| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * numeric.c |
| 4 | * An exact numeric data type for the Postgres database system |
| 5 | * |
| 6 | * Original coding 1998, Jan Wieck. Heavily revised 2003, Tom Lane. |
| 7 | * |
| 8 | * Many of the algorithmic ideas are borrowed from David M. Smith's "FM" |
| 9 | * multiple-precision math library, most recently published as Algorithm |
| 10 | * 786: Multiple-Precision Complex Arithmetic and Functions, ACM |
| 11 | * Transactions on Mathematical Software, Vol. 24, No. 4, December 1998, |
| 12 | * pages 359-367. |
| 13 | * |
| 14 | * Copyright (c) 1998-2019, PostgreSQL Global Development Group |
| 15 | * |
| 16 | * IDENTIFICATION |
| 17 | * src/backend/utils/adt/numeric.c |
| 18 | * |
| 19 | *------------------------------------------------------------------------- |
| 20 | */ |
| 21 | |
| 22 | #include "postgres.h" |
| 23 | |
| 24 | #include <ctype.h> |
| 25 | #include <float.h> |
| 26 | #include <limits.h> |
| 27 | #include <math.h> |
| 28 | |
| 29 | #include "catalog/pg_type.h" |
| 30 | #include "common/int.h" |
| 31 | #include "funcapi.h" |
| 32 | #include "lib/hyperloglog.h" |
| 33 | #include "libpq/pqformat.h" |
| 34 | #include "miscadmin.h" |
| 35 | #include "nodes/nodeFuncs.h" |
| 36 | #include "nodes/supportnodes.h" |
| 37 | #include "utils/array.h" |
| 38 | #include "utils/builtins.h" |
| 39 | #include "utils/float.h" |
| 40 | #include "utils/guc.h" |
| 41 | #include "utils/hashutils.h" |
| 42 | #include "utils/int8.h" |
| 43 | #include "utils/numeric.h" |
| 44 | #include "utils/sortsupport.h" |
| 45 | |
| 46 | /* ---------- |
| 47 | * Uncomment the following to enable compilation of dump_numeric() |
| 48 | * and dump_var() and to get a dump of any result produced by make_result(). |
| 49 | * ---------- |
| 50 | #define NUMERIC_DEBUG |
| 51 | */ |
| 52 | |
| 53 | |
| 54 | /* ---------- |
| 55 | * Local data types |
| 56 | * |
| 57 | * Numeric values are represented in a base-NBASE floating point format. |
| 58 | * Each "digit" ranges from 0 to NBASE-1. The type NumericDigit is signed |
| 59 | * and wide enough to store a digit. We assume that NBASE*NBASE can fit in |
| 60 | * an int. Although the purely calculational routines could handle any even |
| 61 | * NBASE that's less than sqrt(INT_MAX), in practice we are only interested |
| 62 | * in NBASE a power of ten, so that I/O conversions and decimal rounding |
| 63 | * are easy. Also, it's actually more efficient if NBASE is rather less than |
| 64 | * sqrt(INT_MAX), so that there is "headroom" for mul_var and div_var_fast to |
| 65 | * postpone processing carries. |
| 66 | * |
| 67 | * Values of NBASE other than 10000 are considered of historical interest only |
| 68 | * and are no longer supported in any sense; no mechanism exists for the client |
| 69 | * to discover the base, so every client supporting binary mode expects the |
| 70 | * base-10000 format. If you plan to change this, also note the numeric |
| 71 | * abbreviation code, which assumes NBASE=10000. |
| 72 | * ---------- |
| 73 | */ |
| 74 | |
| 75 | #if 0 |
| 76 | #define NBASE 10 |
| 77 | #define HALF_NBASE 5 |
| 78 | #define DEC_DIGITS 1 /* decimal digits per NBASE digit */ |
| 79 | #define MUL_GUARD_DIGITS 4 /* these are measured in NBASE digits */ |
| 80 | #define DIV_GUARD_DIGITS 8 |
| 81 | |
| 82 | typedef signed char NumericDigit; |
| 83 | #endif |
| 84 | |
| 85 | #if 0 |
| 86 | #define NBASE 100 |
| 87 | #define HALF_NBASE 50 |
| 88 | #define DEC_DIGITS 2 /* decimal digits per NBASE digit */ |
| 89 | #define MUL_GUARD_DIGITS 3 /* these are measured in NBASE digits */ |
| 90 | #define DIV_GUARD_DIGITS 6 |
| 91 | |
| 92 | typedef signed char NumericDigit; |
| 93 | #endif |
| 94 | |
| 95 | #if 1 |
| 96 | #define NBASE 10000 |
| 97 | #define HALF_NBASE 5000 |
| 98 | #define DEC_DIGITS 4 /* decimal digits per NBASE digit */ |
| 99 | #define MUL_GUARD_DIGITS 2 /* these are measured in NBASE digits */ |
| 100 | #define DIV_GUARD_DIGITS 4 |
| 101 | |
| 102 | typedef int16 NumericDigit; |
| 103 | #endif |
| 104 | |
| 105 | /* |
| 106 | * The Numeric type as stored on disk. |
| 107 | * |
| 108 | * If the high bits of the first word of a NumericChoice (n_header, or |
| 109 | * n_short.n_header, or n_long.n_sign_dscale) are NUMERIC_SHORT, then the |
| 110 | * numeric follows the NumericShort format; if they are NUMERIC_POS or |
| 111 | * NUMERIC_NEG, it follows the NumericLong format. If they are NUMERIC_NAN, |
| 112 | * it is a NaN. We currently always store a NaN using just two bytes (i.e. |
| 113 | * only n_header), but previous releases used only the NumericLong format, |
| 114 | * so we might find 4-byte NaNs on disk if a database has been migrated using |
| 115 | * pg_upgrade. In either case, when the high bits indicate a NaN, the |
| 116 | * remaining bits are never examined. Currently, we always initialize these |
| 117 | * to zero, but it might be possible to use them for some other purpose in |
| 118 | * the future. |
| 119 | * |
| 120 | * In the NumericShort format, the remaining 14 bits of the header word |
| 121 | * (n_short.n_header) are allocated as follows: 1 for sign (positive or |
| 122 | * negative), 6 for dynamic scale, and 7 for weight. In practice, most |
| 123 | * commonly-encountered values can be represented this way. |
| 124 | * |
| 125 | * In the NumericLong format, the remaining 14 bits of the header word |
| 126 | * (n_long.n_sign_dscale) represent the display scale; and the weight is |
| 127 | * stored separately in n_weight. |
| 128 | * |
| 129 | * NOTE: by convention, values in the packed form have been stripped of |
| 130 | * all leading and trailing zero digits (where a "digit" is of base NBASE). |
| 131 | * In particular, if the value is zero, there will be no digits at all! |
| 132 | * The weight is arbitrary in that case, but we normally set it to zero. |
| 133 | */ |
| 134 | |
| 135 | struct NumericShort |
| 136 | { |
| 137 | uint16 ; /* Sign + display scale + weight */ |
| 138 | NumericDigit n_data[FLEXIBLE_ARRAY_MEMBER]; /* Digits */ |
| 139 | }; |
| 140 | |
| 141 | struct NumericLong |
| 142 | { |
| 143 | uint16 n_sign_dscale; /* Sign + display scale */ |
| 144 | int16 n_weight; /* Weight of 1st digit */ |
| 145 | NumericDigit n_data[FLEXIBLE_ARRAY_MEMBER]; /* Digits */ |
| 146 | }; |
| 147 | |
| 148 | union NumericChoice |
| 149 | { |
| 150 | uint16 ; /* Header word */ |
| 151 | struct NumericLong n_long; /* Long form (4-byte header) */ |
| 152 | struct NumericShort n_short; /* Short form (2-byte header) */ |
| 153 | }; |
| 154 | |
| 155 | struct NumericData |
| 156 | { |
| 157 | int32 vl_len_; /* varlena header (do not touch directly!) */ |
| 158 | union NumericChoice choice; /* choice of format */ |
| 159 | }; |
| 160 | |
| 161 | |
| 162 | /* |
| 163 | * Interpretation of high bits. |
| 164 | */ |
| 165 | |
| 166 | #define NUMERIC_SIGN_MASK 0xC000 |
| 167 | #define NUMERIC_POS 0x0000 |
| 168 | #define NUMERIC_NEG 0x4000 |
| 169 | #define NUMERIC_SHORT 0x8000 |
| 170 | #define NUMERIC_NAN 0xC000 |
| 171 | |
| 172 | #define NUMERIC_FLAGBITS(n) ((n)->choice.n_header & NUMERIC_SIGN_MASK) |
| 173 | #define NUMERIC_IS_NAN(n) (NUMERIC_FLAGBITS(n) == NUMERIC_NAN) |
| 174 | #define NUMERIC_IS_SHORT(n) (NUMERIC_FLAGBITS(n) == NUMERIC_SHORT) |
| 175 | |
| 176 | #define NUMERIC_HDRSZ (VARHDRSZ + sizeof(uint16) + sizeof(int16)) |
| 177 | #define NUMERIC_HDRSZ_SHORT (VARHDRSZ + sizeof(uint16)) |
| 178 | |
| 179 | /* |
| 180 | * If the flag bits are NUMERIC_SHORT or NUMERIC_NAN, we want the short header; |
| 181 | * otherwise, we want the long one. Instead of testing against each value, we |
| 182 | * can just look at the high bit, for a slight efficiency gain. |
| 183 | */ |
| 184 | #define (n) (((n)->choice.n_header & 0x8000) != 0) |
| 185 | #define (n) \ |
| 186 | (VARHDRSZ + sizeof(uint16) + \ |
| 187 | (NUMERIC_HEADER_IS_SHORT(n) ? 0 : sizeof(int16))) |
| 188 | |
| 189 | /* |
| 190 | * Short format definitions. |
| 191 | */ |
| 192 | |
| 193 | #define NUMERIC_SHORT_SIGN_MASK 0x2000 |
| 194 | #define NUMERIC_SHORT_DSCALE_MASK 0x1F80 |
| 195 | #define NUMERIC_SHORT_DSCALE_SHIFT 7 |
| 196 | #define NUMERIC_SHORT_DSCALE_MAX \ |
| 197 | (NUMERIC_SHORT_DSCALE_MASK >> NUMERIC_SHORT_DSCALE_SHIFT) |
| 198 | #define NUMERIC_SHORT_WEIGHT_SIGN_MASK 0x0040 |
| 199 | #define NUMERIC_SHORT_WEIGHT_MASK 0x003F |
| 200 | #define NUMERIC_SHORT_WEIGHT_MAX NUMERIC_SHORT_WEIGHT_MASK |
| 201 | #define NUMERIC_SHORT_WEIGHT_MIN (-(NUMERIC_SHORT_WEIGHT_MASK+1)) |
| 202 | |
| 203 | /* |
| 204 | * Extract sign, display scale, weight. |
| 205 | */ |
| 206 | |
| 207 | #define NUMERIC_DSCALE_MASK 0x3FFF |
| 208 | |
| 209 | #define NUMERIC_SIGN(n) \ |
| 210 | (NUMERIC_IS_SHORT(n) ? \ |
| 211 | (((n)->choice.n_short.n_header & NUMERIC_SHORT_SIGN_MASK) ? \ |
| 212 | NUMERIC_NEG : NUMERIC_POS) : NUMERIC_FLAGBITS(n)) |
| 213 | #define NUMERIC_DSCALE(n) (NUMERIC_HEADER_IS_SHORT((n)) ? \ |
| 214 | ((n)->choice.n_short.n_header & NUMERIC_SHORT_DSCALE_MASK) \ |
| 215 | >> NUMERIC_SHORT_DSCALE_SHIFT \ |
| 216 | : ((n)->choice.n_long.n_sign_dscale & NUMERIC_DSCALE_MASK)) |
| 217 | #define NUMERIC_WEIGHT(n) (NUMERIC_HEADER_IS_SHORT((n)) ? \ |
| 218 | (((n)->choice.n_short.n_header & NUMERIC_SHORT_WEIGHT_SIGN_MASK ? \ |
| 219 | ~NUMERIC_SHORT_WEIGHT_MASK : 0) \ |
| 220 | | ((n)->choice.n_short.n_header & NUMERIC_SHORT_WEIGHT_MASK)) \ |
| 221 | : ((n)->choice.n_long.n_weight)) |
| 222 | |
| 223 | /* ---------- |
| 224 | * NumericVar is the format we use for arithmetic. The digit-array part |
| 225 | * is the same as the NumericData storage format, but the header is more |
| 226 | * complex. |
| 227 | * |
| 228 | * The value represented by a NumericVar is determined by the sign, weight, |
| 229 | * ndigits, and digits[] array. |
| 230 | * |
| 231 | * Note: the first digit of a NumericVar's value is assumed to be multiplied |
| 232 | * by NBASE ** weight. Another way to say it is that there are weight+1 |
| 233 | * digits before the decimal point. It is possible to have weight < 0. |
| 234 | * |
| 235 | * buf points at the physical start of the palloc'd digit buffer for the |
| 236 | * NumericVar. digits points at the first digit in actual use (the one |
| 237 | * with the specified weight). We normally leave an unused digit or two |
| 238 | * (preset to zeroes) between buf and digits, so that there is room to store |
| 239 | * a carry out of the top digit without reallocating space. We just need to |
| 240 | * decrement digits (and increment weight) to make room for the carry digit. |
| 241 | * (There is no such extra space in a numeric value stored in the database, |
| 242 | * only in a NumericVar in memory.) |
| 243 | * |
| 244 | * If buf is NULL then the digit buffer isn't actually palloc'd and should |
| 245 | * not be freed --- see the constants below for an example. |
| 246 | * |
| 247 | * dscale, or display scale, is the nominal precision expressed as number |
| 248 | * of digits after the decimal point (it must always be >= 0 at present). |
| 249 | * dscale may be more than the number of physically stored fractional digits, |
| 250 | * implying that we have suppressed storage of significant trailing zeroes. |
| 251 | * It should never be less than the number of stored digits, since that would |
| 252 | * imply hiding digits that are present. NOTE that dscale is always expressed |
| 253 | * in *decimal* digits, and so it may correspond to a fractional number of |
| 254 | * base-NBASE digits --- divide by DEC_DIGITS to convert to NBASE digits. |
| 255 | * |
| 256 | * rscale, or result scale, is the target precision for a computation. |
| 257 | * Like dscale it is expressed as number of *decimal* digits after the decimal |
| 258 | * point, and is always >= 0 at present. |
| 259 | * Note that rscale is not stored in variables --- it's figured on-the-fly |
| 260 | * from the dscales of the inputs. |
| 261 | * |
| 262 | * While we consistently use "weight" to refer to the base-NBASE weight of |
| 263 | * a numeric value, it is convenient in some scale-related calculations to |
| 264 | * make use of the base-10 weight (ie, the approximate log10 of the value). |
| 265 | * To avoid confusion, such a decimal-units weight is called a "dweight". |
| 266 | * |
| 267 | * NB: All the variable-level functions are written in a style that makes it |
| 268 | * possible to give one and the same variable as argument and destination. |
| 269 | * This is feasible because the digit buffer is separate from the variable. |
| 270 | * ---------- |
| 271 | */ |
| 272 | typedef struct NumericVar |
| 273 | { |
| 274 | int ndigits; /* # of digits in digits[] - can be 0! */ |
| 275 | int weight; /* weight of first digit */ |
| 276 | int sign; /* NUMERIC_POS, NUMERIC_NEG, or NUMERIC_NAN */ |
| 277 | int dscale; /* display scale */ |
| 278 | NumericDigit *buf; /* start of palloc'd space for digits[] */ |
| 279 | NumericDigit *digits; /* base-NBASE digits */ |
| 280 | } NumericVar; |
| 281 | |
| 282 | |
| 283 | /* ---------- |
| 284 | * Data for generate_series |
| 285 | * ---------- |
| 286 | */ |
| 287 | typedef struct |
| 288 | { |
| 289 | NumericVar current; |
| 290 | NumericVar stop; |
| 291 | NumericVar step; |
| 292 | } generate_series_numeric_fctx; |
| 293 | |
| 294 | |
| 295 | /* ---------- |
| 296 | * Sort support. |
| 297 | * ---------- |
| 298 | */ |
| 299 | typedef struct |
| 300 | { |
| 301 | void *buf; /* buffer for short varlenas */ |
| 302 | int64 input_count; /* number of non-null values seen */ |
| 303 | bool estimating; /* true if estimating cardinality */ |
| 304 | |
| 305 | hyperLogLogState abbr_card; /* cardinality estimator */ |
| 306 | } NumericSortSupport; |
| 307 | |
| 308 | |
| 309 | /* ---------- |
| 310 | * Fast sum accumulator. |
| 311 | * |
| 312 | * NumericSumAccum is used to implement SUM(), and other standard aggregates |
| 313 | * that track the sum of input values. It uses 32-bit integers to store the |
| 314 | * digits, instead of the normal 16-bit integers (with NBASE=10000). This |
| 315 | * way, we can safely accumulate up to NBASE - 1 values without propagating |
| 316 | * carry, before risking overflow of any of the digits. 'num_uncarried' |
| 317 | * tracks how many values have been accumulated without propagating carry. |
| 318 | * |
| 319 | * Positive and negative values are accumulated separately, in 'pos_digits' |
| 320 | * and 'neg_digits'. This is simpler and faster than deciding whether to add |
| 321 | * or subtract from the current value, for each new value (see sub_var() for |
| 322 | * the logic we avoid by doing this). Both buffers are of same size, and |
| 323 | * have the same weight and scale. In accum_sum_final(), the positive and |
| 324 | * negative sums are added together to produce the final result. |
| 325 | * |
| 326 | * When a new value has a larger ndigits or weight than the accumulator |
| 327 | * currently does, the accumulator is enlarged to accommodate the new value. |
| 328 | * We normally have one zero digit reserved for carry propagation, and that |
| 329 | * is indicated by the 'have_carry_space' flag. When accum_sum_carry() uses |
| 330 | * up the reserved digit, it clears the 'have_carry_space' flag. The next |
| 331 | * call to accum_sum_add() will enlarge the buffer, to make room for the |
| 332 | * extra digit, and set the flag again. |
| 333 | * |
| 334 | * To initialize a new accumulator, simply reset all fields to zeros. |
| 335 | * |
| 336 | * The accumulator does not handle NaNs. |
| 337 | * ---------- |
| 338 | */ |
| 339 | typedef struct NumericSumAccum |
| 340 | { |
| 341 | int ndigits; |
| 342 | int weight; |
| 343 | int dscale; |
| 344 | int num_uncarried; |
| 345 | bool have_carry_space; |
| 346 | int32 *pos_digits; |
| 347 | int32 *neg_digits; |
| 348 | } NumericSumAccum; |
| 349 | |
| 350 | |
| 351 | /* |
| 352 | * We define our own macros for packing and unpacking abbreviated-key |
| 353 | * representations for numeric values in order to avoid depending on |
| 354 | * USE_FLOAT8_BYVAL. The type of abbreviation we use is based only on |
| 355 | * the size of a datum, not the argument-passing convention for float8. |
| 356 | */ |
| 357 | #define NUMERIC_ABBREV_BITS (SIZEOF_DATUM * BITS_PER_BYTE) |
| 358 | #if SIZEOF_DATUM == 8 |
| 359 | #define NumericAbbrevGetDatum(X) ((Datum) (X)) |
| 360 | #define DatumGetNumericAbbrev(X) ((int64) (X)) |
| 361 | #define NUMERIC_ABBREV_NAN NumericAbbrevGetDatum(PG_INT64_MIN) |
| 362 | #else |
| 363 | #define NumericAbbrevGetDatum(X) ((Datum) (X)) |
| 364 | #define DatumGetNumericAbbrev(X) ((int32) (X)) |
| 365 | #define NUMERIC_ABBREV_NAN NumericAbbrevGetDatum(PG_INT32_MIN) |
| 366 | #endif |
| 367 | |
| 368 | |
| 369 | /* ---------- |
| 370 | * Some preinitialized constants |
| 371 | * ---------- |
| 372 | */ |
| 373 | static const NumericDigit const_zero_data[1] = {0}; |
| 374 | static const NumericVar const_zero = |
| 375 | {0, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_zero_data}; |
| 376 | |
| 377 | static const NumericDigit const_one_data[1] = {1}; |
| 378 | static const NumericVar const_one = |
| 379 | {1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_one_data}; |
| 380 | |
| 381 | static const NumericDigit const_two_data[1] = {2}; |
| 382 | static const NumericVar const_two = |
| 383 | {1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_two_data}; |
| 384 | |
| 385 | #if DEC_DIGITS == 4 || DEC_DIGITS == 2 |
| 386 | static const NumericDigit const_ten_data[1] = {10}; |
| 387 | static const NumericVar const_ten = |
| 388 | {1, 0, NUMERIC_POS, 0, NULL, (NumericDigit *) const_ten_data}; |
| 389 | #elif DEC_DIGITS == 1 |
| 390 | static const NumericDigit const_ten_data[1] = {1}; |
| 391 | static const NumericVar const_ten = |
| 392 | {1, 1, NUMERIC_POS, 0, NULL, (NumericDigit *) const_ten_data}; |
| 393 | #endif |
| 394 | |
| 395 | #if DEC_DIGITS == 4 |
| 396 | static const NumericDigit const_zero_point_five_data[1] = {5000}; |
| 397 | #elif DEC_DIGITS == 2 |
| 398 | static const NumericDigit const_zero_point_five_data[1] = {50}; |
| 399 | #elif DEC_DIGITS == 1 |
| 400 | static const NumericDigit const_zero_point_five_data[1] = {5}; |
| 401 | #endif |
| 402 | static const NumericVar const_zero_point_five = |
| 403 | {1, -1, NUMERIC_POS, 1, NULL, (NumericDigit *) const_zero_point_five_data}; |
| 404 | |
| 405 | #if DEC_DIGITS == 4 |
| 406 | static const NumericDigit const_zero_point_nine_data[1] = {9000}; |
| 407 | #elif DEC_DIGITS == 2 |
| 408 | static const NumericDigit const_zero_point_nine_data[1] = {90}; |
| 409 | #elif DEC_DIGITS == 1 |
| 410 | static const NumericDigit const_zero_point_nine_data[1] = {9}; |
| 411 | #endif |
| 412 | static const NumericVar const_zero_point_nine = |
| 413 | {1, -1, NUMERIC_POS, 1, NULL, (NumericDigit *) const_zero_point_nine_data}; |
| 414 | |
| 415 | #if DEC_DIGITS == 4 |
| 416 | static const NumericDigit const_one_point_one_data[2] = {1, 1000}; |
| 417 | #elif DEC_DIGITS == 2 |
| 418 | static const NumericDigit const_one_point_one_data[2] = {1, 10}; |
| 419 | #elif DEC_DIGITS == 1 |
| 420 | static const NumericDigit const_one_point_one_data[2] = {1, 1}; |
| 421 | #endif |
| 422 | static const NumericVar const_one_point_one = |
| 423 | {2, 0, NUMERIC_POS, 1, NULL, (NumericDigit *) const_one_point_one_data}; |
| 424 | |
| 425 | static const NumericVar const_nan = |
| 426 | {0, 0, NUMERIC_NAN, 0, NULL, NULL}; |
| 427 | |
| 428 | #if DEC_DIGITS == 4 |
| 429 | static const int round_powers[4] = {0, 1000, 100, 10}; |
| 430 | #endif |
| 431 | |
| 432 | |
| 433 | /* ---------- |
| 434 | * Local functions |
| 435 | * ---------- |
| 436 | */ |
| 437 | |
| 438 | #ifdef NUMERIC_DEBUG |
| 439 | static void dump_numeric(const char *str, Numeric num); |
| 440 | static void dump_var(const char *str, NumericVar *var); |
| 441 | #else |
| 442 | #define dump_numeric(s,n) |
| 443 | #define dump_var(s,v) |
| 444 | #endif |
| 445 | |
| 446 | #define digitbuf_alloc(ndigits) \ |
| 447 | ((NumericDigit *) palloc((ndigits) * sizeof(NumericDigit))) |
| 448 | #define digitbuf_free(buf) \ |
| 449 | do { \ |
| 450 | if ((buf) != NULL) \ |
| 451 | pfree(buf); \ |
| 452 | } while (0) |
| 453 | |
| 454 | #define init_var(v) MemSetAligned(v, 0, sizeof(NumericVar)) |
| 455 | |
| 456 | #define NUMERIC_DIGITS(num) (NUMERIC_HEADER_IS_SHORT(num) ? \ |
| 457 | (num)->choice.n_short.n_data : (num)->choice.n_long.n_data) |
| 458 | #define NUMERIC_NDIGITS(num) \ |
| 459 | ((VARSIZE(num) - NUMERIC_HEADER_SIZE(num)) / sizeof(NumericDigit)) |
| 460 | #define NUMERIC_CAN_BE_SHORT(scale,weight) \ |
| 461 | ((scale) <= NUMERIC_SHORT_DSCALE_MAX && \ |
| 462 | (weight) <= NUMERIC_SHORT_WEIGHT_MAX && \ |
| 463 | (weight) >= NUMERIC_SHORT_WEIGHT_MIN) |
| 464 | |
| 465 | static void alloc_var(NumericVar *var, int ndigits); |
| 466 | static void free_var(NumericVar *var); |
| 467 | static void zero_var(NumericVar *var); |
| 468 | |
| 469 | static const char *set_var_from_str(const char *str, const char *cp, |
| 470 | NumericVar *dest); |
| 471 | static void set_var_from_num(Numeric value, NumericVar *dest); |
| 472 | static void init_var_from_num(Numeric num, NumericVar *dest); |
| 473 | static void set_var_from_var(const NumericVar *value, NumericVar *dest); |
| 474 | static char *get_str_from_var(const NumericVar *var); |
| 475 | static char *get_str_from_var_sci(const NumericVar *var, int rscale); |
| 476 | |
| 477 | static Numeric make_result(const NumericVar *var); |
| 478 | static Numeric make_result_opt_error(const NumericVar *var, bool *error); |
| 479 | |
| 480 | static void apply_typmod(NumericVar *var, int32 typmod); |
| 481 | |
| 482 | static bool numericvar_to_int32(const NumericVar *var, int32 *result); |
| 483 | static bool numericvar_to_int64(const NumericVar *var, int64 *result); |
| 484 | static void int64_to_numericvar(int64 val, NumericVar *var); |
| 485 | #ifdef HAVE_INT128 |
| 486 | static bool numericvar_to_int128(const NumericVar *var, int128 *result); |
| 487 | static void int128_to_numericvar(int128 val, NumericVar *var); |
| 488 | #endif |
| 489 | static double numeric_to_double_no_overflow(Numeric num); |
| 490 | static double numericvar_to_double_no_overflow(const NumericVar *var); |
| 491 | |
| 492 | static Datum numeric_abbrev_convert(Datum original_datum, SortSupport ssup); |
| 493 | static bool numeric_abbrev_abort(int memtupcount, SortSupport ssup); |
| 494 | static int numeric_fast_cmp(Datum x, Datum y, SortSupport ssup); |
| 495 | static int numeric_cmp_abbrev(Datum x, Datum y, SortSupport ssup); |
| 496 | |
| 497 | static Datum numeric_abbrev_convert_var(const NumericVar *var, |
| 498 | NumericSortSupport *nss); |
| 499 | |
| 500 | static int cmp_numerics(Numeric num1, Numeric num2); |
| 501 | static int cmp_var(const NumericVar *var1, const NumericVar *var2); |
| 502 | static int cmp_var_common(const NumericDigit *var1digits, int var1ndigits, |
| 503 | int var1weight, int var1sign, |
| 504 | const NumericDigit *var2digits, int var2ndigits, |
| 505 | int var2weight, int var2sign); |
| 506 | static void add_var(const NumericVar *var1, const NumericVar *var2, |
| 507 | NumericVar *result); |
| 508 | static void sub_var(const NumericVar *var1, const NumericVar *var2, |
| 509 | NumericVar *result); |
| 510 | static void mul_var(const NumericVar *var1, const NumericVar *var2, |
| 511 | NumericVar *result, |
| 512 | int rscale); |
| 513 | static void div_var(const NumericVar *var1, const NumericVar *var2, |
| 514 | NumericVar *result, |
| 515 | int rscale, bool round); |
| 516 | static void div_var_fast(const NumericVar *var1, const NumericVar *var2, |
| 517 | NumericVar *result, int rscale, bool round); |
| 518 | static int select_div_scale(const NumericVar *var1, const NumericVar *var2); |
| 519 | static void mod_var(const NumericVar *var1, const NumericVar *var2, |
| 520 | NumericVar *result); |
| 521 | static void ceil_var(const NumericVar *var, NumericVar *result); |
| 522 | static void floor_var(const NumericVar *var, NumericVar *result); |
| 523 | |
| 524 | static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale); |
| 525 | static void exp_var(const NumericVar *arg, NumericVar *result, int rscale); |
| 526 | static int estimate_ln_dweight(const NumericVar *var); |
| 527 | static void ln_var(const NumericVar *arg, NumericVar *result, int rscale); |
| 528 | static void log_var(const NumericVar *base, const NumericVar *num, |
| 529 | NumericVar *result); |
| 530 | static void power_var(const NumericVar *base, const NumericVar *exp, |
| 531 | NumericVar *result); |
| 532 | static void power_var_int(const NumericVar *base, int exp, NumericVar *result, |
| 533 | int rscale); |
| 534 | |
| 535 | static int cmp_abs(const NumericVar *var1, const NumericVar *var2); |
| 536 | static int cmp_abs_common(const NumericDigit *var1digits, int var1ndigits, |
| 537 | int var1weight, |
| 538 | const NumericDigit *var2digits, int var2ndigits, |
| 539 | int var2weight); |
| 540 | static void add_abs(const NumericVar *var1, const NumericVar *var2, |
| 541 | NumericVar *result); |
| 542 | static void sub_abs(const NumericVar *var1, const NumericVar *var2, |
| 543 | NumericVar *result); |
| 544 | static void round_var(NumericVar *var, int rscale); |
| 545 | static void trunc_var(NumericVar *var, int rscale); |
| 546 | static void strip_var(NumericVar *var); |
| 547 | static void compute_bucket(Numeric operand, Numeric bound1, Numeric bound2, |
| 548 | const NumericVar *count_var, NumericVar *result_var); |
| 549 | |
| 550 | static void accum_sum_add(NumericSumAccum *accum, const NumericVar *var1); |
| 551 | static void accum_sum_rescale(NumericSumAccum *accum, const NumericVar *val); |
| 552 | static void accum_sum_carry(NumericSumAccum *accum); |
| 553 | static void accum_sum_reset(NumericSumAccum *accum); |
| 554 | static void accum_sum_final(NumericSumAccum *accum, NumericVar *result); |
| 555 | static void accum_sum_copy(NumericSumAccum *dst, NumericSumAccum *src); |
| 556 | static void accum_sum_combine(NumericSumAccum *accum, NumericSumAccum *accum2); |
| 557 | |
| 558 | |
| 559 | /* ---------------------------------------------------------------------- |
| 560 | * |
| 561 | * Input-, output- and rounding-functions |
| 562 | * |
| 563 | * ---------------------------------------------------------------------- |
| 564 | */ |
| 565 | |
| 566 | |
| 567 | /* |
| 568 | * numeric_in() - |
| 569 | * |
| 570 | * Input function for numeric data type |
| 571 | */ |
| 572 | Datum |
| 573 | numeric_in(PG_FUNCTION_ARGS) |
| 574 | { |
| 575 | char *str = PG_GETARG_CSTRING(0); |
| 576 | |
| 577 | #ifdef NOT_USED |
| 578 | Oid typelem = PG_GETARG_OID(1); |
| 579 | #endif |
| 580 | int32 typmod = PG_GETARG_INT32(2); |
| 581 | Numeric res; |
| 582 | const char *cp; |
| 583 | |
| 584 | /* Skip leading spaces */ |
| 585 | cp = str; |
| 586 | while (*cp) |
| 587 | { |
| 588 | if (!isspace((unsigned char) *cp)) |
| 589 | break; |
| 590 | cp++; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Check for NaN |
| 595 | */ |
| 596 | if (pg_strncasecmp(cp, "NaN" , 3) == 0) |
| 597 | { |
| 598 | res = make_result(&const_nan); |
| 599 | |
| 600 | /* Should be nothing left but spaces */ |
| 601 | cp += 3; |
| 602 | while (*cp) |
| 603 | { |
| 604 | if (!isspace((unsigned char) *cp)) |
| 605 | ereport(ERROR, |
| 606 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 607 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 608 | "numeric" , str))); |
| 609 | cp++; |
| 610 | } |
| 611 | } |
| 612 | else |
| 613 | { |
| 614 | /* |
| 615 | * Use set_var_from_str() to parse a normal numeric value |
| 616 | */ |
| 617 | NumericVar value; |
| 618 | |
| 619 | init_var(&value); |
| 620 | |
| 621 | cp = set_var_from_str(str, cp, &value); |
| 622 | |
| 623 | /* |
| 624 | * We duplicate a few lines of code here because we would like to |
| 625 | * throw any trailing-junk syntax error before any semantic error |
| 626 | * resulting from apply_typmod. We can't easily fold the two cases |
| 627 | * together because we mustn't apply apply_typmod to a NaN. |
| 628 | */ |
| 629 | while (*cp) |
| 630 | { |
| 631 | if (!isspace((unsigned char) *cp)) |
| 632 | ereport(ERROR, |
| 633 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 634 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 635 | "numeric" , str))); |
| 636 | cp++; |
| 637 | } |
| 638 | |
| 639 | apply_typmod(&value, typmod); |
| 640 | |
| 641 | res = make_result(&value); |
| 642 | free_var(&value); |
| 643 | } |
| 644 | |
| 645 | PG_RETURN_NUMERIC(res); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | /* |
| 650 | * numeric_out() - |
| 651 | * |
| 652 | * Output function for numeric data type |
| 653 | */ |
| 654 | Datum |
| 655 | numeric_out(PG_FUNCTION_ARGS) |
| 656 | { |
| 657 | Numeric num = PG_GETARG_NUMERIC(0); |
| 658 | NumericVar x; |
| 659 | char *str; |
| 660 | |
| 661 | /* |
| 662 | * Handle NaN |
| 663 | */ |
| 664 | if (NUMERIC_IS_NAN(num)) |
| 665 | PG_RETURN_CSTRING(pstrdup("NaN" )); |
| 666 | |
| 667 | /* |
| 668 | * Get the number in the variable format. |
| 669 | */ |
| 670 | init_var_from_num(num, &x); |
| 671 | |
| 672 | str = get_str_from_var(&x); |
| 673 | |
| 674 | PG_RETURN_CSTRING(str); |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * numeric_is_nan() - |
| 679 | * |
| 680 | * Is Numeric value a NaN? |
| 681 | */ |
| 682 | bool |
| 683 | numeric_is_nan(Numeric num) |
| 684 | { |
| 685 | return NUMERIC_IS_NAN(num); |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * numeric_maximum_size() - |
| 690 | * |
| 691 | * Maximum size of a numeric with given typmod, or -1 if unlimited/unknown. |
| 692 | */ |
| 693 | int32 |
| 694 | numeric_maximum_size(int32 typmod) |
| 695 | { |
| 696 | int precision; |
| 697 | int numeric_digits; |
| 698 | |
| 699 | if (typmod < (int32) (VARHDRSZ)) |
| 700 | return -1; |
| 701 | |
| 702 | /* precision (ie, max # of digits) is in upper bits of typmod */ |
| 703 | precision = ((typmod - VARHDRSZ) >> 16) & 0xffff; |
| 704 | |
| 705 | /* |
| 706 | * This formula computes the maximum number of NumericDigits we could need |
| 707 | * in order to store the specified number of decimal digits. Because the |
| 708 | * weight is stored as a number of NumericDigits rather than a number of |
| 709 | * decimal digits, it's possible that the first NumericDigit will contain |
| 710 | * only a single decimal digit. Thus, the first two decimal digits can |
| 711 | * require two NumericDigits to store, but it isn't until we reach |
| 712 | * DEC_DIGITS + 2 decimal digits that we potentially need a third |
| 713 | * NumericDigit. |
| 714 | */ |
| 715 | numeric_digits = (precision + 2 * (DEC_DIGITS - 1)) / DEC_DIGITS; |
| 716 | |
| 717 | /* |
| 718 | * In most cases, the size of a numeric will be smaller than the value |
| 719 | * computed below, because the varlena header will typically get toasted |
| 720 | * down to a single byte before being stored on disk, and it may also be |
| 721 | * possible to use a short numeric header. But our job here is to compute |
| 722 | * the worst case. |
| 723 | */ |
| 724 | return NUMERIC_HDRSZ + (numeric_digits * sizeof(NumericDigit)); |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * numeric_out_sci() - |
| 729 | * |
| 730 | * Output function for numeric data type in scientific notation. |
| 731 | */ |
| 732 | char * |
| 733 | numeric_out_sci(Numeric num, int scale) |
| 734 | { |
| 735 | NumericVar x; |
| 736 | char *str; |
| 737 | |
| 738 | /* |
| 739 | * Handle NaN |
| 740 | */ |
| 741 | if (NUMERIC_IS_NAN(num)) |
| 742 | return pstrdup("NaN" ); |
| 743 | |
| 744 | init_var_from_num(num, &x); |
| 745 | |
| 746 | str = get_str_from_var_sci(&x, scale); |
| 747 | |
| 748 | return str; |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * numeric_normalize() - |
| 753 | * |
| 754 | * Output function for numeric data type, suppressing insignificant trailing |
| 755 | * zeroes and then any trailing decimal point. The intent of this is to |
| 756 | * produce strings that are equal if and only if the input numeric values |
| 757 | * compare equal. |
| 758 | */ |
| 759 | char * |
| 760 | numeric_normalize(Numeric num) |
| 761 | { |
| 762 | NumericVar x; |
| 763 | char *str; |
| 764 | int last; |
| 765 | |
| 766 | /* |
| 767 | * Handle NaN |
| 768 | */ |
| 769 | if (NUMERIC_IS_NAN(num)) |
| 770 | return pstrdup("NaN" ); |
| 771 | |
| 772 | init_var_from_num(num, &x); |
| 773 | |
| 774 | str = get_str_from_var(&x); |
| 775 | |
| 776 | /* If there's no decimal point, there's certainly nothing to remove. */ |
| 777 | if (strchr(str, '.') != NULL) |
| 778 | { |
| 779 | /* |
| 780 | * Back up over trailing fractional zeroes. Since there is a decimal |
| 781 | * point, this loop will terminate safely. |
| 782 | */ |
| 783 | last = strlen(str) - 1; |
| 784 | while (str[last] == '0') |
| 785 | last--; |
| 786 | |
| 787 | /* We want to get rid of the decimal point too, if it's now last. */ |
| 788 | if (str[last] == '.') |
| 789 | last--; |
| 790 | |
| 791 | /* Delete whatever we backed up over. */ |
| 792 | str[last + 1] = '\0'; |
| 793 | } |
| 794 | |
| 795 | return str; |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * numeric_recv - converts external binary format to numeric |
| 800 | * |
| 801 | * External format is a sequence of int16's: |
| 802 | * ndigits, weight, sign, dscale, NumericDigits. |
| 803 | */ |
| 804 | Datum |
| 805 | numeric_recv(PG_FUNCTION_ARGS) |
| 806 | { |
| 807 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 808 | |
| 809 | #ifdef NOT_USED |
| 810 | Oid typelem = PG_GETARG_OID(1); |
| 811 | #endif |
| 812 | int32 typmod = PG_GETARG_INT32(2); |
| 813 | NumericVar value; |
| 814 | Numeric res; |
| 815 | int len, |
| 816 | i; |
| 817 | |
| 818 | init_var(&value); |
| 819 | |
| 820 | len = (uint16) pq_getmsgint(buf, sizeof(uint16)); |
| 821 | |
| 822 | alloc_var(&value, len); |
| 823 | |
| 824 | value.weight = (int16) pq_getmsgint(buf, sizeof(int16)); |
| 825 | /* we allow any int16 for weight --- OK? */ |
| 826 | |
| 827 | value.sign = (uint16) pq_getmsgint(buf, sizeof(uint16)); |
| 828 | if (!(value.sign == NUMERIC_POS || |
| 829 | value.sign == NUMERIC_NEG || |
| 830 | value.sign == NUMERIC_NAN)) |
| 831 | ereport(ERROR, |
| 832 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 833 | errmsg("invalid sign in external \"numeric\" value" ))); |
| 834 | |
| 835 | value.dscale = (uint16) pq_getmsgint(buf, sizeof(uint16)); |
| 836 | if ((value.dscale & NUMERIC_DSCALE_MASK) != value.dscale) |
| 837 | ereport(ERROR, |
| 838 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 839 | errmsg("invalid scale in external \"numeric\" value" ))); |
| 840 | |
| 841 | for (i = 0; i < len; i++) |
| 842 | { |
| 843 | NumericDigit d = pq_getmsgint(buf, sizeof(NumericDigit)); |
| 844 | |
| 845 | if (d < 0 || d >= NBASE) |
| 846 | ereport(ERROR, |
| 847 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 848 | errmsg("invalid digit in external \"numeric\" value" ))); |
| 849 | value.digits[i] = d; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * If the given dscale would hide any digits, truncate those digits away. |
| 854 | * We could alternatively throw an error, but that would take a bunch of |
| 855 | * extra code (about as much as trunc_var involves), and it might cause |
| 856 | * client compatibility issues. |
| 857 | */ |
| 858 | trunc_var(&value, value.dscale); |
| 859 | |
| 860 | apply_typmod(&value, typmod); |
| 861 | |
| 862 | res = make_result(&value); |
| 863 | free_var(&value); |
| 864 | |
| 865 | PG_RETURN_NUMERIC(res); |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * numeric_send - converts numeric to binary format |
| 870 | */ |
| 871 | Datum |
| 872 | numeric_send(PG_FUNCTION_ARGS) |
| 873 | { |
| 874 | Numeric num = PG_GETARG_NUMERIC(0); |
| 875 | NumericVar x; |
| 876 | StringInfoData buf; |
| 877 | int i; |
| 878 | |
| 879 | init_var_from_num(num, &x); |
| 880 | |
| 881 | pq_begintypsend(&buf); |
| 882 | |
| 883 | pq_sendint16(&buf, x.ndigits); |
| 884 | pq_sendint16(&buf, x.weight); |
| 885 | pq_sendint16(&buf, x.sign); |
| 886 | pq_sendint16(&buf, x.dscale); |
| 887 | for (i = 0; i < x.ndigits; i++) |
| 888 | pq_sendint16(&buf, x.digits[i]); |
| 889 | |
| 890 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 891 | } |
| 892 | |
| 893 | |
| 894 | /* |
| 895 | * numeric_support() |
| 896 | * |
| 897 | * Planner support function for the numeric() length coercion function. |
| 898 | * |
| 899 | * Flatten calls that solely represent increases in allowable precision. |
| 900 | * Scale changes mutate every datum, so they are unoptimizable. Some values, |
| 901 | * e.g. 1E-1001, can only fit into an unconstrained numeric, so a change from |
| 902 | * an unconstrained numeric to any constrained numeric is also unoptimizable. |
| 903 | */ |
| 904 | Datum |
| 905 | numeric_support(PG_FUNCTION_ARGS) |
| 906 | { |
| 907 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| 908 | Node *ret = NULL; |
| 909 | |
| 910 | if (IsA(rawreq, SupportRequestSimplify)) |
| 911 | { |
| 912 | SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq; |
| 913 | FuncExpr *expr = req->fcall; |
| 914 | Node *typmod; |
| 915 | |
| 916 | Assert(list_length(expr->args) >= 2); |
| 917 | |
| 918 | typmod = (Node *) lsecond(expr->args); |
| 919 | |
| 920 | if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull) |
| 921 | { |
| 922 | Node *source = (Node *) linitial(expr->args); |
| 923 | int32 old_typmod = exprTypmod(source); |
| 924 | int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue); |
| 925 | int32 old_scale = (old_typmod - VARHDRSZ) & 0xffff; |
| 926 | int32 new_scale = (new_typmod - VARHDRSZ) & 0xffff; |
| 927 | int32 old_precision = (old_typmod - VARHDRSZ) >> 16 & 0xffff; |
| 928 | int32 new_precision = (new_typmod - VARHDRSZ) >> 16 & 0xffff; |
| 929 | |
| 930 | /* |
| 931 | * If new_typmod < VARHDRSZ, the destination is unconstrained; |
| 932 | * that's always OK. If old_typmod >= VARHDRSZ, the source is |
| 933 | * constrained, and we're OK if the scale is unchanged and the |
| 934 | * precision is not decreasing. See further notes in function |
| 935 | * header comment. |
| 936 | */ |
| 937 | if (new_typmod < (int32) VARHDRSZ || |
| 938 | (old_typmod >= (int32) VARHDRSZ && |
| 939 | new_scale == old_scale && new_precision >= old_precision)) |
| 940 | ret = relabel_to_typmod(source, new_typmod); |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | PG_RETURN_POINTER(ret); |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * numeric() - |
| 949 | * |
| 950 | * This is a special function called by the Postgres database system |
| 951 | * before a value is stored in a tuple's attribute. The precision and |
| 952 | * scale of the attribute have to be applied on the value. |
| 953 | */ |
| 954 | Datum |
| 955 | numeric (PG_FUNCTION_ARGS) |
| 956 | { |
| 957 | Numeric num = PG_GETARG_NUMERIC(0); |
| 958 | int32 typmod = PG_GETARG_INT32(1); |
| 959 | Numeric new; |
| 960 | int32 tmp_typmod; |
| 961 | int precision; |
| 962 | int scale; |
| 963 | int ddigits; |
| 964 | int maxdigits; |
| 965 | NumericVar var; |
| 966 | |
| 967 | /* |
| 968 | * Handle NaN |
| 969 | */ |
| 970 | if (NUMERIC_IS_NAN(num)) |
| 971 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 972 | |
| 973 | /* |
| 974 | * If the value isn't a valid type modifier, simply return a copy of the |
| 975 | * input value |
| 976 | */ |
| 977 | if (typmod < (int32) (VARHDRSZ)) |
| 978 | { |
| 979 | new = (Numeric) palloc(VARSIZE(num)); |
| 980 | memcpy(new, num, VARSIZE(num)); |
| 981 | PG_RETURN_NUMERIC(new); |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * Get the precision and scale out of the typmod value |
| 986 | */ |
| 987 | tmp_typmod = typmod - VARHDRSZ; |
| 988 | precision = (tmp_typmod >> 16) & 0xffff; |
| 989 | scale = tmp_typmod & 0xffff; |
| 990 | maxdigits = precision - scale; |
| 991 | |
| 992 | /* |
