| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * rangetypes_selfuncs.c |
| 4 | * Functions for selectivity estimation of range operators |
| 5 | * |
| 6 | * Estimates are based on histograms of lower and upper bounds, and the |
| 7 | * fraction of empty ranges. |
| 8 | * |
| 9 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 10 | * Portions Copyright (c) 1994, Regents of the University of California |
| 11 | * |
| 12 | * |
| 13 | * IDENTIFICATION |
| 14 | * src/backend/utils/adt/rangetypes_selfuncs.c |
| 15 | * |
| 16 | *------------------------------------------------------------------------- |
| 17 | */ |
| 18 | #include "postgres.h" |
| 19 | |
| 20 | #include <math.h> |
| 21 | |
| 22 | #include "access/htup_details.h" |
| 23 | #include "catalog/pg_operator.h" |
| 24 | #include "catalog/pg_statistic.h" |
| 25 | #include "catalog/pg_type.h" |
| 26 | #include "utils/float.h" |
| 27 | #include "utils/fmgrprotos.h" |
| 28 | #include "utils/lsyscache.h" |
| 29 | #include "utils/rangetypes.h" |
| 30 | #include "utils/selfuncs.h" |
| 31 | #include "utils/typcache.h" |
| 32 | |
| 33 | static double calc_rangesel(TypeCacheEntry *typcache, VariableStatData *vardata, |
| 34 | RangeType *constval, Oid operator); |
| 35 | static double default_range_selectivity(Oid operator); |
| 36 | static double calc_hist_selectivity(TypeCacheEntry *typcache, |
| 37 | VariableStatData *vardata, RangeType *constval, |
| 38 | Oid operator); |
| 39 | static double calc_hist_selectivity_scalar(TypeCacheEntry *typcache, |
| 40 | RangeBound *constbound, |
| 41 | RangeBound *hist, int hist_nvalues, |
| 42 | bool equal); |
| 43 | static int rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value, |
| 44 | RangeBound *hist, int hist_length, bool equal); |
| 45 | static float8 get_position(TypeCacheEntry *typcache, RangeBound *value, |
| 46 | RangeBound *hist1, RangeBound *hist2); |
| 47 | static float8 get_len_position(double value, double hist1, double hist2); |
| 48 | static float8 get_distance(TypeCacheEntry *typcache, RangeBound *bound1, |
| 49 | RangeBound *bound2); |
| 50 | static int length_hist_bsearch(Datum *length_hist_values, |
| 51 | int length_hist_nvalues, double value, bool equal); |
| 52 | static double calc_length_hist_frac(Datum *length_hist_values, |
| 53 | int length_hist_nvalues, double length1, double length2, bool equal); |
| 54 | static double calc_hist_selectivity_contained(TypeCacheEntry *typcache, |
| 55 | RangeBound *lower, RangeBound *upper, |
| 56 | RangeBound *hist_lower, int hist_nvalues, |
| 57 | Datum *length_hist_values, int length_hist_nvalues); |
| 58 | static double calc_hist_selectivity_contains(TypeCacheEntry *typcache, |
| 59 | RangeBound *lower, RangeBound *upper, |
| 60 | RangeBound *hist_lower, int hist_nvalues, |
| 61 | Datum *length_hist_values, int length_hist_nvalues); |
| 62 | |
| 63 | /* |
| 64 | * Returns a default selectivity estimate for given operator, when we don't |
| 65 | * have statistics or cannot use them for some reason. |
| 66 | */ |
| 67 | static double |
| 68 | default_range_selectivity(Oid operator) |
| 69 | { |
| 70 | switch (operator) |
| 71 | { |
| 72 | case OID_RANGE_OVERLAP_OP: |
| 73 | return 0.01; |
| 74 | |
| 75 | case OID_RANGE_CONTAINS_OP: |
| 76 | case OID_RANGE_CONTAINED_OP: |
| 77 | return 0.005; |
| 78 | |
| 79 | case OID_RANGE_CONTAINS_ELEM_OP: |
| 80 | case OID_RANGE_ELEM_CONTAINED_OP: |
| 81 | |
| 82 | /* |
| 83 | * "range @> elem" is more or less identical to a scalar |
| 84 | * inequality "A >= b AND A <= c". |
| 85 | */ |
| 86 | return DEFAULT_RANGE_INEQ_SEL; |
| 87 | |
| 88 | case OID_RANGE_LESS_OP: |
| 89 | case OID_RANGE_LESS_EQUAL_OP: |
| 90 | case OID_RANGE_GREATER_OP: |
| 91 | case OID_RANGE_GREATER_EQUAL_OP: |
| 92 | case OID_RANGE_LEFT_OP: |
| 93 | case OID_RANGE_RIGHT_OP: |
| 94 | case OID_RANGE_OVERLAPS_LEFT_OP: |
| 95 | case OID_RANGE_OVERLAPS_RIGHT_OP: |
| 96 | /* these are similar to regular scalar inequalities */ |
| 97 | return DEFAULT_INEQ_SEL; |
| 98 | |
| 99 | default: |
| 100 | /* all range operators should be handled above, but just in case */ |
| 101 | return 0.01; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * rangesel -- restriction selectivity for range operators |
| 107 | */ |
| 108 | Datum |
| 109 | rangesel(PG_FUNCTION_ARGS) |
| 110 | { |
| 111 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 112 | Oid operator = PG_GETARG_OID(1); |
| 113 | List *args = (List *) PG_GETARG_POINTER(2); |
| 114 | int varRelid = PG_GETARG_INT32(3); |
| 115 | VariableStatData vardata; |
| 116 | Node *other; |
| 117 | bool varonleft; |
| 118 | Selectivity selec; |
| 119 | TypeCacheEntry *typcache = NULL; |
| 120 | RangeType *constrange = NULL; |
| 121 | |
| 122 | /* |
| 123 | * If expression is not (variable op something) or (something op |
| 124 | * variable), then punt and return a default estimate. |
| 125 | */ |
| 126 | if (!get_restriction_variable(root, args, varRelid, |
| 127 | &vardata, &other, &varonleft)) |
| 128 | PG_RETURN_FLOAT8(default_range_selectivity(operator)); |
| 129 | |
| 130 | /* |
| 131 | * Can't do anything useful if the something is not a constant, either. |
| 132 | */ |
| 133 | if (!IsA(other, Const)) |
| 134 | { |
| 135 | ReleaseVariableStats(vardata); |
| 136 | PG_RETURN_FLOAT8(default_range_selectivity(operator)); |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * All the range operators are strict, so we can cope with a NULL constant |
