transvalues[0]; |
3396 | Syy = transvalues[4]; |
3397 | |
3398 | /* if N is 0 we should return NULL */ |
3399 | if (N < 1.0) |
3400 | PG_RETURN_NULL(); |
3401 | |
3402 | /* Note that Syy is guaranteed to be non-negative */ |
3403 | |
3404 | PG_RETURN_FLOAT8(Syy); |
3405 | } |
3406 | |
3407 | Datum |
3408 | float8_regr_sxy(PG_FUNCTION_ARGS) |
3409 | { |
3410 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3411 | float8 *transvalues; |
3412 | float8 N, |
3413 | Sxy; |
3414 | |
3415 | transvalues = check_float8_array(transarray, "float8_regr_sxy" , 6); |
3416 | N = transvalues[0]; |
3417 | Sxy = transvalues[5]; |
3418 | |
3419 | /* if N is 0 we should return NULL */ |
3420 | if (N < 1.0) |
3421 | PG_RETURN_NULL(); |
3422 | |
3423 | /* A negative result is valid here */ |
3424 | |
3425 | PG_RETURN_FLOAT8(Sxy); |
3426 | } |
3427 | |
3428 | Datum |
3429 | float8_regr_avgx(PG_FUNCTION_ARGS) |
3430 | { |
3431 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3432 | float8 *transvalues; |
3433 | float8 N, |
3434 | Sx; |
3435 | |
3436 | transvalues = check_float8_array(transarray, "float8_regr_avgx" , 6); |
3437 | N = transvalues[0]; |
3438 | Sx = transvalues[1]; |
3439 | |
3440 | /* if N is 0 we should return NULL */ |
3441 | if (N < 1.0) |
3442 | PG_RETURN_NULL(); |
3443 | |
3444 | PG_RETURN_FLOAT8(Sx / N); |
3445 | } |
3446 | |
3447 | Datum |
3448 | float8_regr_avgy(PG_FUNCTION_ARGS) |
3449 | { |
3450 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3451 | float8 *transvalues; |
3452 | float8 N, |
3453 | Sy; |
3454 | |
3455 | transvalues = check_float8_array(transarray, "float8_regr_avgy" , 6); |
3456 | N = transvalues[0]; |
3457 | Sy = transvalues[3]; |
3458 | |
3459 | /* if N is 0 we should return NULL */ |
3460 | if (N < 1.0) |
3461 | PG_RETURN_NULL(); |
3462 | |
3463 | PG_RETURN_FLOAT8(Sy / N); |
3464 | } |
3465 | |
3466 | Datum |
3467 | float8_covar_pop(PG_FUNCTION_ARGS) |
3468 | { |
3469 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3470 | float8 *transvalues; |
3471 | float8 N, |
3472 | Sxy; |
3473 | |
3474 | transvalues = check_float8_array(transarray, "float8_covar_pop" , 6); |
3475 | N = transvalues[0]; |
3476 | Sxy = transvalues[5]; |
3477 | |
3478 | /* if N is 0 we should return NULL */ |
3479 | if (N < 1.0) |
3480 | PG_RETURN_NULL(); |
3481 | |
3482 | PG_RETURN_FLOAT8(Sxy / N); |
3483 | } |
3484 | |
3485 | Datum |
3486 | float8_covar_samp(PG_FUNCTION_ARGS) |
3487 | { |
3488 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3489 | float8 *transvalues; |
3490 | float8 N, |
3491 | Sxy; |
3492 | |
3493 | transvalues = check_float8_array(transarray, "float8_covar_samp" , 6); |
3494 | N = transvalues[0]; |
3495 | Sxy = transvalues[5]; |
3496 | |
3497 | /* if N is <= 1 we should return NULL */ |
3498 | if (N < 2.0) |
3499 | PG_RETURN_NULL(); |
3500 | |
3501 | PG_RETURN_FLOAT8(Sxy / (N - 1.0)); |
3502 | } |
3503 | |
3504 | Datum |
3505 | float8_corr(PG_FUNCTION_ARGS) |
3506 | { |
3507 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3508 | float8 *transvalues; |
3509 | float8 N, |
3510 | Sxx, |
3511 | Syy, |
3512 | Sxy; |
3513 | |
3514 | transvalues = check_float8_array(transarray, "float8_corr" , 6); |
3515 | N = transvalues[0]; |
3516 | Sxx = transvalues[2]; |