| 993 | * If the number is certainly in bounds and due to the target scale no |
| 994 | * rounding could be necessary, just make a copy of the input and modify |
| 995 | * its scale fields, unless the larger scale forces us to abandon the |
| 996 | * short representation. (Note we assume the existing dscale is |
| 997 | * honest...) |
| 998 | */ |
| 999 | ddigits = (NUMERIC_WEIGHT(num) + 1) * DEC_DIGITS; |
| 1000 | if (ddigits <= maxdigits && scale >= NUMERIC_DSCALE(num) |
| 1001 | && (NUMERIC_CAN_BE_SHORT(scale, NUMERIC_WEIGHT(num)) |
| 1002 | || !NUMERIC_IS_SHORT(num))) |
| 1003 | { |
| 1004 | new = (Numeric) palloc(VARSIZE(num)); |
| 1005 | memcpy(new, num, VARSIZE(num)); |
| 1006 | if (NUMERIC_IS_SHORT(num)) |
| 1007 | new->choice.n_short.n_header = |
| 1008 | (num->choice.n_short.n_header & ~NUMERIC_SHORT_DSCALE_MASK) |
| 1009 | | (scale << NUMERIC_SHORT_DSCALE_SHIFT); |
| 1010 | else |
| 1011 | new->choice.n_long.n_sign_dscale = NUMERIC_SIGN(new) | |
| 1012 | ((uint16) scale & NUMERIC_DSCALE_MASK); |
| 1013 | PG_RETURN_NUMERIC(new); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * We really need to fiddle with things - unpack the number into a |
| 1018 | * variable and let apply_typmod() do it. |
| 1019 | */ |
| 1020 | init_var(&var); |
| 1021 | |
| 1022 | set_var_from_num(num, &var); |
| 1023 | apply_typmod(&var, typmod); |
| 1024 | new = make_result(&var); |
| 1025 | |
| 1026 | free_var(&var); |
| 1027 | |
| 1028 | PG_RETURN_NUMERIC(new); |
| 1029 | } |
| 1030 | |
| 1031 | Datum |
| 1032 | numerictypmodin(PG_FUNCTION_ARGS) |
| 1033 | { |
| 1034 | ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); |
| 1035 | int32 *tl; |
| 1036 | int n; |
| 1037 | int32 typmod; |
| 1038 | |
| 1039 | tl = ArrayGetIntegerTypmods(ta, &n); |
| 1040 | |
| 1041 | if (n == 2) |
| 1042 | { |
| 1043 | if (tl[0] < 1 || tl[0] > NUMERIC_MAX_PRECISION) |
| 1044 | ereport(ERROR, |
| 1045 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1046 | errmsg("NUMERIC precision %d must be between 1 and %d" , |
| 1047 | tl[0], NUMERIC_MAX_PRECISION))); |
| 1048 | if (tl[1] < 0 || tl[1] > tl[0]) |
| 1049 | ereport(ERROR, |
| 1050 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1051 | errmsg("NUMERIC scale %d must be between 0 and precision %d" , |
| 1052 | tl[1], tl[0]))); |
| 1053 | typmod = ((tl[0] << 16) | tl[1]) + VARHDRSZ; |
| 1054 | } |
| 1055 | else if (n == 1) |
| 1056 | { |
| 1057 | if (tl[0] < 1 || tl[0] > NUMERIC_MAX_PRECISION) |
| 1058 | ereport(ERROR, |
| 1059 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1060 | errmsg("NUMERIC precision %d must be between 1 and %d" , |
| 1061 | tl[0], NUMERIC_MAX_PRECISION))); |
| 1062 | /* scale defaults to zero */ |
| 1063 | typmod = (tl[0] << 16) + VARHDRSZ; |
| 1064 | } |
| 1065 | else |
| 1066 | { |
| 1067 | ereport(ERROR, |
| 1068 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1069 | errmsg("invalid NUMERIC type modifier" ))); |
| 1070 | typmod = 0; /* keep compiler quiet */ |
| 1071 | } |
| 1072 | |
| 1073 | PG_RETURN_INT32(typmod); |
| 1074 | } |
| 1075 | |
| 1076 | Datum |
| 1077 | numerictypmodout(PG_FUNCTION_ARGS) |
| 1078 | { |
| 1079 | int32 typmod = PG_GETARG_INT32(0); |
| 1080 | char *res = (char *) palloc(64); |
| 1081 | |
| 1082 | if (typmod >= 0) |
| 1083 | snprintf(res, 64, "(%d,%d)" , |
| 1084 | ((typmod - VARHDRSZ) >> 16) & 0xffff, |
| 1085 | (typmod - VARHDRSZ) & 0xffff); |
| 1086 | else |
| 1087 | *res = '\0'; |
| 1088 | |
| 1089 | PG_RETURN_CSTRING(res); |
| 1090 | } |
| 1091 | |
| 1092 | |
| 1093 | /* ---------------------------------------------------------------------- |
| 1094 | * |
| 1095 | * Sign manipulation, rounding and the like |
| 1096 | * |
| 1097 | * ---------------------------------------------------------------------- |
| 1098 | */ |
| 1099 | |
| 1100 | Datum |
| 1101 | numeric_abs(PG_FUNCTION_ARGS) |
| 1102 | { |
| 1103 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1104 | Numeric res; |
| 1105 | |
| 1106 | /* |
| 1107 | * Handle NaN |
| 1108 | */ |
| 1109 | if (NUMERIC_IS_NAN(num)) |
| 1110 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1111 | |
| 1112 | /* |
| 1113 | * Do it the easy way directly on the packed format |
| 1114 | */ |
| 1115 | res = (Numeric) palloc(VARSIZE(num)); |
| 1116 | memcpy(res, num, VARSIZE(num)); |
| 1117 | |
| 1118 | if (NUMERIC_IS_SHORT(num)) |
| 1119 | res->choice.n_short.n_header = |
| 1120 | num->choice.n_short.n_header & ~NUMERIC_SHORT_SIGN_MASK; |
| 1121 | else |
| 1122 | res->choice.n_long.n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num); |
| 1123 | |
| 1124 | PG_RETURN_NUMERIC(res); |
| 1125 | } |
| 1126 | |
| 1127 | |
| 1128 | Datum |
| 1129 | numeric_uminus(PG_FUNCTION_ARGS) |
| 1130 | { |
| 1131 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1132 | Numeric res; |
| 1133 | |
| 1134 | /* |
| 1135 | * Handle NaN |
| 1136 | */ |
| 1137 | if (NUMERIC_IS_NAN(num)) |
| 1138 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1139 | |
| 1140 | /* |
| 1141 | * Do it the easy way directly on the packed format |
| 1142 | */ |
| 1143 | res = (Numeric) palloc(VARSIZE(num)); |
| 1144 | memcpy(res, num, VARSIZE(num)); |
| 1145 | |
| 1146 | /* |
| 1147 | * The packed format is known to be totally zero digit trimmed always. So |
| 1148 | * we can identify a ZERO by the fact that there are no digits at all. Do |
| 1149 | * nothing to a zero. |
| 1150 | */ |
| 1151 | if (NUMERIC_NDIGITS(num) != 0) |
| 1152 | { |
| 1153 | /* Else, flip the sign */ |
| 1154 | if (NUMERIC_IS_SHORT(num)) |
| 1155 | res->choice.n_short.n_header = |
| 1156 | num->choice.n_short.n_header ^ NUMERIC_SHORT_SIGN_MASK; |
| 1157 | else if (NUMERIC_SIGN(num) == NUMERIC_POS) |
| 1158 | res->choice.n_long.n_sign_dscale = |
| 1159 | NUMERIC_NEG | NUMERIC_DSCALE(num); |
| 1160 | else |
| 1161 | res->choice.n_long.n_sign_dscale = |
| 1162 | NUMERIC_POS | NUMERIC_DSCALE(num); |
| 1163 | } |
| 1164 | |
| 1165 | PG_RETURN_NUMERIC(res); |
| 1166 | } |
| 1167 | |
| 1168 | |
| 1169 | Datum |
| 1170 | numeric_uplus(PG_FUNCTION_ARGS) |
| 1171 | { |
| 1172 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1173 | Numeric res; |
| 1174 | |
| 1175 | res = (Numeric) palloc(VARSIZE(num)); |
| 1176 | memcpy(res, num, VARSIZE(num)); |
| 1177 | |
| 1178 | PG_RETURN_NUMERIC(res); |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * numeric_sign() - |
| 1183 | * |
| 1184 | * returns -1 if the argument is less than 0, 0 if the argument is equal |
| 1185 | * to 0, and 1 if the argument is greater than zero. |
| 1186 | */ |
| 1187 | Datum |
| 1188 | numeric_sign(PG_FUNCTION_ARGS) |
| 1189 | { |
| 1190 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1191 | Numeric res; |
| 1192 | NumericVar result; |
| 1193 | |
| 1194 | /* |
| 1195 | * Handle NaN |
| 1196 | */ |
| 1197 | if (NUMERIC_IS_NAN(num)) |
| 1198 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1199 | |
| 1200 | init_var(&result); |
| 1201 | |
| 1202 | /* |
| 1203 | * The packed format is known to be totally zero digit trimmed always. So |
| 1204 | * we can identify a ZERO by the fact that there are no digits at all. |
| 1205 | */ |
| 1206 | if (NUMERIC_NDIGITS(num) == 0) |
| 1207 | set_var_from_var(&const_zero, &result); |
| 1208 | else |
| 1209 | { |
| 1210 | /* |
| 1211 | * And if there are some, we return a copy of ONE with the sign of our |
| 1212 | * argument |
| 1213 | */ |
| 1214 | set_var_from_var(&const_one, &result); |
| 1215 | result.sign = NUMERIC_SIGN(num); |
| 1216 | } |
| 1217 | |
| 1218 | res = make_result(&result); |
| 1219 | free_var(&result); |
| 1220 | |
| 1221 | PG_RETURN_NUMERIC(res); |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | /* |
| 1226 | * numeric_round() - |
| 1227 | * |
| 1228 | * Round a value to have 'scale' digits after the decimal point. |
| 1229 | * We allow negative 'scale', implying rounding before the decimal |
| 1230 | * point --- Oracle interprets rounding that way. |
| 1231 | */ |
| 1232 | Datum |
| 1233 | numeric_round(PG_FUNCTION_ARGS) |
| 1234 | { |
| 1235 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1236 | int32 scale = PG_GETARG_INT32(1); |
| 1237 | Numeric res; |
| 1238 | NumericVar arg; |
| 1239 | |
| 1240 | /* |
| 1241 | * Handle NaN |
| 1242 | */ |
| 1243 | if (NUMERIC_IS_NAN(num)) |
| 1244 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1245 | |
| 1246 | /* |
| 1247 | * Limit the scale value to avoid possible overflow in calculations |
| 1248 | */ |
| 1249 | scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE); |
| 1250 | scale = Min(scale, NUMERIC_MAX_RESULT_SCALE); |
| 1251 | |
| 1252 | /* |
| 1253 | * Unpack the argument and round it at the proper digit position |
| 1254 | */ |
| 1255 | init_var(&arg); |
| 1256 | set_var_from_num(num, &arg); |
| 1257 | |
| 1258 | round_var(&arg, scale); |
| 1259 | |
| 1260 | /* We don't allow negative output dscale */ |
| 1261 | if (scale < 0) |
| 1262 | arg.dscale = 0; |
| 1263 | |
| 1264 | /* |
| 1265 | * Return the rounded result |
| 1266 | */ |
| 1267 | res = make_result(&arg); |
| 1268 | |
| 1269 | free_var(&arg); |
| 1270 | PG_RETURN_NUMERIC(res); |
| 1271 | } |
| 1272 | |
| 1273 | |
| 1274 | /* |
| 1275 | * numeric_trunc() - |
| 1276 | * |
| 1277 | * Truncate a value to have 'scale' digits after the decimal point. |
| 1278 | * We allow negative 'scale', implying a truncation before the decimal |
| 1279 | * point --- Oracle interprets truncation that way. |
| 1280 | */ |
| 1281 | Datum |
| 1282 | numeric_trunc(PG_FUNCTION_ARGS) |
| 1283 | { |
| 1284 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1285 | int32 scale = PG_GETARG_INT32(1); |
| 1286 | Numeric res; |
| 1287 | NumericVar arg; |
| 1288 | |
| 1289 | /* |
| 1290 | * Handle NaN |
| 1291 | */ |
| 1292 | if (NUMERIC_IS_NAN(num)) |
| 1293 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1294 | |
| 1295 | /* |
| 1296 | * Limit the scale value to avoid possible overflow in calculations |
| 1297 | */ |
| 1298 | scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE); |
| 1299 | scale = Min(scale, NUMERIC_MAX_RESULT_SCALE); |
| 1300 | |
| 1301 | /* |
| 1302 | * Unpack the argument and truncate it at the proper digit position |
| 1303 | */ |
| 1304 | init_var(&arg); |
| 1305 | set_var_from_num(num, &arg); |
| 1306 | |
| 1307 | trunc_var(&arg, scale); |
| 1308 | |
| 1309 | /* We don't allow negative output dscale */ |
| 1310 | if (scale < 0) |
| 1311 | arg.dscale = 0; |
| 1312 | |
| 1313 | /* |
| 1314 | * Return the truncated result |
| 1315 | */ |
| 1316 | res = make_result(&arg); |
| 1317 | |
| 1318 | free_var(&arg); |
| 1319 | PG_RETURN_NUMERIC(res); |
| 1320 | } |
| 1321 | |
| 1322 | |
| 1323 | /* |
| 1324 | * numeric_ceil() - |
| 1325 | * |
| 1326 | * Return the smallest integer greater than or equal to the argument |
| 1327 | */ |
| 1328 | Datum |
| 1329 | numeric_ceil(PG_FUNCTION_ARGS) |
| 1330 | { |
| 1331 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1332 | Numeric res; |
| 1333 | NumericVar result; |
| 1334 | |
| 1335 | if (NUMERIC_IS_NAN(num)) |
| 1336 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1337 | |
| 1338 | init_var_from_num(num, &result); |
| 1339 | ceil_var(&result, &result); |
| 1340 | |
| 1341 | res = make_result(&result); |
| 1342 | free_var(&result); |
| 1343 | |
| 1344 | PG_RETURN_NUMERIC(res); |
| 1345 | } |
| 1346 | |
| 1347 | |
| 1348 | /* |
| 1349 | * numeric_floor() - |
| 1350 | * |
| 1351 | * Return the largest integer equal to or less than the argument |
| 1352 | */ |
| 1353 | Datum |
| 1354 | numeric_floor(PG_FUNCTION_ARGS) |
| 1355 | { |
| 1356 | Numeric num = PG_GETARG_NUMERIC(0); |
| 1357 | Numeric res; |
| 1358 | NumericVar result; |
| 1359 | |
| 1360 | if (NUMERIC_IS_NAN(num)) |
| 1361 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 1362 | |
| 1363 | init_var_from_num(num, &result); |
| 1364 | floor_var(&result, &result); |
| 1365 | |
| 1366 | res = make_result(&result); |
| 1367 | free_var(&result); |
| 1368 | |
| 1369 | PG_RETURN_NUMERIC(res); |
| 1370 | } |
| 1371 | |
| 1372 | |
| 1373 | /* |
| 1374 | * generate_series_numeric() - |
| 1375 | * |
| 1376 | * Generate series of numeric. |
| 1377 | */ |
| 1378 | Datum |
| 1379 | generate_series_numeric(PG_FUNCTION_ARGS) |
| 1380 | { |
| 1381 | return generate_series_step_numeric(fcinfo); |
| 1382 | } |
| 1383 | |
| 1384 | Datum |
| 1385 | generate_series_step_numeric(PG_FUNCTION_ARGS) |
| 1386 | { |
| 1387 | generate_series_numeric_fctx *fctx; |
| 1388 | FuncCallContext *funcctx; |
| 1389 | MemoryContext oldcontext; |
| 1390 | |
| 1391 | if (SRF_IS_FIRSTCALL()) |
| 1392 | { |
| 1393 | Numeric start_num = PG_GETARG_NUMERIC(0); |
| 1394 | Numeric stop_num = PG_GETARG_NUMERIC(1); |
| 1395 | NumericVar steploc = const_one; |
| 1396 | |
| 1397 | /* handle NaN in start and stop values */ |
| 1398 | if (NUMERIC_IS_NAN(start_num)) |
| 1399 | ereport(ERROR, |
| 1400 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1401 | errmsg("start value cannot be NaN" ))); |
| 1402 | |
| 1403 | if (NUMERIC_IS_NAN(stop_num)) |
| 1404 | ereport(ERROR, |
| 1405 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1406 | errmsg("stop value cannot be NaN" ))); |
| 1407 | |
| 1408 | /* see if we were given an explicit step size */ |
| 1409 | if (PG_NARGS() == 3) |
| 1410 | { |
| 1411 | Numeric step_num = PG_GETARG_NUMERIC(2); |
| 1412 | |
| 1413 | if (NUMERIC_IS_NAN(step_num)) |
| 1414 | ereport(ERROR, |
| 1415 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1416 | errmsg("step size cannot be NaN" ))); |
| 1417 | |
| 1418 | init_var_from_num(step_num, &steploc); |
| 1419 | |
| 1420 | if (cmp_var(&steploc, &const_zero) == 0) |
| 1421 | ereport(ERROR, |
| 1422 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1423 | errmsg("step size cannot equal zero" ))); |
| 1424 | } |
| 1425 | |
| 1426 | /* create a function context for cross-call persistence */ |
| 1427 | funcctx = SRF_FIRSTCALL_INIT(); |
| 1428 | |
| 1429 | /* |
| 1430 | * Switch to memory context appropriate for multiple function calls. |
| 1431 | */ |
| 1432 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1433 | |
| 1434 | /* allocate memory for user context */ |
| 1435 | fctx = (generate_series_numeric_fctx *) |
| 1436 | palloc(sizeof(generate_series_numeric_fctx)); |
| 1437 | |
| 1438 | /* |
| 1439 | * Use fctx to keep state from call to call. Seed current with the |
| 1440 | * original start value. We must copy the start_num and stop_num |
| 1441 | * values rather than pointing to them, since we may have detoasted |
| 1442 | * them in the per-call context. |
| 1443 | */ |
| 1444 | init_var(&fctx->current); |
| 1445 | init_var(&fctx->stop); |
| 1446 | init_var(&fctx->step); |
| 1447 | |
| 1448 | set_var_from_num(start_num, &fctx->current); |
| 1449 | set_var_from_num(stop_num, &fctx->stop); |
| 1450 | set_var_from_var(&steploc, &fctx->step); |
| 1451 | |
| 1452 | funcctx->user_fctx = fctx; |
| 1453 | MemoryContextSwitchTo(oldcontext); |
| 1454 | } |
| 1455 | |
| 1456 | /* stuff done on every call of the function */ |
| 1457 | funcctx = SRF_PERCALL_SETUP(); |
| 1458 | |
| 1459 | /* |
| 1460 | * Get the saved state and use current state as the result of this |
| 1461 | * iteration. |
| 1462 | */ |
| 1463 | fctx = funcctx->user_fctx; |
| 1464 | |
| 1465 | if ((fctx->step.sign == NUMERIC_POS && |
| 1466 | cmp_var(&fctx->current, &fctx->stop) <= 0) || |
| 1467 | (fctx->step.sign == NUMERIC_NEG && |
| 1468 | cmp_var(&fctx->current, &fctx->stop) >= 0)) |
| 1469 | { |
| 1470 | Numeric result = make_result(&fctx->current); |
| 1471 | |
| 1472 | /* switch to memory context appropriate for iteration calculation */ |
| 1473 | oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| 1474 | |
| 1475 | /* increment current in preparation for next iteration */ |
| 1476 | add_var(&fctx->current, &fctx->step, &fctx->current); |
| 1477 | MemoryContextSwitchTo(oldcontext); |
| 1478 | |
| 1479 | /* do when there is more left to send */ |
| 1480 | SRF_RETURN_NEXT(funcctx, NumericGetDatum(result)); |
| 1481 | } |
| 1482 | else |
| 1483 | /* do when there is no more left */ |
| 1484 | SRF_RETURN_DONE(funcctx); |
| 1485 | } |
| 1486 | |
| 1487 | |
| 1488 | /* |
| 1489 | * Implements the numeric version of the width_bucket() function |
| 1490 | * defined by SQL2003. See also width_bucket_float8(). |
| 1491 | * |
| 1492 | * 'bound1' and 'bound2' are the lower and upper bounds of the |
| 1493 | * histogram's range, respectively. 'count' is the number of buckets |
| 1494 | * in the histogram. width_bucket() returns an integer indicating the |
| 1495 | * bucket number that 'operand' belongs to in an equiwidth histogram |
| 1496 | * with the specified characteristics. An operand smaller than the |
| 1497 | * lower bound is assigned to bucket 0. An operand greater than the |
| 1498 | * upper bound is assigned to an additional bucket (with number |
| 1499 | * count+1). We don't allow "NaN" for any of the numeric arguments. |
| 1500 | */ |
| 1501 | Datum |
| 1502 | width_bucket_numeric(PG_FUNCTION_ARGS) |
| 1503 | { |
| 1504 | Numeric operand = PG_GETARG_NUMERIC(0); |
| 1505 | Numeric bound1 = PG_GETARG_NUMERIC(1); |
| 1506 | Numeric bound2 = PG_GETARG_NUMERIC(2); |
| 1507 | int32 count = PG_GETARG_INT32(3); |
| 1508 | NumericVar count_var; |
| 1509 | NumericVar result_var; |
| 1510 | int32 result; |
| 1511 | |
| 1512 | if (count <= 0) |
| 1513 | ereport(ERROR, |
| 1514 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 1515 | errmsg("count must be greater than zero" ))); |
| 1516 | |
| 1517 | if (NUMERIC_IS_NAN(operand) || |
| 1518 | NUMERIC_IS_NAN(bound1) || |
| 1519 | NUMERIC_IS_NAN(bound2)) |
| 1520 | ereport(ERROR, |
| 1521 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 1522 | errmsg("operand, lower bound, and upper bound cannot be NaN" ))); |
| 1523 | |
| 1524 | init_var(&result_var); |
| 1525 | init_var(&count_var); |
| 1526 | |
| 1527 | /* Convert 'count' to a numeric, for ease of use later */ |
| 1528 | int64_to_numericvar((int64) count, &count_var); |
| 1529 | |
| 1530 | switch (cmp_numerics(bound1, bound2)) |
| 1531 | { |
| 1532 | case 0: |
| 1533 | ereport(ERROR, |
| 1534 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION), |
| 1535 | errmsg("lower bound cannot equal upper bound" ))); |
| 1536 | break; |
| 1537 | |
| 1538 | /* bound1 < bound2 */ |
| 1539 | case -1: |
| 1540 | if (cmp_numerics(operand, bound1) < 0) |
| 1541 | set_var_from_var(&const_zero, &result_var); |
| 1542 | else if (cmp_numerics(operand, bound2) >= 0) |
| 1543 | add_var(&count_var, &const_one, &result_var); |
| 1544 | else |
| 1545 | compute_bucket(operand, bound1, bound2, |
| 1546 | &count_var, &result_var); |
| 1547 | break; |
| 1548 | |
| 1549 | /* bound1 > bound2 */ |
| 1550 | case 1: |
| 1551 | if (cmp_numerics(operand, bound1) > 0) |
| 1552 | set_var_from_var(&const_zero, &result_var); |
| 1553 | else if (cmp_numerics(operand, bound2) <= 0) |
| 1554 | add_var(&count_var, &const_one, &result_var); |
| 1555 | else |
| 1556 | compute_bucket(operand, bound1, bound2, |
| 1557 | &count_var, &result_var); |
| 1558 | break; |
| 1559 | } |
| 1560 | |
| 1561 | /* if result exceeds the range of a legal int4, we ereport here */ |
| 1562 | if (!numericvar_to_int32(&result_var, &result)) |
| 1563 | ereport(ERROR, |
| 1564 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1565 | errmsg("integer out of range" ))); |
| 1566 | |
| 1567 | free_var(&count_var); |
| 1568 | free_var(&result_var); |
| 1569 | |
| 1570 | PG_RETURN_INT32(result); |
| 1571 | } |
| 1572 | |
| 1573 | /* |
| 1574 | * If 'operand' is not outside the bucket range, determine the correct |
| 1575 | * bucket for it to go. The calculations performed by this function |
| 1576 | * are derived directly from the SQL2003 spec. |
| 1577 | */ |
| 1578 | static void |
| 1579 | compute_bucket(Numeric operand, Numeric bound1, Numeric bound2, |
| 1580 | const NumericVar *count_var, NumericVar *result_var) |
| 1581 | { |
| 1582 | NumericVar bound1_var; |
| 1583 | NumericVar bound2_var; |
| 1584 | NumericVar operand_var; |
| 1585 | |
| 1586 | init_var_from_num(bound1, &bound1_var); |
| 1587 | init_var_from_num(bound2, &bound2_var); |
| 1588 | init_var_from_num(operand, &operand_var); |
| 1589 | |
| 1590 | if (cmp_var(&bound1_var, &bound2_var) < 0) |
| 1591 | { |
| 1592 | sub_var(&operand_var, &bound1_var, &operand_var); |
| 1593 | sub_var(&bound2_var, &bound1_var, &bound2_var); |
| 1594 | div_var(&operand_var, &bound2_var, result_var, |
| 1595 | select_div_scale(&operand_var, &bound2_var), true); |
| 1596 | } |
| 1597 | else |
| 1598 | { |
| 1599 | sub_var(&bound1_var, &operand_var, &operand_var); |
| 1600 | sub_var(&bound1_var, &bound2_var, &bound1_var); |
| 1601 | div_var(&operand_var, &bound1_var, result_var, |
| 1602 | select_div_scale(&operand_var, &bound1_var), true); |
| 1603 | } |
| 1604 | |
| 1605 | mul_var(result_var, count_var, result_var, |
| 1606 | result_var->dscale + count_var->dscale); |
| 1607 | add_var(result_var, &const_one, result_var); |
| 1608 | floor_var(result_var, result_var); |
| 1609 | |
| 1610 | free_var(&bound1_var); |
| 1611 | free_var(&bound2_var); |
| 1612 | free_var(&operand_var); |
| 1613 | } |
| 1614 | |
| 1615 | /* ---------------------------------------------------------------------- |
| 1616 | * |
| 1617 | * Comparison functions |
| 1618 | * |
| 1619 | * Note: btree indexes need these routines not to leak memory; therefore, |
| 1620 | * be careful to free working copies of toasted datums. Most places don't |
| 1621 | * need to be so careful. |
| 1622 | * |
| 1623 | * Sort support: |
| 1624 | * |
| 1625 | * We implement the sortsupport strategy routine in order to get the benefit of |
| 1626 | * abbreviation. The ordinary numeric comparison can be quite slow as a result |
| 1627 | * of palloc/pfree cycles (due to detoasting packed values for alignment); |
| 1628 | * while this could be worked on itself, the abbreviation strategy gives more |
| 1629 | * speedup in many common cases. |
| 1630 | * |
| 1631 | * Two different representations are used for the abbreviated form, one in |
| 1632 | * int32 and one in int64, whichever fits into a by-value Datum. In both cases |
| 1633 | * the representation is negated relative to the original value, because we use |
| 1634 | * the largest negative value for NaN, which sorts higher than other values. We |
| 1635 | * convert the absolute value of the numeric to a 31-bit or 63-bit positive |
| 1636 | * value, and then negate it if the original number was positive. |
| 1637 | * |
| 1638 | * We abort the abbreviation process if the abbreviation cardinality is below |
| 1639 | * 0.01% of the row count (1 per 10k non-null rows). The actual break-even |
| 1640 | * point is somewhat below that, perhaps 1 per 30k (at 1 per 100k there's a |
| 1641 | * very small penalty), but we don't want to build up too many abbreviated |
| 1642 | * values before first testing for abort, so we take the slightly pessimistic |
| 1643 | * number. We make no attempt to estimate the cardinality of the real values, |
| 1644 | * since it plays no part in the cost model here (if the abbreviation is equal, |
| 1645 | * the cost of comparing equal and unequal underlying values is comparable). |
| 1646 | * We discontinue even checking for abort (saving us the hashing overhead) if |
| 1647 | * the estimated cardinality gets to 100k; that would be enough to support many |
| 1648 | * billions of rows while doing no worse than breaking even. |
| 1649 | * |
| 1650 | * ---------------------------------------------------------------------- |
| 1651 | */ |
| 1652 | |
| 1653 | /* |
| 1654 | * Sort support strategy routine. |
| 1655 | */ |
| 1656 | Datum |
| 1657 | numeric_sortsupport(PG_FUNCTION_ARGS) |
| 1658 | { |
| 1659 | SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0); |
| 1660 | |
| 1661 | ssup->comparator = numeric_fast_cmp; |
| 1662 | |
| 1663 | if (ssup->abbreviate) |
| 1664 | { |
| 1665 | NumericSortSupport *nss; |
| 1666 | MemoryContext oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt); |
| 1667 | |
| 1668 | nss = palloc(sizeof(NumericSortSupport)); |
| 1669 | |
| 1670 | /* |
| 1671 | * palloc a buffer for handling unaligned packed values in addition to |
| 1672 | * the support struct |
| 1673 | */ |
| 1674 | nss->buf = palloc(VARATT_SHORT_MAX + VARHDRSZ + 1); |
| 1675 | |
| 1676 | nss->input_count = 0; |
| 1677 | nss->estimating = true; |
| 1678 | initHyperLogLog(&nss->abbr_card, 10); |
| 1679 | |
| 1680 | ssup->ssup_extra = nss; |
| 1681 | |
| 1682 | ssup->abbrev_full_comparator = ssup->comparator; |
| 1683 | ssup->comparator = numeric_cmp_abbrev; |
| 1684 | ssup->abbrev_converter = numeric_abbrev_convert; |
| 1685 | ssup->abbrev_abort = numeric_abbrev_abort; |
| 1686 | |
| 1687 | MemoryContextSwitchTo(oldcontext); |
| 1688 | } |
| 1689 | |
| 1690 | PG_RETURN_VOID(); |
| 1691 | } |
| 1692 | |
| 1693 | /* |
| 1694 | * Abbreviate a numeric datum, handling NaNs and detoasting |
| 1695 | * (must not leak memory!) |
| 1696 | */ |
| 1697 | static Datum |
| 1698 | numeric_abbrev_convert(Datum original_datum, SortSupport ssup) |
| 1699 | { |
| 1700 | NumericSortSupport *nss = ssup->ssup_extra; |
| 1701 | void *original_varatt = PG_DETOAST_DATUM_PACKED(original_datum); |
| 1702 | Numeric value; |
| 1703 | Datum result; |
| 1704 | |
| 1705 | nss->input_count += 1; |
| 1706 | |
| 1707 | /* |
| 1708 | * This is to handle packed datums without needing a palloc/pfree cycle; |
| 1709 | * we keep and reuse a buffer large enough to handle any short datum. |
| 1710 | */ |
| 1711 | if (VARATT_IS_SHORT(original_varatt)) |
| 1712 | { |
| 1713 | void *buf = nss->buf; |
| 1714 | Size sz = VARSIZE_SHORT(original_varatt) - VARHDRSZ_SHORT; |
| 1715 | |
| 1716 | Assert(sz <= VARATT_SHORT_MAX - VARHDRSZ_SHORT); |
| 1717 | |
| 1718 | SET_VARSIZE(buf, VARHDRSZ + sz); |
| 1719 | memcpy(VARDATA(buf), VARDATA_SHORT(original_varatt), sz); |
| 1720 | |
| 1721 | value = (Numeric) buf; |
| 1722 | } |
| 1723 | else |
| 1724 | value = (Numeric) original_varatt; |
| 1725 | |
| 1726 | if (NUMERIC_IS_NAN(value)) |
| 1727 | { |
| 1728 | result = NUMERIC_ABBREV_NAN; |
| 1729 | } |
| 1730 | else |
| 1731 | { |
| 1732 | NumericVar var; |
| 1733 | |
| 1734 | init_var_from_num(value, &var); |
| 1735 | |
| 1736 | result = numeric_abbrev_convert_var(&var, nss); |
| 1737 | } |
| 1738 | |
| 1739 | /* should happen only for external/compressed toasts */ |
| 1740 | if ((Pointer) original_varatt != DatumGetPointer(original_datum)) |
| 1741 | pfree(original_varatt); |
| 1742 | |
| 1743 | return result; |
| 1744 | } |
| 1745 | |
| 1746 | /* |
| 1747 | * Consider whether to abort abbreviation. |
| 1748 | * |
| 1749 | * We pay no attention to the cardinality of the non-abbreviated data. There is |
| 1750 | * no reason to do so: unlike text, we have no fast check for equal values, so |
| 1751 | * we pay the full overhead whenever the abbreviations are equal regardless of |
| 1752 | * whether the underlying values are also equal. |
| 1753 | */ |
| 1754 | static bool |
| 1755 | numeric_abbrev_abort(int memtupcount, SortSupport ssup) |
| 1756 | { |
| 1757 | NumericSortSupport *nss = ssup->ssup_extra; |
| 1758 | double abbr_card; |
| 1759 | |
| 1760 | if (memtupcount < 10000 || nss->input_count < 10000 || !nss->estimating) |
| 1761 | return false; |
| 1762 | |
| 1763 | abbr_card = estimateHyperLogLog(&nss->abbr_card); |
| 1764 | |
| 1765 | /* |
| 1766 | * If we have >100k distinct values, then even if we were sorting many |
| 1767 | * billion rows we'd likely still break even, and the penalty of undoing |
| 1768 | * that many rows of abbrevs would probably not be worth it. Stop even |
| 1769 | * counting at that point. |
| 1770 | */ |
| 1771 | if (abbr_card > 100000.0) |
| 1772 | { |
| 1773 | #ifdef TRACE_SORT |
| 1774 | if (trace_sort) |
| 1775 | elog(LOG, |
| 1776 | "numeric_abbrev: estimation ends at cardinality %f" |
| 1777 | " after " INT64_FORMAT " values (%d rows)" , |
| 1778 | abbr_card, nss->input_count, memtupcount); |
| 1779 | #endif |
| 1780 | nss->estimating = false; |
| 1781 | return false; |
| 1782 | } |
| 1783 | |
| 1784 | /* |
| 1785 | * Target minimum cardinality is 1 per ~10k of non-null inputs. (The |
| 1786 | * break even point is somewhere between one per 100k rows, where |
| 1787 | * abbreviation has a very slight penalty, and 1 per 10k where it wins by |
| 1788 | * a measurable percentage.) We use the relatively pessimistic 10k |
| 1789 | * threshold, and add a 0.5 row fudge factor, because it allows us to |
| 1790 | * abort earlier on genuinely pathological data where we've had exactly |
| 1791 | * one abbreviated value in the first 10k (non-null) rows. |
| 1792 | */ |
| 1793 | if (abbr_card < nss->input_count / 10000.0 + 0.5) |
| 1794 | { |
| 1795 | #ifdef TRACE_SORT |
| 1796 | if (trace_sort) |
| 1797 | elog(LOG, |
| 1798 | "numeric_abbrev: aborting abbreviation at cardinality %f" |
| 1799 | " below threshold %f after " INT64_FORMAT " values (%d rows)" , |
| 1800 | abbr_card, nss->input_count / 10000.0 + 0.5, |
| 1801 | nss->input_count, memtupcount); |
| 1802 | #endif |
| 1803 | return true; |
| 1804 | } |
| 1805 | |
| 1806 | #ifdef TRACE_SORT |
| 1807 | if (trace_sort) |
| 1808 | elog(LOG, |
| 1809 | "numeric_abbrev: cardinality %f" |
| 1810 | " after " INT64_FORMAT " values (%d rows)" , |
| 1811 | abbr_card, nss->input_count, memtupcount); |
| 1812 | #endif |
| 1813 | |
| 1814 | return false; |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * Non-fmgr interface to the comparison routine to allow sortsupport to elide |
| 1819 | * the fmgr call. The saving here is small given how slow numeric comparisons |
| 1820 | * are, but it is a required part of the sort support API when abbreviations |
| 1821 | * are performed. |
| 1822 | * |
| 1823 | * Two palloc/pfree cycles could be saved here by using persistent buffers for |
| 1824 | * aligning short-varlena inputs, but this has not so far been considered to |
| 1825 | * be worth the effort. |
| 1826 | */ |
| 1827 | static int |
| 1828 | numeric_fast_cmp(Datum x, Datum y, SortSupport ssup) |
| 1829 | { |
| 1830 | Numeric nx = DatumGetNumeric(x); |
| 1831 | Numeric ny = DatumGetNumeric(y); |
| 1832 | int result; |
| 1833 | |
| 1834 | result = cmp_numerics(nx, ny); |
| 1835 | |
| 1836 | if ((Pointer) nx != DatumGetPointer(x)) |
| 1837 | pfree(nx); |
| 1838 | if ((Pointer) ny != DatumGetPointer(y)) |
| 1839 | pfree(ny); |
| 1840 | |
| 1841 | return result; |
| 1842 | } |
| 1843 | |
| 1844 | /* |
| 1845 | * Compare abbreviations of values. (Abbreviations may be equal where the true |
| 1846 | * values differ, but if the abbreviations differ, they must reflect the |
| 1847 | * ordering of the true values.) |
| 1848 | */ |
| 1849 | static int |
| 1850 | numeric_cmp_abbrev(Datum x, Datum y, SortSupport ssup) |
| 1851 | { |
| 1852 | /* |
| 1853 | * NOTE WELL: this is intentionally backwards, because the abbreviation is |
| 1854 | * negated relative to the original value, to handle NaN. |
| 1855 | */ |
| 1856 | if (DatumGetNumericAbbrev(x) < DatumGetNumericAbbrev(y)) |
| 1857 | return 1; |
| 1858 | if (DatumGetNumericAbbrev(x) > DatumGetNumericAbbrev(y)) |
| 1859 | return -1; |
| 1860 | return 0; |
| 1861 | } |
| 1862 | |
| 1863 | /* |
| 1864 | * Abbreviate a NumericVar according to the available bit size. |
| 1865 | * |
| 1866 | * The 31-bit value is constructed as: |
| 1867 | * |
| 1868 | * 0 + 7bits digit weight + 24 bits digit value |
| 1869 | * |
| 1870 | * where the digit weight is in single decimal digits, not digit words, and |
| 1871 | * stored in excess-44 representation[1]. The 24-bit digit value is the 7 most |
| 1872 | * significant decimal digits of the value converted to binary. Values whose |
| 1873 | * weights would fall outside the representable range are rounded off to zero |
| 1874 | * (which is also used to represent actual zeros) or to 0x7FFFFFFF (which |
| 1875 | * otherwise cannot occur). Abbreviation therefore fails to gain any advantage |
| 1876 | * where values are outside the range 10^-44 to 10^83, which is not considered |
| 1877 | * to be a serious limitation, or when values are of the same magnitude and |
| 1878 | * equal in the first 7 decimal digits, which is considered to be an |
| 1879 | * unavoidable limitation given the available bits. (Stealing three more bits |
| 1880 | * to compare another digit would narrow the range of representable weights by |
| 1881 | * a factor of 8, which starts to look like a real limiting factor.) |
| 1882 | * |
| 1883 | * (The value 44 for the excess is essentially arbitrary) |
| 1884 | * |
| 1885 | * The 63-bit value is constructed as: |
| 1886 | * |
| 1887 | * 0 + 7bits weight + 4 x 14-bit packed digit words |
| 1888 | * |
| 1889 | * The weight in this case is again stored in excess-44, but this time it is |
| 1890 | * the original weight in digit words (i.e. powers of 10000). The first four |
| 1891 | * digit words of the value (if present; trailing zeros are assumed as needed) |
| 1892 | * are packed into 14 bits each to form the rest of the value. Again, |
| 1893 | * out-of-range values are rounded off to 0 or 0x7FFFFFFFFFFFFFFF. The |
| 1894 | * representable range in this case is 10^-176 to 10^332, which is considered |
| 1895 | * to be good enough for all practical purposes, and comparison of 4 words |
| 1896 | * means that at least 13 decimal digits are compared, which is considered to |
| 1897 | * be a reasonable compromise between effectiveness and efficiency in computing |
| 1898 | * the abbreviation. |
| 1899 | * |
| 1900 | * (The value 44 for the excess is even more arbitrary here, it was chosen just |
| 1901 | * to match the value used in the 31-bit case) |
| 1902 | * |
| 1903 | * [1] - Excess-k representation means that the value is offset by adding 'k' |
| 1904 | * and then treated as unsigned, so the smallest representable value is stored |
| 1905 | * with all bits zero. This allows simple comparisons to work on the composite |
| 1906 | * value. |
| 1907 | */ |
| 1908 | |
| 1909 | #if NUMERIC_ABBREV_BITS == 64 |
| 1910 | |
| 1911 | static Datum |
| 1912 | numeric_abbrev_convert_var(const NumericVar *var, NumericSortSupport *nss) |
| 1913 | { |
| 1914 | int ndigits = var->ndigits; |
| 1915 | int weight = var->weight; |
| 1916 | int64 result; |
| 1917 | |
| 1918 | if (ndigits == 0 || weight < -44) |
| 1919 | { |
| 1920 | result = 0; |
| 1921 | } |
| 1922 | else if (weight > 83) |
| 1923 | { |
| 1924 | result = PG_INT64_MAX; |
| 1925 | } |
| 1926 | else |
| 1927 | { |
| 1928 | result = ((int64) (weight + 44) << 56); |
| 1929 | |
| 1930 | switch (ndigits) |
| 1931 | { |
| 1932 | default: |
| 1933 | result |= ((int64) var->digits[3]); |
| 1934 | /* FALLTHROUGH */ |
| 1935 | case 3: |
| 1936 | result |= ((int64) var->digits[2]) << 14; |
| 1937 | /* FALLTHROUGH */ |
| 1938 | case 2: |
| 1939 | result |= ((int64) var->digits[1]) << 28; |
| 1940 | /* FALLTHROUGH */ |
| 1941 | case 1: |
| 1942 | result |= ((int64) var->digits[0]) << 42; |
| 1943 | break; |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | /* the abbrev is negated relative to the original */ |
| 1948 | if (var->sign == NUMERIC_POS) |
| 1949 | result = -result; |
| 1950 | |
| 1951 | if (nss->estimating) |
| 1952 | { |
| 1953 | uint32 tmp = ((uint32) result |
| 1954 | ^ (uint32) ((uint64) result >> 32)); |
| 1955 | |
| 1956 | addHyperLogLog(&nss->abbr_card, DatumGetUInt32(hash_uint32(tmp))); |
| 1957 | } |
| 1958 | |
| 1959 | return NumericAbbrevGetDatum(result); |
| 1960 | } |
| 1961 | |
| 1962 | #endif /* NUMERIC_ABBREV_BITS == 64 */ |
| 1963 | |
| 1964 | #if NUMERIC_ABBREV_BITS == 32 |
| 1965 | |
| 1966 | static Datum |
| 1967 | numeric_abbrev_convert_var(const NumericVar *var, NumericSortSupport *nss) |
| 1968 | { |
| 1969 | int ndigits = var->ndigits; |
| 1970 | int weight = var->weight; |
| 1971 | int32 result; |
| 1972 | |
| 1973 | if (ndigits == 0 || weight < -11) |
| 1974 | { |
| 1975 | result = 0; |
| 1976 | } |
| 1977 | else if (weight > 20) |
| 1978 | { |
| 1979 | result = PG_INT32_MAX; |
| 1980 | } |
| 1981 | else |
| 1982 | { |
| 1983 | NumericDigit nxt1 = (ndigits > 1) ? var->digits[1] : 0; |
| 1984 | |
| 1985 | weight = (weight + 11) * 4; |
| 1986 | |
| 1987 | result = var->digits[0]; |
| 1988 | |
| 1989 | /* |
| 1990 | * "result" now has 1 to 4 nonzero decimal digits. We pack in more |
| 1991 | * digits to make 7 in total (largest we can fit in 24 bits) |
| 1992 | */ |
| 1993 | |
| 1994 | if (result > 999) |
| 1995 | { |
| 1996 | /* already have 4 digits, add 3 more */ |
| 1997 | result = (result * 1000) + (nxt1 / 10); |
| 1998 | weight += 3; |
| 1999 | } |
| 2000 | else if (result > 99) |
| 2001 | { |
| 2002 | /* already have 3 digits, add 4 more */ |
| 2003 | result = (result * 10000) + nxt1; |
| 2004 | weight += 2; |
| 2005 | } |
| 2006 | else if (result > 9) |
| 2007 | { |
| 2008 | NumericDigit nxt2 = (ndigits > 2) ? var->digits[2] : 0; |
| 2009 | |
| 2010 | /* already have 2 digits, add 5 more */ |
| 2011 | result = (result * 100000) + (nxt1 * 10) + (nxt2 / 1000); |
| 2012 | weight += 1; |
| 2013 | } |
| 2014 | else |
| 2015 | { |
| 2016 | NumericDigit nxt2 = (ndigits > 2) ? var->digits[2] : 0; |
| 2017 | |
| 2018 | /* already have 1 digit, add 6 more */ |
| 2019 | result = (result * 1000000) + (nxt1 * 100) + (nxt2 / 100); |
| 2020 | } |
| 2021 | |
| 2022 | result = result | (weight << 24); |
| 2023 | } |
| 2024 | |
| 2025 | /* the abbrev is negated relative to the original */ |
| 2026 | if (var->sign == NUMERIC_POS) |
| 2027 | result = -result; |
| 2028 | |
| 2029 | if (nss->estimating) |
| 2030 | { |
| 2031 | uint32 tmp = (uint32) result; |
| 2032 | |
| 2033 | addHyperLogLog(&nss->abbr_card, DatumGetUInt32(hash_uint32(tmp))); |
| 2034 | } |
| 2035 | |
| 2036 | return NumericAbbrevGetDatum(result); |
| 2037 | } |
| 2038 | |
| 2039 | #endif /* NUMERIC_ABBREV_BITS == 32 */ |
| 2040 | |
| 2041 | /* |
| 2042 | * Ordinary (non-sortsupport) comparisons follow. |
| 2043 | */ |
| 2044 | |
| 2045 | Datum |
| 2046 | numeric_cmp(PG_FUNCTION_ARGS) |
| 2047 | { |
| 2048 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2049 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2050 | int result; |
| 2051 | |
| 2052 | result = cmp_numerics(num1, num2); |
| 2053 | |
| 2054 | PG_FREE_IF_COPY(num1, 0); |
| 2055 | PG_FREE_IF_COPY(num2, 1); |
| 2056 | |
| 2057 | PG_RETURN_INT32(result); |
| 2058 | } |
| 2059 | |
| 2060 | |
| 2061 | Datum |
| 2062 | numeric_eq(PG_FUNCTION_ARGS) |
| 2063 | { |
| 2064 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2065 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2066 | bool result; |
| 2067 | |
| 2068 | result = cmp_numerics(num1, num2) == 0; |
| 2069 | |
| 2070 | PG_FREE_IF_COPY(num1, 0); |
| 2071 | PG_FREE_IF_COPY(num2, 1); |
| 2072 | |
| 2073 | PG_RETURN_BOOL(result); |
| 2074 | } |
| 2075 | |
| 2076 | Datum |
| 2077 | numeric_ne(PG_FUNCTION_ARGS) |
| 2078 | { |
| 2079 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2080 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2081 | bool result; |
| 2082 | |
| 2083 | result = cmp_numerics(num1, num2) != 0; |
| 2084 | |
| 2085 | PG_FREE_IF_COPY(num1, 0); |
| 2086 | PG_FREE_IF_COPY(num2, 1); |
| 2087 | |
| 2088 | PG_RETURN_BOOL(result); |
| 2089 | } |
| 2090 | |
| 2091 | Datum |
| 2092 | numeric_gt(PG_FUNCTION_ARGS) |
| 2093 | { |
| 2094 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2095 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2096 | bool result; |
| 2097 | |
| 2098 | result = cmp_numerics(num1, num2) > 0; |
| 2099 | |
| 2100 | PG_FREE_IF_COPY(num1, 0); |
| 2101 | PG_FREE_IF_COPY(num2, 1); |
| 2102 | |
| 2103 | PG_RETURN_BOOL(result); |
| 2104 | } |
| 2105 | |
| 2106 | Datum |
| 2107 | numeric_ge(PG_FUNCTION_ARGS) |
| 2108 | { |
| 2109 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2110 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2111 | bool result; |
| 2112 | |
| 2113 | result = cmp_numerics(num1, num2) >= 0; |
| 2114 | |
| 2115 | PG_FREE_IF_COPY(num1, 0); |
