| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * selfuncs.c |
| 4 | * Selectivity functions and index cost estimation functions for |
| 5 | * standard operators and index access methods. |
| 6 | * |
| 7 | * Selectivity routines are registered in the pg_operator catalog |
| 8 | * in the "oprrest" and "oprjoin" attributes. |
| 9 | * |
| 10 | * Index cost functions are located via the index AM's API struct, |
| 11 | * which is obtained from the handler function registered in pg_am. |
| 12 | * |
| 13 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 14 | * Portions Copyright (c) 1994, Regents of the University of California |
| 15 | * |
| 16 | * |
| 17 | * IDENTIFICATION |
| 18 | * src/backend/utils/adt/selfuncs.c |
| 19 | * |
| 20 | *------------------------------------------------------------------------- |
| 21 | */ |
| 22 | |
| 23 | /*---------- |
| 24 | * Operator selectivity estimation functions are called to estimate the |
| 25 | * selectivity of WHERE clauses whose top-level operator is their operator. |
| 26 | * We divide the problem into two cases: |
| 27 | * Restriction clause estimation: the clause involves vars of just |
| 28 | * one relation. |
| 29 | * Join clause estimation: the clause involves vars of multiple rels. |
| 30 | * Join selectivity estimation is far more difficult and usually less accurate |
| 31 | * than restriction estimation. |
| 32 | * |
| 33 | * When dealing with the inner scan of a nestloop join, we consider the |
| 34 | * join's joinclauses as restriction clauses for the inner relation, and |
| 35 | * treat vars of the outer relation as parameters (a/k/a constants of unknown |
| 36 | * values). So, restriction estimators need to be able to accept an argument |
| 37 | * telling which relation is to be treated as the variable. |
| 38 | * |
| 39 | * The call convention for a restriction estimator (oprrest function) is |
| 40 | * |
| 41 | * Selectivity oprrest (PlannerInfo *root, |
| 42 | * Oid operator, |
| 43 | * List *args, |
| 44 | * int varRelid); |
| 45 | * |
| 46 | * root: general information about the query (rtable and RelOptInfo lists |
| 47 | * are particularly important for the estimator). |
| 48 | * operator: OID of the specific operator in question. |
| 49 | * args: argument list from the operator clause. |
| 50 | * varRelid: if not zero, the relid (rtable index) of the relation to |
| 51 | * be treated as the variable relation. May be zero if the args list |
| 52 | * is known to contain vars of only one relation. |
| 53 | * |
| 54 | * This is represented at the SQL level (in pg_proc) as |
| 55 | * |
| 56 | * float8 oprrest (internal, oid, internal, int4); |
| 57 | * |
| 58 | * The result is a selectivity, that is, a fraction (0 to 1) of the rows |
| 59 | * of the relation that are expected to produce a TRUE result for the |
| 60 | * given operator. |
| 61 | * |
| 62 | * The call convention for a join estimator (oprjoin function) is similar |
| 63 | * except that varRelid is not needed, and instead join information is |
| 64 | * supplied: |
| 65 | * |
| 66 | * Selectivity oprjoin (PlannerInfo *root, |
| 67 | * Oid operator, |
| 68 | * List *args, |
| 69 | * JoinType jointype, |
| 70 | * SpecialJoinInfo *sjinfo); |
| 71 | * |
| 72 | * float8 oprjoin (internal, oid, internal, int2, internal); |
| 73 | * |
| 74 | * (Before Postgres 8.4, join estimators had only the first four of these |
| 75 | * parameters. That signature is still allowed, but deprecated.) The |
| 76 | * relationship between jointype and sjinfo is explained in the comments for |
| 77 | * clause_selectivity() --- the short version is that jointype is usually |
| 78 | * best ignored in favor of examining sjinfo. |
| 79 | * |
| 80 | * Join selectivity for regular inner and outer joins is defined as the |