| 141 | * right away. |
| 142 | */ |
| 143 | if (((Const *) other)->constisnull) |
| 144 | { |
| 145 | ReleaseVariableStats(vardata); |
| 146 | PG_RETURN_FLOAT8(0.0); |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | * If var is on the right, commute the operator, so that we can assume the |
| 151 | * var is on the left in what follows. |
| 152 | */ |
| 153 | if (!varonleft) |
| 154 | { |
| 155 | /* we have other Op var, commute to make var Op other */ |
| 156 | operator = get_commutator(operator); |
| 157 | if (!operator) |
| 158 | { |
| 159 | /* Use default selectivity (should we raise an error instead?) */ |
| 160 | ReleaseVariableStats(vardata); |
| 161 | PG_RETURN_FLOAT8(default_range_selectivity(operator)); |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * OK, there's a Var and a Const we're dealing with here. We need the |
| 167 | * Const to be of same range type as the column, else we can't do anything |
| 168 | * useful. (Such cases will likely fail at runtime, but here we'd rather |
| 169 | * just return a default estimate.) |
| 170 | * |
| 171 | * If the operator is "range @> element", the constant should be of the |
| 172 | * element type of the range column. Convert it to a range that includes |
| 173 | * only that single point, so that we don't need special handling for that |
| 174 | * in what follows. |
| 175 | */ |
| 176 | if (operator == OID_RANGE_CONTAINS_ELEM_OP) |
| 177 | { |
| 178 | typcache = range_get_typcache(fcinfo, vardata.vartype); |
| 179 | |
| 180 | if (((Const *) other)->consttype == typcache->rngelemtype->type_id) |
| 181 | { |
| 182 | RangeBound lower, |
| 183 | upper; |
| 184 | |
| 185 | lower.inclusive = true; |
| 186 | lower.val = ((Const *) other)->constvalue; |
| 187 | lower.infinite = false; |
| 188 | lower.lower = true; |
| 189 | upper.inclusive = true; |
| 190 | upper.val = ((Const *) other)->constvalue; |
| 191 | upper.infinite = false; |
| 192 | upper.lower = false; |
| 193 | constrange = range_serialize(typcache, &lower, &upper, false); |
| 194 | } |
| 195 | } |
| 196 | else if (operator == OID_RANGE_ELEM_CONTAINED_OP) |
| 197 | { |
| 198 | /* |
| 199 | * Here, the Var is the elem, not the range. For now we just punt and |
| 200 | * return the default estimate. In future we could disassemble the |
| 201 | * range constant and apply scalarineqsel ... |
| 202 | */ |
| 203 | } |
| 204 | else if (((Const *) other)->consttype == vardata.vartype) |
| 205 | { |
| 206 | /* Both sides are the same range type */ |
| 207 | typcache = range_get_typcache(fcinfo, vardata.vartype); |
| 208 | |
| 209 | constrange = DatumGetRangeTypeP(((Const *) other)->constvalue); |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * If we got a valid constant on one side of the operator, proceed to |
| 214 | * estimate using statistics. Otherwise punt and return a default constant |
| 215 | * estimate. Note that calc_rangesel need not handle |
| 216 | * OID_RANGE_ELEM_CONTAINED_OP. |
| 217 | */ |
| 218 | if (constrange) |
| 219 | selec = calc_rangesel(typcache, &vardata, constrange, operator); |
| 220 | else |
| 221 | selec = default_range_selectivity(operator); |
| 222 | |
| 223 | ReleaseVariableStats(vardata); |
| 224 | |
| 225 | CLAMP_PROBABILITY(selec); |
| 226 | |
| 227 | PG_RETURN_FLOAT8((float8) selec); |
| 228 | } |
| 229 | |
| 230 | static double |
| 231 | calc_rangesel(TypeCacheEntry *typcache, VariableStatData *vardata, |
| 232 | RangeType *constval, Oid operator) |
| 233 | { |
| 234 | double hist_selec; |
| 235 | double selec; |
| 236 | float4 empty_frac, |
| 237 | null_frac; |
| 238 | |
| 239 | /* |
| 240 | * First look up the fraction of NULLs and empty ranges from pg_statistic. |
| 241 | */ |
| 242 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 243 | { |
| 244 | Form_pg_statistic stats; |
| 245 | AttStatsSlot sslot; |
| 246 | |
| 247 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 248 | null_frac = stats->stanullfrac; |
| 249 | |
| 250 | /* Try to get fraction of empty ranges */ |
| 251 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 252 | STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM, |
| 253 | InvalidOid, |
| 254 | ATTSTATSSLOT_NUMBERS)) |
| 255 | { |
| 256 | if (sslot.nnumbers != 1) |
| 257 | elog(ERROR, "invalid empty fraction statistic" ); /* shouldn't happen */ |
| 258 | empty_frac = sslot.numbers[0]; |
| 259 | free_attstatsslot(&sslot); |
| 260 | } |
| 261 | else |
| 262 | { |
| 263 | /* No empty fraction statistic. Assume no empty ranges. */ |
| 264 | empty_frac = 0.0; |
| 265 | } |
| 266 | } |
| 267 | else |
| 268 | { |
| 269 | /* |
| 270 | * No stats are available. Follow through the calculations below |
| 271 | * anyway, assuming no NULLs and no empty ranges. This still allows us |
| 272 | * to give a better-than-nothing estimate based on whether the |
| 273 | * constant is an empty range or not. |
| 274 | */ |
| 275 | null_frac = 0.0; |
| 276 | empty_frac = 0.0; |
| 277 | } |
| 278 | |
| 279 | if (RangeIsEmpty(constval)) |
| 280 | { |
| 281 | /* |
| 282 | * An empty range matches all ranges, all empty ranges, or nothing, |
| 283 | * depending on the operator |
| 284 | */ |
| 285 | switch (operator) |
| 286 | { |
| 287 | /* these return false if either argument is empty */ |
| 288 | case OID_RANGE_OVERLAP_OP: |
| 289 | case OID_RANGE_OVERLAPS_LEFT_OP: |