| 2116 | PG_FREE_IF_COPY(num2, 1); |
| 2117 | |
| 2118 | PG_RETURN_BOOL(result); |
| 2119 | } |
| 2120 | |
| 2121 | Datum |
| 2122 | numeric_lt(PG_FUNCTION_ARGS) |
| 2123 | { |
| 2124 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2125 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2126 | bool result; |
| 2127 | |
| 2128 | result = cmp_numerics(num1, num2) < 0; |
| 2129 | |
| 2130 | PG_FREE_IF_COPY(num1, 0); |
| 2131 | PG_FREE_IF_COPY(num2, 1); |
| 2132 | |
| 2133 | PG_RETURN_BOOL(result); |
| 2134 | } |
| 2135 | |
| 2136 | Datum |
| 2137 | numeric_le(PG_FUNCTION_ARGS) |
| 2138 | { |
| 2139 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2140 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2141 | bool result; |
| 2142 | |
| 2143 | result = cmp_numerics(num1, num2) <= 0; |
| 2144 | |
| 2145 | PG_FREE_IF_COPY(num1, 0); |
| 2146 | PG_FREE_IF_COPY(num2, 1); |
| 2147 | |
| 2148 | PG_RETURN_BOOL(result); |
| 2149 | } |
| 2150 | |
| 2151 | static int |
| 2152 | cmp_numerics(Numeric num1, Numeric num2) |
| 2153 | { |
| 2154 | int result; |
| 2155 | |
| 2156 | /* |
| 2157 | * We consider all NANs to be equal and larger than any non-NAN. This is |
| 2158 | * somewhat arbitrary; the important thing is to have a consistent sort |
| 2159 | * order. |
| 2160 | */ |
| 2161 | if (NUMERIC_IS_NAN(num1)) |
| 2162 | { |
| 2163 | if (NUMERIC_IS_NAN(num2)) |
| 2164 | result = 0; /* NAN = NAN */ |
| 2165 | else |
| 2166 | result = 1; /* NAN > non-NAN */ |
| 2167 | } |
| 2168 | else if (NUMERIC_IS_NAN(num2)) |
| 2169 | { |
| 2170 | result = -1; /* non-NAN < NAN */ |
| 2171 | } |
| 2172 | else |
| 2173 | { |
| 2174 | result = cmp_var_common(NUMERIC_DIGITS(num1), NUMERIC_NDIGITS(num1), |
| 2175 | NUMERIC_WEIGHT(num1), NUMERIC_SIGN(num1), |
| 2176 | NUMERIC_DIGITS(num2), NUMERIC_NDIGITS(num2), |
| 2177 | NUMERIC_WEIGHT(num2), NUMERIC_SIGN(num2)); |
| 2178 | } |
| 2179 | |
| 2180 | return result; |
| 2181 | } |
| 2182 | |
| 2183 | /* |
| 2184 | * in_range support function for numeric. |
| 2185 | */ |
| 2186 | Datum |
| 2187 | in_range_numeric_numeric(PG_FUNCTION_ARGS) |
| 2188 | { |
| 2189 | Numeric val = PG_GETARG_NUMERIC(0); |
| 2190 | Numeric base = PG_GETARG_NUMERIC(1); |
| 2191 | Numeric offset = PG_GETARG_NUMERIC(2); |
| 2192 | bool sub = PG_GETARG_BOOL(3); |
| 2193 | bool less = PG_GETARG_BOOL(4); |
| 2194 | bool result; |
| 2195 | |
| 2196 | /* |
| 2197 | * Reject negative or NaN offset. Negative is per spec, and NaN is |
| 2198 | * because appropriate semantics for that seem non-obvious. |
| 2199 | */ |
| 2200 | if (NUMERIC_IS_NAN(offset) || NUMERIC_SIGN(offset) == NUMERIC_NEG) |
| 2201 | ereport(ERROR, |
| 2202 | (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE), |
| 2203 | errmsg("invalid preceding or following size in window function" ))); |
| 2204 | |
| 2205 | /* |
| 2206 | * Deal with cases where val and/or base is NaN, following the rule that |
| 2207 | * NaN sorts after non-NaN (cf cmp_numerics). The offset cannot affect |
| 2208 | * the conclusion. |
| 2209 | */ |
| 2210 | if (NUMERIC_IS_NAN(val)) |
| 2211 | { |
| 2212 | if (NUMERIC_IS_NAN(base)) |
| 2213 | result = true; /* NAN = NAN */ |
| 2214 | else |
| 2215 | result = !less; /* NAN > non-NAN */ |
| 2216 | } |
| 2217 | else if (NUMERIC_IS_NAN(base)) |
| 2218 | { |
| 2219 | result = less; /* non-NAN < NAN */ |
| 2220 | } |
| 2221 | else |
| 2222 | { |
| 2223 | /* |
| 2224 | * Otherwise go ahead and compute base +/- offset. While it's |
| 2225 | * possible for this to overflow the numeric format, it's unlikely |
| 2226 | * enough that we don't take measures to prevent it. |
| 2227 | */ |
| 2228 | NumericVar valv; |
| 2229 | NumericVar basev; |
| 2230 | NumericVar offsetv; |
| 2231 | NumericVar sum; |
| 2232 | |
| 2233 | init_var_from_num(val, &valv); |
| 2234 | init_var_from_num(base, &basev); |
| 2235 | init_var_from_num(offset, &offsetv); |
| 2236 | init_var(&sum); |
| 2237 | |
| 2238 | if (sub) |
| 2239 | sub_var(&basev, &offsetv, &sum); |
| 2240 | else |
| 2241 | add_var(&basev, &offsetv, &sum); |
| 2242 | |
| 2243 | if (less) |
| 2244 | result = (cmp_var(&valv, &sum) <= 0); |
| 2245 | else |
| 2246 | result = (cmp_var(&valv, &sum) >= 0); |
| 2247 | |
| 2248 | free_var(&sum); |
| 2249 | } |
| 2250 | |
| 2251 | PG_FREE_IF_COPY(val, 0); |
| 2252 | PG_FREE_IF_COPY(base, 1); |
| 2253 | PG_FREE_IF_COPY(offset, 2); |
| 2254 | |
| 2255 | PG_RETURN_BOOL(result); |
| 2256 | } |
| 2257 | |
| 2258 | Datum |
| 2259 | hash_numeric(PG_FUNCTION_ARGS) |
| 2260 | { |
| 2261 | Numeric key = PG_GETARG_NUMERIC(0); |
| 2262 | Datum digit_hash; |
| 2263 | Datum result; |
| 2264 | int weight; |
| 2265 | int start_offset; |
| 2266 | int end_offset; |
| 2267 | int i; |
| 2268 | int hash_len; |
| 2269 | NumericDigit *digits; |
| 2270 | |
| 2271 | /* If it's NaN, don't try to hash the rest of the fields */ |
| 2272 | if (NUMERIC_IS_NAN(key)) |
| 2273 | PG_RETURN_UINT32(0); |
| 2274 | |
| 2275 | weight = NUMERIC_WEIGHT(key); |
| 2276 | start_offset = 0; |
| 2277 | end_offset = 0; |
| 2278 | |
| 2279 | /* |
| 2280 | * Omit any leading or trailing zeros from the input to the hash. The |
| 2281 | * numeric implementation *should* guarantee that leading and trailing |
| 2282 | * zeros are suppressed, but we're paranoid. Note that we measure the |
| 2283 | * starting and ending offsets in units of NumericDigits, not bytes. |
| 2284 | */ |
| 2285 | digits = NUMERIC_DIGITS(key); |
| 2286 | for (i = 0; i < NUMERIC_NDIGITS(key); i++) |
| 2287 | { |
| 2288 | if (digits[i] != (NumericDigit) 0) |
| 2289 | break; |
| 2290 | |
| 2291 | start_offset++; |
| 2292 | |
| 2293 | /* |
| 2294 | * The weight is effectively the # of digits before the decimal point, |
| 2295 | * so decrement it for each leading zero we skip. |
| 2296 | */ |
| 2297 | weight--; |
| 2298 | } |
| 2299 | |
| 2300 | /* |
| 2301 | * If there are no non-zero digits, then the value of the number is zero, |
| 2302 | * regardless of any other fields. |
| 2303 | */ |
| 2304 | if (NUMERIC_NDIGITS(key) == start_offset) |
| 2305 | PG_RETURN_UINT32(-1); |
| 2306 | |
| 2307 | for (i = NUMERIC_NDIGITS(key) - 1; i >= 0; i--) |
| 2308 | { |
| 2309 | if (digits[i] != (NumericDigit) 0) |
| 2310 | break; |
| 2311 | |
| 2312 | end_offset++; |
| 2313 | } |
| 2314 | |
| 2315 | /* If we get here, there should be at least one non-zero digit */ |
| 2316 | Assert(start_offset + end_offset < NUMERIC_NDIGITS(key)); |
| 2317 | |
| 2318 | /* |
| 2319 | * Note that we don't hash on the Numeric's scale, since two numerics can |
| 2320 | * compare equal but have different scales. We also don't hash on the |
| 2321 | * sign, although we could: since a sign difference implies inequality, |
| 2322 | * this shouldn't affect correctness. |
| 2323 | */ |
| 2324 | hash_len = NUMERIC_NDIGITS(key) - start_offset - end_offset; |
| 2325 | digit_hash = hash_any((unsigned char *) (NUMERIC_DIGITS(key) + start_offset), |
| 2326 | hash_len * sizeof(NumericDigit)); |
| 2327 | |
| 2328 | /* Mix in the weight, via XOR */ |
| 2329 | result = digit_hash ^ weight; |
| 2330 | |
| 2331 | PG_RETURN_DATUM(result); |
| 2332 | } |
| 2333 | |
| 2334 | /* |
| 2335 | * Returns 64-bit value by hashing a value to a 64-bit value, with a seed. |
| 2336 | * Otherwise, similar to hash_numeric. |
| 2337 | */ |
| 2338 | Datum |
| 2339 | hash_numeric_extended(PG_FUNCTION_ARGS) |
| 2340 | { |
| 2341 | Numeric key = PG_GETARG_NUMERIC(0); |
| 2342 | uint64 seed = PG_GETARG_INT64(1); |
| 2343 | Datum digit_hash; |
| 2344 | Datum result; |
| 2345 | int weight; |
| 2346 | int start_offset; |
| 2347 | int end_offset; |
| 2348 | int i; |
| 2349 | int hash_len; |
| 2350 | NumericDigit *digits; |
| 2351 | |
| 2352 | if (NUMERIC_IS_NAN(key)) |
| 2353 | PG_RETURN_UINT64(seed); |
| 2354 | |
| 2355 | weight = NUMERIC_WEIGHT(key); |
| 2356 | start_offset = 0; |
| 2357 | end_offset = 0; |
| 2358 | |
| 2359 | digits = NUMERIC_DIGITS(key); |
| 2360 | for (i = 0; i < NUMERIC_NDIGITS(key); i++) |
| 2361 | { |
| 2362 | if (digits[i] != (NumericDigit) 0) |
| 2363 | break; |
| 2364 | |
| 2365 | start_offset++; |
| 2366 | |
| 2367 | weight--; |
| 2368 | } |
| 2369 | |
| 2370 | if (NUMERIC_NDIGITS(key) == start_offset) |
| 2371 | PG_RETURN_UINT64(seed - 1); |
| 2372 | |
| 2373 | for (i = NUMERIC_NDIGITS(key) - 1; i >= 0; i--) |
| 2374 | { |
| 2375 | if (digits[i] != (NumericDigit) 0) |
| 2376 | break; |
| 2377 | |
| 2378 | end_offset++; |
| 2379 | } |
| 2380 | |
| 2381 | Assert(start_offset + end_offset < NUMERIC_NDIGITS(key)); |
| 2382 | |
| 2383 | hash_len = NUMERIC_NDIGITS(key) - start_offset - end_offset; |
| 2384 | digit_hash = hash_any_extended((unsigned char *) (NUMERIC_DIGITS(key) |
| 2385 | + start_offset), |
| 2386 | hash_len * sizeof(NumericDigit), |
| 2387 | seed); |
| 2388 | |
| 2389 | result = UInt64GetDatum(DatumGetUInt64(digit_hash) ^ weight); |
| 2390 | |
| 2391 | PG_RETURN_DATUM(result); |
| 2392 | } |
| 2393 | |
| 2394 | |
| 2395 | /* ---------------------------------------------------------------------- |
| 2396 | * |
| 2397 | * Basic arithmetic functions |
| 2398 | * |
| 2399 | * ---------------------------------------------------------------------- |
| 2400 | */ |
| 2401 | |
| 2402 | |
| 2403 | /* |
| 2404 | * numeric_add() - |
| 2405 | * |
| 2406 | * Add two numerics |
| 2407 | */ |
| 2408 | Datum |
| 2409 | numeric_add(PG_FUNCTION_ARGS) |
| 2410 | { |
| 2411 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2412 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2413 | Numeric res; |
| 2414 | |
| 2415 | res = numeric_add_opt_error(num1, num2, NULL); |
| 2416 | |
| 2417 | PG_RETURN_NUMERIC(res); |
| 2418 | } |
| 2419 | |
| 2420 | /* |
| 2421 | * numeric_add_opt_error() - |
| 2422 | * |
| 2423 | * Internal version of numeric_add(). If "*have_error" flag is provided, |
| 2424 | * on error it's set to true, NULL returned. This is helpful when caller |
| 2425 | * need to handle errors by itself. |
| 2426 | */ |
| 2427 | Numeric |
| 2428 | numeric_add_opt_error(Numeric num1, Numeric num2, bool *have_error) |
| 2429 | { |
| 2430 | NumericVar arg1; |
| 2431 | NumericVar arg2; |
| 2432 | NumericVar result; |
| 2433 | Numeric res; |
| 2434 | |
| 2435 | /* |
| 2436 | * Handle NaN |
| 2437 | */ |
| 2438 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2439 | return make_result(&const_nan); |
| 2440 | |
| 2441 | /* |
| 2442 | * Unpack the values, let add_var() compute the result and return it. |
| 2443 | */ |
| 2444 | init_var_from_num(num1, &arg1); |
| 2445 | init_var_from_num(num2, &arg2); |
| 2446 | |
| 2447 | init_var(&result); |
| 2448 | add_var(&arg1, &arg2, &result); |
| 2449 | |
| 2450 | res = make_result_opt_error(&result, have_error); |
| 2451 | |
| 2452 | free_var(&result); |
| 2453 | |
| 2454 | return res; |
| 2455 | } |
| 2456 | |
| 2457 | |
| 2458 | /* |
| 2459 | * numeric_sub() - |
| 2460 | * |
| 2461 | * Subtract one numeric from another |
| 2462 | */ |
| 2463 | Datum |
| 2464 | numeric_sub(PG_FUNCTION_ARGS) |
| 2465 | { |
| 2466 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2467 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2468 | Numeric res; |
| 2469 | |
| 2470 | res = numeric_sub_opt_error(num1, num2, NULL); |
| 2471 | |
| 2472 | PG_RETURN_NUMERIC(res); |
| 2473 | } |
| 2474 | |
| 2475 | |
| 2476 | /* |
| 2477 | * numeric_sub_opt_error() - |
| 2478 | * |
| 2479 | * Internal version of numeric_sub(). If "*have_error" flag is provided, |
| 2480 | * on error it's set to true, NULL returned. This is helpful when caller |
| 2481 | * need to handle errors by itself. |
| 2482 | */ |
| 2483 | Numeric |
| 2484 | numeric_sub_opt_error(Numeric num1, Numeric num2, bool *have_error) |
| 2485 | { |
| 2486 | NumericVar arg1; |
| 2487 | NumericVar arg2; |
| 2488 | NumericVar result; |
| 2489 | Numeric res; |
| 2490 | |
| 2491 | /* |
| 2492 | * Handle NaN |
| 2493 | */ |
| 2494 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2495 | return make_result(&const_nan); |
| 2496 | |
| 2497 | /* |
| 2498 | * Unpack the values, let sub_var() compute the result and return it. |
| 2499 | */ |
| 2500 | init_var_from_num(num1, &arg1); |
| 2501 | init_var_from_num(num2, &arg2); |
| 2502 | |
| 2503 | init_var(&result); |
| 2504 | sub_var(&arg1, &arg2, &result); |
| 2505 | |
| 2506 | res = make_result_opt_error(&result, have_error); |
| 2507 | |
| 2508 | free_var(&result); |
| 2509 | |
| 2510 | return res; |
| 2511 | } |
| 2512 | |
| 2513 | |
| 2514 | /* |
| 2515 | * numeric_mul() - |
| 2516 | * |
| 2517 | * Calculate the product of two numerics |
| 2518 | */ |
| 2519 | Datum |
| 2520 | numeric_mul(PG_FUNCTION_ARGS) |
| 2521 | { |
| 2522 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2523 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2524 | Numeric res; |
| 2525 | |
| 2526 | res = numeric_mul_opt_error(num1, num2, NULL); |
| 2527 | |
| 2528 | PG_RETURN_NUMERIC(res); |
| 2529 | } |
| 2530 | |
| 2531 | |
| 2532 | /* |
| 2533 | * numeric_mul_opt_error() - |
| 2534 | * |
| 2535 | * Internal version of numeric_mul(). If "*have_error" flag is provided, |
| 2536 | * on error it's set to true, NULL returned. This is helpful when caller |
| 2537 | * need to handle errors by itself. |
| 2538 | */ |
| 2539 | Numeric |
| 2540 | numeric_mul_opt_error(Numeric num1, Numeric num2, bool *have_error) |
| 2541 | { |
| 2542 | NumericVar arg1; |
| 2543 | NumericVar arg2; |
| 2544 | NumericVar result; |
| 2545 | Numeric res; |
| 2546 | |
| 2547 | /* |
| 2548 | * Handle NaN |
| 2549 | */ |
| 2550 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2551 | return make_result(&const_nan); |
| 2552 | |
| 2553 | /* |
| 2554 | * Unpack the values, let mul_var() compute the result and return it. |
| 2555 | * Unlike add_var() and sub_var(), mul_var() will round its result. In the |
| 2556 | * case of numeric_mul(), which is invoked for the * operator on numerics, |
| 2557 | * we request exact representation for the product (rscale = sum(dscale of |
| 2558 | * arg1, dscale of arg2)). |
| 2559 | */ |
| 2560 | init_var_from_num(num1, &arg1); |
| 2561 | init_var_from_num(num2, &arg2); |
| 2562 | |
| 2563 | init_var(&result); |
| 2564 | mul_var(&arg1, &arg2, &result, arg1.dscale + arg2.dscale); |
| 2565 | |
| 2566 | res = make_result_opt_error(&result, have_error); |
| 2567 | |
| 2568 | free_var(&result); |
| 2569 | |
| 2570 | return res; |
| 2571 | } |
| 2572 | |
| 2573 | |
| 2574 | /* |
| 2575 | * numeric_div() - |
| 2576 | * |
| 2577 | * Divide one numeric into another |
| 2578 | */ |
| 2579 | Datum |
| 2580 | numeric_div(PG_FUNCTION_ARGS) |
| 2581 | { |
| 2582 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2583 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2584 | Numeric res; |
| 2585 | |
| 2586 | res = numeric_div_opt_error(num1, num2, NULL); |
| 2587 | |
| 2588 | PG_RETURN_NUMERIC(res); |
| 2589 | } |
| 2590 | |
| 2591 | |
| 2592 | /* |
| 2593 | * numeric_div_opt_error() - |
| 2594 | * |
| 2595 | * Internal version of numeric_div(). If "*have_error" flag is provided, |
| 2596 | * on error it's set to true, NULL returned. This is helpful when caller |
| 2597 | * need to handle errors by itself. |
| 2598 | */ |
| 2599 | Numeric |
| 2600 | numeric_div_opt_error(Numeric num1, Numeric num2, bool *have_error) |
| 2601 | { |
| 2602 | NumericVar arg1; |
| 2603 | NumericVar arg2; |
| 2604 | NumericVar result; |
| 2605 | Numeric res; |
| 2606 | int rscale; |
| 2607 | |
| 2608 | /* |
| 2609 | * Handle NaN |
| 2610 | */ |
| 2611 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2612 | return make_result(&const_nan); |
| 2613 | |
| 2614 | /* |
| 2615 | * Unpack the arguments |
| 2616 | */ |
| 2617 | init_var_from_num(num1, &arg1); |
| 2618 | init_var_from_num(num2, &arg2); |
| 2619 | |
| 2620 | init_var(&result); |
| 2621 | |
| 2622 | /* |
| 2623 | * Select scale for division result |
| 2624 | */ |
| 2625 | rscale = select_div_scale(&arg1, &arg2); |
| 2626 | |
| 2627 | /* |
| 2628 | * If "have_error" is provided, check for division by zero here |
| 2629 | */ |
| 2630 | if (have_error && (arg2.ndigits == 0 || arg2.digits[0] == 0)) |
| 2631 | { |
| 2632 | *have_error = true; |
| 2633 | return NULL; |
| 2634 | } |
| 2635 | |
| 2636 | /* |
| 2637 | * Do the divide and return the result |
| 2638 | */ |
| 2639 | div_var(&arg1, &arg2, &result, rscale, true); |
| 2640 | |
| 2641 | res = make_result_opt_error(&result, have_error); |
| 2642 | |
| 2643 | free_var(&result); |
| 2644 | |
| 2645 | return res; |
| 2646 | } |
| 2647 | |
| 2648 | |
| 2649 | /* |
| 2650 | * numeric_div_trunc() - |
| 2651 | * |
| 2652 | * Divide one numeric into another, truncating the result to an integer |
| 2653 | */ |
| 2654 | Datum |
| 2655 | numeric_div_trunc(PG_FUNCTION_ARGS) |
| 2656 | { |
| 2657 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2658 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2659 | NumericVar arg1; |
| 2660 | NumericVar arg2; |
| 2661 | NumericVar result; |
| 2662 | Numeric res; |
| 2663 | |
| 2664 | /* |
| 2665 | * Handle NaN |
| 2666 | */ |
| 2667 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2668 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 2669 | |
| 2670 | /* |
| 2671 | * Unpack the arguments |
| 2672 | */ |
| 2673 | init_var_from_num(num1, &arg1); |
| 2674 | init_var_from_num(num2, &arg2); |
| 2675 | |
| 2676 | init_var(&result); |
| 2677 | |
| 2678 | /* |
| 2679 | * Do the divide and return the result |
| 2680 | */ |
| 2681 | div_var(&arg1, &arg2, &result, 0, false); |
| 2682 | |
| 2683 | res = make_result(&result); |
| 2684 | |
| 2685 | free_var(&result); |
| 2686 | |
| 2687 | PG_RETURN_NUMERIC(res); |
| 2688 | } |
| 2689 | |
| 2690 | |
| 2691 | /* |
| 2692 | * numeric_mod() - |
| 2693 | * |
| 2694 | * Calculate the modulo of two numerics |
| 2695 | */ |
| 2696 | Datum |
| 2697 | numeric_mod(PG_FUNCTION_ARGS) |
| 2698 | { |
| 2699 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2700 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2701 | Numeric res; |
| 2702 | |
| 2703 | res = numeric_mod_opt_error(num1, num2, NULL); |
| 2704 | |
| 2705 | PG_RETURN_NUMERIC(res); |
| 2706 | } |
| 2707 | |
| 2708 | |
| 2709 | /* |
| 2710 | * numeric_mod_opt_error() - |
| 2711 | * |
| 2712 | * Internal version of numeric_mod(). If "*have_error" flag is provided, |
| 2713 | * on error it's set to true, NULL returned. This is helpful when caller |
| 2714 | * need to handle errors by itself. |
| 2715 | */ |
| 2716 | Numeric |
| 2717 | numeric_mod_opt_error(Numeric num1, Numeric num2, bool *have_error) |
| 2718 | { |
| 2719 | Numeric res; |
| 2720 | NumericVar arg1; |
| 2721 | NumericVar arg2; |
| 2722 | NumericVar result; |
| 2723 | |
| 2724 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 2725 | return make_result(&const_nan); |
| 2726 | |
| 2727 | init_var_from_num(num1, &arg1); |
| 2728 | init_var_from_num(num2, &arg2); |
| 2729 | |
| 2730 | init_var(&result); |
| 2731 | |
| 2732 | /* |
| 2733 | * If "have_error" is provided, check for division by zero here |
| 2734 | */ |
| 2735 | if (have_error && (arg2.ndigits == 0 || arg2.digits[0] == 0)) |
| 2736 | { |
| 2737 | *have_error = true; |
| 2738 | return NULL; |
| 2739 | } |
| 2740 | |
| 2741 | mod_var(&arg1, &arg2, &result); |
| 2742 | |
| 2743 | res = make_result_opt_error(&result, NULL); |
| 2744 | |
| 2745 | free_var(&result); |
| 2746 | |
| 2747 | return res; |
| 2748 | } |
| 2749 | |
| 2750 | |
| 2751 | /* |
| 2752 | * numeric_inc() - |
| 2753 | * |
| 2754 | * Increment a number by one |
| 2755 | */ |
| 2756 | Datum |
| 2757 | numeric_inc(PG_FUNCTION_ARGS) |
| 2758 | { |
| 2759 | Numeric num = PG_GETARG_NUMERIC(0); |
| 2760 | NumericVar arg; |
| 2761 | Numeric res; |
| 2762 | |
| 2763 | /* |
| 2764 | * Handle NaN |
| 2765 | */ |
| 2766 | if (NUMERIC_IS_NAN(num)) |
| 2767 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 2768 | |
| 2769 | /* |
| 2770 | * Compute the result and return it |
| 2771 | */ |
| 2772 | init_var_from_num(num, &arg); |
| 2773 | |
| 2774 | add_var(&arg, &const_one, &arg); |
| 2775 | |
| 2776 | res = make_result(&arg); |
| 2777 | |
| 2778 | free_var(&arg); |
| 2779 | |
| 2780 | PG_RETURN_NUMERIC(res); |
| 2781 | } |
| 2782 | |
| 2783 | |
| 2784 | /* |
| 2785 | * numeric_smaller() - |
| 2786 | * |
| 2787 | * Return the smaller of two numbers |
| 2788 | */ |
| 2789 | Datum |
| 2790 | numeric_smaller(PG_FUNCTION_ARGS) |
| 2791 | { |
| 2792 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2793 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2794 | |
| 2795 | /* |
| 2796 | * Use cmp_numerics so that this will agree with the comparison operators, |
| 2797 | * particularly as regards comparisons involving NaN. |
| 2798 | */ |
| 2799 | if (cmp_numerics(num1, num2) < 0) |
| 2800 | PG_RETURN_NUMERIC(num1); |
| 2801 | else |
| 2802 | PG_RETURN_NUMERIC(num2); |
| 2803 | } |
| 2804 | |
| 2805 | |
| 2806 | /* |
| 2807 | * numeric_larger() - |
| 2808 | * |
| 2809 | * Return the larger of two numbers |
| 2810 | */ |
| 2811 | Datum |
| 2812 | numeric_larger(PG_FUNCTION_ARGS) |
| 2813 | { |
| 2814 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 2815 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 2816 | |
| 2817 | /* |
| 2818 | * Use cmp_numerics so that this will agree with the comparison operators, |
| 2819 | * particularly as regards comparisons involving NaN. |
| 2820 | */ |
| 2821 | if (cmp_numerics(num1, num2) > 0) |
| 2822 | PG_RETURN_NUMERIC(num1); |
| 2823 | else |
| 2824 | PG_RETURN_NUMERIC(num2); |
| 2825 | } |
| 2826 | |
| 2827 | |
| 2828 | /* ---------------------------------------------------------------------- |
| 2829 | * |
| 2830 | * Advanced math functions |
| 2831 | * |
| 2832 | * ---------------------------------------------------------------------- |
| 2833 | */ |
| 2834 | |
| 2835 | /* |
| 2836 | * numeric_fac() |
| 2837 | * |
| 2838 | * Compute factorial |
| 2839 | */ |
| 2840 | Datum |
| 2841 | numeric_fac(PG_FUNCTION_ARGS) |
| 2842 | { |
| 2843 | int64 num = PG_GETARG_INT64(0); |
| 2844 | Numeric res; |
| 2845 | NumericVar fact; |
| 2846 | NumericVar result; |
| 2847 | |
| 2848 | if (num <= 1) |
| 2849 | { |
| 2850 | res = make_result(&const_one); |
| 2851 | PG_RETURN_NUMERIC(res); |
| 2852 | } |
| 2853 | /* Fail immediately if the result would overflow */ |
| 2854 | if (num > 32177) |
| 2855 | ereport(ERROR, |
| 2856 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 2857 | errmsg("value overflows numeric format" ))); |
| 2858 | |
| 2859 | init_var(&fact); |
| 2860 | init_var(&result); |
| 2861 | |
| 2862 | int64_to_numericvar(num, &result); |
| 2863 | |
| 2864 | for (num = num - 1; num > 1; num--) |
| 2865 | { |
| 2866 | /* this loop can take awhile, so allow it to be interrupted */ |
| 2867 | CHECK_FOR_INTERRUPTS(); |
| 2868 | |
| 2869 | int64_to_numericvar(num, &fact); |
| 2870 | |
| 2871 | mul_var(&result, &fact, &result, 0); |
| 2872 | } |
| 2873 | |
| 2874 | res = make_result(&result); |
| 2875 | |
| 2876 | free_var(&fact); |
| 2877 | free_var(&result); |
| 2878 | |
| 2879 | PG_RETURN_NUMERIC(res); |
| 2880 | } |
| 2881 | |
| 2882 | |
| 2883 | /* |
| 2884 | * numeric_sqrt() - |
| 2885 | * |
| 2886 | * Compute the square root of a numeric. |
| 2887 | */ |
| 2888 | Datum |
| 2889 | numeric_sqrt(PG_FUNCTION_ARGS) |
| 2890 | { |
| 2891 | Numeric num = PG_GETARG_NUMERIC(0); |
| 2892 | Numeric res; |
| 2893 | NumericVar arg; |
| 2894 | NumericVar result; |
| 2895 | int sweight; |
| 2896 | int rscale; |
| 2897 | |
| 2898 | /* |
| 2899 | * Handle NaN |
| 2900 | */ |
| 2901 | if (NUMERIC_IS_NAN(num)) |
| 2902 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 2903 | |
| 2904 | /* |
| 2905 | * Unpack the argument and determine the result scale. We choose a scale |
| 2906 | * to give at least NUMERIC_MIN_SIG_DIGITS significant digits; but in any |
| 2907 | * case not less than the input's dscale. |
| 2908 | */ |
| 2909 | init_var_from_num(num, &arg); |
| 2910 | |
| 2911 | init_var(&result); |
| 2912 | |
| 2913 | /* Assume the input was normalized, so arg.weight is accurate */ |
| 2914 | sweight = (arg.weight + 1) * DEC_DIGITS / 2 - 1; |
| 2915 | |
| 2916 | rscale = NUMERIC_MIN_SIG_DIGITS - sweight; |
| 2917 | rscale = Max(rscale, arg.dscale); |
| 2918 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 2919 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 2920 | |
| 2921 | /* |
| 2922 | * Let sqrt_var() do the calculation and return the result. |
| 2923 | */ |
| 2924 | sqrt_var(&arg, &result, rscale); |
| 2925 | |
| 2926 | res = make_result(&result); |
| 2927 | |
| 2928 | free_var(&result); |
| 2929 | |
| 2930 | PG_RETURN_NUMERIC(res); |
| 2931 | } |
| 2932 | |
| 2933 | |
| 2934 | /* |
| 2935 | * numeric_exp() - |
| 2936 | * |
| 2937 | * Raise e to the power of x |
| 2938 | */ |
| 2939 | Datum |
| 2940 | numeric_exp(PG_FUNCTION_ARGS) |
| 2941 | { |
| 2942 | Numeric num = PG_GETARG_NUMERIC(0); |
| 2943 | Numeric res; |
| 2944 | NumericVar arg; |
| 2945 | NumericVar result; |
| 2946 | int rscale; |
| 2947 | double val; |
| 2948 | |
| 2949 | /* |
| 2950 | * Handle NaN |
| 2951 | */ |
| 2952 | if (NUMERIC_IS_NAN(num)) |
| 2953 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 2954 | |
| 2955 | /* |
| 2956 | * Unpack the argument and determine the result scale. We choose a scale |
| 2957 | * to give at least NUMERIC_MIN_SIG_DIGITS significant digits; but in any |
| 2958 | * case not less than the input's dscale. |
| 2959 | */ |
| 2960 | init_var_from_num(num, &arg); |
| 2961 | |
| 2962 | init_var(&result); |
| 2963 | |
| 2964 | /* convert input to float8, ignoring overflow */ |
| 2965 | val = numericvar_to_double_no_overflow(&arg); |
| 2966 | |
| 2967 | /* |
| 2968 | * log10(result) = num * log10(e), so this is approximately the decimal |
| 2969 | * weight of the result: |
| 2970 | */ |
| 2971 | val *= 0.434294481903252; |
| 2972 | |
| 2973 | /* limit to something that won't cause integer overflow */ |
| 2974 | val = Max(val, -NUMERIC_MAX_RESULT_SCALE); |
| 2975 | val = Min(val, NUMERIC_MAX_RESULT_SCALE); |
| 2976 | |
| 2977 | rscale = NUMERIC_MIN_SIG_DIGITS - (int) val; |
| 2978 | rscale = Max(rscale, arg.dscale); |
| 2979 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 2980 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 2981 | |
| 2982 | /* |
| 2983 | * Let exp_var() do the calculation and return the result. |
| 2984 | */ |
| 2985 | exp_var(&arg, &result, rscale); |
| 2986 | |
| 2987 | res = make_result(&result); |
| 2988 | |
| 2989 | free_var(&result); |
| 2990 | |
| 2991 | PG_RETURN_NUMERIC(res); |
| 2992 | } |
| 2993 | |
| 2994 | |
| 2995 | /* |
| 2996 | * numeric_ln() - |
| 2997 | * |
| 2998 | * Compute the natural logarithm of x |
| 2999 | */ |
| 3000 | Datum |
| 3001 | numeric_ln(PG_FUNCTION_ARGS) |
| 3002 | { |
| 3003 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3004 | Numeric res; |
| 3005 | NumericVar arg; |
| 3006 | NumericVar result; |
| 3007 | int ln_dweight; |
| 3008 | int rscale; |
| 3009 | |
| 3010 | /* |
| 3011 | * Handle NaN |
| 3012 | */ |
| 3013 | if (NUMERIC_IS_NAN(num)) |
| 3014 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3015 | |
| 3016 | init_var_from_num(num, &arg); |
| 3017 | init_var(&result); |
| 3018 | |
| 3019 | /* Estimated dweight of logarithm */ |
| 3020 | ln_dweight = estimate_ln_dweight(&arg); |
| 3021 | |
| 3022 | rscale = NUMERIC_MIN_SIG_DIGITS - ln_dweight; |
| 3023 | rscale = Max(rscale, arg.dscale); |
| 3024 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 3025 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 3026 | |
| 3027 | ln_var(&arg, &result, rscale); |
| 3028 | |
| 3029 | res = make_result(&result); |
| 3030 | |
| 3031 | free_var(&result); |
| 3032 | |
| 3033 | PG_RETURN_NUMERIC(res); |
| 3034 | } |
| 3035 | |
| 3036 | |
| 3037 | /* |
| 3038 | * numeric_log() - |
| 3039 | * |
| 3040 | * Compute the logarithm of x in a given base |
| 3041 | */ |
| 3042 | Datum |
| 3043 | numeric_log(PG_FUNCTION_ARGS) |
| 3044 | { |
| 3045 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 3046 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 3047 | Numeric res; |
| 3048 | NumericVar arg1; |
| 3049 | NumericVar arg2; |
| 3050 | NumericVar result; |
| 3051 | |
| 3052 | /* |
| 3053 | * Handle NaN |
| 3054 | */ |
| 3055 | if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) |
| 3056 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3057 | |
| 3058 | /* |
| 3059 | * Initialize things |
| 3060 | */ |
| 3061 | init_var_from_num(num1, &arg1); |
| 3062 | init_var_from_num(num2, &arg2); |
| 3063 | init_var(&result); |
| 3064 | |
| 3065 | /* |
| 3066 | * Call log_var() to compute and return the result; note it handles scale |
| 3067 | * selection itself. |
| 3068 | */ |
| 3069 | log_var(&arg1, &arg2, &result); |
| 3070 | |
| 3071 | res = make_result(&result); |
| 3072 | |
| 3073 | free_var(&result); |
| 3074 | |
| 3075 | PG_RETURN_NUMERIC(res); |
| 3076 | } |
| 3077 | |
| 3078 | |
| 3079 | /* |
| 3080 | * numeric_power() - |
| 3081 | * |
| 3082 | * Raise b to the power of x |
| 3083 | */ |
| 3084 | Datum |
| 3085 | numeric_power(PG_FUNCTION_ARGS) |
| 3086 | { |
| 3087 | Numeric num1 = PG_GETARG_NUMERIC(0); |
| 3088 | Numeric num2 = PG_GETARG_NUMERIC(1); |
| 3089 | Numeric res; |
| 3090 | NumericVar arg1; |
| 3091 | NumericVar arg2; |
| 3092 | NumericVar arg2_trunc; |
| 3093 | NumericVar result; |
| 3094 | |
| 3095 | /* |
| 3096 | * Handle NaN cases. We follow the POSIX spec for pow(3), which says that |
| 3097 | * NaN ^ 0 = 1, and 1 ^ NaN = 1, while all other cases with NaN inputs |
| 3098 | * yield NaN (with no error). |
| 3099 | */ |
| 3100 | if (NUMERIC_IS_NAN(num1)) |
| 3101 | { |
| 3102 | if (!NUMERIC_IS_NAN(num2)) |
| 3103 | { |
| 3104 | init_var_from_num(num2, &arg2); |
| 3105 | if (cmp_var(&arg2, &const_zero) == 0) |
| 3106 | PG_RETURN_NUMERIC(make_result(&const_one)); |
| 3107 | } |
| 3108 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3109 | } |
| 3110 | if (NUMERIC_IS_NAN(num2)) |
| 3111 | { |
| 3112 | init_var_from_num(num1, &arg1); |
| 3113 | if (cmp_var(&arg1, &const_one) == 0) |
| 3114 | PG_RETURN_NUMERIC(make_result(&const_one)); |
| 3115 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3116 | } |
| 3117 | |
| 3118 | /* |
| 3119 | * Initialize things |
| 3120 | */ |
| 3121 | init_var(&arg2_trunc); |
| 3122 | init_var(&result); |
| 3123 | init_var_from_num(num1, &arg1); |
| 3124 | init_var_from_num(num2, &arg2); |
| 3125 | |
| 3126 | set_var_from_var(&arg2, &arg2_trunc); |
| 3127 | trunc_var(&arg2_trunc, 0); |
| 3128 | |
| 3129 | /* |
| 3130 | * The SQL spec requires that we emit a particular SQLSTATE error code for |
| 3131 | * certain error conditions. Specifically, we don't return a |
| 3132 | * divide-by-zero error code for 0 ^ -1. |
| 3133 | */ |
| 3134 | if (cmp_var(&arg1, &const_zero) == 0 && |
| 3135 | cmp_var(&arg2, &const_zero) < 0) |
| 3136 | ereport(ERROR, |
| 3137 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 3138 | errmsg("zero raised to a negative power is undefined" ))); |
| 3139 | |
| 3140 | if (cmp_var(&arg1, &const_zero) < 0 && |
| 3141 | cmp_var(&arg2, &arg2_trunc) != 0) |
| 3142 | ereport(ERROR, |
| 3143 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 3144 | errmsg("a negative number raised to a non-integer power yields a complex result" ))); |
| 3145 | |
| 3146 | /* |
| 3147 | * Call power_var() to compute and return the result; note it handles |
| 3148 | * scale selection itself. |
| 3149 | */ |
| 3150 | power_var(&arg1, &arg2, &result); |
| 3151 | |
| 3152 | res = make_result(&result); |
| 3153 | |
| 3154 | free_var(&result); |
| 3155 | free_var(&arg2_trunc); |
| 3156 | |
| 3157 | PG_RETURN_NUMERIC(res); |
| 3158 | } |
| 3159 | |
| 3160 | /* |
| 3161 | * numeric_scale() - |
| 3162 | * |
| 3163 | * Returns the scale, i.e. the count of decimal digits in the fractional part |
| 3164 | */ |
| 3165 | Datum |
| 3166 | numeric_scale(PG_FUNCTION_ARGS) |
| 3167 | { |
| 3168 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3169 | |
| 3170 | if (NUMERIC_IS_NAN(num)) |
| 3171 | PG_RETURN_NULL(); |
| 3172 | |
| 3173 | PG_RETURN_INT32(NUMERIC_DSCALE(num)); |
| 3174 | } |
| 3175 | |
| 3176 | |
| 3177 | |
| 3178 | /* ---------------------------------------------------------------------- |
| 3179 | * |
| 3180 | * Type conversion functions |
| 3181 | * |
| 3182 | * ---------------------------------------------------------------------- |
| 3183 | */ |
| 3184 | |
| 3185 | |
| 3186 | Datum |
| 3187 | int4_numeric(PG_FUNCTION_ARGS) |
| 3188 | { |
| 3189 | int32 val = PG_GETARG_INT32(0); |
| 3190 | Numeric res; |
| 3191 | NumericVar result; |
| 3192 | |
| 3193 | init_var(&result); |
| 3194 | |
| 3195 | int64_to_numericvar((int64) val, &result); |
| 3196 | |
| 3197 | res = make_result(&result); |
| 3198 | |
| 3199 | free_var(&result); |
| 3200 | |
| 3201 | PG_RETURN_NUMERIC(res); |
| 3202 | } |
| 3203 | |
| 3204 | int32 |
| 3205 | numeric_int4_opt_error(Numeric num, bool *have_error) |
| 3206 | { |
| 3207 | NumericVar x; |
| 3208 | int32 result; |
| 3209 | |
| 3210 | /* XXX would it be better to return NULL? */ |
| 3211 | if (NUMERIC_IS_NAN(num)) |
| 3212 | { |
| 3213 | if (have_error) |
| 3214 | { |
| 3215 | *have_error = true; |
| 3216 | return 0; |
| 3217 | } |
| 3218 | else |
| 3219 | { |
| 3220 | ereport(ERROR, |
| 3221 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3222 | errmsg("cannot convert NaN to integer" ))); |
| 3223 | } |
| 3224 | } |
| 3225 | |
| 3226 | /* Convert to variable format, then convert to int4 */ |
| 3227 | init_var_from_num(num, &x); |
| 3228 | |
| 3229 | if (!numericvar_to_int32(&x, &result)) |
| 3230 | { |
| 3231 | if (have_error) |
| 3232 | { |
| 3233 | *have_error = true; |
| 3234 | return 0; |
| 3235 | } |
| 3236 | else |
| 3237 | { |
| 3238 | ereport(ERROR, |
| 3239 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3240 | errmsg("integer out of range" ))); |
| 3241 | } |
| 3242 | } |
| 3243 | |
| 3244 | return result; |
| 3245 | } |
| 3246 | |
| 3247 | Datum |
| 3248 | numeric_int4(PG_FUNCTION_ARGS) |
| 3249 | { |
| 3250 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3251 | |
| 3252 | PG_RETURN_INT32(numeric_int4_opt_error(num, NULL)); |
| 3253 | } |
| 3254 | |
| 3255 | /* |
| 3256 | * Given a NumericVar, convert it to an int32. If the NumericVar |
| 3257 | * exceeds the range of an int32, false is returned, otherwise true is returned. |
| 3258 | * The input NumericVar is *not* free'd. |
| 3259 | */ |
| 3260 | static bool |
| 3261 | numericvar_to_int32(const NumericVar *var, int32 *result) |
| 3262 | { |
| 3263 | int64 val; |
| 3264 | |
| 3265 | if (!numericvar_to_int64(var, &val)) |
| 3266 | return false; |
| 3267 | |
| 3268 | /* Down-convert to int4 */ |
| 3269 | *result = (int32) val; |
| 3270 | |
| 3271 | /* Test for overflow by reverse-conversion. */ |
| 3272 | return ((int64) *result == val); |
| 3273 | } |
| 3274 | |
| 3275 | Datum |
| 3276 | int8_numeric(PG_FUNCTION_ARGS) |
| 3277 | { |
| 3278 | int64 val = PG_GETARG_INT64(0); |
| 3279 | Numeric res; |
| 3280 | NumericVar result; |
| 3281 | |
| 3282 | init_var(&result); |
| 3283 | |
| 3284 | int64_to_numericvar(val, &result); |
| 3285 | |
| 3286 | res = make_result(&result); |
| 3287 | |
| 3288 | free_var(&result); |
| 3289 | |
| 3290 | PG_RETURN_NUMERIC(res); |
| 3291 | } |
| 3292 | |
| 3293 | |
| 3294 | Datum |
| 3295 | numeric_int8(PG_FUNCTION_ARGS) |
| 3296 | { |
| 3297 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3298 | NumericVar x; |
| 3299 | int64 result; |
| 3300 | |
| 3301 | /* XXX would it be better to return NULL? */ |
| 3302 | if (NUMERIC_IS_NAN(num)) |
| 3303 | ereport(ERROR, |
| 3304 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3305 | errmsg("cannot convert NaN to bigint" ))); |
| 3306 | |
| 3307 | /* Convert to variable format and thence to int8 */ |
| 3308 | init_var_from_num(num, &x); |
| 3309 | |
| 3310 | if (!numericvar_to_int64(&x, &result)) |
| 3311 | ereport(ERROR, |
| 3312 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3313 | errmsg("bigint out of range" ))); |
| 3314 | |
| 3315 | PG_RETURN_INT64(result); |
| 3316 | } |
| 3317 | |
| 3318 | |
| 3319 | Datum |
| 3320 | int2_numeric(PG_FUNCTION_ARGS) |
| 3321 | { |
| 3322 | int16 val = PG_GETARG_INT16(0); |
| 3323 | Numeric res; |
| 3324 | NumericVar result; |
| 3325 | |
| 3326 | init_var(&result); |
| 3327 | |
| 3328 | int64_to_numericvar((int64) val, &result); |
| 3329 | |
| 3330 | res = make_result(&result); |
| 3331 | |
| 3332 | free_var(&result); |
| 3333 | |
| 3334 | PG_RETURN_NUMERIC(res); |
| 3335 | } |
| 3336 | |
| 3337 | |
| 3338 | Datum |
| 3339 | numeric_int2(PG_FUNCTION_ARGS) |
| 3340 | { |
| 3341 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3342 | NumericVar x; |
| 3343 | int64 val; |
| 3344 | int16 result; |
| 3345 | |
| 3346 | /* XXX would it be better to return NULL? */ |
| 3347 | if (NUMERIC_IS_NAN(num)) |
| 3348 | ereport(ERROR, |
| 3349 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3350 | errmsg("cannot convert NaN to smallint" ))); |
| 3351 | |
| 3352 | /* Convert to variable format and thence to int8 */ |
| 3353 | init_var_from_num(num, &x); |
| 3354 | |
| 3355 | if (!numericvar_to_int64(&x, &val)) |
| 3356 | ereport(ERROR, |
| 3357 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3358 | errmsg("smallint out of range" ))); |
| 3359 | |
| 3360 | /* Down-convert to int2 */ |
| 3361 | result = (int16) val; |
| 3362 | |
| 3363 | /* Test for overflow by reverse-conversion. */ |
| 3364 | if ((int64) result != val) |
| 3365 | ereport(ERROR, |
| 3366 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 3367 | errmsg("smallint out of range" ))); |
| 3368 | |
| 3369 | PG_RETURN_INT16(result); |
| 3370 | } |
| 3371 | |
| 3372 | |
| 3373 | Datum |
| 3374 | float8_numeric(PG_FUNCTION_ARGS) |
| 3375 | { |
| 3376 | float8 val = PG_GETARG_FLOAT8(0); |
| 3377 | Numeric res; |
| 3378 | NumericVar result; |
| 3379 | char buf[DBL_DIG + 100]; |
| 3380 | |
| 3381 | if (isnan(val)) |
| 3382 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3383 | |
| 3384 | if (isinf(val)) |
| 3385 | ereport(ERROR, |
| 3386 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3387 | errmsg("cannot convert infinity to numeric" ))); |
| 3388 | |
| 3389 | snprintf(buf, sizeof(buf), "%.*g" , DBL_DIG, val); |
| 3390 | |
| 3391 | init_var(&result); |
| 3392 | |
| 3393 | /* Assume we need not worry about leading/trailing spaces */ |
| 3394 | (void) set_var_from_str(buf, buf, &result); |
| 3395 | |
| 3396 | res = make_result(&result); |
| 3397 | |
| 3398 | free_var(&result); |
| 3399 | |
| 3400 | PG_RETURN_NUMERIC(res); |
| 3401 | } |
| 3402 | |
| 3403 | |
| 3404 | Datum |
| 3405 | numeric_float8(PG_FUNCTION_ARGS) |
| 3406 | { |
| 3407 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3408 | char *tmp; |
| 3409 | Datum result; |
| 3410 | |
| 3411 | if (NUMERIC_IS_NAN(num)) |
| 3412 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 3413 | |
| 3414 | tmp = DatumGetCString(DirectFunctionCall1(numeric_out, |
| 3415 | NumericGetDatum(num))); |
| 3416 | |
| 3417 | result = DirectFunctionCall1(float8in, CStringGetDatum(tmp)); |
| 3418 | |
| 3419 | pfree(tmp); |
| 3420 | |
| 3421 | PG_RETURN_DATUM(result); |
| 3422 | } |
| 3423 | |
| 3424 | |
| 3425 | /* |
| 3426 | * Convert numeric to float8; if out of range, return +/- HUGE_VAL |
| 3427 | * |
| 3428 | * (internal helper function, not directly callable from SQL) |
| 3429 | */ |
| 3430 | Datum |
| 3431 | numeric_float8_no_overflow(PG_FUNCTION_ARGS) |
| 3432 | { |
| 3433 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3434 | double val; |
| 3435 | |
| 3436 | if (NUMERIC_IS_NAN(num)) |
| 3437 | PG_RETURN_FLOAT8(get_float8_nan()); |
| 3438 | |
| 3439 | val = numeric_to_double_no_overflow(num); |
| 3440 | |
| 3441 | PG_RETURN_FLOAT8(val); |
| 3442 | } |
| 3443 | |
| 3444 | Datum |
| 3445 | float4_numeric(PG_FUNCTION_ARGS) |
| 3446 | { |
| 3447 | float4 val = PG_GETARG_FLOAT4(0); |
| 3448 | Numeric res; |