| 81 | * fraction (0 to 1) of the cross product of the relations that is expected |
| 82 | * to produce a TRUE result for the given operator. For both semi and anti |
| 83 | * joins, however, the selectivity is defined as the fraction of the left-hand |
| 84 | * side relation's rows that are expected to have a match (ie, at least one |
| 85 | * row with a TRUE result) in the right-hand side. |
| 86 | * |
| 87 | * For both oprrest and oprjoin functions, the operator's input collation OID |
| 88 | * (if any) is passed using the standard fmgr mechanism, so that the estimator |
| 89 | * function can fetch it with PG_GET_COLLATION(). Note, however, that all |
| 90 | * statistics in pg_statistic are currently built using the relevant column's |
| 91 | * collation. Thus, in most cases where we are looking at statistics, we |
| 92 | * should ignore the operator collation and use the stats entry's collation. |
| 93 | * We expect that the error induced by doing this is usually not large enough |
| 94 | * to justify complicating matters. In any case, doing otherwise would yield |
| 95 | * entirely garbage results for ordered stats data such as histograms. |
| 96 | *---------- |
| 97 | */ |
| 98 | |
| 99 | #include "postgres.h" |
| 100 | |
| 101 | #include <ctype.h> |
| 102 | #include <math.h> |
| 103 | |
| 104 | #include "access/brin.h" |
| 105 | #include "access/gin.h" |
| 106 | #include "access/table.h" |
| 107 | #include "access/tableam.h" |
| 108 | #include "access/visibilitymap.h" |
| 109 | #include "catalog/pg_am.h" |
| 110 | #include "catalog/pg_collation.h" |
| 111 | #include "catalog/pg_operator.h" |
| 112 | #include "catalog/pg_statistic.h" |
| 113 | #include "catalog/pg_statistic_ext.h" |
| 114 | #include "executor/nodeAgg.h" |
| 115 | #include "miscadmin.h" |
| 116 | #include "nodes/makefuncs.h" |
| 117 | #include "nodes/nodeFuncs.h" |
| 118 | #include "optimizer/clauses.h" |
| 119 | #include "optimizer/cost.h" |
| 120 | #include "optimizer/optimizer.h" |
| 121 | #include "optimizer/pathnode.h" |
| 122 | #include "optimizer/paths.h" |
| 123 | #include "optimizer/plancat.h" |
| 124 | #include "parser/parse_clause.h" |
| 125 | #include "parser/parsetree.h" |
| 126 | #include "statistics/statistics.h" |
| 127 | #include "storage/bufmgr.h" |
| 128 | #include "utils/builtins.h" |
| 129 | #include "utils/date.h" |
| 130 | #include "utils/datum.h" |
| 131 | #include "utils/fmgroids.h" |
| 132 | #include "utils/index_selfuncs.h" |
| 133 | #include "utils/lsyscache.h" |
| 134 | #include "utils/memutils.h" |
| 135 | #include "utils/pg_locale.h" |
| 136 | #include "utils/rel.h" |
| 137 | #include "utils/selfuncs.h" |
| 138 | #include "utils/snapmgr.h" |
| 139 | #include "utils/spccache.h" |
| 140 | #include "utils/syscache.h" |
| 141 | #include "utils/timestamp.h" |
| 142 | #include "utils/typcache.h" |
| 143 | |
| 144 | |
| 145 | /* Hooks for plugins to get control when we ask for stats */ |
| 146 | get_relation_stats_hook_type get_relation_stats_hook = NULL; |
| 147 | get_index_stats_hook_type get_index_stats_hook = NULL; |
| 148 | |
| 149 | static double eqsel_internal(PG_FUNCTION_ARGS, bool negate); |
| 150 | static double eqjoinsel_inner(Oid opfuncoid, |
| 151 | VariableStatData *vardata1, VariableStatData *vardata2, |
| 152 | double nd1, double nd2, |
| 153 | bool isdefault1, bool isdefault2, |
| 154 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
| 155 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
| 156 | bool have_mcvs1, bool have_mcvs2); |
| 157 | static double eqjoinsel_semi(Oid opfuncoid, |
| 158 | VariableStatData *vardata1, VariableStatData *vardata2, |
| 159 | double nd1, double nd2, |
| 160 | bool isdefault1, bool isdefault2, |
| 161 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