3517 | Syy = transvalues[4]; |
3518 | Sxy = transvalues[5]; |
3519 | |
3520 | /* if N is 0 we should return NULL */ |
3521 | if (N < 1.0) |
3522 | PG_RETURN_NULL(); |
3523 | |
3524 | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
3525 | |
3526 | /* per spec, return NULL for horizontal and vertical lines */ |
3527 | if (Sxx == 0 || Syy == 0) |
3528 | PG_RETURN_NULL(); |
3529 | |
3530 | PG_RETURN_FLOAT8(Sxy / sqrt(Sxx * Syy)); |
3531 | } |
3532 | |
3533 | Datum |
3534 | float8_regr_r2(PG_FUNCTION_ARGS) |
3535 | { |
3536 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3537 | float8 *transvalues; |
3538 | float8 N, |
3539 | Sxx, |
3540 | Syy, |
3541 | Sxy; |
3542 | |
3543 | transvalues = check_float8_array(transarray, "float8_regr_r2" , 6); |
3544 | N = transvalues[0]; |
3545 | Sxx = transvalues[2]; |
3546 | Syy = transvalues[4]; |
3547 | Sxy = transvalues[5]; |
3548 | |
3549 | /* if N is 0 we should return NULL */ |
3550 | if (N < 1.0) |
3551 | PG_RETURN_NULL(); |
3552 | |
3553 | /* Note that Sxx and Syy are guaranteed to be non-negative */ |
3554 | |
3555 | /* per spec, return NULL for a vertical line */ |
3556 | if (Sxx == 0) |
3557 | PG_RETURN_NULL(); |
3558 | |
3559 | /* per spec, return 1.0 for a horizontal line */ |
3560 | if (Syy == 0) |
3561 | PG_RETURN_FLOAT8(1.0); |
3562 | |
3563 | PG_RETURN_FLOAT8((Sxy * Sxy) / (Sxx * Syy)); |
3564 | } |
3565 | |
3566 | Datum |
3567 | float8_regr_slope(PG_FUNCTION_ARGS) |
3568 | { |
3569 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3570 | float8 *transvalues; |
3571 | float8 N, |
3572 | Sxx, |
3573 | Sxy; |
3574 | |
3575 | transvalues = check_float8_array(transarray, "float8_regr_slope" , 6); |
3576 | N = transvalues[0]; |
3577 | Sxx = transvalues[2]; |
3578 | Sxy = transvalues[5]; |
3579 | |
3580 | /* if N is 0 we should return NULL */ |
3581 | if (N < 1.0) |
3582 | PG_RETURN_NULL(); |
3583 | |
3584 | /* Note that Sxx is guaranteed to be non-negative */ |
3585 | |
3586 | /* per spec, return NULL for a vertical line */ |
3587 | if (Sxx == 0) |
3588 | PG_RETURN_NULL(); |
3589 | |
3590 | PG_RETURN_FLOAT8(Sxy / Sxx); |
3591 | } |
3592 | |
3593 | Datum |
3594 | float8_regr_intercept(PG_FUNCTION_ARGS) |
3595 | { |
3596 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
3597 | float8 *transvalues; |
3598 | float8 N, |
3599 | Sx, |
3600 | Sxx, |
3601 | Sy, |
3602 | Sxy; |
3603 | |
3604 | transvalues = check_float8_array(transarray, "float8_regr_intercept" , 6); |
3605 | N = transvalues[0]; |
3606 | Sx = transvalues[1]; |
3607 | Sxx = transvalues[2]; |
3608 | Sy = transvalues[3]; |
3609 | Sxy = transvalues[5]; |
3610 | |
3611 | /* if N is 0 we should return NULL */ |
3612 | if (N < 1.0) |
3613 | PG_RETURN_NULL(); |
3614 | |
3615 | /* Note that Sxx is guaranteed to be non-negative */ |
3616 | |
3617 | /* per spec, return NULL for a vertical line */ |
3618 | if (Sxx == 0) |
3619 | PG_RETURN_NULL(); |
3620 | |
3621 | PG_RETURN_FLOAT8((Sy - Sx * Sxy / Sxx) / N); |
3622 | } |
3623 | |
3624 | |
3625 | /* |
3626 | * ==================================== |
3627 | * MIXED-PRECISION ARITHMETIC OPERATORS |
3628 | * ==================================== |
3629 | */ |
3630 | |
3631 | /* |
3632 | * float48pl - returns arg1 + arg2 |