| 3449 | NumericVar result; |
| 3450 | char buf[FLT_DIG + 100]; |
| 3451 | |
| 3452 | if (isnan(val)) |
| 3453 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 3454 | |
| 3455 | if (isinf(val)) |
| 3456 | ereport(ERROR, |
| 3457 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 3458 | errmsg("cannot convert infinity to numeric" ))); |
| 3459 | |
| 3460 | snprintf(buf, sizeof(buf), "%.*g" , FLT_DIG, val); |
| 3461 | |
| 3462 | init_var(&result); |
| 3463 | |
| 3464 | /* Assume we need not worry about leading/trailing spaces */ |
| 3465 | (void) set_var_from_str(buf, buf, &result); |
| 3466 | |
| 3467 | res = make_result(&result); |
| 3468 | |
| 3469 | free_var(&result); |
| 3470 | |
| 3471 | PG_RETURN_NUMERIC(res); |
| 3472 | } |
| 3473 | |
| 3474 | |
| 3475 | Datum |
| 3476 | numeric_float4(PG_FUNCTION_ARGS) |
| 3477 | { |
| 3478 | Numeric num = PG_GETARG_NUMERIC(0); |
| 3479 | char *tmp; |
| 3480 | Datum result; |
| 3481 | |
| 3482 | if (NUMERIC_IS_NAN(num)) |
| 3483 | PG_RETURN_FLOAT4(get_float4_nan()); |
| 3484 | |
| 3485 | tmp = DatumGetCString(DirectFunctionCall1(numeric_out, |
| 3486 | NumericGetDatum(num))); |
| 3487 | |
| 3488 | result = DirectFunctionCall1(float4in, CStringGetDatum(tmp)); |
| 3489 | |
| 3490 | pfree(tmp); |
| 3491 | |
| 3492 | PG_RETURN_DATUM(result); |
| 3493 | } |
| 3494 | |
| 3495 | |
| 3496 | /* ---------------------------------------------------------------------- |
| 3497 | * |
| 3498 | * Aggregate functions |
| 3499 | * |
| 3500 | * The transition datatype for all these aggregates is declared as INTERNAL. |
| 3501 | * Actually, it's a pointer to a NumericAggState allocated in the aggregate |
| 3502 | * context. The digit buffers for the NumericVars will be there too. |
| 3503 | * |
| 3504 | * On platforms which support 128-bit integers some aggregates instead use a |
| 3505 | * 128-bit integer based transition datatype to speed up calculations. |
| 3506 | * |
| 3507 | * ---------------------------------------------------------------------- |
| 3508 | */ |
| 3509 | |
| 3510 | typedef struct NumericAggState |
| 3511 | { |
| 3512 | bool calcSumX2; /* if true, calculate sumX2 */ |
| 3513 | MemoryContext agg_context; /* context we're calculating in */ |
| 3514 | int64 N; /* count of processed numbers */ |
| 3515 | NumericSumAccum sumX; /* sum of processed numbers */ |
| 3516 | NumericSumAccum sumX2; /* sum of squares of processed numbers */ |
| 3517 | int maxScale; /* maximum scale seen so far */ |
| 3518 | int64 maxScaleCount; /* number of values seen with maximum scale */ |
| 3519 | int64 NaNcount; /* count of NaN values (not included in N!) */ |
| 3520 | } NumericAggState; |
| 3521 | |
| 3522 | /* |
| 3523 | * Prepare state data for a numeric aggregate function that needs to compute |
| 3524 | * sum, count and optionally sum of squares of the input. |
| 3525 | */ |
| 3526 | static NumericAggState * |
| 3527 | makeNumericAggState(FunctionCallInfo fcinfo, bool calcSumX2) |
| 3528 | { |
| 3529 | NumericAggState *state; |
| 3530 | MemoryContext agg_context; |
| 3531 | MemoryContext old_context; |
| 3532 | |
| 3533 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 3534 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 3535 | |
| 3536 | old_context = MemoryContextSwitchTo(agg_context); |
| 3537 | |
| 3538 | state = (NumericAggState *) palloc0(sizeof(NumericAggState)); |
| 3539 | state->calcSumX2 = calcSumX2; |
| 3540 | state->agg_context = agg_context; |
| 3541 | |
| 3542 | MemoryContextSwitchTo(old_context); |
| 3543 | |
| 3544 | return state; |
| 3545 | } |
| 3546 | |
| 3547 | /* |
| 3548 | * Like makeNumericAggState(), but allocate the state in the current memory |
| 3549 | * context. |
| 3550 | */ |
| 3551 | static NumericAggState * |
| 3552 | makeNumericAggStateCurrentContext(bool calcSumX2) |
| 3553 | { |
| 3554 | NumericAggState *state; |
| 3555 | |
| 3556 | state = (NumericAggState *) palloc0(sizeof(NumericAggState)); |
| 3557 | state->calcSumX2 = calcSumX2; |
| 3558 | state->agg_context = CurrentMemoryContext; |
| 3559 | |
| 3560 | return state; |
| 3561 | } |
| 3562 | |
| 3563 | /* |
| 3564 | * Accumulate a new input value for numeric aggregate functions. |
| 3565 | */ |
| 3566 | static void |
| 3567 | do_numeric_accum(NumericAggState *state, Numeric newval) |
| 3568 | { |
| 3569 | NumericVar X; |
| 3570 | NumericVar X2; |
| 3571 | MemoryContext old_context; |
| 3572 | |
| 3573 | /* Count NaN inputs separately from all else */ |
| 3574 | if (NUMERIC_IS_NAN(newval)) |
| 3575 | { |
| 3576 | state->NaNcount++; |
| 3577 | return; |
| 3578 | } |
| 3579 | |
| 3580 | /* load processed number in short-lived context */ |
| 3581 | init_var_from_num(newval, &X); |
| 3582 | |
| 3583 | /* |
| 3584 | * Track the highest input dscale that we've seen, to support inverse |
| 3585 | * transitions (see do_numeric_discard). |
| 3586 | */ |
| 3587 | if (X.dscale > state->maxScale) |
| 3588 | { |
| 3589 | state->maxScale = X.dscale; |
| 3590 | state->maxScaleCount = 1; |
| 3591 | } |
| 3592 | else if (X.dscale == state->maxScale) |
| 3593 | state->maxScaleCount++; |
| 3594 | |
| 3595 | /* if we need X^2, calculate that in short-lived context */ |
| 3596 | if (state->calcSumX2) |
| 3597 | { |
| 3598 | init_var(&X2); |
| 3599 | mul_var(&X, &X, &X2, X.dscale * 2); |
| 3600 | } |
| 3601 | |
| 3602 | /* The rest of this needs to work in the aggregate context */ |
| 3603 | old_context = MemoryContextSwitchTo(state->agg_context); |
| 3604 | |
| 3605 | state->N++; |
| 3606 | |
| 3607 | /* Accumulate sums */ |
| 3608 | accum_sum_add(&(state->sumX), &X); |
| 3609 | |
| 3610 | if (state->calcSumX2) |
| 3611 | accum_sum_add(&(state->sumX2), &X2); |
| 3612 | |
| 3613 | MemoryContextSwitchTo(old_context); |
| 3614 | } |
| 3615 | |
| 3616 | /* |
| 3617 | * Attempt to remove an input value from the aggregated state. |
| 3618 | * |
| 3619 | * If the value cannot be removed then the function will return false; the |
| 3620 | * possible reasons for failing are described below. |
| 3621 | * |
| 3622 | * If we aggregate the values 1.01 and 2 then the result will be 3.01. |
| 3623 | * If we are then asked to un-aggregate the 1.01 then we must fail as we |
| 3624 | * won't be able to tell what the new aggregated value's dscale should be. |
| 3625 | * We don't want to return 2.00 (dscale = 2), since the sum's dscale would |
| 3626 | * have been zero if we'd really aggregated only 2. |
| 3627 | * |
| 3628 | * Note: alternatively, we could count the number of inputs with each possible |
| 3629 | * dscale (up to some sane limit). Not yet clear if it's worth the trouble. |
| 3630 | */ |
| 3631 | static bool |
| 3632 | do_numeric_discard(NumericAggState *state, Numeric newval) |
| 3633 | { |
| 3634 | NumericVar X; |
| 3635 | NumericVar X2; |
| 3636 | MemoryContext old_context; |
| 3637 | |
| 3638 | /* Count NaN inputs separately from all else */ |
| 3639 | if (NUMERIC_IS_NAN(newval)) |
| 3640 | { |
| 3641 | state->NaNcount--; |
| 3642 | return true; |
| 3643 | } |
| 3644 | |
| 3645 | /* load processed number in short-lived context */ |
| 3646 | init_var_from_num(newval, &X); |
| 3647 | |
| 3648 | /* |
| 3649 | * state->sumX's dscale is the maximum dscale of any of the inputs. |
| 3650 | * Removing the last input with that dscale would require us to recompute |
| 3651 | * the maximum dscale of the *remaining* inputs, which we cannot do unless |
| 3652 | * no more non-NaN inputs remain at all. So we report a failure instead, |
| 3653 | * and force the aggregation to be redone from scratch. |
| 3654 | */ |
| 3655 | if (X.dscale == state->maxScale) |
| 3656 | { |
| 3657 | if (state->maxScaleCount > 1 || state->maxScale == 0) |
| 3658 | { |
| 3659 | /* |
| 3660 | * Some remaining inputs have same dscale, or dscale hasn't gotten |
| 3661 | * above zero anyway |
| 3662 | */ |
| 3663 | state->maxScaleCount--; |
| 3664 | } |
| 3665 | else if (state->N == 1) |
| 3666 | { |
| 3667 | /* No remaining non-NaN inputs at all, so reset maxScale */ |
| 3668 | state->maxScale = 0; |
| 3669 | state->maxScaleCount = 0; |
| 3670 | } |
| 3671 | else |
| 3672 | { |
| 3673 | /* Correct new maxScale is uncertain, must fail */ |
| 3674 | return false; |
| 3675 | } |
| 3676 | } |
| 3677 | |
| 3678 | /* if we need X^2, calculate that in short-lived context */ |
| 3679 | if (state->calcSumX2) |
| 3680 | { |
| 3681 | init_var(&X2); |
| 3682 | mul_var(&X, &X, &X2, X.dscale * 2); |
| 3683 | } |
| 3684 | |
| 3685 | /* The rest of this needs to work in the aggregate context */ |
| 3686 | old_context = MemoryContextSwitchTo(state->agg_context); |
| 3687 | |
| 3688 | if (state->N-- > 1) |
| 3689 | { |
| 3690 | /* Negate X, to subtract it from the sum */ |
| 3691 | X.sign = (X.sign == NUMERIC_POS ? NUMERIC_NEG : NUMERIC_POS); |
| 3692 | accum_sum_add(&(state->sumX), &X); |
| 3693 | |
| 3694 | if (state->calcSumX2) |
| 3695 | { |
| 3696 | /* Negate X^2. X^2 is always positive */ |
| 3697 | X2.sign = NUMERIC_NEG; |
| 3698 | accum_sum_add(&(state->sumX2), &X2); |
| 3699 | } |
| 3700 | } |
| 3701 | else |
| 3702 | { |
| 3703 | /* Zero the sums */ |
| 3704 | Assert(state->N == 0); |
| 3705 | |
| 3706 | accum_sum_reset(&state->sumX); |
| 3707 | if (state->calcSumX2) |
| 3708 | accum_sum_reset(&state->sumX2); |
| 3709 | } |
| 3710 | |
| 3711 | MemoryContextSwitchTo(old_context); |
| 3712 | |
| 3713 | return true; |
| 3714 | } |
| 3715 | |
| 3716 | /* |
| 3717 | * Generic transition function for numeric aggregates that require sumX2. |
| 3718 | */ |
| 3719 | Datum |
| 3720 | numeric_accum(PG_FUNCTION_ARGS) |
| 3721 | { |
| 3722 | NumericAggState *state; |
| 3723 | |
| 3724 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 3725 | |
| 3726 | /* Create the state data on the first call */ |
| 3727 | if (state == NULL) |
| 3728 | state = makeNumericAggState(fcinfo, true); |
| 3729 | |
| 3730 | if (!PG_ARGISNULL(1)) |
| 3731 | do_numeric_accum(state, PG_GETARG_NUMERIC(1)); |
| 3732 | |
| 3733 | PG_RETURN_POINTER(state); |
| 3734 | } |
| 3735 | |
| 3736 | /* |
| 3737 | * Generic combine function for numeric aggregates which require sumX2 |
| 3738 | */ |
| 3739 | Datum |
| 3740 | numeric_combine(PG_FUNCTION_ARGS) |
| 3741 | { |
| 3742 | NumericAggState *state1; |
| 3743 | NumericAggState *state2; |
| 3744 | MemoryContext agg_context; |
| 3745 | MemoryContext old_context; |
| 3746 | |
| 3747 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 3748 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 3749 | |
| 3750 | state1 = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 3751 | state2 = PG_ARGISNULL(1) ? NULL : (NumericAggState *) PG_GETARG_POINTER(1); |
| 3752 | |
| 3753 | if (state2 == NULL) |
| 3754 | PG_RETURN_POINTER(state1); |
| 3755 | |
| 3756 | /* manually copy all fields from state2 to state1 */ |
| 3757 | if (state1 == NULL) |
| 3758 | { |
| 3759 | old_context = MemoryContextSwitchTo(agg_context); |
| 3760 | |
| 3761 | state1 = makeNumericAggStateCurrentContext(true); |
| 3762 | state1->N = state2->N; |
| 3763 | state1->NaNcount = state2->NaNcount; |
| 3764 | state1->maxScale = state2->maxScale; |
| 3765 | state1->maxScaleCount = state2->maxScaleCount; |
| 3766 | |
| 3767 | accum_sum_copy(&state1->sumX, &state2->sumX); |
| 3768 | accum_sum_copy(&state1->sumX2, &state2->sumX2); |
| 3769 | |
| 3770 | MemoryContextSwitchTo(old_context); |
| 3771 | |
| 3772 | PG_RETURN_POINTER(state1); |
| 3773 | } |
| 3774 | |
| 3775 | if (state2->N > 0) |
| 3776 | { |
| 3777 | state1->N += state2->N; |
| 3778 | state1->NaNcount += state2->NaNcount; |
| 3779 | |
| 3780 | /* |
| 3781 | * These are currently only needed for moving aggregates, but let's do |
| 3782 | * the right thing anyway... |
| 3783 | */ |
| 3784 | if (state2->maxScale > state1->maxScale) |
| 3785 | { |
| 3786 | state1->maxScale = state2->maxScale; |
| 3787 | state1->maxScaleCount = state2->maxScaleCount; |
| 3788 | } |
| 3789 | else if (state2->maxScale == state1->maxScale) |
| 3790 | state1->maxScaleCount += state2->maxScaleCount; |
| 3791 | |
| 3792 | /* The rest of this needs to work in the aggregate context */ |
| 3793 | old_context = MemoryContextSwitchTo(agg_context); |
| 3794 | |
| 3795 | /* Accumulate sums */ |
| 3796 | accum_sum_combine(&state1->sumX, &state2->sumX); |
| 3797 | accum_sum_combine(&state1->sumX2, &state2->sumX2); |
| 3798 | |
| 3799 | MemoryContextSwitchTo(old_context); |
| 3800 | } |
| 3801 | PG_RETURN_POINTER(state1); |
| 3802 | } |
| 3803 | |
| 3804 | /* |
| 3805 | * Generic transition function for numeric aggregates that don't require sumX2. |
| 3806 | */ |
| 3807 | Datum |
| 3808 | numeric_avg_accum(PG_FUNCTION_ARGS) |
| 3809 | { |
| 3810 | NumericAggState *state; |
| 3811 | |
| 3812 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 3813 | |
| 3814 | /* Create the state data on the first call */ |
| 3815 | if (state == NULL) |
| 3816 | state = makeNumericAggState(fcinfo, false); |
| 3817 | |
| 3818 | if (!PG_ARGISNULL(1)) |
| 3819 | do_numeric_accum(state, PG_GETARG_NUMERIC(1)); |
| 3820 | |
| 3821 | PG_RETURN_POINTER(state); |
| 3822 | } |
| 3823 | |
| 3824 | /* |
| 3825 | * Combine function for numeric aggregates which don't require sumX2 |
| 3826 | */ |
| 3827 | Datum |
| 3828 | numeric_avg_combine(PG_FUNCTION_ARGS) |
| 3829 | { |
| 3830 | NumericAggState *state1; |
| 3831 | NumericAggState *state2; |
| 3832 | MemoryContext agg_context; |
| 3833 | MemoryContext old_context; |
| 3834 | |
| 3835 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 3836 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 3837 | |
| 3838 | state1 = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 3839 | state2 = PG_ARGISNULL(1) ? NULL : (NumericAggState *) PG_GETARG_POINTER(1); |
| 3840 | |
| 3841 | if (state2 == NULL) |
| 3842 | PG_RETURN_POINTER(state1); |
| 3843 | |
| 3844 | /* manually copy all fields from state2 to state1 */ |
| 3845 | if (state1 == NULL) |
| 3846 | { |
| 3847 | old_context = MemoryContextSwitchTo(agg_context); |
| 3848 | |
| 3849 | state1 = makeNumericAggStateCurrentContext(false); |
| 3850 | state1->N = state2->N; |
| 3851 | state1->NaNcount = state2->NaNcount; |
| 3852 | state1->maxScale = state2->maxScale; |
| 3853 | state1->maxScaleCount = state2->maxScaleCount; |
| 3854 | |
| 3855 | accum_sum_copy(&state1->sumX, &state2->sumX); |
| 3856 | |
| 3857 | MemoryContextSwitchTo(old_context); |
| 3858 | |
| 3859 | PG_RETURN_POINTER(state1); |
| 3860 | } |
| 3861 | |
| 3862 | if (state2->N > 0) |
| 3863 | { |
| 3864 | state1->N += state2->N; |
| 3865 | state1->NaNcount += state2->NaNcount; |
| 3866 | |
| 3867 | /* |
| 3868 | * These are currently only needed for moving aggregates, but let's do |
| 3869 | * the right thing anyway... |
| 3870 | */ |
| 3871 | if (state2->maxScale > state1->maxScale) |
| 3872 | { |
| 3873 | state1->maxScale = state2->maxScale; |
| 3874 | state1->maxScaleCount = state2->maxScaleCount; |
| 3875 | } |
| 3876 | else if (state2->maxScale == state1->maxScale) |
| 3877 | state1->maxScaleCount += state2->maxScaleCount; |
| 3878 | |
| 3879 | /* The rest of this needs to work in the aggregate context */ |
| 3880 | old_context = MemoryContextSwitchTo(agg_context); |
| 3881 | |
| 3882 | /* Accumulate sums */ |
| 3883 | accum_sum_combine(&state1->sumX, &state2->sumX); |
| 3884 | |
| 3885 | MemoryContextSwitchTo(old_context); |
| 3886 | } |
| 3887 | PG_RETURN_POINTER(state1); |
| 3888 | } |
| 3889 | |
| 3890 | /* |
| 3891 | * numeric_avg_serialize |
| 3892 | * Serialize NumericAggState for numeric aggregates that don't require |
| 3893 | * sumX2. |
| 3894 | */ |
| 3895 | Datum |
| 3896 | numeric_avg_serialize(PG_FUNCTION_ARGS) |
| 3897 | { |
| 3898 | NumericAggState *state; |
| 3899 | StringInfoData buf; |
| 3900 | Datum temp; |
| 3901 | bytea *sumX; |
| 3902 | bytea *result; |
| 3903 | NumericVar tmp_var; |
| 3904 | |
| 3905 | /* Ensure we disallow calling when not in aggregate context */ |
| 3906 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 3907 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 3908 | |
| 3909 | state = (NumericAggState *) PG_GETARG_POINTER(0); |
| 3910 | |
| 3911 | /* |
| 3912 | * This is a little wasteful since make_result converts the NumericVar |
| 3913 | * into a Numeric and numeric_send converts it back again. Is it worth |
| 3914 | * splitting the tasks in numeric_send into separate functions to stop |
| 3915 | * this? Doing so would also remove the fmgr call overhead. |
| 3916 | */ |
| 3917 | init_var(&tmp_var); |
| 3918 | accum_sum_final(&state->sumX, &tmp_var); |
| 3919 | |
| 3920 | temp = DirectFunctionCall1(numeric_send, |
| 3921 | NumericGetDatum(make_result(&tmp_var))); |
| 3922 | sumX = DatumGetByteaPP(temp); |
| 3923 | free_var(&tmp_var); |
| 3924 | |
| 3925 | pq_begintypsend(&buf); |
| 3926 | |
| 3927 | /* N */ |
| 3928 | pq_sendint64(&buf, state->N); |
| 3929 | |
| 3930 | /* sumX */ |
| 3931 | pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX)); |
| 3932 | |
| 3933 | /* maxScale */ |
| 3934 | pq_sendint32(&buf, state->maxScale); |
| 3935 | |
| 3936 | /* maxScaleCount */ |
| 3937 | pq_sendint64(&buf, state->maxScaleCount); |
| 3938 | |
| 3939 | /* NaNcount */ |
| 3940 | pq_sendint64(&buf, state->NaNcount); |
| 3941 | |
| 3942 | result = pq_endtypsend(&buf); |
| 3943 | |
| 3944 | PG_RETURN_BYTEA_P(result); |
| 3945 | } |
| 3946 | |
| 3947 | /* |
| 3948 | * numeric_avg_deserialize |
| 3949 | * Deserialize bytea into NumericAggState for numeric aggregates that |
| 3950 | * don't require sumX2. |
| 3951 | */ |
| 3952 | Datum |
| 3953 | numeric_avg_deserialize(PG_FUNCTION_ARGS) |
| 3954 | { |
| 3955 | bytea *sstate; |
| 3956 | NumericAggState *result; |
| 3957 | Datum temp; |
| 3958 | NumericVar tmp_var; |
| 3959 | StringInfoData buf; |
| 3960 | |
| 3961 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 3962 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 3963 | |
| 3964 | sstate = PG_GETARG_BYTEA_PP(0); |
| 3965 | |
| 3966 | /* |
| 3967 | * Copy the bytea into a StringInfo so that we can "receive" it using the |
| 3968 | * standard recv-function infrastructure. |
| 3969 | */ |
| 3970 | initStringInfo(&buf); |
| 3971 | appendBinaryStringInfo(&buf, |
| 3972 | VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate)); |
| 3973 | |
| 3974 | result = makeNumericAggStateCurrentContext(false); |
| 3975 | |
| 3976 | /* N */ |
| 3977 | result->N = pq_getmsgint64(&buf); |
| 3978 | |
| 3979 | /* sumX */ |
| 3980 | temp = DirectFunctionCall3(numeric_recv, |
| 3981 | PointerGetDatum(&buf), |
| 3982 | ObjectIdGetDatum(InvalidOid), |
| 3983 | Int32GetDatum(-1)); |
| 3984 | init_var_from_num(DatumGetNumeric(temp), &tmp_var); |
| 3985 | accum_sum_add(&(result->sumX), &tmp_var); |
| 3986 | |
| 3987 | /* maxScale */ |
| 3988 | result->maxScale = pq_getmsgint(&buf, 4); |
| 3989 | |
| 3990 | /* maxScaleCount */ |
| 3991 | result->maxScaleCount = pq_getmsgint64(&buf); |
| 3992 | |
| 3993 | /* NaNcount */ |
| 3994 | result->NaNcount = pq_getmsgint64(&buf); |
| 3995 | |
| 3996 | pq_getmsgend(&buf); |
| 3997 | pfree(buf.data); |
| 3998 | |
| 3999 | PG_RETURN_POINTER(result); |
| 4000 | } |
| 4001 | |
| 4002 | /* |
| 4003 | * numeric_serialize |
| 4004 | * Serialization function for NumericAggState for numeric aggregates that |
| 4005 | * require sumX2. |
| 4006 | */ |
| 4007 | Datum |
| 4008 | numeric_serialize(PG_FUNCTION_ARGS) |
| 4009 | { |
| 4010 | NumericAggState *state; |
| 4011 | StringInfoData buf; |
| 4012 | Datum temp; |
| 4013 | bytea *sumX; |
| 4014 | NumericVar tmp_var; |
| 4015 | bytea *sumX2; |
| 4016 | bytea *result; |
| 4017 | |
| 4018 | /* Ensure we disallow calling when not in aggregate context */ |
| 4019 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4020 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4021 | |
| 4022 | state = (NumericAggState *) PG_GETARG_POINTER(0); |
| 4023 | |
| 4024 | /* |
| 4025 | * This is a little wasteful since make_result converts the NumericVar |
| 4026 | * into a Numeric and numeric_send converts it back again. Is it worth |
| 4027 | * splitting the tasks in numeric_send into separate functions to stop |
| 4028 | * this? Doing so would also remove the fmgr call overhead. |
| 4029 | */ |
| 4030 | init_var(&tmp_var); |
| 4031 | |
| 4032 | accum_sum_final(&state->sumX, &tmp_var); |
| 4033 | temp = DirectFunctionCall1(numeric_send, |
| 4034 | NumericGetDatum(make_result(&tmp_var))); |
| 4035 | sumX = DatumGetByteaPP(temp); |
| 4036 | |
| 4037 | accum_sum_final(&state->sumX2, &tmp_var); |
| 4038 | temp = DirectFunctionCall1(numeric_send, |
| 4039 | NumericGetDatum(make_result(&tmp_var))); |
| 4040 | sumX2 = DatumGetByteaPP(temp); |
| 4041 | |
| 4042 | free_var(&tmp_var); |
| 4043 | |
| 4044 | pq_begintypsend(&buf); |
| 4045 | |
| 4046 | /* N */ |
| 4047 | pq_sendint64(&buf, state->N); |
| 4048 | |
| 4049 | /* sumX */ |
| 4050 | pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX)); |
| 4051 | |
| 4052 | /* sumX2 */ |
| 4053 | pq_sendbytes(&buf, VARDATA_ANY(sumX2), VARSIZE_ANY_EXHDR(sumX2)); |
| 4054 | |
| 4055 | /* maxScale */ |
| 4056 | pq_sendint32(&buf, state->maxScale); |
| 4057 | |
| 4058 | /* maxScaleCount */ |
| 4059 | pq_sendint64(&buf, state->maxScaleCount); |
| 4060 | |
| 4061 | /* NaNcount */ |
| 4062 | pq_sendint64(&buf, state->NaNcount); |
| 4063 | |
| 4064 | result = pq_endtypsend(&buf); |
| 4065 | |
| 4066 | PG_RETURN_BYTEA_P(result); |
| 4067 | } |
| 4068 | |
| 4069 | /* |
| 4070 | * numeric_deserialize |
| 4071 | * Deserialization function for NumericAggState for numeric aggregates that |
| 4072 | * require sumX2. |
| 4073 | */ |
| 4074 | Datum |
| 4075 | numeric_deserialize(PG_FUNCTION_ARGS) |
| 4076 | { |
| 4077 | bytea *sstate; |
| 4078 | NumericAggState *result; |
| 4079 | Datum temp; |
| 4080 | NumericVar sumX_var; |
| 4081 | NumericVar sumX2_var; |
| 4082 | StringInfoData buf; |
| 4083 | |
| 4084 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4085 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4086 | |
| 4087 | sstate = PG_GETARG_BYTEA_PP(0); |
| 4088 | |
| 4089 | /* |
| 4090 | * Copy the bytea into a StringInfo so that we can "receive" it using the |
| 4091 | * standard recv-function infrastructure. |
| 4092 | */ |
| 4093 | initStringInfo(&buf); |
| 4094 | appendBinaryStringInfo(&buf, |
| 4095 | VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate)); |
| 4096 | |
| 4097 | result = makeNumericAggStateCurrentContext(false); |
| 4098 | |
| 4099 | /* N */ |
| 4100 | result->N = pq_getmsgint64(&buf); |
| 4101 | |
| 4102 | /* sumX */ |
| 4103 | temp = DirectFunctionCall3(numeric_recv, |
| 4104 | PointerGetDatum(&buf), |
| 4105 | ObjectIdGetDatum(InvalidOid), |
| 4106 | Int32GetDatum(-1)); |
| 4107 | init_var_from_num(DatumGetNumeric(temp), &sumX_var); |
| 4108 | accum_sum_add(&(result->sumX), &sumX_var); |
| 4109 | |
| 4110 | /* sumX2 */ |
| 4111 | temp = DirectFunctionCall3(numeric_recv, |
| 4112 | PointerGetDatum(&buf), |
| 4113 | ObjectIdGetDatum(InvalidOid), |
| 4114 | Int32GetDatum(-1)); |
| 4115 | init_var_from_num(DatumGetNumeric(temp), &sumX2_var); |
| 4116 | accum_sum_add(&(result->sumX2), &sumX2_var); |
| 4117 | |
| 4118 | /* maxScale */ |
| 4119 | result->maxScale = pq_getmsgint(&buf, 4); |
| 4120 | |
| 4121 | /* maxScaleCount */ |
| 4122 | result->maxScaleCount = pq_getmsgint64(&buf); |
| 4123 | |
| 4124 | /* NaNcount */ |
| 4125 | result->NaNcount = pq_getmsgint64(&buf); |
| 4126 | |
| 4127 | pq_getmsgend(&buf); |
| 4128 | pfree(buf.data); |
| 4129 | |
| 4130 | PG_RETURN_POINTER(result); |
| 4131 | } |
| 4132 | |
| 4133 | /* |
| 4134 | * Generic inverse transition function for numeric aggregates |
| 4135 | * (with or without requirement for X^2). |
| 4136 | */ |
| 4137 | Datum |
| 4138 | numeric_accum_inv(PG_FUNCTION_ARGS) |
| 4139 | { |
| 4140 | NumericAggState *state; |
| 4141 | |
| 4142 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 4143 | |
| 4144 | /* Should not get here with no state */ |
| 4145 | if (state == NULL) |
| 4146 | elog(ERROR, "numeric_accum_inv called with NULL state" ); |
| 4147 | |
| 4148 | if (!PG_ARGISNULL(1)) |
| 4149 | { |
| 4150 | /* If we fail to perform the inverse transition, return NULL */ |
| 4151 | if (!do_numeric_discard(state, PG_GETARG_NUMERIC(1))) |
| 4152 | PG_RETURN_NULL(); |
| 4153 | } |
| 4154 | |
| 4155 | PG_RETURN_POINTER(state); |
| 4156 | } |
| 4157 | |
| 4158 | |
| 4159 | /* |
| 4160 | * Integer data types in general use Numeric accumulators to share code |
| 4161 | * and avoid risk of overflow. |
| 4162 | * |
| 4163 | * However for performance reasons optimized special-purpose accumulator |
| 4164 | * routines are used when possible. |
| 4165 | * |
| 4166 | * On platforms with 128-bit integer support, the 128-bit routines will be |
| 4167 | * used when sum(X) or sum(X*X) fit into 128-bit. |
| 4168 | * |
| 4169 | * For 16 and 32 bit inputs, the N and sum(X) fit into 64-bit so the 64-bit |
| 4170 | * accumulators will be used for SUM and AVG of these data types. |
| 4171 | */ |
| 4172 | |
| 4173 | #ifdef HAVE_INT128 |
| 4174 | typedef struct Int128AggState |
| 4175 | { |
| 4176 | bool calcSumX2; /* if true, calculate sumX2 */ |
| 4177 | int64 N; /* count of processed numbers */ |
| 4178 | int128 sumX; /* sum of processed numbers */ |
| 4179 | int128 sumX2; /* sum of squares of processed numbers */ |
| 4180 | } Int128AggState; |
| 4181 | |
| 4182 | /* |
| 4183 | * Prepare state data for a 128-bit aggregate function that needs to compute |
| 4184 | * sum, count and optionally sum of squares of the input. |
| 4185 | */ |
| 4186 | static Int128AggState * |
| 4187 | makeInt128AggState(FunctionCallInfo fcinfo, bool calcSumX2) |
| 4188 | { |
| 4189 | Int128AggState *state; |
| 4190 | MemoryContext agg_context; |
| 4191 | MemoryContext old_context; |
| 4192 | |
| 4193 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 4194 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4195 | |
| 4196 | old_context = MemoryContextSwitchTo(agg_context); |
| 4197 | |
| 4198 | state = (Int128AggState *) palloc0(sizeof(Int128AggState)); |
| 4199 | state->calcSumX2 = calcSumX2; |
| 4200 | |
| 4201 | MemoryContextSwitchTo(old_context); |
| 4202 | |
| 4203 | return state; |
| 4204 | } |
| 4205 | |
| 4206 | /* |
| 4207 | * Like makeInt128AggState(), but allocate the state in the current memory |
| 4208 | * context. |
| 4209 | */ |
| 4210 | static Int128AggState * |
| 4211 | makeInt128AggStateCurrentContext(bool calcSumX2) |
| 4212 | { |
| 4213 | Int128AggState *state; |
| 4214 | |
| 4215 | state = (Int128AggState *) palloc0(sizeof(Int128AggState)); |
| 4216 | state->calcSumX2 = calcSumX2; |
| 4217 | |
| 4218 | return state; |
| 4219 | } |
| 4220 | |
| 4221 | /* |
| 4222 | * Accumulate a new input value for 128-bit aggregate functions. |
| 4223 | */ |
| 4224 | static void |
| 4225 | do_int128_accum(Int128AggState *state, int128 newval) |
| 4226 | { |
| 4227 | if (state->calcSumX2) |
| 4228 | state->sumX2 += newval * newval; |
| 4229 | |
| 4230 | state->sumX += newval; |
| 4231 | state->N++; |
| 4232 | } |
| 4233 | |
| 4234 | /* |
| 4235 | * Remove an input value from the aggregated state. |
| 4236 | */ |
| 4237 | static void |
| 4238 | do_int128_discard(Int128AggState *state, int128 newval) |
| 4239 | { |
| 4240 | if (state->calcSumX2) |
| 4241 | state->sumX2 -= newval * newval; |
| 4242 | |
| 4243 | state->sumX -= newval; |
| 4244 | state->N--; |
| 4245 | } |
| 4246 | |
| 4247 | typedef Int128AggState PolyNumAggState; |
| 4248 | #define makePolyNumAggState makeInt128AggState |
| 4249 | #define makePolyNumAggStateCurrentContext makeInt128AggStateCurrentContext |
| 4250 | #else |
| 4251 | typedef NumericAggState PolyNumAggState; |
| 4252 | #define makePolyNumAggState makeNumericAggState |
| 4253 | #define makePolyNumAggStateCurrentContext makeNumericAggStateCurrentContext |
| 4254 | #endif |
| 4255 | |
| 4256 | Datum |
| 4257 | int2_accum(PG_FUNCTION_ARGS) |
| 4258 | { |
| 4259 | PolyNumAggState *state; |
| 4260 | |
| 4261 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4262 | |
| 4263 | /* Create the state data on the first call */ |
| 4264 | if (state == NULL) |
| 4265 | state = makePolyNumAggState(fcinfo, true); |
| 4266 | |
| 4267 | if (!PG_ARGISNULL(1)) |
| 4268 | { |
| 4269 | #ifdef HAVE_INT128 |
| 4270 | do_int128_accum(state, (int128) PG_GETARG_INT16(1)); |
| 4271 | #else |
| 4272 | Numeric newval; |
| 4273 | |
| 4274 | newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, |
| 4275 | PG_GETARG_DATUM(1))); |
| 4276 | do_numeric_accum(state, newval); |
| 4277 | #endif |
| 4278 | } |
| 4279 | |
| 4280 | PG_RETURN_POINTER(state); |
| 4281 | } |
| 4282 | |
| 4283 | Datum |
| 4284 | int4_accum(PG_FUNCTION_ARGS) |
| 4285 | { |
| 4286 | PolyNumAggState *state; |
| 4287 | |
| 4288 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4289 | |
| 4290 | /* Create the state data on the first call */ |
| 4291 | if (state == NULL) |
| 4292 | state = makePolyNumAggState(fcinfo, true); |
| 4293 | |
| 4294 | if (!PG_ARGISNULL(1)) |
| 4295 | { |
| 4296 | #ifdef HAVE_INT128 |
| 4297 | do_int128_accum(state, (int128) PG_GETARG_INT32(1)); |
| 4298 | #else |
| 4299 | Numeric newval; |
| 4300 | |
| 4301 | newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, |
| 4302 | PG_GETARG_DATUM(1))); |
| 4303 | do_numeric_accum(state, newval); |
| 4304 | #endif |
| 4305 | } |
| 4306 | |
| 4307 | PG_RETURN_POINTER(state); |
| 4308 | } |
| 4309 | |
| 4310 | Datum |
| 4311 | int8_accum(PG_FUNCTION_ARGS) |
| 4312 | { |
| 4313 | NumericAggState *state; |
| 4314 | |
| 4315 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 4316 | |
| 4317 | /* Create the state data on the first call */ |
| 4318 | if (state == NULL) |
| 4319 | state = makeNumericAggState(fcinfo, true); |
| 4320 | |
| 4321 | if (!PG_ARGISNULL(1)) |
| 4322 | { |
| 4323 | Numeric newval; |
| 4324 | |
| 4325 | newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, |
| 4326 | PG_GETARG_DATUM(1))); |
| 4327 | do_numeric_accum(state, newval); |
| 4328 | } |
| 4329 | |
| 4330 | PG_RETURN_POINTER(state); |
| 4331 | } |
| 4332 | |
| 4333 | /* |
| 4334 | * Combine function for numeric aggregates which require sumX2 |
| 4335 | */ |
| 4336 | Datum |
| 4337 | numeric_poly_combine(PG_FUNCTION_ARGS) |
| 4338 | { |
| 4339 | PolyNumAggState *state1; |
| 4340 | PolyNumAggState *state2; |
| 4341 | MemoryContext agg_context; |
| 4342 | MemoryContext old_context; |
| 4343 | |
| 4344 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 4345 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4346 | |
| 4347 | state1 = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4348 | state2 = PG_ARGISNULL(1) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(1); |
| 4349 | |
| 4350 | if (state2 == NULL) |
| 4351 | PG_RETURN_POINTER(state1); |
| 4352 | |
| 4353 | /* manually copy all fields from state2 to state1 */ |
| 4354 | if (state1 == NULL) |
| 4355 | { |
| 4356 | old_context = MemoryContextSwitchTo(agg_context); |
| 4357 | |
| 4358 | state1 = makePolyNumAggState(fcinfo, true); |
| 4359 | state1->N = state2->N; |
| 4360 | |
| 4361 | #ifdef HAVE_INT128 |
| 4362 | state1->sumX = state2->sumX; |
| 4363 | state1->sumX2 = state2->sumX2; |
| 4364 | #else |
| 4365 | accum_sum_copy(&state1->sumX, &state2->sumX); |
| 4366 | accum_sum_copy(&state1->sumX2, &state2->sumX2); |
| 4367 | #endif |
| 4368 | |
| 4369 | MemoryContextSwitchTo(old_context); |
| 4370 | |
| 4371 | PG_RETURN_POINTER(state1); |
| 4372 | } |
| 4373 | |
| 4374 | if (state2->N > 0) |
| 4375 | { |
| 4376 | state1->N += state2->N; |
| 4377 | |
| 4378 | #ifdef HAVE_INT128 |
| 4379 | state1->sumX += state2->sumX; |
| 4380 | state1->sumX2 += state2->sumX2; |
| 4381 | #else |
| 4382 | /* The rest of this needs to work in the aggregate context */ |
| 4383 | old_context = MemoryContextSwitchTo(agg_context); |
| 4384 | |
| 4385 | /* Accumulate sums */ |
| 4386 | accum_sum_combine(&state1->sumX, &state2->sumX); |
| 4387 | accum_sum_combine(&state1->sumX2, &state2->sumX2); |
| 4388 | |
| 4389 | MemoryContextSwitchTo(old_context); |
| 4390 | #endif |
| 4391 | |
| 4392 | } |
| 4393 | PG_RETURN_POINTER(state1); |
| 4394 | } |
| 4395 | |
| 4396 | /* |
| 4397 | * numeric_poly_serialize |
| 4398 | * Serialize PolyNumAggState into bytea for aggregate functions which |
| 4399 | * require sumX2. |
| 4400 | */ |
| 4401 | Datum |
| 4402 | numeric_poly_serialize(PG_FUNCTION_ARGS) |
| 4403 | { |
| 4404 | PolyNumAggState *state; |
| 4405 | StringInfoData buf; |
| 4406 | bytea *sumX; |
| 4407 | bytea *sumX2; |
| 4408 | bytea *result; |
| 4409 | |
| 4410 | /* Ensure we disallow calling when not in aggregate context */ |
| 4411 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4412 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4413 | |
| 4414 | state = (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4415 | |
| 4416 | /* |
| 4417 | * If the platform supports int128 then sumX and sumX2 will be a 128 bit |
| 4418 | * integer type. Here we'll convert that into a numeric type so that the |
| 4419 | * combine state is in the same format for both int128 enabled machines |
| 4420 | * and machines which don't support that type. The logic here is that one |
| 4421 | * day we might like to send these over to another server for further |
| 4422 | * processing and we want a standard format to work with. |
| 4423 | */ |
| 4424 | { |
| 4425 | Datum temp; |
| 4426 | NumericVar num; |
| 4427 | |
| 4428 | init_var(&num); |
| 4429 | |
| 4430 | #ifdef HAVE_INT128 |
| 4431 | int128_to_numericvar(state->sumX, &num); |
| 4432 | #else |
| 4433 | accum_sum_final(&state->sumX, &num); |
| 4434 | #endif |
| 4435 | temp = DirectFunctionCall1(numeric_send, |
| 4436 | NumericGetDatum(make_result(&num))); |
| 4437 | sumX = DatumGetByteaPP(temp); |
| 4438 | |
| 4439 | #ifdef HAVE_INT128 |
| 4440 | int128_to_numericvar(state->sumX2, &num); |
| 4441 | #else |
| 4442 | accum_sum_final(&state->sumX2, &num); |
| 4443 | #endif |
| 4444 | temp = DirectFunctionCall1(numeric_send, |
| 4445 | NumericGetDatum(make_result(&num))); |
| 4446 | sumX2 = DatumGetByteaPP(temp); |
| 4447 | |
| 4448 | free_var(&num); |
| 4449 | } |
| 4450 | |
| 4451 | pq_begintypsend(&buf); |
| 4452 | |
| 4453 | /* N */ |
| 4454 | pq_sendint64(&buf, state->N); |
| 4455 | |
| 4456 | /* sumX */ |
| 4457 | pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX)); |
| 4458 | |
| 4459 | /* sumX2 */ |
| 4460 | pq_sendbytes(&buf, VARDATA_ANY(sumX2), VARSIZE_ANY_EXHDR(sumX2)); |
| 4461 | |
| 4462 | result = pq_endtypsend(&buf); |
| 4463 | |
| 4464 | PG_RETURN_BYTEA_P(result); |
| 4465 | } |
| 4466 | |
| 4467 | /* |
| 4468 | * numeric_poly_deserialize |
| 4469 | * Deserialize PolyNumAggState from bytea for aggregate functions which |
| 4470 | * require sumX2. |
| 4471 | */ |
| 4472 | Datum |
| 4473 | numeric_poly_deserialize(PG_FUNCTION_ARGS) |
| 4474 | { |
| 4475 | bytea *sstate; |
| 4476 | PolyNumAggState *result; |
| 4477 | Datum sumX; |
| 4478 | NumericVar sumX_var; |
| 4479 | Datum sumX2; |
| 4480 | NumericVar sumX2_var; |
| 4481 | StringInfoData buf; |
| 4482 | |
| 4483 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4484 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4485 | |
| 4486 | sstate = PG_GETARG_BYTEA_PP(0); |
| 4487 | |
| 4488 | /* |
| 4489 | * Copy the bytea into a StringInfo so that we can "receive" it using the |
| 4490 | * standard recv-function infrastructure. |
| 4491 | */ |
| 4492 | initStringInfo(&buf); |
| 4493 | appendBinaryStringInfo(&buf, |
| 4494 | VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate)); |
| 4495 | |
| 4496 | result = makePolyNumAggStateCurrentContext(false); |
| 4497 | |
| 4498 | /* N */ |
| 4499 | result->N = pq_getmsgint64(&buf); |
| 4500 | |
| 4501 | /* sumX */ |
| 4502 | sumX = DirectFunctionCall3(numeric_recv, |
| 4503 | PointerGetDatum(&buf), |
| 4504 | ObjectIdGetDatum(InvalidOid), |
| 4505 | Int32GetDatum(-1)); |
| 4506 | |
| 4507 | /* sumX2 */ |
| 4508 | sumX2 = DirectFunctionCall3(numeric_recv, |
| 4509 | PointerGetDatum(&buf), |
| 4510 | ObjectIdGetDatum(InvalidOid), |
| 4511 | Int32GetDatum(-1)); |
| 4512 | |
| 4513 | init_var_from_num(DatumGetNumeric(sumX), &sumX_var); |
| 4514 | #ifdef HAVE_INT128 |
| 4515 | numericvar_to_int128(&sumX_var, &result->sumX); |
| 4516 | #else |
| 4517 | accum_sum_add(&result->sumX, &sumX_var); |
| 4518 | #endif |
| 4519 | |
| 4520 | init_var_from_num(DatumGetNumeric(sumX2), &sumX2_var); |
| 4521 | #ifdef HAVE_INT128 |
| 4522 | numericvar_to_int128(&sumX2_var, &result->sumX2); |
| 4523 | #else |
| 4524 | accum_sum_add(&result->sumX2, &sumX2_var); |
| 4525 | #endif |
| 4526 | |
| 4527 | pq_getmsgend(&buf); |
| 4528 | pfree(buf.data); |
| 4529 | |
| 4530 | PG_RETURN_POINTER(result); |
| 4531 | } |
| 4532 | |
| 4533 | /* |
| 4534 | * Transition function for int8 input when we don't need sumX2. |
| 4535 | */ |
| 4536 | Datum |
| 4537 | int8_avg_accum(PG_FUNCTION_ARGS) |
| 4538 | { |
| 4539 | PolyNumAggState *state; |
| 4540 | |
| 4541 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4542 | |
| 4543 | /* Create the state data on the first call */ |
| 4544 | if (state == NULL) |
| 4545 | state = makePolyNumAggState(fcinfo, false); |
| 4546 | |
| 4547 | if (!PG_ARGISNULL(1)) |
| 4548 | { |
| 4549 | #ifdef HAVE_INT128 |
| 4550 | do_int128_accum(state, (int128) PG_GETARG_INT64(1)); |
| 4551 | #else |
| 4552 | Numeric newval; |
| 4553 | |
| 4554 | newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, |
| 4555 | PG_GETARG_DATUM(1))); |
| 4556 | do_numeric_accum(state, newval); |
| 4557 | #endif |
| 4558 | } |
| 4559 | |
| 4560 | PG_RETURN_POINTER(state); |
| 4561 | } |
| 4562 | |
| 4563 | /* |
| 4564 | * Combine function for PolyNumAggState for aggregates which don't require |
| 4565 | * sumX2 |
| 4566 | */ |
| 4567 | Datum |
| 4568 | int8_avg_combine(PG_FUNCTION_ARGS) |
| 4569 | { |
| 4570 | PolyNumAggState *state1; |
| 4571 | PolyNumAggState *state2; |
| 4572 | MemoryContext agg_context; |
| 4573 | MemoryContext old_context; |
| 4574 | |
| 4575 | if (!AggCheckCallContext(fcinfo, &agg_context)) |
| 4576 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4577 | |
| 4578 | state1 = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4579 | state2 = PG_ARGISNULL(1) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(1); |
| 4580 | |
| 4581 | if (state2 == NULL) |
| 4582 | PG_RETURN_POINTER(state1); |
| 4583 | |
| 4584 | /* manually copy all fields from state2 to state1 */ |
| 4585 | if (state1 == NULL) |
| 4586 | { |
| 4587 | old_context = MemoryContextSwitchTo(agg_context); |
| 4588 | |
| 4589 | state1 = makePolyNumAggState(fcinfo, false); |
| 4590 | state1->N = state2->N; |
| 4591 | |
| 4592 | #ifdef HAVE_INT128 |
| 4593 | state1->sumX = state2->sumX; |
| 4594 | #else |
| 4595 | accum_sum_copy(&state1->sumX, &state2->sumX); |
| 4596 | #endif |
| 4597 | MemoryContextSwitchTo(old_context); |
| 4598 | |
| 4599 | PG_RETURN_POINTER(state1); |
| 4600 | } |
| 4601 | |
| 4602 | if (state2->N > 0) |
| 4603 | { |
| 4604 | state1->N += state2->N; |
| 4605 | |
| 4606 | #ifdef HAVE_INT128 |
| 4607 | state1->sumX += state2->sumX; |
| 4608 | #else |
| 4609 | /* The rest of this needs to work in the aggregate context */ |
| 4610 | old_context = MemoryContextSwitchTo(agg_context); |
| 4611 | |
| 4612 | /* Accumulate sums */ |
| 4613 | accum_sum_combine(&state1->sumX, &state2->sumX); |
| 4614 | |
| 4615 | MemoryContextSwitchTo(old_context); |
| 4616 | #endif |
| 4617 | |
| 4618 | } |
| 4619 | PG_RETURN_POINTER(state1); |
| 4620 | } |
| 4621 | |
| 4622 | /* |
| 4623 | * int8_avg_serialize |
| 4624 | * Serialize PolyNumAggState into bytea using the standard |
| 4625 | * recv-function infrastructure. |
| 4626 | */ |
| 4627 | Datum |
| 4628 | int8_avg_serialize(PG_FUNCTION_ARGS) |
| 4629 | { |
| 4630 | PolyNumAggState *state; |
| 4631 | StringInfoData buf; |
| 4632 | bytea *sumX; |
| 4633 | bytea *result; |
| 4634 | |
| 4635 | /* Ensure we disallow calling when not in aggregate context */ |