| 162 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
| 163 | bool have_mcvs1, bool have_mcvs2, |
| 164 | RelOptInfo *inner_rel); |
| 165 | static bool estimate_multivariate_ndistinct(PlannerInfo *root, |
| 166 | RelOptInfo *rel, List **varinfos, double *ndistinct); |
| 167 | static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid, |
| 168 | double *scaledvalue, |
| 169 | Datum lobound, Datum hibound, Oid boundstypid, |
| 170 | double *scaledlobound, double *scaledhibound); |
| 171 | static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure); |
| 172 | static void convert_string_to_scalar(char *value, |
| 173 | double *scaledvalue, |
| 174 | char *lobound, |
| 175 | double *scaledlobound, |
| 176 | char *hibound, |
| 177 | double *scaledhibound); |
| 178 | static void convert_bytea_to_scalar(Datum value, |
| 179 | double *scaledvalue, |
| 180 | Datum lobound, |
| 181 | double *scaledlobound, |
| 182 | Datum hibound, |
| 183 | double *scaledhibound); |
| 184 | static double convert_one_string_to_scalar(char *value, |
| 185 | int rangelo, int rangehi); |
| 186 | static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen, |
| 187 | int rangelo, int rangehi); |
| 188 | static char *convert_string_datum(Datum value, Oid typid, Oid collid, |
| 189 | bool *failure); |
| 190 | static double convert_timevalue_to_scalar(Datum value, Oid typid, |
| 191 | bool *failure); |
| 192 | static void examine_simple_variable(PlannerInfo *root, Var *var, |
| 193 | VariableStatData *vardata); |
| 194 | static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata, |
| 195 | Oid sortop, Datum *min, Datum *max); |
| 196 | static bool get_actual_variable_range(PlannerInfo *root, |
| 197 | VariableStatData *vardata, |
| 198 | Oid sortop, |
| 199 | Datum *min, Datum *max); |
| 200 | static bool get_actual_variable_endpoint(Relation heapRel, |
| 201 | Relation indexRel, |
| 202 | ScanDirection indexscandir, |
| 203 | ScanKey scankeys, |
| 204 | int16 typLen, |
| 205 | bool typByVal, |
| 206 | TupleTableSlot *tableslot, |
| 207 | MemoryContext outercontext, |
| 208 | Datum *endpointDatum); |
| 209 | static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids); |
| 210 | |
| 211 | |
| 212 | /* |
| 213 | * eqsel - Selectivity of "=" for any data types. |
| 214 | * |
| 215 | * Note: this routine is also used to estimate selectivity for some |
| 216 | * operators that are not "=" but have comparable selectivity behavior, |
| 217 | * such as "~=" (geometric approximate-match). Even for "=", we must |
| 218 | * keep in mind that the left and right datatypes may differ. |
| 219 | */ |
| 220 | Datum |
| 221 | eqsel(PG_FUNCTION_ARGS) |
| 222 | { |
| 223 | PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false)); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Common code for eqsel() and neqsel() |
| 228 | */ |
| 229 | static double |
| 230 | eqsel_internal(PG_FUNCTION_ARGS, bool negate) |
| 231 | { |
| 232 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 233 | Oid operator = PG_GETARG_OID(1); |
| 234 | List *args = (List *) PG_GETARG_POINTER(2); |
| 235 | int varRelid = PG_GETARG_INT32(3); |
| 236 | VariableStatData vardata; |
| 237 | Node *other; |
| 238 | bool varonleft; |
| 239 | double selec; |
| 240 | |
| 241 | /* |
| 242 | * When asked about <>, we do the estimation using the corresponding = |
| 243 | * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac". |
| 244 | */ |
| 245 | if (negate) |
| 246 | { |
| 247 | operator = get_negator(operator); |
| 248 | if (!OidIsValid(operator)) |
| 249 | { |
| 250 | /* Use default selectivity (should we raise an error instead?) */ |
| 251 | return 1.0 - DEFAULT_EQ_SEL; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * If expression is not variable = something or something = variable, then |
