| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * ri_triggers.c |
| 4 | * |
| 5 | * Generic trigger procedures for referential integrity constraint |
| 6 | * checks. |
| 7 | * |
| 8 | * Note about memory management: the private hashtables kept here live |
| 9 | * across query and transaction boundaries, in fact they live as long as |
| 10 | * the backend does. This works because the hashtable structures |
| 11 | * themselves are allocated by dynahash.c in its permanent DynaHashCxt, |
| 12 | * and the SPI plans they point to are saved using SPI_keepplan(). |
| 13 | * There is not currently any provision for throwing away a no-longer-needed |
| 14 | * plan --- consider improving this someday. |
| 15 | * |
| 16 | * |
| 17 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 18 | * |
| 19 | * src/backend/utils/adt/ri_triggers.c |
| 20 | * |
| 21 | *------------------------------------------------------------------------- |
| 22 | */ |
| 23 | |
| 24 | #include "postgres.h" |
| 25 | |
| 26 | #include "access/htup_details.h" |
| 27 | #include "access/sysattr.h" |
| 28 | #include "access/table.h" |
| 29 | #include "access/tableam.h" |
| 30 | #include "access/xact.h" |
| 31 | #include "catalog/pg_collation.h" |
| 32 | #include "catalog/pg_constraint.h" |
| 33 | #include "catalog/pg_operator.h" |
| 34 | #include "catalog/pg_type.h" |
| 35 | #include "commands/trigger.h" |
| 36 | #include "executor/executor.h" |
| 37 | #include "executor/spi.h" |
| 38 | #include "lib/ilist.h" |
| 39 | #include "parser/parse_coerce.h" |
| 40 | #include "parser/parse_relation.h" |
| 41 | #include "miscadmin.h" |
| 42 | #include "storage/bufmgr.h" |
| 43 | #include "utils/acl.h" |
| 44 | #include "utils/builtins.h" |
| 45 | #include "utils/datum.h" |
| 46 | #include "utils/fmgroids.h" |
| 47 | #include "utils/guc.h" |
| 48 | #include "utils/inval.h" |
| 49 | #include "utils/lsyscache.h" |
| 50 | #include "utils/memutils.h" |
| 51 | #include "utils/rel.h" |
| 52 | #include "utils/rls.h" |
| 53 | #include "utils/ruleutils.h" |
| 54 | #include "utils/snapmgr.h" |
| 55 | #include "utils/syscache.h" |
| 56 | |
| 57 | |
| 58 | /* |
| 59 | * Local definitions |
| 60 | */ |
| 61 | |
| 62 | #define RI_MAX_NUMKEYS INDEX_MAX_KEYS |
| 63 | |
| 64 | #define RI_INIT_CONSTRAINTHASHSIZE 64 |
| 65 | #define RI_INIT_QUERYHASHSIZE (RI_INIT_CONSTRAINTHASHSIZE * 4) |
| 66 | |
| 67 | #define RI_KEYS_ALL_NULL 0 |
| 68 | #define RI_KEYS_SOME_NULL 1 |
| 69 | #define RI_KEYS_NONE_NULL 2 |
| 70 | |
| 71 | /* RI query type codes */ |
| 72 | /* these queries are executed against the PK (referenced) table: */ |
| 73 | #define RI_PLAN_CHECK_LOOKUPPK 1 |
| 74 | #define RI_PLAN_CHECK_LOOKUPPK_FROM_PK 2 |
| 75 | #define RI_PLAN_LAST_ON_PK RI_PLAN_CHECK_LOOKUPPK_FROM_PK |
| 76 | /* these queries are executed against the FK (referencing) table: */ |
| 77 | #define RI_PLAN_CASCADE_DEL_DODELETE 3 |
| 78 | #define RI_PLAN_CASCADE_UPD_DOUPDATE 4 |
| 79 | #define RI_PLAN_RESTRICT_CHECKREF 5 |
| 80 | #define RI_PLAN_SETNULL_DOUPDATE 6 |
| 81 | #define RI_PLAN_SETDEFAULT_DOUPDATE 7 |
| 82 | |
| 83 | #define MAX_QUOTED_NAME_LEN (NAMEDATALEN*2+3) |
| 84 | #define MAX_QUOTED_REL_NAME_LEN (MAX_QUOTED_NAME_LEN*2) |
| 85 | |
| 86 | #define RIAttName(rel, attnum) NameStr(*attnumAttName(rel, attnum)) |
| 87 | #define RIAttType(rel, attnum) attnumTypeId(rel, attnum) |
| 88 | #define RIAttCollation(rel, attnum) attnumCollationId(rel, attnum) |
| 89 | |
| 90 | #define RI_TRIGTYPE_INSERT 1 |
| 91 | #define RI_TRIGTYPE_UPDATE 2 |
| 92 | #define RI_TRIGTYPE_DELETE 3 |
| 93 | |
| 94 | |
| 95 | /* |
| 96 | * RI_ConstraintInfo |
| 97 | * |
| 98 | * Information extracted from an FK pg_constraint entry. This is cached in |
| 99 | * ri_constraint_cache. |
| 100 | */ |
| 101 | typedef struct RI_ConstraintInfo |
| 102 | { |
| 103 | Oid constraint_id; /* OID of pg_constraint entry (hash key) */ |
| 104 | bool valid; /* successfully initialized? */ |
| 105 | uint32 oidHashValue; /* hash value of pg_constraint OID */ |
| 106 | NameData conname; /* name of the FK constraint */ |
| 107 | Oid pk_relid; /* referenced relation */ |
| 108 | Oid fk_relid; /* referencing relation */ |
| 109 | char confupdtype; /* foreign key's ON UPDATE action */ |
| 110 | char confdeltype; /* foreign key's ON DELETE action */ |
| 111 | char confmatchtype; /* foreign key's match type */ |
| 112 | int nkeys; /* number of key columns */ |
| 113 | int16 pk_attnums[RI_MAX_NUMKEYS]; /* attnums of referenced cols */ |
| 114 | int16 fk_attnums[RI_MAX_NUMKEYS]; /* attnums of referencing cols */ |
| 115 | Oid pf_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = FK) */ |
| 116 | Oid pp_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (PK = PK) */ |
| 117 | Oid ff_eq_oprs[RI_MAX_NUMKEYS]; /* equality operators (FK = FK) */ |
| 118 | dlist_node valid_link; /* Link in list of valid entries */ |
| 119 | } RI_ConstraintInfo; |
| 120 | |
| 121 | /* |
| 122 | * RI_QueryKey |
| 123 | * |
| 124 | * The key identifying a prepared SPI plan in our query hashtable |
| 125 | */ |
| 126 | typedef struct RI_QueryKey |
| 127 | { |
| 128 | Oid constr_id; /* OID of pg_constraint entry */ |
| 129 | int32 constr_queryno; /* query type ID, see RI_PLAN_XXX above */ |
| 130 | } RI_QueryKey; |
| 131 | |
| 132 | /* |
| 133 | * RI_QueryHashEntry |
| 134 | */ |
| 135 | typedef struct RI_QueryHashEntry |
| 136 | { |
| 137 | RI_QueryKey key; |
| 138 | SPIPlanPtr plan; |
| 139 | } RI_QueryHashEntry; |
| 140 | |
| 141 | /* |
| 142 | * RI_CompareKey |
| 143 | * |
| 144 | * The key identifying an entry showing how to compare two values |
| 145 | */ |
| 146 | typedef struct RI_CompareKey |
| 147 | { |
| 148 | Oid eq_opr; /* the equality operator to apply */ |
| 149 | Oid typeid; /* the data type to apply it to */ |
| 150 | } RI_CompareKey; |
| 151 | |
| 152 | /* |
| 153 | * RI_CompareHashEntry |
| 154 | */ |
| 155 | typedef struct RI_CompareHashEntry |
| 156 | { |
| 157 | RI_CompareKey key; |
| 158 | bool valid; /* successfully initialized? */ |
| 159 | FmgrInfo eq_opr_finfo; /* call info for equality fn */ |
| 160 | FmgrInfo cast_func_finfo; /* in case we must coerce input */ |
| 161 | } RI_CompareHashEntry; |
| 162 | |
| 163 | |
| 164 | /* |
| 165 | * Local data |
| 166 | */ |
| 167 | static HTAB *ri_constraint_cache = NULL; |
| 168 | static HTAB *ri_query_cache = NULL; |
| 169 | static HTAB *ri_compare_cache = NULL; |
| 170 | static dlist_head ri_constraint_cache_valid_list; |
| 171 | static int ri_constraint_cache_valid_count = 0; |
| 172 | |
| 173 | |
| 174 | /* |
| 175 | * Local function prototypes |
| 176 | */ |
| 177 | static bool ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel, |
| 178 | TupleTableSlot *oldslot, |
| 179 | const RI_ConstraintInfo *riinfo); |
| 180 | static Datum ri_restrict(TriggerData *trigdata, bool is_no_action); |
| 181 | static Datum ri_set(TriggerData *trigdata, bool is_set_null); |
| 182 | static void quoteOneName(char *buffer, const char *name); |
| 183 | static void quoteRelationName(char *buffer, Relation rel); |
| 184 | static void ri_GenerateQual(StringInfo buf, |
| 185 | const char *sep, |
| 186 | const char *leftop, Oid leftoptype, |
| 187 | Oid opoid, |
| 188 | const char *rightop, Oid rightoptype); |
| 189 | static void ri_GenerateQualCollation(StringInfo buf, Oid collation); |
| 190 | static int ri_NullCheck(TupleDesc tupdesc, TupleTableSlot *slot, |
| 191 | const RI_ConstraintInfo *riinfo, bool rel_is_pk); |
| 192 | static void ri_BuildQueryKey(RI_QueryKey *key, |
| 193 | const RI_ConstraintInfo *riinfo, |
| 194 | int32 constr_queryno); |
| 195 | static bool ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, |
| 196 | const RI_ConstraintInfo *riinfo, bool rel_is_pk); |
| 197 | static bool ri_AttributesEqual(Oid eq_opr, Oid typeid, |
| 198 | Datum oldvalue, Datum newvalue); |
| 199 | |
| 200 | static void ri_InitHashTables(void); |
| 201 | static void InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue); |
| 202 | static SPIPlanPtr ri_FetchPreparedPlan(RI_QueryKey *key); |
| 203 | static void ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan); |
| 204 | static RI_CompareHashEntry *ri_HashCompareOp(Oid eq_opr, Oid typeid); |
| 205 | |
| 206 | static void ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, |
| 207 | int tgkind); |
| 208 | static const RI_ConstraintInfo *ri_FetchConstraintInfo(Trigger *trigger, |
| 209 | Relation trig_rel, bool rel_is_pk); |
| 210 | static const RI_ConstraintInfo *ri_LoadConstraintInfo(Oid constraintOid); |
| 211 | static SPIPlanPtr ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes, |
| 212 | RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel, |
| 213 | bool cache_plan); |
| 214 | static bool ri_PerformCheck(const RI_ConstraintInfo *riinfo, |
| 215 | RI_QueryKey *qkey, SPIPlanPtr qplan, |
| 216 | Relation fk_rel, Relation pk_rel, |
| 217 | TupleTableSlot *oldslot, TupleTableSlot *newslot, |
| 218 | bool detectNewRows, int expect_OK); |
| 219 | static void ri_ExtractValues(Relation rel, TupleTableSlot *slot, |
| 220 | const RI_ConstraintInfo *riinfo, bool rel_is_pk, |
| 221 | Datum *vals, char *nulls); |
| 222 | static void ri_ReportViolation(const RI_ConstraintInfo *riinfo, |
| 223 | Relation pk_rel, Relation fk_rel, |
| 224 | TupleTableSlot *violatorslot, TupleDesc tupdesc, |
| 225 | int queryno, bool partgone) pg_attribute_noreturn(); |
| 226 | |
| 227 | |
| 228 | /* |
| 229 | * RI_FKey_check - |
| 230 | * |
| 231 | * Check foreign key existence (combined for INSERT and UPDATE). |
| 232 | */ |
| 233 | static Datum |
| 234 | RI_FKey_check(TriggerData *trigdata) |
| 235 | { |
| 236 | const RI_ConstraintInfo *riinfo; |
| 237 | Relation fk_rel; |
| 238 | Relation pk_rel; |
| 239 | TupleTableSlot *newslot; |
| 240 | RI_QueryKey qkey; |
| 241 | SPIPlanPtr qplan; |
| 242 | |
| 243 | riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger, |
| 244 | trigdata->tg_relation, false); |
| 245 | |
| 246 | if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event)) |
| 247 | newslot = trigdata->tg_newslot; |
| 248 | else |
| 249 | newslot = trigdata->tg_trigslot; |
| 250 | |
| 251 | /* |
| 252 | * We should not even consider checking the row if it is no longer valid, |
| 253 | * since it was either deleted (so the deferred check should be skipped) |
| 254 | * or updated (in which case only the latest version of the row should be |
| 255 | * checked). Test its liveness according to SnapshotSelf. We need pin |
| 256 | * and lock on the buffer to call HeapTupleSatisfiesVisibility. Caller |
| 257 | * should be holding pin, but not lock. |
| 258 | */ |
| 259 | if (!table_tuple_satisfies_snapshot(trigdata->tg_relation, newslot, SnapshotSelf)) |
| 260 | return PointerGetDatum(NULL); |
| 261 | |
| 262 | /* |
| 263 | * Get the relation descriptors of the FK and PK tables. |
| 264 | * |
| 265 | * pk_rel is opened in RowShareLock mode since that's what our eventual |
| 266 | * SELECT FOR KEY SHARE will get on it. |
| 267 | */ |
| 268 | fk_rel = trigdata->tg_relation; |
| 269 | pk_rel = table_open(riinfo->pk_relid, RowShareLock); |
| 270 | |
| 271 | switch (ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false)) |
| 272 | { |
| 273 | case RI_KEYS_ALL_NULL: |
| 274 | |
| 275 | /* |
| 276 | * No further check needed - an all-NULL key passes every type of |
| 277 | * foreign key constraint. |
| 278 | */ |
| 279 | table_close(pk_rel, RowShareLock); |
| 280 | return PointerGetDatum(NULL); |
| 281 | |
| 282 | case RI_KEYS_SOME_NULL: |
| 283 | |
| 284 | /* |
| 285 | * This is the only case that differs between the three kinds of |
| 286 | * MATCH. |
| 287 | */ |
| 288 | switch (riinfo->confmatchtype) |
| 289 | { |
| 290 | case FKCONSTR_MATCH_FULL: |
| 291 | |
| 292 | /* |
| 293 | * Not allowed - MATCH FULL says either all or none of the |
| 294 | * attributes can be NULLs |
| 295 | */ |
| 296 | ereport(ERROR, |
| 297 | (errcode(ERRCODE_FOREIGN_KEY_VIOLATION), |
| 298 | errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"" , |
| 299 | RelationGetRelationName(fk_rel), |
| 300 | NameStr(riinfo->conname)), |
| 301 | errdetail("MATCH FULL does not allow mixing of null and nonnull key values." ), |
| 302 | errtableconstraint(fk_rel, |
| 303 | NameStr(riinfo->conname)))); |
| 304 | table_close(pk_rel, RowShareLock); |
| 305 | return PointerGetDatum(NULL); |
| 306 | |
| 307 | case FKCONSTR_MATCH_SIMPLE: |
| 308 | |
| 309 | /* |
| 310 | * MATCH SIMPLE - if ANY column is null, the key passes |
| 311 | * the constraint. |
| 312 | */ |
| 313 | table_close(pk_rel, RowShareLock); |
| 314 | return PointerGetDatum(NULL); |
| 315 | |
| 316 | #ifdef NOT_USED |
| 317 | case FKCONSTR_MATCH_PARTIAL: |
| 318 | |
| 319 | /* |
| 320 | * MATCH PARTIAL - all non-null columns must match. (not |
| 321 | * implemented, can be done by modifying the query below |
| 322 | * to only include non-null columns, or by writing a |
| 323 | * special version here) |
| 324 | */ |
| 325 | break; |
| 326 | #endif |
| 327 | } |
| 328 | |
| 329 | case RI_KEYS_NONE_NULL: |
| 330 | |
| 331 | /* |
| 332 | * Have a full qualified key - continue below for all three kinds |
| 333 | * of MATCH. |
| 334 | */ |
| 335 | break; |
| 336 | } |
| 337 | |
| 338 | if (SPI_connect() != SPI_OK_CONNECT) |
| 339 | elog(ERROR, "SPI_connect failed" ); |
| 340 | |
| 341 | /* Fetch or prepare a saved plan for the real check */ |
| 342 | ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK); |
| 343 | |
| 344 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 345 | { |
| 346 | StringInfoData querybuf; |
| 347 | char pkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 348 | char attname[MAX_QUOTED_NAME_LEN]; |
| 349 | char paramname[16]; |
| 350 | const char *querysep; |
| 351 | Oid queryoids[RI_MAX_NUMKEYS]; |
| 352 | const char *pk_only; |
| 353 | |
| 354 | /* ---------- |
| 355 | * The query string built is |
