1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * selfuncs.c |
4 | * Selectivity functions and index cost estimation functions for |
5 | * standard operators and index access methods. |
6 | * |
7 | * Selectivity routines are registered in the pg_operator catalog |
8 | * in the "oprrest" and "oprjoin" attributes. |
9 | * |
10 | * Index cost functions are located via the index AM's API struct, |
11 | * which is obtained from the handler function registered in pg_am. |
12 | * |
13 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
14 | * Portions Copyright (c) 1994, Regents of the University of California |
15 | * |
16 | * |
17 | * IDENTIFICATION |
18 | * src/backend/utils/adt/selfuncs.c |
19 | * |
20 | *------------------------------------------------------------------------- |
21 | */ |
22 | |
23 | /*---------- |
24 | * Operator selectivity estimation functions are called to estimate the |
25 | * selectivity of WHERE clauses whose top-level operator is their operator. |
26 | * We divide the problem into two cases: |
27 | * Restriction clause estimation: the clause involves vars of just |
28 | * one relation. |
29 | * Join clause estimation: the clause involves vars of multiple rels. |
30 | * Join selectivity estimation is far more difficult and usually less accurate |
31 | * than restriction estimation. |
32 | * |
33 | * When dealing with the inner scan of a nestloop join, we consider the |
34 | * join's joinclauses as restriction clauses for the inner relation, and |
35 | * treat vars of the outer relation as parameters (a/k/a constants of unknown |
36 | * values). So, restriction estimators need to be able to accept an argument |
37 | * telling which relation is to be treated as the variable. |
38 | * |
39 | * The call convention for a restriction estimator (oprrest function) is |
40 | * |
41 | * Selectivity oprrest (PlannerInfo *root, |
42 | * Oid operator, |
43 | * List *args, |
44 | * int varRelid); |
45 | * |
46 | * root: general information about the query (rtable and RelOptInfo lists |
47 | * are particularly important for the estimator). |
48 | * operator: OID of the specific operator in question. |
49 | * args: argument list from the operator clause. |
50 | * varRelid: if not zero, the relid (rtable index) of the relation to |
51 | * be treated as the variable relation. May be zero if the args list |
52 | * is known to contain vars of only one relation. |
53 | * |
54 | * This is represented at the SQL level (in pg_proc) as |
55 | * |
56 | * float8 oprrest (internal, oid, internal, int4); |
57 | * |
58 | * The result is a selectivity, that is, a fraction (0 to 1) of the rows |
59 | * of the relation that are expected to produce a TRUE result for the |
60 | * given operator. |
61 | * |
62 | * The call convention for a join estimator (oprjoin function) is similar |
63 | * except that varRelid is not needed, and instead join information is |
64 | * supplied: |
65 | * |
66 | * Selectivity oprjoin (PlannerInfo *root, |
67 | * Oid operator, |
68 | * List *args, |
69 | * JoinType jointype, |
70 | * SpecialJoinInfo *sjinfo); |
71 | * |
72 | * float8 oprjoin (internal, oid, internal, int2, internal); |
73 | * |
74 | * (Before Postgres 8.4, join estimators had only the first four of these |
75 | * parameters. That signature is still allowed, but deprecated.) The |
76 | * relationship between jointype and sjinfo is explained in the comments for |
77 | * clause_selectivity() --- the short version is that jointype is usually |
78 | * best ignored in favor of examining sjinfo. |
79 | * |
80 | * Join selectivity for regular inner and outer joins is defined as the |
81 | * fraction (0 to 1) of the cross product of the relations that is expected |
82 | * to produce a TRUE result for the given operator. For both semi and anti |
83 | * joins, however, the selectivity is defined as the fraction of the left-hand |
84 | * side relation's rows that are expected to have a match (ie, at least one |
85 | * row with a TRUE result) in the right-hand side. |
86 | * |
87 | * For both oprrest and oprjoin functions, the operator's input collation OID |
88 | * (if any) is passed using the standard fmgr mechanism, so that the estimator |
89 | * function can fetch it with PG_GET_COLLATION(). Note, however, that all |
90 | * statistics in pg_statistic are currently built using the relevant column's |
91 | * collation. Thus, in most cases where we are looking at statistics, we |
92 | * should ignore the operator collation and use the stats entry's collation. |
93 | * We expect that the error induced by doing this is usually not large enough |
94 | * to justify complicating matters. In any case, doing otherwise would yield |
95 | * entirely garbage results for ordered stats data such as histograms. |
96 | *---------- |
97 | */ |
98 | |
99 | #include "postgres.h" |
100 | |
101 | #include <ctype.h> |
102 | #include <math.h> |
103 | |
104 | #include "access/brin.h" |
105 | #include "access/gin.h" |
106 | #include "access/table.h" |
107 | #include "access/tableam.h" |
108 | #include "access/visibilitymap.h" |
109 | #include "catalog/pg_am.h" |
110 | #include "catalog/pg_collation.h" |
111 | #include "catalog/pg_operator.h" |
112 | #include "catalog/pg_statistic.h" |
113 | #include "catalog/pg_statistic_ext.h" |
114 | #include "executor/nodeAgg.h" |
115 | #include "miscadmin.h" |
116 | #include "nodes/makefuncs.h" |
117 | #include "nodes/nodeFuncs.h" |
118 | #include "optimizer/clauses.h" |
119 | #include "optimizer/cost.h" |
120 | #include "optimizer/optimizer.h" |
121 | #include "optimizer/pathnode.h" |
122 | #include "optimizer/paths.h" |
123 | #include "optimizer/plancat.h" |
124 | #include "parser/parse_clause.h" |
125 | #include "parser/parsetree.h" |
126 | #include "statistics/statistics.h" |
127 | #include "storage/bufmgr.h" |
128 | #include "utils/builtins.h" |
129 | #include "utils/date.h" |
130 | #include "utils/datum.h" |
131 | #include "utils/fmgroids.h" |
132 | #include "utils/index_selfuncs.h" |
133 | #include "utils/lsyscache.h" |
134 | #include "utils/memutils.h" |
135 | #include "utils/pg_locale.h" |
136 | #include "utils/rel.h" |
137 | #include "utils/selfuncs.h" |
138 | #include "utils/snapmgr.h" |
139 | #include "utils/spccache.h" |
140 | #include "utils/syscache.h" |
141 | #include "utils/timestamp.h" |
142 | #include "utils/typcache.h" |
143 | |
144 | |
145 | /* Hooks for plugins to get control when we ask for stats */ |
146 | get_relation_stats_hook_type get_relation_stats_hook = NULL; |
147 | get_index_stats_hook_type get_index_stats_hook = NULL; |
148 | |
149 | static double eqsel_internal(PG_FUNCTION_ARGS, bool negate); |
150 | static double eqjoinsel_inner(Oid opfuncoid, |
151 | VariableStatData *vardata1, VariableStatData *vardata2, |
152 | double nd1, double nd2, |
153 | bool isdefault1, bool isdefault2, |
154 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
155 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
156 | bool have_mcvs1, bool have_mcvs2); |
157 | static double eqjoinsel_semi(Oid opfuncoid, |
158 | VariableStatData *vardata1, VariableStatData *vardata2, |
159 | double nd1, double nd2, |
160 | bool isdefault1, bool isdefault2, |
161 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
162 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
163 | bool have_mcvs1, bool have_mcvs2, |
164 | RelOptInfo *inner_rel); |
165 | static bool estimate_multivariate_ndistinct(PlannerInfo *root, |
166 | RelOptInfo *rel, List **varinfos, double *ndistinct); |
167 | static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid, |
168 | double *scaledvalue, |
169 | Datum lobound, Datum hibound, Oid boundstypid, |
170 | double *scaledlobound, double *scaledhibound); |
171 | static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure); |
172 | static void convert_string_to_scalar(char *value, |
173 | double *scaledvalue, |
174 | char *lobound, |
175 | double *scaledlobound, |
176 | char *hibound, |
177 | double *scaledhibound); |
178 | static void convert_bytea_to_scalar(Datum value, |
179 | double *scaledvalue, |
180 | Datum lobound, |
181 | double *scaledlobound, |
182 | Datum hibound, |
183 | double *scaledhibound); |
184 | static double convert_one_string_to_scalar(char *value, |
185 | int rangelo, int rangehi); |
186 | static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen, |
187 | int rangelo, int rangehi); |
188 | static char *convert_string_datum(Datum value, Oid typid, Oid collid, |
189 | bool *failure); |
190 | static double convert_timevalue_to_scalar(Datum value, Oid typid, |
191 | bool *failure); |
192 | static void examine_simple_variable(PlannerInfo *root, Var *var, |
193 | VariableStatData *vardata); |
194 | static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata, |
195 | Oid sortop, Datum *min, Datum *max); |
196 | static bool get_actual_variable_range(PlannerInfo *root, |
197 | VariableStatData *vardata, |
198 | Oid sortop, |
199 | Datum *min, Datum *max); |
200 | static bool get_actual_variable_endpoint(Relation heapRel, |
201 | Relation indexRel, |
202 | ScanDirection indexscandir, |
203 | ScanKey scankeys, |
204 | int16 typLen, |
205 | bool typByVal, |
206 | TupleTableSlot *tableslot, |
207 | MemoryContext outercontext, |
208 | Datum *endpointDatum); |
209 | static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids); |
210 | |
211 | |
212 | /* |
213 | * eqsel - Selectivity of "=" for any data types. |
214 | * |
215 | * Note: this routine is also used to estimate selectivity for some |
216 | * operators that are not "=" but have comparable selectivity behavior, |
217 | * such as "~=" (geometric approximate-match). Even for "=", we must |
218 | * keep in mind that the left and right datatypes may differ. |
219 | */ |
220 | Datum |
221 | eqsel(PG_FUNCTION_ARGS) |
222 | { |
223 | PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false)); |
224 | } |
225 | |
226 | /* |
227 | * Common code for eqsel() and neqsel() |
228 | */ |
229 | static double |
230 | eqsel_internal(PG_FUNCTION_ARGS, bool negate) |
231 | { |
232 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
233 | Oid operator = PG_GETARG_OID(1); |
234 | List *args = (List *) PG_GETARG_POINTER(2); |
235 | int varRelid = PG_GETARG_INT32(3); |
236 | VariableStatData vardata; |
237 | Node *other; |
238 | bool varonleft; |
239 | double selec; |
240 | |
241 | /* |
242 | * When asked about <>, we do the estimation using the corresponding = |
243 | * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac". |
244 | */ |
245 | if (negate) |
246 | { |
247 | operator = get_negator(operator); |
248 | if (!OidIsValid(operator)) |
249 | { |
250 | /* Use default selectivity (should we raise an error instead?) */ |
251 | return 1.0 - DEFAULT_EQ_SEL; |
252 | } |
253 | } |
254 | |
255 | /* |
256 | * If expression is not variable = something or something = variable, then |
257 | * punt and return a default estimate. |
258 | */ |
259 | if (!get_restriction_variable(root, args, varRelid, |
260 | &vardata, &other, &varonleft)) |
261 | return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL; |
262 | |
263 | /* |
264 | * We can do a lot better if the something is a constant. (Note: the |
265 | * Const might result from estimation rather than being a simple constant |
266 | * in the query.) |
267 | */ |
268 | if (IsA(other, Const)) |
269 | selec = var_eq_const(&vardata, operator, |
270 | ((Const *) other)->constvalue, |
271 | ((Const *) other)->constisnull, |
272 | varonleft, negate); |
273 | else |
274 | selec = var_eq_non_const(&vardata, operator, other, |
275 | varonleft, negate); |
276 | |
277 | ReleaseVariableStats(vardata); |
278 | |
279 | return selec; |
280 | } |
281 | |
282 | /* |
283 | * var_eq_const --- eqsel for var = const case |
284 | * |
285 | * This is exported so that some other estimation functions can use it. |
286 | */ |
287 | double |
288 | var_eq_const(VariableStatData *vardata, Oid operator, |
289 | Datum constval, bool constisnull, |
290 | bool varonleft, bool negate) |
291 | { |
292 | double selec; |
293 | double nullfrac = 0.0; |
294 | bool isdefault; |
295 | Oid opfuncoid; |
296 | |
297 | /* |
298 | * If the constant is NULL, assume operator is strict and return zero, ie, |
299 | * operator will never return TRUE. (It's zero even for a negator op.) |
300 | */ |
301 | if (constisnull) |
302 | return 0.0; |
303 | |
304 | /* |
305 | * Grab the nullfrac for use below. Note we allow use of nullfrac |
306 | * regardless of security check. |
307 | */ |
308 | if (HeapTupleIsValid(vardata->statsTuple)) |
309 | { |
310 | Form_pg_statistic stats; |
311 | |
312 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
313 | nullfrac = stats->stanullfrac; |
314 | } |
315 | |
316 | /* |
317 | * If we matched the var to a unique index or DISTINCT clause, assume |
318 | * there is exactly one match regardless of anything else. (This is |
319 | * slightly bogus, since the index or clause's equality operator might be |
320 | * different from ours, but it's much more likely to be right than |
321 | * ignoring the information.) |
322 | */ |
323 | if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0) |
324 | { |
325 | selec = 1.0 / vardata->rel->tuples; |
326 | } |
327 | else if (HeapTupleIsValid(vardata->statsTuple) && |
328 | statistic_proc_security_check(vardata, |
329 | (opfuncoid = get_opcode(operator)))) |
330 | { |
331 | AttStatsSlot sslot; |
332 | bool match = false; |
333 | int i; |
334 | |
335 | /* |
336 | * Is the constant "=" to any of the column's most common values? |
337 | * (Although the given operator may not really be "=", we will assume |
338 | * that seeing whether it returns TRUE is an appropriate test. If you |
339 | * don't like this, maybe you shouldn't be using eqsel for your |
340 | * operator...) |
341 | */ |
342 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
343 | STATISTIC_KIND_MCV, InvalidOid, |
344 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
345 | { |
346 | FmgrInfo eqproc; |
347 | |
348 | fmgr_info(opfuncoid, &eqproc); |
349 | |
350 | for (i = 0; i < sslot.nvalues; i++) |
351 | { |
352 | /* be careful to apply operator right way 'round */ |
353 | if (varonleft) |
354 | match = DatumGetBool(FunctionCall2Coll(&eqproc, |
355 | sslot.stacoll, |
356 | sslot.values[i], |
357 | constval)); |
358 | else |
359 | match = DatumGetBool(FunctionCall2Coll(&eqproc, |
360 | sslot.stacoll, |
361 | constval, |
362 | sslot.values[i])); |
363 | if (match) |
364 | break; |
365 | } |
366 | } |
367 | else |
368 | { |
369 | /* no most-common-value info available */ |
370 | i = 0; /* keep compiler quiet */ |
371 | } |
372 | |
373 | if (match) |
374 | { |
375 | /* |
376 | * Constant is "=" to this common value. We know selectivity |
377 | * exactly (or as exactly as ANALYZE could calculate it, anyway). |
378 | */ |
379 | selec = sslot.numbers[i]; |
380 | } |
381 | else |
382 | { |
383 | /* |
384 | * Comparison is against a constant that is neither NULL nor any |
385 | * of the common values. Its selectivity cannot be more than |
386 | * this: |
387 | */ |
388 | double sumcommon = 0.0; |
389 | double otherdistinct; |
390 | |
391 | for (i = 0; i < sslot.nnumbers; i++) |
392 | sumcommon += sslot.numbers[i]; |
393 | selec = 1.0 - sumcommon - nullfrac; |
394 | CLAMP_PROBABILITY(selec); |
395 | |
396 | /* |
397 | * and in fact it's probably a good deal less. We approximate that |
398 | * all the not-common values share this remaining fraction |
399 | * equally, so we divide by the number of other distinct values. |
400 | */ |
401 | otherdistinct = get_variable_numdistinct(vardata, &isdefault) - |
402 | sslot.nnumbers; |
403 | if (otherdistinct > 1) |
404 | selec /= otherdistinct; |
405 | |
406 | /* |
407 | * Another cross-check: selectivity shouldn't be estimated as more |
408 | * than the least common "most common value". |
409 | */ |
410 | if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1]) |
411 | selec = sslot.numbers[sslot.nnumbers - 1]; |
412 | } |
413 | |
414 | free_attstatsslot(&sslot); |
415 | } |
416 | else |
417 | { |
418 | /* |
419 | * No ANALYZE stats available, so make a guess using estimated number |
420 | * of distinct values and assuming they are equally common. (The guess |
421 | * is unlikely to be very good, but we do know a few special cases.) |
422 | */ |
423 | selec = 1.0 / get_variable_numdistinct(vardata, &isdefault); |
424 | } |
425 | |
426 | /* now adjust if we wanted <> rather than = */ |
427 | if (negate) |
428 | selec = 1.0 - selec - nullfrac; |
429 | |
430 | /* result should be in range, but make sure... */ |
431 | CLAMP_PROBABILITY(selec); |
432 | |
433 | return selec; |
434 | } |
435 | |
436 | /* |
437 | * var_eq_non_const --- eqsel for var = something-other-than-const case |
438 | * |
439 | * This is exported so that some other estimation functions can use it. |
440 | */ |
441 | double |
442 | var_eq_non_const(VariableStatData *vardata, Oid operator, |
443 | Node *other, |
444 | bool varonleft, bool negate) |
445 | { |
446 | double selec; |
447 | double nullfrac = 0.0; |
448 | bool isdefault; |
449 | |
450 | /* |
451 | * Grab the nullfrac for use below. |
452 | */ |
453 | if (HeapTupleIsValid(vardata->statsTuple)) |
454 | { |
455 | Form_pg_statistic stats; |
456 | |
457 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
458 | nullfrac = stats->stanullfrac; |
459 | } |
460 | |
461 | /* |
462 | * If we matched the var to a unique index or DISTINCT clause, assume |
463 | * there is exactly one match regardless of anything else. (This is |
464 | * slightly bogus, since the index or clause's equality operator might be |
465 | * different from ours, but it's much more likely to be right than |
466 | * ignoring the information.) |
467 | */ |
468 | if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0) |
469 | { |
470 | selec = 1.0 / vardata->rel->tuples; |
471 | } |
472 | else if (HeapTupleIsValid(vardata->statsTuple)) |
473 | { |
474 | double ndistinct; |
475 | AttStatsSlot sslot; |
476 | |
477 | /* |
478 | * Search is for a value that we do not know a priori, but we will |
479 | * assume it is not NULL. Estimate the selectivity as non-null |
480 | * fraction divided by number of distinct values, so that we get a |
481 | * result averaged over all possible values whether common or |
482 | * uncommon. (Essentially, we are assuming that the not-yet-known |
483 | * comparison value is equally likely to be any of the possible |
484 | * values, regardless of their frequency in the table. Is that a good |
485 | * idea?) |
486 | */ |
487 | selec = 1.0 - nullfrac; |
488 | ndistinct = get_variable_numdistinct(vardata, &isdefault); |
489 | if (ndistinct > 1) |
490 | selec /= ndistinct; |
491 | |
492 | /* |
493 | * Cross-check: selectivity should never be estimated as more than the |
494 | * most common value's. |
495 | */ |
496 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
497 | STATISTIC_KIND_MCV, InvalidOid, |
498 | ATTSTATSSLOT_NUMBERS)) |
499 | { |
500 | if (sslot.nnumbers > 0 && selec > sslot.numbers[0]) |
501 | selec = sslot.numbers[0]; |
502 | free_attstatsslot(&sslot); |
503 | } |
504 | } |
505 | else |
506 | { |
507 | /* |
508 | * No ANALYZE stats available, so make a guess using estimated number |
509 | * of distinct values and assuming they are equally common. (The guess |
510 | * is unlikely to be very good, but we do know a few special cases.) |
511 | */ |
512 | selec = 1.0 / get_variable_numdistinct(vardata, &isdefault); |
513 | } |
514 | |
515 | /* now adjust if we wanted <> rather than = */ |
516 | if (negate) |
517 | selec = 1.0 - selec - nullfrac; |
518 | |
519 | /* result should be in range, but make sure... */ |
520 | CLAMP_PROBABILITY(selec); |
521 | |
522 | return selec; |
523 | } |
524 | |
525 | /* |
526 | * neqsel - Selectivity of "!=" for any data types. |
527 | * |
528 | * This routine is also used for some operators that are not "!=" |
529 | * but have comparable selectivity behavior. See above comments |
530 | * for eqsel(). |
531 | */ |
532 | Datum |
533 | neqsel(PG_FUNCTION_ARGS) |
534 | { |
535 | PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true)); |
536 | } |
537 | |
538 | /* |
539 | * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars. |
540 | * |
541 | * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel. |
542 | * The isgt and iseq flags distinguish which of the four cases apply. |
543 | * |
544 | * The caller has commuted the clause, if necessary, so that we can treat |
545 | * the variable as being on the left. The caller must also make sure that |
546 | * the other side of the clause is a non-null Const, and dissect that into |
547 | * a value and datatype. (This definition simplifies some callers that |
548 | * want to estimate against a computed value instead of a Const node.) |
549 | * |
550 | * This routine works for any datatype (or pair of datatypes) known to |
551 | * convert_to_scalar(). If it is applied to some other datatype, |
552 | * it will return an approximate estimate based on assuming that the constant |
553 | * value falls in the middle of the bin identified by binary search. |
554 | */ |
555 | static double |
556 | scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq, |
557 | VariableStatData *vardata, Datum constval, Oid consttype) |
558 | { |
559 | Form_pg_statistic stats; |
560 | FmgrInfo opproc; |
561 | double mcv_selec, |
562 | hist_selec, |
563 | sumcommon; |
564 | double selec; |
565 | |
566 | if (!HeapTupleIsValid(vardata->statsTuple)) |
567 | { |
568 | /* |
569 | * No stats are available. Typically this means we have to fall back |
570 | * on the default estimate; but if the variable is CTID then we can |
571 | * make an estimate based on comparing the constant to the table size. |
572 | */ |
573 | if (vardata->var && IsA(vardata->var, Var) && |
574 | ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber) |
575 | { |
576 | ItemPointer itemptr; |
577 | double block; |
578 | double density; |
579 | |
580 | /* |
581 | * If the relation's empty, we're going to include all of it. |
582 | * (This is mostly to avoid divide-by-zero below.) |
583 | */ |
584 | if (vardata->rel->pages == 0) |
585 | return 1.0; |
586 | |
587 | itemptr = (ItemPointer) DatumGetPointer(constval); |
588 | block = ItemPointerGetBlockNumberNoCheck(itemptr); |
589 | |
590 | /* |
591 | * Determine the average number of tuples per page (density). |
592 | * |
593 | * Since the last page will, on average, be only half full, we can |
594 | * estimate it to have half as many tuples as earlier pages. So |
595 | * give it half the weight of a regular page. |
596 | */ |
597 | density = vardata->rel->tuples / (vardata->rel->pages - 0.5); |
598 | |
599 | /* If target is the last page, use half the density. */ |
600 | if (block >= vardata->rel->pages - 1) |
601 | density *= 0.5; |
602 | |
603 | /* |
604 | * Using the average tuples per page, calculate how far into the |
605 | * page the itemptr is likely to be and adjust block accordingly, |
606 | * by adding that fraction of a whole block (but never more than a |
607 | * whole block, no matter how high the itemptr's offset is). Here |
608 | * we are ignoring the possibility of dead-tuple line pointers, |
609 | * which is fairly bogus, but we lack the info to do better. |
610 | */ |
611 | if (density > 0.0) |
612 | { |
613 | OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr); |
614 | |
615 | block += Min(offset / density, 1.0); |
616 | } |
617 | |
618 | /* |
619 | * Convert relative block number to selectivity. Again, the last |
620 | * page has only half weight. |
621 | */ |
622 | selec = block / (vardata->rel->pages - 0.5); |
623 | |
624 | /* |
625 | * The calculation so far gave us a selectivity for the "<=" case. |
626 | * We'll have one less tuple for "<" and one additional tuple for |
627 | * ">=", the latter of which we'll reverse the selectivity for |
628 | * below, so we can simply subtract one tuple for both cases. The |
629 | * cases that need this adjustment can be identified by iseq being |
630 | * equal to isgt. |
631 | */ |
632 | if (iseq == isgt && vardata->rel->tuples >= 1.0) |
633 | selec -= (1.0 / vardata->rel->tuples); |
634 | |
635 | /* Finally, reverse the selectivity for the ">", ">=" cases. */ |
636 | if (isgt) |
637 | selec = 1.0 - selec; |
638 | |
639 | CLAMP_PROBABILITY(selec); |
640 | return selec; |
641 | } |
642 | |
643 | /* no stats available, so default result */ |
644 | return DEFAULT_INEQ_SEL; |
645 | } |
646 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
647 | |
648 | fmgr_info(get_opcode(operator), &opproc); |
649 | |
650 | /* |
651 | * If we have most-common-values info, add up the fractions of the MCV |
652 | * entries that satisfy MCV OP CONST. These fractions contribute directly |
653 | * to the result selectivity. Also add up the total fraction represented |
654 | * by MCV entries. |
655 | */ |
656 | mcv_selec = mcv_selectivity(vardata, &opproc, constval, true, |
657 | &sumcommon); |
658 | |
659 | /* |
660 | * If there is a histogram, determine which bin the constant falls in, and |
661 | * compute the resulting contribution to selectivity. |
662 | */ |
663 | hist_selec = ineq_histogram_selectivity(root, vardata, |
664 | &opproc, isgt, iseq, |
665 | constval, consttype); |
666 | |
667 | /* |
668 | * Now merge the results from the MCV and histogram calculations, |
669 | * realizing that the histogram covers only the non-null values that are |
670 | * not listed in MCV. |
671 | */ |
672 | selec = 1.0 - stats->stanullfrac - sumcommon; |
673 | |
674 | if (hist_selec >= 0.0) |
675 | selec *= hist_selec; |
676 | else |
677 | { |
678 | /* |
679 | * If no histogram but there are values not accounted for by MCV, |
680 | * arbitrarily assume half of them will match. |
681 | */ |
682 | selec *= 0.5; |
683 | } |
684 | |
685 | selec += mcv_selec; |
686 | |
687 | /* result should be in range, but make sure... */ |
688 | CLAMP_PROBABILITY(selec); |
689 | |
690 | return selec; |
691 | } |
692 | |
693 | /* |
694 | * mcv_selectivity - Examine the MCV list for selectivity estimates |
695 | * |
696 | * Determine the fraction of the variable's MCV population that satisfies |
697 | * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also |
698 | * compute the fraction of the total column population represented by the MCV |
699 | * list. This code will work for any boolean-returning predicate operator. |
700 | * |
701 | * The function result is the MCV selectivity, and the fraction of the |
702 | * total population is returned into *sumcommonp. Zeroes are returned |
703 | * if there is no MCV list. |
704 | */ |
705 | double |
706 | mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, |
707 | Datum constval, bool varonleft, |
708 | double *sumcommonp) |
709 | { |
710 | double mcv_selec, |
711 | sumcommon; |
712 | AttStatsSlot sslot; |
713 | int i; |
714 | |
715 | mcv_selec = 0.0; |
716 | sumcommon = 0.0; |
717 | |
718 | if (HeapTupleIsValid(vardata->statsTuple) && |
719 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
720 | get_attstatsslot(&sslot, vardata->statsTuple, |
721 | STATISTIC_KIND_MCV, InvalidOid, |
722 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
723 | { |
724 | for (i = 0; i < sslot.nvalues; i++) |
725 | { |
726 | if (varonleft ? |
727 | DatumGetBool(FunctionCall2Coll(opproc, |
728 | sslot.stacoll, |
729 | sslot.values[i], |
730 | constval)) : |
731 | DatumGetBool(FunctionCall2Coll(opproc, |
732 | sslot.stacoll, |
733 | constval, |
734 | sslot.values[i]))) |
735 | mcv_selec += sslot.numbers[i]; |
736 | sumcommon += sslot.numbers[i]; |
737 | } |
738 | free_attstatsslot(&sslot); |
739 | } |
740 | |
741 | *sumcommonp = sumcommon; |
742 | return mcv_selec; |
743 | } |
744 | |
745 | /* |
746 | * histogram_selectivity - Examine the histogram for selectivity estimates |
747 | * |
748 | * Determine the fraction of the variable's histogram entries that satisfy |
749 | * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. |
750 | * |
751 | * This code will work for any boolean-returning predicate operator, whether |
752 | * or not it has anything to do with the histogram sort operator. We are |
753 | * essentially using the histogram just as a representative sample. However, |
754 | * small histograms are unlikely to be all that representative, so the caller |
755 | * should be prepared to fall back on some other estimation approach when the |
756 | * histogram is missing or very small. It may also be prudent to combine this |
757 | * approach with another one when the histogram is small. |
758 | * |
759 | * If the actual histogram size is not at least min_hist_size, we won't bother |
760 | * to do the calculation at all. Also, if the n_skip parameter is > 0, we |
761 | * ignore the first and last n_skip histogram elements, on the grounds that |
762 | * they are outliers and hence not very representative. Typical values for |
763 | * these parameters are 10 and 1. |
764 | * |
765 | * The function result is the selectivity, or -1 if there is no histogram |
766 | * or it's smaller than min_hist_size. |
767 | * |
768 | * The output parameter *hist_size receives the actual histogram size, |
769 | * or zero if no histogram. Callers may use this number to decide how |
770 | * much faith to put in the function result. |
771 | * |
772 | * Note that the result disregards both the most-common-values (if any) and |
773 | * null entries. The caller is expected to combine this result with |
774 | * statistics for those portions of the column population. It may also be |
775 | * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs. |
776 | */ |
777 | double |
778 | histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc, |
779 | Datum constval, bool varonleft, |
780 | int min_hist_size, int n_skip, |
781 | int *hist_size) |
782 | { |
783 | double result; |
784 | AttStatsSlot sslot; |
785 | |
786 | /* check sanity of parameters */ |
787 | Assert(n_skip >= 0); |
788 | Assert(min_hist_size > 2 * n_skip); |
789 | |
790 | if (HeapTupleIsValid(vardata->statsTuple) && |
791 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
792 | get_attstatsslot(&sslot, vardata->statsTuple, |
793 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
794 | ATTSTATSSLOT_VALUES)) |
795 | { |
796 | *hist_size = sslot.nvalues; |
797 | if (sslot.nvalues >= min_hist_size) |
798 | { |
799 | int nmatch = 0; |
800 | int i; |
801 | |
802 | for (i = n_skip; i < sslot.nvalues - n_skip; i++) |
803 | { |
804 | if (varonleft ? |
805 | DatumGetBool(FunctionCall2Coll(opproc, |
806 | sslot.stacoll, |
807 | sslot.values[i], |
808 | constval)) : |
809 | DatumGetBool(FunctionCall2Coll(opproc, |
810 | sslot.stacoll, |
811 | constval, |
812 | sslot.values[i]))) |
813 | nmatch++; |
814 | } |
815 | result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip)); |
816 | } |
817 | else |
818 | result = -1; |
819 | free_attstatsslot(&sslot); |
820 | } |
821 | else |
822 | { |
823 | *hist_size = 0; |
824 | result = -1; |
825 | } |
826 | |
827 | return result; |
828 | } |
829 | |
830 | /* |
831 | * ineq_histogram_selectivity - Examine the histogram for scalarineqsel |
832 | * |
833 | * Determine the fraction of the variable's histogram population that |
834 | * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST. |
835 | * The isgt and iseq flags distinguish which of the four cases apply. |
836 | * |
837 | * Returns -1 if there is no histogram (valid results will always be >= 0). |
838 | * |
839 | * Note that the result disregards both the most-common-values (if any) and |
840 | * null entries. The caller is expected to combine this result with |
841 | * statistics for those portions of the column population. |
842 | * |
843 | * This is exported so that some other estimation functions can use it. |
844 | */ |
845 | double |
846 | ineq_histogram_selectivity(PlannerInfo *root, |
847 | VariableStatData *vardata, |
848 | FmgrInfo *opproc, bool isgt, bool iseq, |
849 | Datum constval, Oid consttype) |
850 | { |
851 | double hist_selec; |
852 | AttStatsSlot sslot; |
853 | |
854 | hist_selec = -1.0; |
855 | |
856 | /* |
857 | * Someday, ANALYZE might store more than one histogram per rel/att, |
858 | * corresponding to more than one possible sort ordering defined for the |
859 | * column type. However, to make that work we will need to figure out |