| 4636 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4637 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4638 | |
| 4639 | state = (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4640 | |
| 4641 | /* |
| 4642 | * If the platform supports int128 then sumX will be a 128 integer type. |
| 4643 | * Here we'll convert that into a numeric type so that the combine state |
| 4644 | * is in the same format for both int128 enabled machines and machines |
| 4645 | * which don't support that type. The logic here is that one day we might |
| 4646 | * like to send these over to another server for further processing and we |
| 4647 | * want a standard format to work with. |
| 4648 | */ |
| 4649 | { |
| 4650 | Datum temp; |
| 4651 | NumericVar num; |
| 4652 | |
| 4653 | init_var(&num); |
| 4654 | |
| 4655 | #ifdef HAVE_INT128 |
| 4656 | int128_to_numericvar(state->sumX, &num); |
| 4657 | #else |
| 4658 | accum_sum_final(&state->sumX, &num); |
| 4659 | #endif |
| 4660 | temp = DirectFunctionCall1(numeric_send, |
| 4661 | NumericGetDatum(make_result(&num))); |
| 4662 | sumX = DatumGetByteaPP(temp); |
| 4663 | |
| 4664 | free_var(&num); |
| 4665 | } |
| 4666 | |
| 4667 | pq_begintypsend(&buf); |
| 4668 | |
| 4669 | /* N */ |
| 4670 | pq_sendint64(&buf, state->N); |
| 4671 | |
| 4672 | /* sumX */ |
| 4673 | pq_sendbytes(&buf, VARDATA_ANY(sumX), VARSIZE_ANY_EXHDR(sumX)); |
| 4674 | |
| 4675 | result = pq_endtypsend(&buf); |
| 4676 | |
| 4677 | PG_RETURN_BYTEA_P(result); |
| 4678 | } |
| 4679 | |
| 4680 | /* |
| 4681 | * int8_avg_deserialize |
| 4682 | * Deserialize bytea back into PolyNumAggState. |
| 4683 | */ |
| 4684 | Datum |
| 4685 | int8_avg_deserialize(PG_FUNCTION_ARGS) |
| 4686 | { |
| 4687 | bytea *sstate; |
| 4688 | PolyNumAggState *result; |
| 4689 | StringInfoData buf; |
| 4690 | Datum temp; |
| 4691 | NumericVar num; |
| 4692 | |
| 4693 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 4694 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 4695 | |
| 4696 | sstate = PG_GETARG_BYTEA_PP(0); |
| 4697 | |
| 4698 | /* |
| 4699 | * Copy the bytea into a StringInfo so that we can "receive" it using the |
| 4700 | * standard recv-function infrastructure. |
| 4701 | */ |
| 4702 | initStringInfo(&buf); |
| 4703 | appendBinaryStringInfo(&buf, |
| 4704 | VARDATA_ANY(sstate), VARSIZE_ANY_EXHDR(sstate)); |
| 4705 | |
| 4706 | result = makePolyNumAggStateCurrentContext(false); |
| 4707 | |
| 4708 | /* N */ |
| 4709 | result->N = pq_getmsgint64(&buf); |
| 4710 | |
| 4711 | /* sumX */ |
| 4712 | temp = DirectFunctionCall3(numeric_recv, |
| 4713 | PointerGetDatum(&buf), |
| 4714 | ObjectIdGetDatum(InvalidOid), |
| 4715 | Int32GetDatum(-1)); |
| 4716 | init_var_from_num(DatumGetNumeric(temp), &num); |
| 4717 | #ifdef HAVE_INT128 |
| 4718 | numericvar_to_int128(&num, &result->sumX); |
| 4719 | #else |
| 4720 | accum_sum_add(&result->sumX, &num); |
| 4721 | #endif |
| 4722 | |
| 4723 | pq_getmsgend(&buf); |
| 4724 | pfree(buf.data); |
| 4725 | |
| 4726 | PG_RETURN_POINTER(result); |
| 4727 | } |
| 4728 | |
| 4729 | /* |
| 4730 | * Inverse transition functions to go with the above. |
| 4731 | */ |
| 4732 | |
| 4733 | Datum |
| 4734 | int2_accum_inv(PG_FUNCTION_ARGS) |
| 4735 | { |
| 4736 | PolyNumAggState *state; |
| 4737 | |
| 4738 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4739 | |
| 4740 | /* Should not get here with no state */ |
| 4741 | if (state == NULL) |
| 4742 | elog(ERROR, "int2_accum_inv called with NULL state" ); |
| 4743 | |
| 4744 | if (!PG_ARGISNULL(1)) |
| 4745 | { |
| 4746 | #ifdef HAVE_INT128 |
| 4747 | do_int128_discard(state, (int128) PG_GETARG_INT16(1)); |
| 4748 | #else |
| 4749 | Numeric newval; |
| 4750 | |
| 4751 | newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, |
| 4752 | PG_GETARG_DATUM(1))); |
| 4753 | |
| 4754 | /* Should never fail, all inputs have dscale 0 */ |
| 4755 | if (!do_numeric_discard(state, newval)) |
| 4756 | elog(ERROR, "do_numeric_discard failed unexpectedly" ); |
| 4757 | #endif |
| 4758 | } |
| 4759 | |
| 4760 | PG_RETURN_POINTER(state); |
| 4761 | } |
| 4762 | |
| 4763 | Datum |
| 4764 | int4_accum_inv(PG_FUNCTION_ARGS) |
| 4765 | { |
| 4766 | PolyNumAggState *state; |
| 4767 | |
| 4768 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4769 | |
| 4770 | /* Should not get here with no state */ |
| 4771 | if (state == NULL) |
| 4772 | elog(ERROR, "int4_accum_inv called with NULL state" ); |
| 4773 | |
| 4774 | if (!PG_ARGISNULL(1)) |
| 4775 | { |
| 4776 | #ifdef HAVE_INT128 |
| 4777 | do_int128_discard(state, (int128) PG_GETARG_INT32(1)); |
| 4778 | #else |
| 4779 | Numeric newval; |
| 4780 | |
| 4781 | newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, |
| 4782 | PG_GETARG_DATUM(1))); |
| 4783 | |
| 4784 | /* Should never fail, all inputs have dscale 0 */ |
| 4785 | if (!do_numeric_discard(state, newval)) |
| 4786 | elog(ERROR, "do_numeric_discard failed unexpectedly" ); |
| 4787 | #endif |
| 4788 | } |
| 4789 | |
| 4790 | PG_RETURN_POINTER(state); |
| 4791 | } |
| 4792 | |
| 4793 | Datum |
| 4794 | int8_accum_inv(PG_FUNCTION_ARGS) |
| 4795 | { |
| 4796 | NumericAggState *state; |
| 4797 | |
| 4798 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 4799 | |
| 4800 | /* Should not get here with no state */ |
| 4801 | if (state == NULL) |
| 4802 | elog(ERROR, "int8_accum_inv called with NULL state" ); |
| 4803 | |
| 4804 | if (!PG_ARGISNULL(1)) |
| 4805 | { |
| 4806 | Numeric newval; |
| 4807 | |
| 4808 | newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, |
| 4809 | PG_GETARG_DATUM(1))); |
| 4810 | |
| 4811 | /* Should never fail, all inputs have dscale 0 */ |
| 4812 | if (!do_numeric_discard(state, newval)) |
| 4813 | elog(ERROR, "do_numeric_discard failed unexpectedly" ); |
| 4814 | } |
| 4815 | |
| 4816 | PG_RETURN_POINTER(state); |
| 4817 | } |
| 4818 | |
| 4819 | Datum |
| 4820 | int8_avg_accum_inv(PG_FUNCTION_ARGS) |
| 4821 | { |
| 4822 | PolyNumAggState *state; |
| 4823 | |
| 4824 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4825 | |
| 4826 | /* Should not get here with no state */ |
| 4827 | if (state == NULL) |
| 4828 | elog(ERROR, "int8_avg_accum_inv called with NULL state" ); |
| 4829 | |
| 4830 | if (!PG_ARGISNULL(1)) |
| 4831 | { |
| 4832 | #ifdef HAVE_INT128 |
| 4833 | do_int128_discard(state, (int128) PG_GETARG_INT64(1)); |
| 4834 | #else |
| 4835 | Numeric newval; |
| 4836 | |
| 4837 | newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, |
| 4838 | PG_GETARG_DATUM(1))); |
| 4839 | |
| 4840 | /* Should never fail, all inputs have dscale 0 */ |
| 4841 | if (!do_numeric_discard(state, newval)) |
| 4842 | elog(ERROR, "do_numeric_discard failed unexpectedly" ); |
| 4843 | #endif |
| 4844 | } |
| 4845 | |
| 4846 | PG_RETURN_POINTER(state); |
| 4847 | } |
| 4848 | |
| 4849 | Datum |
| 4850 | numeric_poly_sum(PG_FUNCTION_ARGS) |
| 4851 | { |
| 4852 | #ifdef HAVE_INT128 |
| 4853 | PolyNumAggState *state; |
| 4854 | Numeric res; |
| 4855 | NumericVar result; |
| 4856 | |
| 4857 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4858 | |
| 4859 | /* If there were no non-null inputs, return NULL */ |
| 4860 | if (state == NULL || state->N == 0) |
| 4861 | PG_RETURN_NULL(); |
| 4862 | |
| 4863 | init_var(&result); |
| 4864 | |
| 4865 | int128_to_numericvar(state->sumX, &result); |
| 4866 | |
| 4867 | res = make_result(&result); |
| 4868 | |
| 4869 | free_var(&result); |
| 4870 | |
| 4871 | PG_RETURN_NUMERIC(res); |
| 4872 | #else |
| 4873 | return numeric_sum(fcinfo); |
| 4874 | #endif |
| 4875 | } |
| 4876 | |
| 4877 | Datum |
| 4878 | numeric_poly_avg(PG_FUNCTION_ARGS) |
| 4879 | { |
| 4880 | #ifdef HAVE_INT128 |
| 4881 | PolyNumAggState *state; |
| 4882 | NumericVar result; |
| 4883 | Datum countd, |
| 4884 | sumd; |
| 4885 | |
| 4886 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 4887 | |
| 4888 | /* If there were no non-null inputs, return NULL */ |
| 4889 | if (state == NULL || state->N == 0) |
| 4890 | PG_RETURN_NULL(); |
| 4891 | |
| 4892 | init_var(&result); |
| 4893 | |
| 4894 | int128_to_numericvar(state->sumX, &result); |
| 4895 | |
| 4896 | countd = DirectFunctionCall1(int8_numeric, |
| 4897 | Int64GetDatumFast(state->N)); |
| 4898 | sumd = NumericGetDatum(make_result(&result)); |
| 4899 | |
| 4900 | free_var(&result); |
| 4901 | |
| 4902 | PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd)); |
| 4903 | #else |
| 4904 | return numeric_avg(fcinfo); |
| 4905 | #endif |
| 4906 | } |
| 4907 | |
| 4908 | Datum |
| 4909 | numeric_avg(PG_FUNCTION_ARGS) |
| 4910 | { |
| 4911 | NumericAggState *state; |
| 4912 | Datum N_datum; |
| 4913 | Datum sumX_datum; |
| 4914 | NumericVar sumX_var; |
| 4915 | |
| 4916 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 4917 | |
| 4918 | /* If there were no non-null inputs, return NULL */ |
| 4919 | if (state == NULL || (state->N + state->NaNcount) == 0) |
| 4920 | PG_RETURN_NULL(); |
| 4921 | |
| 4922 | if (state->NaNcount > 0) /* there was at least one NaN input */ |
| 4923 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 4924 | |
| 4925 | N_datum = DirectFunctionCall1(int8_numeric, Int64GetDatum(state->N)); |
| 4926 | |
| 4927 | init_var(&sumX_var); |
| 4928 | accum_sum_final(&state->sumX, &sumX_var); |
| 4929 | sumX_datum = NumericGetDatum(make_result(&sumX_var)); |
| 4930 | free_var(&sumX_var); |
| 4931 | |
| 4932 | PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumX_datum, N_datum)); |
| 4933 | } |
| 4934 | |
| 4935 | Datum |
| 4936 | numeric_sum(PG_FUNCTION_ARGS) |
| 4937 | { |
| 4938 | NumericAggState *state; |
| 4939 | NumericVar sumX_var; |
| 4940 | Numeric result; |
| 4941 | |
| 4942 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 4943 | |
| 4944 | /* If there were no non-null inputs, return NULL */ |
| 4945 | if (state == NULL || (state->N + state->NaNcount) == 0) |
| 4946 | PG_RETURN_NULL(); |
| 4947 | |
| 4948 | if (state->NaNcount > 0) /* there was at least one NaN input */ |
| 4949 | PG_RETURN_NUMERIC(make_result(&const_nan)); |
| 4950 | |
| 4951 | init_var(&sumX_var); |
| 4952 | accum_sum_final(&state->sumX, &sumX_var); |
| 4953 | result = make_result(&sumX_var); |
| 4954 | free_var(&sumX_var); |
| 4955 | |
| 4956 | PG_RETURN_NUMERIC(result); |
| 4957 | } |
| 4958 | |
| 4959 | /* |
| 4960 | * Workhorse routine for the standard deviance and variance |
| 4961 | * aggregates. 'state' is aggregate's transition state. |
| 4962 | * 'variance' specifies whether we should calculate the |
| 4963 | * variance or the standard deviation. 'sample' indicates whether the |
| 4964 | * caller is interested in the sample or the population |
| 4965 | * variance/stddev. |
| 4966 | * |
| 4967 | * If appropriate variance statistic is undefined for the input, |
| 4968 | * *is_null is set to true and NULL is returned. |
| 4969 | */ |
| 4970 | static Numeric |
| 4971 | numeric_stddev_internal(NumericAggState *state, |
| 4972 | bool variance, bool sample, |
| 4973 | bool *is_null) |
| 4974 | { |
| 4975 | Numeric res; |
| 4976 | NumericVar vN, |
| 4977 | vsumX, |
| 4978 | vsumX2, |
| 4979 | vNminus1; |
| 4980 | const NumericVar *comp; |
| 4981 | int rscale; |
| 4982 | |
| 4983 | /* Deal with empty input and NaN-input cases */ |
| 4984 | if (state == NULL || (state->N + state->NaNcount) == 0) |
| 4985 | { |
| 4986 | *is_null = true; |
| 4987 | return NULL; |
| 4988 | } |
| 4989 | |
| 4990 | *is_null = false; |
| 4991 | |
| 4992 | if (state->NaNcount > 0) |
| 4993 | return make_result(&const_nan); |
| 4994 | |
| 4995 | init_var(&vN); |
| 4996 | init_var(&vsumX); |
| 4997 | init_var(&vsumX2); |
| 4998 | |
| 4999 | int64_to_numericvar(state->N, &vN); |
| 5000 | accum_sum_final(&(state->sumX), &vsumX); |
| 5001 | accum_sum_final(&(state->sumX2), &vsumX2); |
| 5002 | |
| 5003 | /* |
| 5004 | * Sample stddev and variance are undefined when N <= 1; population stddev |
| 5005 | * is undefined when N == 0. Return NULL in either case. |
| 5006 | */ |
| 5007 | if (sample) |
| 5008 | comp = &const_one; |
| 5009 | else |
| 5010 | comp = &const_zero; |
| 5011 | |
| 5012 | if (cmp_var(&vN, comp) <= 0) |
| 5013 | { |
| 5014 | *is_null = true; |
| 5015 | return NULL; |
| 5016 | } |
| 5017 | |
| 5018 | init_var(&vNminus1); |
| 5019 | sub_var(&vN, &const_one, &vNminus1); |
| 5020 | |
| 5021 | /* compute rscale for mul_var calls */ |
| 5022 | rscale = vsumX.dscale * 2; |
| 5023 | |
| 5024 | mul_var(&vsumX, &vsumX, &vsumX, rscale); /* vsumX = sumX * sumX */ |
| 5025 | mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */ |
| 5026 | sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */ |
| 5027 | |
| 5028 | if (cmp_var(&vsumX2, &const_zero) <= 0) |
| 5029 | { |
| 5030 | /* Watch out for roundoff error producing a negative numerator */ |
| 5031 | res = make_result(&const_zero); |
| 5032 | } |
| 5033 | else |
| 5034 | { |
| 5035 | if (sample) |
| 5036 | mul_var(&vN, &vNminus1, &vNminus1, 0); /* N * (N - 1) */ |
| 5037 | else |
| 5038 | mul_var(&vN, &vN, &vNminus1, 0); /* N * N */ |
| 5039 | rscale = select_div_scale(&vsumX2, &vNminus1); |
| 5040 | div_var(&vsumX2, &vNminus1, &vsumX, rscale, true); /* variance */ |
| 5041 | if (!variance) |
| 5042 | sqrt_var(&vsumX, &vsumX, rscale); /* stddev */ |
| 5043 | |
| 5044 | res = make_result(&vsumX); |
| 5045 | } |
| 5046 | |
| 5047 | free_var(&vNminus1); |
| 5048 | free_var(&vsumX); |
| 5049 | free_var(&vsumX2); |
| 5050 | |
| 5051 | return res; |
| 5052 | } |
| 5053 | |
| 5054 | Datum |
| 5055 | numeric_var_samp(PG_FUNCTION_ARGS) |
| 5056 | { |
| 5057 | NumericAggState *state; |
| 5058 | Numeric res; |
| 5059 | bool is_null; |
| 5060 | |
| 5061 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 5062 | |
| 5063 | res = numeric_stddev_internal(state, true, true, &is_null); |
| 5064 | |
| 5065 | if (is_null) |
| 5066 | PG_RETURN_NULL(); |
| 5067 | else |
| 5068 | PG_RETURN_NUMERIC(res); |
| 5069 | } |
| 5070 | |
| 5071 | Datum |
| 5072 | numeric_stddev_samp(PG_FUNCTION_ARGS) |
| 5073 | { |
| 5074 | NumericAggState *state; |
| 5075 | Numeric res; |
| 5076 | bool is_null; |
| 5077 | |
| 5078 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 5079 | |
| 5080 | res = numeric_stddev_internal(state, false, true, &is_null); |
| 5081 | |
| 5082 | if (is_null) |
| 5083 | PG_RETURN_NULL(); |
| 5084 | else |
| 5085 | PG_RETURN_NUMERIC(res); |
| 5086 | } |
| 5087 | |
| 5088 | Datum |
| 5089 | numeric_var_pop(PG_FUNCTION_ARGS) |
| 5090 | { |
| 5091 | NumericAggState *state; |
| 5092 | Numeric res; |
| 5093 | bool is_null; |
| 5094 | |
| 5095 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 5096 | |
| 5097 | res = numeric_stddev_internal(state, true, false, &is_null); |
| 5098 | |
| 5099 | if (is_null) |
| 5100 | PG_RETURN_NULL(); |
| 5101 | else |
| 5102 | PG_RETURN_NUMERIC(res); |
| 5103 | } |
| 5104 | |
| 5105 | Datum |
| 5106 | numeric_stddev_pop(PG_FUNCTION_ARGS) |
| 5107 | { |
| 5108 | NumericAggState *state; |
| 5109 | Numeric res; |
| 5110 | bool is_null; |
| 5111 | |
| 5112 | state = PG_ARGISNULL(0) ? NULL : (NumericAggState *) PG_GETARG_POINTER(0); |
| 5113 | |
| 5114 | res = numeric_stddev_internal(state, false, false, &is_null); |
| 5115 | |
| 5116 | if (is_null) |
| 5117 | PG_RETURN_NULL(); |
| 5118 | else |
| 5119 | PG_RETURN_NUMERIC(res); |
| 5120 | } |
| 5121 | |
| 5122 | #ifdef HAVE_INT128 |
| 5123 | static Numeric |
| 5124 | numeric_poly_stddev_internal(Int128AggState *state, |
| 5125 | bool variance, bool sample, |
| 5126 | bool *is_null) |
| 5127 | { |
| 5128 | NumericAggState numstate; |
| 5129 | Numeric res; |
| 5130 | |
| 5131 | /* Initialize an empty agg state */ |
| 5132 | memset(&numstate, 0, sizeof(NumericAggState)); |
| 5133 | |
| 5134 | if (state) |
| 5135 | { |
| 5136 | NumericVar tmp_var; |
| 5137 | |
| 5138 | numstate.N = state->N; |
| 5139 | |
| 5140 | init_var(&tmp_var); |
| 5141 | |
| 5142 | int128_to_numericvar(state->sumX, &tmp_var); |
| 5143 | accum_sum_add(&numstate.sumX, &tmp_var); |
| 5144 | |
| 5145 | int128_to_numericvar(state->sumX2, &tmp_var); |
| 5146 | accum_sum_add(&numstate.sumX2, &tmp_var); |
| 5147 | |
| 5148 | free_var(&tmp_var); |
| 5149 | } |
| 5150 | |
| 5151 | res = numeric_stddev_internal(&numstate, variance, sample, is_null); |
| 5152 | |
| 5153 | if (numstate.sumX.ndigits > 0) |
| 5154 | { |
| 5155 | pfree(numstate.sumX.pos_digits); |
| 5156 | pfree(numstate.sumX.neg_digits); |
| 5157 | } |
| 5158 | if (numstate.sumX2.ndigits > 0) |
| 5159 | { |
| 5160 | pfree(numstate.sumX2.pos_digits); |
| 5161 | pfree(numstate.sumX2.neg_digits); |
| 5162 | } |
| 5163 | |
| 5164 | return res; |
| 5165 | } |
| 5166 | #endif |
| 5167 | |
| 5168 | Datum |
| 5169 | numeric_poly_var_samp(PG_FUNCTION_ARGS) |
| 5170 | { |
| 5171 | #ifdef HAVE_INT128 |
| 5172 | PolyNumAggState *state; |
| 5173 | Numeric res; |
| 5174 | bool is_null; |
| 5175 | |
| 5176 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 5177 | |
| 5178 | res = numeric_poly_stddev_internal(state, true, true, &is_null); |
| 5179 | |
| 5180 | if (is_null) |
| 5181 | PG_RETURN_NULL(); |
| 5182 | else |
| 5183 | PG_RETURN_NUMERIC(res); |
| 5184 | #else |
| 5185 | return numeric_var_samp(fcinfo); |
| 5186 | #endif |
| 5187 | } |
| 5188 | |
| 5189 | Datum |
| 5190 | numeric_poly_stddev_samp(PG_FUNCTION_ARGS) |
| 5191 | { |
| 5192 | #ifdef HAVE_INT128 |
| 5193 | PolyNumAggState *state; |
| 5194 | Numeric res; |
| 5195 | bool is_null; |
| 5196 | |
| 5197 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 5198 | |
| 5199 | res = numeric_poly_stddev_internal(state, false, true, &is_null); |
| 5200 | |
| 5201 | if (is_null) |
| 5202 | PG_RETURN_NULL(); |
| 5203 | else |
| 5204 | PG_RETURN_NUMERIC(res); |
| 5205 | #else |
| 5206 | return numeric_stddev_samp(fcinfo); |
| 5207 | #endif |
| 5208 | } |
| 5209 | |
| 5210 | Datum |
| 5211 | numeric_poly_var_pop(PG_FUNCTION_ARGS) |
| 5212 | { |
| 5213 | #ifdef HAVE_INT128 |
| 5214 | PolyNumAggState *state; |
| 5215 | Numeric res; |
| 5216 | bool is_null; |
| 5217 | |
| 5218 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 5219 | |
| 5220 | res = numeric_poly_stddev_internal(state, true, false, &is_null); |
| 5221 | |
| 5222 | if (is_null) |
| 5223 | PG_RETURN_NULL(); |
| 5224 | else |
| 5225 | PG_RETURN_NUMERIC(res); |
| 5226 | #else |
| 5227 | return numeric_var_pop(fcinfo); |
| 5228 | #endif |
| 5229 | } |
| 5230 | |
| 5231 | Datum |
| 5232 | numeric_poly_stddev_pop(PG_FUNCTION_ARGS) |
| 5233 | { |
| 5234 | #ifdef HAVE_INT128 |
| 5235 | PolyNumAggState *state; |
| 5236 | Numeric res; |
| 5237 | bool is_null; |
| 5238 | |
| 5239 | state = PG_ARGISNULL(0) ? NULL : (PolyNumAggState *) PG_GETARG_POINTER(0); |
| 5240 | |
| 5241 | res = numeric_poly_stddev_internal(state, false, false, &is_null); |
| 5242 | |
| 5243 | if (is_null) |
| 5244 | PG_RETURN_NULL(); |
| 5245 | else |
| 5246 | PG_RETURN_NUMERIC(res); |
| 5247 | #else |
| 5248 | return numeric_stddev_pop(fcinfo); |
| 5249 | #endif |
| 5250 | } |
| 5251 | |
| 5252 | /* |
| 5253 | * SUM transition functions for integer datatypes. |
| 5254 | * |
| 5255 | * To avoid overflow, we use accumulators wider than the input datatype. |
| 5256 | * A Numeric accumulator is needed for int8 input; for int4 and int2 |
| 5257 | * inputs, we use int8 accumulators which should be sufficient for practical |
| 5258 | * purposes. (The latter two therefore don't really belong in this file, |
| 5259 | * but we keep them here anyway.) |
| 5260 | * |
| 5261 | * Because SQL defines the SUM() of no values to be NULL, not zero, |
| 5262 | * the initial condition of the transition data value needs to be NULL. This |
| 5263 | * means we can't rely on ExecAgg to automatically insert the first non-null |
| 5264 | * data value into the transition data: it doesn't know how to do the type |
| 5265 | * conversion. The upshot is that these routines have to be marked non-strict |
| 5266 | * and handle substitution of the first non-null input themselves. |
| 5267 | * |
| 5268 | * Note: these functions are used only in plain aggregation mode. |
| 5269 | * In moving-aggregate mode, we use intX_avg_accum and intX_avg_accum_inv. |
| 5270 | */ |
| 5271 | |
| 5272 | Datum |
| 5273 | int2_sum(PG_FUNCTION_ARGS) |
| 5274 | { |
| 5275 | int64 newval; |
| 5276 | |
| 5277 | if (PG_ARGISNULL(0)) |
| 5278 | { |
| 5279 | /* No non-null input seen so far... */ |
| 5280 | if (PG_ARGISNULL(1)) |
| 5281 | PG_RETURN_NULL(); /* still no non-null */ |
| 5282 | /* This is the first non-null input. */ |
| 5283 | newval = (int64) PG_GETARG_INT16(1); |
| 5284 | PG_RETURN_INT64(newval); |
| 5285 | } |
| 5286 | |
| 5287 | /* |
| 5288 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5289 | * parameter in-place to avoid palloc overhead. If not, we need to return |
| 5290 | * the new value of the transition variable. (If int8 is pass-by-value, |
| 5291 | * then of course this is useless as well as incorrect, so just ifdef it |
| 5292 | * out.) |
| 5293 | */ |
| 5294 | #ifndef USE_FLOAT8_BYVAL /* controls int8 too */ |
| 5295 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5296 | { |
| 5297 | int64 *oldsum = (int64 *) PG_GETARG_POINTER(0); |
| 5298 | |
| 5299 | /* Leave the running sum unchanged in the new input is null */ |
| 5300 | if (!PG_ARGISNULL(1)) |
| 5301 | *oldsum = *oldsum + (int64) PG_GETARG_INT16(1); |
| 5302 | |
| 5303 | PG_RETURN_POINTER(oldsum); |
| 5304 | } |
| 5305 | else |
| 5306 | #endif |
| 5307 | { |
| 5308 | int64 oldsum = PG_GETARG_INT64(0); |
| 5309 | |
| 5310 | /* Leave sum unchanged if new input is null. */ |
| 5311 | if (PG_ARGISNULL(1)) |
| 5312 | PG_RETURN_INT64(oldsum); |
| 5313 | |
| 5314 | /* OK to do the addition. */ |
| 5315 | newval = oldsum + (int64) PG_GETARG_INT16(1); |
| 5316 | |
| 5317 | PG_RETURN_INT64(newval); |
| 5318 | } |
| 5319 | } |
| 5320 | |
| 5321 | Datum |
| 5322 | int4_sum(PG_FUNCTION_ARGS) |
| 5323 | { |
| 5324 | int64 newval; |
| 5325 | |
| 5326 | if (PG_ARGISNULL(0)) |
| 5327 | { |
| 5328 | /* No non-null input seen so far... */ |
| 5329 | if (PG_ARGISNULL(1)) |
| 5330 | PG_RETURN_NULL(); /* still no non-null */ |
| 5331 | /* This is the first non-null input. */ |
| 5332 | newval = (int64) PG_GETARG_INT32(1); |
| 5333 | PG_RETURN_INT64(newval); |
| 5334 | } |
| 5335 | |
| 5336 | /* |
| 5337 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5338 | * parameter in-place to avoid palloc overhead. If not, we need to return |
| 5339 | * the new value of the transition variable. (If int8 is pass-by-value, |
| 5340 | * then of course this is useless as well as incorrect, so just ifdef it |
| 5341 | * out.) |
| 5342 | */ |
| 5343 | #ifndef USE_FLOAT8_BYVAL /* controls int8 too */ |
| 5344 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5345 | { |
| 5346 | int64 *oldsum = (int64 *) PG_GETARG_POINTER(0); |
| 5347 | |
| 5348 | /* Leave the running sum unchanged in the new input is null */ |
| 5349 | if (!PG_ARGISNULL(1)) |
| 5350 | *oldsum = *oldsum + (int64) PG_GETARG_INT32(1); |
| 5351 | |
| 5352 | PG_RETURN_POINTER(oldsum); |
| 5353 | } |
| 5354 | else |
| 5355 | #endif |
| 5356 | { |
| 5357 | int64 oldsum = PG_GETARG_INT64(0); |
| 5358 | |
| 5359 | /* Leave sum unchanged if new input is null. */ |
| 5360 | if (PG_ARGISNULL(1)) |
| 5361 | PG_RETURN_INT64(oldsum); |
| 5362 | |
| 5363 | /* OK to do the addition. */ |
| 5364 | newval = oldsum + (int64) PG_GETARG_INT32(1); |
| 5365 | |
| 5366 | PG_RETURN_INT64(newval); |
| 5367 | } |
| 5368 | } |
| 5369 | |
| 5370 | /* |
| 5371 | * Note: this function is obsolete, it's no longer used for SUM(int8). |
| 5372 | */ |
| 5373 | Datum |
| 5374 | int8_sum(PG_FUNCTION_ARGS) |
| 5375 | { |
| 5376 | Numeric oldsum; |
| 5377 | Datum newval; |
| 5378 | |
| 5379 | if (PG_ARGISNULL(0)) |
| 5380 | { |
| 5381 | /* No non-null input seen so far... */ |
| 5382 | if (PG_ARGISNULL(1)) |
| 5383 | PG_RETURN_NULL(); /* still no non-null */ |
| 5384 | /* This is the first non-null input. */ |
| 5385 | newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1)); |
| 5386 | PG_RETURN_DATUM(newval); |
| 5387 | } |
| 5388 | |
| 5389 | /* |
| 5390 | * Note that we cannot special-case the aggregate case here, as we do for |
| 5391 | * int2_sum and int4_sum: numeric is of variable size, so we cannot modify |
| 5392 | * our first parameter in-place. |
| 5393 | */ |
| 5394 | |
| 5395 | oldsum = PG_GETARG_NUMERIC(0); |
| 5396 | |
| 5397 | /* Leave sum unchanged if new input is null. */ |
| 5398 | if (PG_ARGISNULL(1)) |
| 5399 | PG_RETURN_NUMERIC(oldsum); |
| 5400 | |
| 5401 | /* OK to do the addition. */ |
| 5402 | newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1)); |
| 5403 | |
| 5404 | PG_RETURN_DATUM(DirectFunctionCall2(numeric_add, |
| 5405 | NumericGetDatum(oldsum), newval)); |
| 5406 | } |
| 5407 | |
| 5408 | |
| 5409 | /* |
| 5410 | * Routines for avg(int2) and avg(int4). The transition datatype |
| 5411 | * is a two-element int8 array, holding count and sum. |
| 5412 | * |
| 5413 | * These functions are also used for sum(int2) and sum(int4) when |
| 5414 | * operating in moving-aggregate mode, since for correct inverse transitions |
| 5415 | * we need to count the inputs. |
| 5416 | */ |
| 5417 | |
| 5418 | typedef struct Int8TransTypeData |
| 5419 | { |
| 5420 | int64 count; |
| 5421 | int64 sum; |
| 5422 | } Int8TransTypeData; |
| 5423 | |
| 5424 | Datum |
| 5425 | int2_avg_accum(PG_FUNCTION_ARGS) |
| 5426 | { |
| 5427 | ArrayType *transarray; |
| 5428 | int16 newval = PG_GETARG_INT16(1); |
| 5429 | Int8TransTypeData *transdata; |
| 5430 | |
| 5431 | /* |
| 5432 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5433 | * parameter in-place to reduce palloc overhead. Otherwise we need to make |
| 5434 | * a copy of it before scribbling on it. |
| 5435 | */ |
| 5436 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5437 | transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5438 | else |
| 5439 | transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); |
| 5440 | |
| 5441 | if (ARR_HASNULL(transarray) || |
| 5442 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5443 | elog(ERROR, "expected 2-element int8 array" ); |
| 5444 | |
| 5445 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5446 | transdata->count++; |
| 5447 | transdata->sum += newval; |
| 5448 | |
| 5449 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 5450 | } |
| 5451 | |
| 5452 | Datum |
| 5453 | int4_avg_accum(PG_FUNCTION_ARGS) |
| 5454 | { |
| 5455 | ArrayType *transarray; |
| 5456 | int32 newval = PG_GETARG_INT32(1); |
| 5457 | Int8TransTypeData *transdata; |
| 5458 | |
| 5459 | /* |
| 5460 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5461 | * parameter in-place to reduce palloc overhead. Otherwise we need to make |
| 5462 | * a copy of it before scribbling on it. |
| 5463 | */ |
| 5464 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5465 | transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5466 | else |
| 5467 | transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); |
| 5468 | |
| 5469 | if (ARR_HASNULL(transarray) || |
| 5470 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5471 | elog(ERROR, "expected 2-element int8 array" ); |
| 5472 | |
| 5473 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5474 | transdata->count++; |
| 5475 | transdata->sum += newval; |
| 5476 | |
| 5477 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 5478 | } |
| 5479 | |
| 5480 | Datum |
| 5481 | int4_avg_combine(PG_FUNCTION_ARGS) |
| 5482 | { |
| 5483 | ArrayType *transarray1; |
| 5484 | ArrayType *transarray2; |
| 5485 | Int8TransTypeData *state1; |
| 5486 | Int8TransTypeData *state2; |
| 5487 | |
| 5488 | if (!AggCheckCallContext(fcinfo, NULL)) |
| 5489 | elog(ERROR, "aggregate function called in non-aggregate context" ); |
| 5490 | |
| 5491 | transarray1 = PG_GETARG_ARRAYTYPE_P(0); |
| 5492 | transarray2 = PG_GETARG_ARRAYTYPE_P(1); |
| 5493 | |
| 5494 | if (ARR_HASNULL(transarray1) || |
| 5495 | ARR_SIZE(transarray1) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5496 | elog(ERROR, "expected 2-element int8 array" ); |
| 5497 | |
| 5498 | if (ARR_HASNULL(transarray2) || |
| 5499 | ARR_SIZE(transarray2) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5500 | elog(ERROR, "expected 2-element int8 array" ); |
| 5501 | |
| 5502 | state1 = (Int8TransTypeData *) ARR_DATA_PTR(transarray1); |
| 5503 | state2 = (Int8TransTypeData *) ARR_DATA_PTR(transarray2); |
| 5504 | |
| 5505 | state1->count += state2->count; |
| 5506 | state1->sum += state2->sum; |
| 5507 | |
| 5508 | PG_RETURN_ARRAYTYPE_P(transarray1); |
| 5509 | } |
| 5510 | |
| 5511 | Datum |
| 5512 | int2_avg_accum_inv(PG_FUNCTION_ARGS) |
| 5513 | { |
| 5514 | ArrayType *transarray; |
| 5515 | int16 newval = PG_GETARG_INT16(1); |
| 5516 | Int8TransTypeData *transdata; |
| 5517 | |
| 5518 | /* |
| 5519 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5520 | * parameter in-place to reduce palloc overhead. Otherwise we need to make |
| 5521 | * a copy of it before scribbling on it. |
| 5522 | */ |
| 5523 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5524 | transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5525 | else |
| 5526 | transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); |
| 5527 | |
| 5528 | if (ARR_HASNULL(transarray) || |
| 5529 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5530 | elog(ERROR, "expected 2-element int8 array" ); |
| 5531 | |
| 5532 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5533 | transdata->count--; |
| 5534 | transdata->sum -= newval; |
| 5535 | |
| 5536 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 5537 | } |
| 5538 | |
| 5539 | Datum |
| 5540 | int4_avg_accum_inv(PG_FUNCTION_ARGS) |
| 5541 | { |
| 5542 | ArrayType *transarray; |
| 5543 | int32 newval = PG_GETARG_INT32(1); |
| 5544 | Int8TransTypeData *transdata; |
| 5545 | |
| 5546 | /* |
| 5547 | * If we're invoked as an aggregate, we can cheat and modify our first |
| 5548 | * parameter in-place to reduce palloc overhead. Otherwise we need to make |
| 5549 | * a copy of it before scribbling on it. |
| 5550 | */ |
| 5551 | if (AggCheckCallContext(fcinfo, NULL)) |
| 5552 | transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5553 | else |
| 5554 | transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); |
| 5555 | |
| 5556 | if (ARR_HASNULL(transarray) || |
| 5557 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5558 | elog(ERROR, "expected 2-element int8 array" ); |
| 5559 | |
| 5560 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5561 | transdata->count--; |
| 5562 | transdata->sum -= newval; |
| 5563 | |
| 5564 | PG_RETURN_ARRAYTYPE_P(transarray); |
| 5565 | } |
| 5566 | |
| 5567 | Datum |
| 5568 | int8_avg(PG_FUNCTION_ARGS) |
| 5569 | { |
| 5570 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5571 | Int8TransTypeData *transdata; |
| 5572 | Datum countd, |
| 5573 | sumd; |
| 5574 | |
| 5575 | if (ARR_HASNULL(transarray) || |
| 5576 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5577 | elog(ERROR, "expected 2-element int8 array" ); |
| 5578 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5579 | |
| 5580 | /* SQL defines AVG of no values to be NULL */ |
| 5581 | if (transdata->count == 0) |
| 5582 | PG_RETURN_NULL(); |
| 5583 | |
| 5584 | countd = DirectFunctionCall1(int8_numeric, |
| 5585 | Int64GetDatumFast(transdata->count)); |
| 5586 | sumd = DirectFunctionCall1(int8_numeric, |
| 5587 | Int64GetDatumFast(transdata->sum)); |
| 5588 | |
| 5589 | PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd)); |
| 5590 | } |
| 5591 | |
| 5592 | /* |
| 5593 | * SUM(int2) and SUM(int4) both return int8, so we can use this |
| 5594 | * final function for both. |
| 5595 | */ |
| 5596 | Datum |
| 5597 | int2int4_sum(PG_FUNCTION_ARGS) |
| 5598 | { |
| 5599 | ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); |
| 5600 | Int8TransTypeData *transdata; |
| 5601 | |
| 5602 | if (ARR_HASNULL(transarray) || |
| 5603 | ARR_SIZE(transarray) != ARR_OVERHEAD_NONULLS(1) + sizeof(Int8TransTypeData)) |
| 5604 | elog(ERROR, "expected 2-element int8 array" ); |
| 5605 | transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); |
| 5606 | |
| 5607 | /* SQL defines SUM of no values to be NULL */ |
| 5608 | if (transdata->count == 0) |
| 5609 | PG_RETURN_NULL(); |
| 5610 | |
| 5611 | PG_RETURN_DATUM(Int64GetDatumFast(transdata->sum)); |
| 5612 | } |
| 5613 | |
| 5614 | |
| 5615 | /* ---------------------------------------------------------------------- |
| 5616 | * |
| 5617 | * Debug support |
| 5618 | * |
| 5619 | * ---------------------------------------------------------------------- |
| 5620 | */ |
| 5621 | |
| 5622 | #ifdef NUMERIC_DEBUG |
| 5623 | |
| 5624 | /* |
| 5625 | * dump_numeric() - Dump a value in the db storage format for debugging |
| 5626 | */ |
| 5627 | static void |
| 5628 | dump_numeric(const char *str, Numeric num) |
| 5629 | { |
| 5630 | NumericDigit *digits = NUMERIC_DIGITS(num); |
| 5631 | int ndigits; |
| 5632 | int i; |
| 5633 | |
| 5634 | ndigits = NUMERIC_NDIGITS(num); |
| 5635 | |
| 5636 | printf("%s: NUMERIC w=%d d=%d " , str, |
| 5637 | NUMERIC_WEIGHT(num), NUMERIC_DSCALE(num)); |
| 5638 | switch (NUMERIC_SIGN(num)) |
| 5639 | { |
| 5640 | case NUMERIC_POS: |
| 5641 | printf("POS" ); |
| 5642 | break; |
| 5643 | case NUMERIC_NEG: |
| 5644 | printf("NEG" ); |
| 5645 | break; |
| 5646 | case NUMERIC_NAN: |
| 5647 | printf("NaN" ); |
| 5648 | break; |
| 5649 | default: |
| 5650 | printf("SIGN=0x%x" , NUMERIC_SIGN(num)); |
| 5651 | break; |
| 5652 | } |
| 5653 | |
| 5654 | for (i = 0; i < ndigits; i++) |
| 5655 | printf(" %0*d" , DEC_DIGITS, digits[i]); |
| 5656 | printf("\n" ); |
| 5657 | } |
| 5658 | |
| 5659 | |
| 5660 | /* |
| 5661 | * dump_var() - Dump a value in the variable format for debugging |
| 5662 | */ |
| 5663 | static void |
| 5664 | dump_var(const char *str, NumericVar *var) |
| 5665 | { |
| 5666 | int i; |
| 5667 | |
| 5668 | printf("%s: VAR w=%d d=%d " , str, var->weight, var->dscale); |
| 5669 | switch (var->sign) |
| 5670 | { |
| 5671 | case NUMERIC_POS: |
| 5672 | printf("POS" ); |
| 5673 | break; |
| 5674 | case NUMERIC_NEG: |
| 5675 | printf("NEG" ); |
| 5676 | break; |
| 5677 | case NUMERIC_NAN: |
| 5678 | printf("NaN" ); |
| 5679 | break; |
| 5680 | default: |
| 5681 | printf("SIGN=0x%x" , var->sign); |
| 5682 | break; |
| 5683 | } |
| 5684 | |
| 5685 | for (i = 0; i < var->ndigits; i++) |
| 5686 | printf(" %0*d" , DEC_DIGITS, var->digits[i]); |
| 5687 | |
| 5688 | printf("\n" ); |
| 5689 | } |
| 5690 | #endif /* NUMERIC_DEBUG */ |
| 5691 | |
| 5692 | |
| 5693 | /* ---------------------------------------------------------------------- |
| 5694 | * |
| 5695 | * Local functions follow |
| 5696 | * |
| 5697 | * In general, these do not support NaNs --- callers must eliminate |
| 5698 | * the possibility of NaN first. (make_result() is an exception.) |
| 5699 | * |
| 5700 | * ---------------------------------------------------------------------- |
| 5701 | */ |
| 5702 | |
| 5703 | |
| 5704 | /* |
| 5705 | * alloc_var() - |
| 5706 | * |
| 5707 | * Allocate a digit buffer of ndigits digits (plus a spare digit for rounding) |
| 5708 | */ |
| 5709 | static void |
| 5710 | alloc_var(NumericVar *var, int ndigits) |
| 5711 | { |
| 5712 | digitbuf_free(var->buf); |
| 5713 | var->buf = digitbuf_alloc(ndigits + 1); |
| 5714 | var->buf[0] = 0; /* spare digit for rounding */ |
| 5715 | var->digits = var->buf + 1; |
| 5716 | var->ndigits = ndigits; |
| 5717 | } |
| 5718 | |
| 5719 | |
| 5720 | /* |
| 5721 | * free_var() - |
| 5722 | * |
| 5723 | * Return the digit buffer of a variable to the free pool |
| 5724 | */ |
| 5725 | static void |
| 5726 | free_var(NumericVar *var) |
| 5727 | { |
| 5728 | digitbuf_free(var->buf); |
| 5729 | var->buf = NULL; |
| 5730 | var->digits = NULL; |
| 5731 | var->sign = NUMERIC_NAN; |
| 5732 | } |
| 5733 | |
| 5734 | |
| 5735 | /* |
| 5736 | * zero_var() - |
| 5737 | * |
| 5738 | * Set a variable to ZERO. |
| 5739 | * Note: its dscale is not touched. |
| 5740 | */ |
| 5741 | static void |
| 5742 | zero_var(NumericVar *var) |
| 5743 | { |
| 5744 | digitbuf_free(var->buf); |
| 5745 | var->buf = NULL; |
| 5746 | var->digits = NULL; |
| 5747 | var->ndigits = 0; |
| 5748 | var->weight = 0; /* by convention; doesn't really matter */ |
| 5749 | var->sign = NUMERIC_POS; /* anything but NAN... */ |
| 5750 | } |
| 5751 | |
| 5752 | |
| 5753 | /* |
| 5754 | * set_var_from_str() |
| 5755 | * |
| 5756 | * Parse a string and put the number into a variable |
| 5757 | * |
| 5758 | * This function does not handle leading or trailing spaces, and it doesn't |
| 5759 | * accept "NaN" either. It returns the end+1 position so that caller can |
| 5760 | * check for trailing spaces/garbage if deemed necessary. |
| 5761 | * |
| 5762 | * cp is the place to actually start parsing; str is what to use in error |
| 5763 | * reports. (Typically cp would be the same except advanced over spaces.) |
| 5764 | */ |
| 5765 | static const char * |
| 5766 | set_var_from_str(const char *str, const char *cp, NumericVar *dest) |
| 5767 | { |
| 5768 | bool have_dp = false; |
| 5769 | int i; |
| 5770 | unsigned char *decdigits; |
| 5771 | int sign = NUMERIC_POS; |
| 5772 | int dweight = -1; |
| 5773 | int ddigits; |
| 5774 | int dscale = 0; |
| 5775 | int weight; |
| 5776 | int ndigits; |
| 5777 | int offset; |
| 5778 | NumericDigit *digits; |
| 5779 | |
| 5780 | /* |
| 5781 | * We first parse the string to extract decimal digits and determine the |
| 5782 | * correct decimal weight. Then convert to NBASE representation. |
| 5783 | */ |
| 5784 | switch (*cp) |
| 5785 | { |
| 5786 | case '+': |
| 5787 | sign = NUMERIC_POS; |
| 5788 | cp++; |
| 5789 | break; |
| 5790 | |
| 5791 | case '-': |
| 5792 | sign = NUMERIC_NEG; |
| 5793 | cp++; |
| 5794 | break; |
| 5795 | } |
| 5796 | |
| 5797 | if (*cp == '.') |
| 5798 | { |
| 5799 | have_dp = true; |
| 5800 | cp++; |
| 5801 | } |
| 5802 | |
| 5803 | if (!isdigit((unsigned char) *cp)) |
| 5804 | ereport(ERROR, |
| 5805 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 5806 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 5807 | "numeric" , str))); |
| 5808 | |
| 5809 | decdigits = (unsigned char *) palloc(strlen(cp) + DEC_DIGITS * 2); |
| 5810 | |
| 5811 | /* leading padding for digit alignment later */ |
| 5812 | memset(decdigits, 0, DEC_DIGITS); |
| 5813 | i = DEC_DIGITS; |
| 5814 | |
| 5815 | while (*cp) |
| 5816 | { |
| 5817 | if (isdigit((unsigned char) *cp)) |
| 5818 | { |
| 5819 | decdigits[i++] = *cp++ - '0'; |
| 5820 | if (!have_dp) |
| 5821 | dweight++; |
| 5822 | else |
| 5823 | dscale++; |
| 5824 | } |
| 5825 | else if (*cp == '.') |
| 5826 | { |
| 5827 | if (have_dp) |
| 5828 | ereport(ERROR, |
| 5829 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 5830 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 5831 | "numeric" , str))); |
| 5832 | have_dp = true; |
| 5833 | cp++; |
| 5834 | } |
| 5835 | else |
| 5836 | break; |
| 5837 | } |
| 5838 | |
| 5839 | ddigits = i - DEC_DIGITS; |
| 5840 | /* trailing padding for digit alignment later */ |
| 5841 | memset(decdigits + i, 0, DEC_DIGITS - 1); |
| 5842 | |
| 5843 | /* Handle exponent, if any */ |
| 5844 | if (*cp == 'e' || *cp == 'E') |
| 5845 | { |
| 5846 | long exponent; |
| 5847 | char *endptr; |
| 5848 | |
| 5849 | cp++; |
| 5850 | exponent = strtol(cp, &endptr, 10); |
| 5851 | if (endptr == cp) |
| 5852 | ereport(ERROR, |
| 5853 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 5854 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 5855 | "numeric" , str))); |
| 5856 | cp = endptr; |
| 5857 | |
| 5858 | /* |
| 5859 | * At this point, dweight and dscale can't be more than about |
| 5860 | * INT_MAX/2 due to the MaxAllocSize limit on string length, so |
| 5861 | * constraining the exponent similarly should be enough to prevent |
| 5862 | * integer overflow in this function. If the value is too large to |
| 5863 | * fit in storage format, make_result() will complain about it later; |
| 5864 | * for consistency use the same ereport errcode/text as make_result(). |