| 356 | * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...] |
| 357 | * FOR KEY SHARE OF x |
| 358 | * The type id's for the $ parameters are those of the |
| 359 | * corresponding FK attributes. |
| 360 | * ---------- |
| 361 | */ |
| 362 | initStringInfo(&querybuf); |
| 363 | pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 364 | "" : "ONLY " ; |
| 365 | quoteRelationName(pkrelname, pk_rel); |
| 366 | appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x" , |
| 367 | pk_only, pkrelname); |
| 368 | querysep = "WHERE" ; |
| 369 | for (int i = 0; i < riinfo->nkeys; i++) |
| 370 | { |
| 371 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 372 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 373 | |
| 374 | quoteOneName(attname, |
| 375 | RIAttName(pk_rel, riinfo->pk_attnums[i])); |
| 376 | sprintf(paramname, "$%d" , i + 1); |
| 377 | ri_GenerateQual(&querybuf, querysep, |
| 378 | attname, pk_type, |
| 379 | riinfo->pf_eq_oprs[i], |
| 380 | paramname, fk_type); |
| 381 | querysep = "AND" ; |
| 382 | queryoids[i] = fk_type; |
| 383 | } |
| 384 | appendStringInfoString(&querybuf, " FOR KEY SHARE OF x" ); |
| 385 | |
| 386 | /* Prepare and save the plan */ |
| 387 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids, |
| 388 | &qkey, fk_rel, pk_rel, true); |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Now check that foreign key exists in PK table |
| 393 | */ |
| 394 | ri_PerformCheck(riinfo, &qkey, qplan, |
| 395 | fk_rel, pk_rel, |
| 396 | NULL, newslot, |
| 397 | false, |
| 398 | SPI_OK_SELECT); |
| 399 | |
| 400 | if (SPI_finish() != SPI_OK_FINISH) |
| 401 | elog(ERROR, "SPI_finish failed" ); |
| 402 | |
| 403 | table_close(pk_rel, RowShareLock); |
| 404 | |
| 405 | return PointerGetDatum(NULL); |
| 406 | } |
| 407 | |
| 408 | |
| 409 | /* |
| 410 | * RI_FKey_check_ins - |
| 411 | * |
| 412 | * Check foreign key existence at insert event on FK table. |
| 413 | */ |
| 414 | Datum |
| 415 | RI_FKey_check_ins(PG_FUNCTION_ARGS) |
| 416 | { |
| 417 | /* Check that this is a valid trigger call on the right time and event. */ |
| 418 | ri_CheckTrigger(fcinfo, "RI_FKey_check_ins" , RI_TRIGTYPE_INSERT); |
| 419 | |
| 420 | /* Share code with UPDATE case. */ |
| 421 | return RI_FKey_check((TriggerData *) fcinfo->context); |
| 422 | } |
| 423 | |
| 424 | |
| 425 | /* |
| 426 | * RI_FKey_check_upd - |
| 427 | * |
| 428 | * Check foreign key existence at update event on FK table. |
| 429 | */ |
| 430 | Datum |
| 431 | RI_FKey_check_upd(PG_FUNCTION_ARGS) |
| 432 | { |
| 433 | /* Check that this is a valid trigger call on the right time and event. */ |
| 434 | ri_CheckTrigger(fcinfo, "RI_FKey_check_upd" , RI_TRIGTYPE_UPDATE); |
| 435 | |
| 436 | /* Share code with INSERT case. */ |
| 437 | return RI_FKey_check((TriggerData *) fcinfo->context); |
| 438 | } |
| 439 | |
| 440 | |
| 441 | /* |
| 442 | * ri_Check_Pk_Match |
| 443 | * |
| 444 | * Check to see if another PK row has been created that provides the same |
| 445 | * key values as the "oldslot" that's been modified or deleted in our trigger |
| 446 | * event. Returns true if a match is found in the PK table. |
| 447 | * |
| 448 | * We assume the caller checked that the oldslot contains no NULL key values, |
| 449 | * since otherwise a match is impossible. |
| 450 | */ |
| 451 | static bool |
| 452 | ri_Check_Pk_Match(Relation pk_rel, Relation fk_rel, |
| 453 | TupleTableSlot *oldslot, |
| 454 | const RI_ConstraintInfo *riinfo) |
| 455 | { |
| 456 | SPIPlanPtr qplan; |
| 457 | RI_QueryKey qkey; |
| 458 | bool result; |
| 459 | |
| 460 | /* Only called for non-null rows */ |
| 461 | Assert(ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) == RI_KEYS_NONE_NULL); |
| 462 | |
| 463 | if (SPI_connect() != SPI_OK_CONNECT) |
| 464 | elog(ERROR, "SPI_connect failed" ); |
| 465 | |
| 466 | /* |
| 467 | * Fetch or prepare a saved plan for checking PK table with values coming |
| 468 | * from a PK row |
| 469 | */ |
| 470 | ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CHECK_LOOKUPPK_FROM_PK); |
| 471 | |
| 472 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 473 | { |
| 474 | StringInfoData querybuf; |
| 475 | char pkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 476 | char attname[MAX_QUOTED_NAME_LEN]; |
| 477 | char paramname[16]; |
| 478 | const char *querysep; |
| 479 | const char *pk_only; |
| 480 | Oid queryoids[RI_MAX_NUMKEYS]; |
| 481 | |
| 482 | /* ---------- |
| 483 | * The query string built is |
| 484 | * SELECT 1 FROM [ONLY] <pktable> x WHERE pkatt1 = $1 [AND ...] |
| 485 | * FOR KEY SHARE OF x |
| 486 | * The type id's for the $ parameters are those of the |
| 487 | * PK attributes themselves. |
| 488 | * ---------- |
| 489 | */ |
| 490 | initStringInfo(&querybuf); |
| 491 | pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 492 | "" : "ONLY " ; |
| 493 | quoteRelationName(pkrelname, pk_rel); |
| 494 | appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x" , |
| 495 | pk_only, pkrelname); |
| 496 | querysep = "WHERE" ; |
| 497 | for (int i = 0; i < riinfo->nkeys; i++) |
| 498 | { |
| 499 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 500 | |
| 501 | quoteOneName(attname, |
| 502 | RIAttName(pk_rel, riinfo->pk_attnums[i])); |
| 503 | sprintf(paramname, "$%d" , i + 1); |
| 504 | ri_GenerateQual(&querybuf, querysep, |
| 505 | attname, pk_type, |
| 506 | riinfo->pp_eq_oprs[i], |
| 507 | paramname, pk_type); |
| 508 | querysep = "AND" ; |
| 509 | queryoids[i] = pk_type; |
| 510 | } |
| 511 | appendStringInfoString(&querybuf, " FOR KEY SHARE OF x" ); |
| 512 | |
| 513 | /* Prepare and save the plan */ |
| 514 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids, |
| 515 | &qkey, fk_rel, pk_rel, true); |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * We have a plan now. Run it. |
| 520 | */ |
| 521 | result = ri_PerformCheck(riinfo, &qkey, qplan, |
| 522 | fk_rel, pk_rel, |
| 523 | oldslot, NULL, |
| 524 | true, /* treat like update */ |
| 525 | SPI_OK_SELECT); |
| 526 | |
| 527 | if (SPI_finish() != SPI_OK_FINISH) |
| 528 | elog(ERROR, "SPI_finish failed" ); |
| 529 | |
| 530 | return result; |
| 531 | } |
| 532 | |
| 533 | |
| 534 | /* |
| 535 | * RI_FKey_noaction_del - |
| 536 | * |
| 537 | * Give an error and roll back the current transaction if the |
| 538 | * delete has resulted in a violation of the given referential |
| 539 | * integrity constraint. |
| 540 | */ |
| 541 | Datum |
| 542 | RI_FKey_noaction_del(PG_FUNCTION_ARGS) |
| 543 | { |
| 544 | /* Check that this is a valid trigger call on the right time and event. */ |
| 545 | ri_CheckTrigger(fcinfo, "RI_FKey_noaction_del" , RI_TRIGTYPE_DELETE); |
| 546 | |
| 547 | /* Share code with RESTRICT/UPDATE cases. */ |
| 548 | return ri_restrict((TriggerData *) fcinfo->context, true); |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * RI_FKey_restrict_del - |
| 553 | * |
| 554 | * Restrict delete from PK table to rows unreferenced by foreign key. |
| 555 | * |
| 556 | * The SQL standard intends that this referential action occur exactly when |
| 557 | * the delete is performed, rather than after. This appears to be |
| 558 | * the only difference between "NO ACTION" and "RESTRICT". In Postgres |
| 559 | * we still implement this as an AFTER trigger, but it's non-deferrable. |
| 560 | */ |
| 561 | Datum |
| 562 | RI_FKey_restrict_del(PG_FUNCTION_ARGS) |
| 563 | { |
| 564 | /* Check that this is a valid trigger call on the right time and event. */ |
| 565 | ri_CheckTrigger(fcinfo, "RI_FKey_restrict_del" , RI_TRIGTYPE_DELETE); |
| 566 | |
| 567 | /* Share code with NO ACTION/UPDATE cases. */ |
| 568 | return ri_restrict((TriggerData *) fcinfo->context, false); |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * RI_FKey_noaction_upd - |
| 573 | * |
| 574 | * Give an error and roll back the current transaction if the |
| 575 | * update has resulted in a violation of the given referential |
| 576 | * integrity constraint. |
| 577 | */ |
| 578 | Datum |
| 579 | RI_FKey_noaction_upd(PG_FUNCTION_ARGS) |
| 580 | { |
| 581 | /* Check that this is a valid trigger call on the right time and event. */ |
| 582 | ri_CheckTrigger(fcinfo, "RI_FKey_noaction_upd" , RI_TRIGTYPE_UPDATE); |
| 583 | |
| 584 | /* Share code with RESTRICT/DELETE cases. */ |
| 585 | return ri_restrict((TriggerData *) fcinfo->context, true); |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * RI_FKey_restrict_upd - |
| 590 | * |
| 591 | * Restrict update of PK to rows unreferenced by foreign key. |
| 592 | * |
| 593 | * The SQL standard intends that this referential action occur exactly when |
| 594 | * the update is performed, rather than after. This appears to be |
| 595 | * the only difference between "NO ACTION" and "RESTRICT". In Postgres |
| 596 | * we still implement this as an AFTER trigger, but it's non-deferrable. |
| 597 | */ |
| 598 | Datum |
| 599 | RI_FKey_restrict_upd(PG_FUNCTION_ARGS) |
| 600 | { |
| 601 | /* Check that this is a valid trigger call on the right time and event. */ |
| 602 | ri_CheckTrigger(fcinfo, "RI_FKey_restrict_upd" , RI_TRIGTYPE_UPDATE); |
| 603 | |
| 604 | /* Share code with NO ACTION/DELETE cases. */ |
| 605 | return ri_restrict((TriggerData *) fcinfo->context, false); |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * ri_restrict - |
| 610 | * |
| 611 | * Common code for ON DELETE RESTRICT, ON DELETE NO ACTION, |
| 612 | * ON UPDATE RESTRICT, and ON UPDATE NO ACTION. |
| 613 | */ |
| 614 | static Datum |
| 615 | ri_restrict(TriggerData *trigdata, bool is_no_action) |
| 616 | { |
| 617 | const RI_ConstraintInfo *riinfo; |
| 618 | Relation fk_rel; |
| 619 | Relation pk_rel; |
| 620 | TupleTableSlot *oldslot; |
| 621 | RI_QueryKey qkey; |
| 622 | SPIPlanPtr qplan; |
| 623 | |
| 624 | riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger, |
| 625 | trigdata->tg_relation, true); |
| 626 | |
| 627 | /* |
| 628 | * Get the relation descriptors of the FK and PK tables and the old tuple. |
| 629 | * |
| 630 | * fk_rel is opened in RowShareLock mode since that's what our eventual |
| 631 | * SELECT FOR KEY SHARE will get on it. |
| 632 | */ |
| 633 | fk_rel = table_open(riinfo->fk_relid, RowShareLock); |
| 634 | pk_rel = trigdata->tg_relation; |
| 635 | oldslot = trigdata->tg_trigslot; |
| 636 | |
| 637 | /* |
| 638 | * If another PK row now exists providing the old key values, we should |
| 639 | * not do anything. However, this check should only be made in the NO |
| 640 | * ACTION case; in RESTRICT cases we don't wish to allow another row to be |
| 641 | * substituted. |
| 642 | */ |
| 643 | if (is_no_action && |
| 644 | ri_Check_Pk_Match(pk_rel, fk_rel, oldslot, riinfo)) |
| 645 | { |
| 646 | table_close(fk_rel, RowShareLock); |
| 647 | return PointerGetDatum(NULL); |
| 648 | } |
| 649 | |
| 650 | if (SPI_connect() != SPI_OK_CONNECT) |
| 651 | elog(ERROR, "SPI_connect failed" ); |
| 652 | |
| 653 | /* |
| 654 | * Fetch or prepare a saved plan for the restrict lookup (it's the same |
| 655 | * query for delete and update cases) |
| 656 | */ |
| 657 | ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_RESTRICT_CHECKREF); |
| 658 | |
| 659 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 660 | { |
| 661 | StringInfoData querybuf; |
| 662 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 663 | char attname[MAX_QUOTED_NAME_LEN]; |
| 664 | char paramname[16]; |
| 665 | const char *querysep; |
| 666 | Oid queryoids[RI_MAX_NUMKEYS]; |
| 667 | const char *fk_only; |
| 668 | |
| 669 | /* ---------- |
| 670 | * The query string built is |
| 671 | * SELECT 1 FROM [ONLY] <fktable> x WHERE $1 = fkatt1 [AND ...] |
| 672 | * FOR KEY SHARE OF x |
| 673 | * The type id's for the $ parameters are those of the |
| 674 | * corresponding PK attributes. |
| 675 | * ---------- |
| 676 | */ |
| 677 | initStringInfo(&querybuf); |
| 678 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 679 | "" : "ONLY " ; |
| 680 | quoteRelationName(fkrelname, fk_rel); |
| 681 | appendStringInfo(&querybuf, "SELECT 1 FROM %s%s x" , |
| 682 | fk_only, fkrelname); |
| 683 | querysep = "WHERE" ; |
| 684 | for (int i = 0; i < riinfo->nkeys; i++) |
| 685 | { |
| 686 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 687 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 688 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 689 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 690 | |
| 691 | quoteOneName(attname, |
| 692 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 693 | sprintf(paramname, "$%d" , i + 1); |
| 694 | ri_GenerateQual(&querybuf, querysep, |
| 695 | paramname, pk_type, |
| 696 | riinfo->pf_eq_oprs[i], |
| 697 | attname, fk_type); |
| 698 | if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll)) |
| 699 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 700 | querysep = "AND" ; |
| 701 | queryoids[i] = pk_type; |
| 702 | } |
| 703 | appendStringInfoString(&querybuf, " FOR KEY SHARE OF x" ); |
| 704 | |
| 705 | /* Prepare and save the plan */ |
| 706 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids, |
| 707 | &qkey, fk_rel, pk_rel, true); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * We have a plan now. Run it to check for existing references. |
| 712 | */ |
| 713 | ri_PerformCheck(riinfo, &qkey, qplan, |
| 714 | fk_rel, pk_rel, |
| 715 | oldslot, NULL, |
| 716 | true, /* must detect new rows */ |
| 717 | SPI_OK_SELECT); |
| 718 | |
| 719 | if (SPI_finish() != SPI_OK_FINISH) |
| 720 | elog(ERROR, "SPI_finish failed" ); |
| 721 | |
| 722 | table_close(fk_rel, RowShareLock); |
| 723 | |
| 724 | return PointerGetDatum(NULL); |
| 725 | } |
| 726 | |
| 727 | |
| 728 | /* |
| 729 | * RI_FKey_cascade_del - |
| 730 | * |
| 731 | * Cascaded delete foreign key references at delete event on PK table. |
| 732 | */ |
| 733 | Datum |
| 734 | RI_FKey_cascade_del(PG_FUNCTION_ARGS) |
| 735 | { |