| 290 | case OID_RANGE_OVERLAPS_RIGHT_OP: |
| 291 | case OID_RANGE_LEFT_OP: |
| 292 | case OID_RANGE_RIGHT_OP: |
| 293 | /* nothing is less than an empty range */ |
| 294 | case OID_RANGE_LESS_OP: |
| 295 | selec = 0.0; |
| 296 | break; |
| 297 | |
| 298 | /* only empty ranges can be contained by an empty range */ |
| 299 | case OID_RANGE_CONTAINED_OP: |
| 300 | /* only empty ranges are <= an empty range */ |
| 301 | case OID_RANGE_LESS_EQUAL_OP: |
| 302 | selec = empty_frac; |
| 303 | break; |
| 304 | |
| 305 | /* everything contains an empty range */ |
| 306 | case OID_RANGE_CONTAINS_OP: |
| 307 | /* everything is >= an empty range */ |
| 308 | case OID_RANGE_GREATER_EQUAL_OP: |
| 309 | selec = 1.0; |
| 310 | break; |
| 311 | |
| 312 | /* all non-empty ranges are > an empty range */ |
| 313 | case OID_RANGE_GREATER_OP: |
| 314 | selec = 1.0 - empty_frac; |
| 315 | break; |
| 316 | |
| 317 | /* an element cannot be empty */ |
| 318 | case OID_RANGE_CONTAINS_ELEM_OP: |
| 319 | default: |
| 320 | elog(ERROR, "unexpected operator %u" , operator); |
| 321 | selec = 0.0; /* keep compiler quiet */ |
| 322 | break; |
| 323 | } |
| 324 | } |
| 325 | else |
| 326 | { |
| 327 | /* |
| 328 | * Calculate selectivity using bound histograms. If that fails for |
| 329 | * some reason, e.g no histogram in pg_statistic, use the default |
| 330 | * constant estimate for the fraction of non-empty values. This is |
| 331 | * still somewhat better than just returning the default estimate, |
| 332 | * because this still takes into account the fraction of empty and |
| 333 | * NULL tuples, if we had statistics for them. |
| 334 | */ |
| 335 | hist_selec = calc_hist_selectivity(typcache, vardata, constval, |
| 336 | operator); |
| 337 | if (hist_selec < 0.0) |
| 338 | hist_selec = default_range_selectivity(operator); |
| 339 | |
| 340 | /* |
| 341 | * Now merge the results for the empty ranges and histogram |
| 342 | * calculations, realizing that the histogram covers only the |
| 343 | * non-null, non-empty values. |
| 344 | */ |
| 345 | if (operator == OID_RANGE_CONTAINED_OP) |
| 346 | { |
| 347 | /* empty is contained by anything non-empty */ |
| 348 | selec = (1.0 - empty_frac) * hist_selec + empty_frac; |
| 349 | } |
| 350 | else |
| 351 | { |
| 352 | /* with any other operator, empty Op non-empty matches nothing */ |
| 353 | selec = (1.0 - empty_frac) * hist_selec; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | /* all range operators are strict */ |
| 358 | selec *= (1.0 - null_frac); |
| 359 | |
| 360 | /* result should be in range, but make sure... */ |
| 361 | CLAMP_PROBABILITY(selec); |
| 362 | |
| 363 | return selec; |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * Calculate range operator selectivity using histograms of range bounds. |
| 368 | * |
| 369 | * This estimate is for the portion of values that are not empty and not |
| 370 | * NULL. |
| 371 | */ |
| 372 | static double |
| 373 | calc_hist_selectivity(TypeCacheEntry *typcache, VariableStatData *vardata, |
| 374 | RangeType *constval, Oid operator) |
| 375 | { |
| 376 | AttStatsSlot hslot; |
| 377 | AttStatsSlot lslot; |
| 378 | int nhist; |
| 379 | RangeBound *hist_lower; |
| 380 | RangeBound *hist_upper; |
| 381 | int i; |
| 382 | RangeBound const_lower; |
| 383 | RangeBound const_upper; |
| 384 | bool empty; |
| 385 | double hist_selec; |
| 386 | |
| 387 | /* Can't use the histogram with insecure range support functions */ |
| 388 | if (!statistic_proc_security_check(vardata, |
| 389 | typcache->rng_cmp_proc_finfo.fn_oid)) |
| 390 | return -1; |
| 391 | if (OidIsValid(typcache->rng_subdiff_finfo.fn_oid) && |
| 392 | !statistic_proc_security_check(vardata, |
| 393 | typcache->rng_subdiff_finfo.fn_oid)) |
| 394 | return -1; |
| 395 | |
| 396 | /* Try to get histogram of ranges */ |
| 397 | if (!(HeapTupleIsValid(vardata->statsTuple) && |
| 398 | get_attstatsslot(&hslot, vardata->statsTuple, |
| 399 | STATISTIC_KIND_BOUNDS_HISTOGRAM, InvalidOid, |
| 400 | ATTSTATSSLOT_VALUES))) |
| 401 | return -1.0; |
| 402 | |
| 403 | /* |
| 404 | * Convert histogram of ranges into histograms of its lower and upper |
| 405 | * bounds. |
| 406 | */ |
| 407 | nhist = hslot.nvalues; |
| 408 | hist_lower = (RangeBound *) palloc(sizeof(RangeBound) * nhist); |
| 409 | hist_upper = (RangeBound *) palloc(sizeof(RangeBound) * nhist); |
| 410 | for (i = 0; i < nhist; i++) |
| 411 | { |
| 412 | range_deserialize(typcache, DatumGetRangeTypeP(hslot.values[i]), |
| 413 | &hist_lower[i], &hist_upper[i], &empty); |
| 414 | /* The histogram should not contain any empty ranges */ |
| 415 | if (empty) |
| 416 | elog(ERROR, "bounds histogram contains an empty range" ); |
| 417 | } |
| 418 | |
| 419 | /* @> and @< also need a histogram of range lengths */ |
| 420 | if (operator == OID_RANGE_CONTAINS_OP || |
| 421 | operator == OID_RANGE_CONTAINED_OP) |
| 422 | { |
| 423 | if (!(HeapTupleIsValid(vardata->statsTuple) && |
| 424 | get_attstatsslot(&lslot, vardata->statsTuple, |
| 425 | STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM, |
| 426 | InvalidOid, |
| 427 | ATTSTATSSLOT_VALUES))) |
| 428 | { |
| 429 | free_attstatsslot(&hslot); |
| 430 | return -1.0; |
| 431 | } |
| 432 | |
| 433 | /* check that it's a histogram, not just a dummy entry */ |
| 434 | if (lslot.nvalues < 2) |
| 435 | { |
| 436 | free_attstatsslot(&lslot); |
| 437 | free_attstatsslot(&hslot); |
| 438 | return -1.0; |