860 | * which staop to search for --- it's not necessarily the one we have at |
861 | * hand! (For example, we might have a '<=' operator rather than the '<' |
862 | * operator that will appear in staop.) For now, assume that whatever |
863 | * appears in pg_statistic is sorted the same way our operator sorts, or |
864 | * the reverse way if isgt is true. |
865 | */ |
866 | if (HeapTupleIsValid(vardata->statsTuple) && |
867 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
868 | get_attstatsslot(&sslot, vardata->statsTuple, |
869 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
870 | ATTSTATSSLOT_VALUES)) |
871 | { |
872 | if (sslot.nvalues > 1) |
873 | { |
874 | /* |
875 | * Use binary search to find the desired location, namely the |
876 | * right end of the histogram bin containing the comparison value, |
877 | * which is the leftmost entry for which the comparison operator |
878 | * succeeds (if isgt) or fails (if !isgt). (If the given operator |
879 | * isn't actually sort-compatible with the histogram, you'll get |
880 | * garbage results ... but probably not any more garbage-y than |
881 | * you would have from the old linear search.) |
882 | * |
883 | * In this loop, we pay no attention to whether the operator iseq |
884 | * or not; that detail will be mopped up below. (We cannot tell, |
885 | * anyway, whether the operator thinks the values are equal.) |
886 | * |
887 | * If the binary search accesses the first or last histogram |
888 | * entry, we try to replace that endpoint with the true column min |
889 | * or max as found by get_actual_variable_range(). This |
890 | * ameliorates misestimates when the min or max is moving as a |
891 | * result of changes since the last ANALYZE. Note that this could |
892 | * result in effectively including MCVs into the histogram that |
893 | * weren't there before, but we don't try to correct for that. |
894 | */ |
895 | double histfrac; |
896 | int lobound = 0; /* first possible slot to search */ |
897 | int hibound = sslot.nvalues; /* last+1 slot to search */ |
898 | bool have_end = false; |
899 | |
900 | /* |
901 | * If there are only two histogram entries, we'll want up-to-date |
902 | * values for both. (If there are more than two, we need at most |
903 | * one of them to be updated, so we deal with that within the |
904 | * loop.) |
905 | */ |
906 | if (sslot.nvalues == 2) |
907 | have_end = get_actual_variable_range(root, |
908 | vardata, |
909 | sslot.staop, |
910 | &sslot.values[0], |
911 | &sslot.values[1]); |
912 | |
913 | while (lobound < hibound) |
914 | { |
915 | int probe = (lobound + hibound) / 2; |
916 | bool ltcmp; |
917 | |
918 | /* |
919 | * If we find ourselves about to compare to the first or last |
920 | * histogram entry, first try to replace it with the actual |
921 | * current min or max (unless we already did so above). |
922 | */ |
923 | if (probe == 0 && sslot.nvalues > 2) |
924 | have_end = get_actual_variable_range(root, |
925 | vardata, |
926 | sslot.staop, |
927 | &sslot.values[0], |
928 | NULL); |
929 | else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2) |
930 | have_end = get_actual_variable_range(root, |
931 | vardata, |
932 | sslot.staop, |
933 | NULL, |
934 | &sslot.values[probe]); |
935 | |
936 | ltcmp = DatumGetBool(FunctionCall2Coll(opproc, |
937 | sslot.stacoll, |
938 | sslot.values[probe], |
939 | constval)); |
940 | if (isgt) |
941 | ltcmp = !ltcmp; |
942 | if (ltcmp) |
943 | lobound = probe + 1; |
944 | else |
945 | hibound = probe; |
946 | } |
947 | |
948 | if (lobound <= 0) |
949 | { |
950 | /* |
951 | * Constant is below lower histogram boundary. More |
952 | * precisely, we have found that no entry in the histogram |
953 | * satisfies the inequality clause (if !isgt) or they all do |
954 | * (if isgt). We estimate that that's true of the entire |
955 | * table, so set histfrac to 0.0 (which we'll flip to 1.0 |
956 | * below, if isgt). |
957 | */ |
958 | histfrac = 0.0; |
959 | } |
960 | else if (lobound >= sslot.nvalues) |
961 | { |
962 | /* |
963 | * Inverse case: constant is above upper histogram boundary. |
964 | */ |
965 | histfrac = 1.0; |
966 | } |
967 | else |
968 | { |
969 | /* We have values[i-1] <= constant <= values[i]. */ |
970 | int i = lobound; |
971 | double eq_selec = 0; |
972 | double val, |
973 | high, |
974 | low; |
975 | double binfrac; |
976 | |
977 | /* |
978 | * In the cases where we'll need it below, obtain an estimate |
979 | * of the selectivity of "x = constval". We use a calculation |
980 | * similar to what var_eq_const() does for a non-MCV constant, |
981 | * ie, estimate that all distinct non-MCV values occur equally |
982 | * often. But multiplication by "1.0 - sumcommon - nullfrac" |
983 | * will be done by our caller, so we shouldn't do that here. |
984 | * Therefore we can't try to clamp the estimate by reference |
985 | * to the least common MCV; the result would be too small. |
986 | * |
987 | * Note: since this is effectively assuming that constval |
988 | * isn't an MCV, it's logically dubious if constval in fact is |
989 | * one. But we have to apply *some* correction for equality, |
990 | * and anyway we cannot tell if constval is an MCV, since we |
991 | * don't have a suitable equality operator at hand. |
992 | */ |
993 | if (i == 1 || isgt == iseq) |
994 | { |
995 | double otherdistinct; |
996 | bool isdefault; |
997 | AttStatsSlot mcvslot; |
998 | |
999 | /* Get estimated number of distinct values */ |
1000 | otherdistinct = get_variable_numdistinct(vardata, |
1001 | &isdefault); |
1002 | |
1003 | /* Subtract off the number of known MCVs */ |
1004 | if (get_attstatsslot(&mcvslot, vardata->statsTuple, |
1005 | STATISTIC_KIND_MCV, InvalidOid, |
1006 | ATTSTATSSLOT_NUMBERS)) |
1007 | { |
1008 | otherdistinct -= mcvslot.nnumbers; |
1009 | free_attstatsslot(&mcvslot); |
1010 | } |
1011 | |
1012 | /* If result doesn't seem sane, leave eq_selec at 0 */ |
1013 | if (otherdistinct > 1) |
1014 | eq_selec = 1.0 / otherdistinct; |
1015 | } |
1016 | |
1017 | /* |
1018 | * Convert the constant and the two nearest bin boundary |
1019 | * values to a uniform comparison scale, and do a linear |
1020 | * interpolation within this bin. |
1021 | */ |
1022 | if (convert_to_scalar(constval, consttype, sslot.stacoll, |
1023 | &val, |
1024 | sslot.values[i - 1], sslot.values[i], |
1025 | vardata->vartype, |
1026 | &low, &high)) |
1027 | { |
1028 | if (high <= low) |
1029 | { |
1030 | /* cope if bin boundaries appear identical */ |
1031 | binfrac = 0.5; |
1032 | } |
1033 | else if (val <= low) |
1034 | binfrac = 0.0; |
1035 | else if (val >= high) |
1036 | binfrac = 1.0; |
1037 | else |
1038 | { |
1039 | binfrac = (val - low) / (high - low); |
1040 | |
1041 | /* |
1042 | * Watch out for the possibility that we got a NaN or |
1043 | * Infinity from the division. This can happen |
1044 | * despite the previous checks, if for example "low" |
1045 | * is -Infinity. |
1046 | */ |
1047 | if (isnan(binfrac) || |
1048 | binfrac < 0.0 || binfrac > 1.0) |
1049 | binfrac = 0.5; |
1050 | } |
1051 | } |
1052 | else |
1053 | { |
1054 | /* |
1055 | * Ideally we'd produce an error here, on the grounds that |
1056 | * the given operator shouldn't have scalarXXsel |
1057 | * registered as its selectivity func unless we can deal |
1058 | * with its operand types. But currently, all manner of |
1059 | * stuff is invoking scalarXXsel, so give a default |
1060 | * estimate until that can be fixed. |
1061 | */ |
1062 | binfrac = 0.5; |
1063 | } |
1064 | |
1065 | /* |
1066 | * Now, compute the overall selectivity across the values |
1067 | * represented by the histogram. We have i-1 full bins and |
1068 | * binfrac partial bin below the constant. |
1069 | */ |
1070 | histfrac = (double) (i - 1) + binfrac; |
1071 | histfrac /= (double) (sslot.nvalues - 1); |
1072 | |
1073 | /* |
1074 | * At this point, histfrac is an estimate of the fraction of |
1075 | * the population represented by the histogram that satisfies |
1076 | * "x <= constval". Somewhat remarkably, this statement is |
1077 | * true regardless of which operator we were doing the probes |
1078 | * with, so long as convert_to_scalar() delivers reasonable |
1079 | * results. If the probe constant is equal to some histogram |
1080 | * entry, we would have considered the bin to the left of that |
1081 | * entry if probing with "<" or ">=", or the bin to the right |
1082 | * if probing with "<=" or ">"; but binfrac would have come |
1083 | * out as 1.0 in the first case and 0.0 in the second, leading |
1084 | * to the same histfrac in either case. For probe constants |
1085 | * between histogram entries, we find the same bin and get the |
1086 | * same estimate with any operator. |
1087 | * |
1088 | * The fact that the estimate corresponds to "x <= constval" |
1089 | * and not "x < constval" is because of the way that ANALYZE |
1090 | * constructs the histogram: each entry is, effectively, the |
1091 | * rightmost value in its sample bucket. So selectivity |
1092 | * values that are exact multiples of 1/(histogram_size-1) |
1093 | * should be understood as estimates including a histogram |
1094 | * entry plus everything to its left. |
1095 | * |
1096 | * However, that breaks down for the first histogram entry, |
1097 | * which necessarily is the leftmost value in its sample |
1098 | * bucket. That means the first histogram bin is slightly |
1099 | * narrower than the rest, by an amount equal to eq_selec. |
1100 | * Another way to say that is that we want "x <= leftmost" to |
1101 | * be estimated as eq_selec not zero. So, if we're dealing |
1102 | * with the first bin (i==1), rescale to make that true while |
1103 | * adjusting the rest of that bin linearly. |
1104 | */ |
1105 | if (i == 1) |
1106 | histfrac += eq_selec * (1.0 - binfrac); |
1107 | |
1108 | /* |
1109 | * "x <= constval" is good if we want an estimate for "<=" or |
1110 | * ">", but if we are estimating for "<" or ">=", we now need |
1111 | * to decrease the estimate by eq_selec. |
1112 | */ |
1113 | if (isgt == iseq) |
1114 | histfrac -= eq_selec; |
1115 | } |
1116 | |
1117 | /* |
1118 | * Now the estimate is finished for "<" and "<=" cases. If we are |
1119 | * estimating for ">" or ">=", flip it. |
1120 | */ |
1121 | hist_selec = isgt ? (1.0 - histfrac) : histfrac; |
1122 | |
1123 | /* |
1124 | * The histogram boundaries are only approximate to begin with, |
1125 | * and may well be out of date anyway. Therefore, don't believe |
1126 | * extremely small or large selectivity estimates --- unless we |
1127 | * got actual current endpoint values from the table, in which |
1128 | * case just do the usual sanity clamp. Somewhat arbitrarily, we |
1129 | * set the cutoff for other cases at a hundredth of the histogram |
1130 | * resolution. |
1131 | */ |
1132 | if (have_end) |
1133 | CLAMP_PROBABILITY(hist_selec); |
1134 | else |
1135 | { |
1136 | double cutoff = 0.01 / (double) (sslot.nvalues - 1); |
1137 | |
1138 | if (hist_selec < cutoff) |
1139 | hist_selec = cutoff; |
1140 | else if (hist_selec > 1.0 - cutoff) |
1141 | hist_selec = 1.0 - cutoff; |
1142 | } |
1143 | } |
1144 | |
1145 | free_attstatsslot(&sslot); |
1146 | } |
1147 | |
1148 | return hist_selec; |
1149 | } |
1150 | |
1151 | /* |
1152 | * Common wrapper function for the selectivity estimators that simply |
1153 | * invoke scalarineqsel(). |
1154 | */ |
1155 | static Datum |
1156 | scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq) |
1157 | { |
1158 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
1159 | Oid operator = PG_GETARG_OID(1); |
1160 | List *args = (List *) PG_GETARG_POINTER(2); |
1161 | int varRelid = PG_GETARG_INT32(3); |
1162 | VariableStatData vardata; |
1163 | Node *other; |
1164 | bool varonleft; |
1165 | Datum constval; |
1166 | Oid consttype; |
1167 | double selec; |
1168 | |
1169 | /* |
1170 | * If expression is not variable op something or something op variable, |
1171 | * then punt and return a default estimate. |
1172 | */ |
1173 | if (!get_restriction_variable(root, args, varRelid, |
1174 | &vardata, &other, &varonleft)) |
1175 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
1176 | |
1177 | /* |
1178 | * Can't do anything useful if the something is not a constant, either. |
1179 | */ |
1180 | if (!IsA(other, Const)) |
1181 | { |
1182 | ReleaseVariableStats(vardata); |
1183 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
1184 | } |
1185 | |
1186 | /* |
1187 | * If the constant is NULL, assume operator is strict and return zero, ie, |
1188 | * operator will never return TRUE. |
1189 | */ |
1190 | if (((Const *) other)->constisnull) |
1191 | { |
1192 | ReleaseVariableStats(vardata); |
1193 | PG_RETURN_FLOAT8(0.0); |
1194 | } |
1195 | constval = ((Const *) other)->constvalue; |
1196 | consttype = ((Const *) other)->consttype; |
1197 | |
1198 | /* |
1199 | * Force the var to be on the left to simplify logic in scalarineqsel. |
1200 | */ |
1201 | if (!varonleft) |
1202 | { |
1203 | operator = get_commutator(operator); |
1204 | if (!operator) |
1205 | { |
1206 | /* Use default selectivity (should we raise an error instead?) */ |
1207 | ReleaseVariableStats(vardata); |
1208 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
1209 | } |
1210 | isgt = !isgt; |
1211 | } |
1212 | |
1213 | /* The rest of the work is done by scalarineqsel(). */ |
1214 | selec = scalarineqsel(root, operator, isgt, iseq, |
1215 | &vardata, constval, consttype); |
1216 | |
1217 | ReleaseVariableStats(vardata); |
1218 | |
1219 | PG_RETURN_FLOAT8((float8) selec); |
1220 | } |
1221 | |
1222 | /* |
1223 | * scalarltsel - Selectivity of "<" for scalars. |
1224 | */ |
1225 | Datum |
1226 | scalarltsel(PG_FUNCTION_ARGS) |
1227 | { |
1228 | return scalarineqsel_wrapper(fcinfo, false, false); |
1229 | } |
1230 | |
1231 | /* |
1232 | * scalarlesel - Selectivity of "<=" for scalars. |
1233 | */ |
1234 | Datum |
1235 | scalarlesel(PG_FUNCTION_ARGS) |
1236 | { |
1237 | return scalarineqsel_wrapper(fcinfo, false, true); |
1238 | } |
1239 | |
1240 | /* |
1241 | * scalargtsel - Selectivity of ">" for scalars. |
1242 | */ |
1243 | Datum |
1244 | scalargtsel(PG_FUNCTION_ARGS) |
1245 | { |
1246 | return scalarineqsel_wrapper(fcinfo, true, false); |
1247 | } |
1248 | |
1249 | /* |
1250 | * scalargesel - Selectivity of ">=" for scalars. |
1251 | */ |
1252 | Datum |
1253 | scalargesel(PG_FUNCTION_ARGS) |
1254 | { |
1255 | return scalarineqsel_wrapper(fcinfo, true, true); |
1256 | } |
1257 | |
1258 | /* |
1259 | * boolvarsel - Selectivity of Boolean variable. |
1260 | * |
1261 | * This can actually be called on any boolean-valued expression. If it |
1262 | * involves only Vars of the specified relation, and if there are statistics |
1263 | * about the Var or expression (the latter is possible if it's indexed) then |
1264 | * we'll produce a real estimate; otherwise it's just a default. |
1265 | */ |
1266 | Selectivity |
1267 | boolvarsel(PlannerInfo *root, Node *arg, int varRelid) |
1268 | { |
1269 | VariableStatData vardata; |
1270 | double selec; |
1271 | |
1272 | examine_variable(root, arg, varRelid, &vardata); |
1273 | if (HeapTupleIsValid(vardata.statsTuple)) |
1274 | { |
1275 | /* |
1276 | * A boolean variable V is equivalent to the clause V = 't', so we |
1277 | * compute the selectivity as if that is what we have. |
1278 | */ |
1279 | selec = var_eq_const(&vardata, BooleanEqualOperator, |
1280 | BoolGetDatum(true), false, true, false); |
1281 | } |
1282 | else |
1283 | { |
1284 | /* Otherwise, the default estimate is 0.5 */ |
1285 | selec = 0.5; |
1286 | } |
1287 | ReleaseVariableStats(vardata); |
1288 | return selec; |
1289 | } |
1290 | |
1291 | /* |
1292 | * booltestsel - Selectivity of BooleanTest Node. |
1293 | */ |
1294 | Selectivity |
1295 | booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg, |
1296 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
1297 | { |
1298 | VariableStatData vardata; |
1299 | double selec; |
1300 | |
1301 | examine_variable(root, arg, varRelid, &vardata); |
1302 | |
1303 | if (HeapTupleIsValid(vardata.statsTuple)) |
1304 | { |
1305 | Form_pg_statistic stats; |
1306 | double freq_null; |
1307 | AttStatsSlot sslot; |
1308 | |
1309 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
1310 | freq_null = stats->stanullfrac; |
1311 | |
1312 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
1313 | STATISTIC_KIND_MCV, InvalidOid, |
1314 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS) |
1315 | && sslot.nnumbers > 0) |
1316 | { |
1317 | double freq_true; |
1318 | double freq_false; |
1319 | |
1320 | /* |
1321 | * Get first MCV frequency and derive frequency for true. |
1322 | */ |
1323 | if (DatumGetBool(sslot.values[0])) |
1324 | freq_true = sslot.numbers[0]; |
1325 | else |
1326 | freq_true = 1.0 - sslot.numbers[0] - freq_null; |
1327 | |
1328 | /* |
1329 | * Next derive frequency for false. Then use these as appropriate |
1330 | * to derive frequency for each case. |
1331 | */ |
1332 | freq_false = 1.0 - freq_true - freq_null; |
1333 | |
1334 | switch (booltesttype) |
1335 | { |
1336 | case IS_UNKNOWN: |
1337 | /* select only NULL values */ |
1338 | selec = freq_null; |
1339 | break; |
1340 | case IS_NOT_UNKNOWN: |
1341 | /* select non-NULL values */ |
1342 | selec = 1.0 - freq_null; |
1343 | break; |
1344 | case IS_TRUE: |
1345 | /* select only TRUE values */ |
1346 | selec = freq_true; |
1347 | break; |
1348 | case IS_NOT_TRUE: |
1349 | /* select non-TRUE values */ |
1350 | selec = 1.0 - freq_true; |
1351 | break; |
1352 | case IS_FALSE: |
1353 | /* select only FALSE values */ |
1354 | selec = freq_false; |
1355 | break; |
1356 | case IS_NOT_FALSE: |
1357 | /* select non-FALSE values */ |
1358 | selec = 1.0 - freq_false; |
1359 | break; |
1360 | default: |
1361 | elog(ERROR, "unrecognized booltesttype: %d" , |
1362 | (int) booltesttype); |
1363 | selec = 0.0; /* Keep compiler quiet */ |
1364 | break; |
1365 | } |
1366 | |
1367 | free_attstatsslot(&sslot); |
1368 | } |
1369 | else |
1370 | { |
1371 | /* |
1372 | * No most-common-value info available. Still have null fraction |
1373 | * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust |
1374 | * for null fraction and assume a 50-50 split of TRUE and FALSE. |
1375 | */ |
1376 | switch (booltesttype) |
1377 | { |
1378 | case IS_UNKNOWN: |
1379 | /* select only NULL values */ |
1380 | selec = freq_null; |
1381 | break; |
1382 | case IS_NOT_UNKNOWN: |
1383 | /* select non-NULL values */ |
1384 | selec = 1.0 - freq_null; |
1385 | break; |
1386 | case IS_TRUE: |
1387 | case IS_FALSE: |
1388 | /* Assume we select half of the non-NULL values */ |
1389 | selec = (1.0 - freq_null) / 2.0; |
1390 | break; |
1391 | case IS_NOT_TRUE: |
1392 | case IS_NOT_FALSE: |
1393 | /* Assume we select NULLs plus half of the non-NULLs */ |
1394 | /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */ |
1395 | selec = (freq_null + 1.0) / 2.0; |
1396 | break; |
1397 | default: |
1398 | elog(ERROR, "unrecognized booltesttype: %d" , |
1399 | (int) booltesttype); |
1400 | selec = 0.0; /* Keep compiler quiet */ |
1401 | break; |
1402 | } |
1403 | } |
1404 | } |
1405 | else |
1406 | { |
1407 | /* |
1408 | * If we can't get variable statistics for the argument, perhaps |
1409 | * clause_selectivity can do something with it. We ignore the |
1410 | * possibility of a NULL value when using clause_selectivity, and just |
1411 | * assume the value is either TRUE or FALSE. |
1412 | */ |
1413 | switch (booltesttype) |
1414 | { |
1415 | case IS_UNKNOWN: |
1416 | selec = DEFAULT_UNK_SEL; |
1417 | break; |
1418 | case IS_NOT_UNKNOWN: |
1419 | selec = DEFAULT_NOT_UNK_SEL; |
1420 | break; |
1421 | case IS_TRUE: |
1422 | case IS_NOT_FALSE: |
1423 | selec = (double) clause_selectivity(root, arg, |
1424 | varRelid, |
1425 | jointype, sjinfo); |
1426 | break; |
1427 | case IS_FALSE: |
1428 | case IS_NOT_TRUE: |
1429 | selec = 1.0 - (double) clause_selectivity(root, arg, |
1430 | varRelid, |
1431 | jointype, sjinfo); |
1432 | break; |
1433 | default: |
1434 | elog(ERROR, "unrecognized booltesttype: %d" , |
1435 | (int) booltesttype); |
1436 | selec = 0.0; /* Keep compiler quiet */ |
1437 | break; |
1438 | } |
1439 | } |
1440 | |
1441 | ReleaseVariableStats(vardata); |
1442 | |
1443 | /* result should be in range, but make sure... */ |
1444 | CLAMP_PROBABILITY(selec); |
1445 | |
1446 | return (Selectivity) selec; |
1447 | } |
1448 | |
1449 | /* |
1450 | * nulltestsel - Selectivity of NullTest Node. |
1451 | */ |
1452 | Selectivity |
1453 | nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg, |
1454 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
1455 | { |
1456 | VariableStatData vardata; |
1457 | double selec; |
1458 | |
1459 | examine_variable(root, arg, varRelid, &vardata); |
1460 | |
1461 | if (HeapTupleIsValid(vardata.statsTuple)) |
1462 | { |
1463 | Form_pg_statistic stats; |
1464 | double freq_null; |
1465 | |
1466 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
1467 | freq_null = stats->stanullfrac; |
1468 | |
1469 | switch (nulltesttype) |
1470 | { |
1471 | case IS_NULL: |
1472 | |
1473 | /* |
1474 | * Use freq_null directly. |
1475 | */ |
1476 | selec = freq_null; |
1477 | break; |
1478 | case IS_NOT_NULL: |
1479 | |
1480 | /* |
1481 | * Select not unknown (not null) values. Calculate from |
1482 | * freq_null. |
1483 | */ |
1484 | selec = 1.0 - freq_null; |
1485 | break; |
1486 | default: |
1487 | elog(ERROR, "unrecognized nulltesttype: %d" , |
1488 | (int) nulltesttype); |
1489 | return (Selectivity) 0; /* keep compiler quiet */ |
1490 | } |
1491 | } |
1492 | else if (vardata.var && IsA(vardata.var, Var) && |
1493 | ((Var *) vardata.var)->varattno < 0) |
1494 | { |
1495 | /* |
1496 | * There are no stats for system columns, but we know they are never |
1497 | * NULL. |
1498 | */ |
1499 | selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0; |
1500 | } |
1501 | else |
1502 | { |
1503 | /* |
1504 | * No ANALYZE stats available, so make a guess |
1505 | */ |
1506 | switch (nulltesttype) |
1507 | { |
1508 | case IS_NULL: |
1509 | selec = DEFAULT_UNK_SEL; |
1510 | break; |
1511 | case IS_NOT_NULL: |
1512 | selec = DEFAULT_NOT_UNK_SEL; |
1513 | break; |
1514 | default: |
1515 | elog(ERROR, "unrecognized nulltesttype: %d" , |
1516 | (int) nulltesttype); |
1517 | return (Selectivity) 0; /* keep compiler quiet */ |
1518 | } |
1519 | } |
1520 | |
1521 | ReleaseVariableStats(vardata); |
1522 | |
1523 | /* result should be in range, but make sure... */ |
1524 | CLAMP_PROBABILITY(selec); |
1525 | |
1526 | return (Selectivity) selec; |
1527 | } |
1528 | |
1529 | /* |
1530 | * strip_array_coercion - strip binary-compatible relabeling from an array expr |
1531 | * |
1532 | * For array values, the parser normally generates ArrayCoerceExpr conversions, |
1533 | * but it seems possible that RelabelType might show up. Also, the planner |
1534 | * is not currently tense about collapsing stacked ArrayCoerceExpr nodes, |
1535 | * so we need to be ready to deal with more than one level. |
1536 | */ |
1537 | static Node * |
1538 | strip_array_coercion(Node *node) |
1539 | { |
1540 | for (;;) |
1541 | { |
1542 | if (node && IsA(node, ArrayCoerceExpr)) |
1543 | { |
1544 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
1545 | |
1546 | /* |
1547 | * If the per-element expression is just a RelabelType on top of |
1548 | * CaseTestExpr, then we know it's a binary-compatible relabeling. |
1549 | */ |
1550 | if (IsA(acoerce->elemexpr, RelabelType) && |
1551 | IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr)) |
1552 | node = (Node *) acoerce->arg; |
1553 | else |
1554 | break; |
1555 | } |
1556 | else if (node && IsA(node, RelabelType)) |
1557 | { |
1558 | /* We don't really expect this case, but may as well cope */ |
1559 | node = (Node *) ((RelabelType *) node)->arg; |
1560 | } |
1561 | else |
1562 | break; |
1563 | } |
1564 | return node; |
1565 | } |
1566 | |
1567 | /* |
1568 | * scalararraysel - Selectivity of ScalarArrayOpExpr Node. |
1569 | */ |
1570 | Selectivity |
1571 | scalararraysel(PlannerInfo *root, |
1572 | ScalarArrayOpExpr *clause, |
1573 | bool is_join_clause, |
1574 | int varRelid, |
1575 | JoinType jointype, |
1576 | SpecialJoinInfo *sjinfo) |
1577 | { |
1578 | Oid operator = clause->opno; |
1579 | bool useOr = clause->useOr; |
1580 | bool isEquality = false; |
1581 | bool isInequality = false; |
1582 | Node *leftop; |
1583 | Node *rightop; |
1584 | Oid nominal_element_type; |
1585 | Oid nominal_element_collation; |
1586 | TypeCacheEntry *typentry; |
1587 | RegProcedure oprsel; |
1588 | FmgrInfo oprselproc; |
1589 | Selectivity s1; |
1590 | Selectivity s1disjoint; |
1591 | |
1592 | /* First, deconstruct the expression */ |
1593 | Assert(list_length(clause->args) == 2); |
1594 | leftop = (Node *) linitial(clause->args); |
1595 | rightop = (Node *) lsecond(clause->args); |
1596 | |
1597 | /* aggressively reduce both sides to constants */ |
1598 | leftop = estimate_expression_value(root, leftop); |
1599 | rightop = estimate_expression_value(root, rightop); |
1600 | |
1601 | /* get nominal (after relabeling) element type of rightop */ |
1602 | nominal_element_type = get_base_element_type(exprType(rightop)); |
1603 | if (!OidIsValid(nominal_element_type)) |
1604 | return (Selectivity) 0.5; /* probably shouldn't happen */ |
1605 | /* get nominal collation, too, for generating constants */ |
1606 | nominal_element_collation = exprCollation(rightop); |
1607 | |
1608 | /* look through any binary-compatible relabeling of rightop */ |
1609 | rightop = strip_array_coercion(rightop); |
1610 | |
1611 | /* |
1612 | * Detect whether the operator is the default equality or inequality |
1613 | * operator of the array element type. |
1614 | */ |
1615 | typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR); |
1616 | if (OidIsValid(typentry->eq_opr)) |
1617 | { |
1618 | if (operator == typentry->eq_opr) |
1619 | isEquality = true; |
1620 | else if (get_negator(operator) == typentry->eq_opr) |
1621 | isInequality = true; |
1622 | } |
1623 | |
1624 | /* |
1625 | * If it is equality or inequality, we might be able to estimate this as a |
1626 | * form of array containment; for instance "const = ANY(column)" can be |
1627 | * treated as "ARRAY[const] <@ column". scalararraysel_containment tries |
1628 | * that, and returns the selectivity estimate if successful, or -1 if not. |
1629 | */ |
1630 | if ((isEquality || isInequality) && !is_join_clause) |
1631 | { |
1632 | s1 = scalararraysel_containment(root, leftop, rightop, |
1633 | nominal_element_type, |
1634 | isEquality, useOr, varRelid); |
1635 | if (s1 >= 0.0) |
1636 | return s1; |
1637 | } |
1638 | |
1639 | /* |
1640 | * Look up the underlying operator's selectivity estimator. Punt if it |
1641 | * hasn't got one. |
1642 | */ |
1643 | if (is_join_clause) |
1644 | oprsel = get_oprjoin(operator); |
1645 | else |
1646 | oprsel = get_oprrest(operator); |
1647 | if (!oprsel) |
1648 | return (Selectivity) 0.5; |
1649 | fmgr_info(oprsel, &oprselproc); |
1650 | |
1651 | /* |
1652 | * In the array-containment check above, we must only believe that an |
1653 | * operator is equality or inequality if it is the default btree equality |
1654 | * operator (or its negator) for the element type, since those are the |
1655 | * operators that array containment will use. But in what follows, we can |
1656 | * be a little laxer, and also believe that any operators using eqsel() or |
1657 | * neqsel() as selectivity estimator act like equality or inequality. |
1658 | */ |
1659 | if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL) |
1660 | isEquality = true; |
1661 | else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL) |
1662 | isInequality = true; |
1663 | |
1664 | /* |
1665 | * We consider three cases: |
1666 | * |
1667 | * 1. rightop is an Array constant: deconstruct the array, apply the |
1668 | * operator's selectivity function for each array element, and merge the |
1669 | * results in the same way that clausesel.c does for AND/OR combinations. |
1670 | * |
1671 | * 2. rightop is an ARRAY[] construct: apply the operator's selectivity |
1672 | * function for each element of the ARRAY[] construct, and merge. |
1673 | * |
1674 | * 3. otherwise, make a guess ... |
1675 | */ |
1676 | if (rightop && IsA(rightop, Const)) |
1677 | { |
1678 | Datum arraydatum = ((Const *) rightop)->constvalue; |
1679 | bool arrayisnull = ((Const *) rightop)->constisnull; |
1680 | ArrayType *arrayval; |
1681 | int16 elmlen; |
1682 | bool elmbyval; |
1683 | char elmalign; |
1684 | int num_elems; |
1685 | Datum *elem_values; |
1686 | bool *elem_nulls; |
1687 | int i; |
1688 | |
1689 | if (arrayisnull) /* qual can't succeed if null array */ |
1690 | return (Selectivity) 0.0; |
1691 | arrayval = DatumGetArrayTypeP(arraydatum); |
1692 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
1693 | &elmlen, &elmbyval, &elmalign); |
1694 | deconstruct_array(arrayval, |
1695 | ARR_ELEMTYPE(arrayval), |
1696 | elmlen, elmbyval, elmalign, |
1697 | &elem_values, &elem_nulls, &num_elems); |
1698 | |
1699 | /* |
1700 | * For generic operators, we assume the probability of success is |
1701 | * independent for each array element. But for "= ANY" or "<> ALL", |
1702 | * if the array elements are distinct (which'd typically be the case) |
1703 | * then the probabilities are disjoint, and we should just sum them. |
1704 | * |
1705 | * If we were being really tense we would try to confirm that the |
1706 | * elements are all distinct, but that would be expensive and it |
1707 | * doesn't seem to be worth the cycles; it would amount to penalizing |
1708 | * well-written queries in favor of poorly-written ones. However, we |
1709 | * do protect ourselves a little bit by checking whether the |
1710 | * disjointness assumption leads to an impossible (out of range) |
1711 | * probability; if so, we fall back to the normal calculation. |
1712 | */ |
1713 | s1 = s1disjoint = (useOr ? 0.0 : 1.0); |
1714 | |
1715 | for (i = 0; i < num_elems; i++) |
1716 | { |
1717 | List *args; |
1718 | Selectivity s2; |
1719 | |
1720 | args = list_make2(leftop, |
1721 | makeConst(nominal_element_type, |
1722 | -1, |
1723 | nominal_element_collation, |
1724 | elmlen, |
1725 | elem_values[i], |
1726 | elem_nulls[i], |
1727 | elmbyval)); |
1728 | if (is_join_clause) |
1729 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
1730 | clause->inputcollid, |
1731 | PointerGetDatum(root), |
1732 | ObjectIdGetDatum(operator), |
1733 | PointerGetDatum(args), |
1734 | Int16GetDatum(jointype), |
1735 | PointerGetDatum(sjinfo))); |
1736 | else |
1737 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
1738 | clause->inputcollid, |
1739 | PointerGetDatum(root), |
1740 | ObjectIdGetDatum(operator), |
1741 | PointerGetDatum(args), |
1742 | Int32GetDatum(varRelid))); |
1743 | |
1744 | if (useOr) |
1745 | { |
1746 | s1 = s1 + s2 - s1 * s2; |
1747 | if (isEquality) |
1748 | s1disjoint += s2; |
1749 | } |
1750 | else |
1751 | { |
1752 | s1 = s1 * s2; |
1753 | if (isInequality) |
1754 | s1disjoint += s2 - 1.0; |
1755 | } |
1756 | } |
1757 | |
1758 | /* accept disjoint-probability estimate if in range */ |
1759 | if ((useOr ? isEquality : isInequality) && |
1760 | s1disjoint >= 0.0 && s1disjoint <= 1.0) |
1761 | s1 = s1disjoint; |
1762 | } |
1763 | else if (rightop && IsA(rightop, ArrayExpr) && |
1764 | !((ArrayExpr *) rightop)->multidims) |
1765 | { |
1766 | ArrayExpr *arrayexpr = (ArrayExpr *) rightop; |
1767 | int16 elmlen; |
1768 | bool elmbyval; |
1769 | ListCell *l; |
1770 | |
1771 | get_typlenbyval(arrayexpr->element_typeid, |
1772 | &elmlen, &elmbyval); |
1773 | |
1774 | /* |
1775 | * We use the assumption of disjoint probabilities here too, although |
1776 | * the odds of equal array elements are rather higher if the elements |
1777 | * are not all constants (which they won't be, else constant folding |
1778 | * would have reduced the ArrayExpr to a Const). In this path it's |
1779 | * critical to have the sanity check on the s1disjoint estimate. |
1780 | */ |
1781 | s1 = s1disjoint = (useOr ? 0.0 : 1.0); |
1782 | |
1783 | foreach(l, arrayexpr->elements) |
1784 | { |
1785 | Node *elem = (Node *) lfirst(l); |
1786 | List *args; |
1787 | Selectivity s2; |
1788 | |
1789 | /* |
1790 | * Theoretically, if elem isn't of nominal_element_type we should |
1791 | * insert a RelabelType, but it seems unlikely that any operator |