| 736 | TriggerData *trigdata = (TriggerData *) fcinfo->context; |
| 737 | const RI_ConstraintInfo *riinfo; |
| 738 | Relation fk_rel; |
| 739 | Relation pk_rel; |
| 740 | TupleTableSlot *oldslot; |
| 741 | RI_QueryKey qkey; |
| 742 | SPIPlanPtr qplan; |
| 743 | |
| 744 | /* Check that this is a valid trigger call on the right time and event. */ |
| 745 | ri_CheckTrigger(fcinfo, "RI_FKey_cascade_del" , RI_TRIGTYPE_DELETE); |
| 746 | |
| 747 | riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger, |
| 748 | trigdata->tg_relation, true); |
| 749 | |
| 750 | /* |
| 751 | * Get the relation descriptors of the FK and PK tables and the old tuple. |
| 752 | * |
| 753 | * fk_rel is opened in RowExclusiveLock mode since that's what our |
| 754 | * eventual DELETE will get on it. |
| 755 | */ |
| 756 | fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock); |
| 757 | pk_rel = trigdata->tg_relation; |
| 758 | oldslot = trigdata->tg_trigslot; |
| 759 | |
| 760 | if (SPI_connect() != SPI_OK_CONNECT) |
| 761 | elog(ERROR, "SPI_connect failed" ); |
| 762 | |
| 763 | /* Fetch or prepare a saved plan for the cascaded delete */ |
| 764 | ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_DEL_DODELETE); |
| 765 | |
| 766 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 767 | { |
| 768 | StringInfoData querybuf; |
| 769 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 770 | char attname[MAX_QUOTED_NAME_LEN]; |
| 771 | char paramname[16]; |
| 772 | const char *querysep; |
| 773 | Oid queryoids[RI_MAX_NUMKEYS]; |
| 774 | const char *fk_only; |
| 775 | |
| 776 | /* ---------- |
| 777 | * The query string built is |
| 778 | * DELETE FROM [ONLY] <fktable> WHERE $1 = fkatt1 [AND ...] |
| 779 | * The type id's for the $ parameters are those of the |
| 780 | * corresponding PK attributes. |
| 781 | * ---------- |
| 782 | */ |
| 783 | initStringInfo(&querybuf); |
| 784 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 785 | "" : "ONLY " ; |
| 786 | quoteRelationName(fkrelname, fk_rel); |
| 787 | appendStringInfo(&querybuf, "DELETE FROM %s%s" , |
| 788 | fk_only, fkrelname); |
| 789 | querysep = "WHERE" ; |
| 790 | for (int i = 0; i < riinfo->nkeys; i++) |
| 791 | { |
| 792 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 793 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 794 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 795 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 796 | |
| 797 | quoteOneName(attname, |
| 798 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 799 | sprintf(paramname, "$%d" , i + 1); |
| 800 | ri_GenerateQual(&querybuf, querysep, |
| 801 | paramname, pk_type, |
| 802 | riinfo->pf_eq_oprs[i], |
| 803 | attname, fk_type); |
| 804 | if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll)) |
| 805 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 806 | querysep = "AND" ; |
| 807 | queryoids[i] = pk_type; |
| 808 | } |
| 809 | |
| 810 | /* Prepare and save the plan */ |
| 811 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids, |
| 812 | &qkey, fk_rel, pk_rel, true); |
| 813 | } |
| 814 | |
| 815 | /* |
| 816 | * We have a plan now. Build up the arguments from the key values in the |
| 817 | * deleted PK tuple and delete the referencing rows |
| 818 | */ |
| 819 | ri_PerformCheck(riinfo, &qkey, qplan, |
| 820 | fk_rel, pk_rel, |
| 821 | oldslot, NULL, |
| 822 | true, /* must detect new rows */ |
| 823 | SPI_OK_DELETE); |
| 824 | |
| 825 | if (SPI_finish() != SPI_OK_FINISH) |
| 826 | elog(ERROR, "SPI_finish failed" ); |
| 827 | |
| 828 | table_close(fk_rel, RowExclusiveLock); |
| 829 | |
| 830 | return PointerGetDatum(NULL); |
| 831 | } |
| 832 | |
| 833 | |
| 834 | /* |
| 835 | * RI_FKey_cascade_upd - |
| 836 | * |
| 837 | * Cascaded update foreign key references at update event on PK table. |
| 838 | */ |
| 839 | Datum |
| 840 | RI_FKey_cascade_upd(PG_FUNCTION_ARGS) |
| 841 | { |
| 842 | TriggerData *trigdata = (TriggerData *) fcinfo->context; |
| 843 | const RI_ConstraintInfo *riinfo; |
| 844 | Relation fk_rel; |
| 845 | Relation pk_rel; |
| 846 | TupleTableSlot *newslot; |
| 847 | TupleTableSlot *oldslot; |
| 848 | RI_QueryKey qkey; |
| 849 | SPIPlanPtr qplan; |
| 850 | |
| 851 | /* Check that this is a valid trigger call on the right time and event. */ |
| 852 | ri_CheckTrigger(fcinfo, "RI_FKey_cascade_upd" , RI_TRIGTYPE_UPDATE); |
| 853 | |
| 854 | riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger, |
| 855 | trigdata->tg_relation, true); |
| 856 | |
| 857 | /* |
| 858 | * Get the relation descriptors of the FK and PK tables and the new and |
| 859 | * old tuple. |
| 860 | * |
| 861 | * fk_rel is opened in RowExclusiveLock mode since that's what our |
| 862 | * eventual UPDATE will get on it. |
| 863 | */ |
| 864 | fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock); |
| 865 | pk_rel = trigdata->tg_relation; |
| 866 | newslot = trigdata->tg_newslot; |
| 867 | oldslot = trigdata->tg_trigslot; |
| 868 | |
| 869 | if (SPI_connect() != SPI_OK_CONNECT) |
| 870 | elog(ERROR, "SPI_connect failed" ); |
| 871 | |
| 872 | /* Fetch or prepare a saved plan for the cascaded update */ |
| 873 | ri_BuildQueryKey(&qkey, riinfo, RI_PLAN_CASCADE_UPD_DOUPDATE); |
| 874 | |
| 875 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 876 | { |
| 877 | StringInfoData querybuf; |
| 878 | StringInfoData qualbuf; |
| 879 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 880 | char attname[MAX_QUOTED_NAME_LEN]; |
| 881 | char paramname[16]; |
| 882 | const char *querysep; |
| 883 | const char *qualsep; |
| 884 | Oid queryoids[RI_MAX_NUMKEYS * 2]; |
| 885 | const char *fk_only; |
| 886 | |
| 887 | /* ---------- |
| 888 | * The query string built is |
| 889 | * UPDATE [ONLY] <fktable> SET fkatt1 = $1 [, ...] |
| 890 | * WHERE $n = fkatt1 [AND ...] |
| 891 | * The type id's for the $ parameters are those of the |
| 892 | * corresponding PK attributes. Note that we are assuming |
| 893 | * there is an assignment cast from the PK to the FK type; |
| 894 | * else the parser will fail. |
| 895 | * ---------- |
| 896 | */ |
| 897 | initStringInfo(&querybuf); |
| 898 | initStringInfo(&qualbuf); |
| 899 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 900 | "" : "ONLY " ; |
| 901 | quoteRelationName(fkrelname, fk_rel); |
| 902 | appendStringInfo(&querybuf, "UPDATE %s%s SET" , |
| 903 | fk_only, fkrelname); |
| 904 | querysep = "" ; |
| 905 | qualsep = "WHERE" ; |
| 906 | for (int i = 0, j = riinfo->nkeys; i < riinfo->nkeys; i++, j++) |
| 907 | { |
| 908 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 909 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 910 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 911 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 912 | |
| 913 | quoteOneName(attname, |
| 914 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 915 | appendStringInfo(&querybuf, |
| 916 | "%s %s = $%d" , |
| 917 | querysep, attname, i + 1); |
| 918 | sprintf(paramname, "$%d" , j + 1); |
| 919 | ri_GenerateQual(&qualbuf, qualsep, |
| 920 | paramname, pk_type, |
| 921 | riinfo->pf_eq_oprs[i], |
| 922 | attname, fk_type); |
| 923 | if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll)) |
| 924 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 925 | querysep = "," ; |
| 926 | qualsep = "AND" ; |
| 927 | queryoids[i] = pk_type; |
| 928 | queryoids[j] = pk_type; |
| 929 | } |
| 930 | appendStringInfoString(&querybuf, qualbuf.data); |
| 931 | |
| 932 | /* Prepare and save the plan */ |
| 933 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys * 2, queryoids, |
| 934 | &qkey, fk_rel, pk_rel, true); |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | * We have a plan now. Run it to update the existing references. |
| 939 | */ |
| 940 | ri_PerformCheck(riinfo, &qkey, qplan, |
| 941 | fk_rel, pk_rel, |
| 942 | oldslot, newslot, |
| 943 | true, /* must detect new rows */ |
| 944 | SPI_OK_UPDATE); |
| 945 | |
| 946 | if (SPI_finish() != SPI_OK_FINISH) |
| 947 | elog(ERROR, "SPI_finish failed" ); |
| 948 | |
| 949 | table_close(fk_rel, RowExclusiveLock); |
| 950 | |
| 951 | return PointerGetDatum(NULL); |
| 952 | } |
| 953 | |
| 954 | |
| 955 | /* |
| 956 | * RI_FKey_setnull_del - |
| 957 | * |
| 958 | * Set foreign key references to NULL values at delete event on PK table. |
| 959 | */ |
| 960 | Datum |
| 961 | RI_FKey_setnull_del(PG_FUNCTION_ARGS) |
| 962 | { |
| 963 | /* Check that this is a valid trigger call on the right time and event. */ |
| 964 | ri_CheckTrigger(fcinfo, "RI_FKey_setnull_del" , RI_TRIGTYPE_DELETE); |
| 965 | |
| 966 | /* Share code with UPDATE case */ |
| 967 | return ri_set((TriggerData *) fcinfo->context, true); |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | * RI_FKey_setnull_upd - |
| 972 | * |
| 973 | * Set foreign key references to NULL at update event on PK table. |
| 974 | */ |
| 975 | Datum |
| 976 | RI_FKey_setnull_upd(PG_FUNCTION_ARGS) |
| 977 | { |
| 978 | /* Check that this is a valid trigger call on the right time and event. */ |
| 979 | ri_CheckTrigger(fcinfo, "RI_FKey_setnull_upd" , RI_TRIGTYPE_UPDATE); |
| 980 | |
| 981 | /* Share code with DELETE case */ |
| 982 | return ri_set((TriggerData *) fcinfo->context, true); |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * RI_FKey_setdefault_del - |
| 987 | * |
| 988 | * Set foreign key references to defaults at delete event on PK table. |
| 989 | */ |
| 990 | Datum |
| 991 | RI_FKey_setdefault_del(PG_FUNCTION_ARGS) |
| 992 | { |
| 993 | /* Check that this is a valid trigger call on the right time and event. */ |
| 994 | ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_del" , RI_TRIGTYPE_DELETE); |
| 995 | |
| 996 | /* Share code with UPDATE case */ |
| 997 | return ri_set((TriggerData *) fcinfo->context, false); |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * RI_FKey_setdefault_upd - |
| 1002 | * |
| 1003 | * Set foreign key references to defaults at update event on PK table. |
| 1004 | */ |
| 1005 | Datum |
| 1006 | RI_FKey_setdefault_upd(PG_FUNCTION_ARGS) |
| 1007 | { |
| 1008 | /* Check that this is a valid trigger call on the right time and event. */ |
| 1009 | ri_CheckTrigger(fcinfo, "RI_FKey_setdefault_upd" , RI_TRIGTYPE_UPDATE); |
| 1010 | |
| 1011 | /* Share code with DELETE case */ |
| 1012 | return ri_set((TriggerData *) fcinfo->context, false); |
| 1013 | } |
| 1014 | |
| 1015 | /* |
| 1016 | * ri_set - |
| 1017 | * |
| 1018 | * Common code for ON DELETE SET NULL, ON DELETE SET DEFAULT, ON UPDATE SET |
| 1019 | * NULL, and ON UPDATE SET DEFAULT. |
| 1020 | */ |
| 1021 | static Datum |
| 1022 | ri_set(TriggerData *trigdata, bool is_set_null) |
| 1023 | { |
| 1024 | const RI_ConstraintInfo *riinfo; |
| 1025 | Relation fk_rel; |
| 1026 | Relation pk_rel; |
| 1027 | TupleTableSlot *oldslot; |
| 1028 | RI_QueryKey qkey; |
| 1029 | SPIPlanPtr qplan; |
| 1030 | |
| 1031 | riinfo = ri_FetchConstraintInfo(trigdata->tg_trigger, |
| 1032 | trigdata->tg_relation, true); |
| 1033 | |
| 1034 | /* |
| 1035 | * Get the relation descriptors of the FK and PK tables and the old tuple. |
| 1036 | * |
| 1037 | * fk_rel is opened in RowExclusiveLock mode since that's what our |
| 1038 | * eventual UPDATE will get on it. |
| 1039 | */ |
| 1040 | fk_rel = table_open(riinfo->fk_relid, RowExclusiveLock); |
| 1041 | pk_rel = trigdata->tg_relation; |
| 1042 | oldslot = trigdata->tg_trigslot; |
| 1043 | |
| 1044 | if (SPI_connect() != SPI_OK_CONNECT) |
| 1045 | elog(ERROR, "SPI_connect failed" ); |
| 1046 | |
| 1047 | /* |
| 1048 | * Fetch or prepare a saved plan for the set null/default operation (it's |
| 1049 | * the same query for delete and update cases) |
| 1050 | */ |
| 1051 | ri_BuildQueryKey(&qkey, riinfo, |
| 1052 | (is_set_null |
| 1053 | ? RI_PLAN_SETNULL_DOUPDATE |
| 1054 | : RI_PLAN_SETDEFAULT_DOUPDATE)); |
| 1055 | |
| 1056 | if ((qplan = ri_FetchPreparedPlan(&qkey)) == NULL) |
| 1057 | { |
| 1058 | StringInfoData querybuf; |
| 1059 | StringInfoData qualbuf; |
| 1060 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 1061 | char attname[MAX_QUOTED_NAME_LEN]; |
| 1062 | char paramname[16]; |
| 1063 | const char *querysep; |
| 1064 | const char *qualsep; |
| 1065 | Oid queryoids[RI_MAX_NUMKEYS]; |
| 1066 | const char *fk_only; |
| 1067 | |
| 1068 | /* ---------- |
| 1069 | * The query string built is |
| 1070 | * UPDATE [ONLY] <fktable> SET fkatt1 = {NULL|DEFAULT} [, ...] |
| 1071 | * WHERE $1 = fkatt1 [AND ...] |
| 1072 | * The type id's for the $ parameters are those of the |
| 1073 | * corresponding PK attributes. |
| 1074 | * ---------- |
| 1075 | */ |
| 1076 | initStringInfo(&querybuf); |
| 1077 | initStringInfo(&qualbuf); |
| 1078 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 1079 | "" : "ONLY " ; |
| 1080 | quoteRelationName(fkrelname, fk_rel); |
| 1081 | appendStringInfo(&querybuf, "UPDATE %s%s SET" , |
| 1082 | fk_only, fkrelname); |
| 1083 | querysep = "" ; |
| 1084 | qualsep = "WHERE" ; |
| 1085 | for (int i = 0; i < riinfo->nkeys; i++) |
| 1086 | { |
| 1087 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 1088 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 1089 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 1090 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 1091 | |
| 1092 | quoteOneName(attname, |
| 1093 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1094 | appendStringInfo(&querybuf, |
| 1095 | "%s %s = %s" , |
| 1096 | querysep, attname, |
| 1097 | is_set_null ? "NULL" : "DEFAULT" ); |
| 1098 | sprintf(paramname, "$%d" , i + 1); |
| 1099 | ri_GenerateQual(&qualbuf, qualsep, |
| 1100 | paramname, pk_type, |
| 1101 | riinfo->pf_eq_oprs[i], |
| 1102 | attname, fk_type); |
| 1103 | if (pk_coll != fk_coll && !get_collation_isdeterministic(pk_coll)) |
| 1104 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 1105 | querysep = "," ; |
| 1106 | qualsep = "AND" ; |