| 439 | } |
| 440 | } |
| 441 | else |
| 442 | memset(&lslot, 0, sizeof(lslot)); |
| 443 | |
| 444 | /* Extract the bounds of the constant value. */ |
| 445 | range_deserialize(typcache, constval, &const_lower, &const_upper, &empty); |
| 446 | Assert(!empty); |
| 447 | |
| 448 | /* |
| 449 | * Calculate selectivity comparing the lower or upper bound of the |
| 450 | * constant with the histogram of lower or upper bounds. |
| 451 | */ |
| 452 | switch (operator) |
| 453 | { |
| 454 | case OID_RANGE_LESS_OP: |
| 455 | |
| 456 | /* |
| 457 | * The regular b-tree comparison operators (<, <=, >, >=) compare |
| 458 | * the lower bounds first, and the upper bounds for values with |
| 459 | * equal lower bounds. Estimate that by comparing the lower bounds |
| 460 | * only. This gives a fairly accurate estimate assuming there |
| 461 | * aren't many rows with a lower bound equal to the constant's |
| 462 | * lower bound. |
| 463 | */ |
| 464 | hist_selec = |
| 465 | calc_hist_selectivity_scalar(typcache, &const_lower, |
| 466 | hist_lower, nhist, false); |
| 467 | break; |
| 468 | |
| 469 | case OID_RANGE_LESS_EQUAL_OP: |
| 470 | hist_selec = |
| 471 | calc_hist_selectivity_scalar(typcache, &const_lower, |
| 472 | hist_lower, nhist, true); |
| 473 | break; |
| 474 | |
| 475 | case OID_RANGE_GREATER_OP: |
| 476 | hist_selec = |
| 477 | 1 - calc_hist_selectivity_scalar(typcache, &const_lower, |
| 478 | hist_lower, nhist, false); |
| 479 | break; |
| 480 | |
| 481 | case OID_RANGE_GREATER_EQUAL_OP: |
| 482 | hist_selec = |
| 483 | 1 - calc_hist_selectivity_scalar(typcache, &const_lower, |
| 484 | hist_lower, nhist, true); |
| 485 | break; |
| 486 | |
| 487 | case OID_RANGE_LEFT_OP: |
| 488 | /* var << const when upper(var) < lower(const) */ |
| 489 | hist_selec = |
| 490 | calc_hist_selectivity_scalar(typcache, &const_lower, |
| 491 | hist_upper, nhist, false); |
| 492 | break; |
| 493 | |
| 494 | case OID_RANGE_RIGHT_OP: |
| 495 | /* var >> const when lower(var) > upper(const) */ |
| 496 | hist_selec = |
| 497 | 1 - calc_hist_selectivity_scalar(typcache, &const_upper, |
| 498 | hist_lower, nhist, true); |
| 499 | break; |
| 500 | |
| 501 | case OID_RANGE_OVERLAPS_RIGHT_OP: |
| 502 | /* compare lower bounds */ |
| 503 | hist_selec = |
| 504 | 1 - calc_hist_selectivity_scalar(typcache, &const_lower, |
| 505 | hist_lower, nhist, false); |
| 506 | break; |
| 507 | |
| 508 | case OID_RANGE_OVERLAPS_LEFT_OP: |
| 509 | /* compare upper bounds */ |
| 510 | hist_selec = |
| 511 | calc_hist_selectivity_scalar(typcache, &const_upper, |
| 512 | hist_upper, nhist, true); |
| 513 | break; |
| 514 | |
| 515 | case OID_RANGE_OVERLAP_OP: |
| 516 | case OID_RANGE_CONTAINS_ELEM_OP: |
| 517 | |
| 518 | /* |
| 519 | * A && B <=> NOT (A << B OR A >> B). |
| 520 | * |
| 521 | * Since A << B and A >> B are mutually exclusive events we can |
| 522 | * sum their probabilities to find probability of (A << B OR A >> |
| 523 | * B). |
| 524 | * |
| 525 | * "range @> elem" is equivalent to "range && [elem,elem]". The |
| 526 | * caller already constructed the singular range from the element |
| 527 | * constant, so just treat it the same as &&. |
| 528 | */ |
| 529 | hist_selec = |
| 530 | calc_hist_selectivity_scalar(typcache, &const_lower, hist_upper, |
| 531 | nhist, false); |
| 532 | hist_selec += |
| 533 | (1.0 - calc_hist_selectivity_scalar(typcache, &const_upper, hist_lower, |
| 534 | nhist, true)); |
| 535 | hist_selec = 1.0 - hist_selec; |
| 536 | break; |
| 537 | |
| 538 | case OID_RANGE_CONTAINS_OP: |
| 539 | hist_selec = |
| 540 | calc_hist_selectivity_contains(typcache, &const_lower, |
| 541 | &const_upper, hist_lower, nhist, |
| 542 | lslot.values, lslot.nvalues); |
| 543 | break; |
| 544 | |
| 545 | case OID_RANGE_CONTAINED_OP: |
| 546 | if (const_lower.infinite) |
| 547 | { |
| 548 | /* |
| 549 | * Lower bound no longer matters. Just estimate the fraction |
| 550 | * with an upper bound <= const upper bound |
| 551 | */ |
| 552 | hist_selec = |
| 553 | calc_hist_selectivity_scalar(typcache, &const_upper, |
| 554 | hist_upper, nhist, true); |
| 555 | } |
| 556 | else if (const_upper.infinite) |
| 557 | { |
| 558 | hist_selec = |
| 559 | 1.0 - calc_hist_selectivity_scalar(typcache, &const_lower, |
| 560 | hist_lower, nhist, false); |
| 561 | } |
| 562 | else |
| 563 | { |
| 564 | hist_selec = |
| 565 | calc_hist_selectivity_contained(typcache, &const_lower, |
| 566 | &const_upper, hist_lower, nhist, |
| 567 | lslot.values, lslot.nvalues); |
| 568 | } |
| 569 | break; |
| 570 | |
| 571 | default: |
| 572 | elog(ERROR, "unknown range operator %u" , operator); |
| 573 | hist_selec = -1.0; /* keep compiler quiet */ |
| 574 | break; |
| 575 | } |
| 576 | |
| 577 | free_attstatsslot(&lslot); |
| 578 | free_attstatsslot(&hslot); |
| 579 | |
| 580 | return hist_selec; |
| 581 | } |
| 582 | |
| 583 | |
| 584 | /* |
| 585 | * Look up the fraction of values less than (or equal, if 'equal' argument |
| 586 | * is true) a given const in a histogram of range bounds. |
| 587 | */ |
| 588 | static double |
| 589 | calc_hist_selectivity_scalar(TypeCacheEntry *typcache, RangeBound *constbound, |
| 590 | RangeBound *hist, int hist_nvalues, bool equal) |
| 591 | { |
| 592 | Selectivity selec; |
| 593 | int index; |
| 594 | |
| 595 | /* |
| 596 | * Find the histogram bin the given constant falls into. Estimate |