| 5865 | */ |
| 5866 | if (exponent >= INT_MAX / 2 || exponent <= -(INT_MAX / 2)) |
| 5867 | ereport(ERROR, |
| 5868 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 5869 | errmsg("value overflows numeric format" ))); |
| 5870 | dweight += (int) exponent; |
| 5871 | dscale -= (int) exponent; |
| 5872 | if (dscale < 0) |
| 5873 | dscale = 0; |
| 5874 | } |
| 5875 | |
| 5876 | /* |
| 5877 | * Okay, convert pure-decimal representation to base NBASE. First we need |
| 5878 | * to determine the converted weight and ndigits. offset is the number of |
| 5879 | * decimal zeroes to insert before the first given digit to have a |
| 5880 | * correctly aligned first NBASE digit. |
| 5881 | */ |
| 5882 | if (dweight >= 0) |
| 5883 | weight = (dweight + 1 + DEC_DIGITS - 1) / DEC_DIGITS - 1; |
| 5884 | else |
| 5885 | weight = -((-dweight - 1) / DEC_DIGITS + 1); |
| 5886 | offset = (weight + 1) * DEC_DIGITS - (dweight + 1); |
| 5887 | ndigits = (ddigits + offset + DEC_DIGITS - 1) / DEC_DIGITS; |
| 5888 | |
| 5889 | alloc_var(dest, ndigits); |
| 5890 | dest->sign = sign; |
| 5891 | dest->weight = weight; |
| 5892 | dest->dscale = dscale; |
| 5893 | |
| 5894 | i = DEC_DIGITS - offset; |
| 5895 | digits = dest->digits; |
| 5896 | |
| 5897 | while (ndigits-- > 0) |
| 5898 | { |
| 5899 | #if DEC_DIGITS == 4 |
| 5900 | *digits++ = ((decdigits[i] * 10 + decdigits[i + 1]) * 10 + |
| 5901 | decdigits[i + 2]) * 10 + decdigits[i + 3]; |
| 5902 | #elif DEC_DIGITS == 2 |
| 5903 | *digits++ = decdigits[i] * 10 + decdigits[i + 1]; |
| 5904 | #elif DEC_DIGITS == 1 |
| 5905 | *digits++ = decdigits[i]; |
| 5906 | #else |
| 5907 | #error unsupported NBASE |
| 5908 | #endif |
| 5909 | i += DEC_DIGITS; |
| 5910 | } |
| 5911 | |
| 5912 | pfree(decdigits); |
| 5913 | |
| 5914 | /* Strip any leading/trailing zeroes, and normalize weight if zero */ |
| 5915 | strip_var(dest); |
| 5916 | |
| 5917 | /* Return end+1 position for caller */ |
| 5918 | return cp; |
| 5919 | } |
| 5920 | |
| 5921 | |
| 5922 | /* |
| 5923 | * set_var_from_num() - |
| 5924 | * |
| 5925 | * Convert the packed db format into a variable |
| 5926 | */ |
| 5927 | static void |
| 5928 | set_var_from_num(Numeric num, NumericVar *dest) |
| 5929 | { |
| 5930 | int ndigits; |
| 5931 | |
| 5932 | ndigits = NUMERIC_NDIGITS(num); |
| 5933 | |
| 5934 | alloc_var(dest, ndigits); |
| 5935 | |
| 5936 | dest->weight = NUMERIC_WEIGHT(num); |
| 5937 | dest->sign = NUMERIC_SIGN(num); |
| 5938 | dest->dscale = NUMERIC_DSCALE(num); |
| 5939 | |
| 5940 | memcpy(dest->digits, NUMERIC_DIGITS(num), ndigits * sizeof(NumericDigit)); |
| 5941 | } |
| 5942 | |
| 5943 | |
| 5944 | /* |
| 5945 | * init_var_from_num() - |
| 5946 | * |
| 5947 | * Initialize a variable from packed db format. The digits array is not |
| 5948 | * copied, which saves some cycles when the resulting var is not modified. |
| 5949 | * Also, there's no need to call free_var(), as long as you don't assign any |
| 5950 | * other value to it (with set_var_* functions, or by using the var as the |
| 5951 | * destination of a function like add_var()) |
| 5952 | * |
| 5953 | * CAUTION: Do not modify the digits buffer of a var initialized with this |
| 5954 | * function, e.g by calling round_var() or trunc_var(), as the changes will |
| 5955 | * propagate to the original Numeric! It's OK to use it as the destination |
| 5956 | * argument of one of the calculational functions, though. |
| 5957 | */ |
| 5958 | static void |
| 5959 | init_var_from_num(Numeric num, NumericVar *dest) |
| 5960 | { |
| 5961 | dest->ndigits = NUMERIC_NDIGITS(num); |
| 5962 | dest->weight = NUMERIC_WEIGHT(num); |
| 5963 | dest->sign = NUMERIC_SIGN(num); |
| 5964 | dest->dscale = NUMERIC_DSCALE(num); |
| 5965 | dest->digits = NUMERIC_DIGITS(num); |
| 5966 | dest->buf = NULL; /* digits array is not palloc'd */ |
| 5967 | } |
| 5968 | |
| 5969 | |
| 5970 | /* |
| 5971 | * set_var_from_var() - |
| 5972 | * |
| 5973 | * Copy one variable into another |
| 5974 | */ |
| 5975 | static void |
| 5976 | set_var_from_var(const NumericVar *value, NumericVar *dest) |
| 5977 | { |
| 5978 | NumericDigit *newbuf; |
| 5979 | |
| 5980 | newbuf = digitbuf_alloc(value->ndigits + 1); |
| 5981 | newbuf[0] = 0; /* spare digit for rounding */ |
| 5982 | if (value->ndigits > 0) /* else value->digits might be null */ |
| 5983 | memcpy(newbuf + 1, value->digits, |
| 5984 | value->ndigits * sizeof(NumericDigit)); |
| 5985 | |
| 5986 | digitbuf_free(dest->buf); |
| 5987 | |
| 5988 | memmove(dest, value, sizeof(NumericVar)); |
| 5989 | dest->buf = newbuf; |
| 5990 | dest->digits = newbuf + 1; |
| 5991 | } |
| 5992 | |
| 5993 | |
| 5994 | /* |
| 5995 | * get_str_from_var() - |
| 5996 | * |
| 5997 | * Convert a var to text representation (guts of numeric_out). |
| 5998 | * The var is displayed to the number of digits indicated by its dscale. |
| 5999 | * Returns a palloc'd string. |
| 6000 | */ |
| 6001 | static char * |
| 6002 | get_str_from_var(const NumericVar *var) |
| 6003 | { |
| 6004 | int dscale; |
| 6005 | char *str; |
| 6006 | char *cp; |
| 6007 | char *endcp; |
| 6008 | int i; |
| 6009 | int d; |
| 6010 | NumericDigit dig; |
| 6011 | |
| 6012 | #if DEC_DIGITS > 1 |
| 6013 | NumericDigit d1; |
| 6014 | #endif |
| 6015 | |
| 6016 | dscale = var->dscale; |
| 6017 | |
| 6018 | /* |
| 6019 | * Allocate space for the result. |
| 6020 | * |
| 6021 | * i is set to the # of decimal digits before decimal point. dscale is the |
| 6022 | * # of decimal digits we will print after decimal point. We may generate |
| 6023 | * as many as DEC_DIGITS-1 excess digits at the end, and in addition we |
| 6024 | * need room for sign, decimal point, null terminator. |
| 6025 | */ |
| 6026 | i = (var->weight + 1) * DEC_DIGITS; |
| 6027 | if (i <= 0) |
| 6028 | i = 1; |
| 6029 | |
| 6030 | str = palloc(i + dscale + DEC_DIGITS + 2); |
| 6031 | cp = str; |
| 6032 | |
| 6033 | /* |
| 6034 | * Output a dash for negative values |
| 6035 | */ |
| 6036 | if (var->sign == NUMERIC_NEG) |
| 6037 | *cp++ = '-'; |
| 6038 | |
| 6039 | /* |
| 6040 | * Output all digits before the decimal point |
| 6041 | */ |
| 6042 | if (var->weight < 0) |
| 6043 | { |
| 6044 | d = var->weight + 1; |
| 6045 | *cp++ = '0'; |
| 6046 | } |
| 6047 | else |
| 6048 | { |
| 6049 | for (d = 0; d <= var->weight; d++) |
| 6050 | { |
| 6051 | dig = (d < var->ndigits) ? var->digits[d] : 0; |
| 6052 | /* In the first digit, suppress extra leading decimal zeroes */ |
| 6053 | #if DEC_DIGITS == 4 |
| 6054 | { |
| 6055 | bool putit = (d > 0); |
| 6056 | |
| 6057 | d1 = dig / 1000; |
| 6058 | dig -= d1 * 1000; |
| 6059 | putit |= (d1 > 0); |
| 6060 | if (putit) |
| 6061 | *cp++ = d1 + '0'; |
| 6062 | d1 = dig / 100; |
| 6063 | dig -= d1 * 100; |
| 6064 | putit |= (d1 > 0); |
| 6065 | if (putit) |
| 6066 | *cp++ = d1 + '0'; |
| 6067 | d1 = dig / 10; |
| 6068 | dig -= d1 * 10; |
| 6069 | putit |= (d1 > 0); |
| 6070 | if (putit) |
| 6071 | *cp++ = d1 + '0'; |
| 6072 | *cp++ = dig + '0'; |
| 6073 | } |
| 6074 | #elif DEC_DIGITS == 2 |
| 6075 | d1 = dig / 10; |
| 6076 | dig -= d1 * 10; |
| 6077 | if (d1 > 0 || d > 0) |
| 6078 | *cp++ = d1 + '0'; |
| 6079 | *cp++ = dig + '0'; |
| 6080 | #elif DEC_DIGITS == 1 |
| 6081 | *cp++ = dig + '0'; |
| 6082 | #else |
| 6083 | #error unsupported NBASE |
| 6084 | #endif |
| 6085 | } |
| 6086 | } |
| 6087 | |
| 6088 | /* |
| 6089 | * If requested, output a decimal point and all the digits that follow it. |
| 6090 | * We initially put out a multiple of DEC_DIGITS digits, then truncate if |
| 6091 | * needed. |
| 6092 | */ |
| 6093 | if (dscale > 0) |
| 6094 | { |
| 6095 | *cp++ = '.'; |
| 6096 | endcp = cp + dscale; |
| 6097 | for (i = 0; i < dscale; d++, i += DEC_DIGITS) |
| 6098 | { |
| 6099 | dig = (d >= 0 && d < var->ndigits) ? var->digits[d] : 0; |
| 6100 | #if DEC_DIGITS == 4 |
| 6101 | d1 = dig / 1000; |
| 6102 | dig -= d1 * 1000; |
| 6103 | *cp++ = d1 + '0'; |
| 6104 | d1 = dig / 100; |
| 6105 | dig -= d1 * 100; |
| 6106 | *cp++ = d1 + '0'; |
| 6107 | d1 = dig / 10; |
| 6108 | dig -= d1 * 10; |
| 6109 | *cp++ = d1 + '0'; |
| 6110 | *cp++ = dig + '0'; |
| 6111 | #elif DEC_DIGITS == 2 |
| 6112 | d1 = dig / 10; |
| 6113 | dig -= d1 * 10; |
| 6114 | *cp++ = d1 + '0'; |
| 6115 | *cp++ = dig + '0'; |
| 6116 | #elif DEC_DIGITS == 1 |
| 6117 | *cp++ = dig + '0'; |
| 6118 | #else |
| 6119 | #error unsupported NBASE |
| 6120 | #endif |
| 6121 | } |
| 6122 | cp = endcp; |
| 6123 | } |
| 6124 | |
| 6125 | /* |
| 6126 | * terminate the string and return it |
| 6127 | */ |
| 6128 | *cp = '\0'; |
| 6129 | return str; |
| 6130 | } |
| 6131 | |
| 6132 | /* |
| 6133 | * get_str_from_var_sci() - |
| 6134 | * |
| 6135 | * Convert a var to a normalised scientific notation text representation. |
| 6136 | * This function does the heavy lifting for numeric_out_sci(). |
| 6137 | * |
| 6138 | * This notation has the general form a * 10^b, where a is known as the |
| 6139 | * "significand" and b is known as the "exponent". |
| 6140 | * |
| 6141 | * Because we can't do superscript in ASCII (and because we want to copy |
| 6142 | * printf's behaviour) we display the exponent using E notation, with a |
| 6143 | * minimum of two exponent digits. |
| 6144 | * |
| 6145 | * For example, the value 1234 could be output as 1.2e+03. |
| 6146 | * |
| 6147 | * We assume that the exponent can fit into an int32. |
| 6148 | * |
| 6149 | * rscale is the number of decimal digits desired after the decimal point in |
| 6150 | * the output, negative values will be treated as meaning zero. |
| 6151 | * |
| 6152 | * Returns a palloc'd string. |
| 6153 | */ |
| 6154 | static char * |
| 6155 | get_str_from_var_sci(const NumericVar *var, int rscale) |
| 6156 | { |
| 6157 | int32 exponent; |
| 6158 | NumericVar denominator; |
| 6159 | NumericVar significand; |
| 6160 | int denom_scale; |
| 6161 | size_t len; |
| 6162 | char *str; |
| 6163 | char *sig_out; |
| 6164 | |
| 6165 | if (rscale < 0) |
| 6166 | rscale = 0; |
| 6167 | |
| 6168 | /* |
| 6169 | * Determine the exponent of this number in normalised form. |
| 6170 | * |
| 6171 | * This is the exponent required to represent the number with only one |
| 6172 | * significant digit before the decimal place. |
| 6173 | */ |
| 6174 | if (var->ndigits > 0) |
| 6175 | { |
| 6176 | exponent = (var->weight + 1) * DEC_DIGITS; |
| 6177 | |
| 6178 | /* |
| 6179 | * Compensate for leading decimal zeroes in the first numeric digit by |
| 6180 | * decrementing the exponent. |
| 6181 | */ |
| 6182 | exponent -= DEC_DIGITS - (int) log10(var->digits[0]); |
| 6183 | } |
| 6184 | else |
| 6185 | { |
| 6186 | /* |
| 6187 | * If var has no digits, then it must be zero. |
| 6188 | * |
| 6189 | * Zero doesn't technically have a meaningful exponent in normalised |
| 6190 | * notation, but we just display the exponent as zero for consistency |
| 6191 | * of output. |
| 6192 | */ |
| 6193 | exponent = 0; |
| 6194 | } |
| 6195 | |
| 6196 | /* |
| 6197 | * The denominator is set to 10 raised to the power of the exponent. |
| 6198 | * |
| 6199 | * We then divide var by the denominator to get the significand, rounding |
| 6200 | * to rscale decimal digits in the process. |
| 6201 | */ |
| 6202 | if (exponent < 0) |
| 6203 | denom_scale = -exponent; |
| 6204 | else |
| 6205 | denom_scale = 0; |
| 6206 | |
| 6207 | init_var(&denominator); |
| 6208 | init_var(&significand); |
| 6209 | |
| 6210 | power_var_int(&const_ten, exponent, &denominator, denom_scale); |
| 6211 | div_var(var, &denominator, &significand, rscale, true); |
| 6212 | sig_out = get_str_from_var(&significand); |
| 6213 | |
| 6214 | free_var(&denominator); |
| 6215 | free_var(&significand); |
| 6216 | |
| 6217 | /* |
| 6218 | * Allocate space for the result. |
| 6219 | * |
| 6220 | * In addition to the significand, we need room for the exponent |
| 6221 | * decoration ("e"), the sign of the exponent, up to 10 digits for the |
| 6222 | * exponent itself, and of course the null terminator. |
| 6223 | */ |
| 6224 | len = strlen(sig_out) + 13; |
| 6225 | str = palloc(len); |
| 6226 | snprintf(str, len, "%se%+03d" , sig_out, exponent); |
| 6227 | |
| 6228 | pfree(sig_out); |
| 6229 | |
| 6230 | return str; |
| 6231 | } |
| 6232 | |
| 6233 | |
| 6234 | /* |
| 6235 | * make_result_opt_error() - |
| 6236 | * |
| 6237 | * Create the packed db numeric format in palloc()'d memory from |
| 6238 | * a variable. If "*have_error" flag is provided, on error it's set to |
| 6239 | * true, NULL returned. This is helpful when caller need to handle errors |
| 6240 | * by itself. |
| 6241 | */ |
| 6242 | static Numeric |
| 6243 | make_result_opt_error(const NumericVar *var, bool *have_error) |
| 6244 | { |
| 6245 | Numeric result; |
| 6246 | NumericDigit *digits = var->digits; |
| 6247 | int weight = var->weight; |
| 6248 | int sign = var->sign; |
| 6249 | int n; |
| 6250 | Size len; |
| 6251 | |
| 6252 | if (sign == NUMERIC_NAN) |
| 6253 | { |
| 6254 | result = (Numeric) palloc(NUMERIC_HDRSZ_SHORT); |
| 6255 | |
| 6256 | SET_VARSIZE(result, NUMERIC_HDRSZ_SHORT); |
| 6257 | result->choice.n_header = NUMERIC_NAN; |
| 6258 | /* the header word is all we need */ |
| 6259 | |
| 6260 | dump_numeric("make_result()" , result); |
| 6261 | return result; |
| 6262 | } |
| 6263 | |
| 6264 | n = var->ndigits; |
| 6265 | |
| 6266 | /* truncate leading zeroes */ |
| 6267 | while (n > 0 && *digits == 0) |
| 6268 | { |
| 6269 | digits++; |
| 6270 | weight--; |
| 6271 | n--; |
| 6272 | } |
| 6273 | /* truncate trailing zeroes */ |
| 6274 | while (n > 0 && digits[n - 1] == 0) |
| 6275 | n--; |
| 6276 | |
| 6277 | /* If zero result, force to weight=0 and positive sign */ |
| 6278 | if (n == 0) |
| 6279 | { |
| 6280 | weight = 0; |
| 6281 | sign = NUMERIC_POS; |
| 6282 | } |
| 6283 | |
| 6284 | /* Build the result */ |
| 6285 | if (NUMERIC_CAN_BE_SHORT(var->dscale, weight)) |
| 6286 | { |
| 6287 | len = NUMERIC_HDRSZ_SHORT + n * sizeof(NumericDigit); |
| 6288 | result = (Numeric) palloc(len); |
| 6289 | SET_VARSIZE(result, len); |
| 6290 | result->choice.n_short.n_header = |
| 6291 | (sign == NUMERIC_NEG ? (NUMERIC_SHORT | NUMERIC_SHORT_SIGN_MASK) |
| 6292 | : NUMERIC_SHORT) |
| 6293 | | (var->dscale << NUMERIC_SHORT_DSCALE_SHIFT) |
| 6294 | | (weight < 0 ? NUMERIC_SHORT_WEIGHT_SIGN_MASK : 0) |
| 6295 | | (weight & NUMERIC_SHORT_WEIGHT_MASK); |
| 6296 | } |
| 6297 | else |
| 6298 | { |
| 6299 | len = NUMERIC_HDRSZ + n * sizeof(NumericDigit); |
| 6300 | result = (Numeric) palloc(len); |
| 6301 | SET_VARSIZE(result, len); |
| 6302 | result->choice.n_long.n_sign_dscale = |
| 6303 | sign | (var->dscale & NUMERIC_DSCALE_MASK); |
| 6304 | result->choice.n_long.n_weight = weight; |
| 6305 | } |
| 6306 | |
| 6307 | Assert(NUMERIC_NDIGITS(result) == n); |
| 6308 | if (n > 0) |
| 6309 | memcpy(NUMERIC_DIGITS(result), digits, n * sizeof(NumericDigit)); |
| 6310 | |
| 6311 | /* Check for overflow of int16 fields */ |
| 6312 | if (NUMERIC_WEIGHT(result) != weight || |
| 6313 | NUMERIC_DSCALE(result) != var->dscale) |
| 6314 | { |
| 6315 | if (have_error) |
| 6316 | { |
| 6317 | *have_error = true; |
| 6318 | return NULL; |
| 6319 | } |
| 6320 | else |
| 6321 | { |
| 6322 | ereport(ERROR, |
| 6323 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 6324 | errmsg("value overflows numeric format" ))); |
| 6325 | } |
| 6326 | } |
| 6327 | |
| 6328 | dump_numeric("make_result()" , result); |
| 6329 | return result; |
| 6330 | } |
| 6331 | |
| 6332 | |
| 6333 | /* |
| 6334 | * make_result() - |
| 6335 | * |
| 6336 | * An interface to make_result_opt_error() without "have_error" argument. |
| 6337 | */ |
| 6338 | static Numeric |
| 6339 | make_result(const NumericVar *var) |
| 6340 | { |
| 6341 | return make_result_opt_error(var, NULL); |
| 6342 | } |
| 6343 | |
| 6344 | |
| 6345 | /* |
| 6346 | * apply_typmod() - |
| 6347 | * |
| 6348 | * Do bounds checking and rounding according to the attributes |
| 6349 | * typmod field. |
| 6350 | */ |
| 6351 | static void |
| 6352 | apply_typmod(NumericVar *var, int32 typmod) |
| 6353 | { |
| 6354 | int precision; |
| 6355 | int scale; |
| 6356 | int maxdigits; |
| 6357 | int ddigits; |
| 6358 | int i; |
| 6359 | |
| 6360 | /* Do nothing if we have a default typmod (-1) */ |
| 6361 | if (typmod < (int32) (VARHDRSZ)) |
| 6362 | return; |
| 6363 | |
| 6364 | typmod -= VARHDRSZ; |
| 6365 | precision = (typmod >> 16) & 0xffff; |
| 6366 | scale = typmod & 0xffff; |
| 6367 | maxdigits = precision - scale; |
| 6368 | |
| 6369 | /* Round to target scale (and set var->dscale) */ |
| 6370 | round_var(var, scale); |
| 6371 | |
| 6372 | /* |
| 6373 | * Check for overflow - note we can't do this before rounding, because |
| 6374 | * rounding could raise the weight. Also note that the var's weight could |
| 6375 | * be inflated by leading zeroes, which will be stripped before storage |
| 6376 | * but perhaps might not have been yet. In any case, we must recognize a |
| 6377 | * true zero, whose weight doesn't mean anything. |
| 6378 | */ |
| 6379 | ddigits = (var->weight + 1) * DEC_DIGITS; |
| 6380 | if (ddigits > maxdigits) |
| 6381 | { |
| 6382 | /* Determine true weight; and check for all-zero result */ |
| 6383 | for (i = 0; i < var->ndigits; i++) |
| 6384 | { |
| 6385 | NumericDigit dig = var->digits[i]; |
| 6386 | |
| 6387 | if (dig) |
| 6388 | { |
| 6389 | /* Adjust for any high-order decimal zero digits */ |
| 6390 | #if DEC_DIGITS == 4 |
| 6391 | if (dig < 10) |
| 6392 | ddigits -= 3; |
| 6393 | else if (dig < 100) |
| 6394 | ddigits -= 2; |
| 6395 | else if (dig < 1000) |
| 6396 | ddigits -= 1; |
| 6397 | #elif DEC_DIGITS == 2 |
| 6398 | if (dig < 10) |
| 6399 | ddigits -= 1; |
| 6400 | #elif DEC_DIGITS == 1 |
| 6401 | /* no adjustment */ |
| 6402 | #else |
| 6403 | #error unsupported NBASE |
| 6404 | #endif |
| 6405 | if (ddigits > maxdigits) |
| 6406 | ereport(ERROR, |
| 6407 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 6408 | errmsg("numeric field overflow" ), |
| 6409 | errdetail("A field with precision %d, scale %d must round to an absolute value less than %s%d." , |
| 6410 | precision, scale, |
| 6411 | /* Display 10^0 as 1 */ |
| 6412 | maxdigits ? "10^" : "" , |
| 6413 | maxdigits ? maxdigits : 1 |
| 6414 | ))); |
| 6415 | break; |
| 6416 | } |
| 6417 | ddigits -= DEC_DIGITS; |
| 6418 | } |
| 6419 | } |
| 6420 | } |
| 6421 | |
| 6422 | /* |
| 6423 | * Convert numeric to int8, rounding if needed. |
| 6424 | * |
| 6425 | * If overflow, return false (no error is raised). Return true if okay. |
| 6426 | */ |
| 6427 | static bool |
| 6428 | numericvar_to_int64(const NumericVar *var, int64 *result) |
| 6429 | { |
| 6430 | NumericDigit *digits; |
| 6431 | int ndigits; |
| 6432 | int weight; |
| 6433 | int i; |
| 6434 | int64 val; |
| 6435 | bool neg; |
| 6436 | NumericVar rounded; |
| 6437 | |
| 6438 | /* Round to nearest integer */ |
| 6439 | init_var(&rounded); |
| 6440 | set_var_from_var(var, &rounded); |
| 6441 | round_var(&rounded, 0); |
| 6442 | |
| 6443 | /* Check for zero input */ |
| 6444 | strip_var(&rounded); |
| 6445 | ndigits = rounded.ndigits; |
| 6446 | if (ndigits == 0) |
| 6447 | { |
| 6448 | *result = 0; |
| 6449 | free_var(&rounded); |
| 6450 | return true; |
| 6451 | } |
| 6452 | |
| 6453 | /* |
| 6454 | * For input like 10000000000, we must treat stripped digits as real. So |
| 6455 | * the loop assumes there are weight+1 digits before the decimal point. |
| 6456 | */ |
| 6457 | weight = rounded.weight; |
| 6458 | Assert(weight >= 0 && ndigits <= weight + 1); |
| 6459 | |
| 6460 | /* |
| 6461 | * Construct the result. To avoid issues with converting a value |
| 6462 | * corresponding to INT64_MIN (which can't be represented as a positive 64 |
| 6463 | * bit two's complement integer), accumulate value as a negative number. |
| 6464 | */ |
| 6465 | digits = rounded.digits; |
| 6466 | neg = (rounded.sign == NUMERIC_NEG); |
| 6467 | val = -digits[0]; |
| 6468 | for (i = 1; i <= weight; i++) |
| 6469 | { |
| 6470 | if (unlikely(pg_mul_s64_overflow(val, NBASE, &val))) |
| 6471 | { |
| 6472 | free_var(&rounded); |
| 6473 | return false; |
| 6474 | } |
| 6475 | |
| 6476 | if (i < ndigits) |
| 6477 | { |
| 6478 | if (unlikely(pg_sub_s64_overflow(val, digits[i], &val))) |
| 6479 | { |
| 6480 | free_var(&rounded); |
| 6481 | return false; |
| 6482 | } |
| 6483 | } |
| 6484 | } |
| 6485 | |
| 6486 | free_var(&rounded); |
| 6487 | |
| 6488 | if (!neg) |
| 6489 | { |
| 6490 | if (unlikely(val == PG_INT64_MIN)) |
| 6491 | return false; |
| 6492 | val = -val; |
| 6493 | } |
| 6494 | *result = val; |
| 6495 | |
| 6496 | return true; |
| 6497 | } |
| 6498 | |
| 6499 | /* |
| 6500 | * Convert int8 value to numeric. |
| 6501 | */ |
| 6502 | static void |
| 6503 | int64_to_numericvar(int64 val, NumericVar *var) |
| 6504 | { |
| 6505 | uint64 uval, |
| 6506 | newuval; |
| 6507 | NumericDigit *ptr; |
| 6508 | int ndigits; |
| 6509 | |
| 6510 | /* int64 can require at most 19 decimal digits; add one for safety */ |
| 6511 | alloc_var(var, 20 / DEC_DIGITS); |
| 6512 | if (val < 0) |
| 6513 | { |
| 6514 | var->sign = NUMERIC_NEG; |
| 6515 | uval = -val; |
| 6516 | } |
| 6517 | else |
| 6518 | { |
| 6519 | var->sign = NUMERIC_POS; |
| 6520 | uval = val; |
| 6521 | } |
| 6522 | var->dscale = 0; |
| 6523 | if (val == 0) |
| 6524 | { |
| 6525 | var->ndigits = 0; |
| 6526 | var->weight = 0; |
| 6527 | return; |
| 6528 | } |
| 6529 | ptr = var->digits + var->ndigits; |
| 6530 | ndigits = 0; |
| 6531 | do |
| 6532 | { |
| 6533 | ptr--; |
| 6534 | ndigits++; |
| 6535 | newuval = uval / NBASE; |
| 6536 | *ptr = uval - newuval * NBASE; |
| 6537 | uval = newuval; |
| 6538 | } while (uval); |
| 6539 | var->digits = ptr; |
| 6540 | var->ndigits = ndigits; |
| 6541 | var->weight = ndigits - 1; |
| 6542 | } |
| 6543 | |
| 6544 | #ifdef HAVE_INT128 |
| 6545 | /* |
| 6546 | * Convert numeric to int128, rounding if needed. |
| 6547 | * |
| 6548 | * If overflow, return false (no error is raised). Return true if okay. |
| 6549 | */ |
| 6550 | static bool |
| 6551 | numericvar_to_int128(const NumericVar *var, int128 *result) |
| 6552 | { |
| 6553 | NumericDigit *digits; |
| 6554 | int ndigits; |
| 6555 | int weight; |
| 6556 | int i; |
| 6557 | int128 val, |
| 6558 | oldval; |
| 6559 | bool neg; |
| 6560 | NumericVar rounded; |
| 6561 | |
| 6562 | /* Round to nearest integer */ |
| 6563 | init_var(&rounded); |
| 6564 | set_var_from_var(var, &rounded); |
| 6565 | round_var(&rounded, 0); |
| 6566 | |
| 6567 | /* Check for zero input */ |
| 6568 | strip_var(&rounded); |
| 6569 | ndigits = rounded.ndigits; |
| 6570 | if (ndigits == 0) |
| 6571 | { |
| 6572 | *result = 0; |
| 6573 | free_var(&rounded); |
| 6574 | return true; |
| 6575 | } |
| 6576 | |
| 6577 | /* |
| 6578 | * For input like 10000000000, we must treat stripped digits as real. So |
| 6579 | * the loop assumes there are weight+1 digits before the decimal point. |
| 6580 | */ |
| 6581 | weight = rounded.weight; |
| 6582 | Assert(weight >= 0 && ndigits <= weight + 1); |
| 6583 | |
| 6584 | /* Construct the result */ |
| 6585 | digits = rounded.digits; |
| 6586 | neg = (rounded.sign == NUMERIC_NEG); |
| 6587 | val = digits[0]; |
| 6588 | for (i = 1; i <= weight; i++) |
| 6589 | { |
| 6590 | oldval = val; |
| 6591 | val *= NBASE; |
| 6592 | if (i < ndigits) |
| 6593 | val += digits[i]; |
| 6594 | |
| 6595 | /* |
| 6596 | * The overflow check is a bit tricky because we want to accept |
| 6597 | * INT128_MIN, which will overflow the positive accumulator. We can |
| 6598 | * detect this case easily though because INT128_MIN is the only |
| 6599 | * nonzero value for which -val == val (on a two's complement machine, |
| 6600 | * anyway). |
| 6601 | */ |
| 6602 | if ((val / NBASE) != oldval) /* possible overflow? */ |
| 6603 | { |
| 6604 | if (!neg || (-val) != val || val == 0 || oldval < 0) |
| 6605 | { |
| 6606 | free_var(&rounded); |
| 6607 | return false; |
| 6608 | } |
| 6609 | } |
| 6610 | } |
| 6611 | |
| 6612 | free_var(&rounded); |
| 6613 | |
| 6614 | *result = neg ? -val : val; |
| 6615 | return true; |
| 6616 | } |
| 6617 | |
| 6618 | /* |
| 6619 | * Convert 128 bit integer to numeric. |
| 6620 | */ |
| 6621 | static void |
| 6622 | int128_to_numericvar(int128 val, NumericVar *var) |
| 6623 | { |
| 6624 | uint128 uval, |
| 6625 | newuval; |
| 6626 | NumericDigit *ptr; |
| 6627 | int ndigits; |
| 6628 | |
| 6629 | /* int128 can require at most 39 decimal digits; add one for safety */ |
| 6630 | alloc_var(var, 40 / DEC_DIGITS); |
| 6631 | if (val < 0) |
| 6632 | { |
| 6633 | var->sign = NUMERIC_NEG; |
| 6634 | uval = -val; |
| 6635 | } |
| 6636 | else |
| 6637 | { |
| 6638 | var->sign = NUMERIC_POS; |
| 6639 | uval = val; |
| 6640 | } |
| 6641 | var->dscale = 0; |
| 6642 | if (val == 0) |
| 6643 | { |
| 6644 | var->ndigits = 0; |
| 6645 | var->weight = 0; |
| 6646 | return; |
| 6647 | } |
| 6648 | ptr = var->digits + var->ndigits; |
| 6649 | ndigits = 0; |
| 6650 | do |
| 6651 | { |
| 6652 | ptr--; |
| 6653 | ndigits++; |
| 6654 | newuval = uval / NBASE; |
| 6655 | *ptr = uval - newuval * NBASE; |
| 6656 | uval = newuval; |
| 6657 | } while (uval); |
| 6658 | var->digits = ptr; |
| 6659 | var->ndigits = ndigits; |
| 6660 | var->weight = ndigits - 1; |
| 6661 | } |
| 6662 | #endif |
| 6663 | |
| 6664 | /* |
| 6665 | * Convert numeric to float8; if out of range, return +/- HUGE_VAL |
| 6666 | */ |
| 6667 | static double |
| 6668 | numeric_to_double_no_overflow(Numeric num) |
| 6669 | { |
| 6670 | char *tmp; |
| 6671 | double val; |
| 6672 | char *endptr; |
| 6673 | |
| 6674 | tmp = DatumGetCString(DirectFunctionCall1(numeric_out, |
| 6675 | NumericGetDatum(num))); |
| 6676 | |
| 6677 | /* unlike float8in, we ignore ERANGE from strtod */ |
| 6678 | val = strtod(tmp, &endptr); |
| 6679 | if (*endptr != '\0') |
| 6680 | { |
| 6681 | /* shouldn't happen ... */ |
| 6682 | ereport(ERROR, |
| 6683 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 6684 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 6685 | "double precision" , tmp))); |
| 6686 | } |
| 6687 | |
| 6688 | pfree(tmp); |
| 6689 | |
| 6690 | return val; |
| 6691 | } |
| 6692 | |
| 6693 | /* As above, but work from a NumericVar */ |
| 6694 | static double |
| 6695 | numericvar_to_double_no_overflow(const NumericVar *var) |
| 6696 | { |
| 6697 | char *tmp; |
| 6698 | double val; |
| 6699 | char *endptr; |
| 6700 | |
| 6701 | tmp = get_str_from_var(var); |
| 6702 | |
| 6703 | /* unlike float8in, we ignore ERANGE from strtod */ |
| 6704 | val = strtod(tmp, &endptr); |
| 6705 | if (*endptr != '\0') |
| 6706 | { |
| 6707 | /* shouldn't happen ... */ |
| 6708 | ereport(ERROR, |
| 6709 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 6710 | errmsg("invalid input syntax for type %s: \"%s\"" , |
| 6711 | "double precision" , tmp))); |
| 6712 | } |
| 6713 | |
| 6714 | pfree(tmp); |
| 6715 | |
| 6716 | return val; |
| 6717 | } |
| 6718 | |
| 6719 | |
| 6720 | /* |
| 6721 | * cmp_var() - |
| 6722 | * |
| 6723 | * Compare two values on variable level. We assume zeroes have been |
| 6724 | * truncated to no digits. |
| 6725 | */ |
| 6726 | static int |
| 6727 | cmp_var(const NumericVar *var1, const NumericVar *var2) |
| 6728 | { |
| 6729 | return cmp_var_common(var1->digits, var1->ndigits, |
| 6730 | var1->weight, var1->sign, |
| 6731 | var2->digits, var2->ndigits, |
| 6732 | var2->weight, var2->sign); |
| 6733 | } |
| 6734 | |
| 6735 | /* |
| 6736 | * cmp_var_common() - |
| 6737 | * |
| 6738 | * Main routine of cmp_var(). This function can be used by both |
| 6739 | * NumericVar and Numeric. |
| 6740 | */ |
| 6741 | static int |
| 6742 | cmp_var_common(const NumericDigit *var1digits, int var1ndigits, |
| 6743 | int var1weight, int var1sign, |
| 6744 | const NumericDigit *var2digits, int var2ndigits, |
| 6745 | int var2weight, int var2sign) |
| 6746 | { |
| 6747 | if (var1ndigits == 0) |
| 6748 | { |
| 6749 | if (var2ndigits == 0) |
| 6750 | return 0; |
| 6751 | if (var2sign == NUMERIC_NEG) |
| 6752 | return 1; |
| 6753 | return -1; |
| 6754 | } |
| 6755 | if (var2ndigits == 0) |
| 6756 | { |
| 6757 | if (var1sign == NUMERIC_POS) |
| 6758 | return 1; |
| 6759 | return -1; |
| 6760 | } |
| 6761 | |
| 6762 | if (var1sign == NUMERIC_POS) |
| 6763 | { |
| 6764 | if (var2sign == NUMERIC_NEG) |
| 6765 | return 1; |
| 6766 | return cmp_abs_common(var1digits, var1ndigits, var1weight, |
| 6767 | var2digits, var2ndigits, var2weight); |
| 6768 | } |
| 6769 | |
| 6770 | if (var2sign == NUMERIC_POS) |
| 6771 | return -1; |
| 6772 | |
| 6773 | return cmp_abs_common(var2digits, var2ndigits, var2weight, |
| 6774 | var1digits, var1ndigits, var1weight); |
| 6775 | } |
| 6776 | |
| 6777 | |
| 6778 | /* |
| 6779 | * add_var() - |
| 6780 | * |
| 6781 | * Full version of add functionality on variable level (handling signs). |
| 6782 | * result might point to one of the operands too without danger. |
| 6783 | */ |
| 6784 | static void |
| 6785 | add_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) |
| 6786 | { |
| 6787 | /* |
| 6788 | * Decide on the signs of the two variables what to do |
| 6789 | */ |
| 6790 | if (var1->sign == NUMERIC_POS) |
| 6791 | { |
| 6792 | if (var2->sign == NUMERIC_POS) |
| 6793 | { |
| 6794 | /* |
| 6795 | * Both are positive result = +(ABS(var1) + ABS(var2)) |
| 6796 | */ |
| 6797 | add_abs(var1, var2, result); |
| 6798 | result->sign = NUMERIC_POS; |
| 6799 | } |
| 6800 | else |
| 6801 | { |
| 6802 | /* |
| 6803 | * var1 is positive, var2 is negative Must compare absolute values |
| 6804 | */ |
| 6805 | switch (cmp_abs(var1, var2)) |
| 6806 | { |
| 6807 | case 0: |
| 6808 | /* ---------- |
| 6809 | * ABS(var1) == ABS(var2) |
| 6810 | * result = ZERO |
| 6811 | * ---------- |
| 6812 | */ |
| 6813 | zero_var(result); |
| 6814 | result->dscale = Max(var1->dscale, var2->dscale); |
| 6815 | break; |
| 6816 | |
| 6817 | case 1: |
| 6818 | /* ---------- |
| 6819 | * ABS(var1) > ABS(var2) |
| 6820 | * result = +(ABS(var1) - ABS(var2)) |
| 6821 | * ---------- |
| 6822 | */ |
| 6823 | sub_abs(var1, var2, result); |
| 6824 | result->sign = NUMERIC_POS; |
| 6825 | break; |
| 6826 | |
| 6827 | case -1: |
| 6828 | /* ---------- |
| 6829 | * ABS(var1) < ABS(var2) |
| 6830 | * result = -(ABS(var2) - ABS(var1)) |
| 6831 | * ---------- |
| 6832 | */ |
| 6833 | sub_abs(var2, var1, result); |
| 6834 | result->sign = NUMERIC_NEG; |
| 6835 | break; |
| 6836 | } |
| 6837 | } |
| 6838 | } |
| 6839 | else |
| 6840 | { |
| 6841 | if (var2->sign == NUMERIC_POS) |
| 6842 | { |
| 6843 | /* ---------- |
| 6844 | * var1 is negative, var2 is positive |
| 6845 | * Must compare absolute values |
| 6846 | * ---------- |
| 6847 | */ |
| 6848 | switch (cmp_abs(var1, var2)) |
| 6849 | { |
| 6850 | case 0: |
| 6851 | /* ---------- |
| 6852 | * ABS(var1) == ABS(var2) |
| 6853 | * result = ZERO |
| 6854 | * ---------- |
| 6855 | */ |
| 6856 | zero_var(result); |
| 6857 | result->dscale = Max(var1->dscale, var2->dscale); |
| 6858 | break; |
| 6859 | |
| 6860 | case 1: |
| 6861 | /* ---------- |
| 6862 | * ABS(var1) > ABS(var2) |
| 6863 | * result = -(ABS(var1) - ABS(var2)) |
| 6864 | * ---------- |
| 6865 | */ |
| 6866 | sub_abs(var1, var2, result); |
| 6867 | result->sign = NUMERIC_NEG; |
| 6868 | break; |
| 6869 | |
| 6870 | case -1: |
| 6871 | /* ---------- |
| 6872 | * ABS(var1) < ABS(var2) |
| 6873 | * result = +(ABS(var2) - ABS(var1)) |
| 6874 | * ---------- |
| 6875 | */ |
| 6876 | sub_abs(var2, var1, result); |
| 6877 | result->sign = NUMERIC_POS; |
| 6878 | break; |
| 6879 | } |
| 6880 | } |
| 6881 | else |
| 6882 | { |
| 6883 | /* ---------- |
| 6884 | * Both are negative |
| 6885 | * result = -(ABS(var1) + ABS(var2)) |
| 6886 | * ---------- |
| 6887 | */ |
| 6888 | add_abs(var1, var2, result); |
| 6889 | result->sign = NUMERIC_NEG; |
| 6890 | } |
| 6891 | } |
| 6892 | } |
| 6893 | |
| 6894 | |
| 6895 | /* |
| 6896 | * sub_var() - |
| 6897 | * |
| 6898 | * Full version of sub functionality on variable level (handling signs). |
| 6899 | * result might point to one of the operands too without danger. |
| 6900 | */ |
| 6901 | static void |
| 6902 | sub_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) |
| 6903 | { |
| 6904 | /* |
| 6905 | * Decide on the signs of the two variables what to do |
| 6906 | */ |
| 6907 | if (var1->sign == NUMERIC_POS) |
| 6908 | { |
| 6909 | if (var2->sign == NUMERIC_NEG) |
| 6910 | { |
| 6911 | /* ---------- |
| 6912 | * var1 is positive, var2 is negative |
| 6913 | * result = +(ABS(var1) + ABS(var2)) |
| 6914 | * ---------- |
| 6915 | */ |
| 6916 | add_abs(var1, var2, result); |
| 6917 | result->sign = NUMERIC_POS; |
| 6918 | } |
| 6919 | else |
| 6920 | { |
| 6921 | /* ---------- |
| 6922 | * Both are positive |
| 6923 | * Must compare absolute values |
| 6924 | * ---------- |
| 6925 | */ |
| 6926 | switch (cmp_abs(var1, var2)) |
| 6927 | { |
| 6928 | case 0: |
| 6929 | /* ---------- |
| 6930 | * ABS(var1) == ABS(var2) |
| 6931 | * result = ZERO |
| 6932 | * ---------- |
| 6933 | */ |
| 6934 | zero_var(result); |
| 6935 | result->dscale = Max(var1->dscale, var2->dscale); |
| 6936 | break; |
| 6937 | |
| 6938 | case 1: |
| 6939 | /* ---------- |
| 6940 | * ABS(var1) > ABS(var2) |
| 6941 | * result = +(ABS(var1) - ABS(var2)) |
| 6942 | * ---------- |
| 6943 | */ |
| 6944 | sub_abs(var1, var2, result); |
| 6945 | result->sign = NUMERIC_POS; |
| 6946 | break; |
| 6947 | |
| 6948 | case -1: |
| 6949 | /* ---------- |
| 6950 | * ABS(var1) < ABS(var2) |
| 6951 | * result = -(ABS(var2) - ABS(var1)) |
| 6952 | * ---------- |
| 6953 | */ |
| 6954 | sub_abs(var2, var1, result); |
| 6955 | result->sign = NUMERIC_NEG; |
| 6956 | break; |
| 6957 | } |
| 6958 | } |
| 6959 | } |
| 6960 | else |
| 6961 | { |
| 6962 | if (var2->sign == NUMERIC_NEG) |
| 6963 | { |
| 6964 | /* ---------- |
| 6965 | * Both are negative |
| 6966 | * Must compare absolute values |
| 6967 | * ---------- |
| 6968 | */ |
| 6969 | switch (cmp_abs(var1, var2)) |
| 6970 | { |
| 6971 | case 0: |
| 6972 | /* ---------- |
| 6973 | * ABS(var1) == ABS(var2) |
| 6974 | * result = ZERO |
| 6975 | * ---------- |
| 6976 | */ |
| 6977 | zero_var(result); |
| 6978 | result->dscale = Max(var1->dscale, var2->dscale); |
| 6979 | break; |
| 6980 | |
| 6981 | case 1: |
| 6982 | /* ---------- |
| 6983 | * ABS(var1) > ABS(var2) |
| 6984 | * result = -(ABS(var1) - ABS(var2)) |
| 6985 | * ---------- |
| 6986 | */ |
| 6987 | sub_abs(var1, var2, result); |
| 6988 | result->sign = NUMERIC_NEG; |
| 6989 | break; |
| 6990 | |
| 6991 | case -1: |
| 6992 | /* ---------- |
| 6993 | * ABS(var1) < ABS(var2) |
| 6994 | * result = +(ABS(var2) - ABS(var1)) |
| 6995 | * ---------- |
| 6996 | */ |
| 6997 | sub_abs(var2, var1, result); |
| 6998 | result->sign = NUMERIC_POS; |
| 6999 | break; |
| 7000 | } |
| 7001 | } |
| 7002 | else |
| 7003 | { |
| 7004 | /* ---------- |
| 7005 | * var1 is negative, var2 is positive |
| 7006 | * result = -(ABS(var1) + ABS(var2)) |
| 7007 | * ---------- |
| 7008 | */ |
| 7009 | add_abs(var1, var2, result); |
| 7010 | result->sign = NUMERIC_NEG; |
| 7011 | } |
| 7012 | } |
| 7013 | } |
| 7014 | |
| 7015 | |
| 7016 | /* |
| 7017 | * mul_var() - |
| 7018 | * |
| 7019 | * Multiplication on variable level. Product of var1 * var2 is stored |
| 7020 | * in result. Result is rounded to no more than rscale fractional digits. |
| 7021 | */ |
| 7022 | static void |
| 7023 | mul_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result, |
| 7024 | int rscale) |
| 7025 | { |
| 7026 | int res_ndigits; |
| 7027 | int res_sign; |
| 7028 | int res_weight; |
| 7029 | int maxdigits; |
| 7030 | int *dig; |
| 7031 | int carry; |
| 7032 | int maxdig; |
| 7033 | int newdig; |
| 7034 | int var1ndigits; |
| 7035 | int var2ndigits; |
| 7036 | NumericDigit *var1digits; |
| 7037 | NumericDigit *var2digits; |
| 7038 | NumericDigit *res_digits; |
| 7039 | int i, |
| 7040 | i1, |
| 7041 | i2; |
| 7042 | |
| 7043 | /* |
| 7044 | * Arrange for var1 to be the shorter of the two numbers. This improves |
| 7045 | * performance because the inner multiplication loop is much simpler than |
| 7046 | * the outer loop, so it's better to have a smaller number of iterations |
| 7047 | * of the outer loop. This also reduces the number of times that the |
| 7048 | * accumulator array needs to be normalized. |
| 7049 | */ |
| 7050 | if (var1->ndigits > var2->ndigits) |
| 7051 | { |
| 7052 | const NumericVar *tmp = var1; |
| 7053 | |
| 7054 | var1 = var2; |
| 7055 | var2 = tmp; |
| 7056 | } |
| 7057 | |
| 7058 | /* copy these values into local vars for speed in inner loop */ |
| 7059 | var1ndigits = var1->ndigits; |
| 7060 | var2ndigits = var2->ndigits; |
| 7061 | var1digits = var1->digits; |
| 7062 | var2digits = var2->digits; |
| 7063 | |
| 7064 | if (var1ndigits == 0 || var2ndigits == 0) |
| 7065 | { |
| 7066 | /* one or both inputs is zero; so is result */ |
| 7067 | zero_var(result); |
| 7068 | result->dscale = rscale; |
| 7069 | return; |
| 7070 | } |
| 7071 | |
| 7072 | /* Determine result sign and (maximum possible) weight */ |
| 7073 | if (var1->sign == var2->sign) |
| 7074 | res_sign = NUMERIC_POS; |
| 7075 | else |
| 7076 | res_sign = NUMERIC_NEG; |
| 7077 | res_weight = var1->weight + var2->weight + 2; |
| 7078 | |
| 7079 | /* |
| 7080 | * Determine the number of result digits to compute. If the exact result |
| 7081 | * would have more than rscale fractional digits, truncate the computation |
| 7082 | * with MUL_GUARD_DIGITS guard digits, i.e., ignore input digits that |
| 7083 | * would only contribute to the right of that. (This will give the exact |
| 7084 | * rounded-to-rscale answer unless carries out of the ignored positions |
| 7085 | * would have propagated through more than MUL_GUARD_DIGITS digits.) |
| 7086 | * |
| 7087 | * Note: an exact computation could not produce more than var1ndigits + |
| 7088 | * var2ndigits digits, but we allocate one extra output digit in case |
| 7089 | * rscale-driven rounding produces a carry out of the highest exact digit. |
| 7090 | */ |
| 7091 | res_ndigits = var1ndigits + var2ndigits + 1; |
| 7092 | maxdigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS + |
| 7093 | MUL_GUARD_DIGITS; |
| 7094 | res_ndigits = Min(res_ndigits, maxdigits); |
| 7095 | |
| 7096 | if (res_ndigits < 3) |
| 7097 | { |
| 7098 | /* All input digits will be ignored; so result is zero */ |
| 7099 | zero_var(result); |
| 7100 | result->dscale = rscale; |
| 7101 | return; |
| 7102 | } |
| 7103 | |
| 7104 | /* |
| 7105 | * We do the arithmetic in an array "dig[]" of signed int's. Since |
| 7106 | * INT_MAX is noticeably larger than NBASE*NBASE, this gives us headroom |
| 7107 | * to avoid normalizing carries immediately. |
| 7108 | * |
| 7109 | * maxdig tracks the maximum possible value of any dig[] entry; when this |
| 7110 | * threatens to exceed INT_MAX, we take the time to propagate carries. |
| 7111 | * Furthermore, we need to ensure that overflow doesn't occur during the |
| 7112 | * carry propagation passes either. The carry values could be as much as |
| 7113 | * INT_MAX/NBASE, so really we must normalize when digits threaten to |
| 7114 | * exceed INT_MAX - INT_MAX/NBASE. |
| 7115 | * |
| 7116 | * To avoid overflow in maxdig itself, it actually represents the max |
| 7117 | * possible value divided by NBASE-1, ie, at the top of the loop it is |
| 7118 | * known that no dig[] entry exceeds maxdig * (NBASE-1). |
| 7119 | */ |
| 7120 | dig = (int *) palloc0(res_ndigits * sizeof(int)); |
| 7121 | maxdig = 0; |
| 7122 | |
| 7123 | /* |
| 7124 | * The least significant digits of var1 should be ignored if they don't |
| 7125 | * contribute directly to the first res_ndigits digits of the result that |
| 7126 | * we are computing. |
| 7127 | * |
| 7128 | * Digit i1 of var1 and digit i2 of var2 are multiplied and added to digit |
| 7129 | * i1+i2+2 of the accumulator array, so we need only consider digits of |
| 7130 | * var1 for which i1 <= res_ndigits - 3. |
| 7131 | */ |