| 1107 | queryoids[i] = pk_type; |
| 1108 | } |
| 1109 | appendStringInfoString(&querybuf, qualbuf.data); |
| 1110 | |
| 1111 | /* Prepare and save the plan */ |
| 1112 | qplan = ri_PlanCheck(querybuf.data, riinfo->nkeys, queryoids, |
| 1113 | &qkey, fk_rel, pk_rel, true); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * We have a plan now. Run it to update the existing references. |
| 1118 | */ |
| 1119 | ri_PerformCheck(riinfo, &qkey, qplan, |
| 1120 | fk_rel, pk_rel, |
| 1121 | oldslot, NULL, |
| 1122 | true, /* must detect new rows */ |
| 1123 | SPI_OK_UPDATE); |
| 1124 | |
| 1125 | if (SPI_finish() != SPI_OK_FINISH) |
| 1126 | elog(ERROR, "SPI_finish failed" ); |
| 1127 | |
| 1128 | table_close(fk_rel, RowExclusiveLock); |
| 1129 | |
| 1130 | if (is_set_null) |
| 1131 | return PointerGetDatum(NULL); |
| 1132 | else |
| 1133 | { |
| 1134 | /* |
| 1135 | * If we just deleted or updated the PK row whose key was equal to the |
| 1136 | * FK columns' default values, and a referencing row exists in the FK |
| 1137 | * table, we would have updated that row to the same values it already |
| 1138 | * had --- and RI_FKey_fk_upd_check_required would hence believe no |
| 1139 | * check is necessary. So we need to do another lookup now and in |
| 1140 | * case a reference still exists, abort the operation. That is |
| 1141 | * already implemented in the NO ACTION trigger, so just run it. (This |
| 1142 | * recheck is only needed in the SET DEFAULT case, since CASCADE would |
| 1143 | * remove such rows in case of a DELETE operation or would change the |
| 1144 | * FK key values in case of an UPDATE, while SET NULL is certain to |
| 1145 | * result in rows that satisfy the FK constraint.) |
| 1146 | */ |
| 1147 | return ri_restrict(trigdata, true); |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | |
| 1152 | /* |
| 1153 | * RI_FKey_pk_upd_check_required - |
| 1154 | * |
| 1155 | * Check if we really need to fire the RI trigger for an update or delete to a PK |
| 1156 | * relation. This is called by the AFTER trigger queue manager to see if |
| 1157 | * it can skip queuing an instance of an RI trigger. Returns true if the |
| 1158 | * trigger must be fired, false if we can prove the constraint will still |
| 1159 | * be satisfied. |
| 1160 | * |
| 1161 | * newslot will be NULL if this is called for a delete. |
| 1162 | */ |
| 1163 | bool |
| 1164 | RI_FKey_pk_upd_check_required(Trigger *trigger, Relation pk_rel, |
| 1165 | TupleTableSlot *oldslot, TupleTableSlot *newslot) |
| 1166 | { |
| 1167 | const RI_ConstraintInfo *riinfo; |
| 1168 | |
| 1169 | riinfo = ri_FetchConstraintInfo(trigger, pk_rel, true); |
| 1170 | |
| 1171 | /* |
| 1172 | * If any old key value is NULL, the row could not have been referenced by |
| 1173 | * an FK row, so no check is needed. |
| 1174 | */ |
| 1175 | if (ri_NullCheck(RelationGetDescr(pk_rel), oldslot, riinfo, true) != RI_KEYS_NONE_NULL) |
| 1176 | return false; |
| 1177 | |
| 1178 | /* If all old and new key values are equal, no check is needed */ |
| 1179 | if (newslot && ri_KeysEqual(pk_rel, oldslot, newslot, riinfo, true)) |
| 1180 | return false; |
| 1181 | |
| 1182 | /* Else we need to fire the trigger. */ |
| 1183 | return true; |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * RI_FKey_fk_upd_check_required - |
| 1188 | * |
| 1189 | * Check if we really need to fire the RI trigger for an update to an FK |
| 1190 | * relation. This is called by the AFTER trigger queue manager to see if |
| 1191 | * it can skip queuing an instance of an RI trigger. Returns true if the |
| 1192 | * trigger must be fired, false if we can prove the constraint will still |
| 1193 | * be satisfied. |
| 1194 | */ |
| 1195 | bool |
| 1196 | RI_FKey_fk_upd_check_required(Trigger *trigger, Relation fk_rel, |
| 1197 | TupleTableSlot *oldslot, TupleTableSlot *newslot) |
| 1198 | { |
| 1199 | const RI_ConstraintInfo *riinfo; |
| 1200 | int ri_nullcheck; |
| 1201 | Datum xminDatum; |
| 1202 | TransactionId xmin; |
| 1203 | bool isnull; |
| 1204 | |
| 1205 | riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false); |
| 1206 | |
| 1207 | ri_nullcheck = ri_NullCheck(RelationGetDescr(fk_rel), newslot, riinfo, false); |
| 1208 | |
| 1209 | /* |
| 1210 | * If all new key values are NULL, the row satisfies the constraint, so no |
| 1211 | * check is needed. |
| 1212 | */ |
| 1213 | if (ri_nullcheck == RI_KEYS_ALL_NULL) |
| 1214 | return false; |
| 1215 | |
| 1216 | /* |
| 1217 | * If some new key values are NULL, the behavior depends on the match |
| 1218 | * type. |
| 1219 | */ |
| 1220 | else if (ri_nullcheck == RI_KEYS_SOME_NULL) |
| 1221 | { |
| 1222 | switch (riinfo->confmatchtype) |
| 1223 | { |
| 1224 | case FKCONSTR_MATCH_SIMPLE: |
| 1225 | |
| 1226 | /* |
| 1227 | * If any new key value is NULL, the row must satisfy the |
| 1228 | * constraint, so no check is needed. |
| 1229 | */ |
| 1230 | return false; |
| 1231 | |
| 1232 | case FKCONSTR_MATCH_PARTIAL: |
| 1233 | |
| 1234 | /* |
| 1235 | * Don't know, must run full check. |
| 1236 | */ |
| 1237 | break; |
| 1238 | |
| 1239 | case FKCONSTR_MATCH_FULL: |
| 1240 | |
| 1241 | /* |
| 1242 | * If some new key values are NULL, the row fails the |
| 1243 | * constraint. We must not throw error here, because the row |
| 1244 | * might get invalidated before the constraint is to be |
| 1245 | * checked, but we should queue the event to apply the check |
| 1246 | * later. |
| 1247 | */ |
| 1248 | return true; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | /* |
| 1253 | * Continues here for no new key values are NULL, or we couldn't decide |
| 1254 | * yet. |
| 1255 | */ |
| 1256 | |
| 1257 | /* |
| 1258 | * If the original row was inserted by our own transaction, we must fire |
| 1259 | * the trigger whether or not the keys are equal. This is because our |
| 1260 | * UPDATE will invalidate the INSERT so that the INSERT RI trigger will |
| 1261 | * not do anything; so we had better do the UPDATE check. (We could skip |
| 1262 | * this if we knew the INSERT trigger already fired, but there is no easy |
| 1263 | * way to know that.) |
| 1264 | */ |
| 1265 | xminDatum = slot_getsysattr(oldslot, MinTransactionIdAttributeNumber, &isnull); |
| 1266 | Assert(!isnull); |
| 1267 | xmin = DatumGetTransactionId(xminDatum); |
| 1268 | if (TransactionIdIsCurrentTransactionId(xmin)) |
| 1269 | return true; |
| 1270 | |
| 1271 | /* If all old and new key values are equal, no check is needed */ |
| 1272 | if (ri_KeysEqual(fk_rel, oldslot, newslot, riinfo, false)) |
| 1273 | return false; |
| 1274 | |
| 1275 | /* Else we need to fire the trigger. */ |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * RI_Initial_Check - |
| 1281 | * |
| 1282 | * Check an entire table for non-matching values using a single query. |
| 1283 | * This is not a trigger procedure, but is called during ALTER TABLE |
| 1284 | * ADD FOREIGN KEY to validate the initial table contents. |
| 1285 | * |
| 1286 | * We expect that the caller has made provision to prevent any problems |
| 1287 | * caused by concurrent actions. This could be either by locking rel and |
| 1288 | * pkrel at ShareRowExclusiveLock or higher, or by otherwise ensuring |
| 1289 | * that triggers implementing the checks are already active. |
| 1290 | * Hence, we do not need to lock individual rows for the check. |
| 1291 | * |
| 1292 | * If the check fails because the current user doesn't have permissions |
| 1293 | * to read both tables, return false to let our caller know that they will |
| 1294 | * need to do something else to check the constraint. |
| 1295 | */ |
| 1296 | bool |
| 1297 | RI_Initial_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel) |
| 1298 | { |
| 1299 | const RI_ConstraintInfo *riinfo; |
| 1300 | StringInfoData querybuf; |
| 1301 | char pkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 1302 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 1303 | char pkattname[MAX_QUOTED_NAME_LEN + 3]; |
| 1304 | char fkattname[MAX_QUOTED_NAME_LEN + 3]; |
| 1305 | RangeTblEntry *pkrte; |
| 1306 | RangeTblEntry *fkrte; |
| 1307 | const char *sep; |
| 1308 | const char *fk_only; |
| 1309 | const char *pk_only; |
| 1310 | int save_nestlevel; |
| 1311 | char workmembuf[32]; |
| 1312 | int spi_result; |
| 1313 | SPIPlanPtr qplan; |
| 1314 | |
| 1315 | riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false); |
| 1316 | |
| 1317 | /* |
| 1318 | * Check to make sure current user has enough permissions to do the test |
| 1319 | * query. (If not, caller can fall back to the trigger method, which |
| 1320 | * works because it changes user IDs on the fly.) |
| 1321 | * |
| 1322 | * XXX are there any other show-stopper conditions to check? |
| 1323 | */ |
| 1324 | pkrte = makeNode(RangeTblEntry); |
| 1325 | pkrte->rtekind = RTE_RELATION; |
| 1326 | pkrte->relid = RelationGetRelid(pk_rel); |
| 1327 | pkrte->relkind = pk_rel->rd_rel->relkind; |
| 1328 | pkrte->rellockmode = AccessShareLock; |
| 1329 | pkrte->requiredPerms = ACL_SELECT; |
| 1330 | |
| 1331 | fkrte = makeNode(RangeTblEntry); |
| 1332 | fkrte->rtekind = RTE_RELATION; |
| 1333 | fkrte->relid = RelationGetRelid(fk_rel); |
| 1334 | fkrte->relkind = fk_rel->rd_rel->relkind; |
| 1335 | fkrte->rellockmode = AccessShareLock; |
| 1336 | fkrte->requiredPerms = ACL_SELECT; |
| 1337 | |
| 1338 | for (int i = 0; i < riinfo->nkeys; i++) |
| 1339 | { |
| 1340 | int attno; |
| 1341 | |
| 1342 | attno = riinfo->pk_attnums[i] - FirstLowInvalidHeapAttributeNumber; |
| 1343 | pkrte->selectedCols = bms_add_member(pkrte->selectedCols, attno); |
| 1344 | |
| 1345 | attno = riinfo->fk_attnums[i] - FirstLowInvalidHeapAttributeNumber; |
| 1346 | fkrte->selectedCols = bms_add_member(fkrte->selectedCols, attno); |
| 1347 | } |
| 1348 | |
| 1349 | if (!ExecCheckRTPerms(list_make2(fkrte, pkrte), false)) |
| 1350 | return false; |
| 1351 | |
| 1352 | /* |
| 1353 | * Also punt if RLS is enabled on either table unless this role has the |
| 1354 | * bypassrls right or is the table owner of the table(s) involved which |
| 1355 | * have RLS enabled. |
| 1356 | */ |
| 1357 | if (!has_bypassrls_privilege(GetUserId()) && |
| 1358 | ((pk_rel->rd_rel->relrowsecurity && |
| 1359 | !pg_class_ownercheck(pkrte->relid, GetUserId())) || |
| 1360 | (fk_rel->rd_rel->relrowsecurity && |
| 1361 | !pg_class_ownercheck(fkrte->relid, GetUserId())))) |
| 1362 | return false; |
| 1363 | |
| 1364 | /*---------- |
| 1365 | * The query string built is: |
| 1366 | * SELECT fk.keycols FROM [ONLY] relname fk |
| 1367 | * LEFT OUTER JOIN [ONLY] pkrelname pk |
| 1368 | * ON (pk.pkkeycol1=fk.keycol1 [AND ...]) |
| 1369 | * WHERE pk.pkkeycol1 IS NULL AND |
| 1370 | * For MATCH SIMPLE: |
| 1371 | * (fk.keycol1 IS NOT NULL [AND ...]) |
| 1372 | * For MATCH FULL: |
| 1373 | * (fk.keycol1 IS NOT NULL [OR ...]) |
| 1374 | * |
| 1375 | * We attach COLLATE clauses to the operators when comparing columns |
| 1376 | * that have different collations. |
| 1377 | *---------- |
| 1378 | */ |
| 1379 | initStringInfo(&querybuf); |
| 1380 | appendStringInfoString(&querybuf, "SELECT " ); |
| 1381 | sep = "" ; |
| 1382 | for (int i = 0; i < riinfo->nkeys; i++) |
| 1383 | { |
| 1384 | quoteOneName(fkattname, |
| 1385 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1386 | appendStringInfo(&querybuf, "%sfk.%s" , sep, fkattname); |
| 1387 | sep = ", " ; |
| 1388 | } |
| 1389 | |
| 1390 | quoteRelationName(pkrelname, pk_rel); |
| 1391 | quoteRelationName(fkrelname, fk_rel); |
| 1392 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 1393 | "" : "ONLY " ; |
| 1394 | pk_only = pk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 1395 | "" : "ONLY " ; |
| 1396 | appendStringInfo(&querybuf, |
| 1397 | " FROM %s%s fk LEFT OUTER JOIN %s%s pk ON" , |
| 1398 | fk_only, fkrelname, pk_only, pkrelname); |
| 1399 | |
| 1400 | strcpy(pkattname, "pk." ); |
| 1401 | strcpy(fkattname, "fk." ); |
| 1402 | sep = "(" ; |
| 1403 | for (int i = 0; i < riinfo->nkeys; i++) |
| 1404 | { |
| 1405 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 1406 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 1407 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 1408 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 1409 | |
| 1410 | quoteOneName(pkattname + 3, |
| 1411 | RIAttName(pk_rel, riinfo->pk_attnums[i])); |
| 1412 | quoteOneName(fkattname + 3, |
| 1413 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1414 | ri_GenerateQual(&querybuf, sep, |
| 1415 | pkattname, pk_type, |
| 1416 | riinfo->pf_eq_oprs[i], |
| 1417 | fkattname, fk_type); |
| 1418 | if (pk_coll != fk_coll) |
| 1419 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 1420 | sep = "AND" ; |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * It's sufficient to test any one pk attribute for null to detect a join |
| 1425 | * failure. |
| 1426 | */ |
| 1427 | quoteOneName(pkattname, RIAttName(pk_rel, riinfo->pk_attnums[0])); |
| 1428 | appendStringInfo(&querybuf, ") WHERE pk.%s IS NULL AND (" , pkattname); |
| 1429 | |
| 1430 | sep = "" ; |
| 1431 | for (int i = 0; i < riinfo->nkeys; i++) |
| 1432 | { |
| 1433 | quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1434 | appendStringInfo(&querybuf, |
| 1435 | "%sfk.%s IS NOT NULL" , |
| 1436 | sep, fkattname); |
| 1437 | switch (riinfo->confmatchtype) |
| 1438 | { |
| 1439 | case FKCONSTR_MATCH_SIMPLE: |
| 1440 | sep = " AND " ; |
| 1441 | break; |
| 1442 | case FKCONSTR_MATCH_FULL: |
| 1443 | sep = " OR " ; |
| 1444 | break; |
| 1445 | } |
| 1446 | } |
| 1447 | appendStringInfoChar(&querybuf, ')'); |
| 1448 | |
| 1449 | /* |
| 1450 | * Temporarily increase work_mem so that the check query can be executed |
| 1451 | * more efficiently. It seems okay to do this because the query is simple |
| 1452 | * enough to not use a multiple of work_mem, and one typically would not |