| 597 | * selectivity as the number of preceding whole bins. |
| 598 | */ |
| 599 | index = rbound_bsearch(typcache, constbound, hist, hist_nvalues, equal); |
| 600 | selec = (Selectivity) (Max(index, 0)) / (Selectivity) (hist_nvalues - 1); |
| 601 | |
| 602 | /* Adjust using linear interpolation within the bin */ |
| 603 | if (index >= 0 && index < hist_nvalues - 1) |
| 604 | selec += get_position(typcache, constbound, &hist[index], |
| 605 | &hist[index + 1]) / (Selectivity) (hist_nvalues - 1); |
| 606 | |
| 607 | return selec; |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Binary search on an array of range bounds. Returns greatest index of range |
| 612 | * bound in array which is less(less or equal) than given range bound. If all |
| 613 | * range bounds in array are greater or equal(greater) than given range bound, |
| 614 | * return -1. When "equal" flag is set conditions in brackets are used. |
| 615 | * |
| 616 | * This function is used in scalar operator selectivity estimation. Another |
| 617 | * goal of this function is to find a histogram bin where to stop |
| 618 | * interpolation of portion of bounds which are less or equal to given bound. |
| 619 | */ |
| 620 | static int |
| 621 | rbound_bsearch(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist, |
| 622 | int hist_length, bool equal) |
| 623 | { |
| 624 | int lower = -1, |
| 625 | upper = hist_length - 1, |
| 626 | cmp, |
| 627 | middle; |
| 628 | |
| 629 | while (lower < upper) |
| 630 | { |
| 631 | middle = (lower + upper + 1) / 2; |
| 632 | cmp = range_cmp_bounds(typcache, &hist[middle], value); |
| 633 | |
| 634 | if (cmp < 0 || (equal && cmp == 0)) |
| 635 | lower = middle; |
| 636 | else |
| 637 | upper = middle - 1; |
| 638 | } |
| 639 | return lower; |
| 640 | } |
| 641 | |
| 642 | |
| 643 | /* |
| 644 | * Binary search on length histogram. Returns greatest index of range length in |
| 645 | * histogram which is less than (less than or equal) the given length value. If |
| 646 | * all lengths in the histogram are greater than (greater than or equal) the |
| 647 | * given length, returns -1. |
| 648 | */ |
| 649 | static int |
| 650 | length_hist_bsearch(Datum *length_hist_values, int length_hist_nvalues, |
| 651 | double value, bool equal) |
| 652 | { |
| 653 | int lower = -1, |
| 654 | upper = length_hist_nvalues - 1, |
| 655 | middle; |
| 656 | |
| 657 | while (lower < upper) |
| 658 | { |
| 659 | double middleval; |
| 660 | |
| 661 | middle = (lower + upper + 1) / 2; |
| 662 | |
| 663 | middleval = DatumGetFloat8(length_hist_values[middle]); |
| 664 | if (middleval < value || (equal && middleval <= value)) |
| 665 | lower = middle; |
| 666 | else |
| 667 | upper = middle - 1; |
| 668 | } |
| 669 | return lower; |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * Get relative position of value in histogram bin in [0,1] range. |
| 674 | */ |
| 675 | static float8 |
| 676 | get_position(TypeCacheEntry *typcache, RangeBound *value, RangeBound *hist1, |
| 677 | RangeBound *hist2) |
| 678 | { |
| 679 | bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid); |
| 680 | float8 position; |
| 681 | |
| 682 | if (!hist1->infinite && !hist2->infinite) |
| 683 | { |
| 684 | float8 bin_width; |
| 685 | |
| 686 | /* |
| 687 | * Both bounds are finite. Assuming the subtype's comparison function |
| 688 | * works sanely, the value must be finite, too, because it lies |
| 689 | * somewhere between the bounds. If it doesn't, just return something. |
| 690 | */ |
| 691 | if (value->infinite) |
| 692 | return 0.5; |
| 693 | |
| 694 | /* Can't interpolate without subdiff function */ |
| 695 | if (!has_subdiff) |
| 696 | return 0.5; |
| 697 | |
| 698 | /* Calculate relative position using subdiff function. */ |
| 699 | bin_width = DatumGetFloat8(FunctionCall2Coll( |
| 700 | &typcache->rng_subdiff_finfo, |
| 701 | typcache->rng_collation, |
| 702 | hist2->val, |
| 703 | hist1->val)); |
| 704 | if (bin_width <= 0.0) |
| 705 | return 0.5; /* zero width bin */ |
| 706 | |
| 707 | position = DatumGetFloat8(FunctionCall2Coll( |
| 708 | &typcache->rng_subdiff_finfo, |
| 709 | typcache->rng_collation, |
| 710 | value->val, |
| 711 | hist1->val)) |
| 712 | / bin_width; |
| 713 | |
| 714 | /* Relative position must be in [0,1] range */ |
| 715 | position = Max(position, 0.0); |
| 716 | position = Min(position, 1.0); |
| 717 | return position; |
| 718 | } |
| 719 | else if (hist1->infinite && !hist2->infinite) |
| 720 | { |
| 721 | /* |
| 722 | * Lower bin boundary is -infinite, upper is finite. If the value is |
| 723 | * -infinite, return 0.0 to indicate it's equal to the lower bound. |
| 724 | * Otherwise return 1.0 to indicate it's infinitely far from the lower |
| 725 | * bound. |
| 726 | */ |
| 727 | return ((value->infinite && value->lower) ? 0.0 : 1.0); |
| 728 | } |
| 729 | else if (!hist1->infinite && hist2->infinite) |
| 730 | { |
| 731 | /* same as above, but in reverse */ |
| 732 | return ((value->infinite && !value->lower) ? 1.0 : 0.0); |
| 733 | } |
| 734 | else |
| 735 | { |
| 736 | /* |
| 737 | * If both bin boundaries are infinite, they should be equal to each |
| 738 | * other, and the value should also be infinite and equal to both |
| 739 | * bounds. (But don't Assert that, to avoid crashing if a user creates |
| 740 | * a datatype with a broken comparison function). |
| 741 | * |
| 742 | * Assume the value to lie in the middle of the infinite bounds. |