1792 | * estimation function would really care ... |
1793 | */ |
1794 | args = list_make2(leftop, elem); |
1795 | if (is_join_clause) |
1796 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
1797 | clause->inputcollid, |
1798 | PointerGetDatum(root), |
1799 | ObjectIdGetDatum(operator), |
1800 | PointerGetDatum(args), |
1801 | Int16GetDatum(jointype), |
1802 | PointerGetDatum(sjinfo))); |
1803 | else |
1804 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
1805 | clause->inputcollid, |
1806 | PointerGetDatum(root), |
1807 | ObjectIdGetDatum(operator), |
1808 | PointerGetDatum(args), |
1809 | Int32GetDatum(varRelid))); |
1810 | |
1811 | if (useOr) |
1812 | { |
1813 | s1 = s1 + s2 - s1 * s2; |
1814 | if (isEquality) |
1815 | s1disjoint += s2; |
1816 | } |
1817 | else |
1818 | { |
1819 | s1 = s1 * s2; |
1820 | if (isInequality) |
1821 | s1disjoint += s2 - 1.0; |
1822 | } |
1823 | } |
1824 | |
1825 | /* accept disjoint-probability estimate if in range */ |
1826 | if ((useOr ? isEquality : isInequality) && |
1827 | s1disjoint >= 0.0 && s1disjoint <= 1.0) |
1828 | s1 = s1disjoint; |
1829 | } |
1830 | else |
1831 | { |
1832 | CaseTestExpr *dummyexpr; |
1833 | List *args; |
1834 | Selectivity s2; |
1835 | int i; |
1836 | |
1837 | /* |
1838 | * We need a dummy rightop to pass to the operator selectivity |
1839 | * routine. It can be pretty much anything that doesn't look like a |
1840 | * constant; CaseTestExpr is a convenient choice. |
1841 | */ |
1842 | dummyexpr = makeNode(CaseTestExpr); |
1843 | dummyexpr->typeId = nominal_element_type; |
1844 | dummyexpr->typeMod = -1; |
1845 | dummyexpr->collation = clause->inputcollid; |
1846 | args = list_make2(leftop, dummyexpr); |
1847 | if (is_join_clause) |
1848 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
1849 | clause->inputcollid, |
1850 | PointerGetDatum(root), |
1851 | ObjectIdGetDatum(operator), |
1852 | PointerGetDatum(args), |
1853 | Int16GetDatum(jointype), |
1854 | PointerGetDatum(sjinfo))); |
1855 | else |
1856 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
1857 | clause->inputcollid, |
1858 | PointerGetDatum(root), |
1859 | ObjectIdGetDatum(operator), |
1860 | PointerGetDatum(args), |
1861 | Int32GetDatum(varRelid))); |
1862 | s1 = useOr ? 0.0 : 1.0; |
1863 | |
1864 | /* |
1865 | * Arbitrarily assume 10 elements in the eventual array value (see |
1866 | * also estimate_array_length). We don't risk an assumption of |
1867 | * disjoint probabilities here. |
1868 | */ |
1869 | for (i = 0; i < 10; i++) |
1870 | { |
1871 | if (useOr) |
1872 | s1 = s1 + s2 - s1 * s2; |
1873 | else |
1874 | s1 = s1 * s2; |
1875 | } |
1876 | } |
1877 | |
1878 | /* result should be in range, but make sure... */ |
1879 | CLAMP_PROBABILITY(s1); |
1880 | |
1881 | return s1; |
1882 | } |
1883 | |
1884 | /* |
1885 | * Estimate number of elements in the array yielded by an expression. |
1886 | * |
1887 | * It's important that this agree with scalararraysel. |
1888 | */ |
1889 | int |
1890 | estimate_array_length(Node *arrayexpr) |
1891 | { |
1892 | /* look through any binary-compatible relabeling of arrayexpr */ |
1893 | arrayexpr = strip_array_coercion(arrayexpr); |
1894 | |
1895 | if (arrayexpr && IsA(arrayexpr, Const)) |
1896 | { |
1897 | Datum arraydatum = ((Const *) arrayexpr)->constvalue; |
1898 | bool arrayisnull = ((Const *) arrayexpr)->constisnull; |
1899 | ArrayType *arrayval; |
1900 | |
1901 | if (arrayisnull) |
1902 | return 0; |
1903 | arrayval = DatumGetArrayTypeP(arraydatum); |
1904 | return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval)); |
1905 | } |
1906 | else if (arrayexpr && IsA(arrayexpr, ArrayExpr) && |
1907 | !((ArrayExpr *) arrayexpr)->multidims) |
1908 | { |
1909 | return list_length(((ArrayExpr *) arrayexpr)->elements); |
1910 | } |
1911 | else |
1912 | { |
1913 | /* default guess --- see also scalararraysel */ |
1914 | return 10; |
1915 | } |
1916 | } |
1917 | |
1918 | /* |
1919 | * rowcomparesel - Selectivity of RowCompareExpr Node. |
1920 | * |
1921 | * We estimate RowCompare selectivity by considering just the first (high |
1922 | * order) columns, which makes it equivalent to an ordinary OpExpr. While |
1923 | * this estimate could be refined by considering additional columns, it |
1924 | * seems unlikely that we could do a lot better without multi-column |
1925 | * statistics. |
1926 | */ |
1927 | Selectivity |
1928 | rowcomparesel(PlannerInfo *root, |
1929 | RowCompareExpr *clause, |
1930 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
1931 | { |
1932 | Selectivity s1; |
1933 | Oid opno = linitial_oid(clause->opnos); |
1934 | Oid inputcollid = linitial_oid(clause->inputcollids); |
1935 | List *opargs; |
1936 | bool is_join_clause; |
1937 | |
1938 | /* Build equivalent arg list for single operator */ |
1939 | opargs = list_make2(linitial(clause->largs), linitial(clause->rargs)); |
1940 | |
1941 | /* |
1942 | * Decide if it's a join clause. This should match clausesel.c's |
1943 | * treat_as_join_clause(), except that we intentionally consider only the |
1944 | * leading columns and not the rest of the clause. |
1945 | */ |
1946 | if (varRelid != 0) |
1947 | { |
1948 | /* |
1949 | * Caller is forcing restriction mode (eg, because we are examining an |
1950 | * inner indexscan qual). |
1951 | */ |
1952 | is_join_clause = false; |
1953 | } |
1954 | else if (sjinfo == NULL) |
1955 | { |
1956 | /* |
1957 | * It must be a restriction clause, since it's being evaluated at a |
1958 | * scan node. |
1959 | */ |
1960 | is_join_clause = false; |
1961 | } |
1962 | else |
1963 | { |
1964 | /* |
1965 | * Otherwise, it's a join if there's more than one relation used. |
1966 | */ |
1967 | is_join_clause = (NumRelids((Node *) opargs) > 1); |
1968 | } |
1969 | |
1970 | if (is_join_clause) |
1971 | { |
1972 | /* Estimate selectivity for a join clause. */ |
1973 | s1 = join_selectivity(root, opno, |
1974 | opargs, |
1975 | inputcollid, |
1976 | jointype, |
1977 | sjinfo); |
1978 | } |
1979 | else |
1980 | { |
1981 | /* Estimate selectivity for a restriction clause. */ |
1982 | s1 = restriction_selectivity(root, opno, |
1983 | opargs, |
1984 | inputcollid, |
1985 | varRelid); |
1986 | } |
1987 | |
1988 | return s1; |
1989 | } |
1990 | |
1991 | /* |
1992 | * eqjoinsel - Join selectivity of "=" |
1993 | */ |
1994 | Datum |
1995 | eqjoinsel(PG_FUNCTION_ARGS) |
1996 | { |
1997 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
1998 | Oid operator = PG_GETARG_OID(1); |
1999 | List *args = (List *) PG_GETARG_POINTER(2); |
2000 | |
2001 | #ifdef NOT_USED |
2002 | JoinType jointype = (JoinType) PG_GETARG_INT16(3); |
2003 | #endif |
2004 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4); |
2005 | double selec; |
2006 | double selec_inner; |
2007 | VariableStatData vardata1; |
2008 | VariableStatData vardata2; |
2009 | double nd1; |
2010 | double nd2; |
2011 | bool isdefault1; |
2012 | bool isdefault2; |
2013 | Oid opfuncoid; |
2014 | AttStatsSlot sslot1; |
2015 | AttStatsSlot sslot2; |
2016 | Form_pg_statistic stats1 = NULL; |
2017 | Form_pg_statistic stats2 = NULL; |
2018 | bool have_mcvs1 = false; |
2019 | bool have_mcvs2 = false; |
2020 | bool join_is_reversed; |
2021 | RelOptInfo *inner_rel; |
2022 | |
2023 | get_join_variables(root, args, sjinfo, |
2024 | &vardata1, &vardata2, &join_is_reversed); |
2025 | |
2026 | nd1 = get_variable_numdistinct(&vardata1, &isdefault1); |
2027 | nd2 = get_variable_numdistinct(&vardata2, &isdefault2); |
2028 | |
2029 | opfuncoid = get_opcode(operator); |
2030 | |
2031 | memset(&sslot1, 0, sizeof(sslot1)); |
2032 | memset(&sslot2, 0, sizeof(sslot2)); |
2033 | |
2034 | if (HeapTupleIsValid(vardata1.statsTuple)) |
2035 | { |
2036 | /* note we allow use of nullfrac regardless of security check */ |
2037 | stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple); |
2038 | if (statistic_proc_security_check(&vardata1, opfuncoid)) |
2039 | have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple, |
2040 | STATISTIC_KIND_MCV, InvalidOid, |
2041 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); |
2042 | } |
2043 | |
2044 | if (HeapTupleIsValid(vardata2.statsTuple)) |
2045 | { |
2046 | /* note we allow use of nullfrac regardless of security check */ |
2047 | stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple); |
2048 | if (statistic_proc_security_check(&vardata2, opfuncoid)) |
2049 | have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple, |
2050 | STATISTIC_KIND_MCV, InvalidOid, |
2051 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); |
2052 | } |
2053 | |
2054 | /* We need to compute the inner-join selectivity in all cases */ |
2055 | selec_inner = eqjoinsel_inner(opfuncoid, |
2056 | &vardata1, &vardata2, |
2057 | nd1, nd2, |
2058 | isdefault1, isdefault2, |
2059 | &sslot1, &sslot2, |
2060 | stats1, stats2, |
2061 | have_mcvs1, have_mcvs2); |
2062 | |
2063 | switch (sjinfo->jointype) |
2064 | { |
2065 | case JOIN_INNER: |
2066 | case JOIN_LEFT: |
2067 | case JOIN_FULL: |
2068 | selec = selec_inner; |
2069 | break; |
2070 | case JOIN_SEMI: |
2071 | case JOIN_ANTI: |
2072 | |
2073 | /* |
2074 | * Look up the join's inner relation. min_righthand is sufficient |
2075 | * information because neither SEMI nor ANTI joins permit any |
2076 | * reassociation into or out of their RHS, so the righthand will |
2077 | * always be exactly that set of rels. |
2078 | */ |
2079 | inner_rel = find_join_input_rel(root, sjinfo->min_righthand); |
2080 | |
2081 | if (!join_is_reversed) |
2082 | selec = eqjoinsel_semi(opfuncoid, |
2083 | &vardata1, &vardata2, |
2084 | nd1, nd2, |
2085 | isdefault1, isdefault2, |
2086 | &sslot1, &sslot2, |
2087 | stats1, stats2, |
2088 | have_mcvs1, have_mcvs2, |
2089 | inner_rel); |
2090 | else |
2091 | { |
2092 | Oid commop = get_commutator(operator); |
2093 | Oid commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid; |
2094 | |
2095 | selec = eqjoinsel_semi(commopfuncoid, |
2096 | &vardata2, &vardata1, |
2097 | nd2, nd1, |
2098 | isdefault2, isdefault1, |
2099 | &sslot2, &sslot1, |
2100 | stats2, stats1, |
2101 | have_mcvs2, have_mcvs1, |
2102 | inner_rel); |
2103 | } |
2104 | |
2105 | /* |
2106 | * We should never estimate the output of a semijoin to be more |
2107 | * rows than we estimate for an inner join with the same input |
2108 | * rels and join condition; it's obviously impossible for that to |
2109 | * happen. The former estimate is N1 * Ssemi while the latter is |
2110 | * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner. Doing |
2111 | * this is worthwhile because of the shakier estimation rules we |
2112 | * use in eqjoinsel_semi, particularly in cases where it has to |
2113 | * punt entirely. |
2114 | */ |
2115 | selec = Min(selec, inner_rel->rows * selec_inner); |
2116 | break; |
2117 | default: |
2118 | /* other values not expected here */ |
2119 | elog(ERROR, "unrecognized join type: %d" , |
2120 | (int) sjinfo->jointype); |
2121 | selec = 0; /* keep compiler quiet */ |
2122 | break; |
2123 | } |
2124 | |
2125 | free_attstatsslot(&sslot1); |
2126 | free_attstatsslot(&sslot2); |
2127 | |
2128 | ReleaseVariableStats(vardata1); |
2129 | ReleaseVariableStats(vardata2); |
2130 | |
2131 | CLAMP_PROBABILITY(selec); |
2132 | |
2133 | PG_RETURN_FLOAT8((float8) selec); |
2134 | } |
2135 | |
2136 | /* |
2137 | * eqjoinsel_inner --- eqjoinsel for normal inner join |
2138 | * |
2139 | * We also use this for LEFT/FULL outer joins; it's not presently clear |
2140 | * that it's worth trying to distinguish them here. |
2141 | */ |
2142 | static double |
2143 | eqjoinsel_inner(Oid opfuncoid, |
2144 | VariableStatData *vardata1, VariableStatData *vardata2, |
2145 | double nd1, double nd2, |
2146 | bool isdefault1, bool isdefault2, |
2147 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
2148 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
2149 | bool have_mcvs1, bool have_mcvs2) |
2150 | { |
2151 | double selec; |
2152 | |
2153 | if (have_mcvs1 && have_mcvs2) |
2154 | { |
2155 | /* |
2156 | * We have most-common-value lists for both relations. Run through |
2157 | * the lists to see which MCVs actually join to each other with the |
2158 | * given operator. This allows us to determine the exact join |
2159 | * selectivity for the portion of the relations represented by the MCV |
2160 | * lists. We still have to estimate for the remaining population, but |
2161 | * in a skewed distribution this gives us a big leg up in accuracy. |
2162 | * For motivation see the analysis in Y. Ioannidis and S. |
2163 | * Christodoulakis, "On the propagation of errors in the size of join |
2164 | * results", Technical Report 1018, Computer Science Dept., University |
2165 | * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu). |
2166 | */ |
2167 | FmgrInfo eqproc; |
2168 | bool *hasmatch1; |
2169 | bool *hasmatch2; |
2170 | double nullfrac1 = stats1->stanullfrac; |
2171 | double nullfrac2 = stats2->stanullfrac; |
2172 | double matchprodfreq, |
2173 | matchfreq1, |
2174 | matchfreq2, |
2175 | unmatchfreq1, |
2176 | unmatchfreq2, |
2177 | otherfreq1, |
2178 | otherfreq2, |
2179 | totalsel1, |
2180 | totalsel2; |
2181 | int i, |
2182 | nmatches; |
2183 | |
2184 | fmgr_info(opfuncoid, &eqproc); |
2185 | hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool)); |
2186 | hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool)); |
2187 | |
2188 | /* |
2189 | * Note we assume that each MCV will match at most one member of the |
2190 | * other MCV list. If the operator isn't really equality, there could |
2191 | * be multiple matches --- but we don't look for them, both for speed |
2192 | * and because the math wouldn't add up... |
2193 | */ |
2194 | matchprodfreq = 0.0; |
2195 | nmatches = 0; |
2196 | for (i = 0; i < sslot1->nvalues; i++) |
2197 | { |
2198 | int j; |
2199 | |
2200 | for (j = 0; j < sslot2->nvalues; j++) |
2201 | { |
2202 | if (hasmatch2[j]) |
2203 | continue; |
2204 | if (DatumGetBool(FunctionCall2Coll(&eqproc, |
2205 | sslot1->stacoll, |
2206 | sslot1->values[i], |
2207 | sslot2->values[j]))) |
2208 | { |
2209 | hasmatch1[i] = hasmatch2[j] = true; |
2210 | matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j]; |
2211 | nmatches++; |
2212 | break; |
2213 | } |
2214 | } |
2215 | } |
2216 | CLAMP_PROBABILITY(matchprodfreq); |
2217 | /* Sum up frequencies of matched and unmatched MCVs */ |
2218 | matchfreq1 = unmatchfreq1 = 0.0; |
2219 | for (i = 0; i < sslot1->nvalues; i++) |
2220 | { |
2221 | if (hasmatch1[i]) |
2222 | matchfreq1 += sslot1->numbers[i]; |
2223 | else |
2224 | unmatchfreq1 += sslot1->numbers[i]; |
2225 | } |
2226 | CLAMP_PROBABILITY(matchfreq1); |
2227 | CLAMP_PROBABILITY(unmatchfreq1); |
2228 | matchfreq2 = unmatchfreq2 = 0.0; |
2229 | for (i = 0; i < sslot2->nvalues; i++) |
2230 | { |
2231 | if (hasmatch2[i]) |
2232 | matchfreq2 += sslot2->numbers[i]; |
2233 | else |
2234 | unmatchfreq2 += sslot2->numbers[i]; |
2235 | } |
2236 | CLAMP_PROBABILITY(matchfreq2); |
2237 | CLAMP_PROBABILITY(unmatchfreq2); |
2238 | pfree(hasmatch1); |
2239 | pfree(hasmatch2); |
2240 | |
2241 | /* |
2242 | * Compute total frequency of non-null values that are not in the MCV |
2243 | * lists. |
2244 | */ |
2245 | otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1; |
2246 | otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2; |
2247 | CLAMP_PROBABILITY(otherfreq1); |
2248 | CLAMP_PROBABILITY(otherfreq2); |
2249 | |
2250 | /* |
2251 | * We can estimate the total selectivity from the point of view of |
2252 | * relation 1 as: the known selectivity for matched MCVs, plus |
2253 | * unmatched MCVs that are assumed to match against random members of |
2254 | * relation 2's non-MCV population, plus non-MCV values that are |
2255 | * assumed to match against random members of relation 2's unmatched |
2256 | * MCVs plus non-MCV values. |
2257 | */ |
2258 | totalsel1 = matchprodfreq; |
2259 | if (nd2 > sslot2->nvalues) |
2260 | totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues); |
2261 | if (nd2 > nmatches) |
2262 | totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) / |
2263 | (nd2 - nmatches); |
2264 | /* Same estimate from the point of view of relation 2. */ |
2265 | totalsel2 = matchprodfreq; |
2266 | if (nd1 > sslot1->nvalues) |
2267 | totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues); |
2268 | if (nd1 > nmatches) |
2269 | totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) / |
2270 | (nd1 - nmatches); |
2271 | |
2272 | /* |
2273 | * Use the smaller of the two estimates. This can be justified in |
2274 | * essentially the same terms as given below for the no-stats case: to |
2275 | * a first approximation, we are estimating from the point of view of |
2276 | * the relation with smaller nd. |
2277 | */ |
2278 | selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2; |
2279 | } |
2280 | else |
2281 | { |
2282 | /* |
2283 | * We do not have MCV lists for both sides. Estimate the join |
2284 | * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This |
2285 | * is plausible if we assume that the join operator is strict and the |
2286 | * non-null values are about equally distributed: a given non-null |
2287 | * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows |
2288 | * of rel2, so total join rows are at most |
2289 | * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of |
2290 | * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it |
2291 | * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression |
2292 | * with MIN() is an upper bound. Using the MIN() means we estimate |
2293 | * from the point of view of the relation with smaller nd (since the |
2294 | * larger nd is determining the MIN). It is reasonable to assume that |
2295 | * most tuples in this rel will have join partners, so the bound is |
2296 | * probably reasonably tight and should be taken as-is. |
2297 | * |
2298 | * XXX Can we be smarter if we have an MCV list for just one side? It |
2299 | * seems that if we assume equal distribution for the other side, we |
2300 | * end up with the same answer anyway. |
2301 | */ |
2302 | double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0; |
2303 | double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0; |
2304 | |
2305 | selec = (1.0 - nullfrac1) * (1.0 - nullfrac2); |
2306 | if (nd1 > nd2) |
2307 | selec /= nd1; |
2308 | else |
2309 | selec /= nd2; |
2310 | } |
2311 | |
2312 | return selec; |
2313 | } |
2314 | |
2315 | /* |
2316 | * eqjoinsel_semi --- eqjoinsel for semi join |
2317 | * |
2318 | * (Also used for anti join, which we are supposed to estimate the same way.) |
2319 | * Caller has ensured that vardata1 is the LHS variable. |
2320 | * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid. |
2321 | */ |
2322 | static double |
2323 | eqjoinsel_semi(Oid opfuncoid, |
2324 | VariableStatData *vardata1, VariableStatData *vardata2, |
2325 | double nd1, double nd2, |
2326 | bool isdefault1, bool isdefault2, |
2327 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
2328 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
2329 | bool have_mcvs1, bool have_mcvs2, |
2330 | RelOptInfo *inner_rel) |
2331 | { |
2332 | double selec; |
2333 | |
2334 | /* |
2335 | * We clamp nd2 to be not more than what we estimate the inner relation's |
2336 | * size to be. This is intuitively somewhat reasonable since obviously |
2337 | * there can't be more than that many distinct values coming from the |
2338 | * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1 |
2339 | * likewise) is that this is the only pathway by which restriction clauses |
2340 | * applied to the inner rel will affect the join result size estimate, |
2341 | * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by |
2342 | * only the outer rel's size. If we clamped nd1 we'd be double-counting |
2343 | * the selectivity of outer-rel restrictions. |
2344 | * |
2345 | * We can apply this clamping both with respect to the base relation from |
2346 | * which the join variable comes (if there is just one), and to the |
2347 | * immediate inner input relation of the current join. |
2348 | * |
2349 | * If we clamp, we can treat nd2 as being a non-default estimate; it's not |
2350 | * great, maybe, but it didn't come out of nowhere either. This is most |
2351 | * helpful when the inner relation is empty and consequently has no stats. |
2352 | */ |
2353 | if (vardata2->rel) |
2354 | { |
2355 | if (nd2 >= vardata2->rel->rows) |
2356 | { |
2357 | nd2 = vardata2->rel->rows; |
2358 | isdefault2 = false; |
2359 | } |
2360 | } |
2361 | if (nd2 >= inner_rel->rows) |
2362 | { |
2363 | nd2 = inner_rel->rows; |
2364 | isdefault2 = false; |
2365 | } |
2366 | |
2367 | if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid)) |
2368 | { |
2369 | /* |
2370 | * We have most-common-value lists for both relations. Run through |
2371 | * the lists to see which MCVs actually join to each other with the |
2372 | * given operator. This allows us to determine the exact join |
2373 | * selectivity for the portion of the relations represented by the MCV |
2374 | * lists. We still have to estimate for the remaining population, but |
2375 | * in a skewed distribution this gives us a big leg up in accuracy. |
2376 | */ |
2377 | FmgrInfo eqproc; |
2378 | bool *hasmatch1; |
2379 | bool *hasmatch2; |
2380 | double nullfrac1 = stats1->stanullfrac; |
2381 | double matchfreq1, |
2382 | uncertainfrac, |
2383 | uncertain; |
2384 | int i, |
2385 | nmatches, |
2386 | clamped_nvalues2; |
2387 | |
2388 | /* |
2389 | * The clamping above could have resulted in nd2 being less than |
2390 | * sslot2->nvalues; in which case, we assume that precisely the nd2 |
2391 | * most common values in the relation will appear in the join input, |
2392 | * and so compare to only the first nd2 members of the MCV list. Of |
2393 | * course this is frequently wrong, but it's the best bet we can make. |
2394 | */ |
2395 | clamped_nvalues2 = Min(sslot2->nvalues, nd2); |
2396 | |
2397 | fmgr_info(opfuncoid, &eqproc); |
2398 | hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool)); |
2399 | hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool)); |
2400 | |
2401 | /* |
2402 | * Note we assume that each MCV will match at most one member of the |
2403 | * other MCV list. If the operator isn't really equality, there could |
2404 | * be multiple matches --- but we don't look for them, both for speed |
2405 | * and because the math wouldn't add up... |
2406 | */ |
2407 | nmatches = 0; |
2408 | for (i = 0; i < sslot1->nvalues; i++) |
2409 | { |
2410 | int j; |
2411 | |
2412 | for (j = 0; j < clamped_nvalues2; j++) |
2413 | { |
2414 | if (hasmatch2[j]) |
2415 | continue; |
2416 | if (DatumGetBool(FunctionCall2Coll(&eqproc, |
2417 | sslot1->stacoll, |
2418 | sslot1->values[i], |
2419 | sslot2->values[j]))) |
2420 | { |
2421 | hasmatch1[i] = hasmatch2[j] = true; |
2422 | nmatches++; |
2423 | break; |
2424 | } |
2425 | } |
2426 | } |
2427 | /* Sum up frequencies of matched MCVs */ |
2428 | matchfreq1 = 0.0; |
2429 | for (i = 0; i < sslot1->nvalues; i++) |
2430 | { |
2431 | if (hasmatch1[i]) |
2432 | matchfreq1 += sslot1->numbers[i]; |
2433 | } |
2434 | CLAMP_PROBABILITY(matchfreq1); |
2435 | pfree(hasmatch1); |
2436 | pfree(hasmatch2); |
2437 | |
2438 | /* |
2439 | * Now we need to estimate the fraction of relation 1 that has at |
2440 | * least one join partner. We know for certain that the matched MCVs |
2441 | * do, so that gives us a lower bound, but we're really in the dark |
2442 | * about everything else. Our crude approach is: if nd1 <= nd2 then |
2443 | * assume all non-null rel1 rows have join partners, else assume for |
2444 | * the uncertain rows that a fraction nd2/nd1 have join partners. We |
2445 | * can discount the known-matched MCVs from the distinct-values counts |
2446 | * before doing the division. |
2447 | * |
2448 | * Crude as the above is, it's completely useless if we don't have |
2449 | * reliable ndistinct values for both sides. Hence, if either nd1 or |
2450 | * nd2 is default, punt and assume half of the uncertain rows have |
2451 | * join partners. |
2452 | */ |
2453 | if (!isdefault1 && !isdefault2) |
2454 | { |
2455 | nd1 -= nmatches; |
2456 | nd2 -= nmatches; |
2457 | if (nd1 <= nd2 || nd2 < 0) |
2458 | uncertainfrac = 1.0; |
2459 | else |
2460 | uncertainfrac = nd2 / nd1; |
2461 | } |
2462 | else |
2463 | uncertainfrac = 0.5; |
2464 | uncertain = 1.0 - matchfreq1 - nullfrac1; |
2465 | CLAMP_PROBABILITY(uncertain); |
2466 | selec = matchfreq1 + uncertainfrac * uncertain; |
2467 | } |
2468 | else |
2469 | { |
2470 | /* |
2471 | * Without MCV lists for both sides, we can only use the heuristic |
2472 | * about nd1 vs nd2. |
2473 | */ |
2474 | double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0; |
2475 | |
2476 | if (!isdefault1 && !isdefault2) |
2477 | { |
2478 | if (nd1 <= nd2 || nd2 < 0) |
2479 | selec = 1.0 - nullfrac1; |
2480 | else |
2481 | selec = (nd2 / nd1) * (1.0 - nullfrac1); |
2482 | } |
2483 | else |
2484 | selec = 0.5 * (1.0 - nullfrac1); |
2485 | } |
2486 | |
2487 | return selec; |
2488 | } |
2489 | |
2490 | /* |
2491 | * neqjoinsel - Join selectivity of "!=" |
2492 | */ |
2493 | Datum |
2494 | neqjoinsel(PG_FUNCTION_ARGS) |
2495 | { |
2496 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
2497 | Oid operator = PG_GETARG_OID(1); |
2498 | List *args = (List *) PG_GETARG_POINTER(2); |
2499 | JoinType jointype = (JoinType) PG_GETARG_INT16(3); |
2500 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4); |
2501 | float8 result; |
2502 | |
2503 | if (jointype == JOIN_SEMI || jointype == JOIN_ANTI) |
2504 | { |
2505 | /* |
2506 | * For semi-joins, if there is more than one distinct value in the RHS |
2507 | * relation then every non-null LHS row must find a row to join since |
2508 | * it can only be equal to one of them. We'll assume that there is |
2509 | * always more than one distinct RHS value for the sake of stability, |
2510 | * though in theory we could have special cases for empty RHS |
2511 | * (selectivity = 0) and single-distinct-value RHS (selectivity = |
2512 | * fraction of LHS that has the same value as the single RHS value). |
2513 | * |
2514 | * For anti-joins, if we use the same assumption that there is more |
2515 | * than one distinct key in the RHS relation, then every non-null LHS |
2516 | * row must be suppressed by the anti-join. |
2517 | * |
2518 | * So either way, the selectivity estimate should be 1 - nullfrac. |
2519 | */ |
2520 | VariableStatData leftvar; |
2521 | VariableStatData rightvar; |
2522 | bool reversed; |
2523 | HeapTuple statsTuple; |
2524 | double nullfrac; |
2525 | |
2526 | get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed); |
2527 | statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple; |
2528 | if (HeapTupleIsValid(statsTuple)) |
2529 | nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac; |
2530 | else |
2531 | nullfrac = 0.0; |
2532 | ReleaseVariableStats(leftvar); |
2533 | ReleaseVariableStats(rightvar); |
2534 | |
2535 | result = 1.0 - nullfrac; |
2536 | } |
2537 | else |
2538 | { |
2539 | /* |
2540 | * We want 1 - eqjoinsel() where the equality operator is the one |
2541 | * associated with this != operator, that is, its negator. |
2542 | */ |
2543 | Oid eqop = get_negator(operator); |
2544 | |
2545 | if (eqop) |
2546 | { |
2547 | result = DatumGetFloat8(DirectFunctionCall5(eqjoinsel, |
2548 | PointerGetDatum(root), |
2549 | ObjectIdGetDatum(eqop), |
2550 | PointerGetDatum(args), |
2551 | Int16GetDatum(jointype), |
2552 | PointerGetDatum(sjinfo))); |
2553 | } |
2554 | else |
2555 | { |
2556 | /* Use default selectivity (should we raise an error instead?) */ |
2557 | result = DEFAULT_EQ_SEL; |
2558 | } |
2559 | result = 1.0 - result; |
2560 | } |
2561 | |
2562 | PG_RETURN_FLOAT8(result); |
2563 | } |
2564 | |
2565 | /* |
2566 | * scalarltjoinsel - Join selectivity of "<" for scalars |
2567 | */ |
2568 | Datum |
2569 | scalarltjoinsel(PG_FUNCTION_ARGS) |
2570 | { |
2571 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
2572 | } |
2573 | |
2574 | /* |
2575 | * scalarlejoinsel - Join selectivity of "<=" for scalars |
2576 | */ |
2577 | Datum |
2578 | scalarlejoinsel(PG_FUNCTION_ARGS) |
2579 | { |
2580 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
2581 | } |
2582 | |
2583 | /* |
2584 | * scalargtjoinsel - Join selectivity of ">" for scalars |
2585 | */ |
2586 | Datum |
2587 | scalargtjoinsel(PG_FUNCTION_ARGS) |
2588 | { |
2589 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
2590 | } |
2591 | |
2592 | /* |
2593 | * scalargejoinsel - Join selectivity of ">=" for scalars |
2594 | */ |
2595 | Datum |
2596 | scalargejoinsel(PG_FUNCTION_ARGS) |
2597 | { |
2598 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
2599 | } |
2600 | |
2601 | |
2602 | /* |
2603 | * mergejoinscansel - Scan selectivity of merge join. |
2604 | * |
2605 | * A merge join will stop as soon as it exhausts either input stream. |
2606 | * Therefore, if we can estimate the ranges of both input variables, |
2607 | * we can estimate how much of the input will actually be read. This |
2608 | * can have a considerable impact on the cost when using indexscans. |
2609 | * |
2610 | * Also, we can estimate how much of each input has to be read before the |
2611 | * first join pair is found, which will affect the join's startup time. |
2612 | * |
2613 | * clause should be a clause already known to be mergejoinable. opfamily, |
2614 | * strategy, and nulls_first specify the sort ordering being used. |
2615 | * |
2616 | * The outputs are: |
2617 | * *leftstart is set to the fraction of the left-hand variable expected |
2618 | * to be scanned before the first join pair is found (0 to 1). |
2619 | * *leftend is set to the fraction of the left-hand variable expected |
2620 | * to be scanned before the join terminates (0 to 1). |
2621 | * *rightstart, *rightend similarly for the right-hand variable. |
2622 | */ |
2623 | void |
2624 | mergejoinscansel(PlannerInfo *root, Node *clause, |
2625 | Oid opfamily, int strategy, bool nulls_first, |
2626 | Selectivity *leftstart, Selectivity *leftend, |
2627 | Selectivity *rightstart, Selectivity *rightend) |
2628 | { |
2629 | Node *left, |
2630 | *right; |
2631 | VariableStatData leftvar, |
2632 | rightvar; |
2633 | int op_strategy; |
2634 | Oid op_lefttype; |
2635 | Oid op_righttype; |
2636 | Oid opno, |
2637 | lsortop, |
2638 | rsortop, |
2639 | lstatop, |
2640 | rstatop, |
2641 | ltop, |
2642 | leop, |
2643 | revltop, |
2644 | revleop; |
2645 | bool isgt; |
2646 | Datum leftmin, |
2647 | leftmax, |
2648 | rightmin, |
2649 | rightmax; |
2650 | double selec; |
2651 | |
2652 | /* Set default results if we can't figure anything out. */ |
2653 | /* XXX should default "start" fraction be a bit more than 0? */ |
2654 | *leftstart = *rightstart = 0.0; |
2655 | *leftend = *rightend = 1.0; |
2656 | |
2657 | /* Deconstruct the merge clause */ |
2658 | if (!is_opclause(clause)) |
2659 | return; /* shouldn't happen */ |
2660 | opno = ((OpExpr *) clause)->opno; |
2661 | left = get_leftop((Expr *) clause); |
2662 | right = get_rightop((Expr *) clause); |
2663 | if (!right) |
2664 | return; /* shouldn't happen */ |
2665 | |
2666 | /* Look for stats for the inputs */ |
2667 | examine_variable(root, left, 0, &leftvar); |
2668 | examine_variable(root, right, 0, &rightvar); |
2669 | |
2670 | /* Extract the operator's declared left/right datatypes */ |
2671 | get_op_opfamily_properties(opno, opfamily, false, |
2672 | &op_strategy, |
2673 | &op_lefttype, |
2674 | &op_righttype); |
2675 | Assert(op_strategy == BTEqualStrategyNumber); |
2676 | |
2677 | /* |
2678 | * Look up the various operators we need. If we don't find them all, it |
2679 | * probably means the opfamily is broken, but we just fail silently. |
2680 | * |
2681 | * Note: we expect that pg_statistic histograms will be sorted by the '<' |
2682 | * operator, regardless of which sort direction we are considering. |
2683 | */ |
2684 | switch (strategy) |
2685 | { |
2686 | case BTLessStrategyNumber: |
2687 | isgt = false; |
2688 | if (op_lefttype == op_righttype) |
2689 | { |
2690 | /* easy case */ |
2691 | ltop = get_opfamily_member(opfamily, |
2692 | op_lefttype, op_righttype, |
2693 | BTLessStrategyNumber); |
2694 | leop = get_opfamily_member(opfamily, |
2695 | op_lefttype, op_righttype, |
2696 | BTLessEqualStrategyNumber); |