| 257 | * punt and return a default estimate. |
| 258 | */ |
| 259 | if (!get_restriction_variable(root, args, varRelid, |
| 260 | &vardata, &other, &varonleft)) |
| 261 | return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL; |
| 262 | |
| 263 | /* |
| 264 | * We can do a lot better if the something is a constant. (Note: the |
| 265 | * Const might result from estimation rather than being a simple constant |
| 266 | * in the query.) |
| 267 | */ |
| 268 | if (IsA(other, Const)) |
| 269 | selec = var_eq_const(&vardata, operator, |
| 270 | ((Const *) other)->constvalue, |
| 271 | ((Const *) other)->constisnull, |
| 272 | varonleft, negate); |
| 273 | else |
| 274 | selec = var_eq_non_const(&vardata, operator, other, |
| 275 | varonleft, negate); |
| 276 | |
| 277 | ReleaseVariableStats(vardata); |
| 278 | |
| 279 | return selec; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * var_eq_const --- eqsel for var = const case |
| 284 | * |
| 285 | * This is exported so that some other estimation functions can use it. |
| 286 | */ |
| 287 | double |
| 288 | var_eq_const(VariableStatData *vardata, Oid operator, |
| 289 | Datum constval, bool constisnull, |
| 290 | bool varonleft, bool negate) |
| 291 | { |
| 292 | double selec; |
| 293 | double nullfrac = 0.0; |
| 294 | bool isdefault; |
| 295 | Oid opfuncoid; |
| 296 | |
| 297 | /* |
| 298 | * If the constant is NULL, assume operator is strict and return zero, ie, |
| 299 | * operator will never return TRUE. (It's zero even for a negator op.) |
| 300 | */ |
| 301 | if (constisnull) |
| 302 | return 0.0; |
| 303 | |
| 304 | /* |
| 305 | * Grab the nullfrac for use below. Note we allow use of nullfrac |
| 306 | * regardless of security check. |
| 307 | */ |
| 308 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 309 | { |
| 310 | Form_pg_statistic stats; |
| 311 | |
| 312 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 313 | nullfrac = stats->stanullfrac; |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * If we matched the var to a unique index or DISTINCT clause, assume |
| 318 | * there is exactly one match regardless of anything else. (This is |
| 319 | * slightly bogus, since the index or clause's equality operator might be |
| 320 | * different from ours, but it's much more likely to be right than |
| 321 | * ignoring the information.) |
| 322 | */ |
| 323 | if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0) |
| 324 | { |
| 325 | selec = 1.0 / vardata->rel->tuples; |
| 326 | } |
| 327 | else if (HeapTupleIsValid(vardata->statsTuple) && |
| 328 | statistic_proc_security_check(vardata, |
| 329 | (opfuncoid = get_opcode(operator)))) |
| 330 | { |
| 331 | AttStatsSlot sslot; |
| 332 | bool match = false; |
| 333 | int i; |
| 334 | |
| 335 | /* |
| 336 | * Is the constant "=" to any of the column's most common values? |
| 337 | * (Although the given operator may not really be "=", we will assume |
| 338 | * that seeing whether it returns TRUE is an appropriate test. If you |
| 339 | * don't like this, maybe you shouldn't be using eqsel for your |
| 340 | * operator...) |
| 341 | */ |
| 342 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 343 | STATISTIC_KIND_MCV, InvalidOid, |
| 344 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| 345 | { |
| 346 | FmgrInfo eqproc; |
| 347 | |
| 348 | fmgr_info(opfuncoid, &eqproc); |
| 349 | |
| 350 | for (i = 0; i < sslot.nvalues; i++) |
| 351 | { |
| 352 | /* be careful to apply operator right way 'round */ |
| 353 | if (varonleft) |
| 354 | match = DatumGetBool(FunctionCall2Coll(&eqproc, |
| 355 | sslot.stacoll, |
| 356 | sslot.values[i], |
| 357 | constval)); |
| 358 | else |
| 359 | match = DatumGetBool(FunctionCall2Coll(&eqproc, |
| 360 | sslot.stacoll, |
| 361 | constval, |
| 362 | sslot.values[i])); |