| 743 | */ |
| 744 | return 0.5; |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | |
| 749 | /* |
| 750 | * Get relative position of value in a length histogram bin in [0,1] range. |
| 751 | */ |
| 752 | static double |
| 753 | get_len_position(double value, double hist1, double hist2) |
| 754 | { |
| 755 | if (!isinf(hist1) && !isinf(hist2)) |
| 756 | { |
| 757 | /* |
| 758 | * Both bounds are finite. The value should be finite too, because it |
| 759 | * lies somewhere between the bounds. If it doesn't, just return |
| 760 | * something. |
| 761 | */ |
| 762 | if (isinf(value)) |
| 763 | return 0.5; |
| 764 | |
| 765 | return 1.0 - (hist2 - value) / (hist2 - hist1); |
| 766 | } |
| 767 | else if (isinf(hist1) && !isinf(hist2)) |
| 768 | { |
| 769 | /* |
| 770 | * Lower bin boundary is -infinite, upper is finite. Return 1.0 to |
| 771 | * indicate the value is infinitely far from the lower bound. |
| 772 | */ |
| 773 | return 1.0; |
| 774 | } |
| 775 | else if (isinf(hist1) && isinf(hist2)) |
| 776 | { |
| 777 | /* same as above, but in reverse */ |
| 778 | return 0.0; |
| 779 | } |
| 780 | else |
| 781 | { |
| 782 | /* |
| 783 | * If both bin boundaries are infinite, they should be equal to each |
| 784 | * other, and the value should also be infinite and equal to both |
| 785 | * bounds. (But don't Assert that, to avoid crashing unnecessarily if |
| 786 | * the caller messes up) |
| 787 | * |
| 788 | * Assume the value to lie in the middle of the infinite bounds. |
| 789 | */ |
| 790 | return 0.5; |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * Measure distance between two range bounds. |
| 796 | */ |
| 797 | static float8 |
| 798 | get_distance(TypeCacheEntry *typcache, RangeBound *bound1, RangeBound *bound2) |
| 799 | { |
| 800 | bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid); |
| 801 | |
| 802 | if (!bound1->infinite && !bound2->infinite) |
| 803 | { |
| 804 | /* |
| 805 | * No bounds are infinite, use subdiff function or return default |
| 806 | * value of 1.0 if no subdiff is available. |
| 807 | */ |
| 808 | if (has_subdiff) |
| 809 | return |
| 810 | DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo, |
| 811 | typcache->rng_collation, |
| 812 | bound2->val, |
| 813 | bound1->val)); |
| 814 | else |
| 815 | return 1.0; |
| 816 | } |
| 817 | else if (bound1->infinite && bound2->infinite) |
| 818 | { |
| 819 | /* Both bounds are infinite */ |
| 820 | if (bound1->lower == bound2->lower) |
| 821 | return 0.0; |
| 822 | else |
| 823 | return get_float8_infinity(); |
| 824 | } |
| 825 | else |
| 826 | { |
| 827 | /* One bound is infinite, another is not */ |
| 828 | return get_float8_infinity(); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * Calculate the average of function P(x), in the interval [length1, length2], |
| 834 | * where P(x) is the fraction of tuples with length < x (or length <= x if |
| 835 | * 'equal' is true). |
| 836 | */ |
| 837 | static double |
| 838 | calc_length_hist_frac(Datum *length_hist_values, int length_hist_nvalues, |
| 839 | double length1, double length2, bool equal) |
| 840 | { |
| 841 | double frac; |
| 842 | double A, |
| 843 | B, |
| 844 | PA, |
| 845 | PB; |
| 846 | double pos; |
| 847 | int i; |
| 848 | double area; |
| 849 | |
| 850 | Assert(length2 >= length1); |
| 851 | |
| 852 | if (length2 < 0.0) |
| 853 | return 0.0; /* shouldn't happen, but doesn't hurt to check */ |
| 854 | |
| 855 | /* All lengths in the table are <= infinite. */ |
| 856 | if (isinf(length2) && equal) |
| 857 | return 1.0; |
| 858 | |
| 859 | /*---------- |
| 860 | * The average of a function between A and B can be calculated by the |
| 861 | * formula: |
| 862 | * |
| 863 | * B |
| 864 | * 1 / |
| 865 | * ------- | P(x)dx |
| 866 | * B - A / |
| 867 | * A |
| 868 | * |
| 869 | * The geometrical interpretation of the integral is the area under the |
| 870 | * graph of P(x). P(x) is defined by the length histogram. We calculate |
| 871 | * the area in a piecewise fashion, iterating through the length histogram |
| 872 | * bins. Each bin is a trapezoid: |
| 873 | * |
| 874 | * P(x2) |
| 875 | * /| |
| 876 | * / | |
| 877 | * P(x1)/ | |
| 878 | * | | |
| 879 | * | | |
| 880 | * ---+---+-- |
| 881 | * x1 x2 |
| 882 | * |
| 883 | * where x1 and x2 are the boundaries of the current histogram, and P(x1) |
| 884 | * and P(x1) are the cumulative fraction of tuples at the boundaries. |
| 885 | * |
| 886 | * The area of each trapezoid is 1/2 * (P(x2) + P(x1)) * (x2 - x1) |
| 887 | * |
| 888 | * The first bin contains the lower bound passed by the caller, so we |
| 889 | * use linear interpolation between the previous and next histogram bin |
| 890 | * boundary to calculate P(x1). Likewise for the last bin: we use linear |
| 891 | * interpolation to calculate P(x2). For the bins in between, x1 and x2 |
| 892 | * lie on histogram bin boundaries, so P(x1) and P(x2) are simply: |
| 893 | * P(x1) = (bin index) / (number of bins) |
| 894 | * P(x2) = (bin index + 1 / (number of bins) |
| 895 | */ |
| 896 | |
| 897 | /* First bin, the one that contains lower bound */ |
| 898 | i = length_hist_bsearch(length_hist_values, length_hist_nvalues, length1, equal); |
| 899 | if (i >= length_hist_nvalues - 1) |
| 900 | return 1.0; |
| 901 | |
| 902 | if (i < 0) |
| 903 | { |
| 904 | i = 0; |
| 905 | pos = 0.0; |
| 906 | } |
| 907 | else |
| 908 | { |