| 7132 | for (i1 = Min(var1ndigits - 1, res_ndigits - 3); i1 >= 0; i1--) |
| 7133 | { |
| 7134 | int var1digit = var1digits[i1]; |
| 7135 | |
| 7136 | if (var1digit == 0) |
| 7137 | continue; |
| 7138 | |
| 7139 | /* Time to normalize? */ |
| 7140 | maxdig += var1digit; |
| 7141 | if (maxdig > (INT_MAX - INT_MAX / NBASE) / (NBASE - 1)) |
| 7142 | { |
| 7143 | /* Yes, do it */ |
| 7144 | carry = 0; |
| 7145 | for (i = res_ndigits - 1; i >= 0; i--) |
| 7146 | { |
| 7147 | newdig = dig[i] + carry; |
| 7148 | if (newdig >= NBASE) |
| 7149 | { |
| 7150 | carry = newdig / NBASE; |
| 7151 | newdig -= carry * NBASE; |
| 7152 | } |
| 7153 | else |
| 7154 | carry = 0; |
| 7155 | dig[i] = newdig; |
| 7156 | } |
| 7157 | Assert(carry == 0); |
| 7158 | /* Reset maxdig to indicate new worst-case */ |
| 7159 | maxdig = 1 + var1digit; |
| 7160 | } |
| 7161 | |
| 7162 | /* |
| 7163 | * Add the appropriate multiple of var2 into the accumulator. |
| 7164 | * |
| 7165 | * As above, digits of var2 can be ignored if they don't contribute, |
| 7166 | * so we only include digits for which i1+i2+2 <= res_ndigits - 1. |
| 7167 | */ |
| 7168 | for (i2 = Min(var2ndigits - 1, res_ndigits - i1 - 3), i = i1 + i2 + 2; |
| 7169 | i2 >= 0; i2--) |
| 7170 | dig[i--] += var1digit * var2digits[i2]; |
| 7171 | } |
| 7172 | |
| 7173 | /* |
| 7174 | * Now we do a final carry propagation pass to normalize the result, which |
| 7175 | * we combine with storing the result digits into the output. Note that |
| 7176 | * this is still done at full precision w/guard digits. |
| 7177 | */ |
| 7178 | alloc_var(result, res_ndigits); |
| 7179 | res_digits = result->digits; |
| 7180 | carry = 0; |
| 7181 | for (i = res_ndigits - 1; i >= 0; i--) |
| 7182 | { |
| 7183 | newdig = dig[i] + carry; |
| 7184 | if (newdig >= NBASE) |
| 7185 | { |
| 7186 | carry = newdig / NBASE; |
| 7187 | newdig -= carry * NBASE; |
| 7188 | } |
| 7189 | else |
| 7190 | carry = 0; |
| 7191 | res_digits[i] = newdig; |
| 7192 | } |
| 7193 | Assert(carry == 0); |
| 7194 | |
| 7195 | pfree(dig); |
| 7196 | |
| 7197 | /* |
| 7198 | * Finally, round the result to the requested precision. |
| 7199 | */ |
| 7200 | result->weight = res_weight; |
| 7201 | result->sign = res_sign; |
| 7202 | |
| 7203 | /* Round to target rscale (and set result->dscale) */ |
| 7204 | round_var(result, rscale); |
| 7205 | |
| 7206 | /* Strip leading and trailing zeroes */ |
| 7207 | strip_var(result); |
| 7208 | } |
| 7209 | |
| 7210 | |
| 7211 | /* |
| 7212 | * div_var() - |
| 7213 | * |
| 7214 | * Division on variable level. Quotient of var1 / var2 is stored in result. |
| 7215 | * The quotient is figured to exactly rscale fractional digits. |
| 7216 | * If round is true, it is rounded at the rscale'th digit; if false, it |
| 7217 | * is truncated (towards zero) at that digit. |
| 7218 | */ |
| 7219 | static void |
| 7220 | div_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result, |
| 7221 | int rscale, bool round) |
| 7222 | { |
| 7223 | int div_ndigits; |
| 7224 | int res_ndigits; |
| 7225 | int res_sign; |
| 7226 | int res_weight; |
| 7227 | int carry; |
| 7228 | int borrow; |
| 7229 | int divisor1; |
| 7230 | int divisor2; |
| 7231 | NumericDigit *dividend; |
| 7232 | NumericDigit *divisor; |
| 7233 | NumericDigit *res_digits; |
| 7234 | int i; |
| 7235 | int j; |
| 7236 | |
| 7237 | /* copy these values into local vars for speed in inner loop */ |
| 7238 | int var1ndigits = var1->ndigits; |
| 7239 | int var2ndigits = var2->ndigits; |
| 7240 | |
| 7241 | /* |
| 7242 | * First of all division by zero check; we must not be handed an |
| 7243 | * unnormalized divisor. |
| 7244 | */ |
| 7245 | if (var2ndigits == 0 || var2->digits[0] == 0) |
| 7246 | ereport(ERROR, |
| 7247 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 7248 | errmsg("division by zero" ))); |
| 7249 | |
| 7250 | /* |
| 7251 | * Now result zero check |
| 7252 | */ |
| 7253 | if (var1ndigits == 0) |
| 7254 | { |
| 7255 | zero_var(result); |
| 7256 | result->dscale = rscale; |
| 7257 | return; |
| 7258 | } |
| 7259 | |
| 7260 | /* |
| 7261 | * Determine the result sign, weight and number of digits to calculate. |
| 7262 | * The weight figured here is correct if the emitted quotient has no |
| 7263 | * leading zero digits; otherwise strip_var() will fix things up. |
| 7264 | */ |
| 7265 | if (var1->sign == var2->sign) |
| 7266 | res_sign = NUMERIC_POS; |
| 7267 | else |
| 7268 | res_sign = NUMERIC_NEG; |
| 7269 | res_weight = var1->weight - var2->weight; |
| 7270 | /* The number of accurate result digits we need to produce: */ |
| 7271 | res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS; |
| 7272 | /* ... but always at least 1 */ |
| 7273 | res_ndigits = Max(res_ndigits, 1); |
| 7274 | /* If rounding needed, figure one more digit to ensure correct result */ |
| 7275 | if (round) |
| 7276 | res_ndigits++; |
| 7277 | |
| 7278 | /* |
| 7279 | * The working dividend normally requires res_ndigits + var2ndigits |
| 7280 | * digits, but make it at least var1ndigits so we can load all of var1 |
| 7281 | * into it. (There will be an additional digit dividend[0] in the |
| 7282 | * dividend space, but for consistency with Knuth's notation we don't |
| 7283 | * count that in div_ndigits.) |
| 7284 | */ |
| 7285 | div_ndigits = res_ndigits + var2ndigits; |
| 7286 | div_ndigits = Max(div_ndigits, var1ndigits); |
| 7287 | |
| 7288 | /* |
| 7289 | * We need a workspace with room for the working dividend (div_ndigits+1 |
| 7290 | * digits) plus room for the possibly-normalized divisor (var2ndigits |
| 7291 | * digits). It is convenient also to have a zero at divisor[0] with the |
| 7292 | * actual divisor data in divisor[1 .. var2ndigits]. Transferring the |
| 7293 | * digits into the workspace also allows us to realloc the result (which |
| 7294 | * might be the same as either input var) before we begin the main loop. |
| 7295 | * Note that we use palloc0 to ensure that divisor[0], dividend[0], and |
| 7296 | * any additional dividend positions beyond var1ndigits, start out 0. |
| 7297 | */ |
| 7298 | dividend = (NumericDigit *) |
| 7299 | palloc0((div_ndigits + var2ndigits + 2) * sizeof(NumericDigit)); |
| 7300 | divisor = dividend + (div_ndigits + 1); |
| 7301 | memcpy(dividend + 1, var1->digits, var1ndigits * sizeof(NumericDigit)); |
| 7302 | memcpy(divisor + 1, var2->digits, var2ndigits * sizeof(NumericDigit)); |
| 7303 | |
| 7304 | /* |
| 7305 | * Now we can realloc the result to hold the generated quotient digits. |
| 7306 | */ |
| 7307 | alloc_var(result, res_ndigits); |
| 7308 | res_digits = result->digits; |
| 7309 | |
| 7310 | if (var2ndigits == 1) |
| 7311 | { |
| 7312 | /* |
| 7313 | * If there's only a single divisor digit, we can use a fast path (cf. |
| 7314 | * Knuth section 4.3.1 exercise 16). |
| 7315 | */ |
| 7316 | divisor1 = divisor[1]; |
| 7317 | carry = 0; |
| 7318 | for (i = 0; i < res_ndigits; i++) |
| 7319 | { |
| 7320 | carry = carry * NBASE + dividend[i + 1]; |
| 7321 | res_digits[i] = carry / divisor1; |
| 7322 | carry = carry % divisor1; |
| 7323 | } |
| 7324 | } |
| 7325 | else |
| 7326 | { |
| 7327 | /* |
| 7328 | * The full multiple-place algorithm is taken from Knuth volume 2, |
| 7329 | * Algorithm 4.3.1D. |
| 7330 | * |
| 7331 | * We need the first divisor digit to be >= NBASE/2. If it isn't, |
| 7332 | * make it so by scaling up both the divisor and dividend by the |
| 7333 | * factor "d". (The reason for allocating dividend[0] above is to |
| 7334 | * leave room for possible carry here.) |
| 7335 | */ |
| 7336 | if (divisor[1] < HALF_NBASE) |
| 7337 | { |
| 7338 | int d = NBASE / (divisor[1] + 1); |
| 7339 | |
| 7340 | carry = 0; |
| 7341 | for (i = var2ndigits; i > 0; i--) |
| 7342 | { |
| 7343 | carry += divisor[i] * d; |
| 7344 | divisor[i] = carry % NBASE; |
| 7345 | carry = carry / NBASE; |
| 7346 | } |
| 7347 | Assert(carry == 0); |
| 7348 | carry = 0; |
| 7349 | /* at this point only var1ndigits of dividend can be nonzero */ |
| 7350 | for (i = var1ndigits; i >= 0; i--) |
| 7351 | { |
| 7352 | carry += dividend[i] * d; |
| 7353 | dividend[i] = carry % NBASE; |
| 7354 | carry = carry / NBASE; |
| 7355 | } |
| 7356 | Assert(carry == 0); |
| 7357 | Assert(divisor[1] >= HALF_NBASE); |
| 7358 | } |
| 7359 | /* First 2 divisor digits are used repeatedly in main loop */ |
| 7360 | divisor1 = divisor[1]; |
| 7361 | divisor2 = divisor[2]; |
| 7362 | |
| 7363 | /* |
| 7364 | * Begin the main loop. Each iteration of this loop produces the j'th |
| 7365 | * quotient digit by dividing dividend[j .. j + var2ndigits] by the |
| 7366 | * divisor; this is essentially the same as the common manual |
| 7367 | * procedure for long division. |
| 7368 | */ |
| 7369 | for (j = 0; j < res_ndigits; j++) |
| 7370 | { |
| 7371 | /* Estimate quotient digit from the first two dividend digits */ |
| 7372 | int next2digits = dividend[j] * NBASE + dividend[j + 1]; |
| 7373 | int qhat; |
| 7374 | |
| 7375 | /* |
| 7376 | * If next2digits are 0, then quotient digit must be 0 and there's |
| 7377 | * no need to adjust the working dividend. It's worth testing |
| 7378 | * here to fall out ASAP when processing trailing zeroes in a |
| 7379 | * dividend. |
| 7380 | */ |
| 7381 | if (next2digits == 0) |
| 7382 | { |
| 7383 | res_digits[j] = 0; |
| 7384 | continue; |
| 7385 | } |
| 7386 | |
| 7387 | if (dividend[j] == divisor1) |
| 7388 | qhat = NBASE - 1; |
| 7389 | else |
| 7390 | qhat = next2digits / divisor1; |
| 7391 | |
| 7392 | /* |
| 7393 | * Adjust quotient digit if it's too large. Knuth proves that |
| 7394 | * after this step, the quotient digit will be either correct or |
| 7395 | * just one too large. (Note: it's OK to use dividend[j+2] here |
| 7396 | * because we know the divisor length is at least 2.) |
| 7397 | */ |
| 7398 | while (divisor2 * qhat > |
| 7399 | (next2digits - qhat * divisor1) * NBASE + dividend[j + 2]) |
| 7400 | qhat--; |
| 7401 | |
| 7402 | /* As above, need do nothing more when quotient digit is 0 */ |
| 7403 | if (qhat > 0) |
| 7404 | { |
| 7405 | /* |
| 7406 | * Multiply the divisor by qhat, and subtract that from the |
| 7407 | * working dividend. "carry" tracks the multiplication, |
| 7408 | * "borrow" the subtraction (could we fold these together?) |
| 7409 | */ |
| 7410 | carry = 0; |
| 7411 | borrow = 0; |
| 7412 | for (i = var2ndigits; i >= 0; i--) |
| 7413 | { |
| 7414 | carry += divisor[i] * qhat; |
| 7415 | borrow -= carry % NBASE; |
| 7416 | carry = carry / NBASE; |
| 7417 | borrow += dividend[j + i]; |
| 7418 | if (borrow < 0) |
| 7419 | { |
| 7420 | dividend[j + i] = borrow + NBASE; |
| 7421 | borrow = -1; |
| 7422 | } |
| 7423 | else |
| 7424 | { |
| 7425 | dividend[j + i] = borrow; |
| 7426 | borrow = 0; |
| 7427 | } |
| 7428 | } |
| 7429 | Assert(carry == 0); |
| 7430 | |
| 7431 | /* |
| 7432 | * If we got a borrow out of the top dividend digit, then |
| 7433 | * indeed qhat was one too large. Fix it, and add back the |
| 7434 | * divisor to correct the working dividend. (Knuth proves |
| 7435 | * that this will occur only about 3/NBASE of the time; hence, |
| 7436 | * it's a good idea to test this code with small NBASE to be |
| 7437 | * sure this section gets exercised.) |
| 7438 | */ |
| 7439 | if (borrow) |
| 7440 | { |
| 7441 | qhat--; |
| 7442 | carry = 0; |
| 7443 | for (i = var2ndigits; i >= 0; i--) |
| 7444 | { |
| 7445 | carry += dividend[j + i] + divisor[i]; |
| 7446 | if (carry >= NBASE) |
| 7447 | { |
| 7448 | dividend[j + i] = carry - NBASE; |
| 7449 | carry = 1; |
| 7450 | } |
| 7451 | else |
| 7452 | { |
| 7453 | dividend[j + i] = carry; |
| 7454 | carry = 0; |
| 7455 | } |
| 7456 | } |
| 7457 | /* A carry should occur here to cancel the borrow above */ |
| 7458 | Assert(carry == 1); |
| 7459 | } |
| 7460 | } |
| 7461 | |
| 7462 | /* And we're done with this quotient digit */ |
| 7463 | res_digits[j] = qhat; |
| 7464 | } |
| 7465 | } |
| 7466 | |
| 7467 | pfree(dividend); |
| 7468 | |
| 7469 | /* |
| 7470 | * Finally, round or truncate the result to the requested precision. |
| 7471 | */ |
| 7472 | result->weight = res_weight; |
| 7473 | result->sign = res_sign; |
| 7474 | |
| 7475 | /* Round or truncate to target rscale (and set result->dscale) */ |
| 7476 | if (round) |
| 7477 | round_var(result, rscale); |
| 7478 | else |
| 7479 | trunc_var(result, rscale); |
| 7480 | |
| 7481 | /* Strip leading and trailing zeroes */ |
| 7482 | strip_var(result); |
| 7483 | } |
| 7484 | |
| 7485 | |
| 7486 | /* |
| 7487 | * div_var_fast() - |
| 7488 | * |
| 7489 | * This has the same API as div_var, but is implemented using the division |
| 7490 | * algorithm from the "FM" library, rather than Knuth's schoolbook-division |
| 7491 | * approach. This is significantly faster but can produce inaccurate |
| 7492 | * results, because it sometimes has to propagate rounding to the left, |
| 7493 | * and so we can never be entirely sure that we know the requested digits |
| 7494 | * exactly. We compute DIV_GUARD_DIGITS extra digits, but there is |
| 7495 | * no certainty that that's enough. We use this only in the transcendental |
| 7496 | * function calculation routines, where everything is approximate anyway. |
| 7497 | * |
| 7498 | * Although we provide a "round" argument for consistency with div_var, |
| 7499 | * it is unwise to use this function with round=false. In truncation mode |
| 7500 | * it is possible to get a result with no significant digits, for example |
| 7501 | * with rscale=0 we might compute 0.99999... and truncate that to 0 when |
| 7502 | * the correct answer is 1. |
| 7503 | */ |
| 7504 | static void |
| 7505 | div_var_fast(const NumericVar *var1, const NumericVar *var2, |
| 7506 | NumericVar *result, int rscale, bool round) |
| 7507 | { |
| 7508 | int div_ndigits; |
| 7509 | int res_sign; |
| 7510 | int res_weight; |
| 7511 | int *div; |
| 7512 | int qdigit; |
| 7513 | int carry; |
| 7514 | int maxdiv; |
| 7515 | int newdig; |
| 7516 | NumericDigit *res_digits; |
| 7517 | double fdividend, |
| 7518 | fdivisor, |
| 7519 | fdivisorinverse, |
| 7520 | fquotient; |
| 7521 | int qi; |
| 7522 | int i; |
| 7523 | |
| 7524 | /* copy these values into local vars for speed in inner loop */ |
| 7525 | int var1ndigits = var1->ndigits; |
| 7526 | int var2ndigits = var2->ndigits; |
| 7527 | NumericDigit *var1digits = var1->digits; |
| 7528 | NumericDigit *var2digits = var2->digits; |
| 7529 | |
| 7530 | /* |
| 7531 | * First of all division by zero check; we must not be handed an |
| 7532 | * unnormalized divisor. |
| 7533 | */ |
| 7534 | if (var2ndigits == 0 || var2digits[0] == 0) |
| 7535 | ereport(ERROR, |
| 7536 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 7537 | errmsg("division by zero" ))); |
| 7538 | |
| 7539 | /* |
| 7540 | * Now result zero check |
| 7541 | */ |
| 7542 | if (var1ndigits == 0) |
| 7543 | { |
| 7544 | zero_var(result); |
| 7545 | result->dscale = rscale; |
| 7546 | return; |
| 7547 | } |
| 7548 | |
| 7549 | /* |
| 7550 | * Determine the result sign, weight and number of digits to calculate |
| 7551 | */ |
| 7552 | if (var1->sign == var2->sign) |
| 7553 | res_sign = NUMERIC_POS; |
| 7554 | else |
| 7555 | res_sign = NUMERIC_NEG; |
| 7556 | res_weight = var1->weight - var2->weight + 1; |
| 7557 | /* The number of accurate result digits we need to produce: */ |
| 7558 | div_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS; |
| 7559 | /* Add guard digits for roundoff error */ |
| 7560 | div_ndigits += DIV_GUARD_DIGITS; |
| 7561 | if (div_ndigits < DIV_GUARD_DIGITS) |
| 7562 | div_ndigits = DIV_GUARD_DIGITS; |
| 7563 | /* Must be at least var1ndigits, too, to simplify data-loading loop */ |
| 7564 | if (div_ndigits < var1ndigits) |
| 7565 | div_ndigits = var1ndigits; |
| 7566 | |
| 7567 | /* |
| 7568 | * We do the arithmetic in an array "div[]" of signed int's. Since |
| 7569 | * INT_MAX is noticeably larger than NBASE*NBASE, this gives us headroom |
| 7570 | * to avoid normalizing carries immediately. |
| 7571 | * |
| 7572 | * We start with div[] containing one zero digit followed by the |
| 7573 | * dividend's digits (plus appended zeroes to reach the desired precision |
| 7574 | * including guard digits). Each step of the main loop computes an |
| 7575 | * (approximate) quotient digit and stores it into div[], removing one |
| 7576 | * position of dividend space. A final pass of carry propagation takes |
| 7577 | * care of any mistaken quotient digits. |
| 7578 | */ |
| 7579 | div = (int *) palloc0((div_ndigits + 1) * sizeof(int)); |
| 7580 | for (i = 0; i < var1ndigits; i++) |
| 7581 | div[i + 1] = var1digits[i]; |
| 7582 | |
| 7583 | /* |
| 7584 | * We estimate each quotient digit using floating-point arithmetic, taking |
| 7585 | * the first four digits of the (current) dividend and divisor. This must |
| 7586 | * be float to avoid overflow. The quotient digits will generally be off |
| 7587 | * by no more than one from the exact answer. |
| 7588 | */ |
| 7589 | fdivisor = (double) var2digits[0]; |
| 7590 | for (i = 1; i < 4; i++) |
| 7591 | { |
| 7592 | fdivisor *= NBASE; |
| 7593 | if (i < var2ndigits) |
| 7594 | fdivisor += (double) var2digits[i]; |
| 7595 | } |
| 7596 | fdivisorinverse = 1.0 / fdivisor; |
| 7597 | |
| 7598 | /* |
| 7599 | * maxdiv tracks the maximum possible absolute value of any div[] entry; |
| 7600 | * when this threatens to exceed INT_MAX, we take the time to propagate |
| 7601 | * carries. Furthermore, we need to ensure that overflow doesn't occur |
| 7602 | * during the carry propagation passes either. The carry values may have |
| 7603 | * an absolute value as high as INT_MAX/NBASE + 1, so really we must |
| 7604 | * normalize when digits threaten to exceed INT_MAX - INT_MAX/NBASE - 1. |
| 7605 | * |
| 7606 | * To avoid overflow in maxdiv itself, it represents the max absolute |
| 7607 | * value divided by NBASE-1, ie, at the top of the loop it is known that |
| 7608 | * no div[] entry has an absolute value exceeding maxdiv * (NBASE-1). |
| 7609 | * |
| 7610 | * Actually, though, that holds good only for div[] entries after div[qi]; |
| 7611 | * the adjustment done at the bottom of the loop may cause div[qi + 1] to |
| 7612 | * exceed the maxdiv limit, so that div[qi] in the next iteration is |
| 7613 | * beyond the limit. This does not cause problems, as explained below. |
| 7614 | */ |
| 7615 | maxdiv = 1; |
| 7616 | |
| 7617 | /* |
| 7618 | * Outer loop computes next quotient digit, which will go into div[qi] |
| 7619 | */ |
| 7620 | for (qi = 0; qi < div_ndigits; qi++) |
| 7621 | { |
| 7622 | /* Approximate the current dividend value */ |
| 7623 | fdividend = (double) div[qi]; |
| 7624 | for (i = 1; i < 4; i++) |
| 7625 | { |
| 7626 | fdividend *= NBASE; |
| 7627 | if (qi + i <= div_ndigits) |
| 7628 | fdividend += (double) div[qi + i]; |
| 7629 | } |
| 7630 | /* Compute the (approximate) quotient digit */ |
| 7631 | fquotient = fdividend * fdivisorinverse; |
| 7632 | qdigit = (fquotient >= 0.0) ? ((int) fquotient) : |
| 7633 | (((int) fquotient) - 1); /* truncate towards -infinity */ |
| 7634 | |
| 7635 | if (qdigit != 0) |
| 7636 | { |
| 7637 | /* Do we need to normalize now? */ |
| 7638 | maxdiv += Abs(qdigit); |
| 7639 | if (maxdiv > (INT_MAX - INT_MAX / NBASE - 1) / (NBASE - 1)) |
| 7640 | { |
| 7641 | /* Yes, do it */ |
| 7642 | carry = 0; |
| 7643 | for (i = div_ndigits; i > qi; i--) |
| 7644 | { |
| 7645 | newdig = div[i] + carry; |
| 7646 | if (newdig < 0) |
| 7647 | { |
| 7648 | carry = -((-newdig - 1) / NBASE) - 1; |
| 7649 | newdig -= carry * NBASE; |
| 7650 | } |
| 7651 | else if (newdig >= NBASE) |
| 7652 | { |
| 7653 | carry = newdig / NBASE; |
| 7654 | newdig -= carry * NBASE; |
| 7655 | } |
| 7656 | else |
| 7657 | carry = 0; |
| 7658 | div[i] = newdig; |
| 7659 | } |
| 7660 | newdig = div[qi] + carry; |
| 7661 | div[qi] = newdig; |
| 7662 | |
| 7663 | /* |
| 7664 | * All the div[] digits except possibly div[qi] are now in the |
| 7665 | * range 0..NBASE-1. We do not need to consider div[qi] in |
| 7666 | * the maxdiv value anymore, so we can reset maxdiv to 1. |
| 7667 | */ |
| 7668 | maxdiv = 1; |
| 7669 | |
| 7670 | /* |
| 7671 | * Recompute the quotient digit since new info may have |
| 7672 | * propagated into the top four dividend digits |
| 7673 | */ |
| 7674 | fdividend = (double) div[qi]; |
| 7675 | for (i = 1; i < 4; i++) |
| 7676 | { |
| 7677 | fdividend *= NBASE; |
| 7678 | if (qi + i <= div_ndigits) |
| 7679 | fdividend += (double) div[qi + i]; |
| 7680 | } |
| 7681 | /* Compute the (approximate) quotient digit */ |
| 7682 | fquotient = fdividend * fdivisorinverse; |
| 7683 | qdigit = (fquotient >= 0.0) ? ((int) fquotient) : |
| 7684 | (((int) fquotient) - 1); /* truncate towards -infinity */ |
| 7685 | maxdiv += Abs(qdigit); |
| 7686 | } |
| 7687 | |
| 7688 | /* |
| 7689 | * Subtract off the appropriate multiple of the divisor. |
| 7690 | * |
| 7691 | * The digits beyond div[qi] cannot overflow, because we know they |
| 7692 | * will fall within the maxdiv limit. As for div[qi] itself, note |
| 7693 | * that qdigit is approximately trunc(div[qi] / vardigits[0]), |
| 7694 | * which would make the new value simply div[qi] mod vardigits[0]. |
| 7695 | * The lower-order terms in qdigit can change this result by not |
| 7696 | * more than about twice INT_MAX/NBASE, so overflow is impossible. |
| 7697 | */ |
| 7698 | if (qdigit != 0) |
| 7699 | { |
| 7700 | int istop = Min(var2ndigits, div_ndigits - qi + 1); |
| 7701 | |
| 7702 | for (i = 0; i < istop; i++) |
| 7703 | div[qi + i] -= qdigit * var2digits[i]; |
| 7704 | } |
| 7705 | } |
| 7706 | |
| 7707 | /* |
| 7708 | * The dividend digit we are about to replace might still be nonzero. |
| 7709 | * Fold it into the next digit position. |
| 7710 | * |
| 7711 | * There is no risk of overflow here, although proving that requires |
| 7712 | * some care. Much as with the argument for div[qi] not overflowing, |
| 7713 | * if we consider the first two terms in the numerator and denominator |
| 7714 | * of qdigit, we can see that the final value of div[qi + 1] will be |
| 7715 | * approximately a remainder mod (vardigits[0]*NBASE + vardigits[1]). |
| 7716 | * Accounting for the lower-order terms is a bit complicated but ends |
| 7717 | * up adding not much more than INT_MAX/NBASE to the possible range. |
| 7718 | * Thus, div[qi + 1] cannot overflow here, and in its role as div[qi] |
| 7719 | * in the next loop iteration, it can't be large enough to cause |
| 7720 | * overflow in the carry propagation step (if any), either. |
| 7721 | * |
| 7722 | * But having said that: div[qi] can be more than INT_MAX/NBASE, as |
| 7723 | * noted above, which means that the product div[qi] * NBASE *can* |
| 7724 | * overflow. When that happens, adding it to div[qi + 1] will always |
| 7725 | * cause a canceling overflow so that the end result is correct. We |
| 7726 | * could avoid the intermediate overflow by doing the multiplication |
| 7727 | * and addition in int64 arithmetic, but so far there appears no need. |
| 7728 | */ |
| 7729 | div[qi + 1] += div[qi] * NBASE; |
| 7730 | |
| 7731 | div[qi] = qdigit; |
| 7732 | } |
| 7733 | |
| 7734 | /* |
| 7735 | * Approximate and store the last quotient digit (div[div_ndigits]) |
| 7736 | */ |
| 7737 | fdividend = (double) div[qi]; |
| 7738 | for (i = 1; i < 4; i++) |
| 7739 | fdividend *= NBASE; |
| 7740 | fquotient = fdividend * fdivisorinverse; |
| 7741 | qdigit = (fquotient >= 0.0) ? ((int) fquotient) : |
| 7742 | (((int) fquotient) - 1); /* truncate towards -infinity */ |
| 7743 | div[qi] = qdigit; |
| 7744 | |
| 7745 | /* |
| 7746 | * Because the quotient digits might be off by one, some of them might be |
| 7747 | * -1 or NBASE at this point. The represented value is correct in a |
| 7748 | * mathematical sense, but it doesn't look right. We do a final carry |
| 7749 | * propagation pass to normalize the digits, which we combine with storing |
| 7750 | * the result digits into the output. Note that this is still done at |
| 7751 | * full precision w/guard digits. |
| 7752 | */ |
| 7753 | alloc_var(result, div_ndigits + 1); |
| 7754 | res_digits = result->digits; |
| 7755 | carry = 0; |
| 7756 | for (i = div_ndigits; i >= 0; i--) |
| 7757 | { |
| 7758 | newdig = div[i] + carry; |
| 7759 | if (newdig < 0) |
| 7760 | { |
| 7761 | carry = -((-newdig - 1) / NBASE) - 1; |
| 7762 | newdig -= carry * NBASE; |
| 7763 | } |
| 7764 | else if (newdig >= NBASE) |
| 7765 | { |
| 7766 | carry = newdig / NBASE; |
| 7767 | newdig -= carry * NBASE; |
| 7768 | } |
| 7769 | else |
| 7770 | carry = 0; |
| 7771 | res_digits[i] = newdig; |
| 7772 | } |
| 7773 | Assert(carry == 0); |
| 7774 | |
| 7775 | pfree(div); |
| 7776 | |
| 7777 | /* |
| 7778 | * Finally, round the result to the requested precision. |
| 7779 | */ |
| 7780 | result->weight = res_weight; |
| 7781 | result->sign = res_sign; |
| 7782 | |
| 7783 | /* Round to target rscale (and set result->dscale) */ |
| 7784 | if (round) |
| 7785 | round_var(result, rscale); |
| 7786 | else |
| 7787 | trunc_var(result, rscale); |
| 7788 | |
| 7789 | /* Strip leading and trailing zeroes */ |
| 7790 | strip_var(result); |
| 7791 | } |
| 7792 | |
| 7793 | |
| 7794 | /* |
| 7795 | * Default scale selection for division |
| 7796 | * |
| 7797 | * Returns the appropriate result scale for the division result. |
| 7798 | */ |
| 7799 | static int |
| 7800 | select_div_scale(const NumericVar *var1, const NumericVar *var2) |
| 7801 | { |
| 7802 | int weight1, |
| 7803 | weight2, |
| 7804 | qweight, |
| 7805 | i; |
| 7806 | NumericDigit firstdigit1, |
| 7807 | firstdigit2; |
| 7808 | int rscale; |
| 7809 | |
| 7810 | /* |
| 7811 | * The result scale of a division isn't specified in any SQL standard. For |
| 7812 | * PostgreSQL we select a result scale that will give at least |
| 7813 | * NUMERIC_MIN_SIG_DIGITS significant digits, so that numeric gives a |
| 7814 | * result no less accurate than float8; but use a scale not less than |
| 7815 | * either input's display scale. |
| 7816 | */ |
| 7817 | |
| 7818 | /* Get the actual (normalized) weight and first digit of each input */ |
| 7819 | |
| 7820 | weight1 = 0; /* values to use if var1 is zero */ |
| 7821 | firstdigit1 = 0; |
| 7822 | for (i = 0; i < var1->ndigits; i++) |
| 7823 | { |
| 7824 | firstdigit1 = var1->digits[i]; |
| 7825 | if (firstdigit1 != 0) |
| 7826 | { |
| 7827 | weight1 = var1->weight - i; |
| 7828 | break; |
| 7829 | } |
| 7830 | } |
| 7831 | |
| 7832 | weight2 = 0; /* values to use if var2 is zero */ |
| 7833 | firstdigit2 = 0; |
| 7834 | for (i = 0; i < var2->ndigits; i++) |
| 7835 | { |
| 7836 | firstdigit2 = var2->digits[i]; |
| 7837 | if (firstdigit2 != 0) |
| 7838 | { |
| 7839 | weight2 = var2->weight - i; |
| 7840 | break; |
| 7841 | } |
| 7842 | } |
| 7843 | |
| 7844 | /* |
| 7845 | * Estimate weight of quotient. If the two first digits are equal, we |
| 7846 | * can't be sure, but assume that var1 is less than var2. |
| 7847 | */ |
| 7848 | qweight = weight1 - weight2; |
| 7849 | if (firstdigit1 <= firstdigit2) |
| 7850 | qweight--; |
| 7851 | |
| 7852 | /* Select result scale */ |
| 7853 | rscale = NUMERIC_MIN_SIG_DIGITS - qweight * DEC_DIGITS; |
| 7854 | rscale = Max(rscale, var1->dscale); |
| 7855 | rscale = Max(rscale, var2->dscale); |
| 7856 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 7857 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 7858 | |
| 7859 | return rscale; |
| 7860 | } |
| 7861 | |
| 7862 | |
| 7863 | /* |
| 7864 | * mod_var() - |
| 7865 | * |
| 7866 | * Calculate the modulo of two numerics at variable level |
| 7867 | */ |
| 7868 | static void |
| 7869 | mod_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result) |
| 7870 | { |
| 7871 | NumericVar tmp; |
| 7872 | |
| 7873 | init_var(&tmp); |
| 7874 | |
| 7875 | /* --------- |
| 7876 | * We do this using the equation |
| 7877 | * mod(x,y) = x - trunc(x/y)*y |
| 7878 | * div_var can be persuaded to give us trunc(x/y) directly. |
| 7879 | * ---------- |
| 7880 | */ |
| 7881 | div_var(var1, var2, &tmp, 0, false); |
| 7882 | |
| 7883 | mul_var(var2, &tmp, &tmp, var2->dscale); |
| 7884 | |
| 7885 | sub_var(var1, &tmp, result); |
| 7886 | |
| 7887 | free_var(&tmp); |
| 7888 | } |
| 7889 | |
| 7890 | |
| 7891 | /* |
| 7892 | * ceil_var() - |
| 7893 | * |
| 7894 | * Return the smallest integer greater than or equal to the argument |
| 7895 | * on variable level |
| 7896 | */ |
| 7897 | static void |
| 7898 | ceil_var(const NumericVar *var, NumericVar *result) |
| 7899 | { |
| 7900 | NumericVar tmp; |
| 7901 | |
| 7902 | init_var(&tmp); |
| 7903 | set_var_from_var(var, &tmp); |
| 7904 | |
| 7905 | trunc_var(&tmp, 0); |
| 7906 | |
| 7907 | if (var->sign == NUMERIC_POS && cmp_var(var, &tmp) != 0) |
| 7908 | add_var(&tmp, &const_one, &tmp); |
| 7909 | |
| 7910 | set_var_from_var(&tmp, result); |
| 7911 | free_var(&tmp); |
| 7912 | } |
| 7913 | |
| 7914 | |
| 7915 | /* |
| 7916 | * floor_var() - |
| 7917 | * |
| 7918 | * Return the largest integer equal to or less than the argument |
| 7919 | * on variable level |
| 7920 | */ |
| 7921 | static void |
| 7922 | floor_var(const NumericVar *var, NumericVar *result) |
| 7923 | { |
| 7924 | NumericVar tmp; |
| 7925 | |
| 7926 | init_var(&tmp); |
| 7927 | set_var_from_var(var, &tmp); |
| 7928 | |
| 7929 | trunc_var(&tmp, 0); |
| 7930 | |
| 7931 | if (var->sign == NUMERIC_NEG && cmp_var(var, &tmp) != 0) |
| 7932 | sub_var(&tmp, &const_one, &tmp); |
| 7933 | |
| 7934 | set_var_from_var(&tmp, result); |
| 7935 | free_var(&tmp); |
| 7936 | } |
| 7937 | |
| 7938 | |
| 7939 | /* |
| 7940 | * sqrt_var() - |
| 7941 | * |
| 7942 | * Compute the square root of x using Newton's algorithm |
| 7943 | */ |
| 7944 | static void |
| 7945 | sqrt_var(const NumericVar *arg, NumericVar *result, int rscale) |
| 7946 | { |
| 7947 | NumericVar tmp_arg; |
| 7948 | NumericVar tmp_val; |
| 7949 | NumericVar last_val; |
| 7950 | int local_rscale; |
| 7951 | int stat; |
| 7952 | |
| 7953 | local_rscale = rscale + 8; |
| 7954 | |
| 7955 | stat = cmp_var(arg, &const_zero); |
| 7956 | if (stat == 0) |
| 7957 | { |
| 7958 | zero_var(result); |
| 7959 | result->dscale = rscale; |
| 7960 | return; |
| 7961 | } |
| 7962 | |
| 7963 | /* |
| 7964 | * SQL2003 defines sqrt() in terms of power, so we need to emit the right |
| 7965 | * SQLSTATE error code if the operand is negative. |
| 7966 | */ |
| 7967 | if (stat < 0) |
| 7968 | ereport(ERROR, |
| 7969 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION), |
| 7970 | errmsg("cannot take square root of a negative number" ))); |
| 7971 | |
| 7972 | init_var(&tmp_arg); |
| 7973 | init_var(&tmp_val); |
| 7974 | init_var(&last_val); |
| 7975 | |
| 7976 | /* Copy arg in case it is the same var as result */ |
| 7977 | set_var_from_var(arg, &tmp_arg); |
| 7978 | |
| 7979 | /* |
| 7980 | * Initialize the result to the first guess |
| 7981 | */ |
| 7982 | alloc_var(result, 1); |
| 7983 | result->digits[0] = tmp_arg.digits[0] / 2; |
| 7984 | if (result->digits[0] == 0) |
| 7985 | result->digits[0] = 1; |
| 7986 | result->weight = tmp_arg.weight / 2; |
| 7987 | result->sign = NUMERIC_POS; |
| 7988 | |
| 7989 | set_var_from_var(result, &last_val); |
| 7990 | |
| 7991 | for (;;) |
| 7992 | { |
| 7993 | div_var_fast(&tmp_arg, result, &tmp_val, local_rscale, true); |
| 7994 | |
| 7995 | add_var(result, &tmp_val, result); |
| 7996 | mul_var(result, &const_zero_point_five, result, local_rscale); |
| 7997 | |
| 7998 | if (cmp_var(&last_val, result) == 0) |
| 7999 | break; |
| 8000 | set_var_from_var(result, &last_val); |
| 8001 | } |
| 8002 | |
| 8003 | free_var(&last_val); |
| 8004 | free_var(&tmp_val); |
| 8005 | free_var(&tmp_arg); |
| 8006 | |
| 8007 | /* Round to requested precision */ |
| 8008 | round_var(result, rscale); |
| 8009 | } |
| 8010 | |
| 8011 | |
| 8012 | /* |
| 8013 | * exp_var() - |
| 8014 | * |
| 8015 | * Raise e to the power of x, computed to rscale fractional digits |
| 8016 | */ |
| 8017 | static void |
| 8018 | exp_var(const NumericVar *arg, NumericVar *result, int rscale) |
| 8019 | { |
| 8020 | NumericVar x; |
| 8021 | NumericVar elem; |
| 8022 | NumericVar ni; |
| 8023 | double val; |
| 8024 | int dweight; |
| 8025 | int ndiv2; |
| 8026 | int sig_digits; |
| 8027 | int local_rscale; |
| 8028 | |
| 8029 | init_var(&x); |
| 8030 | init_var(&elem); |
| 8031 | init_var(&ni); |
| 8032 | |
| 8033 | set_var_from_var(arg, &x); |
| 8034 | |
| 8035 | /* |
| 8036 | * Estimate the dweight of the result using floating point arithmetic, so |
| 8037 | * that we can choose an appropriate local rscale for the calculation. |
| 8038 | */ |
| 8039 | val = numericvar_to_double_no_overflow(&x); |
| 8040 | |
| 8041 | /* Guard against overflow */ |
| 8042 | /* If you change this limit, see also power_var()'s limit */ |
| 8043 | if (Abs(val) >= NUMERIC_MAX_RESULT_SCALE * 3) |
| 8044 | ereport(ERROR, |
| 8045 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 8046 | errmsg("value overflows numeric format" ))); |
| 8047 | |
| 8048 | /* decimal weight = log10(e^x) = x * log10(e) */ |
| 8049 | dweight = (int) (val * 0.434294481903252); |
| 8050 | |
| 8051 | /* |
| 8052 | * Reduce x to the range -0.01 <= x <= 0.01 (approximately) by dividing by |
| 8053 | * 2^n, to improve the convergence rate of the Taylor series. |
| 8054 | */ |
| 8055 | if (Abs(val) > 0.01) |
| 8056 | { |
| 8057 | NumericVar tmp; |
| 8058 | |
| 8059 | init_var(&tmp); |
| 8060 | set_var_from_var(&const_two, &tmp); |
| 8061 | |
| 8062 | ndiv2 = 1; |
| 8063 | val /= 2; |
| 8064 | |
| 8065 | while (Abs(val) > 0.01) |
| 8066 | { |
| 8067 | ndiv2++; |
| 8068 | val /= 2; |
| 8069 | add_var(&tmp, &tmp, &tmp); |
| 8070 | } |
| 8071 | |
| 8072 | local_rscale = x.dscale + ndiv2; |
| 8073 | div_var_fast(&x, &tmp, &x, local_rscale, true); |
| 8074 | |
| 8075 | free_var(&tmp); |
| 8076 | } |
| 8077 | else |
| 8078 | ndiv2 = 0; |
| 8079 | |
| 8080 | /* |
| 8081 | * Set the scale for the Taylor series expansion. The final result has |
| 8082 | * (dweight + rscale + 1) significant digits. In addition, we have to |
| 8083 | * raise the Taylor series result to the power 2^ndiv2, which introduces |
| 8084 | * an error of up to around log10(2^ndiv2) digits, so work with this many |
| 8085 | * extra digits of precision (plus a few more for good measure). |
| 8086 | */ |
| 8087 | sig_digits = 1 + dweight + rscale + (int) (ndiv2 * 0.301029995663981); |
| 8088 | sig_digits = Max(sig_digits, 0) + 8; |
| 8089 | |
| 8090 | local_rscale = sig_digits - 1; |
| 8091 | |
| 8092 | /* |
| 8093 | * Use the Taylor series |
| 8094 | * |
| 8095 | * exp(x) = 1 + x + x^2/2! + x^3/3! + ... |
| 8096 | * |
| 8097 | * Given the limited range of x, this should converge reasonably quickly. |
| 8098 | * We run the series until the terms fall below the local_rscale limit. |
| 8099 | */ |
| 8100 | add_var(&const_one, &x, result); |
| 8101 | |
| 8102 | mul_var(&x, &x, &elem, local_rscale); |
| 8103 | set_var_from_var(&const_two, &ni); |
| 8104 | div_var_fast(&elem, &ni, &elem, local_rscale, true); |
| 8105 | |
| 8106 | while (elem.ndigits != 0) |
| 8107 | { |
| 8108 | add_var(result, &elem, result); |
| 8109 | |
| 8110 | mul_var(&elem, &x, &elem, local_rscale); |
| 8111 | add_var(&ni, &const_one, &ni); |
| 8112 | div_var_fast(&elem, &ni, &elem, local_rscale, true); |
| 8113 | } |
| 8114 | |
| 8115 | /* |
| 8116 | * Compensate for the argument range reduction. Since the weight of the |
| 8117 | * result doubles with each multiplication, we can reduce the local rscale |
| 8118 | * as we proceed. |
| 8119 | */ |
| 8120 | while (ndiv2-- > 0) |
| 8121 | { |
| 8122 | local_rscale = sig_digits - result->weight * 2 * DEC_DIGITS; |
| 8123 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8124 | mul_var(result, result, result, local_rscale); |
| 8125 | } |
| 8126 | |
| 8127 | /* Round to requested rscale */ |
| 8128 | round_var(result, rscale); |
| 8129 | |
| 8130 | free_var(&x); |
| 8131 | free_var(&elem); |
| 8132 | free_var(&ni); |
| 8133 | } |
| 8134 | |
| 8135 | |
| 8136 | /* |
| 8137 | * Estimate the dweight of the most significant decimal digit of the natural |
| 8138 | * logarithm of a number. |
| 8139 | * |
| 8140 | * Essentially, we're approximating log10(abs(ln(var))). This is used to |
| 8141 | * determine the appropriate rscale when computing natural logarithms. |
| 8142 | */ |
| 8143 | static int |
| 8144 | estimate_ln_dweight(const NumericVar *var) |
| 8145 | { |
| 8146 | int ln_dweight; |
| 8147 | |
| 8148 | if (cmp_var(var, &const_zero_point_nine) >= 0 && |
| 8149 | cmp_var(var, &const_one_point_one) <= 0) |
| 8150 | { |
| 8151 | /* |
| 8152 | * 0.9 <= var <= 1.1 |
| 8153 | * |
| 8154 | * ln(var) has a negative weight (possibly very large). To get a |
| 8155 | * reasonably accurate result, estimate it using ln(1+x) ~= x. |
| 8156 | */ |
| 8157 | NumericVar x; |
| 8158 | |
| 8159 | init_var(&x); |
| 8160 | sub_var(var, &const_one, &x); |
| 8161 | |
| 8162 | if (x.ndigits > 0) |
| 8163 | { |
| 8164 | /* Use weight of most significant decimal digit of x */ |
| 8165 | ln_dweight = x.weight * DEC_DIGITS + (int) log10(x.digits[0]); |
| 8166 | } |
| 8167 | else |
| 8168 | { |
| 8169 | /* x = 0. Since ln(1) = 0 exactly, we don't need extra digits */ |
| 8170 | ln_dweight = 0; |
| 8171 | } |
| 8172 | |
| 8173 | free_var(&x); |
| 8174 | } |
| 8175 | else |
| 8176 | { |
| 8177 | /* |
| 8178 | * Estimate the logarithm using the first couple of digits from the |
| 8179 | * input number. This will give an accurate result whenever the input |
| 8180 | * is not too close to 1. |
| 8181 | */ |
| 8182 | if (var->ndigits > 0) |
| 8183 | { |
| 8184 | int digits; |
| 8185 | int dweight; |
| 8186 | double ln_var; |
| 8187 | |
| 8188 | digits = var->digits[0]; |
| 8189 | dweight = var->weight * DEC_DIGITS; |
| 8190 | |
| 8191 | if (var->ndigits > 1) |
| 8192 | { |
| 8193 | digits = digits * NBASE + var->digits[1]; |
| 8194 | dweight -= DEC_DIGITS; |
| 8195 | } |
| 8196 | |
| 8197 | /*---------- |
| 8198 | * We have var ~= digits * 10^dweight |
| 8199 | * so ln(var) ~= ln(digits) + dweight * ln(10) |
| 8200 | *---------- |
| 8201 | */ |
| 8202 | ln_var = log((double) digits) + dweight * 2.302585092994046; |
| 8203 | ln_dweight = (int) log10(Abs(ln_var)); |
| 8204 | } |
| 8205 | else |
| 8206 | { |
| 8207 | /* Caller should fail on ln(0), but for the moment return zero */ |
| 8208 | ln_dweight = 0; |
| 8209 | } |
| 8210 | } |
| 8211 | |
| 8212 | return ln_dweight; |
| 8213 | } |
| 8214 | |
| 8215 | |
| 8216 | /* |
| 8217 | * ln_var() - |
| 8218 | * |
| 8219 | * Compute the natural log of x |
| 8220 | */ |
| 8221 | static void |
| 8222 | ln_var(const NumericVar *arg, NumericVar *result, int rscale) |
| 8223 | { |
| 8224 | NumericVar x; |
| 8225 | NumericVar xx; |
| 8226 | NumericVar ni; |
| 8227 | NumericVar elem; |
| 8228 | NumericVar fact; |
| 8229 | int local_rscale; |
| 8230 | int cmp; |
| 8231 | |
| 8232 | cmp = cmp_var(arg, &const_zero); |
| 8233 | if (cmp == 0) |
| 8234 | ereport(ERROR, |
| 8235 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 8236 | errmsg("cannot take logarithm of zero" ))); |
| 8237 | else if (cmp < 0) |
| 8238 | ereport(ERROR, |
| 8239 | (errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG), |
| 8240 | errmsg("cannot take logarithm of a negative number" ))); |
| 8241 | |
| 8242 | init_var(&x); |
| 8243 | init_var(&xx); |
| 8244 | init_var(&ni); |
| 8245 | init_var(&elem); |
| 8246 | init_var(&fact); |
| 8247 | |
| 8248 | set_var_from_var(arg, &x); |
| 8249 | set_var_from_var(&const_two, &fact); |
| 8250 | |
| 8251 | /* |
| 8252 | * Reduce input into range 0.9 < x < 1.1 with repeated sqrt() operations. |
| 8253 | * |
| 8254 | * The final logarithm will have up to around rscale+6 significant digits. |
| 8255 | * Each sqrt() will roughly halve the weight of x, so adjust the local |
| 8256 | * rscale as we work so that we keep this many significant digits at each |