| 363 | if (match) |
| 364 | break; |
| 365 | } |
| 366 | } |
| 367 | else |
| 368 | { |
| 369 | /* no most-common-value info available */ |
| 370 | i = 0; /* keep compiler quiet */ |
| 371 | } |
| 372 | |
| 373 | if (match) |
| 374 | { |
| 375 | /* |
| 376 | * Constant is "=" to this common value. We know selectivity |
| 377 | * exactly (or as exactly as ANALYZE could calculate it, anyway). |
| 378 | */ |
| 379 | selec = sslot.numbers[i]; |
| 380 | } |
| 381 | else |
| 382 | { |
| 383 | /* |
| 384 | * Comparison is against a constant that is neither NULL nor any |
| 385 | * of the common values. Its selectivity cannot be more than |
| 386 | * this: |
| 387 | */ |
| 388 | double sumcommon = 0.0; |
| 389 | double otherdistinct; |
| 390 | |
| 391 | for (i = 0; i < sslot.nnumbers; i++) |
| 392 | sumcommon += sslot.numbers[i]; |
| 393 | selec = 1.0 - sumcommon - nullfrac; |
| 394 | CLAMP_PROBABILITY(selec); |
| 395 | |
| 396 | /* |
| 397 | * and in fact it's probably a good deal less. We approximate that |
| 398 | * all the not-common values share this remaining fraction |
| 399 | * equally, so we divide by the number of other distinct values. |
| 400 | */ |
| 401 | otherdistinct = get_variable_numdistinct(vardata, &isdefault) - |
| 402 | sslot.nnumbers; |
| 403 | if (otherdistinct > 1) |
| 404 | selec /= otherdistinct; |
| 405 | |
| 406 | /* |
| 407 | * Another cross-check: selectivity shouldn't be estimated as more |
| 408 | * than the least common "most common value". |
| 409 | */ |
| 410 | if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1]) |
| 411 | selec = sslot.numbers[sslot.nnumbers - 1]; |
| 412 | } |
| 413 | |
| 414 | free_attstatsslot(&sslot); |
| 415 | } |
| 416 | else |
| 417 | { |
| 418 | /* |
| 419 | * No ANALYZE stats available, so make a guess using estimated number |
| 420 | * of distinct values and assuming they are equally common. (The guess |
| 421 | * is unlikely to be very good, but we do know a few special cases.) |
| 422 | */ |
| 423 | selec = 1.0 / get_variable_numdistinct(vardata, &isdefault); |
| 424 | } |
| 425 | |
| 426 | /* now adjust if we wanted <> rather than = */ |
| 427 | if (negate) |
| 428 | selec = 1.0 - selec - nullfrac; |
| 429 | |
| 430 | /* result should be in range, but make sure... */ |
| 431 | CLAMP_PROBABILITY(selec); |
| 432 | |
| 433 | return selec; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * var_eq_non_const --- eqsel for var = something-other-than-const case |
| 438 | * |
| 439 | * This is exported so that some other estimation functions can use it. |
| 440 | */ |
| 441 | double |
| 442 | var_eq_non_const(VariableStatData *vardata, Oid operator, |
| 443 | Node *other, |
| 444 | bool varonleft, bool negate) |
| 445 | { |
| 446 | double selec; |
| 447 | double nullfrac = 0.0; |
| 448 | bool isdefault; |
| 449 | |
| 450 | /* |
| 451 | * Grab the nullfrac for use below. |
| 452 | */ |
| 453 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 454 | { |
| 455 | Form_pg_statistic stats; |
| 456 | |
| 457 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 458 | nullfrac = stats->stanullfrac; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * If we matched the var to a unique index or DISTINCT clause, assume |
| 463 | * there is exactly one match regardless of anything else. (This is |
| 464 | * slightly bogus, since the index or clause's equality operator might be |
| 465 | * different from ours, but it's much more likely to be right than |
| 466 | * ignoring the information.) |
| 467 | */ |
| 468 | if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0) |
| 469 | { |
| 470 | selec = 1.0 / vardata->rel->tuples; |
| 471 | } |
| 472 | else if (HeapTupleIsValid(vardata->statsTuple)) |
| 473 | { |
| 474 | double ndistinct; |
| 475 | AttStatsSlot sslot; |