| 909 | /* interpolate length1's position in the bin */ |
| 910 | pos = get_len_position(length1, |
| 911 | DatumGetFloat8(length_hist_values[i]), |
| 912 | DatumGetFloat8(length_hist_values[i + 1])); |
| 913 | } |
| 914 | PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1); |
| 915 | B = length1; |
| 916 | |
| 917 | /* |
| 918 | * In the degenerate case that length1 == length2, simply return |
| 919 | * P(length1). This is not merely an optimization: if length1 == length2, |
| 920 | * we'd divide by zero later on. |
| 921 | */ |
| 922 | if (length2 == length1) |
| 923 | return PB; |
| 924 | |
| 925 | /* |
| 926 | * Loop through all the bins, until we hit the last bin, the one that |
| 927 | * contains the upper bound. (if lower and upper bounds are in the same |
| 928 | * bin, this falls out immediately) |
| 929 | */ |
| 930 | area = 0.0; |
| 931 | for (; i < length_hist_nvalues - 1; i++) |
| 932 | { |
| 933 | double bin_upper = DatumGetFloat8(length_hist_values[i + 1]); |
| 934 | |
| 935 | /* check if we've reached the last bin */ |
| 936 | if (!(bin_upper < length2 || (equal && bin_upper <= length2))) |
| 937 | break; |
| 938 | |
| 939 | /* the upper bound of previous bin is the lower bound of this bin */ |
| 940 | A = B; |
| 941 | PA = PB; |
| 942 | |
| 943 | B = bin_upper; |
| 944 | PB = (double) i / (double) (length_hist_nvalues - 1); |
| 945 | |
| 946 | /* |
| 947 | * Add the area of this trapezoid to the total. The point of the |
| 948 | * if-check is to avoid NaN, in the corner case that PA == PB == 0, |
| 949 | * and B - A == Inf. The area of a zero-height trapezoid (PA == PB == |
| 950 | * 0) is zero, regardless of the width (B - A). |
| 951 | */ |
| 952 | if (PA > 0 || PB > 0) |
| 953 | area += 0.5 * (PB + PA) * (B - A); |
| 954 | } |
| 955 | |
| 956 | /* Last bin */ |
| 957 | A = B; |
| 958 | PA = PB; |
| 959 | |
| 960 | B = length2; /* last bin ends at the query upper bound */ |
| 961 | if (i >= length_hist_nvalues - 1) |
| 962 | pos = 0.0; |
| 963 | else |
| 964 | { |
| 965 | if (DatumGetFloat8(length_hist_values[i]) == DatumGetFloat8(length_hist_values[i + 1])) |
| 966 | pos = 0.0; |
| 967 | else |
| 968 | pos = get_len_position(length2, DatumGetFloat8(length_hist_values[i]), DatumGetFloat8(length_hist_values[i + 1])); |
| 969 | } |
| 970 | PB = (((double) i) + pos) / (double) (length_hist_nvalues - 1); |
| 971 | |
| 972 | if (PA > 0 || PB > 0) |
| 973 | area += 0.5 * (PB + PA) * (B - A); |
| 974 | |
| 975 | /* |
| 976 | * Ok, we have calculated the area, ie. the integral. Divide by width to |
| 977 | * get the requested average. |
| 978 | * |
| 979 | * Avoid NaN arising from infinite / infinite. This happens at least if |
| 980 | * length2 is infinite. It's not clear what the correct value would be in |
| 981 | * that case, so 0.5 seems as good as any value. |
| 982 | */ |
| 983 | if (isinf(area) && isinf(length2)) |
| 984 | frac = 0.5; |
| 985 | else |
| 986 | frac = area / (length2 - length1); |
| 987 | |
| 988 | return frac; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Calculate selectivity of "var <@ const" operator, ie. estimate the fraction |
| 993 | * of ranges that fall within the constant lower and upper bounds. This uses |
| 994 | * the histograms of range lower bounds and range lengths, on the assumption |
| 995 | * that the range lengths are independent of the lower bounds. |
| 996 | * |
| 997 | * The caller has already checked that constant lower and upper bounds are |
| 998 | * finite. |
| 999 | */ |
| 1000 | static double |
| 1001 | calc_hist_selectivity_contained(TypeCacheEntry *typcache, |
| 1002 | RangeBound *lower, RangeBound *upper, |
| 1003 | RangeBound *hist_lower, int hist_nvalues, |
| 1004 | Datum *length_hist_values, int length_hist_nvalues) |
| 1005 | { |
| 1006 | int i, |
| 1007 | upper_index; |
| 1008 | float8 prev_dist; |
| 1009 | double bin_width; |
| 1010 | double upper_bin_width; |
| 1011 | double sum_frac; |
| 1012 | |
| 1013 | /* |
| 1014 | * Begin by finding the bin containing the upper bound, in the lower bound |
| 1015 | * histogram. Any range with a lower bound > constant upper bound can't |
| 1016 | * match, ie. there are no matches in bins greater than upper_index. |
| 1017 | */ |
| 1018 | upper->inclusive = !upper->inclusive; |
| 1019 | upper->lower = true; |
| 1020 | upper_index = rbound_bsearch(typcache, upper, hist_lower, hist_nvalues, |
| 1021 | false); |
| 1022 | |
| 1023 | /* |
| 1024 | * Calculate upper_bin_width, ie. the fraction of the (upper_index, |
| 1025 | * upper_index + 1) bin which is greater than upper bound of query range |
| 1026 | * using linear interpolation of subdiff function. |
| 1027 | */ |
| 1028 | if (upper_index >= 0 && upper_index < hist_nvalues - 1) |
| 1029 | upper_bin_width = get_position(typcache, upper, |
| 1030 | &hist_lower[upper_index], |
| 1031 | &hist_lower[upper_index + 1]); |
| 1032 | else |
| 1033 | upper_bin_width = 0.0; |
| 1034 | |
| 1035 | /* |
| 1036 | * In the loop, dist and prev_dist are the distance of the "current" bin's |
| 1037 | * lower and upper bounds from the constant upper bound. |
| 1038 | * |
| 1039 | * bin_width represents the width of the current bin. Normally it is 1.0, |
| 1040 | * meaning a full width bin, but can be less in the corner cases: start |
| 1041 | * and end of the loop. We start with bin_width = upper_bin_width, because |
| 1042 | * we begin at the bin containing the upper bound. |