| 1453 | * have many large foreign-key validations happening concurrently. So |
| 1454 | * this seems to meet the criteria for being considered a "maintenance" |
| 1455 | * operation, and accordingly we use maintenance_work_mem. |
| 1456 | * |
| 1457 | * We use the equivalent of a function SET option to allow the setting to |
| 1458 | * persist for exactly the duration of the check query. guc.c also takes |
| 1459 | * care of undoing the setting on error. |
| 1460 | */ |
| 1461 | save_nestlevel = NewGUCNestLevel(); |
| 1462 | |
| 1463 | snprintf(workmembuf, sizeof(workmembuf), "%d" , maintenance_work_mem); |
| 1464 | (void) set_config_option("work_mem" , workmembuf, |
| 1465 | PGC_USERSET, PGC_S_SESSION, |
| 1466 | GUC_ACTION_SAVE, true, 0, false); |
| 1467 | |
| 1468 | if (SPI_connect() != SPI_OK_CONNECT) |
| 1469 | elog(ERROR, "SPI_connect failed" ); |
| 1470 | |
| 1471 | /* |
| 1472 | * Generate the plan. We don't need to cache it, and there are no |
| 1473 | * arguments to the plan. |
| 1474 | */ |
| 1475 | qplan = SPI_prepare(querybuf.data, 0, NULL); |
| 1476 | |
| 1477 | if (qplan == NULL) |
| 1478 | elog(ERROR, "SPI_prepare returned %s for %s" , |
| 1479 | SPI_result_code_string(SPI_result), querybuf.data); |
| 1480 | |
| 1481 | /* |
| 1482 | * Run the plan. For safety we force a current snapshot to be used. (In |
| 1483 | * transaction-snapshot mode, this arguably violates transaction isolation |
| 1484 | * rules, but we really haven't got much choice.) We don't need to |
| 1485 | * register the snapshot, because SPI_execute_snapshot will see to it. We |
| 1486 | * need at most one tuple returned, so pass limit = 1. |
| 1487 | */ |
| 1488 | spi_result = SPI_execute_snapshot(qplan, |
| 1489 | NULL, NULL, |
| 1490 | GetLatestSnapshot(), |
| 1491 | InvalidSnapshot, |
| 1492 | true, false, 1); |
| 1493 | |
| 1494 | /* Check result */ |
| 1495 | if (spi_result != SPI_OK_SELECT) |
| 1496 | elog(ERROR, "SPI_execute_snapshot returned %s" , SPI_result_code_string(spi_result)); |
| 1497 | |
| 1498 | /* Did we find a tuple violating the constraint? */ |
| 1499 | if (SPI_processed > 0) |
| 1500 | { |
| 1501 | TupleTableSlot *slot; |
| 1502 | HeapTuple tuple = SPI_tuptable->vals[0]; |
| 1503 | TupleDesc tupdesc = SPI_tuptable->tupdesc; |
| 1504 | RI_ConstraintInfo fake_riinfo; |
| 1505 | |
| 1506 | slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual); |
| 1507 | |
| 1508 | heap_deform_tuple(tuple, tupdesc, |
| 1509 | slot->tts_values, slot->tts_isnull); |
| 1510 | ExecStoreVirtualTuple(slot); |
| 1511 | |
| 1512 | /* |
| 1513 | * The columns to look at in the result tuple are 1..N, not whatever |
| 1514 | * they are in the fk_rel. Hack up riinfo so that the subroutines |
| 1515 | * called here will behave properly. |
| 1516 | * |
| 1517 | * In addition to this, we have to pass the correct tupdesc to |
| 1518 | * ri_ReportViolation, overriding its normal habit of using the pk_rel |
| 1519 | * or fk_rel's tupdesc. |
| 1520 | */ |
| 1521 | memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo)); |
| 1522 | for (int i = 0; i < fake_riinfo.nkeys; i++) |
| 1523 | fake_riinfo.fk_attnums[i] = i + 1; |
| 1524 | |
| 1525 | /* |
| 1526 | * If it's MATCH FULL, and there are any nulls in the FK keys, |
| 1527 | * complain about that rather than the lack of a match. MATCH FULL |
| 1528 | * disallows partially-null FK rows. |
| 1529 | */ |
| 1530 | if (fake_riinfo.confmatchtype == FKCONSTR_MATCH_FULL && |
| 1531 | ri_NullCheck(tupdesc, slot, &fake_riinfo, false) != RI_KEYS_NONE_NULL) |
| 1532 | ereport(ERROR, |
| 1533 | (errcode(ERRCODE_FOREIGN_KEY_VIOLATION), |
| 1534 | errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"" , |
| 1535 | RelationGetRelationName(fk_rel), |
| 1536 | NameStr(fake_riinfo.conname)), |
| 1537 | errdetail("MATCH FULL does not allow mixing of null and nonnull key values." ), |
| 1538 | errtableconstraint(fk_rel, |
| 1539 | NameStr(fake_riinfo.conname)))); |
| 1540 | |
| 1541 | /* |
| 1542 | * We tell ri_ReportViolation we were doing the RI_PLAN_CHECK_LOOKUPPK |
| 1543 | * query, which isn't true, but will cause it to use |
| 1544 | * fake_riinfo.fk_attnums as we need. |
| 1545 | */ |
| 1546 | ri_ReportViolation(&fake_riinfo, |
| 1547 | pk_rel, fk_rel, |
| 1548 | slot, tupdesc, |
| 1549 | RI_PLAN_CHECK_LOOKUPPK, false); |
| 1550 | |
| 1551 | ExecDropSingleTupleTableSlot(slot); |
| 1552 | } |
| 1553 | |
| 1554 | if (SPI_finish() != SPI_OK_FINISH) |
| 1555 | elog(ERROR, "SPI_finish failed" ); |
| 1556 | |
| 1557 | /* |
| 1558 | * Restore work_mem. |
| 1559 | */ |
| 1560 | AtEOXact_GUC(true, save_nestlevel); |
| 1561 | |
| 1562 | return true; |
| 1563 | } |
| 1564 | |
| 1565 | /* |
| 1566 | * RI_PartitionRemove_Check - |
| 1567 | * |
| 1568 | * Verify no referencing values exist, when a partition is detached on |
| 1569 | * the referenced side of a foreign key constraint. |
| 1570 | */ |
| 1571 | void |
| 1572 | RI_PartitionRemove_Check(Trigger *trigger, Relation fk_rel, Relation pk_rel) |
| 1573 | { |
| 1574 | const RI_ConstraintInfo *riinfo; |
| 1575 | StringInfoData querybuf; |
| 1576 | char *constraintDef; |
| 1577 | char pkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 1578 | char fkrelname[MAX_QUOTED_REL_NAME_LEN]; |
| 1579 | char pkattname[MAX_QUOTED_NAME_LEN + 3]; |
| 1580 | char fkattname[MAX_QUOTED_NAME_LEN + 3]; |
| 1581 | const char *sep; |
| 1582 | const char *fk_only; |
| 1583 | int save_nestlevel; |
| 1584 | char workmembuf[32]; |
| 1585 | int spi_result; |
| 1586 | SPIPlanPtr qplan; |
| 1587 | int i; |
| 1588 | |
| 1589 | riinfo = ri_FetchConstraintInfo(trigger, fk_rel, false); |
| 1590 | |
| 1591 | /* |
| 1592 | * We don't check permissions before displaying the error message, on the |
| 1593 | * assumption that the user detaching the partition must have enough |
| 1594 | * privileges to examine the table contents anyhow. |
| 1595 | */ |
| 1596 | |
| 1597 | /*---------- |
| 1598 | * The query string built is: |
| 1599 | * SELECT fk.keycols FROM [ONLY] relname fk |
| 1600 | * JOIN pkrelname pk |
| 1601 | * ON (pk.pkkeycol1=fk.keycol1 [AND ...]) |
| 1602 | * WHERE (<partition constraint>) AND |
| 1603 | * For MATCH SIMPLE: |
| 1604 | * (fk.keycol1 IS NOT NULL [AND ...]) |
| 1605 | * For MATCH FULL: |
| 1606 | * (fk.keycol1 IS NOT NULL [OR ...]) |
| 1607 | * |
| 1608 | * We attach COLLATE clauses to the operators when comparing columns |
| 1609 | * that have different collations. |
| 1610 | *---------- |
| 1611 | */ |
| 1612 | initStringInfo(&querybuf); |
| 1613 | appendStringInfoString(&querybuf, "SELECT " ); |
| 1614 | sep = "" ; |
| 1615 | for (i = 0; i < riinfo->nkeys; i++) |
| 1616 | { |
| 1617 | quoteOneName(fkattname, |
| 1618 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1619 | appendStringInfo(&querybuf, "%sfk.%s" , sep, fkattname); |
| 1620 | sep = ", " ; |
| 1621 | } |
| 1622 | |
| 1623 | quoteRelationName(pkrelname, pk_rel); |
| 1624 | quoteRelationName(fkrelname, fk_rel); |
| 1625 | fk_only = fk_rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE ? |
| 1626 | "" : "ONLY " ; |
| 1627 | appendStringInfo(&querybuf, |
| 1628 | " FROM %s%s fk JOIN %s pk ON" , |
| 1629 | fk_only, fkrelname, pkrelname); |
| 1630 | strcpy(pkattname, "pk." ); |
| 1631 | strcpy(fkattname, "fk." ); |
| 1632 | sep = "(" ; |
| 1633 | for (i = 0; i < riinfo->nkeys; i++) |
| 1634 | { |
| 1635 | Oid pk_type = RIAttType(pk_rel, riinfo->pk_attnums[i]); |
| 1636 | Oid fk_type = RIAttType(fk_rel, riinfo->fk_attnums[i]); |
| 1637 | Oid pk_coll = RIAttCollation(pk_rel, riinfo->pk_attnums[i]); |
| 1638 | Oid fk_coll = RIAttCollation(fk_rel, riinfo->fk_attnums[i]); |
| 1639 | |
| 1640 | quoteOneName(pkattname + 3, |
| 1641 | RIAttName(pk_rel, riinfo->pk_attnums[i])); |
| 1642 | quoteOneName(fkattname + 3, |
| 1643 | RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1644 | ri_GenerateQual(&querybuf, sep, |
| 1645 | pkattname, pk_type, |
| 1646 | riinfo->pf_eq_oprs[i], |
| 1647 | fkattname, fk_type); |
| 1648 | if (pk_coll != fk_coll) |
| 1649 | ri_GenerateQualCollation(&querybuf, pk_coll); |
| 1650 | sep = "AND" ; |
| 1651 | } |
| 1652 | |
| 1653 | /* |
| 1654 | * Start the WHERE clause with the partition constraint (except if this is |
| 1655 | * the default partition and there's no other partition, because the |
| 1656 | * partition constraint is the empty string in that case.) |
| 1657 | */ |
| 1658 | constraintDef = pg_get_partconstrdef_string(RelationGetRelid(pk_rel), "pk" ); |
| 1659 | if (constraintDef && constraintDef[0] != '\0') |
| 1660 | appendStringInfo(&querybuf, ") WHERE %s AND (" , |
| 1661 | constraintDef); |
| 1662 | else |
| 1663 | appendStringInfo(&querybuf, ") WHERE (" ); |
| 1664 | |
| 1665 | sep = "" ; |
| 1666 | for (i = 0; i < riinfo->nkeys; i++) |
| 1667 | { |
| 1668 | quoteOneName(fkattname, RIAttName(fk_rel, riinfo->fk_attnums[i])); |
| 1669 | appendStringInfo(&querybuf, |
| 1670 | "%sfk.%s IS NOT NULL" , |
| 1671 | sep, fkattname); |
| 1672 | switch (riinfo->confmatchtype) |
| 1673 | { |
| 1674 | case FKCONSTR_MATCH_SIMPLE: |
| 1675 | sep = " AND " ; |
| 1676 | break; |
| 1677 | case FKCONSTR_MATCH_FULL: |
| 1678 | sep = " OR " ; |
| 1679 | break; |
| 1680 | } |
| 1681 | } |
| 1682 | appendStringInfoChar(&querybuf, ')'); |
| 1683 | |
| 1684 | /* |
| 1685 | * Temporarily increase work_mem so that the check query can be executed |
| 1686 | * more efficiently. It seems okay to do this because the query is simple |
| 1687 | * enough to not use a multiple of work_mem, and one typically would not |
| 1688 | * have many large foreign-key validations happening concurrently. So |
| 1689 | * this seems to meet the criteria for being considered a "maintenance" |
| 1690 | * operation, and accordingly we use maintenance_work_mem. |
| 1691 | * |
| 1692 | * We use the equivalent of a function SET option to allow the setting to |
| 1693 | * persist for exactly the duration of the check query. guc.c also takes |
| 1694 | * care of undoing the setting on error. |
| 1695 | */ |
| 1696 | save_nestlevel = NewGUCNestLevel(); |
| 1697 | |
| 1698 | snprintf(workmembuf, sizeof(workmembuf), "%d" , maintenance_work_mem); |
| 1699 | (void) set_config_option("work_mem" , workmembuf, |
| 1700 | PGC_USERSET, PGC_S_SESSION, |
| 1701 | GUC_ACTION_SAVE, true, 0, false); |
| 1702 | |
| 1703 | if (SPI_connect() != SPI_OK_CONNECT) |
| 1704 | elog(ERROR, "SPI_connect failed" ); |
| 1705 | |
| 1706 | /* |
| 1707 | * Generate the plan. We don't need to cache it, and there are no |
| 1708 | * arguments to the plan. |
| 1709 | */ |
| 1710 | qplan = SPI_prepare(querybuf.data, 0, NULL); |
| 1711 | |
| 1712 | if (qplan == NULL) |
| 1713 | elog(ERROR, "SPI_prepare returned %s for %s" , |
| 1714 | SPI_result_code_string(SPI_result), querybuf.data); |
| 1715 | |
| 1716 | /* |
| 1717 | * Run the plan. For safety we force a current snapshot to be used. (In |
| 1718 | * transaction-snapshot mode, this arguably violates transaction isolation |
| 1719 | * rules, but we really haven't got much choice.) We don't need to |
| 1720 | * register the snapshot, because SPI_execute_snapshot will see to it. We |
| 1721 | * need at most one tuple returned, so pass limit = 1. |
| 1722 | */ |
| 1723 | spi_result = SPI_execute_snapshot(qplan, |
| 1724 | NULL, NULL, |
| 1725 | GetLatestSnapshot(), |
| 1726 | InvalidSnapshot, |
| 1727 | true, false, 1); |
| 1728 | |
| 1729 | /* Check result */ |
| 1730 | if (spi_result != SPI_OK_SELECT) |
| 1731 | elog(ERROR, "SPI_execute_snapshot returned %s" , SPI_result_code_string(spi_result)); |
| 1732 | |
| 1733 | /* Did we find a tuple that would violate the constraint? */ |
| 1734 | if (SPI_processed > 0) |
| 1735 | { |
| 1736 | TupleTableSlot *slot; |
| 1737 | HeapTuple tuple = SPI_tuptable->vals[0]; |
| 1738 | TupleDesc tupdesc = SPI_tuptable->tupdesc; |
| 1739 | RI_ConstraintInfo fake_riinfo; |
| 1740 | |
| 1741 | slot = MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual); |
| 1742 | |
| 1743 | heap_deform_tuple(tuple, tupdesc, |
| 1744 | slot->tts_values, slot->tts_isnull); |
| 1745 | ExecStoreVirtualTuple(slot); |
| 1746 | |
| 1747 | /* |
| 1748 | * The columns to look at in the result tuple are 1..N, not whatever |
| 1749 | * they are in the fk_rel. Hack up riinfo so that ri_ReportViolation |
| 1750 | * will behave properly. |
| 1751 | * |
| 1752 | * In addition to this, we have to pass the correct tupdesc to |
| 1753 | * ri_ReportViolation, overriding its normal habit of using the pk_rel |
| 1754 | * or fk_rel's tupdesc. |
| 1755 | */ |
| 1756 | memcpy(&fake_riinfo, riinfo, sizeof(RI_ConstraintInfo)); |
| 1757 | for (i = 0; i < fake_riinfo.nkeys; i++) |
| 1758 | fake_riinfo.pk_attnums[i] = i + 1; |
| 1759 | |
| 1760 | ri_ReportViolation(&fake_riinfo, pk_rel, fk_rel, |
| 1761 | slot, tupdesc, 0, true); |
| 1762 | } |
| 1763 | |
| 1764 | if (SPI_finish() != SPI_OK_FINISH) |
| 1765 | elog(ERROR, "SPI_finish failed" ); |
| 1766 | |
| 1767 | /* |
| 1768 | * Restore work_mem. |
| 1769 | */ |
| 1770 | AtEOXact_GUC(true, save_nestlevel); |
| 1771 | } |
| 1772 | |
| 1773 | |
| 1774 | /* ---------- |
| 1775 | * Local functions below |
| 1776 | * ---------- |
| 1777 | */ |
| 1778 | |
| 1779 | |
| 1780 | /* |
| 1781 | * quoteOneName --- safely quote a single SQL name |
| 1782 | * |
| 1783 | * buffer must be MAX_QUOTED_NAME_LEN long (includes room for \0) |
| 1784 | */ |
| 1785 | static void |
| 1786 | quoteOneName(char *buffer, const char *name) |
| 1787 | { |
| 1788 | /* Rather than trying to be smart, just always quote it. */ |
| 1789 | *buffer++ = '"'; |
| 1790 | while (*name) |
| 1791 | { |
| 1792 | if (*name == '"') |
| 1793 | *buffer++ = '"'; |
| 1794 | *buffer++ = *name++; |
| 1795 | } |
| 1796 | *buffer++ = '"'; |
| 1797 | *buffer = '\0'; |
| 1798 | } |
| 1799 | |
| 1800 | /* |
| 1801 | * quoteRelationName --- safely quote a fully qualified relation name |
| 1802 | * |