2697 | lsortop = ltop; |
2698 | rsortop = ltop; |
2699 | lstatop = lsortop; |
2700 | rstatop = rsortop; |
2701 | revltop = ltop; |
2702 | revleop = leop; |
2703 | } |
2704 | else |
2705 | { |
2706 | ltop = get_opfamily_member(opfamily, |
2707 | op_lefttype, op_righttype, |
2708 | BTLessStrategyNumber); |
2709 | leop = get_opfamily_member(opfamily, |
2710 | op_lefttype, op_righttype, |
2711 | BTLessEqualStrategyNumber); |
2712 | lsortop = get_opfamily_member(opfamily, |
2713 | op_lefttype, op_lefttype, |
2714 | BTLessStrategyNumber); |
2715 | rsortop = get_opfamily_member(opfamily, |
2716 | op_righttype, op_righttype, |
2717 | BTLessStrategyNumber); |
2718 | lstatop = lsortop; |
2719 | rstatop = rsortop; |
2720 | revltop = get_opfamily_member(opfamily, |
2721 | op_righttype, op_lefttype, |
2722 | BTLessStrategyNumber); |
2723 | revleop = get_opfamily_member(opfamily, |
2724 | op_righttype, op_lefttype, |
2725 | BTLessEqualStrategyNumber); |
2726 | } |
2727 | break; |
2728 | case BTGreaterStrategyNumber: |
2729 | /* descending-order case */ |
2730 | isgt = true; |
2731 | if (op_lefttype == op_righttype) |
2732 | { |
2733 | /* easy case */ |
2734 | ltop = get_opfamily_member(opfamily, |
2735 | op_lefttype, op_righttype, |
2736 | BTGreaterStrategyNumber); |
2737 | leop = get_opfamily_member(opfamily, |
2738 | op_lefttype, op_righttype, |
2739 | BTGreaterEqualStrategyNumber); |
2740 | lsortop = ltop; |
2741 | rsortop = ltop; |
2742 | lstatop = get_opfamily_member(opfamily, |
2743 | op_lefttype, op_lefttype, |
2744 | BTLessStrategyNumber); |
2745 | rstatop = lstatop; |
2746 | revltop = ltop; |
2747 | revleop = leop; |
2748 | } |
2749 | else |
2750 | { |
2751 | ltop = get_opfamily_member(opfamily, |
2752 | op_lefttype, op_righttype, |
2753 | BTGreaterStrategyNumber); |
2754 | leop = get_opfamily_member(opfamily, |
2755 | op_lefttype, op_righttype, |
2756 | BTGreaterEqualStrategyNumber); |
2757 | lsortop = get_opfamily_member(opfamily, |
2758 | op_lefttype, op_lefttype, |
2759 | BTGreaterStrategyNumber); |
2760 | rsortop = get_opfamily_member(opfamily, |
2761 | op_righttype, op_righttype, |
2762 | BTGreaterStrategyNumber); |
2763 | lstatop = get_opfamily_member(opfamily, |
2764 | op_lefttype, op_lefttype, |
2765 | BTLessStrategyNumber); |
2766 | rstatop = get_opfamily_member(opfamily, |
2767 | op_righttype, op_righttype, |
2768 | BTLessStrategyNumber); |
2769 | revltop = get_opfamily_member(opfamily, |
2770 | op_righttype, op_lefttype, |
2771 | BTGreaterStrategyNumber); |
2772 | revleop = get_opfamily_member(opfamily, |
2773 | op_righttype, op_lefttype, |
2774 | BTGreaterEqualStrategyNumber); |
2775 | } |
2776 | break; |
2777 | default: |
2778 | goto fail; /* shouldn't get here */ |
2779 | } |
2780 | |
2781 | if (!OidIsValid(lsortop) || |
2782 | !OidIsValid(rsortop) || |
2783 | !OidIsValid(lstatop) || |
2784 | !OidIsValid(rstatop) || |
2785 | !OidIsValid(ltop) || |
2786 | !OidIsValid(leop) || |
2787 | !OidIsValid(revltop) || |
2788 | !OidIsValid(revleop)) |
2789 | goto fail; /* insufficient info in catalogs */ |
2790 | |
2791 | /* Try to get ranges of both inputs */ |
2792 | if (!isgt) |
2793 | { |
2794 | if (!get_variable_range(root, &leftvar, lstatop, |
2795 | &leftmin, &leftmax)) |
2796 | goto fail; /* no range available from stats */ |
2797 | if (!get_variable_range(root, &rightvar, rstatop, |
2798 | &rightmin, &rightmax)) |
2799 | goto fail; /* no range available from stats */ |
2800 | } |
2801 | else |
2802 | { |
2803 | /* need to swap the max and min */ |
2804 | if (!get_variable_range(root, &leftvar, lstatop, |
2805 | &leftmax, &leftmin)) |
2806 | goto fail; /* no range available from stats */ |
2807 | if (!get_variable_range(root, &rightvar, rstatop, |
2808 | &rightmax, &rightmin)) |
2809 | goto fail; /* no range available from stats */ |
2810 | } |
2811 | |
2812 | /* |
2813 | * Now, the fraction of the left variable that will be scanned is the |
2814 | * fraction that's <= the right-side maximum value. But only believe |
2815 | * non-default estimates, else stick with our 1.0. |
2816 | */ |
2817 | selec = scalarineqsel(root, leop, isgt, true, &leftvar, |
2818 | rightmax, op_righttype); |
2819 | if (selec != DEFAULT_INEQ_SEL) |
2820 | *leftend = selec; |
2821 | |
2822 | /* And similarly for the right variable. */ |
2823 | selec = scalarineqsel(root, revleop, isgt, true, &rightvar, |
2824 | leftmax, op_lefttype); |
2825 | if (selec != DEFAULT_INEQ_SEL) |
2826 | *rightend = selec; |
2827 | |
2828 | /* |
2829 | * Only one of the two "end" fractions can really be less than 1.0; |
2830 | * believe the smaller estimate and reset the other one to exactly 1.0. If |
2831 | * we get exactly equal estimates (as can easily happen with self-joins), |
2832 | * believe neither. |
2833 | */ |
2834 | if (*leftend > *rightend) |
2835 | *leftend = 1.0; |
2836 | else if (*leftend < *rightend) |
2837 | *rightend = 1.0; |
2838 | else |
2839 | *leftend = *rightend = 1.0; |
2840 | |
2841 | /* |
2842 | * Also, the fraction of the left variable that will be scanned before the |
2843 | * first join pair is found is the fraction that's < the right-side |
2844 | * minimum value. But only believe non-default estimates, else stick with |
2845 | * our own default. |
2846 | */ |
2847 | selec = scalarineqsel(root, ltop, isgt, false, &leftvar, |
2848 | rightmin, op_righttype); |
2849 | if (selec != DEFAULT_INEQ_SEL) |
2850 | *leftstart = selec; |
2851 | |
2852 | /* And similarly for the right variable. */ |
2853 | selec = scalarineqsel(root, revltop, isgt, false, &rightvar, |
2854 | leftmin, op_lefttype); |
2855 | if (selec != DEFAULT_INEQ_SEL) |
2856 | *rightstart = selec; |
2857 | |
2858 | /* |
2859 | * Only one of the two "start" fractions can really be more than zero; |
2860 | * believe the larger estimate and reset the other one to exactly 0.0. If |
2861 | * we get exactly equal estimates (as can easily happen with self-joins), |
2862 | * believe neither. |
2863 | */ |
2864 | if (*leftstart < *rightstart) |
2865 | *leftstart = 0.0; |
2866 | else if (*leftstart > *rightstart) |
2867 | *rightstart = 0.0; |
2868 | else |
2869 | *leftstart = *rightstart = 0.0; |
2870 | |
2871 | /* |
2872 | * If the sort order is nulls-first, we're going to have to skip over any |
2873 | * nulls too. These would not have been counted by scalarineqsel, and we |
2874 | * can safely add in this fraction regardless of whether we believe |
2875 | * scalarineqsel's results or not. But be sure to clamp the sum to 1.0! |
2876 | */ |
2877 | if (nulls_first) |
2878 | { |
2879 | Form_pg_statistic stats; |
2880 | |
2881 | if (HeapTupleIsValid(leftvar.statsTuple)) |
2882 | { |
2883 | stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple); |
2884 | *leftstart += stats->stanullfrac; |
2885 | CLAMP_PROBABILITY(*leftstart); |
2886 | *leftend += stats->stanullfrac; |
2887 | CLAMP_PROBABILITY(*leftend); |
2888 | } |
2889 | if (HeapTupleIsValid(rightvar.statsTuple)) |
2890 | { |
2891 | stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple); |
2892 | *rightstart += stats->stanullfrac; |
2893 | CLAMP_PROBABILITY(*rightstart); |
2894 | *rightend += stats->stanullfrac; |
2895 | CLAMP_PROBABILITY(*rightend); |
2896 | } |
2897 | } |
2898 | |
2899 | /* Disbelieve start >= end, just in case that can happen */ |
2900 | if (*leftstart >= *leftend) |
2901 | { |
2902 | *leftstart = 0.0; |
2903 | *leftend = 1.0; |
2904 | } |
2905 | if (*rightstart >= *rightend) |
2906 | { |
2907 | *rightstart = 0.0; |
2908 | *rightend = 1.0; |
2909 | } |
2910 | |
2911 | fail: |
2912 | ReleaseVariableStats(leftvar); |
2913 | ReleaseVariableStats(rightvar); |
2914 | } |
2915 | |
2916 | |
2917 | /* |
2918 | * Helper routine for estimate_num_groups: add an item to a list of |
2919 | * GroupVarInfos, but only if it's not known equal to any of the existing |
2920 | * entries. |
2921 | */ |
2922 | typedef struct |
2923 | { |
2924 | Node *var; /* might be an expression, not just a Var */ |
2925 | RelOptInfo *rel; /* relation it belongs to */ |
2926 | double ndistinct; /* # distinct values */ |
2927 | } GroupVarInfo; |
2928 | |
2929 | static List * |
2930 | add_unique_group_var(PlannerInfo *root, List *varinfos, |
2931 | Node *var, VariableStatData *vardata) |
2932 | { |
2933 | GroupVarInfo *varinfo; |
2934 | double ndistinct; |
2935 | bool isdefault; |
2936 | ListCell *lc; |
2937 | |
2938 | ndistinct = get_variable_numdistinct(vardata, &isdefault); |
2939 | |
2940 | /* cannot use foreach here because of possible list_delete */ |
2941 | lc = list_head(varinfos); |
2942 | while (lc) |
2943 | { |
2944 | varinfo = (GroupVarInfo *) lfirst(lc); |
2945 | |
2946 | /* must advance lc before list_delete possibly pfree's it */ |
2947 | lc = lnext(lc); |
2948 | |
2949 | /* Drop exact duplicates */ |
2950 | if (equal(var, varinfo->var)) |
2951 | return varinfos; |
2952 | |
2953 | /* |
2954 | * Drop known-equal vars, but only if they belong to different |
2955 | * relations (see comments for estimate_num_groups) |
2956 | */ |
2957 | if (vardata->rel != varinfo->rel && |
2958 | exprs_known_equal(root, var, varinfo->var)) |
2959 | { |
2960 | if (varinfo->ndistinct <= ndistinct) |
2961 | { |
2962 | /* Keep older item, forget new one */ |
2963 | return varinfos; |
2964 | } |
2965 | else |
2966 | { |
2967 | /* Delete the older item */ |
2968 | varinfos = list_delete_ptr(varinfos, varinfo); |
2969 | } |
2970 | } |
2971 | } |
2972 | |
2973 | varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo)); |
2974 | |
2975 | varinfo->var = var; |
2976 | varinfo->rel = vardata->rel; |
2977 | varinfo->ndistinct = ndistinct; |
2978 | varinfos = lappend(varinfos, varinfo); |
2979 | return varinfos; |
2980 | } |
2981 | |
2982 | /* |
2983 | * estimate_num_groups - Estimate number of groups in a grouped query |
2984 | * |
2985 | * Given a query having a GROUP BY clause, estimate how many groups there |
2986 | * will be --- ie, the number of distinct combinations of the GROUP BY |
2987 | * expressions. |
2988 | * |
2989 | * This routine is also used to estimate the number of rows emitted by |
2990 | * a DISTINCT filtering step; that is an isomorphic problem. (Note: |
2991 | * actually, we only use it for DISTINCT when there's no grouping or |
2992 | * aggregation ahead of the DISTINCT.) |
2993 | * |
2994 | * Inputs: |
2995 | * root - the query |
2996 | * groupExprs - list of expressions being grouped by |
2997 | * input_rows - number of rows estimated to arrive at the group/unique |
2998 | * filter step |
2999 | * pgset - NULL, or a List** pointing to a grouping set to filter the |
3000 | * groupExprs against |
3001 | * |
3002 | * Given the lack of any cross-correlation statistics in the system, it's |
3003 | * impossible to do anything really trustworthy with GROUP BY conditions |
3004 | * involving multiple Vars. We should however avoid assuming the worst |
3005 | * case (all possible cross-product terms actually appear as groups) since |
3006 | * very often the grouped-by Vars are highly correlated. Our current approach |
3007 | * is as follows: |
3008 | * 1. Expressions yielding boolean are assumed to contribute two groups, |
3009 | * independently of their content, and are ignored in the subsequent |
3010 | * steps. This is mainly because tests like "col IS NULL" break the |
3011 | * heuristic used in step 2 especially badly. |
3012 | * 2. Reduce the given expressions to a list of unique Vars used. For |
3013 | * example, GROUP BY a, a + b is treated the same as GROUP BY a, b. |
3014 | * It is clearly correct not to count the same Var more than once. |
3015 | * It is also reasonable to treat f(x) the same as x: f() cannot |
3016 | * increase the number of distinct values (unless it is volatile, |
3017 | * which we consider unlikely for grouping), but it probably won't |
3018 | * reduce the number of distinct values much either. |
3019 | * As a special case, if a GROUP BY expression can be matched to an |
3020 | * expressional index for which we have statistics, then we treat the |
3021 | * whole expression as though it were just a Var. |
3022 | * 3. If the list contains Vars of different relations that are known equal |
3023 | * due to equivalence classes, then drop all but one of the Vars from each |
3024 | * known-equal set, keeping the one with smallest estimated # of values |
3025 | * (since the extra values of the others can't appear in joined rows). |
3026 | * Note the reason we only consider Vars of different relations is that |
3027 | * if we considered ones of the same rel, we'd be double-counting the |
3028 | * restriction selectivity of the equality in the next step. |
3029 | * 4. For Vars within a single source rel, we multiply together the numbers |
3030 | * of values, clamp to the number of rows in the rel (divided by 10 if |
3031 | * more than one Var), and then multiply by a factor based on the |
3032 | * selectivity of the restriction clauses for that rel. When there's |
3033 | * more than one Var, the initial product is probably too high (it's the |
3034 | * worst case) but clamping to a fraction of the rel's rows seems to be a |
3035 | * helpful heuristic for not letting the estimate get out of hand. (The |
3036 | * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor |
3037 | * we multiply by to adjust for the restriction selectivity assumes that |
3038 | * the restriction clauses are independent of the grouping, which may not |
3039 | * be a valid assumption, but it's hard to do better. |
3040 | * 5. If there are Vars from multiple rels, we repeat step 4 for each such |
3041 | * rel, and multiply the results together. |
3042 | * Note that rels not containing grouped Vars are ignored completely, as are |
3043 | * join clauses. Such rels cannot increase the number of groups, and we |
3044 | * assume such clauses do not reduce the number either (somewhat bogus, |
3045 | * but we don't have the info to do better). |
3046 | */ |
3047 | double |
3048 | estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, |
3049 | List **pgset) |
3050 | { |
3051 | List *varinfos = NIL; |
3052 | double srf_multiplier = 1.0; |
3053 | double numdistinct; |
3054 | ListCell *l; |
3055 | int i; |
3056 | |
3057 | /* |
3058 | * We don't ever want to return an estimate of zero groups, as that tends |
3059 | * to lead to division-by-zero and other unpleasantness. The input_rows |
3060 | * estimate is usually already at least 1, but clamp it just in case it |
3061 | * isn't. |
3062 | */ |
3063 | input_rows = clamp_row_est(input_rows); |
3064 | |
3065 | /* |
3066 | * If no grouping columns, there's exactly one group. (This can't happen |
3067 | * for normal cases with GROUP BY or DISTINCT, but it is possible for |
3068 | * corner cases with set operations.) |
3069 | */ |
3070 | if (groupExprs == NIL || (pgset && list_length(*pgset) < 1)) |
3071 | return 1.0; |
3072 | |
3073 | /* |
3074 | * Count groups derived from boolean grouping expressions. For other |
3075 | * expressions, find the unique Vars used, treating an expression as a Var |
3076 | * if we can find stats for it. For each one, record the statistical |
3077 | * estimate of number of distinct values (total in its table, without |
3078 | * regard for filtering). |
3079 | */ |
3080 | numdistinct = 1.0; |
3081 | |
3082 | i = 0; |
3083 | foreach(l, groupExprs) |
3084 | { |
3085 | Node *groupexpr = (Node *) lfirst(l); |
3086 | double this_srf_multiplier; |
3087 | VariableStatData vardata; |
3088 | List *varshere; |
3089 | ListCell *l2; |
3090 | |
3091 | /* is expression in this grouping set? */ |
3092 | if (pgset && !list_member_int(*pgset, i++)) |
3093 | continue; |
3094 | |
3095 | /* |
3096 | * Set-returning functions in grouping columns are a bit problematic. |
3097 | * The code below will effectively ignore their SRF nature and come up |
3098 | * with a numdistinct estimate as though they were scalar functions. |
3099 | * We compensate by scaling up the end result by the largest SRF |
3100 | * rowcount estimate. (This will be an overestimate if the SRF |
3101 | * produces multiple copies of any output value, but it seems best to |
3102 | * assume the SRF's outputs are distinct. In any case, it's probably |
3103 | * pointless to worry too much about this without much better |
3104 | * estimates for SRF output rowcounts than we have today.) |
3105 | */ |
3106 | this_srf_multiplier = expression_returns_set_rows(root, groupexpr); |
3107 | if (srf_multiplier < this_srf_multiplier) |
3108 | srf_multiplier = this_srf_multiplier; |
3109 | |
3110 | /* Short-circuit for expressions returning boolean */ |
3111 | if (exprType(groupexpr) == BOOLOID) |
3112 | { |
3113 | numdistinct *= 2.0; |
3114 | continue; |
3115 | } |
3116 | |
3117 | /* |
3118 | * If examine_variable is able to deduce anything about the GROUP BY |
3119 | * expression, treat it as a single variable even if it's really more |
3120 | * complicated. |
3121 | */ |
3122 | examine_variable(root, groupexpr, 0, &vardata); |
3123 | if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique) |
3124 | { |
3125 | varinfos = add_unique_group_var(root, varinfos, |
3126 | groupexpr, &vardata); |
3127 | ReleaseVariableStats(vardata); |
3128 | continue; |
3129 | } |
3130 | ReleaseVariableStats(vardata); |
3131 | |
3132 | /* |
3133 | * Else pull out the component Vars. Handle PlaceHolderVars by |
3134 | * recursing into their arguments (effectively assuming that the |
3135 | * PlaceHolderVar doesn't change the number of groups, which boils |
3136 | * down to ignoring the possible addition of nulls to the result set). |
3137 | */ |
3138 | varshere = pull_var_clause(groupexpr, |
3139 | PVC_RECURSE_AGGREGATES | |
3140 | PVC_RECURSE_WINDOWFUNCS | |
3141 | PVC_RECURSE_PLACEHOLDERS); |
3142 | |
3143 | /* |
3144 | * If we find any variable-free GROUP BY item, then either it is a |
3145 | * constant (and we can ignore it) or it contains a volatile function; |
3146 | * in the latter case we punt and assume that each input row will |
3147 | * yield a distinct group. |
3148 | */ |
3149 | if (varshere == NIL) |
3150 | { |
3151 | if (contain_volatile_functions(groupexpr)) |
3152 | return input_rows; |
3153 | continue; |
3154 | } |
3155 | |
3156 | /* |
3157 | * Else add variables to varinfos list |
3158 | */ |
3159 | foreach(l2, varshere) |
3160 | { |
3161 | Node *var = (Node *) lfirst(l2); |
3162 | |
3163 | examine_variable(root, var, 0, &vardata); |
3164 | varinfos = add_unique_group_var(root, varinfos, var, &vardata); |
3165 | ReleaseVariableStats(vardata); |
3166 | } |
3167 | } |
3168 | |
3169 | /* |
3170 | * If now no Vars, we must have an all-constant or all-boolean GROUP BY |
3171 | * list. |
3172 | */ |
3173 | if (varinfos == NIL) |
3174 | { |
3175 | /* Apply SRF multiplier as we would do in the long path */ |
3176 | numdistinct *= srf_multiplier; |
3177 | /* Round off */ |
3178 | numdistinct = ceil(numdistinct); |
3179 | /* Guard against out-of-range answers */ |
3180 | if (numdistinct > input_rows) |
3181 | numdistinct = input_rows; |
3182 | if (numdistinct < 1.0) |
3183 | numdistinct = 1.0; |
3184 | return numdistinct; |
3185 | } |
3186 | |
3187 | /* |
3188 | * Group Vars by relation and estimate total numdistinct. |
3189 | * |
3190 | * For each iteration of the outer loop, we process the frontmost Var in |
3191 | * varinfos, plus all other Vars in the same relation. We remove these |
3192 | * Vars from the newvarinfos list for the next iteration. This is the |
3193 | * easiest way to group Vars of same rel together. |
3194 | */ |
3195 | do |
3196 | { |
3197 | GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos); |
3198 | RelOptInfo *rel = varinfo1->rel; |
3199 | double reldistinct = 1; |
3200 | double relmaxndistinct = reldistinct; |
3201 | int relvarcount = 0; |
3202 | List *newvarinfos = NIL; |
3203 | List *relvarinfos = NIL; |
3204 | |
3205 | /* |
3206 | * Split the list of varinfos in two - one for the current rel, one |
3207 | * for remaining Vars on other rels. |
3208 | */ |
3209 | relvarinfos = lcons(varinfo1, relvarinfos); |
3210 | for_each_cell(l, lnext(list_head(varinfos))) |
3211 | { |
3212 | GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l); |
3213 | |
3214 | if (varinfo2->rel == varinfo1->rel) |
3215 | { |
3216 | /* varinfos on current rel */ |
3217 | relvarinfos = lcons(varinfo2, relvarinfos); |
3218 | } |
3219 | else |
3220 | { |
3221 | /* not time to process varinfo2 yet */ |
3222 | newvarinfos = lcons(varinfo2, newvarinfos); |
3223 | } |
3224 | } |
3225 | |
3226 | /* |
3227 | * Get the numdistinct estimate for the Vars of this rel. We |
3228 | * iteratively search for multivariate n-distinct with maximum number |
3229 | * of vars; assuming that each var group is independent of the others, |
3230 | * we multiply them together. Any remaining relvarinfos after no more |
3231 | * multivariate matches are found are assumed independent too, so |
3232 | * their individual ndistinct estimates are multiplied also. |
3233 | * |
3234 | * While iterating, count how many separate numdistinct values we |
3235 | * apply. We apply a fudge factor below, but only if we multiplied |
3236 | * more than one such values. |
3237 | */ |
3238 | while (relvarinfos) |
3239 | { |
3240 | double mvndistinct; |
3241 | |
3242 | if (estimate_multivariate_ndistinct(root, rel, &relvarinfos, |
3243 | &mvndistinct)) |
3244 | { |
3245 | reldistinct *= mvndistinct; |
3246 | if (relmaxndistinct < mvndistinct) |
3247 | relmaxndistinct = mvndistinct; |
3248 | relvarcount++; |
3249 | } |
3250 | else |
3251 | { |
3252 | foreach(l, relvarinfos) |
3253 | { |
3254 | GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l); |
3255 | |
3256 | reldistinct *= varinfo2->ndistinct; |
3257 | if (relmaxndistinct < varinfo2->ndistinct) |
3258 | relmaxndistinct = varinfo2->ndistinct; |
3259 | relvarcount++; |
3260 | } |
3261 | |
3262 | /* we're done with this relation */ |
3263 | relvarinfos = NIL; |
3264 | } |
3265 | } |
3266 | |
3267 | /* |
3268 | * Sanity check --- don't divide by zero if empty relation. |
3269 | */ |
3270 | Assert(IS_SIMPLE_REL(rel)); |
3271 | if (rel->tuples > 0) |
3272 | { |
3273 | /* |
3274 | * Clamp to size of rel, or size of rel / 10 if multiple Vars. The |
3275 | * fudge factor is because the Vars are probably correlated but we |
3276 | * don't know by how much. We should never clamp to less than the |
3277 | * largest ndistinct value for any of the Vars, though, since |
3278 | * there will surely be at least that many groups. |
3279 | */ |
3280 | double clamp = rel->tuples; |
3281 | |
3282 | if (relvarcount > 1) |
3283 | { |
3284 | clamp *= 0.1; |
3285 | if (clamp < relmaxndistinct) |
3286 | { |
3287 | clamp = relmaxndistinct; |
3288 | /* for sanity in case some ndistinct is too large: */ |
3289 | if (clamp > rel->tuples) |
3290 | clamp = rel->tuples; |
3291 | } |
3292 | } |
3293 | if (reldistinct > clamp) |
3294 | reldistinct = clamp; |
3295 | |
3296 | /* |
3297 | * Update the estimate based on the restriction selectivity, |
3298 | * guarding against division by zero when reldistinct is zero. |
3299 | * Also skip this if we know that we are returning all rows. |
3300 | */ |
3301 | if (reldistinct > 0 && rel->rows < rel->tuples) |
3302 | { |
3303 | /* |
3304 | * Given a table containing N rows with n distinct values in a |
3305 | * uniform distribution, if we select p rows at random then |
3306 | * the expected number of distinct values selected is |
3307 | * |
3308 | * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1)) |
3309 | * |
3310 | * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!) |
3311 | * |
3312 | * See "Approximating block accesses in database |
3313 | * organizations", S. B. Yao, Communications of the ACM, |
3314 | * Volume 20 Issue 4, April 1977 Pages 260-261. |
3315 | * |
3316 | * Alternatively, re-arranging the terms from the factorials, |
3317 | * this may be written as |
3318 | * |
3319 | * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1)) |
3320 | * |
3321 | * This form of the formula is more efficient to compute in |
3322 | * the common case where p is larger than N/n. Additionally, |
3323 | * as pointed out by Dell'Era, if i << N for all terms in the |
3324 | * product, it can be approximated by |
3325 | * |
3326 | * n * (1 - ((N-p)/N)^(N/n)) |
3327 | * |
3328 | * See "Expected distinct values when selecting from a bag |
3329 | * without replacement", Alberto Dell'Era, |
3330 | * http://www.adellera.it/investigations/distinct_balls/. |
3331 | * |
3332 | * The condition i << N is equivalent to n >> 1, so this is a |
3333 | * good approximation when the number of distinct values in |
3334 | * the table is large. It turns out that this formula also |
3335 | * works well even when n is small. |
3336 | */ |
3337 | reldistinct *= |
3338 | (1 - pow((rel->tuples - rel->rows) / rel->tuples, |
3339 | rel->tuples / reldistinct)); |
3340 | } |
3341 | reldistinct = clamp_row_est(reldistinct); |
3342 | |
3343 | /* |
3344 | * Update estimate of total distinct groups. |
3345 | */ |
3346 | numdistinct *= reldistinct; |
3347 | } |
3348 | |
3349 | varinfos = newvarinfos; |
3350 | } while (varinfos != NIL); |
3351 | |
3352 | /* Now we can account for the effects of any SRFs */ |
3353 | numdistinct *= srf_multiplier; |
3354 | |
3355 | /* Round off */ |
3356 | numdistinct = ceil(numdistinct); |
3357 | |
3358 | /* Guard against out-of-range answers */ |
3359 | if (numdistinct > input_rows) |
3360 | numdistinct = input_rows; |
3361 | if (numdistinct < 1.0) |
3362 | numdistinct = 1.0; |
3363 | |
3364 | return numdistinct; |
3365 | } |
3366 | |
3367 | /* |
3368 | * Estimate hash bucket statistics when the specified expression is used |
3369 | * as a hash key for the given number of buckets. |
3370 | * |
3371 | * This attempts to determine two values: |
3372 | * |
3373 | * 1. The frequency of the most common value of the expression (returns |
3374 | * zero into *mcv_freq if we can't get that). |
3375 | * |
3376 | * 2. The "bucketsize fraction", ie, average number of entries in a bucket |
3377 | * divided by total tuples in relation. |
3378 | * |
3379 | * XXX This is really pretty bogus since we're effectively assuming that the |
3380 | * distribution of hash keys will be the same after applying restriction |
3381 | * clauses as it was in the underlying relation. However, we are not nearly |
3382 | * smart enough to figure out how the restrict clauses might change the |
3383 | * distribution, so this will have to do for now. |
3384 | * |
3385 | * We are passed the number of buckets the executor will use for the given |
3386 | * input relation. If the data were perfectly distributed, with the same |
3387 | * number of tuples going into each available bucket, then the bucketsize |
3388 | * fraction would be 1/nbuckets. But this happy state of affairs will occur |
3389 | * only if (a) there are at least nbuckets distinct data values, and (b) |
3390 | * we have a not-too-skewed data distribution. Otherwise the buckets will |
3391 | * be nonuniformly occupied. If the other relation in the join has a key |
3392 | * distribution similar to this one's, then the most-loaded buckets are |
3393 | * exactly those that will be probed most often. Therefore, the "average" |
3394 | * bucket size for costing purposes should really be taken as something close |
3395 | * to the "worst case" bucket size. We try to estimate this by adjusting the |
3396 | * fraction if there are too few distinct data values, and then scaling up |
3397 | * by the ratio of the most common value's frequency to the average frequency. |
3398 | * |
3399 | * If no statistics are available, use a default estimate of 0.1. This will |
3400 | * discourage use of a hash rather strongly if the inner relation is large, |
3401 | * which is what we want. We do not want to hash unless we know that the |
3402 | * inner rel is well-dispersed (or the alternatives seem much worse). |
3403 | * |
3404 | * The caller should also check that the mcv_freq is not so large that the |
3405 | * most common value would by itself require an impractically large bucket. |
3406 | * In a hash join, the executor can split buckets if they get too big, but |
3407 | * obviously that doesn't help for a bucket that contains many duplicates of |
3408 | * the same value. |
3409 | */ |
3410 | void |
3411 | estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets, |
3412 | Selectivity *mcv_freq, |
3413 | Selectivity *bucketsize_frac) |
3414 | { |
3415 | VariableStatData vardata; |
3416 | double estfract, |
3417 | ndistinct, |
3418 | stanullfrac, |
3419 | avgfreq; |
3420 | bool isdefault; |
3421 | AttStatsSlot sslot; |
3422 | |
3423 | examine_variable(root, hashkey, 0, &vardata); |
3424 | |
3425 | /* Look up the frequency of the most common value, if available */ |
3426 | *mcv_freq = 0.0; |
3427 | |
3428 | if (HeapTupleIsValid(vardata.statsTuple)) |
3429 | { |
3430 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
3431 | STATISTIC_KIND_MCV, InvalidOid, |
3432 | ATTSTATSSLOT_NUMBERS)) |
3433 | { |
3434 | /* |
3435 | * The first MCV stat is for the most common value. |
3436 | */ |
3437 | if (sslot.nnumbers > 0) |
3438 | *mcv_freq = sslot.numbers[0]; |
3439 | free_attstatsslot(&sslot); |
3440 | } |
3441 | } |
3442 | |
3443 | /* Get number of distinct values */ |
3444 | ndistinct = get_variable_numdistinct(&vardata, &isdefault); |
3445 | |
3446 | /* |
3447 | * If ndistinct isn't real, punt. We normally return 0.1, but if the |
3448 | * mcv_freq is known to be even higher than that, use it instead. |
3449 | */ |
3450 | if (isdefault) |
3451 | { |
3452 | *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq); |
3453 | ReleaseVariableStats(vardata); |
3454 | return; |
3455 | } |
3456 | |
3457 | /* Get fraction that are null */ |
3458 | if (HeapTupleIsValid(vardata.statsTuple)) |
3459 | { |
3460 | Form_pg_statistic stats; |
3461 | |
3462 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
3463 | stanullfrac = stats->stanullfrac; |
3464 | } |
3465 | else |
3466 | stanullfrac = 0.0; |
3467 | |
3468 | /* Compute avg freq of all distinct data values in raw relation */ |
3469 | avgfreq = (1.0 - stanullfrac) / ndistinct; |
3470 | |
3471 | /* |
3472 | * Adjust ndistinct to account for restriction clauses. Observe we are |
3473 | * assuming that the data distribution is affected uniformly by the |
3474 | * restriction clauses! |
3475 | * |
3476 | * XXX Possibly better way, but much more expensive: multiply by |
3477 | * selectivity of rel's restriction clauses that mention the target Var. |
3478 | */ |
3479 | if (vardata.rel && vardata.rel->tuples > 0) |
3480 | { |
3481 | ndistinct *= vardata.rel->rows / vardata.rel->tuples; |
3482 | ndistinct = clamp_row_est(ndistinct); |
3483 | } |
3484 | |
3485 | /* |
3486 | * Initial estimate of bucketsize fraction is 1/nbuckets as long as the |
3487 | * number of buckets is less than the expected number of distinct values; |
3488 | * otherwise it is 1/ndistinct. |
3489 | */ |
3490 | if (ndistinct > nbuckets) |
3491 | estfract = 1.0 / nbuckets; |
3492 | else |
3493 | estfract = 1.0 / ndistinct; |
3494 | |
3495 | /* |
3496 | * Adjust estimated bucketsize upward to account for skewed distribution. |
3497 | */ |
3498 | if (avgfreq > 0.0 && *mcv_freq > avgfreq) |
3499 | estfract *= *mcv_freq / avgfreq; |
3500 | |
3501 | /* |
3502 | * Clamp bucketsize to sane range (the above adjustment could easily |
3503 | * produce an out-of-range result). We set the lower bound a little above |
3504 | * zero, since zero isn't a very sane result. |
3505 | */ |
3506 | if (estfract < 1.0e-6) |
3507 | estfract = 1.0e-6; |
3508 | else if (estfract > 1.0) |
3509 | estfract = 1.0; |
3510 | |
3511 | *bucketsize_frac = (Selectivity) estfract; |
3512 | |
3513 | ReleaseVariableStats(vardata); |
3514 | } |
3515 | |
3516 | /* |
3517 | * estimate_hashagg_tablesize |
3518 | * estimate the number of bytes that a hash aggregate hashtable will |
3519 | * require based on the agg_costs, path width and number of groups. |
3520 | * |
3521 | * We return the result as "double" to forestall any possible overflow |
3522 | * problem in the multiplication by dNumGroups. |
3523 | * |
3524 | * XXX this may be over-estimating the size now that hashagg knows to omit |
3525 | * unneeded columns from the hashtable. Also for mixed-mode grouping sets, |
3526 | * grouping columns not in the hashed set are counted here even though hashagg |