| 476 | |
| 477 | /* |
| 478 | * Search is for a value that we do not know a priori, but we will |
| 479 | * assume it is not NULL. Estimate the selectivity as non-null |
| 480 | * fraction divided by number of distinct values, so that we get a |
| 481 | * result averaged over all possible values whether common or |
| 482 | * uncommon. (Essentially, we are assuming that the not-yet-known |
| 483 | * comparison value is equally likely to be any of the possible |
| 484 | * values, regardless of their frequency in the table. Is that a good |
| 485 | * idea?) |
| 486 | */ |
| 487 | selec = 1.0 - nullfrac; |
| 488 | ndistinct = get_variable_numdistinct(vardata, &isdefault); |
| 489 | if (ndistinct > 1) |
| 490 | selec /= ndistinct; |
| 491 | |
| 492 | /* |
| 493 | * Cross-check: selectivity should never be estimated as more than the |
| 494 | * most common value's. |
| 495 | */ |
| 496 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 497 | STATISTIC_KIND_MCV, InvalidOid, |
| 498 | ATTSTATSSLOT_NUMBERS)) |
| 499 | { |
| 500 | if (sslot.nnumbers > 0 && selec > sslot.numbers[0]) |
| 501 | selec = sslot.numbers[0]; |
| 502 | free_attstatsslot(&sslot); |
| 503 | } |
| 504 | } |
| 505 | else |
| 506 | { |
| 507 | /* |
| 508 | * No ANALYZE stats available, so make a guess using estimated number |
| 509 | * of distinct values and assuming they are equally common. (The guess |
| 510 | * is unlikely to be very good, but we do know a few special cases.) |
| 511 | */ |
| 512 | selec = 1.0 / get_variable_numdistinct(vardata, &isdefault); |
| 513 | } |
| 514 | |
| 515 | /* now adjust if we wanted <> rather than = */ |
| 516 | if (negate) |
| 517 | selec = 1.0 - selec - nullfrac; |
| 518 | |
| 519 | /* result should be in range, but make sure... */ |
| 520 | CLAMP_PROBABILITY(selec); |
| 521 | |
| 522 | return selec; |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * neqsel - Selectivity of "!=" for any data types. |
| 527 | * |
| 528 | * This routine is also used for some operators that are not "!=" |
| 529 | * but have comparable selectivity behavior. See above comments |
| 530 | * for eqsel(). |
| 531 | */ |
| 532 | Datum |
| 533 | neqsel(PG_FUNCTION_ARGS) |
| 534 | { |
| 535 | PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true)); |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars. |
| 540 | * |
| 541 | * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel. |
| 542 | * The isgt and iseq flags distinguish which of the four cases apply. |
| 543 | * |
| 544 | * The caller has commuted the clause, if necessary, so that we can treat |
| 545 | * the variable as being on the left. The caller must also make sure that |
| 546 | * the other side of the clause is a non-null Const, and dissect that into |
| 547 | * a value and datatype. (This definition simplifies some callers that |
| 548 | * want to estimate against a computed value instead of a Const node.) |
| 549 | * |
| 550 | * This routine works for any datatype (or pair of datatypes) known to |
| 551 | * convert_to_scalar(). If it is applied to some other datatype, |
| 552 | * it will return an approximate estimate based on assuming that the constant |
| 553 | * value falls in the middle of the bin identified by binary search. |
| 554 | */ |
| 555 | static double |
| 556 | scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq, |
| 557 | VariableStatData *vardata, Datum constval, Oid consttype) |
| 558 | { |
| 559 | Form_pg_statistic stats; |
| 560 | FmgrInfo opproc; |
| 561 | double mcv_selec, |
| 562 | hist_selec, |
| 563 | sumcommon; |
| 564 | double selec; |
| 565 | |
| 566 | if (!HeapTupleIsValid(vardata->statsTuple)) |
| 567 | { |
| 568 | /* |
| 569 | * No stats are available. Typically this means we have to fall back |
| 570 | * on the default estimate; but if the variable is CTID then we can |