3633 | * float48mi - returns arg1 - arg2 |
3634 | * float48mul - returns arg1 * arg2 |
3635 | * float48div - returns arg1 / arg2 |
3636 | */ |
3637 | Datum |
3638 | float48pl(PG_FUNCTION_ARGS) |
3639 | { |
3640 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3641 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3642 | |
3643 | PG_RETURN_FLOAT8(float8_pl((float8) arg1, arg2)); |
3644 | } |
3645 | |
3646 | Datum |
3647 | float48mi(PG_FUNCTION_ARGS) |
3648 | { |
3649 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3650 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3651 | |
3652 | PG_RETURN_FLOAT8(float8_mi((float8) arg1, arg2)); |
3653 | } |
3654 | |
3655 | Datum |
3656 | float48mul(PG_FUNCTION_ARGS) |
3657 | { |
3658 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3659 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3660 | |
3661 | PG_RETURN_FLOAT8(float8_mul((float8) arg1, arg2)); |
3662 | } |
3663 | |
3664 | Datum |
3665 | float48div(PG_FUNCTION_ARGS) |
3666 | { |
3667 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3668 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3669 | |
3670 | PG_RETURN_FLOAT8(float8_div((float8) arg1, arg2)); |
3671 | } |
3672 | |
3673 | /* |
3674 | * float84pl - returns arg1 + arg2 |
3675 | * float84mi - returns arg1 - arg2 |
3676 | * float84mul - returns arg1 * arg2 |
3677 | * float84div - returns arg1 / arg2 |
3678 | */ |
3679 | Datum |
3680 | float84pl(PG_FUNCTION_ARGS) |
3681 | { |
3682 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3683 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3684 | |
3685 | PG_RETURN_FLOAT8(float8_pl(arg1, (float8) arg2)); |
3686 | } |
3687 | |
3688 | Datum |
3689 | float84mi(PG_FUNCTION_ARGS) |
3690 | { |
3691 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3692 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3693 | |
3694 | PG_RETURN_FLOAT8(float8_mi(arg1, (float8) arg2)); |
3695 | } |
3696 | |
3697 | Datum |
3698 | float84mul(PG_FUNCTION_ARGS) |
3699 | { |
3700 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3701 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3702 | |
3703 | PG_RETURN_FLOAT8(float8_mul(arg1, (float8) arg2)); |
3704 | } |
3705 | |
3706 | Datum |
3707 | float84div(PG_FUNCTION_ARGS) |
3708 | { |
3709 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3710 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3711 | |
3712 | PG_RETURN_FLOAT8(float8_div(arg1, (float8) arg2)); |
3713 | } |
3714 | |
3715 | /* |
3716 | * ==================== |
3717 | * COMPARISON OPERATORS |
3718 | * ==================== |
3719 | */ |
3720 | |
3721 | /* |
3722 | * float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations |
3723 | */ |
3724 | Datum |
3725 | float48eq(PG_FUNCTION_ARGS) |
3726 | { |
3727 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3728 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3729 | |
3730 | PG_RETURN_BOOL(float8_eq((float8) arg1, arg2)); |
3731 | } |
3732 | |
3733 | Datum |
3734 | float48ne(PG_FUNCTION_ARGS) |
3735 | { |
3736 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3737 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3738 | |
3739 | PG_RETURN_BOOL(float8_ne((float8) arg1, arg2)); |