3527 | * won't store them. Is this a problem? |
3528 | */ |
3529 | double |
3530 | estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, |
3531 | double dNumGroups) |
3532 | { |
3533 | Size hashentrysize; |
3534 | |
3535 | /* Estimate per-hash-entry space at tuple width... */ |
3536 | hashentrysize = MAXALIGN(path->pathtarget->width) + |
3537 | MAXALIGN(SizeofMinimalTupleHeader); |
3538 | |
3539 | /* plus space for pass-by-ref transition values... */ |
3540 | hashentrysize += agg_costs->transitionSpace; |
3541 | /* plus the per-hash-entry overhead */ |
3542 | hashentrysize += hash_agg_entry_size(agg_costs->numAggs); |
3543 | |
3544 | /* |
3545 | * Note that this disregards the effect of fill-factor and growth policy |
3546 | * of the hash table. That's probably ok, given that the default |
3547 | * fill-factor is relatively high. It'd be hard to meaningfully factor in |
3548 | * "double-in-size" growth policies here. |
3549 | */ |
3550 | return hashentrysize * dNumGroups; |
3551 | } |
3552 | |
3553 | |
3554 | /*------------------------------------------------------------------------- |
3555 | * |
3556 | * Support routines |
3557 | * |
3558 | *------------------------------------------------------------------------- |
3559 | */ |
3560 | |
3561 | /* |
3562 | * Find applicable ndistinct statistics for the given list of VarInfos (which |
3563 | * must all belong to the given rel), and update *ndistinct to the estimate of |
3564 | * the MVNDistinctItem that best matches. If a match it found, *varinfos is |
3565 | * updated to remove the list of matched varinfos. |
3566 | * |
3567 | * Varinfos that aren't for simple Vars are ignored. |
3568 | * |
3569 | * Return true if we're able to find a match, false otherwise. |
3570 | */ |
3571 | static bool |
3572 | estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel, |
3573 | List **varinfos, double *ndistinct) |
3574 | { |
3575 | ListCell *lc; |
3576 | Bitmapset *attnums = NULL; |
3577 | int nmatches; |
3578 | Oid statOid = InvalidOid; |
3579 | MVNDistinct *stats; |
3580 | Bitmapset *matched = NULL; |
3581 | |
3582 | /* bail out immediately if the table has no extended statistics */ |
3583 | if (!rel->statlist) |
3584 | return false; |
3585 | |
3586 | /* Determine the attnums we're looking for */ |
3587 | foreach(lc, *varinfos) |
3588 | { |
3589 | GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc); |
3590 | |
3591 | Assert(varinfo->rel == rel); |
3592 | |
3593 | if (IsA(varinfo->var, Var)) |
3594 | { |
3595 | attnums = bms_add_member(attnums, |
3596 | ((Var *) varinfo->var)->varattno); |
3597 | } |
3598 | } |
3599 | |
3600 | /* look for the ndistinct statistics matching the most vars */ |
3601 | nmatches = 1; /* we require at least two matches */ |
3602 | foreach(lc, rel->statlist) |
3603 | { |
3604 | StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc); |
3605 | Bitmapset *shared; |
3606 | int nshared; |
3607 | |
3608 | /* skip statistics of other kinds */ |
3609 | if (info->kind != STATS_EXT_NDISTINCT) |
3610 | continue; |
3611 | |
3612 | /* compute attnums shared by the vars and the statistics object */ |
3613 | shared = bms_intersect(info->keys, attnums); |
3614 | nshared = bms_num_members(shared); |
3615 | |
3616 | /* |
3617 | * Does this statistics object match more columns than the currently |
3618 | * best object? If so, use this one instead. |
3619 | * |
3620 | * XXX This should break ties using name of the object, or something |
3621 | * like that, to make the outcome stable. |
3622 | */ |
3623 | if (nshared > nmatches) |
3624 | { |
3625 | statOid = info->statOid; |
3626 | nmatches = nshared; |
3627 | matched = shared; |
3628 | } |
3629 | } |
3630 | |
3631 | /* No match? */ |
3632 | if (statOid == InvalidOid) |
3633 | return false; |
3634 | Assert(nmatches > 1 && matched != NULL); |
3635 | |
3636 | stats = statext_ndistinct_load(statOid); |
3637 | |
3638 | /* |
3639 | * If we have a match, search it for the specific item that matches (there |
3640 | * must be one), and construct the output values. |
3641 | */ |
3642 | if (stats) |
3643 | { |
3644 | int i; |
3645 | List *newlist = NIL; |
3646 | MVNDistinctItem *item = NULL; |
3647 | |
3648 | /* Find the specific item that exactly matches the combination */ |
3649 | for (i = 0; i < stats->nitems; i++) |
3650 | { |
3651 | MVNDistinctItem *tmpitem = &stats->items[i]; |
3652 | |
3653 | if (bms_subset_compare(tmpitem->attrs, matched) == BMS_EQUAL) |
3654 | { |
3655 | item = tmpitem; |
3656 | break; |
3657 | } |
3658 | } |
3659 | |
3660 | /* make sure we found an item */ |
3661 | if (!item) |
3662 | elog(ERROR, "corrupt MVNDistinct entry" ); |
3663 | |
3664 | /* Form the output varinfo list, keeping only unmatched ones */ |
3665 | foreach(lc, *varinfos) |
3666 | { |
3667 | GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc); |
3668 | AttrNumber attnum; |
3669 | |
3670 | if (!IsA(varinfo->var, Var)) |
3671 | { |
3672 | newlist = lappend(newlist, varinfo); |
3673 | continue; |
3674 | } |
3675 | |
3676 | attnum = ((Var *) varinfo->var)->varattno; |
3677 | if (!bms_is_member(attnum, matched)) |
3678 | newlist = lappend(newlist, varinfo); |
3679 | } |
3680 | |
3681 | *varinfos = newlist; |
3682 | *ndistinct = item->ndistinct; |
3683 | return true; |
3684 | } |
3685 | |
3686 | return false; |
3687 | } |
3688 | |
3689 | /* |
3690 | * convert_to_scalar |
3691 | * Convert non-NULL values of the indicated types to the comparison |
3692 | * scale needed by scalarineqsel(). |
3693 | * Returns "true" if successful. |
3694 | * |
3695 | * XXX this routine is a hack: ideally we should look up the conversion |
3696 | * subroutines in pg_type. |
3697 | * |
3698 | * All numeric datatypes are simply converted to their equivalent |
3699 | * "double" values. (NUMERIC values that are outside the range of "double" |
3700 | * are clamped to +/- HUGE_VAL.) |
3701 | * |
3702 | * String datatypes are converted by convert_string_to_scalar(), |
3703 | * which is explained below. The reason why this routine deals with |
3704 | * three values at a time, not just one, is that we need it for strings. |
3705 | * |
3706 | * The bytea datatype is just enough different from strings that it has |
3707 | * to be treated separately. |
3708 | * |
3709 | * The several datatypes representing absolute times are all converted |
3710 | * to Timestamp, which is actually a double, and then we just use that |
3711 | * double value. Note this will give correct results even for the "special" |
3712 | * values of Timestamp, since those are chosen to compare correctly; |
3713 | * see timestamp_cmp. |
3714 | * |
3715 | * The several datatypes representing relative times (intervals) are all |
3716 | * converted to measurements expressed in seconds. |
3717 | */ |
3718 | static bool |
3719 | convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue, |
3720 | Datum lobound, Datum hibound, Oid boundstypid, |
3721 | double *scaledlobound, double *scaledhibound) |
3722 | { |
3723 | bool failure = false; |
3724 | |
3725 | /* |
3726 | * Both the valuetypid and the boundstypid should exactly match the |
3727 | * declared input type(s) of the operator we are invoked for. However, |
3728 | * extensions might try to use scalarineqsel as estimator for operators |
3729 | * with input type(s) we don't handle here; in such cases, we want to |
3730 | * return false, not fail. In any case, we mustn't assume that valuetypid |
3731 | * and boundstypid are identical. |
3732 | * |
3733 | * XXX The histogram we are interpolating between points of could belong |
3734 | * to a column that's only binary-compatible with the declared type. In |
3735 | * essence we are assuming that the semantics of binary-compatible types |
3736 | * are enough alike that we can use a histogram generated with one type's |
3737 | * operators to estimate selectivity for the other's. This is outright |
3738 | * wrong in some cases --- in particular signed versus unsigned |
3739 | * interpretation could trip us up. But it's useful enough in the |
3740 | * majority of cases that we do it anyway. Should think about more |
3741 | * rigorous ways to do it. |
3742 | */ |
3743 | switch (valuetypid) |
3744 | { |
3745 | /* |
3746 | * Built-in numeric types |
3747 | */ |
3748 | case BOOLOID: |
3749 | case INT2OID: |
3750 | case INT4OID: |
3751 | case INT8OID: |
3752 | case FLOAT4OID: |
3753 | case FLOAT8OID: |
3754 | case NUMERICOID: |
3755 | case OIDOID: |
3756 | case REGPROCOID: |
3757 | case REGPROCEDUREOID: |
3758 | case REGOPEROID: |
3759 | case REGOPERATOROID: |
3760 | case REGCLASSOID: |
3761 | case REGTYPEOID: |
3762 | case REGCONFIGOID: |
3763 | case REGDICTIONARYOID: |
3764 | case REGROLEOID: |
3765 | case REGNAMESPACEOID: |
3766 | *scaledvalue = convert_numeric_to_scalar(value, valuetypid, |
3767 | &failure); |
3768 | *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid, |
3769 | &failure); |
3770 | *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid, |
3771 | &failure); |
3772 | return !failure; |
3773 | |
3774 | /* |
3775 | * Built-in string types |
3776 | */ |
3777 | case CHAROID: |
3778 | case BPCHAROID: |
3779 | case VARCHAROID: |
3780 | case TEXTOID: |
3781 | case NAMEOID: |
3782 | { |
3783 | char *valstr = convert_string_datum(value, valuetypid, |
3784 | collid, &failure); |
3785 | char *lostr = convert_string_datum(lobound, boundstypid, |
3786 | collid, &failure); |
3787 | char *histr = convert_string_datum(hibound, boundstypid, |
3788 | collid, &failure); |
3789 | |
3790 | /* |
3791 | * Bail out if any of the values is not of string type. We |
3792 | * might leak converted strings for the other value(s), but |
3793 | * that's not worth troubling over. |
3794 | */ |
3795 | if (failure) |
3796 | return false; |
3797 | |
3798 | convert_string_to_scalar(valstr, scaledvalue, |
3799 | lostr, scaledlobound, |
3800 | histr, scaledhibound); |
3801 | pfree(valstr); |
3802 | pfree(lostr); |
3803 | pfree(histr); |
3804 | return true; |
3805 | } |
3806 | |
3807 | /* |
3808 | * Built-in bytea type |
3809 | */ |
3810 | case BYTEAOID: |
3811 | { |
3812 | /* We only support bytea vs bytea comparison */ |
3813 | if (boundstypid != BYTEAOID) |
3814 | return false; |
3815 | convert_bytea_to_scalar(value, scaledvalue, |
3816 | lobound, scaledlobound, |
3817 | hibound, scaledhibound); |
3818 | return true; |
3819 | } |
3820 | |
3821 | /* |
3822 | * Built-in time types |
3823 | */ |
3824 | case TIMESTAMPOID: |
3825 | case TIMESTAMPTZOID: |
3826 | case DATEOID: |
3827 | case INTERVALOID: |
3828 | case TIMEOID: |
3829 | case TIMETZOID: |
3830 | *scaledvalue = convert_timevalue_to_scalar(value, valuetypid, |
3831 | &failure); |
3832 | *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid, |
3833 | &failure); |
3834 | *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid, |
3835 | &failure); |
3836 | return !failure; |
3837 | |
3838 | /* |
3839 | * Built-in network types |
3840 | */ |
3841 | case INETOID: |
3842 | case CIDROID: |
3843 | case MACADDROID: |
3844 | case MACADDR8OID: |
3845 | *scaledvalue = convert_network_to_scalar(value, valuetypid, |
3846 | &failure); |
3847 | *scaledlobound = convert_network_to_scalar(lobound, boundstypid, |
3848 | &failure); |
3849 | *scaledhibound = convert_network_to_scalar(hibound, boundstypid, |
3850 | &failure); |
3851 | return !failure; |
3852 | } |
3853 | /* Don't know how to convert */ |
3854 | *scaledvalue = *scaledlobound = *scaledhibound = 0; |
3855 | return false; |
3856 | } |
3857 | |
3858 | /* |
3859 | * Do convert_to_scalar()'s work for any numeric data type. |
3860 | * |
3861 | * On failure (e.g., unsupported typid), set *failure to true; |
3862 | * otherwise, that variable is not changed. |
3863 | */ |
3864 | static double |
3865 | convert_numeric_to_scalar(Datum value, Oid typid, bool *failure) |
3866 | { |
3867 | switch (typid) |
3868 | { |
3869 | case BOOLOID: |
3870 | return (double) DatumGetBool(value); |
3871 | case INT2OID: |
3872 | return (double) DatumGetInt16(value); |
3873 | case INT4OID: |
3874 | return (double) DatumGetInt32(value); |
3875 | case INT8OID: |
3876 | return (double) DatumGetInt64(value); |
3877 | case FLOAT4OID: |
3878 | return (double) DatumGetFloat4(value); |
3879 | case FLOAT8OID: |
3880 | return (double) DatumGetFloat8(value); |
3881 | case NUMERICOID: |
3882 | /* Note: out-of-range values will be clamped to +-HUGE_VAL */ |
3883 | return (double) |
3884 | DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow, |
3885 | value)); |
3886 | case OIDOID: |
3887 | case REGPROCOID: |
3888 | case REGPROCEDUREOID: |
3889 | case REGOPEROID: |
3890 | case REGOPERATOROID: |
3891 | case REGCLASSOID: |
3892 | case REGTYPEOID: |
3893 | case REGCONFIGOID: |
3894 | case REGDICTIONARYOID: |
3895 | case REGROLEOID: |
3896 | case REGNAMESPACEOID: |
3897 | /* we can treat OIDs as integers... */ |
3898 | return (double) DatumGetObjectId(value); |
3899 | } |
3900 | |
3901 | *failure = true; |
3902 | return 0; |
3903 | } |
3904 | |
3905 | /* |
3906 | * Do convert_to_scalar()'s work for any character-string data type. |
3907 | * |
3908 | * String datatypes are converted to a scale that ranges from 0 to 1, |
3909 | * where we visualize the bytes of the string as fractional digits. |
3910 | * |
3911 | * We do not want the base to be 256, however, since that tends to |
3912 | * generate inflated selectivity estimates; few databases will have |
3913 | * occurrences of all 256 possible byte values at each position. |
3914 | * Instead, use the smallest and largest byte values seen in the bounds |
3915 | * as the estimated range for each byte, after some fudging to deal with |
3916 | * the fact that we probably aren't going to see the full range that way. |
3917 | * |
3918 | * An additional refinement is that we discard any common prefix of the |
3919 | * three strings before computing the scaled values. This allows us to |
3920 | * "zoom in" when we encounter a narrow data range. An example is a phone |
3921 | * number database where all the values begin with the same area code. |
3922 | * (Actually, the bounds will be adjacent histogram-bin-boundary values, |
3923 | * so this is more likely to happen than you might think.) |
3924 | */ |
3925 | static void |
3926 | convert_string_to_scalar(char *value, |
3927 | double *scaledvalue, |
3928 | char *lobound, |
3929 | double *scaledlobound, |
3930 | char *hibound, |
3931 | double *scaledhibound) |
3932 | { |
3933 | int rangelo, |
3934 | rangehi; |
3935 | char *sptr; |
3936 | |
3937 | rangelo = rangehi = (unsigned char) hibound[0]; |
3938 | for (sptr = lobound; *sptr; sptr++) |
3939 | { |
3940 | if (rangelo > (unsigned char) *sptr) |
3941 | rangelo = (unsigned char) *sptr; |
3942 | if (rangehi < (unsigned char) *sptr) |
3943 | rangehi = (unsigned char) *sptr; |
3944 | } |
3945 | for (sptr = hibound; *sptr; sptr++) |
3946 | { |
3947 | if (rangelo > (unsigned char) *sptr) |
3948 | rangelo = (unsigned char) *sptr; |
3949 | if (rangehi < (unsigned char) *sptr) |
3950 | rangehi = (unsigned char) *sptr; |
3951 | } |
3952 | /* If range includes any upper-case ASCII chars, make it include all */ |
3953 | if (rangelo <= 'Z' && rangehi >= 'A') |
3954 | { |
3955 | if (rangelo > 'A') |
3956 | rangelo = 'A'; |
3957 | if (rangehi < 'Z') |
3958 | rangehi = 'Z'; |
3959 | } |
3960 | /* Ditto lower-case */ |
3961 | if (rangelo <= 'z' && rangehi >= 'a') |
3962 | { |
3963 | if (rangelo > 'a') |
3964 | rangelo = 'a'; |
3965 | if (rangehi < 'z') |
3966 | rangehi = 'z'; |
3967 | } |
3968 | /* Ditto digits */ |
3969 | if (rangelo <= '9' && rangehi >= '0') |
3970 | { |
3971 | if (rangelo > '0') |
3972 | rangelo = '0'; |
3973 | if (rangehi < '9') |
3974 | rangehi = '9'; |
3975 | } |
3976 | |
3977 | /* |
3978 | * If range includes less than 10 chars, assume we have not got enough |
3979 | * data, and make it include regular ASCII set. |
3980 | */ |
3981 | if (rangehi - rangelo < 9) |
3982 | { |
3983 | rangelo = ' '; |
3984 | rangehi = 127; |
3985 | } |
3986 | |
3987 | /* |
3988 | * Now strip any common prefix of the three strings. |
3989 | */ |
3990 | while (*lobound) |
3991 | { |
3992 | if (*lobound != *hibound || *lobound != *value) |
3993 | break; |
3994 | lobound++, hibound++, value++; |
3995 | } |
3996 | |
3997 | /* |
3998 | * Now we can do the conversions. |
3999 | */ |
4000 | *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi); |
4001 | *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi); |
4002 | *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi); |
4003 | } |
4004 | |
4005 | static double |
4006 | convert_one_string_to_scalar(char *value, int rangelo, int rangehi) |
4007 | { |
4008 | int slen = strlen(value); |
4009 | double num, |
4010 | denom, |
4011 | base; |
4012 | |
4013 | if (slen <= 0) |
4014 | return 0.0; /* empty string has scalar value 0 */ |
4015 | |
4016 | /* |
4017 | * There seems little point in considering more than a dozen bytes from |
4018 | * the string. Since base is at least 10, that will give us nominal |
4019 | * resolution of at least 12 decimal digits, which is surely far more |
4020 | * precision than this estimation technique has got anyway (especially in |
4021 | * non-C locales). Also, even with the maximum possible base of 256, this |
4022 | * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not |
4023 | * overflow on any known machine. |
4024 | */ |
4025 | if (slen > 12) |
4026 | slen = 12; |
4027 | |
4028 | /* Convert initial characters to fraction */ |
4029 | base = rangehi - rangelo + 1; |
4030 | num = 0.0; |
4031 | denom = base; |
4032 | while (slen-- > 0) |
4033 | { |
4034 | int ch = (unsigned char) *value++; |
4035 | |
4036 | if (ch < rangelo) |
4037 | ch = rangelo - 1; |
4038 | else if (ch > rangehi) |
4039 | ch = rangehi + 1; |
4040 | num += ((double) (ch - rangelo)) / denom; |
4041 | denom *= base; |
4042 | } |
4043 | |
4044 | return num; |
4045 | } |
4046 | |
4047 | /* |
4048 | * Convert a string-type Datum into a palloc'd, null-terminated string. |
4049 | * |
4050 | * On failure (e.g., unsupported typid), set *failure to true; |
4051 | * otherwise, that variable is not changed. (We'll return NULL on failure.) |
4052 | * |
4053 | * When using a non-C locale, we must pass the string through strxfrm() |
4054 | * before continuing, so as to generate correct locale-specific results. |
4055 | */ |
4056 | static char * |
4057 | convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure) |
4058 | { |
4059 | char *val; |
4060 | |
4061 | switch (typid) |
4062 | { |
4063 | case CHAROID: |
4064 | val = (char *) palloc(2); |
4065 | val[0] = DatumGetChar(value); |
4066 | val[1] = '\0'; |
4067 | break; |
4068 | case BPCHAROID: |
4069 | case VARCHAROID: |
4070 | case TEXTOID: |
4071 | val = TextDatumGetCString(value); |
4072 | break; |
4073 | case NAMEOID: |
4074 | { |
4075 | NameData *nm = (NameData *) DatumGetPointer(value); |
4076 | |
4077 | val = pstrdup(NameStr(*nm)); |
4078 | break; |
4079 | } |
4080 | default: |
4081 | *failure = true; |
4082 | return NULL; |
4083 | } |
4084 | |
4085 | if (!lc_collate_is_c(collid)) |
4086 | { |
4087 | char *xfrmstr; |
4088 | size_t xfrmlen; |
4089 | size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY; |
4090 | |
4091 | /* |
4092 | * XXX: We could guess at a suitable output buffer size and only call |
4093 | * strxfrm twice if our guess is too small. |
4094 | * |
4095 | * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return |
4096 | * bogus data or set an error. This is not really a problem unless it |
4097 | * crashes since it will only give an estimation error and nothing |
4098 | * fatal. |
4099 | */ |
4100 | #if _MSC_VER == 1400 /* VS.Net 2005 */ |
4101 | |
4102 | /* |
4103 | * |
4104 | * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=99694 |
4105 | */ |
4106 | { |
4107 | char x[1]; |
4108 | |
4109 | xfrmlen = strxfrm(x, val, 0); |
4110 | } |
4111 | #else |
4112 | xfrmlen = strxfrm(NULL, val, 0); |
4113 | #endif |
4114 | #ifdef WIN32 |
4115 | |
4116 | /* |
4117 | * On Windows, strxfrm returns INT_MAX when an error occurs. Instead |
4118 | * of trying to allocate this much memory (and fail), just return the |
4119 | * original string unmodified as if we were in the C locale. |
4120 | */ |
4121 | if (xfrmlen == INT_MAX) |
4122 | return val; |
4123 | #endif |
4124 | xfrmstr = (char *) palloc(xfrmlen + 1); |
4125 | xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1); |
4126 | |
4127 | /* |
4128 | * Some systems (e.g., glibc) can return a smaller value from the |
4129 | * second call than the first; thus the Assert must be <= not ==. |
4130 | */ |
4131 | Assert(xfrmlen2 <= xfrmlen); |
4132 | pfree(val); |
4133 | val = xfrmstr; |
4134 | } |
4135 | |
4136 | return val; |
4137 | } |
4138 | |
4139 | /* |
4140 | * Do convert_to_scalar()'s work for any bytea data type. |
4141 | * |
4142 | * Very similar to convert_string_to_scalar except we can't assume |
4143 | * null-termination and therefore pass explicit lengths around. |
4144 | * |
4145 | * Also, assumptions about likely "normal" ranges of characters have been |
4146 | * removed - a data range of 0..255 is always used, for now. (Perhaps |
4147 | * someday we will add information about actual byte data range to |
4148 | * pg_statistic.) |
4149 | */ |
4150 | static void |
4151 | convert_bytea_to_scalar(Datum value, |
4152 | double *scaledvalue, |
4153 | Datum lobound, |
4154 | double *scaledlobound, |
4155 | Datum hibound, |
4156 | double *scaledhibound) |
4157 | { |
4158 | bytea *valuep = DatumGetByteaPP(value); |
4159 | bytea *loboundp = DatumGetByteaPP(lobound); |
4160 | bytea *hiboundp = DatumGetByteaPP(hibound); |
4161 | int rangelo, |
4162 | rangehi, |
4163 | valuelen = VARSIZE_ANY_EXHDR(valuep), |
4164 | loboundlen = VARSIZE_ANY_EXHDR(loboundp), |
4165 | hiboundlen = VARSIZE_ANY_EXHDR(hiboundp), |
4166 | i, |
4167 | minlen; |
4168 | unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep); |
4169 | unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp); |
4170 | unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp); |
4171 | |
4172 | /* |
4173 | * Assume bytea data is uniformly distributed across all byte values. |
4174 | */ |
4175 | rangelo = 0; |
4176 | rangehi = 255; |
4177 | |
4178 | /* |
4179 | * Now strip any common prefix of the three strings. |
4180 | */ |
4181 | minlen = Min(Min(valuelen, loboundlen), hiboundlen); |
4182 | for (i = 0; i < minlen; i++) |
4183 | { |
4184 | if (*lostr != *histr || *lostr != *valstr) |
4185 | break; |
4186 | lostr++, histr++, valstr++; |
4187 | loboundlen--, hiboundlen--, valuelen--; |
4188 | } |
4189 | |
4190 | /* |
4191 | * Now we can do the conversions. |
4192 | */ |
4193 | *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi); |
4194 | *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi); |
4195 | *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi); |
4196 | } |
4197 | |
4198 | static double |
4199 | convert_one_bytea_to_scalar(unsigned char *value, int valuelen, |
4200 | int rangelo, int rangehi) |
4201 | { |
4202 | double num, |
4203 | denom, |
4204 | base; |
4205 | |
4206 | if (valuelen <= 0) |
4207 | return 0.0; /* empty string has scalar value 0 */ |
4208 | |
4209 | /* |
4210 | * Since base is 256, need not consider more than about 10 chars (even |
4211 | * this many seems like overkill) |
4212 | */ |
4213 | if (valuelen > 10) |
4214 | valuelen = 10; |
4215 | |
4216 | /* Convert initial characters to fraction */ |
4217 | base = rangehi - rangelo + 1; |
4218 | num = 0.0; |
4219 | denom = base; |
4220 | while (valuelen-- > 0) |
4221 | { |
4222 | int ch = *value++; |
4223 | |
4224 | if (ch < rangelo) |
4225 | ch = rangelo - 1; |
4226 | else if (ch > rangehi) |
4227 | ch = rangehi + 1; |
4228 | num += ((double) (ch - rangelo)) / denom; |
4229 | denom *= base; |
4230 | } |
4231 | |
4232 | return num; |
4233 | } |
4234 | |
4235 | /* |
4236 | * Do convert_to_scalar()'s work for any timevalue data type. |
4237 | * |
4238 | * On failure (e.g., unsupported typid), set *failure to true; |
4239 | * otherwise, that variable is not changed. |
4240 | */ |
4241 | static double |
4242 | convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure) |
4243 | { |
4244 | switch (typid) |
4245 | { |
4246 | case TIMESTAMPOID: |
4247 | return DatumGetTimestamp(value); |
4248 | case TIMESTAMPTZOID: |
4249 | return DatumGetTimestampTz(value); |
4250 | case DATEOID: |
4251 | return date2timestamp_no_overflow(DatumGetDateADT(value)); |
4252 | case INTERVALOID: |
4253 | { |
4254 | Interval *interval = DatumGetIntervalP(value); |
4255 | |
4256 | /* |
4257 | * Convert the month part of Interval to days using assumed |
4258 | * average month length of 365.25/12.0 days. Not too |
4259 | * accurate, but plenty good enough for our purposes. |
4260 | */ |
4261 | return interval->time + interval->day * (double) USECS_PER_DAY + |
4262 | interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY); |
4263 | } |
4264 | case TIMEOID: |
4265 | return DatumGetTimeADT(value); |
4266 | case TIMETZOID: |
4267 | { |
4268 | TimeTzADT *timetz = DatumGetTimeTzADTP(value); |
4269 | |
4270 | /* use GMT-equivalent time */ |
4271 | return (double) (timetz->time + (timetz->zone * 1000000.0)); |
4272 | } |
4273 | } |
4274 | |
4275 | *failure = true; |
4276 | return 0; |
4277 | } |
4278 | |
4279 | |
4280 | /* |
4281 | * get_restriction_variable |
4282 | * Examine the args of a restriction clause to see if it's of the |
4283 | * form (variable op pseudoconstant) or (pseudoconstant op variable), |
4284 | * where "variable" could be either a Var or an expression in vars of a |
4285 | * single relation. If so, extract information about the variable, |
4286 | * and also indicate which side it was on and the other argument. |
4287 | * |
4288 | * Inputs: |
4289 | * root: the planner info |
4290 | * args: clause argument list |
4291 | * varRelid: see specs for restriction selectivity functions |
4292 | * |
4293 | * Outputs: (these are valid only if true is returned) |
4294 | * *vardata: gets information about variable (see examine_variable) |
4295 | * *other: gets other clause argument, aggressively reduced to a constant |
4296 | * *varonleft: set true if variable is on the left, false if on the right |
4297 | * |
4298 | * Returns true if a variable is identified, otherwise false. |
4299 | * |
4300 | * Note: if there are Vars on both sides of the clause, we must fail, because |
4301 | * callers are expecting that the other side will act like a pseudoconstant. |
4302 | */ |
4303 | bool |
4304 | get_restriction_variable(PlannerInfo *root, List *args, int varRelid, |
4305 | VariableStatData *vardata, Node **other, |
4306 | bool *varonleft) |
4307 | { |
4308 | Node *left, |
4309 | *right; |
4310 | VariableStatData rdata; |
4311 | |
4312 | /* Fail if not a binary opclause (probably shouldn't happen) */ |
4313 | if (list_length(args) != 2) |
4314 | return false; |
4315 | |
4316 | left = (Node *) linitial(args); |
4317 | right = (Node *) lsecond(args); |
4318 | |
4319 | /* |
4320 | * Examine both sides. Note that when varRelid is nonzero, Vars of other |
4321 | * relations will be treated as pseudoconstants. |
4322 | */ |
4323 | examine_variable(root, left, varRelid, vardata); |
4324 | examine_variable(root, right, varRelid, &rdata); |
4325 | |
4326 | /* |
4327 | * If one side is a variable and the other not, we win. |
4328 | */ |
4329 | if (vardata->rel && rdata.rel == NULL) |
4330 | { |
4331 | *varonleft = true; |
4332 | *other = estimate_expression_value(root, rdata.var); |
4333 | /* Assume we need no ReleaseVariableStats(rdata) here */ |
4334 | return true; |
4335 | } |
4336 | |
4337 | if (vardata->rel == NULL && rdata.rel) |
4338 | { |
4339 | *varonleft = false; |
4340 | *other = estimate_expression_value(root, vardata->var); |
4341 | /* Assume we need no ReleaseVariableStats(*vardata) here */ |
4342 | *vardata = rdata; |
4343 | return true; |
4344 | } |
4345 | |
4346 | /* Oops, clause has wrong structure (probably var op var) */ |
4347 | ReleaseVariableStats(*vardata); |
4348 | ReleaseVariableStats(rdata); |
4349 | |
4350 | return false; |
4351 | } |
4352 | |
4353 | /* |
4354 | * get_join_variables |
4355 | * Apply examine_variable() to each side of a join clause. |
4356 | * Also, attempt to identify whether the join clause has the same |
4357 | * or reversed sense compared to the SpecialJoinInfo. |
4358 | * |
4359 | * We consider the join clause "normal" if it is "lhs_var OP rhs_var", |
4360 | * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases |
4361 | * where we can't tell for sure, we default to assuming it's normal. |
4362 | */ |
4363 | void |
4364 | get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo, |
4365 | VariableStatData *vardata1, VariableStatData *vardata2, |
4366 | bool *join_is_reversed) |
4367 | { |
4368 | Node *left, |
4369 | *right; |
4370 | |
4371 | if (list_length(args) != 2) |
4372 | elog(ERROR, "join operator should take two arguments" ); |
4373 | |
4374 | left = (Node *) linitial(args); |
4375 | right = (Node *) lsecond(args); |
4376 | |
4377 | examine_variable(root, left, 0, vardata1); |
4378 | examine_variable(root, right, 0, vardata2); |
4379 | |
4380 | if (vardata1->rel && |
4381 | bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand)) |
4382 | *join_is_reversed = true; /* var1 is on RHS */ |
4383 | else if (vardata2->rel && |
4384 | bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand)) |
4385 | *join_is_reversed = true; /* var2 is on LHS */ |
4386 | else |
4387 | *join_is_reversed = false; |
4388 | } |
4389 | |
4390 | /* |
4391 | * examine_variable |
4392 | * Try to look up statistical data about an expression. |
4393 | * Fill in a VariableStatData struct to describe the expression. |
4394 | * |
4395 | * Inputs: |
4396 | * root: the planner info |
4397 | * node: the expression tree to examine |
4398 | * varRelid: see specs for restriction selectivity functions |
4399 | * |
4400 | * Outputs: *vardata is filled as follows: |
4401 | * var: the input expression (with any binary relabeling stripped, if |
4402 | * it is or contains a variable; but otherwise the type is preserved) |
4403 | * rel: RelOptInfo for relation containing variable; NULL if expression |
4404 | * contains no Vars (NOTE this could point to a RelOptInfo of a |
4405 | * subquery, not one in the current query). |
4406 | * statsTuple: the pg_statistic entry for the variable, if one exists; |
4407 | * otherwise NULL. |
4408 | * freefunc: pointer to a function to release statsTuple with. |
4409 | * vartype: exposed type of the expression; this should always match |
4410 | * the declared input type of the operator we are estimating for. |
4411 | * atttype, atttypmod: actual type/typmod of the "var" expression. This is |
4412 | * commonly the same as the exposed type of the variable argument, |
4413 | * but can be different in binary-compatible-type cases. |
4414 | * isunique: true if we were able to match the var to a unique index or a |
4415 | * single-column DISTINCT clause, implying its values are unique for |
4416 | * this query. (Caution: this should be trusted for statistical |
4417 | * purposes only, since we do not check indimmediate nor verify that |
4418 | * the exact same definition of equality applies.) |
4419 | * acl_ok: true if current user has permission to read the column(s) |
4420 | * underlying the pg_statistic entry. This is consulted by |
4421 | * statistic_proc_security_check(). |
4422 | * |
4423 | * Caller is responsible for doing ReleaseVariableStats() before exiting. |
4424 | */ |
4425 | void |
4426 | examine_variable(PlannerInfo *root, Node *node, int varRelid, |
4427 | VariableStatData *vardata) |
4428 | { |
4429 | Node *basenode; |
4430 | Relids varnos; |
4431 | RelOptInfo *onerel; |
4432 | |
4433 | /* Make sure we don't return dangling pointers in vardata */ |
4434 | MemSet(vardata, 0, sizeof(VariableStatData)); |
4435 | |
4436 | /* Save the exposed type of the expression */ |
4437 | vardata->vartype = exprType(node); |
4438 | |
4439 | /* Look inside any binary-compatible relabeling */ |
4440 | |
4441 | if (IsA(node, RelabelType)) |
4442 | basenode = (Node *) ((RelabelType *) node)->arg; |
4443 | else |
4444 | basenode = node; |
4445 | |
4446 | /* Fast path for a simple Var */ |
4447 | |
4448 | if (IsA(basenode, Var) && |
4449 | (varRelid == 0 || varRelid == ((Var *) basenode)->varno)) |
4450 | { |