| 571 | * make an estimate based on comparing the constant to the table size. |
| 572 | */ |
| 573 | if (vardata->var && IsA(vardata->var, Var) && |
| 574 | ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber) |
| 575 | { |
| 576 | ItemPointer itemptr; |
| 577 | double block; |
| 578 | double density; |
| 579 | |
| 580 | /* |
| 581 | * If the relation's empty, we're going to include all of it. |
| 582 | * (This is mostly to avoid divide-by-zero below.) |
| 583 | */ |
| 584 | if (vardata->rel->pages == 0) |
| 585 | return 1.0; |
| 586 | |
| 587 | itemptr = (ItemPointer) DatumGetPointer(constval); |
| 588 | block = ItemPointerGetBlockNumberNoCheck(itemptr); |
| 589 | |
| 590 | /* |
| 591 | * Determine the average number of tuples per page (density). |
| 592 | * |
| 593 | * Since the last page will, on average, be only half full, we can |
| 594 | * estimate it to have half as many tuples as earlier pages. So |
| 595 | * give it half the weight of a regular page. |
| 596 | */ |
| 597 | density = vardata->rel->tuples / (vardata->rel->pages - 0.5); |
| 598 | |
| 599 | /* If target is the last page, use half the density. */ |
| 600 | if (block >= vardata->rel->pages - 1) |
| 601 | density *= 0.5; |
| 602 | |
| 603 | /* |
| 604 | * Using the average tuples per page, calculate how far into the |
| 605 | * page the itemptr is likely to be and adjust block accordingly, |
| 606 | * by adding that fraction of a whole block (but never more than a |
| 607 | * whole block, no matter how high the itemptr's offset is). Here |
| 608 | * we are ignoring the possibility of dead-tuple line pointers, |
| 609 | * which is fairly bogus, but we lack the info to do better. |
| 610 | */ |
| 611 | if (density > 0.0) |
| 612 | { |
| 613 | OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr); |
| 614 | |
| 615 | block += Min(offset / density, 1.0); |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * Convert relative block number to selectivity. Again, the last |
| 620 | * page has only half weight. |
| 621 | */ |
| 622 | selec = block / (vardata->rel->pages - 0.5); |
| 623 | |
| 624 | /* |
| 625 | * The calculation so far gave us a selectivity for the "<=" case. |
| 626 | * We'll have one less tuple for "<" and one additional tuple for |
| 627 | * ">=", the latter of which we'll reverse the selectivity for |
| 628 | * below, so we can simply subtract one tuple for both cases. The |
| 629 | * cases that need this adjustment can be identified by iseq being |
| 630 | * equal to isgt. |
| 631 | */ |
| 632 | if (iseq == isgt && vardata->rel->tuples >= 1.0) |
| 633 | selec -= (1.0 / vardata->rel->tuples); |
| 634 | |
| 635 | /* Finally, reverse the selectivity for the ">", ">=" cases. */ |
| 636 | if (isgt) |
| 637 | selec = 1.0 - selec; |
| 638 | |
| 639 | CLAMP_PROBABILITY(selec); |
| 640 | return selec; |
| 641 | } |
| 642 | |
| 643 | /* no stats available, so default result */ |
| 644 | return DEFAULT_INEQ_SEL; |
| 645 | } |
| 646 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 647 | |
| 648 | fmgr_info(get_opcode(operator), &opproc); |
| 649 | |
| 650 | /* |
| 651 | * If we have most-common-values info, add up the fractions of the MCV |
| 652 | * entries that satisfy MCV OP CONST. These fractions contribute directly |
| 653 | * to the result selectivity. Also add up the total fraction represented |
| 654 | * by MCV entries. |
| 655 | */ |
| 656 | mcv_selec = mcv_selectivity(vardata, &opproc, constval, true, |
| 657 | &sumcommon); |
| 658 | |
| 659 | /* |
| 660 | * If there is a histogram, determine which bin the constant falls in, and |
| 661 | * compute the resulting contribution to selectivity. |
| 662 | */ |
| 663 | hist_selec = ineq_histogram_selectivity(root, vardata, |
| 664 | &opproc, isgt, iseq, |