| 1803 | * buffer must be MAX_QUOTED_REL_NAME_LEN long (includes room for \0) |
| 1804 | */ |
| 1805 | static void |
| 1806 | quoteRelationName(char *buffer, Relation rel) |
| 1807 | { |
| 1808 | quoteOneName(buffer, get_namespace_name(RelationGetNamespace(rel))); |
| 1809 | buffer += strlen(buffer); |
| 1810 | *buffer++ = '.'; |
| 1811 | quoteOneName(buffer, RelationGetRelationName(rel)); |
| 1812 | } |
| 1813 | |
| 1814 | /* |
| 1815 | * ri_GenerateQual --- generate a WHERE clause equating two variables |
| 1816 | * |
| 1817 | * This basically appends " sep leftop op rightop" to buf, adding casts |
| 1818 | * and schema qualification as needed to ensure that the parser will select |
| 1819 | * the operator we specify. leftop and rightop should be parenthesized |
| 1820 | * if they aren't variables or parameters. |
| 1821 | */ |
| 1822 | static void |
| 1823 | ri_GenerateQual(StringInfo buf, |
| 1824 | const char *sep, |
| 1825 | const char *leftop, Oid leftoptype, |
| 1826 | Oid opoid, |
| 1827 | const char *rightop, Oid rightoptype) |
| 1828 | { |
| 1829 | appendStringInfo(buf, " %s " , sep); |
| 1830 | generate_operator_clause(buf, leftop, leftoptype, opoid, |
| 1831 | rightop, rightoptype); |
| 1832 | } |
| 1833 | |
| 1834 | /* |
| 1835 | * ri_GenerateQualCollation --- add a COLLATE spec to a WHERE clause |
| 1836 | * |
| 1837 | * At present, we intentionally do not use this function for RI queries that |
| 1838 | * compare a variable to a $n parameter. Since parameter symbols always have |
| 1839 | * default collation, the effect will be to use the variable's collation. |
| 1840 | * Now that is only strictly correct when testing the referenced column, since |
| 1841 | * the SQL standard specifies that RI comparisons should use the referenced |
| 1842 | * column's collation. However, so long as all collations have the same |
| 1843 | * notion of equality (which they do, because texteq reduces to bitwise |
| 1844 | * equality), there's no visible semantic impact from using the referencing |
| 1845 | * column's collation when testing it, and this is a good thing to do because |
| 1846 | * it lets us use a normal index on the referencing column. However, we do |
| 1847 | * have to use this function when directly comparing the referencing and |
| 1848 | * referenced columns, if they are of different collations; else the parser |
| 1849 | * will fail to resolve the collation to use. |
| 1850 | */ |
| 1851 | static void |
| 1852 | ri_GenerateQualCollation(StringInfo buf, Oid collation) |
| 1853 | { |
| 1854 | HeapTuple tp; |
| 1855 | Form_pg_collation colltup; |
| 1856 | char *collname; |
| 1857 | char onename[MAX_QUOTED_NAME_LEN]; |
| 1858 | |
| 1859 | /* Nothing to do if it's a noncollatable data type */ |
| 1860 | if (!OidIsValid(collation)) |
| 1861 | return; |
| 1862 | |
| 1863 | tp = SearchSysCache1(COLLOID, ObjectIdGetDatum(collation)); |
| 1864 | if (!HeapTupleIsValid(tp)) |
| 1865 | elog(ERROR, "cache lookup failed for collation %u" , collation); |
| 1866 | colltup = (Form_pg_collation) GETSTRUCT(tp); |
| 1867 | collname = NameStr(colltup->collname); |
| 1868 | |
| 1869 | /* |
| 1870 | * We qualify the name always, for simplicity and to ensure the query is |
| 1871 | * not search-path-dependent. |
| 1872 | */ |
| 1873 | quoteOneName(onename, get_namespace_name(colltup->collnamespace)); |
| 1874 | appendStringInfo(buf, " COLLATE %s" , onename); |
| 1875 | quoteOneName(onename, collname); |
| 1876 | appendStringInfo(buf, ".%s" , onename); |
| 1877 | |
| 1878 | ReleaseSysCache(tp); |
| 1879 | } |
| 1880 | |
| 1881 | /* ---------- |
| 1882 | * ri_BuildQueryKey - |
| 1883 | * |
| 1884 | * Construct a hashtable key for a prepared SPI plan of an FK constraint. |
| 1885 | * |
| 1886 | * key: output argument, *key is filled in based on the other arguments |
| 1887 | * riinfo: info from pg_constraint entry |
| 1888 | * constr_queryno: an internal number identifying the query type |
| 1889 | * (see RI_PLAN_XXX constants at head of file) |
| 1890 | * ---------- |
| 1891 | */ |
| 1892 | static void |
| 1893 | ri_BuildQueryKey(RI_QueryKey *key, const RI_ConstraintInfo *riinfo, |
| 1894 | int32 constr_queryno) |
| 1895 | { |
| 1896 | /* |
| 1897 | * We assume struct RI_QueryKey contains no padding bytes, else we'd need |
| 1898 | * to use memset to clear them. |
| 1899 | */ |
| 1900 | key->constr_id = riinfo->constraint_id; |
| 1901 | key->constr_queryno = constr_queryno; |
| 1902 | } |
| 1903 | |
| 1904 | /* |
| 1905 | * Check that RI trigger function was called in expected context |
| 1906 | */ |
| 1907 | static void |
| 1908 | ri_CheckTrigger(FunctionCallInfo fcinfo, const char *funcname, int tgkind) |
| 1909 | { |
| 1910 | TriggerData *trigdata = (TriggerData *) fcinfo->context; |
| 1911 | |
| 1912 | if (!CALLED_AS_TRIGGER(fcinfo)) |
| 1913 | ereport(ERROR, |
| 1914 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| 1915 | errmsg("function \"%s\" was not called by trigger manager" , funcname))); |
| 1916 | |
| 1917 | /* |
| 1918 | * Check proper event |
| 1919 | */ |
| 1920 | if (!TRIGGER_FIRED_AFTER(trigdata->tg_event) || |
| 1921 | !TRIGGER_FIRED_FOR_ROW(trigdata->tg_event)) |
| 1922 | ereport(ERROR, |
| 1923 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| 1924 | errmsg("function \"%s\" must be fired AFTER ROW" , funcname))); |
| 1925 | |
| 1926 | switch (tgkind) |
| 1927 | { |
| 1928 | case RI_TRIGTYPE_INSERT: |
| 1929 | if (!TRIGGER_FIRED_BY_INSERT(trigdata->tg_event)) |
| 1930 | ereport(ERROR, |
| 1931 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| 1932 | errmsg("function \"%s\" must be fired for INSERT" , funcname))); |
| 1933 | break; |
| 1934 | case RI_TRIGTYPE_UPDATE: |
| 1935 | if (!TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event)) |
| 1936 | ereport(ERROR, |
| 1937 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| 1938 | errmsg("function \"%s\" must be fired for UPDATE" , funcname))); |
| 1939 | break; |
| 1940 | case RI_TRIGTYPE_DELETE: |
| 1941 | if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)) |
| 1942 | ereport(ERROR, |
| 1943 | (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| 1944 | errmsg("function \"%s\" must be fired for DELETE" , funcname))); |
| 1945 | break; |
| 1946 | } |
| 1947 | } |
| 1948 | |
| 1949 | |
| 1950 | /* |
| 1951 | * Fetch the RI_ConstraintInfo struct for the trigger's FK constraint. |
| 1952 | */ |
| 1953 | static const RI_ConstraintInfo * |
| 1954 | ri_FetchConstraintInfo(Trigger *trigger, Relation trig_rel, bool rel_is_pk) |
| 1955 | { |
| 1956 | Oid constraintOid = trigger->tgconstraint; |
| 1957 | const RI_ConstraintInfo *riinfo; |
| 1958 | |
| 1959 | /* |
| 1960 | * Check that the FK constraint's OID is available; it might not be if |
| 1961 | * we've been invoked via an ordinary trigger or an old-style "constraint |
| 1962 | * trigger". |
| 1963 | */ |
| 1964 | if (!OidIsValid(constraintOid)) |
| 1965 | ereport(ERROR, |
| 1966 | (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), |
| 1967 | errmsg("no pg_constraint entry for trigger \"%s\" on table \"%s\"" , |
| 1968 | trigger->tgname, RelationGetRelationName(trig_rel)), |
| 1969 | errhint("Remove this referential integrity trigger and its mates, then do ALTER TABLE ADD CONSTRAINT." ))); |
| 1970 | |
| 1971 | /* Find or create a hashtable entry for the constraint */ |
| 1972 | riinfo = ri_LoadConstraintInfo(constraintOid); |
| 1973 | |
| 1974 | /* Do some easy cross-checks against the trigger call data */ |
| 1975 | if (rel_is_pk) |
| 1976 | { |
| 1977 | if (riinfo->fk_relid != trigger->tgconstrrelid || |
| 1978 | riinfo->pk_relid != RelationGetRelid(trig_rel)) |
| 1979 | elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"" , |
| 1980 | trigger->tgname, RelationGetRelationName(trig_rel)); |
| 1981 | } |
| 1982 | else |
| 1983 | { |
| 1984 | if (riinfo->fk_relid != RelationGetRelid(trig_rel) || |
| 1985 | riinfo->pk_relid != trigger->tgconstrrelid) |
| 1986 | elog(ERROR, "wrong pg_constraint entry for trigger \"%s\" on table \"%s\"" , |
| 1987 | trigger->tgname, RelationGetRelationName(trig_rel)); |
| 1988 | } |
| 1989 | |
| 1990 | if (riinfo->confmatchtype != FKCONSTR_MATCH_FULL && |
| 1991 | riinfo->confmatchtype != FKCONSTR_MATCH_PARTIAL && |
| 1992 | riinfo->confmatchtype != FKCONSTR_MATCH_SIMPLE) |
| 1993 | elog(ERROR, "unrecognized confmatchtype: %d" , |
| 1994 | riinfo->confmatchtype); |
| 1995 | |
| 1996 | if (riinfo->confmatchtype == FKCONSTR_MATCH_PARTIAL) |
| 1997 | ereport(ERROR, |
| 1998 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1999 | errmsg("MATCH PARTIAL not yet implemented" ))); |
| 2000 | |
| 2001 | return riinfo; |
| 2002 | } |
| 2003 | |
| 2004 | /* |
| 2005 | * Fetch or create the RI_ConstraintInfo struct for an FK constraint. |
| 2006 | */ |
| 2007 | static const RI_ConstraintInfo * |
| 2008 | ri_LoadConstraintInfo(Oid constraintOid) |
| 2009 | { |
| 2010 | RI_ConstraintInfo *riinfo; |
| 2011 | bool found; |
| 2012 | HeapTuple tup; |
| 2013 | Form_pg_constraint conForm; |
| 2014 | |
| 2015 | /* |
| 2016 | * On the first call initialize the hashtable |
| 2017 | */ |
| 2018 | if (!ri_constraint_cache) |
| 2019 | ri_InitHashTables(); |
| 2020 | |
| 2021 | /* |
| 2022 | * Find or create a hash entry. If we find a valid one, just return it. |
| 2023 | */ |
| 2024 | riinfo = (RI_ConstraintInfo *) hash_search(ri_constraint_cache, |
| 2025 | (void *) &constraintOid, |
| 2026 | HASH_ENTER, &found); |
| 2027 | if (!found) |
| 2028 | riinfo->valid = false; |
| 2029 | else if (riinfo->valid) |
| 2030 | return riinfo; |
| 2031 | |
| 2032 | /* |
| 2033 | * Fetch the pg_constraint row so we can fill in the entry. |
| 2034 | */ |
| 2035 | tup = SearchSysCache1(CONSTROID, ObjectIdGetDatum(constraintOid)); |
| 2036 | if (!HeapTupleIsValid(tup)) /* should not happen */ |
| 2037 | elog(ERROR, "cache lookup failed for constraint %u" , constraintOid); |
| 2038 | conForm = (Form_pg_constraint) GETSTRUCT(tup); |
| 2039 | |
| 2040 | if (conForm->contype != CONSTRAINT_FOREIGN) /* should not happen */ |
| 2041 | elog(ERROR, "constraint %u is not a foreign key constraint" , |
| 2042 | constraintOid); |
| 2043 | |
| 2044 | /* And extract data */ |
| 2045 | Assert(riinfo->constraint_id == constraintOid); |
| 2046 | riinfo->oidHashValue = GetSysCacheHashValue1(CONSTROID, |
| 2047 | ObjectIdGetDatum(constraintOid)); |
| 2048 | memcpy(&riinfo->conname, &conForm->conname, sizeof(NameData)); |
| 2049 | riinfo->pk_relid = conForm->confrelid; |
| 2050 | riinfo->fk_relid = conForm->conrelid; |
| 2051 | riinfo->confupdtype = conForm->confupdtype; |
| 2052 | riinfo->confdeltype = conForm->confdeltype; |
| 2053 | riinfo->confmatchtype = conForm->confmatchtype; |
| 2054 | |
| 2055 | DeconstructFkConstraintRow(tup, |
| 2056 | &riinfo->nkeys, |
| 2057 | riinfo->fk_attnums, |
| 2058 | riinfo->pk_attnums, |
| 2059 | riinfo->pf_eq_oprs, |
| 2060 | riinfo->pp_eq_oprs, |
| 2061 | riinfo->ff_eq_oprs); |
| 2062 | |
| 2063 | ReleaseSysCache(tup); |
| 2064 | |
| 2065 | /* |
| 2066 | * For efficient processing of invalidation messages below, we keep a |
| 2067 | * doubly-linked list, and a count, of all currently valid entries. |
| 2068 | */ |
| 2069 | dlist_push_tail(&ri_constraint_cache_valid_list, &riinfo->valid_link); |
| 2070 | ri_constraint_cache_valid_count++; |
| 2071 | |
| 2072 | riinfo->valid = true; |
| 2073 | |
| 2074 | return riinfo; |
| 2075 | } |
| 2076 | |
| 2077 | /* |
| 2078 | * Callback for pg_constraint inval events |
| 2079 | * |
| 2080 | * While most syscache callbacks just flush all their entries, pg_constraint |
| 2081 | * gets enough update traffic that it's probably worth being smarter. |
| 2082 | * Invalidate any ri_constraint_cache entry associated with the syscache |
| 2083 | * entry with the specified hash value, or all entries if hashvalue == 0. |
| 2084 | * |
| 2085 | * Note: at the time a cache invalidation message is processed there may be |
| 2086 | * active references to the cache. Because of this we never remove entries |
| 2087 | * from the cache, but only mark them invalid, which is harmless to active |
| 2088 | * uses. (Any query using an entry should hold a lock sufficient to keep that |
| 2089 | * data from changing under it --- but we may get cache flushes anyway.) |
| 2090 | */ |
| 2091 | static void |
| 2092 | InvalidateConstraintCacheCallBack(Datum arg, int cacheid, uint32 hashvalue) |
| 2093 | { |
| 2094 | dlist_mutable_iter iter; |
| 2095 | |
| 2096 | Assert(ri_constraint_cache != NULL); |
| 2097 | |
| 2098 | /* |
| 2099 | * If the list of currently valid entries gets excessively large, we mark |
| 2100 | * them all invalid so we can empty the list. This arrangement avoids |
| 2101 | * O(N^2) behavior in situations where a session touches many foreign keys |
| 2102 | * and also does many ALTER TABLEs, such as a restore from pg_dump. |
| 2103 | */ |
| 2104 | if (ri_constraint_cache_valid_count > 1000) |
| 2105 | hashvalue = 0; /* pretend it's a cache reset */ |
| 2106 | |
| 2107 | dlist_foreach_modify(iter, &ri_constraint_cache_valid_list) |
| 2108 | { |
| 2109 | RI_ConstraintInfo *riinfo = dlist_container(RI_ConstraintInfo, |
| 2110 | valid_link, iter.cur); |
| 2111 | |
| 2112 | if (hashvalue == 0 || riinfo->oidHashValue == hashvalue) |
| 2113 | { |
| 2114 | riinfo->valid = false; |
| 2115 | /* Remove invalidated entries from the list, too */ |
| 2116 | dlist_delete(iter.cur); |
| 2117 | ri_constraint_cache_valid_count--; |
| 2118 | } |
| 2119 | } |
| 2120 | } |
| 2121 | |
| 2122 | |
| 2123 | /* |
| 2124 | * Prepare execution plan for a query to enforce an RI restriction |
| 2125 | * |
| 2126 | * If cache_plan is true, the plan is saved into our plan hashtable |
| 2127 | * so that we don't need to plan it again. |
| 2128 | */ |
| 2129 | static SPIPlanPtr |
| 2130 | ri_PlanCheck(const char *querystr, int nargs, Oid *argtypes, |