3740 | } |
3741 | |
3742 | Datum |
3743 | float48lt(PG_FUNCTION_ARGS) |
3744 | { |
3745 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3746 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3747 | |
3748 | PG_RETURN_BOOL(float8_lt((float8) arg1, arg2)); |
3749 | } |
3750 | |
3751 | Datum |
3752 | float48le(PG_FUNCTION_ARGS) |
3753 | { |
3754 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3755 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3756 | |
3757 | PG_RETURN_BOOL(float8_le((float8) arg1, arg2)); |
3758 | } |
3759 | |
3760 | Datum |
3761 | float48gt(PG_FUNCTION_ARGS) |
3762 | { |
3763 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3764 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3765 | |
3766 | PG_RETURN_BOOL(float8_gt((float8) arg1, arg2)); |
3767 | } |
3768 | |
3769 | Datum |
3770 | float48ge(PG_FUNCTION_ARGS) |
3771 | { |
3772 | float4 arg1 = PG_GETARG_FLOAT4(0); |
3773 | float8 arg2 = PG_GETARG_FLOAT8(1); |
3774 | |
3775 | PG_RETURN_BOOL(float8_ge((float8) arg1, arg2)); |
3776 | } |
3777 | |
3778 | /* |
3779 | * float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations |
3780 | */ |
3781 | Datum |
3782 | float84eq(PG_FUNCTION_ARGS) |
3783 | { |
3784 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3785 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3786 | |
3787 | PG_RETURN_BOOL(float8_eq(arg1, (float8) arg2)); |
3788 | } |
3789 | |
3790 | Datum |
3791 | float84ne(PG_FUNCTION_ARGS) |
3792 | { |
3793 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3794 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3795 | |
3796 | PG_RETURN_BOOL(float8_ne(arg1, (float8) arg2)); |
3797 | } |
3798 | |
3799 | Datum |
3800 | float84lt(PG_FUNCTION_ARGS) |
3801 | { |
3802 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3803 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3804 | |
3805 | PG_RETURN_BOOL(float8_lt(arg1, (float8) arg2)); |
3806 | } |
3807 | |
3808 | Datum |
3809 | float84le(PG_FUNCTION_ARGS) |
3810 | { |
3811 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3812 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3813 | |
3814 | PG_RETURN_BOOL(float8_le(arg1, (float8) arg2)); |
3815 | } |
3816 | |
3817 | Datum |
3818 | float84gt(PG_FUNCTION_ARGS) |
3819 | { |
3820 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3821 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3822 | |
3823 | PG_RETURN_BOOL(float8_gt(arg1, (float8) arg2)); |
3824 | } |
3825 | |
3826 | Datum |
3827 | float84ge(PG_FUNCTION_ARGS) |
3828 | { |
3829 | float8 arg1 = PG_GETARG_FLOAT8(0); |
3830 | float4 arg2 = PG_GETARG_FLOAT4(1); |
3831 | |
3832 | PG_RETURN_BOOL(float8_ge(arg1, (float8) arg2)); |
3833 | } |
3834 | |
3835 | /* |
3836 | * Implements the float8 version of the width_bucket() function |
3837 | * defined by SQL2003. See also width_bucket_numeric(). |
3838 | * |
3839 | * 'bound1' and 'bound2' are the lower and upper bounds of the |
3840 | * histogram's range, respectively. 'count' is the number of buckets |
3841 | * in the histogram. width_bucket() returns an integer indicating the |
3842 | * bucket number that 'operand' belongs to in an equiwidth histogram |
3843 | * with the specified characteristics. An operand smaller than the |