| 8257 | * step (plus a few more for good measure). |
| 8258 | */ |
| 8259 | while (cmp_var(&x, &const_zero_point_nine) <= 0) |
| 8260 | { |
| 8261 | local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8; |
| 8262 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8263 | sqrt_var(&x, &x, local_rscale); |
| 8264 | mul_var(&fact, &const_two, &fact, 0); |
| 8265 | } |
| 8266 | while (cmp_var(&x, &const_one_point_one) >= 0) |
| 8267 | { |
| 8268 | local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8; |
| 8269 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8270 | sqrt_var(&x, &x, local_rscale); |
| 8271 | mul_var(&fact, &const_two, &fact, 0); |
| 8272 | } |
| 8273 | |
| 8274 | /* |
| 8275 | * We use the Taylor series for 0.5 * ln((1+z)/(1-z)), |
| 8276 | * |
| 8277 | * z + z^3/3 + z^5/5 + ... |
| 8278 | * |
| 8279 | * where z = (x-1)/(x+1) is in the range (approximately) -0.053 .. 0.048 |
| 8280 | * due to the above range-reduction of x. |
| 8281 | * |
| 8282 | * The convergence of this is not as fast as one would like, but is |
| 8283 | * tolerable given that z is small. |
| 8284 | */ |
| 8285 | local_rscale = rscale + 8; |
| 8286 | |
| 8287 | sub_var(&x, &const_one, result); |
| 8288 | add_var(&x, &const_one, &elem); |
| 8289 | div_var_fast(result, &elem, result, local_rscale, true); |
| 8290 | set_var_from_var(result, &xx); |
| 8291 | mul_var(result, result, &x, local_rscale); |
| 8292 | |
| 8293 | set_var_from_var(&const_one, &ni); |
| 8294 | |
| 8295 | for (;;) |
| 8296 | { |
| 8297 | add_var(&ni, &const_two, &ni); |
| 8298 | mul_var(&xx, &x, &xx, local_rscale); |
| 8299 | div_var_fast(&xx, &ni, &elem, local_rscale, true); |
| 8300 | |
| 8301 | if (elem.ndigits == 0) |
| 8302 | break; |
| 8303 | |
| 8304 | add_var(result, &elem, result); |
| 8305 | |
| 8306 | if (elem.weight < (result->weight - local_rscale * 2 / DEC_DIGITS)) |
| 8307 | break; |
| 8308 | } |
| 8309 | |
| 8310 | /* Compensate for argument range reduction, round to requested rscale */ |
| 8311 | mul_var(result, &fact, result, rscale); |
| 8312 | |
| 8313 | free_var(&x); |
| 8314 | free_var(&xx); |
| 8315 | free_var(&ni); |
| 8316 | free_var(&elem); |
| 8317 | free_var(&fact); |
| 8318 | } |
| 8319 | |
| 8320 | |
| 8321 | /* |
| 8322 | * log_var() - |
| 8323 | * |
| 8324 | * Compute the logarithm of num in a given base. |
| 8325 | * |
| 8326 | * Note: this routine chooses dscale of the result. |
| 8327 | */ |
| 8328 | static void |
| 8329 | log_var(const NumericVar *base, const NumericVar *num, NumericVar *result) |
| 8330 | { |
| 8331 | NumericVar ln_base; |
| 8332 | NumericVar ln_num; |
| 8333 | int ln_base_dweight; |
| 8334 | int ln_num_dweight; |
| 8335 | int result_dweight; |
| 8336 | int rscale; |
| 8337 | int ln_base_rscale; |
| 8338 | int ln_num_rscale; |
| 8339 | |
| 8340 | init_var(&ln_base); |
| 8341 | init_var(&ln_num); |
| 8342 | |
| 8343 | /* Estimated dweights of ln(base), ln(num) and the final result */ |
| 8344 | ln_base_dweight = estimate_ln_dweight(base); |
| 8345 | ln_num_dweight = estimate_ln_dweight(num); |
| 8346 | result_dweight = ln_num_dweight - ln_base_dweight; |
| 8347 | |
| 8348 | /* |
| 8349 | * Select the scale of the result so that it will have at least |
| 8350 | * NUMERIC_MIN_SIG_DIGITS significant digits and is not less than either |
| 8351 | * input's display scale. |
| 8352 | */ |
| 8353 | rscale = NUMERIC_MIN_SIG_DIGITS - result_dweight; |
| 8354 | rscale = Max(rscale, base->dscale); |
| 8355 | rscale = Max(rscale, num->dscale); |
| 8356 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8357 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 8358 | |
| 8359 | /* |
| 8360 | * Set the scales for ln(base) and ln(num) so that they each have more |
| 8361 | * significant digits than the final result. |
| 8362 | */ |
| 8363 | ln_base_rscale = rscale + result_dweight - ln_base_dweight + 8; |
| 8364 | ln_base_rscale = Max(ln_base_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8365 | |
| 8366 | ln_num_rscale = rscale + result_dweight - ln_num_dweight + 8; |
| 8367 | ln_num_rscale = Max(ln_num_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8368 | |
| 8369 | /* Form natural logarithms */ |
| 8370 | ln_var(base, &ln_base, ln_base_rscale); |
| 8371 | ln_var(num, &ln_num, ln_num_rscale); |
| 8372 | |
| 8373 | /* Divide and round to the required scale */ |
| 8374 | div_var_fast(&ln_num, &ln_base, result, rscale, true); |
| 8375 | |
| 8376 | free_var(&ln_num); |
| 8377 | free_var(&ln_base); |
| 8378 | } |
| 8379 | |
| 8380 | |
| 8381 | /* |
| 8382 | * power_var() - |
| 8383 | * |
| 8384 | * Raise base to the power of exp |
| 8385 | * |
| 8386 | * Note: this routine chooses dscale of the result. |
| 8387 | */ |
| 8388 | static void |
| 8389 | power_var(const NumericVar *base, const NumericVar *exp, NumericVar *result) |
| 8390 | { |
| 8391 | NumericVar ln_base; |
| 8392 | NumericVar ln_num; |
| 8393 | int ln_dweight; |
| 8394 | int rscale; |
| 8395 | int local_rscale; |
| 8396 | double val; |
| 8397 | |
| 8398 | /* If exp can be represented as an integer, use power_var_int */ |
| 8399 | if (exp->ndigits == 0 || exp->ndigits <= exp->weight + 1) |
| 8400 | { |
| 8401 | /* exact integer, but does it fit in int? */ |
| 8402 | int64 expval64; |
| 8403 | |
| 8404 | if (numericvar_to_int64(exp, &expval64)) |
| 8405 | { |
| 8406 | int expval = (int) expval64; |
| 8407 | |
| 8408 | /* Test for overflow by reverse-conversion. */ |
| 8409 | if ((int64) expval == expval64) |
| 8410 | { |
| 8411 | /* Okay, select rscale */ |
| 8412 | rscale = NUMERIC_MIN_SIG_DIGITS; |
| 8413 | rscale = Max(rscale, base->dscale); |
| 8414 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8415 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 8416 | |
| 8417 | power_var_int(base, expval, result, rscale); |
| 8418 | return; |
| 8419 | } |
| 8420 | } |
| 8421 | } |
| 8422 | |
| 8423 | /* |
| 8424 | * This avoids log(0) for cases of 0 raised to a non-integer. 0 ^ 0 is |
| 8425 | * handled by power_var_int(). |
| 8426 | */ |
| 8427 | if (cmp_var(base, &const_zero) == 0) |
| 8428 | { |
| 8429 | set_var_from_var(&const_zero, result); |
| 8430 | result->dscale = NUMERIC_MIN_SIG_DIGITS; /* no need to round */ |
| 8431 | return; |
| 8432 | } |
| 8433 | |
| 8434 | init_var(&ln_base); |
| 8435 | init_var(&ln_num); |
| 8436 | |
| 8437 | /*---------- |
| 8438 | * Decide on the scale for the ln() calculation. For this we need an |
| 8439 | * estimate of the weight of the result, which we obtain by doing an |
| 8440 | * initial low-precision calculation of exp * ln(base). |
| 8441 | * |
| 8442 | * We want result = e ^ (exp * ln(base)) |
| 8443 | * so result dweight = log10(result) = exp * ln(base) * log10(e) |
| 8444 | * |
| 8445 | * We also perform a crude overflow test here so that we can exit early if |
| 8446 | * the full-precision result is sure to overflow, and to guard against |
| 8447 | * integer overflow when determining the scale for the real calculation. |
| 8448 | * exp_var() supports inputs up to NUMERIC_MAX_RESULT_SCALE * 3, so the |
| 8449 | * result will overflow if exp * ln(base) >= NUMERIC_MAX_RESULT_SCALE * 3. |
| 8450 | * Since the values here are only approximations, we apply a small fuzz |
| 8451 | * factor to this overflow test and let exp_var() determine the exact |
| 8452 | * overflow threshold so that it is consistent for all inputs. |
| 8453 | *---------- |
| 8454 | */ |
| 8455 | ln_dweight = estimate_ln_dweight(base); |
| 8456 | |
| 8457 | local_rscale = 8 - ln_dweight; |
| 8458 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8459 | local_rscale = Min(local_rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 8460 | |
| 8461 | ln_var(base, &ln_base, local_rscale); |
| 8462 | |
| 8463 | mul_var(&ln_base, exp, &ln_num, local_rscale); |
| 8464 | |
| 8465 | val = numericvar_to_double_no_overflow(&ln_num); |
| 8466 | |
| 8467 | /* initial overflow test with fuzz factor */ |
| 8468 | if (Abs(val) > NUMERIC_MAX_RESULT_SCALE * 3.01) |
| 8469 | ereport(ERROR, |
| 8470 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 8471 | errmsg("value overflows numeric format" ))); |
| 8472 | |
| 8473 | val *= 0.434294481903252; /* approximate decimal result weight */ |
| 8474 | |
| 8475 | /* choose the result scale */ |
| 8476 | rscale = NUMERIC_MIN_SIG_DIGITS - (int) val; |
| 8477 | rscale = Max(rscale, base->dscale); |
| 8478 | rscale = Max(rscale, exp->dscale); |
| 8479 | rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8480 | rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE); |
| 8481 | |
| 8482 | /* set the scale for the real exp * ln(base) calculation */ |
| 8483 | local_rscale = rscale + (int) val - ln_dweight + 8; |
| 8484 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8485 | |
| 8486 | /* and do the real calculation */ |
| 8487 | |
| 8488 | ln_var(base, &ln_base, local_rscale); |
| 8489 | |
| 8490 | mul_var(&ln_base, exp, &ln_num, local_rscale); |
| 8491 | |
| 8492 | exp_var(&ln_num, result, rscale); |
| 8493 | |
| 8494 | free_var(&ln_num); |
| 8495 | free_var(&ln_base); |
| 8496 | } |
| 8497 | |
| 8498 | /* |
| 8499 | * power_var_int() - |
| 8500 | * |
| 8501 | * Raise base to the power of exp, where exp is an integer. |
| 8502 | */ |
| 8503 | static void |
| 8504 | power_var_int(const NumericVar *base, int exp, NumericVar *result, int rscale) |
| 8505 | { |
| 8506 | double f; |
| 8507 | int p; |
| 8508 | int i; |
| 8509 | int sig_digits; |
| 8510 | unsigned int mask; |
| 8511 | bool neg; |
| 8512 | NumericVar base_prod; |
| 8513 | int local_rscale; |
| 8514 | |
| 8515 | /* Handle some common special cases, as well as corner cases */ |
| 8516 | switch (exp) |
| 8517 | { |
| 8518 | case 0: |
| 8519 | |
| 8520 | /* |
| 8521 | * While 0 ^ 0 can be either 1 or indeterminate (error), we treat |
| 8522 | * it as 1 because most programming languages do this. SQL:2003 |
| 8523 | * also requires a return value of 1. |
| 8524 | * https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_zero_power |
| 8525 | */ |
| 8526 | set_var_from_var(&const_one, result); |
| 8527 | result->dscale = rscale; /* no need to round */ |
| 8528 | return; |
| 8529 | case 1: |
| 8530 | set_var_from_var(base, result); |
| 8531 | round_var(result, rscale); |
| 8532 | return; |
| 8533 | case -1: |
| 8534 | div_var(&const_one, base, result, rscale, true); |
| 8535 | return; |
| 8536 | case 2: |
| 8537 | mul_var(base, base, result, rscale); |
| 8538 | return; |
| 8539 | default: |
| 8540 | break; |
| 8541 | } |
| 8542 | |
| 8543 | /* Handle the special case where the base is zero */ |
| 8544 | if (base->ndigits == 0) |
| 8545 | { |
| 8546 | if (exp < 0) |
| 8547 | ereport(ERROR, |
| 8548 | (errcode(ERRCODE_DIVISION_BY_ZERO), |
| 8549 | errmsg("division by zero" ))); |
| 8550 | zero_var(result); |
| 8551 | result->dscale = rscale; |
| 8552 | return; |
| 8553 | } |
| 8554 | |
| 8555 | /* |
| 8556 | * The general case repeatedly multiplies base according to the bit |
| 8557 | * pattern of exp. |
| 8558 | * |
| 8559 | * First we need to estimate the weight of the result so that we know how |
| 8560 | * many significant digits are needed. |
| 8561 | */ |
| 8562 | f = base->digits[0]; |
| 8563 | p = base->weight * DEC_DIGITS; |
| 8564 | |
| 8565 | for (i = 1; i < base->ndigits && i * DEC_DIGITS < 16; i++) |
| 8566 | { |
| 8567 | f = f * NBASE + base->digits[i]; |
| 8568 | p -= DEC_DIGITS; |
| 8569 | } |
| 8570 | |
| 8571 | /*---------- |
| 8572 | * We have base ~= f * 10^p |
| 8573 | * so log10(result) = log10(base^exp) ~= exp * (log10(f) + p) |
| 8574 | *---------- |
| 8575 | */ |
| 8576 | f = exp * (log10(f) + p); |
| 8577 | |
| 8578 | /* |
| 8579 | * Apply crude overflow/underflow tests so we can exit early if the result |
| 8580 | * certainly will overflow/underflow. |
| 8581 | */ |
| 8582 | if (f > 3 * SHRT_MAX * DEC_DIGITS) |
| 8583 | ereport(ERROR, |
| 8584 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 8585 | errmsg("value overflows numeric format" ))); |
| 8586 | if (f + 1 < -rscale || f + 1 < -NUMERIC_MAX_DISPLAY_SCALE) |
| 8587 | { |
| 8588 | zero_var(result); |
| 8589 | result->dscale = rscale; |
| 8590 | return; |
| 8591 | } |
| 8592 | |
| 8593 | /* |
| 8594 | * Approximate number of significant digits in the result. Note that the |
| 8595 | * underflow test above means that this is necessarily >= 0. |
| 8596 | */ |
| 8597 | sig_digits = 1 + rscale + (int) f; |
| 8598 | |
| 8599 | /* |
| 8600 | * The multiplications to produce the result may introduce an error of up |
| 8601 | * to around log10(abs(exp)) digits, so work with this many extra digits |
| 8602 | * of precision (plus a few more for good measure). |
| 8603 | */ |
| 8604 | sig_digits += (int) log(Abs(exp)) + 8; |
| 8605 | |
| 8606 | /* |
| 8607 | * Now we can proceed with the multiplications. |
| 8608 | */ |
| 8609 | neg = (exp < 0); |
| 8610 | mask = Abs(exp); |
| 8611 | |
| 8612 | init_var(&base_prod); |
| 8613 | set_var_from_var(base, &base_prod); |
| 8614 | |
| 8615 | if (mask & 1) |
| 8616 | set_var_from_var(base, result); |
| 8617 | else |
| 8618 | set_var_from_var(&const_one, result); |
| 8619 | |
| 8620 | while ((mask >>= 1) > 0) |
| 8621 | { |
| 8622 | /* |
| 8623 | * Do the multiplications using rscales large enough to hold the |
| 8624 | * results to the required number of significant digits, but don't |
| 8625 | * waste time by exceeding the scales of the numbers themselves. |
| 8626 | */ |
| 8627 | local_rscale = sig_digits - 2 * base_prod.weight * DEC_DIGITS; |
| 8628 | local_rscale = Min(local_rscale, 2 * base_prod.dscale); |
| 8629 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8630 | |
| 8631 | mul_var(&base_prod, &base_prod, &base_prod, local_rscale); |
| 8632 | |
| 8633 | if (mask & 1) |
| 8634 | { |
| 8635 | local_rscale = sig_digits - |
| 8636 | (base_prod.weight + result->weight) * DEC_DIGITS; |
| 8637 | local_rscale = Min(local_rscale, |
| 8638 | base_prod.dscale + result->dscale); |
| 8639 | local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE); |
| 8640 | |
| 8641 | mul_var(&base_prod, result, result, local_rscale); |
| 8642 | } |
| 8643 | |
| 8644 | /* |
| 8645 | * When abs(base) > 1, the number of digits to the left of the decimal |
| 8646 | * point in base_prod doubles at each iteration, so if exp is large we |
| 8647 | * could easily spend large amounts of time and memory space doing the |
| 8648 | * multiplications. But once the weight exceeds what will fit in |
| 8649 | * int16, the final result is guaranteed to overflow (or underflow, if |
| 8650 | * exp < 0), so we can give up before wasting too many cycles. |
| 8651 | */ |
| 8652 | if (base_prod.weight > SHRT_MAX || result->weight > SHRT_MAX) |
| 8653 | { |
| 8654 | /* overflow, unless neg, in which case result should be 0 */ |
| 8655 | if (!neg) |
| 8656 | ereport(ERROR, |
| 8657 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 8658 | errmsg("value overflows numeric format" ))); |
| 8659 | zero_var(result); |
| 8660 | neg = false; |
| 8661 | break; |
| 8662 | } |
| 8663 | } |
| 8664 | |
| 8665 | free_var(&base_prod); |
| 8666 | |
| 8667 | /* Compensate for input sign, and round to requested rscale */ |
| 8668 | if (neg) |
| 8669 | div_var_fast(&const_one, result, result, rscale, true); |
| 8670 | else |
| 8671 | round_var(result, rscale); |
| 8672 | } |
| 8673 | |
| 8674 | |
| 8675 | /* ---------------------------------------------------------------------- |
| 8676 | * |
| 8677 | * Following are the lowest level functions that operate unsigned |
| 8678 | * on the variable level |
| 8679 | * |
| 8680 | * ---------------------------------------------------------------------- |
| 8681 | */ |
| 8682 | |
| 8683 | |
| 8684 | /* ---------- |
| 8685 | * cmp_abs() - |
| 8686 | * |
| 8687 | * Compare the absolute values of var1 and var2 |
| 8688 | * Returns: -1 for ABS(var1) < ABS(var2) |
| 8689 | * 0 for ABS(var1) == ABS(var2) |
| 8690 | * 1 for ABS(var1) > ABS(var2) |
| 8691 | * ---------- |
| 8692 | */ |
| 8693 | static int |
| 8694 | cmp_abs(const NumericVar *var1, const NumericVar *var2) |
| 8695 | { |
| 8696 | return cmp_abs_common(var1->digits, var1->ndigits, var1->weight, |
| 8697 | var2->digits, var2->ndigits, var2->weight); |
| 8698 | } |
| 8699 | |
| 8700 | /* ---------- |
| 8701 | * cmp_abs_common() - |
| 8702 | * |
| 8703 | * Main routine of cmp_abs(). This function can be used by both |
| 8704 | * NumericVar and Numeric. |
| 8705 | * ---------- |
| 8706 | */ |
| 8707 | static int |
| 8708 | cmp_abs_common(const NumericDigit *var1digits, int var1ndigits, int var1weight, |
| 8709 | const NumericDigit *var2digits, int var2ndigits, int var2weight) |
| 8710 | { |
| 8711 | int i1 = 0; |
| 8712 | int i2 = 0; |
| 8713 | |
| 8714 | /* Check any digits before the first common digit */ |
| 8715 | |
| 8716 | while (var1weight > var2weight && i1 < var1ndigits) |
| 8717 | { |
| 8718 | if (var1digits[i1++] != 0) |
| 8719 | return 1; |
| 8720 | var1weight--; |
| 8721 | } |
| 8722 | while (var2weight > var1weight && i2 < var2ndigits) |
| 8723 | { |
| 8724 | if (var2digits[i2++] != 0) |
| 8725 | return -1; |
| 8726 | var2weight--; |
| 8727 | } |
| 8728 | |
| 8729 | /* At this point, either w1 == w2 or we've run out of digits */ |
| 8730 | |
| 8731 | if (var1weight == var2weight) |
| 8732 | { |
| 8733 | while (i1 < var1ndigits && i2 < var2ndigits) |
| 8734 | { |
| 8735 | int stat = var1digits[i1++] - var2digits[i2++]; |
| 8736 | |
| 8737 | if (stat) |
| 8738 | { |
| 8739 | if (stat > 0) |
| 8740 | return 1; |
| 8741 | return -1; |
| 8742 | } |
| 8743 | } |
| 8744 | } |
| 8745 | |
| 8746 | /* |
| 8747 | * At this point, we've run out of digits on one side or the other; so any |
| 8748 | * remaining nonzero digits imply that side is larger |
| 8749 | */ |
| 8750 | while (i1 < var1ndigits) |
| 8751 | { |
| 8752 | if (var1digits[i1++] != 0) |
| 8753 | return 1; |
| 8754 | } |
| 8755 | while (i2 < var2ndigits) |
| 8756 | { |
| 8757 | if (var2digits[i2++] != 0) |
| 8758 | return -1; |
| 8759 | } |
| 8760 | |
| 8761 | return 0; |
| 8762 | } |
| 8763 | |
| 8764 | |
| 8765 | /* |
| 8766 | * add_abs() - |
| 8767 | * |
| 8768 | * Add the absolute values of two variables into result. |
| 8769 | * result might point to one of the operands without danger. |
| 8770 | */ |
| 8771 | static void |
| 8772 | add_abs(const NumericVar *var1, const NumericVar *var2, NumericVar *result) |
| 8773 | { |
| 8774 | NumericDigit *res_buf; |
| 8775 | NumericDigit *res_digits; |
| 8776 | int res_ndigits; |
| 8777 | int res_weight; |
| 8778 | int res_rscale, |
| 8779 | rscale1, |
| 8780 | rscale2; |
| 8781 | int res_dscale; |
| 8782 | int i, |
| 8783 | i1, |
| 8784 | i2; |
| 8785 | int carry = 0; |
| 8786 | |
| 8787 | /* copy these values into local vars for speed in inner loop */ |
| 8788 | int var1ndigits = var1->ndigits; |
| 8789 | int var2ndigits = var2->ndigits; |
| 8790 | NumericDigit *var1digits = var1->digits; |
| 8791 | NumericDigit *var2digits = var2->digits; |
| 8792 | |
| 8793 | res_weight = Max(var1->weight, var2->weight) + 1; |
| 8794 | |
| 8795 | res_dscale = Max(var1->dscale, var2->dscale); |
| 8796 | |
| 8797 | /* Note: here we are figuring rscale in base-NBASE digits */ |
| 8798 | rscale1 = var1->ndigits - var1->weight - 1; |
| 8799 | rscale2 = var2->ndigits - var2->weight - 1; |
| 8800 | res_rscale = Max(rscale1, rscale2); |
| 8801 | |
| 8802 | res_ndigits = res_rscale + res_weight + 1; |
| 8803 | if (res_ndigits <= 0) |
| 8804 | res_ndigits = 1; |
| 8805 | |
| 8806 | res_buf = digitbuf_alloc(res_ndigits + 1); |
| 8807 | res_buf[0] = 0; /* spare digit for later rounding */ |
| 8808 | res_digits = res_buf + 1; |
| 8809 | |
| 8810 | i1 = res_rscale + var1->weight + 1; |
| 8811 | i2 = res_rscale + var2->weight + 1; |
| 8812 | for (i = res_ndigits - 1; i >= 0; i--) |
| 8813 | { |
| 8814 | i1--; |
| 8815 | i2--; |
| 8816 | if (i1 >= 0 && i1 < var1ndigits) |
| 8817 | carry += var1digits[i1]; |
| 8818 | if (i2 >= 0 && i2 < var2ndigits) |
| 8819 | carry += var2digits[i2]; |
| 8820 | |
| 8821 | if (carry >= NBASE) |
| 8822 | { |
| 8823 | res_digits[i] = carry - NBASE; |
| 8824 | carry = 1; |
| 8825 | } |
| 8826 | else |
| 8827 | { |
| 8828 | res_digits[i] = carry; |
| 8829 | carry = 0; |
| 8830 | } |
| 8831 | } |
| 8832 | |
| 8833 | Assert(carry == 0); /* else we failed to allow for carry out */ |
| 8834 | |
| 8835 | digitbuf_free(result->buf); |
| 8836 | result->ndigits = res_ndigits; |
| 8837 | result->buf = res_buf; |
| 8838 | result->digits = res_digits; |
| 8839 | result->weight = res_weight; |
| 8840 | result->dscale = res_dscale; |
| 8841 | |
| 8842 | /* Remove leading/trailing zeroes */ |
| 8843 | strip_var(result); |
| 8844 | } |
| 8845 | |
| 8846 | |
| 8847 | /* |
| 8848 | * sub_abs() |
| 8849 | * |
| 8850 | * Subtract the absolute value of var2 from the absolute value of var1 |
| 8851 | * and store in result. result might point to one of the operands |
| 8852 | * without danger. |
| 8853 | * |
| 8854 | * ABS(var1) MUST BE GREATER OR EQUAL ABS(var2) !!! |
| 8855 | */ |
| 8856 | static void |
| 8857 | sub_abs(const NumericVar *var1, const NumericVar *var2, NumericVar *result) |
| 8858 | { |
| 8859 | NumericDigit *res_buf; |
| 8860 | NumericDigit *res_digits; |
| 8861 | int res_ndigits; |
| 8862 | int res_weight; |
| 8863 | int res_rscale, |
| 8864 | rscale1, |
| 8865 | rscale2; |
| 8866 | int res_dscale; |
| 8867 | int i, |
| 8868 | i1, |
| 8869 | i2; |
| 8870 | int borrow = 0; |
| 8871 | |
| 8872 | /* copy these values into local vars for speed in inner loop */ |
| 8873 | int var1ndigits = var1->ndigits; |
| 8874 | int var2ndigits = var2->ndigits; |
| 8875 | NumericDigit *var1digits = var1->digits; |
| 8876 | NumericDigit *var2digits = var2->digits; |
| 8877 | |
| 8878 | res_weight = var1->weight; |
| 8879 | |
| 8880 | res_dscale = Max(var1->dscale, var2->dscale); |
| 8881 | |
| 8882 | /* Note: here we are figuring rscale in base-NBASE digits */ |
| 8883 | rscale1 = var1->ndigits - var1->weight - 1; |
| 8884 | rscale2 = var2->ndigits - var2->weight - 1; |
| 8885 | res_rscale = Max(rscale1, rscale2); |
| 8886 | |
| 8887 | res_ndigits = res_rscale + res_weight + 1; |
| 8888 | if (res_ndigits <= 0) |
| 8889 | res_ndigits = 1; |
| 8890 | |
| 8891 | res_buf = digitbuf_alloc(res_ndigits + 1); |
| 8892 | res_buf[0] = 0; /* spare digit for later rounding */ |
| 8893 | res_digits = res_buf + 1; |
| 8894 | |
| 8895 | i1 = res_rscale + var1->weight + 1; |
| 8896 | i2 = res_rscale + var2->weight + 1; |
| 8897 | for (i = res_ndigits - 1; i >= 0; i--) |
| 8898 | { |
| 8899 | i1--; |
| 8900 | i2--; |
| 8901 | if (i1 >= 0 && i1 < var1ndigits) |
| 8902 | borrow += var1digits[i1]; |
| 8903 | if (i2 >= 0 && i2 < var2ndigits) |
| 8904 | borrow -= var2digits[i2]; |
| 8905 | |
| 8906 | if (borrow < 0) |
| 8907 | { |
| 8908 | res_digits[i] = borrow + NBASE; |
| 8909 | borrow = -1; |
| 8910 | } |
| 8911 | else |
| 8912 | { |
| 8913 | res_digits[i] = borrow; |
| 8914 | borrow = 0; |
| 8915 | } |
| 8916 | } |
| 8917 | |
| 8918 | Assert(borrow == 0); /* else caller gave us var1 < var2 */ |
| 8919 | |
| 8920 | digitbuf_free(result->buf); |
| 8921 | result->ndigits = res_ndigits; |
| 8922 | result->buf = res_buf; |
| 8923 | result->digits = res_digits; |
| 8924 | result->weight = res_weight; |
| 8925 | result->dscale = res_dscale; |
| 8926 | |
| 8927 | /* Remove leading/trailing zeroes */ |
| 8928 | strip_var(result); |
| 8929 | } |
| 8930 | |
| 8931 | /* |
| 8932 | * round_var |
| 8933 | * |
| 8934 | * Round the value of a variable to no more than rscale decimal digits |
| 8935 | * after the decimal point. NOTE: we allow rscale < 0 here, implying |
| 8936 | * rounding before the decimal point. |
| 8937 | */ |
| 8938 | static void |
| 8939 | round_var(NumericVar *var, int rscale) |
| 8940 | { |
| 8941 | NumericDigit *digits = var->digits; |
| 8942 | int di; |
| 8943 | int ndigits; |
| 8944 | int carry; |
| 8945 | |
| 8946 | var->dscale = rscale; |
| 8947 | |
| 8948 | /* decimal digits wanted */ |
| 8949 | di = (var->weight + 1) * DEC_DIGITS + rscale; |
| 8950 | |
| 8951 | /* |
| 8952 | * If di = 0, the value loses all digits, but could round up to 1 if its |
| 8953 | * first extra digit is >= 5. If di < 0 the result must be 0. |
| 8954 | */ |
| 8955 | if (di < 0) |
| 8956 | { |
| 8957 | var->ndigits = 0; |
| 8958 | var->weight = 0; |
| 8959 | var->sign = NUMERIC_POS; |
| 8960 | } |
| 8961 | else |
| 8962 | { |
| 8963 | /* NBASE digits wanted */ |
| 8964 | ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS; |
| 8965 | |
| 8966 | /* 0, or number of decimal digits to keep in last NBASE digit */ |
| 8967 | di %= DEC_DIGITS; |
| 8968 | |
| 8969 | if (ndigits < var->ndigits || |
| 8970 | (ndigits == var->ndigits && di > 0)) |
| 8971 | { |
| 8972 | var->ndigits = ndigits; |
| 8973 | |
| 8974 | #if DEC_DIGITS == 1 |
| 8975 | /* di must be zero */ |
| 8976 | carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0; |
| 8977 | #else |
| 8978 | if (di == 0) |
| 8979 | carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0; |
| 8980 | else |
| 8981 | { |
| 8982 | /* Must round within last NBASE digit */ |
| 8983 | int , |
| 8984 | pow10; |
| 8985 | |
| 8986 | #if DEC_DIGITS == 4 |
| 8987 | pow10 = round_powers[di]; |
| 8988 | #elif DEC_DIGITS == 2 |
| 8989 | pow10 = 10; |
| 8990 | #else |
| 8991 | #error unsupported NBASE |
| 8992 | #endif |
| 8993 | extra = digits[--ndigits] % pow10; |
| 8994 | digits[ndigits] -= extra; |
| 8995 | carry = 0; |
| 8996 | if (extra >= pow10 / 2) |
| 8997 | { |
| 8998 | pow10 += digits[ndigits]; |
| 8999 | if (pow10 >= NBASE) |
| 9000 | { |
| 9001 | pow10 -= NBASE; |
| 9002 | carry = 1; |
| 9003 | } |
| 9004 | digits[ndigits] = pow10; |
| 9005 | } |
| 9006 | } |
| 9007 | #endif |
| 9008 | |
| 9009 | /* Propagate carry if needed */ |
| 9010 | while (carry) |
| 9011 | { |
| 9012 | carry += digits[--ndigits]; |
| 9013 | if (carry >= NBASE) |
| 9014 | { |
| 9015 | digits[ndigits] = carry - NBASE; |
| 9016 | carry = 1; |
| 9017 | } |
| 9018 | else |
| 9019 | { |
| 9020 | digits[ndigits] = carry; |
| 9021 | carry = 0; |
| 9022 | } |
| 9023 | } |
| 9024 | |
| 9025 | if (ndigits < 0) |
| 9026 | { |
| 9027 | Assert(ndigits == -1); /* better not have added > 1 digit */ |
| 9028 | Assert(var->digits > var->buf); |
| 9029 | var->digits--; |
| 9030 | var->ndigits++; |
| 9031 | var->weight++; |
| 9032 | } |
| 9033 | } |
| 9034 | } |
| 9035 | } |
| 9036 | |
| 9037 | /* |
| 9038 | * trunc_var |
| 9039 | * |
| 9040 | * Truncate (towards zero) the value of a variable at rscale decimal digits |
| 9041 | * after the decimal point. NOTE: we allow rscale < 0 here, implying |
| 9042 | * truncation before the decimal point. |
| 9043 | */ |
| 9044 | static void |
| 9045 | trunc_var(NumericVar *var, int rscale) |
| 9046 | { |
| 9047 | int di; |
| 9048 | int ndigits; |
| 9049 | |
| 9050 | var->dscale = rscale; |
| 9051 | |
| 9052 | /* decimal digits wanted */ |
| 9053 | di = (var->weight + 1) * DEC_DIGITS + rscale; |
| 9054 | |
| 9055 | /* |
| 9056 | * If di <= 0, the value loses all digits. |
| 9057 | */ |
| 9058 | if (di <= 0) |
| 9059 | { |
| 9060 | var->ndigits = 0; |
| 9061 | var->weight = 0; |
| 9062 | var->sign = NUMERIC_POS; |
| 9063 | } |
| 9064 | else |
| 9065 | { |
| 9066 | /* NBASE digits wanted */ |
| 9067 | ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS; |
| 9068 | |
| 9069 | if (ndigits <= var->ndigits) |
| 9070 | { |
| 9071 | var->ndigits = ndigits; |
| 9072 | |
| 9073 | #if DEC_DIGITS == 1 |
| 9074 | /* no within-digit stuff to worry about */ |
| 9075 | #else |
| 9076 | /* 0, or number of decimal digits to keep in last NBASE digit */ |
| 9077 | di %= DEC_DIGITS; |
| 9078 | |
| 9079 | if (di > 0) |
| 9080 | { |
| 9081 | /* Must truncate within last NBASE digit */ |
| 9082 | NumericDigit *digits = var->digits; |
| 9083 | int , |
| 9084 | pow10; |
| 9085 | |
| 9086 | #if DEC_DIGITS == 4 |
| 9087 | pow10 = round_powers[di]; |
| 9088 | #elif DEC_DIGITS == 2 |
| 9089 | pow10 = 10; |
| 9090 | #else |
| 9091 | #error unsupported NBASE |
| 9092 | #endif |
| 9093 | extra = digits[--ndigits] % pow10; |
| 9094 | digits[ndigits] -= extra; |
| 9095 | } |
| 9096 | #endif |
| 9097 | } |
| 9098 | } |
| 9099 | } |
| 9100 | |
| 9101 | /* |
| 9102 | * strip_var |
| 9103 | * |
| 9104 | * Strip any leading and trailing zeroes from a numeric variable |
| 9105 | */ |
| 9106 | static void |
| 9107 | strip_var(NumericVar *var) |
| 9108 | { |
| 9109 | NumericDigit *digits = var->digits; |
| 9110 | int ndigits = var->ndigits; |
| 9111 | |
| 9112 | /* Strip leading zeroes */ |
| 9113 | while (ndigits > 0 && *digits == 0) |
| 9114 | { |
| 9115 | digits++; |
| 9116 | var->weight--; |
| 9117 | ndigits--; |
| 9118 | } |
| 9119 | |
| 9120 | /* Strip trailing zeroes */ |
| 9121 | while (ndigits > 0 && digits[ndigits - 1] == 0) |
| 9122 | ndigits--; |
| 9123 | |
| 9124 | /* If it's zero, normalize the sign and weight */ |
| 9125 | if (ndigits == 0) |
| 9126 | { |
| 9127 | var->sign = NUMERIC_POS; |
| 9128 | var->weight = 0; |
| 9129 | } |
| 9130 | |
| 9131 | var->digits = digits; |
| 9132 | var->ndigits = ndigits; |
| 9133 | } |
| 9134 | |
| 9135 | |
| 9136 | /* ---------------------------------------------------------------------- |
| 9137 | * |
| 9138 | * Fast sum accumulator functions |
| 9139 | * |
| 9140 | * ---------------------------------------------------------------------- |
| 9141 | */ |
| 9142 | |
| 9143 | /* |
| 9144 | * Reset the accumulator's value to zero. The buffers to hold the digits |
| 9145 | * are not free'd. |
| 9146 | */ |
| 9147 | static void |
| 9148 | accum_sum_reset(NumericSumAccum *accum) |
| 9149 | { |
| 9150 | int i; |
| 9151 | |
| 9152 | accum->dscale = 0; |
| 9153 | for (i = 0; i < accum->ndigits; i++) |
| 9154 | { |
| 9155 | accum->pos_digits[i] = 0; |
| 9156 | accum->neg_digits[i] = 0; |
| 9157 | } |
| 9158 | } |
| 9159 | |
| 9160 | /* |
| 9161 | * Accumulate a new value. |
| 9162 | */ |
| 9163 | static void |
| 9164 | accum_sum_add(NumericSumAccum *accum, const NumericVar *val) |
| 9165 | { |
| 9166 | int32 *accum_digits; |
| 9167 | int i, |
| 9168 | val_i; |
| 9169 | int val_ndigits; |
| 9170 | NumericDigit *val_digits; |
| 9171 | |
| 9172 | /* |
| 9173 | * If we have accumulated too many values since the last carry |
| 9174 | * propagation, do it now, to avoid overflowing. (We could allow more |
| 9175 | * than NBASE - 1, if we reserved two extra digits, rather than one, for |
| 9176 | * carry propagation. But even with NBASE - 1, this needs to be done so |
| 9177 | * seldom, that the performance difference is negligible.) |
| 9178 | */ |
| 9179 | if (accum->num_uncarried == NBASE - 1) |
| 9180 | accum_sum_carry(accum); |
| 9181 | |
| 9182 | /* |
| 9183 | * Adjust the weight or scale of the old value, so that it can accommodate |
| 9184 | * the new value. |
| 9185 | */ |
| 9186 | accum_sum_rescale(accum, val); |
| 9187 | |
| 9188 | /* */ |
| 9189 | if (val->sign == NUMERIC_POS) |
| 9190 | accum_digits = accum->pos_digits; |
| 9191 | else |
| 9192 | accum_digits = accum->neg_digits; |
| 9193 | |
| 9194 | /* copy these values into local vars for speed in loop */ |
| 9195 | val_ndigits = val->ndigits; |
| 9196 | val_digits = val->digits; |
| 9197 | |
| 9198 | i = accum->weight - val->weight; |
| 9199 | for (val_i = 0; val_i < val_ndigits; val_i++) |
| 9200 | { |
| 9201 | accum_digits[i] += (int32) val_digits[val_i]; |
| 9202 | i++; |
| 9203 | } |
| 9204 | |
| 9205 | accum->num_uncarried++; |
| 9206 | } |
| 9207 | |
| 9208 | /* |
| 9209 | * Propagate carries. |
| 9210 | */ |
| 9211 | static void |
| 9212 | accum_sum_carry(NumericSumAccum *accum) |
| 9213 | { |
| 9214 | int i; |
| 9215 | int ndigits; |
| 9216 | int32 *dig; |
| 9217 | int32 carry; |
| 9218 | int32 newdig = 0; |
| 9219 | |
| 9220 | /* |
| 9221 | * If no new values have been added since last carry propagation, nothing |
| 9222 | * to do. |
| 9223 | */ |
| 9224 | if (accum->num_uncarried == 0) |
| 9225 | return; |
| 9226 | |
| 9227 | /* |
| 9228 | * We maintain that the weight of the accumulator is always one larger |
| 9229 | * than needed to hold the current value, before carrying, to make sure |
| 9230 | * there is enough space for the possible extra digit when carry is |
| 9231 | * propagated. We cannot expand the buffer here, unless we require |
| 9232 | * callers of accum_sum_final() to switch to the right memory context. |
| 9233 | */ |
| 9234 | Assert(accum->pos_digits[0] == 0 && accum->neg_digits[0] == 0); |
| 9235 | |
| 9236 | ndigits = accum->ndigits; |
| 9237 | |
| 9238 | /* Propagate carry in the positive sum */ |
| 9239 | dig = accum->pos_digits; |
| 9240 | carry = 0; |
| 9241 | for (i = ndigits - 1; i >= 0; i--) |
| 9242 | { |
| 9243 | newdig = dig[i] + carry; |
| 9244 | if (newdig >= NBASE) |
| 9245 | { |
| 9246 | carry = newdig / NBASE; |
| 9247 | newdig -= carry * NBASE; |
| 9248 | } |
| 9249 | else |
| 9250 | carry = 0; |
| 9251 | dig[i] = newdig; |
| 9252 | } |
| 9253 | /* Did we use up the digit reserved for carry propagation? */ |
| 9254 | if (newdig > 0) |
| 9255 | accum->have_carry_space = false; |
| 9256 | |
| 9257 | /* And the same for the negative sum */ |
| 9258 | dig = accum->neg_digits; |
| 9259 | carry = 0; |
| 9260 | for (i = ndigits - 1; i >= 0; i--) |
| 9261 | { |
| 9262 | newdig = dig[i] + carry; |
| 9263 | if (newdig >= NBASE) |
| 9264 | { |
| 9265 | carry = newdig / NBASE; |
| 9266 | newdig -= carry * NBASE; |
| 9267 | } |
| 9268 | else |
| 9269 | carry = 0; |
| 9270 | dig[i] = newdig; |
| 9271 | } |
| 9272 | if (newdig > 0) |
| 9273 | accum->have_carry_space = false; |
| 9274 | |
| 9275 | accum->num_uncarried = 0; |
| 9276 | } |
| 9277 | |
| 9278 | /* |
| 9279 | * Re-scale accumulator to accommodate new value. |
| 9280 | * |
| 9281 | * If the new value has more digits than the current digit buffers in the |
| 9282 | * accumulator, enlarge the buffers. |
| 9283 | */ |
| 9284 | static void |
| 9285 | accum_sum_rescale(NumericSumAccum *accum, const NumericVar *val) |
| 9286 | { |
| 9287 | int old_weight = accum->weight; |
| 9288 | int old_ndigits = accum->ndigits; |
| 9289 | int accum_ndigits; |
| 9290 | int accum_weight; |
| 9291 | int accum_rscale; |
| 9292 | int val_rscale; |
| 9293 | |
| 9294 | accum_weight = old_weight; |
| 9295 | accum_ndigits = old_ndigits; |
| 9296 | |
| 9297 | /* |
| 9298 | * Does the new value have a larger weight? If so, enlarge the buffers, |
| 9299 | * and shift the existing value to the new weight, by adding leading |
| 9300 | * zeros. |
| 9301 | * |
| 9302 | * We enforce that the accumulator always has a weight one larger than |
| 9303 | * needed for the inputs, so that we have space for an extra digit at the |
| 9304 | * final carry-propagation phase, if necessary. |
| 9305 | */ |
| 9306 | if (val->weight >= accum_weight) |
| 9307 | { |
| 9308 | accum_weight = val->weight + 1; |
| 9309 | accum_ndigits = accum_ndigits + (accum_weight - old_weight); |
| 9310 | } |
| 9311 | |
| 9312 | /* |
| 9313 | * Even though the new value is small, we might've used up the space |
| 9314 | * reserved for the carry digit in the last call to accum_sum_carry(). If |
| 9315 | * so, enlarge to make room for another one. |
| 9316 | */ |
| 9317 | else if (!accum->have_carry_space) |
| 9318 | { |
| 9319 | accum_weight++; |
| 9320 | accum_ndigits++; |
| 9321 | } |
| 9322 | |
| 9323 | /* Is the new value wider on the right side? */ |
| 9324 | accum_rscale = accum_ndigits - accum_weight - 1; |
| 9325 | val_rscale = val->ndigits - val->weight - 1; |
| 9326 | if (val_rscale > accum_rscale) |
| 9327 | accum_ndigits = accum_ndigits + (val_rscale - accum_rscale); |
| 9328 | |
| 9329 | if (accum_ndigits != old_ndigits || |
| 9330 | accum_weight != old_weight) |
| 9331 | { |
| 9332 | int32 *new_pos_digits; |
| 9333 | int32 *new_neg_digits; |
| 9334 | int weightdiff; |
| 9335 | |
| 9336 | weightdiff = accum_weight - old_weight; |
| 9337 | |
| 9338 | new_pos_digits = palloc0(accum_ndigits * sizeof(int32)); |
| 9339 | new_neg_digits = palloc0(accum_ndigits * sizeof(int32)); |
| 9340 | |
| 9341 | if (accum->pos_digits) |
| 9342 | { |
| 9343 | memcpy(&new_pos_digits[weightdiff], accum->pos_digits, |
| 9344 | old_ndigits * sizeof(int32)); |
| 9345 | pfree(accum->pos_digits); |
| 9346 | |
| 9347 | memcpy(&new_neg_digits[weightdiff], accum->neg_digits, |
| 9348 | old_ndigits * sizeof(int32)); |
| 9349 | pfree(accum->neg_digits); |
| 9350 | } |
| 9351 | |
| 9352 | accum->pos_digits = new_pos_digits; |
| 9353 | accum->neg_digits = new_neg_digits; |
| 9354 | |
| 9355 | accum->weight = accum_weight; |
| 9356 | accum->ndigits = accum_ndigits; |
| 9357 | |
| 9358 | Assert(accum->pos_digits[0] == 0 && accum->neg_digits[0] == 0); |
| 9359 | accum->have_carry_space = true; |
| 9360 | } |
| 9361 | |
| 9362 | if (val->dscale > accum->dscale) |
| 9363 | accum->dscale = val->dscale; |
| 9364 | } |
| 9365 | |
| 9366 | /* |
| 9367 | * Return the current value of the accumulator. This perform final carry |
| 9368 | * propagation, and adds together the positive and negative sums. |
| 9369 | * |
| 9370 | * Unlike all the other routines, the caller is not required to switch to |
| 9371 | * the memory context that holds the accumulator. |
| 9372 | */ |
| 9373 | static void |
| 9374 | accum_sum_final(NumericSumAccum *accum, NumericVar *result) |
| 9375 | { |
| 9376 | int i; |
| 9377 | NumericVar pos_var; |
| 9378 | NumericVar neg_var; |
| 9379 | |
| 9380 | if (accum->ndigits == 0) |
| 9381 | { |
| 9382 | set_var_from_var(&const_zero, result); |
| 9383 | return; |
| 9384 | } |
| 9385 | |
| 9386 | /* Perform final carry */ |
| 9387 | accum_sum_carry(accum); |
| 9388 | |
| 9389 | /* Create NumericVars representing the positive and negative sums */ |
| 9390 | init_var(&pos_var); |
| 9391 | init_var(&neg_var); |
| 9392 | |
| 9393 | pos_var.ndigits = neg_var.ndigits = accum->ndigits; |
| 9394 | pos_var.weight = neg_var.weight = accum->weight; |
| 9395 | pos_var.dscale = neg_var.dscale = accum->dscale; |
| 9396 | pos_var.sign = NUMERIC_POS; |
| 9397 | neg_var.sign = NUMERIC_NEG; |
| 9398 | |
| 9399 | pos_var.buf = pos_var.digits = digitbuf_alloc(accum->ndigits); |
| 9400 | neg_var.buf = neg_var.digits = digitbuf_alloc(accum->ndigits); |
| 9401 | |
| 9402 | for (i = 0; i < accum->ndigits; i++) |
| 9403 | { |
| 9404 | Assert(accum->pos_digits[i] < NBASE); |
| 9405 | pos_var.digits[i] = (int16) accum->pos_digits[i]; |
| 9406 | |
| 9407 | Assert(accum->neg_digits[i] < NBASE); |
| 9408 | neg_var.digits[i] = (int16) accum->neg_digits[i]; |
| 9409 | } |
| 9410 | |
| 9411 | /* And add them together */ |
| 9412 | add_var(&pos_var, &neg_var, result); |
| 9413 | |
| 9414 | /* Remove leading/trailing zeroes */ |
| 9415 | strip_var(result); |
| 9416 | } |
| 9417 | |
| 9418 | /* |
| 9419 | * Copy an accumulator's state. |
| 9420 | * |
| 9421 | * 'dst' is assumed to be uninitialized beforehand. No attempt is made at |
| 9422 | * freeing old values. |
| 9423 | */ |
| 9424 | static void |
| 9425 | accum_sum_copy(NumericSumAccum *dst, NumericSumAccum *src) |
| 9426 | { |
| 9427 | dst->pos_digits = palloc(src->ndigits * sizeof(int32)); |
| 9428 | dst->neg_digits = palloc(src->ndigits * sizeof(int32)); |
| 9429 | |
| 9430 | memcpy(dst->pos_digits, src->pos_digits, src->ndigits * sizeof(int32)); |
| 9431 | memcpy(dst->neg_digits, src->neg_digits, src->ndigits * sizeof(int32)); |
| 9432 | dst->num_uncarried = src->num_uncarried; |
| 9433 | dst->ndigits = src->ndigits; |
| 9434 | dst->weight = src->weight; |
| 9435 | dst->dscale = src->dscale; |
| 9436 | } |
| 9437 | |
| 9438 | /* |
| 9439 | * Add the current value of 'accum2' into 'accum'. |
| 9440 | */ |
| 9441 | static void |
| 9442 | accum_sum_combine(NumericSumAccum *accum, NumericSumAccum *accum2) |
| 9443 | { |
| 9444 | NumericVar tmp_var; |
| 9445 | |
| 9446 | init_var(&tmp_var); |
| 9447 | |
| 9448 | accum_sum_final(accum2, &tmp_var); |
| 9449 | accum_sum_add(accum, &tmp_var); |
| 9450 | |
| 9451 | free_var(&tmp_var); |
| 9452 | } |
| 9453 | |