| 1043 | */ |
| 1044 | prev_dist = 0.0; |
| 1045 | bin_width = upper_bin_width; |
| 1046 | |
| 1047 | sum_frac = 0.0; |
| 1048 | for (i = upper_index; i >= 0; i--) |
| 1049 | { |
| 1050 | double dist; |
| 1051 | double length_hist_frac; |
| 1052 | bool final_bin = false; |
| 1053 | |
| 1054 | /* |
| 1055 | * dist -- distance from upper bound of query range to lower bound of |
| 1056 | * the current bin in the lower bound histogram. Or to the lower bound |
| 1057 | * of the constant range, if this is the final bin, containing the |
| 1058 | * constant lower bound. |
| 1059 | */ |
| 1060 | if (range_cmp_bounds(typcache, &hist_lower[i], lower) < 0) |
| 1061 | { |
| 1062 | dist = get_distance(typcache, lower, upper); |
| 1063 | |
| 1064 | /* |
| 1065 | * Subtract from bin_width the portion of this bin that we want to |
| 1066 | * ignore. |
| 1067 | */ |
| 1068 | bin_width -= get_position(typcache, lower, &hist_lower[i], |
| 1069 | &hist_lower[i + 1]); |
| 1070 | if (bin_width < 0.0) |
| 1071 | bin_width = 0.0; |
| 1072 | final_bin = true; |
| 1073 | } |
| 1074 | else |
| 1075 | dist = get_distance(typcache, &hist_lower[i], upper); |
| 1076 | |
| 1077 | /* |
| 1078 | * Estimate the fraction of tuples in this bin that are narrow enough |
| 1079 | * to not exceed the distance to the upper bound of the query range. |
| 1080 | */ |
| 1081 | length_hist_frac = calc_length_hist_frac(length_hist_values, |
| 1082 | length_hist_nvalues, |
| 1083 | prev_dist, dist, true); |
| 1084 | |
| 1085 | /* |
| 1086 | * Add the fraction of tuples in this bin, with a suitable length, to |
| 1087 | * the total. |
| 1088 | */ |
| 1089 | sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1); |
| 1090 | |
| 1091 | if (final_bin) |
| 1092 | break; |
| 1093 | |
| 1094 | bin_width = 1.0; |
| 1095 | prev_dist = dist; |
| 1096 | } |
| 1097 | |
| 1098 | return sum_frac; |
| 1099 | } |
| 1100 | |
| 1101 | /* |
| 1102 | * Calculate selectivity of "var @> const" operator, ie. estimate the fraction |
| 1103 | * of ranges that contain the constant lower and upper bounds. This uses |
| 1104 | * the histograms of range lower bounds and range lengths, on the assumption |
| 1105 | * that the range lengths are independent of the lower bounds. |
| 1106 | * |
| 1107 | * Note, this is "var @> const", ie. estimate the fraction of ranges that |
| 1108 | * contain the constant lower and upper bounds. |
| 1109 | */ |
| 1110 | static double |
| 1111 | calc_hist_selectivity_contains(TypeCacheEntry *typcache, |
| 1112 | RangeBound *lower, RangeBound *upper, |
| 1113 | RangeBound *hist_lower, int hist_nvalues, |
| 1114 | Datum *length_hist_values, int length_hist_nvalues) |
| 1115 | { |
| 1116 | int i, |
| 1117 | lower_index; |
| 1118 | double bin_width, |
| 1119 | lower_bin_width; |
| 1120 | double sum_frac; |
| 1121 | float8 prev_dist; |
| 1122 | |
| 1123 | /* Find the bin containing the lower bound of query range. */ |
| 1124 | lower_index = rbound_bsearch(typcache, lower, hist_lower, hist_nvalues, |
| 1125 | true); |
| 1126 | |
| 1127 | /* |
| 1128 | * Calculate lower_bin_width, ie. the fraction of the of (lower_index, |
| 1129 | * lower_index + 1) bin which is greater than lower bound of query range |
| 1130 | * using linear interpolation of subdiff function. |
| 1131 | */ |
| 1132 | if (lower_index >= 0 && lower_index < hist_nvalues - 1) |
| 1133 | lower_bin_width = get_position(typcache, lower, &hist_lower[lower_index], |
| 1134 | &hist_lower[lower_index + 1]); |
| 1135 | else |
| 1136 | lower_bin_width = 0.0; |
| 1137 | |
| 1138 | /* |
| 1139 | * Loop through all the lower bound bins, smaller than the query lower |
| 1140 | * bound. In the loop, dist and prev_dist are the distance of the |
| 1141 | * "current" bin's lower and upper bounds from the constant upper bound. |
| 1142 | * We begin from query lower bound, and walk backwards, so the first bin's |
| 1143 | * upper bound is the query lower bound, and its distance to the query |
| 1144 | * upper bound is the length of the query range. |
| 1145 | * |
| 1146 | * bin_width represents the width of the current bin. Normally it is 1.0, |
| 1147 | * meaning a full width bin, except for the first bin, which is only |
| 1148 | * counted up to the constant lower bound. |
| 1149 | */ |
| 1150 | prev_dist = get_distance(typcache, lower, upper); |
| 1151 | sum_frac = 0.0; |
| 1152 | bin_width = lower_bin_width; |
| 1153 | for (i = lower_index; i >= 0; i--) |
| 1154 | { |
| 1155 | float8 dist; |
| 1156 | double length_hist_frac; |
| 1157 | |
| 1158 | /* |
| 1159 | * dist -- distance from upper bound of query range to current value |
| 1160 | * of lower bound histogram or lower bound of query range (if we've |
| 1161 | * reach it). |
| 1162 | */ |
| 1163 | dist = get_distance(typcache, &hist_lower[i], upper); |
| 1164 | |
| 1165 | /* |
| 1166 | * Get average fraction of length histogram which covers intervals |
| 1167 | * longer than (or equal to) distance to upper bound of query range. |
| 1168 | */ |
| 1169 | length_hist_frac = |
| 1170 | 1.0 - calc_length_hist_frac(length_hist_values, |
| 1171 | length_hist_nvalues, |
| 1172 | prev_dist, dist, false); |
| 1173 | |
| 1174 | sum_frac += length_hist_frac * bin_width / (double) (hist_nvalues - 1); |
| 1175 | |
| 1176 | bin_width = 1.0; |
| 1177 | prev_dist = dist; |
| 1178 | } |
| 1179 | |
| 1180 | return sum_frac; |
| 1181 | } |
| 1182 | |