3844 | * lower bound is assigned to bucket 0. An operand greater than the |
3845 | * upper bound is assigned to an additional bucket (with number |
3846 | * count+1). We don't allow "NaN" for any of the float8 inputs, and we |
3847 | * don't allow either of the histogram bounds to be +/- infinity. |
3848 | */ |
3849 | Datum |
3850 | width_bucket_float8(PG_FUNCTION_ARGS) |
3851 | { |
3852 | float8 operand = PG_GETARG_FLOAT8(0); |
3853 | float8 bound1 = PG_GETARG_FLOAT8(1); |
3854 | float8 bound2 = PG_GETARG_FLOAT8(2); |
3855 | int32 count = PG_GETARG_INT32(3); |
3856 | int32 result; |
3857 | |
3858 | if (count <= 0.0) |
3859 | ereport(ERROR, |
3860 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
3861 | errmsg("count must be greater than zero" ))); |
3862 | |
3863 | if (isnan(operand) || isnan(bound1) || isnan(bound2)) |
3864 | ereport(ERROR, |
3865 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
3866 | errmsg("operand, lower bound, and upper bound cannot be NaN" ))); |
3867 | |
3868 | /* Note that we allow "operand" to be infinite */ |
3869 | if (isinf(bound1) || isinf(bound2)) |
3870 | ereport(ERROR, |
3871 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
3872 | errmsg("lower and upper bounds must be finite" ))); |
3873 | |
3874 | if (bound1 < bound2) |
3875 | { |
3876 | if (operand < bound1) |
3877 | result = 0; |
3878 | else if (operand >= bound2) |
3879 | { |
3880 | if (pg_add_s32_overflow(count, 1, &result)) |
3881 | ereport(ERROR, |
3882 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
3883 | errmsg("integer out of range" ))); |
3884 | } |
3885 | else |
3886 | result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1; |
3887 | } |
3888 | else if (bound1 > bound2) |
3889 | { |
3890 | if (operand > bound1) |
3891 | result = 0; |
3892 | else if (operand <= bound2) |
3893 | { |
3894 | if (pg_add_s32_overflow(count, 1, &result)) |
3895 | ereport(ERROR, |
3896 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
3897 | errmsg("integer out of range" ))); |
3898 | } |
3899 | else |
3900 | result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1; |
3901 | } |
3902 | else |
3903 | { |
3904 | ereport(ERROR, |
3905 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
3906 | errmsg("lower bound cannot equal upper bound" ))); |
3907 | result = 0; /* keep the compiler quiet */ |
3908 | } |
3909 | |
3910 | PG_RETURN_INT32(result); |
3911 | } |
3912 | |
3913 | /* ========== PRIVATE ROUTINES ========== */ |
3914 | |
3915 | #ifndef HAVE_CBRT |
3916 | |
3917 | static double |
3918 | cbrt(double x) |
3919 | { |
3920 | int isneg = (x < 0.0); |
3921 | double absx = fabs(x); |
3922 | double tmpres = pow(absx, (double) 1.0 / (double) 3.0); |
3923 | |
3924 | /* |
3925 | * The result is somewhat inaccurate --- not really pow()'s fault, as the |
3926 | * exponent it's handed contains roundoff error. We can improve the |
3927 | * accuracy by doing one iteration of Newton's formula. Beware of zero |
3928 | * input however. |
3929 | */ |
3930 | if (tmpres > 0.0) |
3931 | tmpres -= (tmpres - absx / (tmpres * tmpres)) / (double) 3.0; |
3932 | |
3933 | return isneg ? -tmpres : tmpres; |
3934 | } |
3935 | |
3936 | #endif /* !HAVE_CBRT */ |
3937 | |