4451 | Var *var = (Var *) basenode; |
4452 | |
4453 | /* Set up result fields other than the stats tuple */ |
4454 | vardata->var = basenode; /* return Var without relabeling */ |
4455 | vardata->rel = find_base_rel(root, var->varno); |
4456 | vardata->atttype = var->vartype; |
4457 | vardata->atttypmod = var->vartypmod; |
4458 | vardata->isunique = has_unique_index(vardata->rel, var->varattno); |
4459 | |
4460 | /* Try to locate some stats */ |
4461 | examine_simple_variable(root, var, vardata); |
4462 | |
4463 | return; |
4464 | } |
4465 | |
4466 | /* |
4467 | * Okay, it's a more complicated expression. Determine variable |
4468 | * membership. Note that when varRelid isn't zero, only vars of that |
4469 | * relation are considered "real" vars. |
4470 | */ |
4471 | varnos = pull_varnos(basenode); |
4472 | |
4473 | onerel = NULL; |
4474 | |
4475 | switch (bms_membership(varnos)) |
4476 | { |
4477 | case BMS_EMPTY_SET: |
4478 | /* No Vars at all ... must be pseudo-constant clause */ |
4479 | break; |
4480 | case BMS_SINGLETON: |
4481 | if (varRelid == 0 || bms_is_member(varRelid, varnos)) |
4482 | { |
4483 | onerel = find_base_rel(root, |
4484 | (varRelid ? varRelid : bms_singleton_member(varnos))); |
4485 | vardata->rel = onerel; |
4486 | node = basenode; /* strip any relabeling */ |
4487 | } |
4488 | /* else treat it as a constant */ |
4489 | break; |
4490 | case BMS_MULTIPLE: |
4491 | if (varRelid == 0) |
4492 | { |
4493 | /* treat it as a variable of a join relation */ |
4494 | vardata->rel = find_join_rel(root, varnos); |
4495 | node = basenode; /* strip any relabeling */ |
4496 | } |
4497 | else if (bms_is_member(varRelid, varnos)) |
4498 | { |
4499 | /* ignore the vars belonging to other relations */ |
4500 | vardata->rel = find_base_rel(root, varRelid); |
4501 | node = basenode; /* strip any relabeling */ |
4502 | /* note: no point in expressional-index search here */ |
4503 | } |
4504 | /* else treat it as a constant */ |
4505 | break; |
4506 | } |
4507 | |
4508 | bms_free(varnos); |
4509 | |
4510 | vardata->var = node; |
4511 | vardata->atttype = exprType(node); |
4512 | vardata->atttypmod = exprTypmod(node); |
4513 | |
4514 | if (onerel) |
4515 | { |
4516 | /* |
4517 | * We have an expression in vars of a single relation. Try to match |
4518 | * it to expressional index columns, in hopes of finding some |
4519 | * statistics. |
4520 | * |
4521 | * Note that we consider all index columns including INCLUDE columns, |
4522 | * since there could be stats for such columns. But the test for |
4523 | * uniqueness needs to be warier. |
4524 | * |
4525 | * XXX it's conceivable that there are multiple matches with different |
4526 | * index opfamilies; if so, we need to pick one that matches the |
4527 | * operator we are estimating for. FIXME later. |
4528 | */ |
4529 | ListCell *ilist; |
4530 | |
4531 | foreach(ilist, onerel->indexlist) |
4532 | { |
4533 | IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist); |
4534 | ListCell *indexpr_item; |
4535 | int pos; |
4536 | |
4537 | indexpr_item = list_head(index->indexprs); |
4538 | if (indexpr_item == NULL) |
4539 | continue; /* no expressions here... */ |
4540 | |
4541 | for (pos = 0; pos < index->ncolumns; pos++) |
4542 | { |
4543 | if (index->indexkeys[pos] == 0) |
4544 | { |
4545 | Node *indexkey; |
4546 | |
4547 | if (indexpr_item == NULL) |
4548 | elog(ERROR, "too few entries in indexprs list" ); |
4549 | indexkey = (Node *) lfirst(indexpr_item); |
4550 | if (indexkey && IsA(indexkey, RelabelType)) |
4551 | indexkey = (Node *) ((RelabelType *) indexkey)->arg; |
4552 | if (equal(node, indexkey)) |
4553 | { |
4554 | /* |
4555 | * Found a match ... is it a unique index? Tests here |
4556 | * should match has_unique_index(). |
4557 | */ |
4558 | if (index->unique && |
4559 | index->nkeycolumns == 1 && |
4560 | pos == 0 && |
4561 | (index->indpred == NIL || index->predOK)) |
4562 | vardata->isunique = true; |
4563 | |
4564 | /* |
4565 | * Has it got stats? We only consider stats for |
4566 | * non-partial indexes, since partial indexes probably |
4567 | * don't reflect whole-relation statistics; the above |
4568 | * check for uniqueness is the only info we take from |
4569 | * a partial index. |
4570 | * |
4571 | * An index stats hook, however, must make its own |
4572 | * decisions about what to do with partial indexes. |
4573 | */ |
4574 | if (get_index_stats_hook && |
4575 | (*get_index_stats_hook) (root, index->indexoid, |
4576 | pos + 1, vardata)) |
4577 | { |
4578 | /* |
4579 | * The hook took control of acquiring a stats |
4580 | * tuple. If it did supply a tuple, it'd better |
4581 | * have supplied a freefunc. |
4582 | */ |
4583 | if (HeapTupleIsValid(vardata->statsTuple) && |
4584 | !vardata->freefunc) |
4585 | elog(ERROR, "no function provided to release variable stats with" ); |
4586 | } |
4587 | else if (index->indpred == NIL) |
4588 | { |
4589 | vardata->statsTuple = |
4590 | SearchSysCache3(STATRELATTINH, |
4591 | ObjectIdGetDatum(index->indexoid), |
4592 | Int16GetDatum(pos + 1), |
4593 | BoolGetDatum(false)); |
4594 | vardata->freefunc = ReleaseSysCache; |
4595 | |
4596 | if (HeapTupleIsValid(vardata->statsTuple)) |
4597 | { |
4598 | /* Get index's table for permission check */ |
4599 | RangeTblEntry *rte; |
4600 | Oid userid; |
4601 | |
4602 | rte = planner_rt_fetch(index->rel->relid, root); |
4603 | Assert(rte->rtekind == RTE_RELATION); |
4604 | |
4605 | /* |
4606 | * Use checkAsUser if it's set, in case we're |
4607 | * accessing the table via a view. |
4608 | */ |
4609 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
4610 | |
4611 | /* |
4612 | * For simplicity, we insist on the whole |
4613 | * table being selectable, rather than trying |
4614 | * to identify which column(s) the index |
4615 | * depends on. Also require all rows to be |
4616 | * selectable --- there must be no |
4617 | * securityQuals from security barrier views |
4618 | * or RLS policies. |
4619 | */ |
4620 | vardata->acl_ok = |
4621 | rte->securityQuals == NIL && |
4622 | (pg_class_aclcheck(rte->relid, userid, |
4623 | ACL_SELECT) == ACLCHECK_OK); |
4624 | } |
4625 | else |
4626 | { |
4627 | /* suppress leakproofness checks later */ |
4628 | vardata->acl_ok = true; |
4629 | } |
4630 | } |
4631 | if (vardata->statsTuple) |
4632 | break; |
4633 | } |
4634 | indexpr_item = lnext(indexpr_item); |
4635 | } |
4636 | } |
4637 | if (vardata->statsTuple) |
4638 | break; |
4639 | } |
4640 | } |
4641 | } |
4642 | |
4643 | /* |
4644 | * examine_simple_variable |
4645 | * Handle a simple Var for examine_variable |
4646 | * |
4647 | * This is split out as a subroutine so that we can recurse to deal with |
4648 | * Vars referencing subqueries. |
4649 | * |
4650 | * We already filled in all the fields of *vardata except for the stats tuple. |
4651 | */ |
4652 | static void |
4653 | examine_simple_variable(PlannerInfo *root, Var *var, |
4654 | VariableStatData *vardata) |
4655 | { |
4656 | RangeTblEntry *rte = root->simple_rte_array[var->varno]; |
4657 | |
4658 | Assert(IsA(rte, RangeTblEntry)); |
4659 | |
4660 | if (get_relation_stats_hook && |
4661 | (*get_relation_stats_hook) (root, rte, var->varattno, vardata)) |
4662 | { |
4663 | /* |
4664 | * The hook took control of acquiring a stats tuple. If it did supply |
4665 | * a tuple, it'd better have supplied a freefunc. |
4666 | */ |
4667 | if (HeapTupleIsValid(vardata->statsTuple) && |
4668 | !vardata->freefunc) |
4669 | elog(ERROR, "no function provided to release variable stats with" ); |
4670 | } |
4671 | else if (rte->rtekind == RTE_RELATION) |
4672 | { |
4673 | /* |
4674 | * Plain table or parent of an inheritance appendrel, so look up the |
4675 | * column in pg_statistic |
4676 | */ |
4677 | vardata->statsTuple = SearchSysCache3(STATRELATTINH, |
4678 | ObjectIdGetDatum(rte->relid), |
4679 | Int16GetDatum(var->varattno), |
4680 | BoolGetDatum(rte->inh)); |
4681 | vardata->freefunc = ReleaseSysCache; |
4682 | |
4683 | if (HeapTupleIsValid(vardata->statsTuple)) |
4684 | { |
4685 | Oid userid; |
4686 | |
4687 | /* |
4688 | * Check if user has permission to read this column. We require |
4689 | * all rows to be accessible, so there must be no securityQuals |
4690 | * from security barrier views or RLS policies. Use checkAsUser |
4691 | * if it's set, in case we're accessing the table via a view. |
4692 | */ |
4693 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
4694 | |
4695 | vardata->acl_ok = |
4696 | rte->securityQuals == NIL && |
4697 | ((pg_class_aclcheck(rte->relid, userid, |
4698 | ACL_SELECT) == ACLCHECK_OK) || |
4699 | (pg_attribute_aclcheck(rte->relid, var->varattno, userid, |
4700 | ACL_SELECT) == ACLCHECK_OK)); |
4701 | } |
4702 | else |
4703 | { |
4704 | /* suppress any possible leakproofness checks later */ |
4705 | vardata->acl_ok = true; |
4706 | } |
4707 | } |
4708 | else if (rte->rtekind == RTE_SUBQUERY && !rte->inh) |
4709 | { |
4710 | /* |
4711 | * Plain subquery (not one that was converted to an appendrel). |
4712 | */ |
4713 | Query *subquery = rte->subquery; |
4714 | RelOptInfo *rel; |
4715 | TargetEntry *ste; |
4716 | |
4717 | /* |
4718 | * Punt if it's a whole-row var rather than a plain column reference. |
4719 | */ |
4720 | if (var->varattno == InvalidAttrNumber) |
4721 | return; |
4722 | |
4723 | /* |
4724 | * Punt if subquery uses set operations or GROUP BY, as these will |
4725 | * mash underlying columns' stats beyond recognition. (Set ops are |
4726 | * particularly nasty; if we forged ahead, we would return stats |
4727 | * relevant to only the leftmost subselect...) DISTINCT is also |
4728 | * problematic, but we check that later because there is a possibility |
4729 | * of learning something even with it. |
4730 | */ |
4731 | if (subquery->setOperations || |
4732 | subquery->groupClause) |
4733 | return; |
4734 | |
4735 | /* |
4736 | * OK, fetch RelOptInfo for subquery. Note that we don't change the |
4737 | * rel returned in vardata, since caller expects it to be a rel of the |
4738 | * caller's query level. Because we might already be recursing, we |
4739 | * can't use that rel pointer either, but have to look up the Var's |
4740 | * rel afresh. |
4741 | */ |
4742 | rel = find_base_rel(root, var->varno); |
4743 | |
4744 | /* If the subquery hasn't been planned yet, we have to punt */ |
4745 | if (rel->subroot == NULL) |
4746 | return; |
4747 | Assert(IsA(rel->subroot, PlannerInfo)); |
4748 | |
4749 | /* |
4750 | * Switch our attention to the subquery as mangled by the planner. It |
4751 | * was okay to look at the pre-planning version for the tests above, |
4752 | * but now we need a Var that will refer to the subroot's live |
4753 | * RelOptInfos. For instance, if any subquery pullup happened during |
4754 | * planning, Vars in the targetlist might have gotten replaced, and we |
4755 | * need to see the replacement expressions. |
4756 | */ |
4757 | subquery = rel->subroot->parse; |
4758 | Assert(IsA(subquery, Query)); |
4759 | |
4760 | /* Get the subquery output expression referenced by the upper Var */ |
4761 | ste = get_tle_by_resno(subquery->targetList, var->varattno); |
4762 | if (ste == NULL || ste->resjunk) |
4763 | elog(ERROR, "subquery %s does not have attribute %d" , |
4764 | rte->eref->aliasname, var->varattno); |
4765 | var = (Var *) ste->expr; |
4766 | |
4767 | /* |
4768 | * If subquery uses DISTINCT, we can't make use of any stats for the |
4769 | * variable ... but, if it's the only DISTINCT column, we are entitled |
4770 | * to consider it unique. We do the test this way so that it works |
4771 | * for cases involving DISTINCT ON. |
4772 | */ |
4773 | if (subquery->distinctClause) |
4774 | { |
4775 | if (list_length(subquery->distinctClause) == 1 && |
4776 | targetIsInSortList(ste, InvalidOid, subquery->distinctClause)) |
4777 | vardata->isunique = true; |
4778 | /* cannot go further */ |
4779 | return; |
4780 | } |
4781 | |
4782 | /* |
4783 | * If the sub-query originated from a view with the security_barrier |
4784 | * attribute, we must not look at the variable's statistics, though it |
4785 | * seems all right to notice the existence of a DISTINCT clause. So |
4786 | * stop here. |
4787 | * |
4788 | * This is probably a harsher restriction than necessary; it's |
4789 | * certainly OK for the selectivity estimator (which is a C function, |
4790 | * and therefore omnipotent anyway) to look at the statistics. But |
4791 | * many selectivity estimators will happily *invoke the operator |
4792 | * function* to try to work out a good estimate - and that's not OK. |
4793 | * So for now, don't dig down for stats. |
4794 | */ |
4795 | if (rte->security_barrier) |
4796 | return; |
4797 | |
4798 | /* Can only handle a simple Var of subquery's query level */ |
4799 | if (var && IsA(var, Var) && |
4800 | var->varlevelsup == 0) |
4801 | { |
4802 | /* |
4803 | * OK, recurse into the subquery. Note that the original setting |
4804 | * of vardata->isunique (which will surely be false) is left |
4805 | * unchanged in this situation. That's what we want, since even |
4806 | * if the underlying column is unique, the subquery may have |
4807 | * joined to other tables in a way that creates duplicates. |
4808 | */ |
4809 | examine_simple_variable(rel->subroot, var, vardata); |
4810 | } |
4811 | } |
4812 | else |
4813 | { |
4814 | /* |
4815 | * Otherwise, the Var comes from a FUNCTION, VALUES, or CTE RTE. (We |
4816 | * won't see RTE_JOIN here because join alias Vars have already been |
4817 | * flattened.) There's not much we can do with function outputs, but |
4818 | * maybe someday try to be smarter about VALUES and/or CTEs. |
4819 | */ |
4820 | } |
4821 | } |
4822 | |
4823 | /* |
4824 | * Check whether it is permitted to call func_oid passing some of the |
4825 | * pg_statistic data in vardata. We allow this either if the user has SELECT |
4826 | * privileges on the table or column underlying the pg_statistic data or if |
4827 | * the function is marked leak-proof. |
4828 | */ |
4829 | bool |
4830 | statistic_proc_security_check(VariableStatData *vardata, Oid func_oid) |
4831 | { |
4832 | if (vardata->acl_ok) |
4833 | return true; |
4834 | |
4835 | if (!OidIsValid(func_oid)) |
4836 | return false; |
4837 | |
4838 | if (get_func_leakproof(func_oid)) |
4839 | return true; |
4840 | |
4841 | ereport(DEBUG2, |
4842 | (errmsg_internal("not using statistics because function \"%s\" is not leak-proof" , |
4843 | get_func_name(func_oid)))); |
4844 | return false; |
4845 | } |
4846 | |
4847 | /* |
4848 | * get_variable_numdistinct |
4849 | * Estimate the number of distinct values of a variable. |
4850 | * |
4851 | * vardata: results of examine_variable |
4852 | * *isdefault: set to true if the result is a default rather than based on |
4853 | * anything meaningful. |
4854 | * |
4855 | * NB: be careful to produce a positive integral result, since callers may |
4856 | * compare the result to exact integer counts, or might divide by it. |
4857 | */ |
4858 | double |
4859 | get_variable_numdistinct(VariableStatData *vardata, bool *isdefault) |
4860 | { |
4861 | double stadistinct; |
4862 | double stanullfrac = 0.0; |
4863 | double ntuples; |
4864 | |
4865 | *isdefault = false; |
4866 | |
4867 | /* |
4868 | * Determine the stadistinct value to use. There are cases where we can |
4869 | * get an estimate even without a pg_statistic entry, or can get a better |
4870 | * value than is in pg_statistic. Grab stanullfrac too if we can find it |
4871 | * (otherwise, assume no nulls, for lack of any better idea). |
4872 | */ |
4873 | if (HeapTupleIsValid(vardata->statsTuple)) |
4874 | { |
4875 | /* Use the pg_statistic entry */ |
4876 | Form_pg_statistic stats; |
4877 | |
4878 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
4879 | stadistinct = stats->stadistinct; |
4880 | stanullfrac = stats->stanullfrac; |
4881 | } |
4882 | else if (vardata->vartype == BOOLOID) |
4883 | { |
4884 | /* |
4885 | * Special-case boolean columns: presumably, two distinct values. |
4886 | * |
4887 | * Are there any other datatypes we should wire in special estimates |
4888 | * for? |
4889 | */ |
4890 | stadistinct = 2.0; |
4891 | } |
4892 | else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES) |
4893 | { |
4894 | /* |
4895 | * If the Var represents a column of a VALUES RTE, assume it's unique. |
4896 | * This could of course be very wrong, but it should tend to be true |
4897 | * in well-written queries. We could consider examining the VALUES' |
4898 | * contents to get some real statistics; but that only works if the |
4899 | * entries are all constants, and it would be pretty expensive anyway. |
4900 | */ |
4901 | stadistinct = -1.0; /* unique (and all non null) */ |
4902 | } |
4903 | else |
4904 | { |
4905 | /* |
4906 | * We don't keep statistics for system columns, but in some cases we |
4907 | * can infer distinctness anyway. |
4908 | */ |
4909 | if (vardata->var && IsA(vardata->var, Var)) |
4910 | { |
4911 | switch (((Var *) vardata->var)->varattno) |
4912 | { |
4913 | case SelfItemPointerAttributeNumber: |
4914 | stadistinct = -1.0; /* unique (and all non null) */ |
4915 | break; |
4916 | case TableOidAttributeNumber: |
4917 | stadistinct = 1.0; /* only 1 value */ |
4918 | break; |
4919 | default: |
4920 | stadistinct = 0.0; /* means "unknown" */ |
4921 | break; |
4922 | } |
4923 | } |
4924 | else |
4925 | stadistinct = 0.0; /* means "unknown" */ |
4926 | |
4927 | /* |
4928 | * XXX consider using estimate_num_groups on expressions? |
4929 | */ |
4930 | } |
4931 | |
4932 | /* |
4933 | * If there is a unique index or DISTINCT clause for the variable, assume |
4934 | * it is unique no matter what pg_statistic says; the statistics could be |
4935 | * out of date, or we might have found a partial unique index that proves |
4936 | * the var is unique for this query. However, we'd better still believe |
4937 | * the null-fraction statistic. |
4938 | */ |
4939 | if (vardata->isunique) |
4940 | stadistinct = -1.0 * (1.0 - stanullfrac); |
4941 | |
4942 | /* |
4943 | * If we had an absolute estimate, use that. |
4944 | */ |
4945 | if (stadistinct > 0.0) |
4946 | return clamp_row_est(stadistinct); |
4947 | |
4948 | /* |
4949 | * Otherwise we need to get the relation size; punt if not available. |
4950 | */ |
4951 | if (vardata->rel == NULL) |
4952 | { |
4953 | *isdefault = true; |
4954 | return DEFAULT_NUM_DISTINCT; |
4955 | } |
4956 | ntuples = vardata->rel->tuples; |
4957 | if (ntuples <= 0.0) |
4958 | { |
4959 | *isdefault = true; |
4960 | return DEFAULT_NUM_DISTINCT; |
4961 | } |
4962 | |
4963 | /* |
4964 | * If we had a relative estimate, use that. |
4965 | */ |
4966 | if (stadistinct < 0.0) |
4967 | return clamp_row_est(-stadistinct * ntuples); |
4968 | |
4969 | /* |
4970 | * With no data, estimate ndistinct = ntuples if the table is small, else |
4971 | * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so |
4972 | * that the behavior isn't discontinuous. |
4973 | */ |
4974 | if (ntuples < DEFAULT_NUM_DISTINCT) |
4975 | return clamp_row_est(ntuples); |
4976 | |
4977 | *isdefault = true; |
4978 | return DEFAULT_NUM_DISTINCT; |
4979 | } |
4980 | |
4981 | /* |
4982 | * get_variable_range |
4983 | * Estimate the minimum and maximum value of the specified variable. |
4984 | * If successful, store values in *min and *max, and return true. |
4985 | * If no data available, return false. |
4986 | * |
4987 | * sortop is the "<" comparison operator to use. This should generally |
4988 | * be "<" not ">", as only the former is likely to be found in pg_statistic. |
4989 | */ |
4990 | static bool |
4991 | get_variable_range(PlannerInfo *root, VariableStatData *vardata, Oid sortop, |
4992 | Datum *min, Datum *max) |
4993 | { |
4994 | Datum tmin = 0; |
4995 | Datum tmax = 0; |
4996 | bool have_data = false; |
4997 | int16 typLen; |
4998 | bool typByVal; |
4999 | Oid opfuncoid; |
5000 | AttStatsSlot sslot; |
5001 | int i; |
5002 | |
5003 | /* |
5004 | * XXX It's very tempting to try to use the actual column min and max, if |
5005 | * we can get them relatively-cheaply with an index probe. However, since |
5006 | * this function is called many times during join planning, that could |
5007 | * have unpleasant effects on planning speed. Need more investigation |
5008 | * before enabling this. |
5009 | */ |
5010 | #ifdef NOT_USED |
5011 | if (get_actual_variable_range(root, vardata, sortop, min, max)) |
5012 | return true; |
5013 | #endif |
5014 | |
5015 | if (!HeapTupleIsValid(vardata->statsTuple)) |
5016 | { |
5017 | /* no stats available, so default result */ |
5018 | return false; |
5019 | } |
5020 | |
5021 | /* |
5022 | * If we can't apply the sortop to the stats data, just fail. In |
5023 | * principle, if there's a histogram and no MCVs, we could return the |
5024 | * histogram endpoints without ever applying the sortop ... but it's |
5025 | * probably not worth trying, because whatever the caller wants to do with |
5026 | * the endpoints would likely fail the security check too. |
5027 | */ |
5028 | if (!statistic_proc_security_check(vardata, |
5029 | (opfuncoid = get_opcode(sortop)))) |
5030 | return false; |
5031 | |
5032 | get_typlenbyval(vardata->atttype, &typLen, &typByVal); |
5033 | |
5034 | /* |
5035 | * If there is a histogram, grab the first and last values. |
5036 | * |
5037 | * If there is a histogram that is sorted with some other operator than |
5038 | * the one we want, fail --- this suggests that there is data we can't |
5039 | * use. |
5040 | */ |
5041 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
5042 | STATISTIC_KIND_HISTOGRAM, sortop, |
5043 | ATTSTATSSLOT_VALUES)) |
5044 | { |
5045 | if (sslot.nvalues > 0) |
5046 | { |
5047 | tmin = datumCopy(sslot.values[0], typByVal, typLen); |
5048 | tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen); |
5049 | have_data = true; |
5050 | } |
5051 | free_attstatsslot(&sslot); |
5052 | } |
5053 | else if (get_attstatsslot(&sslot, vardata->statsTuple, |
5054 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
5055 | 0)) |
5056 | { |
5057 | free_attstatsslot(&sslot); |
5058 | return false; |
5059 | } |
5060 | |
5061 | /* |
5062 | * If we have most-common-values info, look for extreme MCVs. This is |
5063 | * needed even if we also have a histogram, since the histogram excludes |
5064 | * the MCVs. However, usually the MCVs will not be the extreme values, so |
5065 | * avoid unnecessary data copying. |
5066 | */ |
5067 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
5068 | STATISTIC_KIND_MCV, InvalidOid, |
5069 | ATTSTATSSLOT_VALUES)) |
5070 | { |
5071 | bool tmin_is_mcv = false; |
5072 | bool tmax_is_mcv = false; |
5073 | FmgrInfo opproc; |
5074 | |
5075 | fmgr_info(opfuncoid, &opproc); |
5076 | |
5077 | for (i = 0; i < sslot.nvalues; i++) |
5078 | { |
5079 | if (!have_data) |
5080 | { |
5081 | tmin = tmax = sslot.values[i]; |
5082 | tmin_is_mcv = tmax_is_mcv = have_data = true; |
5083 | continue; |
5084 | } |
5085 | if (DatumGetBool(FunctionCall2Coll(&opproc, |
5086 | sslot.stacoll, |
5087 | sslot.values[i], tmin))) |
5088 | { |
5089 | tmin = sslot.values[i]; |
5090 | tmin_is_mcv = true; |
5091 | } |
5092 | if (DatumGetBool(FunctionCall2Coll(&opproc, |
5093 | sslot.stacoll, |
5094 | tmax, sslot.values[i]))) |
5095 | { |
5096 | tmax = sslot.values[i]; |
5097 | tmax_is_mcv = true; |
5098 | } |
5099 | } |
5100 | if (tmin_is_mcv) |
5101 | tmin = datumCopy(tmin, typByVal, typLen); |
5102 | if (tmax_is_mcv) |
5103 | tmax = datumCopy(tmax, typByVal, typLen); |
5104 | free_attstatsslot(&sslot); |
5105 | } |
5106 | |
5107 | *min = tmin; |
5108 | *max = tmax; |
5109 | return have_data; |
5110 | } |
5111 | |
5112 | |
5113 | /* |
5114 | * get_actual_variable_range |
5115 | * Attempt to identify the current *actual* minimum and/or maximum |
5116 | * of the specified variable, by looking for a suitable btree index |
5117 | * and fetching its low and/or high values. |
5118 | * If successful, store values in *min and *max, and return true. |
5119 | * (Either pointer can be NULL if that endpoint isn't needed.) |
5120 | * If no data available, return false. |
5121 | * |
5122 | * sortop is the "<" comparison operator to use. |
5123 | */ |
5124 | static bool |
5125 | get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata, |
5126 | Oid sortop, |
5127 | Datum *min, Datum *max) |
5128 | { |
5129 | bool have_data = false; |
5130 | RelOptInfo *rel = vardata->rel; |
5131 | RangeTblEntry *rte; |
5132 | ListCell *lc; |
5133 | |
5134 | /* No hope if no relation or it doesn't have indexes */ |
5135 | if (rel == NULL || rel->indexlist == NIL) |
5136 | return false; |
5137 | /* If it has indexes it must be a plain relation */ |
5138 | rte = root->simple_rte_array[rel->relid]; |
5139 | Assert(rte->rtekind == RTE_RELATION); |
5140 | |
5141 | /* Search through the indexes to see if any match our problem */ |
5142 | foreach(lc, rel->indexlist) |
5143 | { |
5144 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
5145 | ScanDirection indexscandir; |
5146 | |
5147 | /* Ignore non-btree indexes */ |
5148 | if (index->relam != BTREE_AM_OID) |
5149 | continue; |
5150 | |
5151 | /* |
5152 | * Ignore partial indexes --- we only want stats that cover the entire |
5153 | * relation. |
5154 | */ |
5155 | if (index->indpred != NIL) |
5156 | continue; |
5157 | |
5158 | /* |
5159 | * The index list might include hypothetical indexes inserted by a |
5160 | * get_relation_info hook --- don't try to access them. |
5161 | */ |
5162 | if (index->hypothetical) |
5163 | continue; |
5164 | |
5165 | /* |
5166 | * The first index column must match the desired variable and sort |
5167 | * operator --- but we can use a descending-order index. |
5168 | */ |
5169 | if (!match_index_to_operand(vardata->var, 0, index)) |
5170 | continue; |
5171 | switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0])) |
5172 | { |
5173 | case BTLessStrategyNumber: |
5174 | if (index->reverse_sort[0]) |
5175 | indexscandir = BackwardScanDirection; |
5176 | else |
5177 | indexscandir = ForwardScanDirection; |
5178 | break; |
5179 | case BTGreaterStrategyNumber: |
5180 | if (index->reverse_sort[0]) |
5181 | indexscandir = ForwardScanDirection; |
5182 | else |
5183 | indexscandir = BackwardScanDirection; |
5184 | break; |
5185 | default: |
5186 | /* index doesn't match the sortop */ |
5187 | continue; |
5188 | } |
5189 | |
5190 | /* |
5191 | * Found a suitable index to extract data from. Set up some data that |
5192 | * can be used by both invocations of get_actual_variable_endpoint. |
5193 | */ |
5194 | { |
5195 | MemoryContext tmpcontext; |
5196 | MemoryContext oldcontext; |
5197 | Relation heapRel; |
5198 | Relation indexRel; |
5199 | TupleTableSlot *slot; |
5200 | int16 typLen; |
5201 | bool typByVal; |
5202 | ScanKeyData scankeys[1]; |
5203 | |
5204 | /* Make sure any cruft gets recycled when we're done */ |
5205 | tmpcontext = AllocSetContextCreate(CurrentMemoryContext, |
5206 | "get_actual_variable_range workspace" , |
5207 | ALLOCSET_DEFAULT_SIZES); |
5208 | oldcontext = MemoryContextSwitchTo(tmpcontext); |
5209 | |
5210 | /* |
5211 | * Open the table and index so we can read from them. We should |
5212 | * already have some type of lock on each. |
5213 | */ |
5214 | heapRel = table_open(rte->relid, NoLock); |
5215 | indexRel = index_open(index->indexoid, NoLock); |
5216 | |
5217 | /* build some stuff needed for indexscan execution */ |
5218 | slot = table_slot_create(heapRel, NULL); |
5219 | get_typlenbyval(vardata->atttype, &typLen, &typByVal); |
5220 | |
5221 | /* set up an IS NOT NULL scan key so that we ignore nulls */ |
5222 | ScanKeyEntryInitialize(&scankeys[0], |
5223 | SK_ISNULL | SK_SEARCHNOTNULL, |
5224 | 1, /* index col to scan */ |
5225 | InvalidStrategy, /* no strategy */ |
5226 | InvalidOid, /* no strategy subtype */ |
5227 | InvalidOid, /* no collation */ |
5228 | InvalidOid, /* no reg proc for this */ |
5229 | (Datum) 0); /* constant */ |
5230 | |
5231 | /* If min is requested ... */ |
5232 | if (min) |
5233 | { |
5234 | have_data = get_actual_variable_endpoint(heapRel, |
5235 | indexRel, |
5236 | indexscandir, |
5237 | scankeys, |
5238 | typLen, |
5239 | typByVal, |
5240 | slot, |
5241 | oldcontext, |
5242 | min); |
5243 | } |
5244 | else |
5245 | { |
5246 | /* If min not requested, assume index is nonempty */ |
5247 | have_data = true; |
5248 | } |
5249 | |
5250 | /* If max is requested, and we didn't find the index is empty */ |
5251 | if (max && have_data) |
5252 | { |
5253 | /* scan in the opposite direction; all else is the same */ |
5254 | have_data = get_actual_variable_endpoint(heapRel, |
5255 | indexRel, |
5256 | -indexscandir, |
5257 | scankeys, |
5258 | typLen, |
5259 | typByVal, |
5260 | slot, |
5261 | oldcontext, |
5262 | max); |
5263 | } |
5264 | |
5265 | /* Clean everything up */ |
5266 | ExecDropSingleTupleTableSlot(slot); |
5267 | |
5268 | index_close(indexRel, NoLock); |
5269 | table_close(heapRel, NoLock); |
5270 | |
5271 | MemoryContextSwitchTo(oldcontext); |
5272 | MemoryContextDelete(tmpcontext); |
5273 | |
5274 | /* And we're done */ |
5275 | break; |
5276 | } |
5277 | } |
5278 | |
5279 | return have_data; |
5280 | } |
5281 | |
5282 | /* |
5283 | * Get one endpoint datum (min or max depending on indexscandir) from the |
5284 | * specified index. Return true if successful, false if index is empty. |
5285 | * On success, endpoint value is stored to *endpointDatum (and copied into |
5286 | * outercontext). |
5287 | * |
5288 | * scankeys is a 1-element scankey array set up to reject nulls. |
5289 | * typLen/typByVal describe the datatype of the index's first column. |
5290 | * tableslot is a slot suitable to hold table tuples, in case we need |
5291 | * to probe the heap. |
5292 | * (We could compute these values locally, but that would mean computing them |
5293 | * twice when get_actual_variable_range needs both the min and the max.) |
5294 | */ |
5295 | static bool |
5296 | get_actual_variable_endpoint(Relation heapRel, |
5297 | Relation indexRel, |
5298 | ScanDirection indexscandir, |
5299 | ScanKey scankeys, |
5300 | int16 typLen, |
5301 | bool typByVal, |
5302 | TupleTableSlot *tableslot, |
5303 | MemoryContext outercontext, |
5304 | Datum *endpointDatum) |
5305 | { |
5306 | bool have_data = false; |
5307 | SnapshotData SnapshotNonVacuumable; |
5308 | IndexScanDesc index_scan; |
5309 | Buffer vmbuffer = InvalidBuffer; |
5310 | ItemPointer tid; |
5311 | Datum values[INDEX_MAX_KEYS]; |
5312 | bool isnull[INDEX_MAX_KEYS]; |
5313 | MemoryContext oldcontext; |
5314 | |
5315 | /* |
5316 | * We use the index-only-scan machinery for this. With mostly-static |
5317 | * tables that's a win because it avoids a heap visit. It's also a win |
5318 | * for dynamic data, but the reason is less obvious; read on for details. |
5319 | * |
5320 | * In principle, we should scan the index with our current active |
5321 | * snapshot, which is the best approximation we've got to what the query |
5322 | * will see when executed. But that won't be exact if a new snap is taken |
5323 | * before running the query, and it can be very expensive if a lot of |
5324 | * recently-dead or uncommitted rows exist at the beginning or end of the |
5325 | * index (because we'll laboriously fetch each one and reject it). |
5326 | * Instead, we use SnapshotNonVacuumable. That will accept recently-dead |
5327 | * and uncommitted rows as well as normal visible rows. On the other |
5328 | * hand, it will reject known-dead rows, and thus not give a bogus answer |
5329 | * when the extreme value has been deleted (unless the deletion was quite |
5330 | * recent); that case motivates not using SnapshotAny here. |
5331 | * |
5332 | * A crucial point here is that SnapshotNonVacuumable, with |
5333 | * RecentGlobalXmin as horizon, yields the inverse of the condition that |
5334 | * the indexscan will use to decide that index entries are killable (see |
5335 | * heap_hot_search_buffer()). Therefore, if the snapshot rejects a tuple |
5336 | * (or more precisely, all tuples of a HOT chain) and we have to continue |
5337 | * scanning past it, we know that the indexscan will mark that index entry |
5338 | * killed. That means that the next get_actual_variable_endpoint() call |
5339 | * will not have to re-consider that index entry. In this way we avoid |
5340 | * repetitive work when this function is used a lot during planning. |
5341 | * |