| 2131 | RI_QueryKey *qkey, Relation fk_rel, Relation pk_rel, |
| 2132 | bool cache_plan) |
| 2133 | { |
| 2134 | SPIPlanPtr qplan; |
| 2135 | Relation query_rel; |
| 2136 | Oid save_userid; |
| 2137 | int save_sec_context; |
| 2138 | |
| 2139 | /* |
| 2140 | * Use the query type code to determine whether the query is run against |
| 2141 | * the PK or FK table; we'll do the check as that table's owner |
| 2142 | */ |
| 2143 | if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK) |
| 2144 | query_rel = pk_rel; |
| 2145 | else |
| 2146 | query_rel = fk_rel; |
| 2147 | |
| 2148 | /* Switch to proper UID to perform check as */ |
| 2149 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
| 2150 | SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner, |
| 2151 | save_sec_context | SECURITY_LOCAL_USERID_CHANGE | |
| 2152 | SECURITY_NOFORCE_RLS); |
| 2153 | |
| 2154 | /* Create the plan */ |
| 2155 | qplan = SPI_prepare(querystr, nargs, argtypes); |
| 2156 | |
| 2157 | if (qplan == NULL) |
| 2158 | elog(ERROR, "SPI_prepare returned %s for %s" , SPI_result_code_string(SPI_result), querystr); |
| 2159 | |
| 2160 | /* Restore UID and security context */ |
| 2161 | SetUserIdAndSecContext(save_userid, save_sec_context); |
| 2162 | |
| 2163 | /* Save the plan if requested */ |
| 2164 | if (cache_plan) |
| 2165 | { |
| 2166 | SPI_keepplan(qplan); |
| 2167 | ri_HashPreparedPlan(qkey, qplan); |
| 2168 | } |
| 2169 | |
| 2170 | return qplan; |
| 2171 | } |
| 2172 | |
| 2173 | /* |
| 2174 | * Perform a query to enforce an RI restriction |
| 2175 | */ |
| 2176 | static bool |
| 2177 | ri_PerformCheck(const RI_ConstraintInfo *riinfo, |
| 2178 | RI_QueryKey *qkey, SPIPlanPtr qplan, |
| 2179 | Relation fk_rel, Relation pk_rel, |
| 2180 | TupleTableSlot *oldslot, TupleTableSlot *newslot, |
| 2181 | bool detectNewRows, int expect_OK) |
| 2182 | { |
| 2183 | Relation query_rel, |
| 2184 | source_rel; |
| 2185 | bool source_is_pk; |
| 2186 | Snapshot test_snapshot; |
| 2187 | Snapshot crosscheck_snapshot; |
| 2188 | int limit; |
| 2189 | int spi_result; |
| 2190 | Oid save_userid; |
| 2191 | int save_sec_context; |
| 2192 | Datum vals[RI_MAX_NUMKEYS * 2]; |
| 2193 | char nulls[RI_MAX_NUMKEYS * 2]; |
| 2194 | |
| 2195 | /* |
| 2196 | * Use the query type code to determine whether the query is run against |
| 2197 | * the PK or FK table; we'll do the check as that table's owner |
| 2198 | */ |
| 2199 | if (qkey->constr_queryno <= RI_PLAN_LAST_ON_PK) |
| 2200 | query_rel = pk_rel; |
| 2201 | else |
| 2202 | query_rel = fk_rel; |
| 2203 | |
| 2204 | /* |
| 2205 | * The values for the query are taken from the table on which the trigger |
| 2206 | * is called - it is normally the other one with respect to query_rel. An |
| 2207 | * exception is ri_Check_Pk_Match(), which uses the PK table for both (and |
| 2208 | * sets queryno to RI_PLAN_CHECK_LOOKUPPK_FROM_PK). We might eventually |
| 2209 | * need some less klugy way to determine this. |
| 2210 | */ |
| 2211 | if (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK) |
| 2212 | { |
| 2213 | source_rel = fk_rel; |
| 2214 | source_is_pk = false; |
| 2215 | } |
| 2216 | else |
| 2217 | { |
| 2218 | source_rel = pk_rel; |
| 2219 | source_is_pk = true; |
| 2220 | } |
| 2221 | |
| 2222 | /* Extract the parameters to be passed into the query */ |
| 2223 | if (newslot) |
| 2224 | { |
| 2225 | ri_ExtractValues(source_rel, newslot, riinfo, source_is_pk, |
| 2226 | vals, nulls); |
| 2227 | if (oldslot) |
| 2228 | ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk, |
| 2229 | vals + riinfo->nkeys, nulls + riinfo->nkeys); |
| 2230 | } |
| 2231 | else |
| 2232 | { |
| 2233 | ri_ExtractValues(source_rel, oldslot, riinfo, source_is_pk, |
| 2234 | vals, nulls); |
| 2235 | } |
| 2236 | |
| 2237 | /* |
| 2238 | * In READ COMMITTED mode, we just need to use an up-to-date regular |
| 2239 | * snapshot, and we will see all rows that could be interesting. But in |
| 2240 | * transaction-snapshot mode, we can't change the transaction snapshot. If |
| 2241 | * the caller passes detectNewRows == false then it's okay to do the query |
| 2242 | * with the transaction snapshot; otherwise we use a current snapshot, and |
| 2243 | * tell the executor to error out if it finds any rows under the current |
| 2244 | * snapshot that wouldn't be visible per the transaction snapshot. Note |
| 2245 | * that SPI_execute_snapshot will register the snapshots, so we don't need |
| 2246 | * to bother here. |
| 2247 | */ |
| 2248 | if (IsolationUsesXactSnapshot() && detectNewRows) |
| 2249 | { |
| 2250 | CommandCounterIncrement(); /* be sure all my own work is visible */ |
| 2251 | test_snapshot = GetLatestSnapshot(); |
| 2252 | crosscheck_snapshot = GetTransactionSnapshot(); |
| 2253 | } |
| 2254 | else |
| 2255 | { |
| 2256 | /* the default SPI behavior is okay */ |
| 2257 | test_snapshot = InvalidSnapshot; |
| 2258 | crosscheck_snapshot = InvalidSnapshot; |
| 2259 | } |
| 2260 | |
| 2261 | /* |
| 2262 | * If this is a select query (e.g., for a 'no action' or 'restrict' |
| 2263 | * trigger), we only need to see if there is a single row in the table, |
| 2264 | * matching the key. Otherwise, limit = 0 - because we want the query to |
| 2265 | * affect ALL the matching rows. |
| 2266 | */ |
| 2267 | limit = (expect_OK == SPI_OK_SELECT) ? 1 : 0; |
| 2268 | |
| 2269 | /* Switch to proper UID to perform check as */ |
| 2270 | GetUserIdAndSecContext(&save_userid, &save_sec_context); |
| 2271 | SetUserIdAndSecContext(RelationGetForm(query_rel)->relowner, |
| 2272 | save_sec_context | SECURITY_LOCAL_USERID_CHANGE | |
| 2273 | SECURITY_NOFORCE_RLS); |
| 2274 | |
| 2275 | /* Finally we can run the query. */ |
| 2276 | spi_result = SPI_execute_snapshot(qplan, |
| 2277 | vals, nulls, |
| 2278 | test_snapshot, crosscheck_snapshot, |
| 2279 | false, false, limit); |
| 2280 | |
| 2281 | /* Restore UID and security context */ |
| 2282 | SetUserIdAndSecContext(save_userid, save_sec_context); |
| 2283 | |
| 2284 | /* Check result */ |
| 2285 | if (spi_result < 0) |
| 2286 | elog(ERROR, "SPI_execute_snapshot returned %s" , SPI_result_code_string(spi_result)); |
| 2287 | |
| 2288 | if (expect_OK >= 0 && spi_result != expect_OK) |
| 2289 | ereport(ERROR, |
| 2290 | (errcode(ERRCODE_INTERNAL_ERROR), |
| 2291 | errmsg("referential integrity query on \"%s\" from constraint \"%s\" on \"%s\" gave unexpected result" , |
| 2292 | RelationGetRelationName(pk_rel), |
| 2293 | NameStr(riinfo->conname), |
| 2294 | RelationGetRelationName(fk_rel)), |
| 2295 | errhint("This is most likely due to a rule having rewritten the query." ))); |
| 2296 | |
| 2297 | /* XXX wouldn't it be clearer to do this part at the caller? */ |
| 2298 | if (qkey->constr_queryno != RI_PLAN_CHECK_LOOKUPPK_FROM_PK && |
| 2299 | expect_OK == SPI_OK_SELECT && |
| 2300 | (SPI_processed == 0) == (qkey->constr_queryno == RI_PLAN_CHECK_LOOKUPPK)) |
| 2301 | ri_ReportViolation(riinfo, |
| 2302 | pk_rel, fk_rel, |
| 2303 | newslot ? newslot : oldslot, |
| 2304 | NULL, |
| 2305 | qkey->constr_queryno, false); |
| 2306 | |
| 2307 | return SPI_processed != 0; |
| 2308 | } |
| 2309 | |
| 2310 | /* |
| 2311 | * Extract fields from a tuple into Datum/nulls arrays |
| 2312 | */ |
| 2313 | static void |
| 2314 | (Relation rel, TupleTableSlot *slot, |
| 2315 | const RI_ConstraintInfo *riinfo, bool rel_is_pk, |
| 2316 | Datum *vals, char *nulls) |
| 2317 | { |
| 2318 | const int16 *attnums; |
| 2319 | bool isnull; |
| 2320 | |
| 2321 | if (rel_is_pk) |
| 2322 | attnums = riinfo->pk_attnums; |
| 2323 | else |
| 2324 | attnums = riinfo->fk_attnums; |
| 2325 | |
| 2326 | for (int i = 0; i < riinfo->nkeys; i++) |
| 2327 | { |
| 2328 | vals[i] = slot_getattr(slot, attnums[i], &isnull); |
| 2329 | nulls[i] = isnull ? 'n' : ' '; |
| 2330 | } |
| 2331 | } |
| 2332 | |
| 2333 | /* |
| 2334 | * Produce an error report |
| 2335 | * |
| 2336 | * If the failed constraint was on insert/update to the FK table, |
| 2337 | * we want the key names and values extracted from there, and the error |
| 2338 | * message to look like 'key blah is not present in PK'. |
| 2339 | * Otherwise, the attr names and values come from the PK table and the |
| 2340 | * message looks like 'key blah is still referenced from FK'. |
| 2341 | */ |
| 2342 | static void |
| 2343 | ri_ReportViolation(const RI_ConstraintInfo *riinfo, |
| 2344 | Relation pk_rel, Relation fk_rel, |
| 2345 | TupleTableSlot *violatorslot, TupleDesc tupdesc, |
| 2346 | int queryno, bool partgone) |
| 2347 | { |
| 2348 | StringInfoData key_names; |
| 2349 | StringInfoData key_values; |
| 2350 | bool onfk; |
| 2351 | const int16 *attnums; |
| 2352 | Oid rel_oid; |
| 2353 | AclResult aclresult; |
| 2354 | bool has_perm = true; |
| 2355 | |
| 2356 | /* |
| 2357 | * Determine which relation to complain about. If tupdesc wasn't passed |
| 2358 | * by caller, assume the violator tuple came from there. |
| 2359 | */ |
| 2360 | onfk = (queryno == RI_PLAN_CHECK_LOOKUPPK); |
| 2361 | if (onfk) |
| 2362 | { |
| 2363 | attnums = riinfo->fk_attnums; |
| 2364 | rel_oid = fk_rel->rd_id; |
| 2365 | if (tupdesc == NULL) |
| 2366 | tupdesc = fk_rel->rd_att; |
| 2367 | } |
| 2368 | else |
| 2369 | { |
| 2370 | attnums = riinfo->pk_attnums; |
| 2371 | rel_oid = pk_rel->rd_id; |
| 2372 | if (tupdesc == NULL) |
| 2373 | tupdesc = pk_rel->rd_att; |
| 2374 | } |
| 2375 | |
| 2376 | /* |
| 2377 | * Check permissions- if the user does not have access to view the data in |
| 2378 | * any of the key columns then we don't include the errdetail() below. |
| 2379 | * |
| 2380 | * Check if RLS is enabled on the relation first. If so, we don't return |
| 2381 | * any specifics to avoid leaking data. |
| 2382 | * |
| 2383 | * Check table-level permissions next and, failing that, column-level |
| 2384 | * privileges. |
| 2385 | * |
| 2386 | * When a partition at the referenced side is being detached/dropped, we |
| 2387 | * needn't check, since the user must be the table owner anyway. |
| 2388 | */ |
| 2389 | if (partgone) |
| 2390 | has_perm = true; |
| 2391 | else if (check_enable_rls(rel_oid, InvalidOid, true) != RLS_ENABLED) |
| 2392 | { |
| 2393 | aclresult = pg_class_aclcheck(rel_oid, GetUserId(), ACL_SELECT); |
| 2394 | if (aclresult != ACLCHECK_OK) |
| 2395 | { |
| 2396 | /* Try for column-level permissions */ |
| 2397 | for (int idx = 0; idx < riinfo->nkeys; idx++) |
| 2398 | { |
| 2399 | aclresult = pg_attribute_aclcheck(rel_oid, attnums[idx], |
| 2400 | GetUserId(), |
| 2401 | ACL_SELECT); |
| 2402 | |
| 2403 | /* No access to the key */ |
| 2404 | if (aclresult != ACLCHECK_OK) |
| 2405 | { |
| 2406 | has_perm = false; |
| 2407 | break; |
| 2408 | } |
| 2409 | } |
| 2410 | } |
| 2411 | } |
| 2412 | else |
| 2413 | has_perm = false; |
| 2414 | |
| 2415 | if (has_perm) |
| 2416 | { |
| 2417 | /* Get printable versions of the keys involved */ |
| 2418 | initStringInfo(&key_names); |
| 2419 | initStringInfo(&key_values); |
| 2420 | for (int idx = 0; idx < riinfo->nkeys; idx++) |
| 2421 | { |
| 2422 | int fnum = attnums[idx]; |
| 2423 | Form_pg_attribute att = TupleDescAttr(tupdesc, fnum - 1); |
| 2424 | char *name, |
| 2425 | *val; |
| 2426 | Datum datum; |
| 2427 | bool isnull; |
| 2428 | |
| 2429 | name = NameStr(att->attname); |
| 2430 | |
| 2431 | datum = slot_getattr(violatorslot, fnum, &isnull); |
| 2432 | if (!isnull) |
| 2433 | { |
| 2434 | Oid foutoid; |
| 2435 | bool typisvarlena; |
| 2436 | |
| 2437 | getTypeOutputInfo(att->atttypid, &foutoid, &typisvarlena); |
| 2438 | val = OidOutputFunctionCall(foutoid, datum); |
| 2439 | } |
| 2440 | else |
| 2441 | val = "null" ; |
| 2442 | |
| 2443 | if (idx > 0) |
| 2444 | { |
| 2445 | appendStringInfoString(&key_names, ", " ); |
| 2446 | appendStringInfoString(&key_values, ", " ); |
| 2447 | } |
| 2448 | appendStringInfoString(&key_names, name); |
| 2449 | appendStringInfoString(&key_values, val); |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | if (partgone) |
| 2454 | ereport(ERROR, |
| 2455 | (errcode(ERRCODE_FOREIGN_KEY_VIOLATION), |
| 2456 | errmsg("removing partition \"%s\" violates foreign key constraint \"%s\"" , |
| 2457 | RelationGetRelationName(pk_rel), |
| 2458 | NameStr(riinfo->conname)), |
| 2459 | errdetail("Key (%s)=(%s) is still referenced from table \"%s\"." , |
| 2460 | key_names.data, key_values.data, |
| 2461 | RelationGetRelationName(fk_rel)))); |
| 2462 | else if (onfk) |
| 2463 | ereport(ERROR, |
| 2464 | (errcode(ERRCODE_FOREIGN_KEY_VIOLATION), |
| 2465 | errmsg("insert or update on table \"%s\" violates foreign key constraint \"%s\"" , |
| 2466 | RelationGetRelationName(fk_rel), |
| 2467 | NameStr(riinfo->conname)), |
| 2468 | has_perm ? |
| 2469 | errdetail("Key (%s)=(%s) is not present in table \"%s\"." , |
| 2470 | key_names.data, key_values.data, |
| 2471 | RelationGetRelationName(pk_rel)) : |
| 2472 | errdetail("Key is not present in table \"%s\"." , |
| 2473 | RelationGetRelationName(pk_rel)), |
| 2474 | errtableconstraint(fk_rel, NameStr(riinfo->conname)))); |
| 2475 | else |
| 2476 | ereport(ERROR, |
| 2477 | (errcode(ERRCODE_FOREIGN_KEY_VIOLATION), |
| 2478 | errmsg("update or delete on table \"%s\" violates foreign key constraint \"%s\" on table \"%s\"" , |
| 2479 | RelationGetRelationName(pk_rel), |
| 2480 | NameStr(riinfo->conname), |
| 2481 | RelationGetRelationName(fk_rel)), |
| 2482 | has_perm ? |
| 2483 | errdetail("Key (%s)=(%s) is still referenced from table \"%s\"." , |
| 2484 | key_names.data, key_values.data, |
| 2485 | RelationGetRelationName(fk_rel)) : |
| 2486 | errdetail("Key is still referenced from table \"%s\"." , |
| 2487 | RelationGetRelationName(fk_rel)), |
| 2488 | errtableconstraint(fk_rel, NameStr(riinfo->conname)))); |
| 2489 | } |
| 2490 | |
| 2491 | |
| 2492 | /* |
| 2493 | * ri_NullCheck - |
| 2494 | * |
| 2495 | * Determine the NULL state of all key values in a tuple |