5342 | * But using SnapshotNonVacuumable creates a hazard of its own. In a |
5343 | * recently-created index, some index entries may point at "broken" HOT |
5344 | * chains in which not all the tuple versions contain data matching the |
5345 | * index entry. The live tuple version(s) certainly do match the index, |
5346 | * but SnapshotNonVacuumable can accept recently-dead tuple versions that |
5347 | * don't match. Hence, if we took data from the selected heap tuple, we |
5348 | * might get a bogus answer that's not close to the index extremal value, |
5349 | * or could even be NULL. We avoid this hazard because we take the data |
5350 | * from the index entry not the heap. |
5351 | */ |
5352 | InitNonVacuumableSnapshot(SnapshotNonVacuumable, RecentGlobalXmin); |
5353 | |
5354 | index_scan = index_beginscan(heapRel, indexRel, |
5355 | &SnapshotNonVacuumable, |
5356 | 1, 0); |
5357 | /* Set it up for index-only scan */ |
5358 | index_scan->xs_want_itup = true; |
5359 | index_rescan(index_scan, scankeys, 1, NULL, 0); |
5360 | |
5361 | /* Fetch first/next tuple in specified direction */ |
5362 | while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL) |
5363 | { |
5364 | if (!VM_ALL_VISIBLE(heapRel, |
5365 | ItemPointerGetBlockNumber(tid), |
5366 | &vmbuffer)) |
5367 | { |
5368 | /* Rats, we have to visit the heap to check visibility */ |
5369 | if (!index_fetch_heap(index_scan, tableslot)) |
5370 | continue; /* no visible tuple, try next index entry */ |
5371 | |
5372 | /* We don't actually need the heap tuple for anything */ |
5373 | ExecClearTuple(tableslot); |
5374 | |
5375 | /* |
5376 | * We don't care whether there's more than one visible tuple in |
5377 | * the HOT chain; if any are visible, that's good enough. |
5378 | */ |
5379 | } |
5380 | |
5381 | /* |
5382 | * We expect that btree will return data in IndexTuple not HeapTuple |
5383 | * format. It's not lossy either. |
5384 | */ |
5385 | if (!index_scan->xs_itup) |
5386 | elog(ERROR, "no data returned for index-only scan" ); |
5387 | if (index_scan->xs_recheck) |
5388 | elog(ERROR, "unexpected recheck indication from btree" ); |
5389 | |
5390 | /* OK to deconstruct the index tuple */ |
5391 | index_deform_tuple(index_scan->xs_itup, |
5392 | index_scan->xs_itupdesc, |
5393 | values, isnull); |
5394 | |
5395 | /* Shouldn't have got a null, but be careful */ |
5396 | if (isnull[0]) |
5397 | elog(ERROR, "found unexpected null value in index \"%s\"" , |
5398 | RelationGetRelationName(indexRel)); |
5399 | |
5400 | /* Copy the index column value out to caller's context */ |
5401 | oldcontext = MemoryContextSwitchTo(outercontext); |
5402 | *endpointDatum = datumCopy(values[0], typByVal, typLen); |
5403 | MemoryContextSwitchTo(oldcontext); |
5404 | have_data = true; |
5405 | break; |
5406 | } |
5407 | |
5408 | if (vmbuffer != InvalidBuffer) |
5409 | ReleaseBuffer(vmbuffer); |
5410 | index_endscan(index_scan); |
5411 | |
5412 | return have_data; |
5413 | } |
5414 | |
5415 | /* |
5416 | * find_join_input_rel |
5417 | * Look up the input relation for a join. |
5418 | * |
5419 | * We assume that the input relation's RelOptInfo must have been constructed |
5420 | * already. |
5421 | */ |
5422 | static RelOptInfo * |
5423 | find_join_input_rel(PlannerInfo *root, Relids relids) |
5424 | { |
5425 | RelOptInfo *rel = NULL; |
5426 | |
5427 | switch (bms_membership(relids)) |
5428 | { |
5429 | case BMS_EMPTY_SET: |
5430 | /* should not happen */ |
5431 | break; |
5432 | case BMS_SINGLETON: |
5433 | rel = find_base_rel(root, bms_singleton_member(relids)); |
5434 | break; |
5435 | case BMS_MULTIPLE: |
5436 | rel = find_join_rel(root, relids); |
5437 | break; |
5438 | } |
5439 | |
5440 | if (rel == NULL) |
5441 | elog(ERROR, "could not find RelOptInfo for given relids" ); |
5442 | |
5443 | return rel; |
5444 | } |
5445 | |
5446 | |
5447 | /*------------------------------------------------------------------------- |
5448 | * |
5449 | * Index cost estimation functions |
5450 | * |
5451 | *------------------------------------------------------------------------- |
5452 | */ |
5453 | |
5454 | /* |
5455 | * Extract the actual indexquals (as RestrictInfos) from an IndexClause list |
5456 | */ |
5457 | List * |
5458 | get_quals_from_indexclauses(List *indexclauses) |
5459 | { |
5460 | List *result = NIL; |
5461 | ListCell *lc; |
5462 | |
5463 | foreach(lc, indexclauses) |
5464 | { |
5465 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
5466 | ListCell *lc2; |
5467 | |
5468 | foreach(lc2, iclause->indexquals) |
5469 | { |
5470 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
5471 | |
5472 | result = lappend(result, rinfo); |
5473 | } |
5474 | } |
5475 | return result; |
5476 | } |
5477 | |
5478 | /* |
5479 | * Compute the total evaluation cost of the comparison operands in a list |
5480 | * of index qual expressions. Since we know these will be evaluated just |
5481 | * once per scan, there's no need to distinguish startup from per-row cost. |
5482 | * |
5483 | * This can be used either on the result of get_quals_from_indexclauses(), |
5484 | * or directly on an indexorderbys list. In both cases, we expect that the |
5485 | * index key expression is on the left side of binary clauses. |
5486 | */ |
5487 | Cost |
5488 | index_other_operands_eval_cost(PlannerInfo *root, List *indexquals) |
5489 | { |
5490 | Cost qual_arg_cost = 0; |
5491 | ListCell *lc; |
5492 | |
5493 | foreach(lc, indexquals) |
5494 | { |
5495 | Expr *clause = (Expr *) lfirst(lc); |
5496 | Node *other_operand; |
5497 | QualCost index_qual_cost; |
5498 | |
5499 | /* |
5500 | * Index quals will have RestrictInfos, indexorderbys won't. Look |
5501 | * through RestrictInfo if present. |
5502 | */ |
5503 | if (IsA(clause, RestrictInfo)) |
5504 | clause = ((RestrictInfo *) clause)->clause; |
5505 | |
5506 | if (IsA(clause, OpExpr)) |
5507 | { |
5508 | OpExpr *op = (OpExpr *) clause; |
5509 | |
5510 | other_operand = (Node *) lsecond(op->args); |
5511 | } |
5512 | else if (IsA(clause, RowCompareExpr)) |
5513 | { |
5514 | RowCompareExpr *rc = (RowCompareExpr *) clause; |
5515 | |
5516 | other_operand = (Node *) rc->rargs; |
5517 | } |
5518 | else if (IsA(clause, ScalarArrayOpExpr)) |
5519 | { |
5520 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
5521 | |
5522 | other_operand = (Node *) lsecond(saop->args); |
5523 | } |
5524 | else if (IsA(clause, NullTest)) |
5525 | { |
5526 | other_operand = NULL; |
5527 | } |
5528 | else |
5529 | { |
5530 | elog(ERROR, "unsupported indexqual type: %d" , |
5531 | (int) nodeTag(clause)); |
5532 | other_operand = NULL; /* keep compiler quiet */ |
5533 | } |
5534 | |
5535 | cost_qual_eval_node(&index_qual_cost, other_operand, root); |
5536 | qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple; |
5537 | } |
5538 | return qual_arg_cost; |
5539 | } |
5540 | |
5541 | void |
5542 | genericcostestimate(PlannerInfo *root, |
5543 | IndexPath *path, |
5544 | double loop_count, |
5545 | GenericCosts *costs) |
5546 | { |
5547 | IndexOptInfo *index = path->indexinfo; |
5548 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
5549 | List *indexOrderBys = path->indexorderbys; |
5550 | Cost indexStartupCost; |
5551 | Cost indexTotalCost; |
5552 | Selectivity indexSelectivity; |
5553 | double indexCorrelation; |
5554 | double numIndexPages; |
5555 | double numIndexTuples; |
5556 | double spc_random_page_cost; |
5557 | double num_sa_scans; |
5558 | double num_outer_scans; |
5559 | double num_scans; |
5560 | double qual_op_cost; |
5561 | double qual_arg_cost; |
5562 | List *selectivityQuals; |
5563 | ListCell *l; |
5564 | |
5565 | /* |
5566 | * If the index is partial, AND the index predicate with the explicitly |
5567 | * given indexquals to produce a more accurate idea of the index |
5568 | * selectivity. |
5569 | */ |
5570 | selectivityQuals = add_predicate_to_index_quals(index, indexQuals); |
5571 | |
5572 | /* |
5573 | * Check for ScalarArrayOpExpr index quals, and estimate the number of |
5574 | * index scans that will be performed. |
5575 | */ |
5576 | num_sa_scans = 1; |
5577 | foreach(l, indexQuals) |
5578 | { |
5579 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); |
5580 | |
5581 | if (IsA(rinfo->clause, ScalarArrayOpExpr)) |
5582 | { |
5583 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause; |
5584 | int alength = estimate_array_length(lsecond(saop->args)); |
5585 | |
5586 | if (alength > 1) |
5587 | num_sa_scans *= alength; |
5588 | } |
5589 | } |
5590 | |
5591 | /* Estimate the fraction of main-table tuples that will be visited */ |
5592 | indexSelectivity = clauselist_selectivity(root, selectivityQuals, |
5593 | index->rel->relid, |
5594 | JOIN_INNER, |
5595 | NULL); |
5596 | |
5597 | /* |
5598 | * If caller didn't give us an estimate, estimate the number of index |
5599 | * tuples that will be visited. We do it in this rather peculiar-looking |
5600 | * way in order to get the right answer for partial indexes. |
5601 | */ |
5602 | numIndexTuples = costs->numIndexTuples; |
5603 | if (numIndexTuples <= 0.0) |
5604 | { |
5605 | numIndexTuples = indexSelectivity * index->rel->tuples; |
5606 | |
5607 | /* |
5608 | * The above calculation counts all the tuples visited across all |
5609 | * scans induced by ScalarArrayOpExpr nodes. We want to consider the |
5610 | * average per-indexscan number, so adjust. This is a handy place to |
5611 | * round to integer, too. (If caller supplied tuple estimate, it's |
5612 | * responsible for handling these considerations.) |
5613 | */ |
5614 | numIndexTuples = rint(numIndexTuples / num_sa_scans); |
5615 | } |
5616 | |
5617 | /* |
5618 | * We can bound the number of tuples by the index size in any case. Also, |
5619 | * always estimate at least one tuple is touched, even when |
5620 | * indexSelectivity estimate is tiny. |
5621 | */ |
5622 | if (numIndexTuples > index->tuples) |
5623 | numIndexTuples = index->tuples; |
5624 | if (numIndexTuples < 1.0) |
5625 | numIndexTuples = 1.0; |
5626 | |
5627 | /* |
5628 | * Estimate the number of index pages that will be retrieved. |
5629 | * |
5630 | * We use the simplistic method of taking a pro-rata fraction of the total |
5631 | * number of index pages. In effect, this counts only leaf pages and not |
5632 | * any overhead such as index metapage or upper tree levels. |
5633 | * |
5634 | * In practice access to upper index levels is often nearly free because |
5635 | * those tend to stay in cache under load; moreover, the cost involved is |
5636 | * highly dependent on index type. We therefore ignore such costs here |
5637 | * and leave it to the caller to add a suitable charge if needed. |
5638 | */ |
5639 | if (index->pages > 1 && index->tuples > 1) |
5640 | numIndexPages = ceil(numIndexTuples * index->pages / index->tuples); |
5641 | else |
5642 | numIndexPages = 1.0; |
5643 | |
5644 | /* fetch estimated page cost for tablespace containing index */ |
5645 | get_tablespace_page_costs(index->reltablespace, |
5646 | &spc_random_page_cost, |
5647 | NULL); |
5648 | |
5649 | /* |
5650 | * Now compute the disk access costs. |
5651 | * |
5652 | * The above calculations are all per-index-scan. However, if we are in a |
5653 | * nestloop inner scan, we can expect the scan to be repeated (with |
5654 | * different search keys) for each row of the outer relation. Likewise, |
5655 | * ScalarArrayOpExpr quals result in multiple index scans. This creates |
5656 | * the potential for cache effects to reduce the number of disk page |
5657 | * fetches needed. We want to estimate the average per-scan I/O cost in |
5658 | * the presence of caching. |
5659 | * |
5660 | * We use the Mackert-Lohman formula (see costsize.c for details) to |
5661 | * estimate the total number of page fetches that occur. While this |
5662 | * wasn't what it was designed for, it seems a reasonable model anyway. |
5663 | * Note that we are counting pages not tuples anymore, so we take N = T = |
5664 | * index size, as if there were one "tuple" per page. |
5665 | */ |
5666 | num_outer_scans = loop_count; |
5667 | num_scans = num_sa_scans * num_outer_scans; |
5668 | |
5669 | if (num_scans > 1) |
5670 | { |
5671 | double pages_fetched; |
5672 | |
5673 | /* total page fetches ignoring cache effects */ |
5674 | pages_fetched = numIndexPages * num_scans; |
5675 | |
5676 | /* use Mackert and Lohman formula to adjust for cache effects */ |
5677 | pages_fetched = index_pages_fetched(pages_fetched, |
5678 | index->pages, |
5679 | (double) index->pages, |
5680 | root); |
5681 | |
5682 | /* |
5683 | * Now compute the total disk access cost, and then report a pro-rated |
5684 | * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr, |
5685 | * since that's internal to the indexscan.) |
5686 | */ |
5687 | indexTotalCost = (pages_fetched * spc_random_page_cost) |
5688 | / num_outer_scans; |
5689 | } |
5690 | else |
5691 | { |
5692 | /* |
5693 | * For a single index scan, we just charge spc_random_page_cost per |
5694 | * page touched. |
5695 | */ |
5696 | indexTotalCost = numIndexPages * spc_random_page_cost; |
5697 | } |
5698 | |
5699 | /* |
5700 | * CPU cost: any complex expressions in the indexquals will need to be |
5701 | * evaluated once at the start of the scan to reduce them to runtime keys |
5702 | * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple |
5703 | * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per |
5704 | * indexqual operator. Because we have numIndexTuples as a per-scan |
5705 | * number, we have to multiply by num_sa_scans to get the correct result |
5706 | * for ScalarArrayOpExpr cases. Similarly add in costs for any index |
5707 | * ORDER BY expressions. |
5708 | * |
5709 | * Note: this neglects the possible costs of rechecking lossy operators. |
5710 | * Detecting that that might be needed seems more expensive than it's |
5711 | * worth, though, considering all the other inaccuracies here ... |
5712 | */ |
5713 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) + |
5714 | index_other_operands_eval_cost(root, indexOrderBys); |
5715 | qual_op_cost = cpu_operator_cost * |
5716 | (list_length(indexQuals) + list_length(indexOrderBys)); |
5717 | |
5718 | indexStartupCost = qual_arg_cost; |
5719 | indexTotalCost += qual_arg_cost; |
5720 | indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost); |
5721 | |
5722 | /* |
5723 | * Generic assumption about index correlation: there isn't any. |
5724 | */ |
5725 | indexCorrelation = 0.0; |
5726 | |
5727 | /* |
5728 | * Return everything to caller. |
5729 | */ |
5730 | costs->indexStartupCost = indexStartupCost; |
5731 | costs->indexTotalCost = indexTotalCost; |
5732 | costs->indexSelectivity = indexSelectivity; |
5733 | costs->indexCorrelation = indexCorrelation; |
5734 | costs->numIndexPages = numIndexPages; |
5735 | costs->numIndexTuples = numIndexTuples; |
5736 | costs->spc_random_page_cost = spc_random_page_cost; |
5737 | costs->num_sa_scans = num_sa_scans; |
5738 | } |
5739 | |
5740 | /* |
5741 | * If the index is partial, add its predicate to the given qual list. |
5742 | * |
5743 | * ANDing the index predicate with the explicitly given indexquals produces |
5744 | * a more accurate idea of the index's selectivity. However, we need to be |
5745 | * careful not to insert redundant clauses, because clauselist_selectivity() |
5746 | * is easily fooled into computing a too-low selectivity estimate. Our |
5747 | * approach is to add only the predicate clause(s) that cannot be proven to |
5748 | * be implied by the given indexquals. This successfully handles cases such |
5749 | * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50". |
5750 | * There are many other cases where we won't detect redundancy, leading to a |
5751 | * too-low selectivity estimate, which will bias the system in favor of using |
5752 | * partial indexes where possible. That is not necessarily bad though. |
5753 | * |
5754 | * Note that indexQuals contains RestrictInfo nodes while the indpred |
5755 | * does not, so the output list will be mixed. This is OK for both |
5756 | * predicate_implied_by() and clauselist_selectivity(), but might be |
5757 | * problematic if the result were passed to other things. |
5758 | */ |
5759 | List * |
5760 | add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals) |
5761 | { |
5762 | List * = NIL; |
5763 | ListCell *lc; |
5764 | |
5765 | if (index->indpred == NIL) |
5766 | return indexQuals; |
5767 | |
5768 | foreach(lc, index->indpred) |
5769 | { |
5770 | Node *predQual = (Node *) lfirst(lc); |
5771 | List *oneQual = list_make1(predQual); |
5772 | |
5773 | if (!predicate_implied_by(oneQual, indexQuals, false)) |
5774 | predExtraQuals = list_concat(predExtraQuals, oneQual); |
5775 | } |
5776 | /* list_concat avoids modifying the passed-in indexQuals list */ |
5777 | return list_concat(predExtraQuals, indexQuals); |
5778 | } |
5779 | |
5780 | |
5781 | void |
5782 | btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
5783 | Cost *indexStartupCost, Cost *indexTotalCost, |
5784 | Selectivity *indexSelectivity, double *indexCorrelation, |
5785 | double *indexPages) |
5786 | { |
5787 | IndexOptInfo *index = path->indexinfo; |
5788 | GenericCosts costs; |
5789 | Oid relid; |
5790 | AttrNumber colnum; |
5791 | VariableStatData vardata; |
5792 | double numIndexTuples; |
5793 | Cost descentCost; |
5794 | List *indexBoundQuals; |
5795 | int indexcol; |
5796 | bool eqQualHere; |
5797 | bool found_saop; |
5798 | bool found_is_null_op; |
5799 | double num_sa_scans; |
5800 | ListCell *lc; |
5801 | |
5802 | /* |
5803 | * For a btree scan, only leading '=' quals plus inequality quals for the |
5804 | * immediately next attribute contribute to index selectivity (these are |
5805 | * the "boundary quals" that determine the starting and stopping points of |
5806 | * the index scan). Additional quals can suppress visits to the heap, so |
5807 | * it's OK to count them in indexSelectivity, but they should not count |
5808 | * for estimating numIndexTuples. So we must examine the given indexquals |
5809 | * to find out which ones count as boundary quals. We rely on the |
5810 | * knowledge that they are given in index column order. |
5811 | * |
5812 | * For a RowCompareExpr, we consider only the first column, just as |
5813 | * rowcomparesel() does. |
5814 | * |
5815 | * If there's a ScalarArrayOpExpr in the quals, we'll actually perform N |
5816 | * index scans not one, but the ScalarArrayOpExpr's operator can be |
5817 | * considered to act the same as it normally does. |
5818 | */ |
5819 | indexBoundQuals = NIL; |
5820 | indexcol = 0; |
5821 | eqQualHere = false; |
5822 | found_saop = false; |
5823 | found_is_null_op = false; |
5824 | num_sa_scans = 1; |
5825 | foreach(lc, path->indexclauses) |
5826 | { |
5827 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
5828 | ListCell *lc2; |
5829 | |
5830 | if (indexcol != iclause->indexcol) |
5831 | { |
5832 | /* Beginning of a new column's quals */ |
5833 | if (!eqQualHere) |
5834 | break; /* done if no '=' qual for indexcol */ |
5835 | eqQualHere = false; |
5836 | indexcol++; |
5837 | if (indexcol != iclause->indexcol) |
5838 | break; /* no quals at all for indexcol */ |
5839 | } |
5840 | |
5841 | /* Examine each indexqual associated with this index clause */ |
5842 | foreach(lc2, iclause->indexquals) |
5843 | { |
5844 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
5845 | Expr *clause = rinfo->clause; |
5846 | Oid clause_op = InvalidOid; |
5847 | int op_strategy; |
5848 | |
5849 | if (IsA(clause, OpExpr)) |
5850 | { |
5851 | OpExpr *op = (OpExpr *) clause; |
5852 | |
5853 | clause_op = op->opno; |
5854 | } |
5855 | else if (IsA(clause, RowCompareExpr)) |
5856 | { |
5857 | RowCompareExpr *rc = (RowCompareExpr *) clause; |
5858 | |
5859 | clause_op = linitial_oid(rc->opnos); |
5860 | } |
5861 | else if (IsA(clause, ScalarArrayOpExpr)) |
5862 | { |
5863 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
5864 | Node *other_operand = (Node *) lsecond(saop->args); |
5865 | int alength = estimate_array_length(other_operand); |
5866 | |
5867 | clause_op = saop->opno; |
5868 | found_saop = true; |
5869 | /* count number of SA scans induced by indexBoundQuals only */ |
5870 | if (alength > 1) |
5871 | num_sa_scans *= alength; |
5872 | } |
5873 | else if (IsA(clause, NullTest)) |
5874 | { |
5875 | NullTest *nt = (NullTest *) clause; |
5876 | |
5877 | if (nt->nulltesttype == IS_NULL) |
5878 | { |
5879 | found_is_null_op = true; |
5880 | /* IS NULL is like = for selectivity purposes */ |
5881 | eqQualHere = true; |
5882 | } |
5883 | } |
5884 | else |
5885 | elog(ERROR, "unsupported indexqual type: %d" , |
5886 | (int) nodeTag(clause)); |
5887 | |
5888 | /* check for equality operator */ |
5889 | if (OidIsValid(clause_op)) |
5890 | { |
5891 | op_strategy = get_op_opfamily_strategy(clause_op, |
5892 | index->opfamily[indexcol]); |
5893 | Assert(op_strategy != 0); /* not a member of opfamily?? */ |
5894 | if (op_strategy == BTEqualStrategyNumber) |
5895 | eqQualHere = true; |
5896 | } |
5897 | |
5898 | indexBoundQuals = lappend(indexBoundQuals, rinfo); |
5899 | } |
5900 | } |
5901 | |
5902 | /* |
5903 | * If index is unique and we found an '=' clause for each column, we can |
5904 | * just assume numIndexTuples = 1 and skip the expensive |
5905 | * clauselist_selectivity calculations. However, a ScalarArrayOp or |
5906 | * NullTest invalidates that theory, even though it sets eqQualHere. |
5907 | */ |
5908 | if (index->unique && |
5909 | indexcol == index->nkeycolumns - 1 && |
5910 | eqQualHere && |
5911 | !found_saop && |
5912 | !found_is_null_op) |
5913 | numIndexTuples = 1.0; |
5914 | else |
5915 | { |
5916 | List *selectivityQuals; |
5917 | Selectivity btreeSelectivity; |
5918 | |
5919 | /* |
5920 | * If the index is partial, AND the index predicate with the |
5921 | * index-bound quals to produce a more accurate idea of the number of |
5922 | * rows covered by the bound conditions. |
5923 | */ |
5924 | selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals); |
5925 | |
5926 | btreeSelectivity = clauselist_selectivity(root, selectivityQuals, |
5927 | index->rel->relid, |
5928 | JOIN_INNER, |
5929 | NULL); |
5930 | numIndexTuples = btreeSelectivity * index->rel->tuples; |
5931 | |
5932 | /* |
5933 | * As in genericcostestimate(), we have to adjust for any |
5934 | * ScalarArrayOpExpr quals included in indexBoundQuals, and then round |
5935 | * to integer. |
5936 | */ |
5937 | numIndexTuples = rint(numIndexTuples / num_sa_scans); |
5938 | } |
5939 | |
5940 | /* |
5941 | * Now do generic index cost estimation. |
5942 | */ |
5943 | MemSet(&costs, 0, sizeof(costs)); |
5944 | costs.numIndexTuples = numIndexTuples; |
5945 | |
5946 | genericcostestimate(root, path, loop_count, &costs); |
5947 | |
5948 | /* |
5949 | * Add a CPU-cost component to represent the costs of initial btree |
5950 | * descent. We don't charge any I/O cost for touching upper btree levels, |
5951 | * since they tend to stay in cache, but we still have to do about log2(N) |
5952 | * comparisons to descend a btree of N leaf tuples. We charge one |
5953 | * cpu_operator_cost per comparison. |
5954 | * |
5955 | * If there are ScalarArrayOpExprs, charge this once per SA scan. The |
5956 | * ones after the first one are not startup cost so far as the overall |
5957 | * plan is concerned, so add them only to "total" cost. |
5958 | */ |
5959 | if (index->tuples > 1) /* avoid computing log(0) */ |
5960 | { |
5961 | descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost; |
5962 | costs.indexStartupCost += descentCost; |
5963 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
5964 | } |
5965 | |
5966 | /* |
5967 | * Even though we're not charging I/O cost for touching upper btree pages, |
5968 | * it's still reasonable to charge some CPU cost per page descended |
5969 | * through. Moreover, if we had no such charge at all, bloated indexes |
5970 | * would appear to have the same search cost as unbloated ones, at least |
5971 | * in cases where only a single leaf page is expected to be visited. This |
5972 | * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page |
5973 | * touched. The number of such pages is btree tree height plus one (ie, |
5974 | * we charge for the leaf page too). As above, charge once per SA scan. |
5975 | */ |
5976 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
5977 | costs.indexStartupCost += descentCost; |
5978 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
5979 | |
5980 | /* |
5981 | * If we can get an estimate of the first column's ordering correlation C |
5982 | * from pg_statistic, estimate the index correlation as C for a |
5983 | * single-column index, or C * 0.75 for multiple columns. (The idea here |
5984 | * is that multiple columns dilute the importance of the first column's |
5985 | * ordering, but don't negate it entirely. Before 8.0 we divided the |
5986 | * correlation by the number of columns, but that seems too strong.) |
5987 | */ |
5988 | MemSet(&vardata, 0, sizeof(vardata)); |
5989 | |
5990 | if (index->indexkeys[0] != 0) |
5991 | { |
5992 | /* Simple variable --- look to stats for the underlying table */ |
5993 | RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root); |
5994 | |
5995 | Assert(rte->rtekind == RTE_RELATION); |
5996 | relid = rte->relid; |
5997 | Assert(relid != InvalidOid); |
5998 | colnum = index->indexkeys[0]; |
5999 | |
6000 | if (get_relation_stats_hook && |
6001 | (*get_relation_stats_hook) (root, rte, colnum, &vardata)) |
6002 | { |
6003 | /* |
6004 | * The hook took control of acquiring a stats tuple. If it did |
6005 | * supply a tuple, it'd better have supplied a freefunc. |
6006 | */ |
6007 | if (HeapTupleIsValid(vardata.statsTuple) && |
6008 | !vardata.freefunc) |
6009 | elog(ERROR, "no function provided to release variable stats with" ); |
6010 | } |
6011 | else |
6012 | { |
6013 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
6014 | ObjectIdGetDatum(relid), |
6015 | Int16GetDatum(colnum), |
6016 | BoolGetDatum(rte->inh)); |
6017 | vardata.freefunc = ReleaseSysCache; |
6018 | } |
6019 | } |
6020 | else |
6021 | { |
6022 | /* Expression --- maybe there are stats for the index itself */ |
6023 | relid = index->indexoid; |
6024 | colnum = 1; |
6025 | |
6026 | if (get_index_stats_hook && |
6027 | (*get_index_stats_hook) (root, relid, colnum, &vardata)) |
6028 | { |
6029 | /* |
6030 | * The hook took control of acquiring a stats tuple. If it did |
6031 | * supply a tuple, it'd better have supplied a freefunc. |
6032 | */ |
6033 | if (HeapTupleIsValid(vardata.statsTuple) && |
6034 | !vardata.freefunc) |
6035 | elog(ERROR, "no function provided to release variable stats with" ); |
6036 | } |
6037 | else |
6038 | { |
6039 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
6040 | ObjectIdGetDatum(relid), |
6041 | Int16GetDatum(colnum), |
6042 | BoolGetDatum(false)); |
6043 | vardata.freefunc = ReleaseSysCache; |
6044 | } |
6045 | } |
6046 | |
6047 | if (HeapTupleIsValid(vardata.statsTuple)) |
6048 | { |
6049 | Oid sortop; |
6050 | AttStatsSlot sslot; |
6051 | |
6052 | sortop = get_opfamily_member(index->opfamily[0], |
6053 | index->opcintype[0], |
6054 | index->opcintype[0], |
6055 | BTLessStrategyNumber); |
6056 | if (OidIsValid(sortop) && |
6057 | get_attstatsslot(&sslot, vardata.statsTuple, |
6058 | STATISTIC_KIND_CORRELATION, sortop, |
6059 | ATTSTATSSLOT_NUMBERS)) |
6060 | { |
6061 | double varCorrelation; |
6062 | |
6063 | Assert(sslot.nnumbers == 1); |
6064 | varCorrelation = sslot.numbers[0]; |
6065 | |
6066 | if (index->reverse_sort[0]) |
6067 | varCorrelation = -varCorrelation; |
6068 | |
6069 | if (index->nkeycolumns > 1) |
6070 | costs.indexCorrelation = varCorrelation * 0.75; |
6071 | else |
6072 | costs.indexCorrelation = varCorrelation; |
6073 | |
6074 | free_attstatsslot(&sslot); |
6075 | } |
6076 | } |
6077 | |
6078 | ReleaseVariableStats(vardata); |
6079 | |
6080 | *indexStartupCost = costs.indexStartupCost; |
6081 | *indexTotalCost = costs.indexTotalCost; |
6082 | *indexSelectivity = costs.indexSelectivity; |
6083 | *indexCorrelation = costs.indexCorrelation; |
6084 | *indexPages = costs.numIndexPages; |
6085 | } |
6086 | |
6087 | void |
6088 | hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
6089 | Cost *indexStartupCost, Cost *indexTotalCost, |
6090 | Selectivity *indexSelectivity, double *indexCorrelation, |
6091 | double *indexPages) |
6092 | { |
6093 | GenericCosts costs; |
6094 | |
6095 | MemSet(&costs, 0, sizeof(costs)); |
6096 | |
6097 | genericcostestimate(root, path, loop_count, &costs); |
6098 | |
6099 | /* |
6100 | * A hash index has no descent costs as such, since the index AM can go |
6101 | * directly to the target bucket after computing the hash value. There |
6102 | * are a couple of other hash-specific costs that we could conceivably add |
6103 | * here, though: |
6104 | * |
6105 | * Ideally we'd charge spc_random_page_cost for each page in the target |
6106 | * bucket, not just the numIndexPages pages that genericcostestimate |
6107 | * thought we'd visit. However in most cases we don't know which bucket |
6108 | * that will be. There's no point in considering the average bucket size |
6109 | * because the hash AM makes sure that's always one page. |
6110 | * |
6111 | * Likewise, we could consider charging some CPU for each index tuple in |
6112 | * the bucket, if we knew how many there were. But the per-tuple cost is |
6113 | * just a hash value comparison, not a general datatype-dependent |
6114 | * comparison, so any such charge ought to be quite a bit less than |
6115 | * cpu_operator_cost; which makes it probably not worth worrying about. |
6116 | * |
6117 | * A bigger issue is that chance hash-value collisions will result in |
6118 | * wasted probes into the heap. We don't currently attempt to model this |
6119 | * cost on the grounds that it's rare, but maybe it's not rare enough. |
6120 | * (Any fix for this ought to consider the generic lossy-operator problem, |
6121 | * though; it's not entirely hash-specific.) |
6122 | */ |
6123 | |
6124 | *indexStartupCost = costs.indexStartupCost; |
6125 | *indexTotalCost = costs.indexTotalCost; |
6126 | *indexSelectivity = costs.indexSelectivity; |
6127 | *indexCorrelation = costs.indexCorrelation; |
6128 | *indexPages = costs.numIndexPages; |
6129 | } |
6130 | |
6131 | void |
6132 | gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
6133 | Cost *indexStartupCost, Cost *indexTotalCost, |
6134 | Selectivity *indexSelectivity, double *indexCorrelation, |
6135 | double *indexPages) |
6136 | { |
6137 | IndexOptInfo *index = path->indexinfo; |
6138 | GenericCosts costs; |
6139 | Cost descentCost; |
6140 | |
6141 | MemSet(&costs, 0, sizeof(costs)); |
6142 | |
6143 | genericcostestimate(root, path, loop_count, &costs); |
6144 | |
6145 | /* |
6146 | * We model index descent costs similarly to those for btree, but to do |
6147 | * that we first need an idea of the tree height. We somewhat arbitrarily |
6148 | * assume that the fanout is 100, meaning the tree height is at most |
6149 | * log100(index->pages). |
6150 | * |
6151 | * Although this computation isn't really expensive enough to require |
6152 | * caching, we might as well use index->tree_height to cache it. |
6153 | */ |
6154 | if (index->tree_height < 0) /* unknown? */ |
6155 | { |
6156 | if (index->pages > 1) /* avoid computing log(0) */ |
6157 | index->tree_height = (int) (log(index->pages) / log(100.0)); |
6158 | else |
6159 | index->tree_height = 0; |
6160 | } |
6161 | |
6162 | /* |
6163 | * Add a CPU-cost component to represent the costs of initial descent. We |
6164 | * just use log(N) here not log2(N) since the branching factor isn't |
6165 | * necessarily two anyway. As for btree, charge once per SA scan. |
6166 | */ |
6167 | if (index->tuples > 1) /* avoid computing log(0) */ |
6168 | { |
6169 | descentCost = ceil(log(index->tuples)) * cpu_operator_cost; |
6170 | costs.indexStartupCost += descentCost; |
6171 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
6172 | } |
6173 | |
6174 | /* |
6175 | * Likewise add a per-page charge, calculated the same as for btrees. |
6176 | */ |
6177 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
6178 | costs.indexStartupCost += descentCost; |
6179 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
6180 | |
6181 | *indexStartupCost = costs.indexStartupCost; |