| 2496 | * |
| 2497 | * Returns one of RI_KEYS_ALL_NULL, RI_KEYS_NONE_NULL or RI_KEYS_SOME_NULL. |
| 2498 | */ |
| 2499 | static int |
| 2500 | ri_NullCheck(TupleDesc tupDesc, |
| 2501 | TupleTableSlot *slot, |
| 2502 | const RI_ConstraintInfo *riinfo, bool rel_is_pk) |
| 2503 | { |
| 2504 | const int16 *attnums; |
| 2505 | bool allnull = true; |
| 2506 | bool nonenull = true; |
| 2507 | |
| 2508 | if (rel_is_pk) |
| 2509 | attnums = riinfo->pk_attnums; |
| 2510 | else |
| 2511 | attnums = riinfo->fk_attnums; |
| 2512 | |
| 2513 | for (int i = 0; i < riinfo->nkeys; i++) |
| 2514 | { |
| 2515 | if (slot_attisnull(slot, attnums[i])) |
| 2516 | nonenull = false; |
| 2517 | else |
| 2518 | allnull = false; |
| 2519 | } |
| 2520 | |
| 2521 | if (allnull) |
| 2522 | return RI_KEYS_ALL_NULL; |
| 2523 | |
| 2524 | if (nonenull) |
| 2525 | return RI_KEYS_NONE_NULL; |
| 2526 | |
| 2527 | return RI_KEYS_SOME_NULL; |
| 2528 | } |
| 2529 | |
| 2530 | |
| 2531 | /* |
| 2532 | * ri_InitHashTables - |
| 2533 | * |
| 2534 | * Initialize our internal hash tables. |
| 2535 | */ |
| 2536 | static void |
| 2537 | ri_InitHashTables(void) |
| 2538 | { |
| 2539 | HASHCTL ctl; |
| 2540 | |
| 2541 | memset(&ctl, 0, sizeof(ctl)); |
| 2542 | ctl.keysize = sizeof(Oid); |
| 2543 | ctl.entrysize = sizeof(RI_ConstraintInfo); |
| 2544 | ri_constraint_cache = hash_create("RI constraint cache" , |
| 2545 | RI_INIT_CONSTRAINTHASHSIZE, |
| 2546 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 2547 | |
| 2548 | /* Arrange to flush cache on pg_constraint changes */ |
| 2549 | CacheRegisterSyscacheCallback(CONSTROID, |
| 2550 | InvalidateConstraintCacheCallBack, |
| 2551 | (Datum) 0); |
| 2552 | |
| 2553 | memset(&ctl, 0, sizeof(ctl)); |
| 2554 | ctl.keysize = sizeof(RI_QueryKey); |
| 2555 | ctl.entrysize = sizeof(RI_QueryHashEntry); |
| 2556 | ri_query_cache = hash_create("RI query cache" , |
| 2557 | RI_INIT_QUERYHASHSIZE, |
| 2558 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 2559 | |
| 2560 | memset(&ctl, 0, sizeof(ctl)); |
| 2561 | ctl.keysize = sizeof(RI_CompareKey); |
| 2562 | ctl.entrysize = sizeof(RI_CompareHashEntry); |
| 2563 | ri_compare_cache = hash_create("RI compare cache" , |
| 2564 | RI_INIT_QUERYHASHSIZE, |
| 2565 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 2566 | } |
| 2567 | |
| 2568 | |
| 2569 | /* |
| 2570 | * ri_FetchPreparedPlan - |
| 2571 | * |
| 2572 | * Lookup for a query key in our private hash table of prepared |
| 2573 | * and saved SPI execution plans. Return the plan if found or NULL. |
| 2574 | */ |
| 2575 | static SPIPlanPtr |
| 2576 | ri_FetchPreparedPlan(RI_QueryKey *key) |
| 2577 | { |
| 2578 | RI_QueryHashEntry *entry; |
| 2579 | SPIPlanPtr plan; |
| 2580 | |
| 2581 | /* |
| 2582 | * On the first call initialize the hashtable |
| 2583 | */ |
| 2584 | if (!ri_query_cache) |
| 2585 | ri_InitHashTables(); |
| 2586 | |
| 2587 | /* |
| 2588 | * Lookup for the key |
| 2589 | */ |
| 2590 | entry = (RI_QueryHashEntry *) hash_search(ri_query_cache, |
| 2591 | (void *) key, |
| 2592 | HASH_FIND, NULL); |
| 2593 | if (entry == NULL) |
| 2594 | return NULL; |
| 2595 | |
| 2596 | /* |
| 2597 | * Check whether the plan is still valid. If it isn't, we don't want to |
| 2598 | * simply rely on plancache.c to regenerate it; rather we should start |
| 2599 | * from scratch and rebuild the query text too. This is to cover cases |
| 2600 | * such as table/column renames. We depend on the plancache machinery to |
| 2601 | * detect possible invalidations, though. |
| 2602 | * |
| 2603 | * CAUTION: this check is only trustworthy if the caller has already |
| 2604 | * locked both FK and PK rels. |
| 2605 | */ |
| 2606 | plan = entry->plan; |
| 2607 | if (plan && SPI_plan_is_valid(plan)) |
| 2608 | return plan; |
| 2609 | |
| 2610 | /* |
| 2611 | * Otherwise we might as well flush the cached plan now, to free a little |
| 2612 | * memory space before we make a new one. |
| 2613 | */ |
| 2614 | entry->plan = NULL; |
| 2615 | if (plan) |
| 2616 | SPI_freeplan(plan); |
| 2617 | |
| 2618 | return NULL; |
| 2619 | } |
| 2620 | |
| 2621 | |
| 2622 | /* |
| 2623 | * ri_HashPreparedPlan - |
| 2624 | * |
| 2625 | * Add another plan to our private SPI query plan hashtable. |
| 2626 | */ |
| 2627 | static void |
| 2628 | ri_HashPreparedPlan(RI_QueryKey *key, SPIPlanPtr plan) |
| 2629 | { |
| 2630 | RI_QueryHashEntry *entry; |
| 2631 | bool found; |
| 2632 | |
| 2633 | /* |
| 2634 | * On the first call initialize the hashtable |
| 2635 | */ |
| 2636 | if (!ri_query_cache) |
| 2637 | ri_InitHashTables(); |
| 2638 | |
| 2639 | /* |
| 2640 | * Add the new plan. We might be overwriting an entry previously found |
| 2641 | * invalid by ri_FetchPreparedPlan. |
| 2642 | */ |
| 2643 | entry = (RI_QueryHashEntry *) hash_search(ri_query_cache, |
| 2644 | (void *) key, |
| 2645 | HASH_ENTER, &found); |
| 2646 | Assert(!found || entry->plan == NULL); |
| 2647 | entry->plan = plan; |
| 2648 | } |
| 2649 | |
| 2650 | |
| 2651 | /* |
| 2652 | * ri_KeysEqual - |
| 2653 | * |
| 2654 | * Check if all key values in OLD and NEW are equal. |
| 2655 | * |
| 2656 | * Note: at some point we might wish to redefine this as checking for |
| 2657 | * "IS NOT DISTINCT" rather than "=", that is, allow two nulls to be |
| 2658 | * considered equal. Currently there is no need since all callers have |
| 2659 | * previously found at least one of the rows to contain no nulls. |
| 2660 | */ |
| 2661 | static bool |
| 2662 | ri_KeysEqual(Relation rel, TupleTableSlot *oldslot, TupleTableSlot *newslot, |
| 2663 | const RI_ConstraintInfo *riinfo, bool rel_is_pk) |
| 2664 | { |
| 2665 | const int16 *attnums; |
| 2666 | |
| 2667 | if (rel_is_pk) |
| 2668 | attnums = riinfo->pk_attnums; |
| 2669 | else |
| 2670 | attnums = riinfo->fk_attnums; |
| 2671 | |
| 2672 | /* XXX: could be worthwhile to fetch all necessary attrs at once */ |
| 2673 | for (int i = 0; i < riinfo->nkeys; i++) |
| 2674 | { |
| 2675 | Datum oldvalue; |
| 2676 | Datum newvalue; |
| 2677 | bool isnull; |
| 2678 | |
| 2679 | /* |
| 2680 | * Get one attribute's oldvalue. If it is NULL - they're not equal. |
| 2681 | */ |
| 2682 | oldvalue = slot_getattr(oldslot, attnums[i], &isnull); |
| 2683 | if (isnull) |
| 2684 | return false; |
| 2685 | |
| 2686 | /* |
| 2687 | * Get one attribute's newvalue. If it is NULL - they're not equal. |
| 2688 | */ |
| 2689 | newvalue = slot_getattr(newslot, attnums[i], &isnull); |
| 2690 | if (isnull) |
| 2691 | return false; |
| 2692 | |
| 2693 | if (rel_is_pk) |
| 2694 | { |
| 2695 | /* |
| 2696 | * If we are looking at the PK table, then do a bytewise |
| 2697 | * comparison. We must propagate PK changes if the value is |
| 2698 | * changed to one that "looks" different but would compare as |
| 2699 | * equal using the equality operator. This only makes a |
| 2700 | * difference for ON UPDATE CASCADE, but for consistency we treat |
| 2701 | * all changes to the PK the same. |
| 2702 | */ |
| 2703 | Form_pg_attribute att = TupleDescAttr(oldslot->tts_tupleDescriptor, attnums[i] - 1); |
| 2704 | |
| 2705 | if (!datum_image_eq(oldvalue, newvalue, att->attbyval, att->attlen)) |
| 2706 | return false; |
| 2707 | } |
| 2708 | else |
| 2709 | { |
| 2710 | /* |
| 2711 | * For the FK table, compare with the appropriate equality |
| 2712 | * operator. Changes that compare equal will still satisfy the |
| 2713 | * constraint after the update. |
| 2714 | */ |
| 2715 | if (!ri_AttributesEqual(riinfo->ff_eq_oprs[i], RIAttType(rel, attnums[i]), |
| 2716 | oldvalue, newvalue)) |
| 2717 | return false; |
| 2718 | } |
| 2719 | } |
| 2720 | |
| 2721 | return true; |
| 2722 | } |
| 2723 | |
| 2724 | |
| 2725 | /* |
| 2726 | * ri_AttributesEqual - |
| 2727 | * |
| 2728 | * Call the appropriate equality comparison operator for two values. |
| 2729 | * |
| 2730 | * NB: we have already checked that neither value is null. |
| 2731 | */ |
| 2732 | static bool |
| 2733 | ri_AttributesEqual(Oid eq_opr, Oid typeid, |
| 2734 | Datum oldvalue, Datum newvalue) |
| 2735 | { |
| 2736 | RI_CompareHashEntry *entry = ri_HashCompareOp(eq_opr, typeid); |
| 2737 | |
| 2738 | /* Do we need to cast the values? */ |
| 2739 | if (OidIsValid(entry->cast_func_finfo.fn_oid)) |
| 2740 | { |
| 2741 | oldvalue = FunctionCall3(&entry->cast_func_finfo, |
| 2742 | oldvalue, |
| 2743 | Int32GetDatum(-1), /* typmod */ |
| 2744 | BoolGetDatum(false)); /* implicit coercion */ |
| 2745 | newvalue = FunctionCall3(&entry->cast_func_finfo, |
| 2746 | newvalue, |
| 2747 | Int32GetDatum(-1), /* typmod */ |
| 2748 | BoolGetDatum(false)); /* implicit coercion */ |
| 2749 | } |
| 2750 | |
| 2751 | /* |
| 2752 | * Apply the comparison operator. |
| 2753 | * |
| 2754 | * Note: This function is part of a call stack that determines whether an |
| 2755 | * update to a row is significant enough that it needs checking or action |
| 2756 | * on the other side of a foreign-key constraint. Therefore, the |
| 2757 | * comparison here would need to be done with the collation of the *other* |
| 2758 | * table. For simplicity (e.g., we might not even have the other table |
| 2759 | * open), we'll just use the default collation here, which could lead to |
| 2760 | * some false negatives. All this would break if we ever allow |
| 2761 | * database-wide collations to be nondeterministic. |
| 2762 | */ |
| 2763 | return DatumGetBool(FunctionCall2Coll(&entry->eq_opr_finfo, |
| 2764 | DEFAULT_COLLATION_OID, |
| 2765 | oldvalue, newvalue)); |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | * ri_HashCompareOp - |
| 2770 | * |
| 2771 | * See if we know how to compare two values, and create a new hash entry |
| 2772 | * if not. |
| 2773 | */ |
| 2774 | static RI_CompareHashEntry * |
| 2775 | ri_HashCompareOp(Oid eq_opr, Oid typeid) |
| 2776 | { |
| 2777 | RI_CompareKey key; |
| 2778 | RI_CompareHashEntry *entry; |
| 2779 | bool found; |
| 2780 | |
| 2781 | /* |
| 2782 | * On the first call initialize the hashtable |
| 2783 | */ |
| 2784 | if (!ri_compare_cache) |
| 2785 | ri_InitHashTables(); |
| 2786 | |
| 2787 | /* |
| 2788 | * Find or create a hash entry. Note we're assuming RI_CompareKey |
| 2789 | * contains no struct padding. |
| 2790 | */ |
| 2791 | key.eq_opr = eq_opr; |
| 2792 | key.typeid = typeid; |
| 2793 | entry = (RI_CompareHashEntry *) hash_search(ri_compare_cache, |
| 2794 | (void *) &key, |
| 2795 | HASH_ENTER, &found); |
| 2796 | if (!found) |
| 2797 | entry->valid = false; |
| 2798 | |
| 2799 | /* |
| 2800 | * If not already initialized, do so. Since we'll keep this hash entry |
| 2801 | * for the life of the backend, put any subsidiary info for the function |
| 2802 | * cache structs into TopMemoryContext. |
| 2803 | */ |
| 2804 | if (!entry->valid) |
| 2805 | { |
| 2806 | Oid lefttype, |
| 2807 | righttype, |
| 2808 | castfunc; |
| 2809 | CoercionPathType pathtype; |
| 2810 | |
| 2811 | /* We always need to know how to call the equality operator */ |
| 2812 | fmgr_info_cxt(get_opcode(eq_opr), &entry->eq_opr_finfo, |
| 2813 | TopMemoryContext); |
| 2814 | |
| 2815 | /* |
| 2816 | * If we chose to use a cast from FK to PK type, we may have to apply |
| 2817 | * the cast function to get to the operator's input type. |
| 2818 | * |
| 2819 | * XXX eventually it would be good to support array-coercion cases |
| 2820 | * here and in ri_AttributesEqual(). At the moment there is no point |
| 2821 | * because cases involving nonidentical array types will be rejected |
| 2822 | * at constraint creation time. |
| 2823 | * |
| 2824 | * XXX perhaps also consider supporting CoerceViaIO? No need at the |
| 2825 | * moment since that will never be generated for implicit coercions. |
| 2826 | */ |
| 2827 | op_input_types(eq_opr, &lefttype, &righttype); |
| 2828 | Assert(lefttype == righttype); |
| 2829 | if (typeid == lefttype) |
| 2830 | castfunc = InvalidOid; /* simplest case */ |
| 2831 | else |
| 2832 | { |
| 2833 | pathtype = find_coercion_pathway(lefttype, typeid, |
| 2834 | COERCION_IMPLICIT, |
| 2835 | &castfunc); |
| 2836 | if (pathtype != COERCION_PATH_FUNC && |
| 2837 | pathtype != COERCION_PATH_RELABELTYPE) |
| 2838 | { |
| 2839 | /* |
| 2840 | * The declared input type of the eq_opr might be a |
| 2841 | * polymorphic type such as ANYARRAY or ANYENUM, or other |
| 2842 | * special cases such as RECORD; find_coercion_pathway |
| 2843 | * currently doesn't subsume these special cases. |
| 2844 | */ |
| 2845 | if (!IsBinaryCoercible(typeid, lefttype)) |
| 2846 | elog(ERROR, "no conversion function from %s to %s" , |
| 2847 | format_type_be(typeid), |
| 2848 | format_type_be(lefttype)); |
| 2849 | } |
| 2850 | } |
| 2851 | if (OidIsValid(castfunc)) |
| 2852 | fmgr_info_cxt(castfunc, &entry->cast_func_finfo, |
| 2853 | TopMemoryContext); |
| 2854 | else |
| 2855 | entry->cast_func_finfo.fn_oid = InvalidOid; |
| 2856 | entry->valid = true; |
| 2857 | } |
| 2858 | |
| 2859 | return entry; |
| 2860 | } |
| 2861 | |
| 2862 | |
| 2863 | /* |
| 2864 | * Given a trigger function OID, determine whether it is an RI trigger, |
| 2865 | * and if so whether it is attached to PK or FK relation. |
| 2866 | */ |
| 2867 | int |
| 2868 | RI_FKey_trigger_type(Oid tgfoid) |
| 2869 | { |
| 2870 | switch (tgfoid) |
| 2871 | { |
| 2872 | case F_RI_FKEY_CASCADE_DEL: |
| 2873 | case F_RI_FKEY_CASCADE_UPD: |
| 2874 | case F_RI_FKEY_RESTRICT_DEL: |
| 2875 | case F_RI_FKEY_RESTRICT_UPD: |
| 2876 | case F_RI_FKEY_SETNULL_DEL: |
| 2877 | case F_RI_FKEY_SETNULL_UPD: |
| 2878 | case F_RI_FKEY_SETDEFAULT_DEL: |
| 2879 | case F_RI_FKEY_SETDEFAULT_UPD: |
| 2880 | case F_RI_FKEY_NOACTION_DEL: |
| 2881 | case F_RI_FKEY_NOACTION_UPD: |
| 2882 | return RI_TRIGGER_PK; |
| 2883 | |
| 2884 | case F_RI_FKEY_CHECK_INS: |
| 2885 | case F_RI_FKEY_CHECK_UPD: |
| 2886 | return RI_TRIGGER_FK; |
| 2887 | } |
| 2888 | |
| 2889 | return RI_TRIGGER_NONE; |
| 2890 | } |
| 2891 | |