6182 | *indexTotalCost = costs.indexTotalCost; |
6183 | *indexSelectivity = costs.indexSelectivity; |
6184 | *indexCorrelation = costs.indexCorrelation; |
6185 | *indexPages = costs.numIndexPages; |
6186 | } |
6187 | |
6188 | void |
6189 | spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
6190 | Cost *indexStartupCost, Cost *indexTotalCost, |
6191 | Selectivity *indexSelectivity, double *indexCorrelation, |
6192 | double *indexPages) |
6193 | { |
6194 | IndexOptInfo *index = path->indexinfo; |
6195 | GenericCosts costs; |
6196 | Cost descentCost; |
6197 | |
6198 | MemSet(&costs, 0, sizeof(costs)); |
6199 | |
6200 | genericcostestimate(root, path, loop_count, &costs); |
6201 | |
6202 | /* |
6203 | * We model index descent costs similarly to those for btree, but to do |
6204 | * that we first need an idea of the tree height. We somewhat arbitrarily |
6205 | * assume that the fanout is 100, meaning the tree height is at most |
6206 | * log100(index->pages). |
6207 | * |
6208 | * Although this computation isn't really expensive enough to require |
6209 | * caching, we might as well use index->tree_height to cache it. |
6210 | */ |
6211 | if (index->tree_height < 0) /* unknown? */ |
6212 | { |
6213 | if (index->pages > 1) /* avoid computing log(0) */ |
6214 | index->tree_height = (int) (log(index->pages) / log(100.0)); |
6215 | else |
6216 | index->tree_height = 0; |
6217 | } |
6218 | |
6219 | /* |
6220 | * Add a CPU-cost component to represent the costs of initial descent. We |
6221 | * just use log(N) here not log2(N) since the branching factor isn't |
6222 | * necessarily two anyway. As for btree, charge once per SA scan. |
6223 | */ |
6224 | if (index->tuples > 1) /* avoid computing log(0) */ |
6225 | { |
6226 | descentCost = ceil(log(index->tuples)) * cpu_operator_cost; |
6227 | costs.indexStartupCost += descentCost; |
6228 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
6229 | } |
6230 | |
6231 | /* |
6232 | * Likewise add a per-page charge, calculated the same as for btrees. |
6233 | */ |
6234 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
6235 | costs.indexStartupCost += descentCost; |
6236 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
6237 | |
6238 | *indexStartupCost = costs.indexStartupCost; |
6239 | *indexTotalCost = costs.indexTotalCost; |
6240 | *indexSelectivity = costs.indexSelectivity; |
6241 | *indexCorrelation = costs.indexCorrelation; |
6242 | *indexPages = costs.numIndexPages; |
6243 | } |
6244 | |
6245 | |
6246 | /* |
6247 | * Support routines for gincostestimate |
6248 | */ |
6249 | |
6250 | typedef struct |
6251 | { |
6252 | bool haveFullScan; |
6253 | double partialEntries; |
6254 | double exactEntries; |
6255 | double searchEntries; |
6256 | double arrayScans; |
6257 | } GinQualCounts; |
6258 | |
6259 | /* |
6260 | * Estimate the number of index terms that need to be searched for while |
6261 | * testing the given GIN query, and increment the counts in *counts |
6262 | * appropriately. If the query is unsatisfiable, return false. |
6263 | */ |
6264 | static bool |
6265 | gincost_pattern(IndexOptInfo *index, int indexcol, |
6266 | Oid clause_op, Datum query, |
6267 | GinQualCounts *counts) |
6268 | { |
6269 | Oid ; |
6270 | Oid collation; |
6271 | int strategy_op; |
6272 | Oid lefttype, |
6273 | righttype; |
6274 | int32 nentries = 0; |
6275 | bool *partial_matches = NULL; |
6276 | Pointer * = NULL; |
6277 | bool *nullFlags = NULL; |
6278 | int32 searchMode = GIN_SEARCH_MODE_DEFAULT; |
6279 | int32 i; |
6280 | |
6281 | Assert(indexcol < index->nkeycolumns); |
6282 | |
6283 | /* |
6284 | * Get the operator's strategy number and declared input data types within |
6285 | * the index opfamily. (We don't need the latter, but we use |
6286 | * get_op_opfamily_properties because it will throw error if it fails to |
6287 | * find a matching pg_amop entry.) |
6288 | */ |
6289 | get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false, |
6290 | &strategy_op, &lefttype, &righttype); |
6291 | |
6292 | /* |
6293 | * GIN always uses the "default" support functions, which are those with |
6294 | * lefttype == righttype == the opclass' opcintype (see |
6295 | * IndexSupportInitialize in relcache.c). |
6296 | */ |
6297 | extractProcOid = get_opfamily_proc(index->opfamily[indexcol], |
6298 | index->opcintype[indexcol], |
6299 | index->opcintype[indexcol], |
6300 | GIN_EXTRACTQUERY_PROC); |
6301 | |
6302 | if (!OidIsValid(extractProcOid)) |
6303 | { |
6304 | /* should not happen; throw same error as index_getprocinfo */ |
6305 | elog(ERROR, "missing support function %d for attribute %d of index \"%s\"" , |
6306 | GIN_EXTRACTQUERY_PROC, indexcol + 1, |
6307 | get_rel_name(index->indexoid)); |
6308 | } |
6309 | |
6310 | /* |
6311 | * Choose collation to pass to extractProc (should match initGinState). |
6312 | */ |
6313 | if (OidIsValid(index->indexcollations[indexcol])) |
6314 | collation = index->indexcollations[indexcol]; |
6315 | else |
6316 | collation = DEFAULT_COLLATION_OID; |
6317 | |
6318 | OidFunctionCall7Coll(extractProcOid, |
6319 | collation, |
6320 | query, |
6321 | PointerGetDatum(&nentries), |
6322 | UInt16GetDatum(strategy_op), |
6323 | PointerGetDatum(&partial_matches), |
6324 | PointerGetDatum(&extra_data), |
6325 | PointerGetDatum(&nullFlags), |
6326 | PointerGetDatum(&searchMode)); |
6327 | |
6328 | if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT) |
6329 | { |
6330 | /* No match is possible */ |
6331 | return false; |
6332 | } |
6333 | |
6334 | for (i = 0; i < nentries; i++) |
6335 | { |
6336 | /* |
6337 | * For partial match we haven't any information to estimate number of |
6338 | * matched entries in index, so, we just estimate it as 100 |
6339 | */ |
6340 | if (partial_matches && partial_matches[i]) |
6341 | counts->partialEntries += 100; |
6342 | else |
6343 | counts->exactEntries++; |
6344 | |
6345 | counts->searchEntries++; |
6346 | } |
6347 | |
6348 | if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY) |
6349 | { |
6350 | /* Treat "include empty" like an exact-match item */ |
6351 | counts->exactEntries++; |
6352 | counts->searchEntries++; |
6353 | } |
6354 | else if (searchMode != GIN_SEARCH_MODE_DEFAULT) |
6355 | { |
6356 | /* It's GIN_SEARCH_MODE_ALL */ |
6357 | counts->haveFullScan = true; |
6358 | } |
6359 | |
6360 | return true; |
6361 | } |
6362 | |
6363 | /* |
6364 | * Estimate the number of index terms that need to be searched for while |
6365 | * testing the given GIN index clause, and increment the counts in *counts |
6366 | * appropriately. If the query is unsatisfiable, return false. |
6367 | */ |
6368 | static bool |
6369 | gincost_opexpr(PlannerInfo *root, |
6370 | IndexOptInfo *index, |
6371 | int indexcol, |
6372 | OpExpr *clause, |
6373 | GinQualCounts *counts) |
6374 | { |
6375 | Oid clause_op = clause->opno; |
6376 | Node *operand = (Node *) lsecond(clause->args); |
6377 | |
6378 | /* aggressively reduce to a constant, and look through relabeling */ |
6379 | operand = estimate_expression_value(root, operand); |
6380 | |
6381 | if (IsA(operand, RelabelType)) |
6382 | operand = (Node *) ((RelabelType *) operand)->arg; |
6383 | |
6384 | /* |
6385 | * It's impossible to call extractQuery method for unknown operand. So |
6386 | * unless operand is a Const we can't do much; just assume there will be |
6387 | * one ordinary search entry from the operand at runtime. |
6388 | */ |
6389 | if (!IsA(operand, Const)) |
6390 | { |
6391 | counts->exactEntries++; |
6392 | counts->searchEntries++; |
6393 | return true; |
6394 | } |
6395 | |
6396 | /* If Const is null, there can be no matches */ |
6397 | if (((Const *) operand)->constisnull) |
6398 | return false; |
6399 | |
6400 | /* Otherwise, apply extractQuery and get the actual term counts */ |
6401 | return gincost_pattern(index, indexcol, clause_op, |
6402 | ((Const *) operand)->constvalue, |
6403 | counts); |
6404 | } |
6405 | |
6406 | /* |
6407 | * Estimate the number of index terms that need to be searched for while |
6408 | * testing the given GIN index clause, and increment the counts in *counts |
6409 | * appropriately. If the query is unsatisfiable, return false. |
6410 | * |
6411 | * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime, |
6412 | * each of which involves one value from the RHS array, plus all the |
6413 | * non-array quals (if any). To model this, we average the counts across |
6414 | * the RHS elements, and add the averages to the counts in *counts (which |
6415 | * correspond to per-indexscan costs). We also multiply counts->arrayScans |
6416 | * by N, causing gincostestimate to scale up its estimates accordingly. |
6417 | */ |
6418 | static bool |
6419 | gincost_scalararrayopexpr(PlannerInfo *root, |
6420 | IndexOptInfo *index, |
6421 | int indexcol, |
6422 | ScalarArrayOpExpr *clause, |
6423 | double numIndexEntries, |
6424 | GinQualCounts *counts) |
6425 | { |
6426 | Oid clause_op = clause->opno; |
6427 | Node *rightop = (Node *) lsecond(clause->args); |
6428 | ArrayType *arrayval; |
6429 | int16 elmlen; |
6430 | bool elmbyval; |
6431 | char elmalign; |
6432 | int numElems; |
6433 | Datum *elemValues; |
6434 | bool *elemNulls; |
6435 | GinQualCounts arraycounts; |
6436 | int numPossible = 0; |
6437 | int i; |
6438 | |
6439 | Assert(clause->useOr); |
6440 | |
6441 | /* aggressively reduce to a constant, and look through relabeling */ |
6442 | rightop = estimate_expression_value(root, rightop); |
6443 | |
6444 | if (IsA(rightop, RelabelType)) |
6445 | rightop = (Node *) ((RelabelType *) rightop)->arg; |
6446 | |
6447 | /* |
6448 | * It's impossible to call extractQuery method for unknown operand. So |
6449 | * unless operand is a Const we can't do much; just assume there will be |
6450 | * one ordinary search entry from each array entry at runtime, and fall |
6451 | * back on a probably-bad estimate of the number of array entries. |
6452 | */ |
6453 | if (!IsA(rightop, Const)) |
6454 | { |
6455 | counts->exactEntries++; |
6456 | counts->searchEntries++; |
6457 | counts->arrayScans *= estimate_array_length(rightop); |
6458 | return true; |
6459 | } |
6460 | |
6461 | /* If Const is null, there can be no matches */ |
6462 | if (((Const *) rightop)->constisnull) |
6463 | return false; |
6464 | |
6465 | /* Otherwise, extract the array elements and iterate over them */ |
6466 | arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue); |
6467 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
6468 | &elmlen, &elmbyval, &elmalign); |
6469 | deconstruct_array(arrayval, |
6470 | ARR_ELEMTYPE(arrayval), |
6471 | elmlen, elmbyval, elmalign, |
6472 | &elemValues, &elemNulls, &numElems); |
6473 | |
6474 | memset(&arraycounts, 0, sizeof(arraycounts)); |
6475 | |
6476 | for (i = 0; i < numElems; i++) |
6477 | { |
6478 | GinQualCounts elemcounts; |
6479 | |
6480 | /* NULL can't match anything, so ignore, as the executor will */ |
6481 | if (elemNulls[i]) |
6482 | continue; |
6483 | |
6484 | /* Otherwise, apply extractQuery and get the actual term counts */ |
6485 | memset(&elemcounts, 0, sizeof(elemcounts)); |
6486 | |
6487 | if (gincost_pattern(index, indexcol, clause_op, elemValues[i], |
6488 | &elemcounts)) |
6489 | { |
6490 | /* We ignore array elements that are unsatisfiable patterns */ |
6491 | numPossible++; |
6492 | |
6493 | if (elemcounts.haveFullScan) |
6494 | { |
6495 | /* |
6496 | * Full index scan will be required. We treat this as if |
6497 | * every key in the index had been listed in the query; is |
6498 | * that reasonable? |
6499 | */ |
6500 | elemcounts.partialEntries = 0; |
6501 | elemcounts.exactEntries = numIndexEntries; |
6502 | elemcounts.searchEntries = numIndexEntries; |
6503 | } |
6504 | arraycounts.partialEntries += elemcounts.partialEntries; |
6505 | arraycounts.exactEntries += elemcounts.exactEntries; |
6506 | arraycounts.searchEntries += elemcounts.searchEntries; |
6507 | } |
6508 | } |
6509 | |
6510 | if (numPossible == 0) |
6511 | { |
6512 | /* No satisfiable patterns in the array */ |
6513 | return false; |
6514 | } |
6515 | |
6516 | /* |
6517 | * Now add the averages to the global counts. This will give us an |
6518 | * estimate of the average number of terms searched for in each indexscan, |
6519 | * including contributions from both array and non-array quals. |
6520 | */ |
6521 | counts->partialEntries += arraycounts.partialEntries / numPossible; |
6522 | counts->exactEntries += arraycounts.exactEntries / numPossible; |
6523 | counts->searchEntries += arraycounts.searchEntries / numPossible; |
6524 | |
6525 | counts->arrayScans *= numPossible; |
6526 | |
6527 | return true; |
6528 | } |
6529 | |
6530 | /* |
6531 | * GIN has search behavior completely different from other index types |
6532 | */ |
6533 | void |
6534 | gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
6535 | Cost *indexStartupCost, Cost *indexTotalCost, |
6536 | Selectivity *indexSelectivity, double *indexCorrelation, |
6537 | double *indexPages) |
6538 | { |
6539 | IndexOptInfo *index = path->indexinfo; |
6540 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
6541 | List *selectivityQuals; |
6542 | double numPages = index->pages, |
6543 | numTuples = index->tuples; |
6544 | double numEntryPages, |
6545 | numDataPages, |
6546 | numPendingPages, |
6547 | numEntries; |
6548 | GinQualCounts counts; |
6549 | bool matchPossible; |
6550 | double partialScale; |
6551 | double entryPagesFetched, |
6552 | dataPagesFetched, |
6553 | dataPagesFetchedBySel; |
6554 | double qual_op_cost, |
6555 | qual_arg_cost, |
6556 | spc_random_page_cost, |
6557 | outer_scans; |
6558 | Relation indexRel; |
6559 | GinStatsData ginStats; |
6560 | ListCell *lc; |
6561 | |
6562 | /* |
6563 | * Obtain statistical information from the meta page, if possible. Else |
6564 | * set ginStats to zeroes, and we'll cope below. |
6565 | */ |
6566 | if (!index->hypothetical) |
6567 | { |
6568 | /* Lock should have already been obtained in plancat.c */ |
6569 | indexRel = index_open(index->indexoid, NoLock); |
6570 | ginGetStats(indexRel, &ginStats); |
6571 | index_close(indexRel, NoLock); |
6572 | } |
6573 | else |
6574 | { |
6575 | memset(&ginStats, 0, sizeof(ginStats)); |
6576 | } |
6577 | |
6578 | /* |
6579 | * Assuming we got valid (nonzero) stats at all, nPendingPages can be |
6580 | * trusted, but the other fields are data as of the last VACUUM. We can |
6581 | * scale them up to account for growth since then, but that method only |
6582 | * goes so far; in the worst case, the stats might be for a completely |
6583 | * empty index, and scaling them will produce pretty bogus numbers. |
6584 | * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if |
6585 | * it's grown more than that, fall back to estimating things only from the |
6586 | * assumed-accurate index size. But we'll trust nPendingPages in any case |
6587 | * so long as it's not clearly insane, ie, more than the index size. |
6588 | */ |
6589 | if (ginStats.nPendingPages < numPages) |
6590 | numPendingPages = ginStats.nPendingPages; |
6591 | else |
6592 | numPendingPages = 0; |
6593 | |
6594 | if (numPages > 0 && ginStats.nTotalPages <= numPages && |
6595 | ginStats.nTotalPages > numPages / 4 && |
6596 | ginStats.nEntryPages > 0 && ginStats.nEntries > 0) |
6597 | { |
6598 | /* |
6599 | * OK, the stats seem close enough to sane to be trusted. But we |
6600 | * still need to scale them by the ratio numPages / nTotalPages to |
6601 | * account for growth since the last VACUUM. |
6602 | */ |
6603 | double scale = numPages / ginStats.nTotalPages; |
6604 | |
6605 | numEntryPages = ceil(ginStats.nEntryPages * scale); |
6606 | numDataPages = ceil(ginStats.nDataPages * scale); |
6607 | numEntries = ceil(ginStats.nEntries * scale); |
6608 | /* ensure we didn't round up too much */ |
6609 | numEntryPages = Min(numEntryPages, numPages - numPendingPages); |
6610 | numDataPages = Min(numDataPages, |
6611 | numPages - numPendingPages - numEntryPages); |
6612 | } |
6613 | else |
6614 | { |
6615 | /* |
6616 | * We might get here because it's a hypothetical index, or an index |
6617 | * created pre-9.1 and never vacuumed since upgrading (in which case |
6618 | * its stats would read as zeroes), or just because it's grown too |
6619 | * much since the last VACUUM for us to put our faith in scaling. |
6620 | * |
6621 | * Invent some plausible internal statistics based on the index page |
6622 | * count (and clamp that to at least 10 pages, just in case). We |
6623 | * estimate that 90% of the index is entry pages, and the rest is data |
6624 | * pages. Estimate 100 entries per entry page; this is rather bogus |
6625 | * since it'll depend on the size of the keys, but it's more robust |
6626 | * than trying to predict the number of entries per heap tuple. |
6627 | */ |
6628 | numPages = Max(numPages, 10); |
6629 | numEntryPages = floor((numPages - numPendingPages) * 0.90); |
6630 | numDataPages = numPages - numPendingPages - numEntryPages; |
6631 | numEntries = floor(numEntryPages * 100); |
6632 | } |
6633 | |
6634 | /* In an empty index, numEntries could be zero. Avoid divide-by-zero */ |
6635 | if (numEntries < 1) |
6636 | numEntries = 1; |
6637 | |
6638 | /* |
6639 | * If the index is partial, AND the index predicate with the index-bound |
6640 | * quals to produce a more accurate idea of the number of rows covered by |
6641 | * the bound conditions. |
6642 | */ |
6643 | selectivityQuals = add_predicate_to_index_quals(index, indexQuals); |
6644 | |
6645 | /* Estimate the fraction of main-table tuples that will be visited */ |
6646 | *indexSelectivity = clauselist_selectivity(root, selectivityQuals, |
6647 | index->rel->relid, |
6648 | JOIN_INNER, |
6649 | NULL); |
6650 | |
6651 | /* fetch estimated page cost for tablespace containing index */ |
6652 | get_tablespace_page_costs(index->reltablespace, |
6653 | &spc_random_page_cost, |
6654 | NULL); |
6655 | |
6656 | /* |
6657 | * Generic assumption about index correlation: there isn't any. |
6658 | */ |
6659 | *indexCorrelation = 0.0; |
6660 | |
6661 | /* |
6662 | * Examine quals to estimate number of search entries & partial matches |
6663 | */ |
6664 | memset(&counts, 0, sizeof(counts)); |
6665 | counts.arrayScans = 1; |
6666 | matchPossible = true; |
6667 | |
6668 | foreach(lc, path->indexclauses) |
6669 | { |
6670 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
6671 | ListCell *lc2; |
6672 | |
6673 | foreach(lc2, iclause->indexquals) |
6674 | { |
6675 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
6676 | Expr *clause = rinfo->clause; |
6677 | |
6678 | if (IsA(clause, OpExpr)) |
6679 | { |
6680 | matchPossible = gincost_opexpr(root, |
6681 | index, |
6682 | iclause->indexcol, |
6683 | (OpExpr *) clause, |
6684 | &counts); |
6685 | if (!matchPossible) |
6686 | break; |
6687 | } |
6688 | else if (IsA(clause, ScalarArrayOpExpr)) |
6689 | { |
6690 | matchPossible = gincost_scalararrayopexpr(root, |
6691 | index, |
6692 | iclause->indexcol, |
6693 | (ScalarArrayOpExpr *) clause, |
6694 | numEntries, |
6695 | &counts); |
6696 | if (!matchPossible) |
6697 | break; |
6698 | } |
6699 | else |
6700 | { |
6701 | /* shouldn't be anything else for a GIN index */ |
6702 | elog(ERROR, "unsupported GIN indexqual type: %d" , |
6703 | (int) nodeTag(clause)); |
6704 | } |
6705 | } |
6706 | } |
6707 | |
6708 | /* Fall out if there were any provably-unsatisfiable quals */ |
6709 | if (!matchPossible) |
6710 | { |
6711 | *indexStartupCost = 0; |
6712 | *indexTotalCost = 0; |
6713 | *indexSelectivity = 0; |
6714 | return; |
6715 | } |
6716 | |
6717 | if (counts.haveFullScan || indexQuals == NIL) |
6718 | { |
6719 | /* |
6720 | * Full index scan will be required. We treat this as if every key in |
6721 | * the index had been listed in the query; is that reasonable? |
6722 | */ |
6723 | counts.partialEntries = 0; |
6724 | counts.exactEntries = numEntries; |
6725 | counts.searchEntries = numEntries; |
6726 | } |
6727 | |
6728 | /* Will we have more than one iteration of a nestloop scan? */ |
6729 | outer_scans = loop_count; |
6730 | |
6731 | /* |
6732 | * Compute cost to begin scan, first of all, pay attention to pending |
6733 | * list. |
6734 | */ |
6735 | entryPagesFetched = numPendingPages; |
6736 | |
6737 | /* |
6738 | * Estimate number of entry pages read. We need to do |
6739 | * counts.searchEntries searches. Use a power function as it should be, |
6740 | * but tuples on leaf pages usually is much greater. Here we include all |
6741 | * searches in entry tree, including search of first entry in partial |
6742 | * match algorithm |
6743 | */ |
6744 | entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15))); |
6745 | |
6746 | /* |
6747 | * Add an estimate of entry pages read by partial match algorithm. It's a |
6748 | * scan over leaf pages in entry tree. We haven't any useful stats here, |
6749 | * so estimate it as proportion. Because counts.partialEntries is really |
6750 | * pretty bogus (see code above), it's possible that it is more than |
6751 | * numEntries; clamp the proportion to ensure sanity. |
6752 | */ |
6753 | partialScale = counts.partialEntries / numEntries; |
6754 | partialScale = Min(partialScale, 1.0); |
6755 | |
6756 | entryPagesFetched += ceil(numEntryPages * partialScale); |
6757 | |
6758 | /* |
6759 | * Partial match algorithm reads all data pages before doing actual scan, |
6760 | * so it's a startup cost. Again, we haven't any useful stats here, so |
6761 | * estimate it as proportion. |
6762 | */ |
6763 | dataPagesFetched = ceil(numDataPages * partialScale); |
6764 | |
6765 | /* |
6766 | * Calculate cache effects if more than one scan due to nestloops or array |
6767 | * quals. The result is pro-rated per nestloop scan, but the array qual |
6768 | * factor shouldn't be pro-rated (compare genericcostestimate). |
6769 | */ |
6770 | if (outer_scans > 1 || counts.arrayScans > 1) |
6771 | { |
6772 | entryPagesFetched *= outer_scans * counts.arrayScans; |
6773 | entryPagesFetched = index_pages_fetched(entryPagesFetched, |
6774 | (BlockNumber) numEntryPages, |
6775 | numEntryPages, root); |
6776 | entryPagesFetched /= outer_scans; |
6777 | dataPagesFetched *= outer_scans * counts.arrayScans; |
6778 | dataPagesFetched = index_pages_fetched(dataPagesFetched, |
6779 | (BlockNumber) numDataPages, |
6780 | numDataPages, root); |
6781 | dataPagesFetched /= outer_scans; |
6782 | } |
6783 | |
6784 | /* |
6785 | * Here we use random page cost because logically-close pages could be far |
6786 | * apart on disk. |
6787 | */ |
6788 | *indexStartupCost = (entryPagesFetched + dataPagesFetched) * spc_random_page_cost; |
6789 | |
6790 | /* |
6791 | * Now compute the number of data pages fetched during the scan. |
6792 | * |
6793 | * We assume every entry to have the same number of items, and that there |
6794 | * is no overlap between them. (XXX: tsvector and array opclasses collect |
6795 | * statistics on the frequency of individual keys; it would be nice to use |
6796 | * those here.) |
6797 | */ |
6798 | dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries); |
6799 | |
6800 | /* |
6801 | * If there is a lot of overlap among the entries, in particular if one of |
6802 | * the entries is very frequent, the above calculation can grossly |
6803 | * under-estimate. As a simple cross-check, calculate a lower bound based |
6804 | * on the overall selectivity of the quals. At a minimum, we must read |
6805 | * one item pointer for each matching entry. |
6806 | * |
6807 | * The width of each item pointer varies, based on the level of |
6808 | * compression. We don't have statistics on that, but an average of |
6809 | * around 3 bytes per item is fairly typical. |
6810 | */ |
6811 | dataPagesFetchedBySel = ceil(*indexSelectivity * |
6812 | (numTuples / (BLCKSZ / 3))); |
6813 | if (dataPagesFetchedBySel > dataPagesFetched) |
6814 | dataPagesFetched = dataPagesFetchedBySel; |
6815 | |
6816 | /* Account for cache effects, the same as above */ |
6817 | if (outer_scans > 1 || counts.arrayScans > 1) |
6818 | { |
6819 | dataPagesFetched *= outer_scans * counts.arrayScans; |
6820 | dataPagesFetched = index_pages_fetched(dataPagesFetched, |
6821 | (BlockNumber) numDataPages, |
6822 | numDataPages, root); |
6823 | dataPagesFetched /= outer_scans; |
6824 | } |
6825 | |
6826 | /* And apply random_page_cost as the cost per page */ |
6827 | *indexTotalCost = *indexStartupCost + |
6828 | dataPagesFetched * spc_random_page_cost; |
6829 | |
6830 | /* |
6831 | * Add on index qual eval costs, much as in genericcostestimate. But we |
6832 | * can disregard indexorderbys, since GIN doesn't support those. |
6833 | */ |
6834 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals); |
6835 | qual_op_cost = cpu_operator_cost * list_length(indexQuals); |
6836 | |
6837 | *indexStartupCost += qual_arg_cost; |
6838 | *indexTotalCost += qual_arg_cost; |
6839 | *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost + qual_op_cost); |
6840 | *indexPages = dataPagesFetched; |
6841 | } |
6842 | |
6843 | /* |
6844 | * BRIN has search behavior completely different from other index types |
6845 | */ |
6846 | void |
6847 | brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
6848 | Cost *indexStartupCost, Cost *indexTotalCost, |
6849 | Selectivity *indexSelectivity, double *indexCorrelation, |
6850 | double *indexPages) |
6851 | { |
6852 | IndexOptInfo *index = path->indexinfo; |
6853 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
6854 | double numPages = index->pages; |
6855 | RelOptInfo *baserel = index->rel; |
6856 | RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root); |
6857 | Cost spc_seq_page_cost; |
6858 | Cost spc_random_page_cost; |
6859 | double qual_arg_cost; |
6860 | double qualSelectivity; |
6861 | BrinStatsData statsData; |
6862 | double indexRanges; |
6863 | double minimalRanges; |
6864 | double estimatedRanges; |
6865 | double selec; |
6866 | Relation indexRel; |
6867 | ListCell *l; |
6868 | VariableStatData vardata; |
6869 | |
6870 | Assert(rte->rtekind == RTE_RELATION); |
6871 | |
6872 | /* fetch estimated page cost for the tablespace containing the index */ |
6873 | get_tablespace_page_costs(index->reltablespace, |
6874 | &spc_random_page_cost, |
6875 | &spc_seq_page_cost); |
6876 | |
6877 | /* |
6878 | * Obtain some data from the index itself. A lock should have already |
6879 | * been obtained on the index in plancat.c. |
6880 | */ |
6881 | indexRel = index_open(index->indexoid, NoLock); |
6882 | brinGetStats(indexRel, &statsData); |
6883 | index_close(indexRel, NoLock); |
6884 | |
6885 | /* |
6886 | * Compute index correlation |
6887 | * |
6888 | * Because we can use all index quals equally when scanning, we can use |
6889 | * the largest correlation (in absolute value) among columns used by the |
6890 | * query. Start at zero, the worst possible case. If we cannot find any |
6891 | * correlation statistics, we will keep it as 0. |
6892 | */ |
6893 | *indexCorrelation = 0; |
6894 | |
6895 | foreach(l, path->indexclauses) |
6896 | { |
6897 | IndexClause *iclause = lfirst_node(IndexClause, l); |
6898 | AttrNumber attnum = index->indexkeys[iclause->indexcol]; |
6899 | |
6900 | /* attempt to lookup stats in relation for this index column */ |
6901 | if (attnum != 0) |
6902 | { |
6903 | /* Simple variable -- look to stats for the underlying table */ |
6904 | if (get_relation_stats_hook && |
6905 | (*get_relation_stats_hook) (root, rte, attnum, &vardata)) |
6906 | { |
6907 | /* |
6908 | * The hook took control of acquiring a stats tuple. If it |
6909 | * did supply a tuple, it'd better have supplied a freefunc. |
6910 | */ |
6911 | if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc) |
6912 | elog(ERROR, |
6913 | "no function provided to release variable stats with" ); |
6914 | } |
6915 | else |
6916 | { |
6917 | vardata.statsTuple = |
6918 | SearchSysCache3(STATRELATTINH, |
6919 | ObjectIdGetDatum(rte->relid), |
6920 | Int16GetDatum(attnum), |
6921 | BoolGetDatum(false)); |
6922 | vardata.freefunc = ReleaseSysCache; |
6923 | } |
6924 | } |
6925 | else |
6926 | { |
6927 | /* |
6928 | * Looks like we've found an expression column in the index. Let's |
6929 | * see if there's any stats for it. |
6930 | */ |
6931 | |
6932 | /* get the attnum from the 0-based index. */ |
6933 | attnum = iclause->indexcol + 1; |
6934 | |
6935 | if (get_index_stats_hook && |
6936 | (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata)) |
6937 | { |
6938 | /* |
6939 | * The hook took control of acquiring a stats tuple. If it |
6940 | * did supply a tuple, it'd better have supplied a freefunc. |
6941 | */ |
6942 | if (HeapTupleIsValid(vardata.statsTuple) && |
6943 | !vardata.freefunc) |
6944 | elog(ERROR, "no function provided to release variable stats with" ); |
6945 | } |
6946 | else |
6947 | { |
6948 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
6949 | ObjectIdGetDatum(index->indexoid), |
6950 | Int16GetDatum(attnum), |
6951 | BoolGetDatum(false)); |
6952 | vardata.freefunc = ReleaseSysCache; |
6953 | } |
6954 | } |
6955 | |
6956 | if (HeapTupleIsValid(vardata.statsTuple)) |
6957 | { |
6958 | AttStatsSlot sslot; |
6959 | |
6960 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
6961 | STATISTIC_KIND_CORRELATION, InvalidOid, |
6962 | ATTSTATSSLOT_NUMBERS)) |
6963 | { |
6964 | double varCorrelation = 0.0; |
6965 | |
6966 | if (sslot.nnumbers > 0) |
6967 | varCorrelation = Abs(sslot.numbers[0]); |
6968 | |
6969 | if (varCorrelation > *indexCorrelation) |
6970 | *indexCorrelation = varCorrelation; |
6971 | |
6972 | free_attstatsslot(&sslot); |
6973 | } |
6974 | } |
6975 | |
6976 | ReleaseVariableStats(vardata); |
6977 | } |
6978 | |
6979 | qualSelectivity = clauselist_selectivity(root, indexQuals, |
6980 | baserel->relid, |
6981 | JOIN_INNER, NULL); |
6982 | |
6983 | /* work out the actual number of ranges in the index */ |
6984 | indexRanges = Max(ceil((double) baserel->pages / statsData.pagesPerRange), |
6985 | 1.0); |
6986 | |
6987 | /* |
6988 | * Now calculate the minimum possible ranges we could match with if all of |
6989 | * the rows were in the perfect order in the table's heap. |
6990 | */ |
6991 | minimalRanges = ceil(indexRanges * qualSelectivity); |
6992 | |
6993 | /* |
6994 | * Now estimate the number of ranges that we'll touch by using the |
6995 | * indexCorrelation from the stats. Careful not to divide by zero (note |
6996 | * we're using the absolute value of the correlation). |
6997 | */ |
6998 | if (*indexCorrelation < 1.0e-10) |
6999 | estimatedRanges = indexRanges; |
7000 | else |
7001 | estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges); |
7002 | |
7003 | /* we expect to visit this portion of the table */ |
7004 | selec = estimatedRanges / indexRanges; |
7005 | |
7006 | CLAMP_PROBABILITY(selec); |
7007 | |
7008 | *indexSelectivity = selec; |
7009 | |
7010 | /* |
7011 | * Compute the index qual costs, much as in genericcostestimate, to add to |
7012 | * the index costs. We can disregard indexorderbys, since BRIN doesn't |
7013 | * support those. |
7014 | */ |
7015 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals); |
7016 | |
7017 | /* |
7018 | * Compute the startup cost as the cost to read the whole revmap |
7019 | * sequentially, including the cost to execute the index quals. |
7020 | */ |
7021 | *indexStartupCost = |
7022 | spc_seq_page_cost * statsData.revmapNumPages * loop_count; |
7023 | *indexStartupCost += qual_arg_cost; |
7024 | |
7025 | /* |
7026 | * To read a BRIN index there might be a bit of back and forth over |
7027 | * regular pages, as revmap might point to them out of sequential order; |
7028 | * calculate the total cost as reading the whole index in random order. |
7029 | */ |
7030 | *indexTotalCost = *indexStartupCost + |
7031 | spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count; |
7032 | |
7033 | /* |
7034 | * Charge a small amount per range tuple which we expect to match to. This |
7035 | * is meant to reflect the costs of manipulating the bitmap. The BRIN scan |
7036 | * will set a bit for each page in the range when we find a matching |
7037 | * range, so we must multiply the charge by the number of pages in the |
7038 | * range. |
7039 | */ |
7040 | *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges * |
7041 | statsData.pagesPerRange; |
7042 | |
7043 | *indexPages = index->pages; |
7044 | } |
7045 | |