| 665 | constval, consttype); |
| 666 | |
| 667 | /* |
| 668 | * Now merge the results from the MCV and histogram calculations, |
| 669 | * realizing that the histogram covers only the non-null values that are |
| 670 | * not listed in MCV. |
| 671 | */ |
| 672 | selec = 1.0 - stats->stanullfrac - sumcommon; |
| 673 | |
| 674 | if (hist_selec >= 0.0) |
| 675 | selec *= hist_selec; |
| 676 | else |
| 677 | { |
| 678 | /* |
| 679 | * If no histogram but there are values not accounted for by MCV, |
| 680 | * arbitrarily assume half of them will match. |
| 681 | */ |
| 682 | selec *= 0.5; |
| 683 | } |
| 684 | |
| 685 | selec += mcv_selec; |
| 686 | |
| 687 | /* result should be in range, but make sure... */ |
| 688 | CLAMP_PROBABILITY(selec); |
| 689 | |
| 690 | return selec; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * mcv_selectivity - Examine the MCV list for selectivity estimates |
| 695 | * |
| 696 | * Determine the fraction of the variable's MCV population that satisfies |
| 697 | * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also |
| 698 | * compute the fraction of the total column population represented by the MCV |
| 699 | * list. This code will work for any boolean-returning predicate operator. |
| 700 | * |
| 701 | * The function result is the MCV selectivity, and the fraction of the |
| 702 | * total population is returned into *sumcommonp. Zeroes are returned |
| 703 | * if there is no MCV list. |
| 704 | */ |
| 705 | double |
| 706 | mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, |
| 707 | Datum constval, bool varonleft, |
| 708 | double *sumcommonp) |
| 709 | { |
| 710 | double mcv_selec, |
| 711 | sumcommon; |
| 712 | AttStatsSlot sslot; |
| 713 | int i; |
| 714 | |
| 715 | mcv_selec = 0.0; |
| 716 | sumcommon = 0.0; |
| 717 | |
| 718 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 719 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
| 720 | get_attstatsslot(&sslot, vardata->statsTuple, |
| 721 | STATISTIC_KIND_MCV, InvalidOid, |
| 722 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| 723 | { |
| 724 | for (i = 0; i < sslot.nvalues; i++) |
| 725 | { |
| 726 | if (varonleft ? |
| 727 | DatumGetBool(FunctionCall2Coll(opproc, |
| 728 | sslot.stacoll, |
| 729 | sslot.values[i], |
| 730 | constval)) : |
| 731 | DatumGetBool(FunctionCall2Coll(opproc, |
| 732 | sslot.stacoll, |
| 733 | constval, |
| 734 | sslot.values[i]))) |
| 735 | mcv_selec += sslot.numbers[i]; |
| 736 | sumcommon += sslot.numbers[i]; |
| 737 | } |
| 738 | free_attstatsslot(&sslot); |
| 739 | } |
| 740 | |
| 741 | *sumcommonp = sumcommon; |
| 742 | return mcv_selec; |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * histogram_selectivity - Examine the histogram for selectivity estimates |
| 747 | * |
| 748 | * Determine the fraction of the variable's histogram entries that satisfy |
| 749 | * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. |
| 750 | * |
| 751 | * This code will work for any boolean-returning predicate operator, whether |
| 752 | * or not it has anything to do with the histogram sort operator. We are |
| 753 | * essentially using the histogram just as a representative sample. However, |
| 754 | * small histograms are unlikely to be all that representative, so the caller |
| 755 | * should be prepared to fall back on some other estimation approach when the |
| 756 | * histogram is missing or very small. It may also be prudent to combine this |
| 757 | * approach with another one when the histogram is small. |
| 758 | * |
| 759 | * If the actual histogram size is not at least min_hist_size, we won't bother |
| 760 | * to do the calculation at all. Also, if the n_skip parameter is > 0, we |
| 761 | * ignore the first and last n_skip histogram elements, on the grounds that |
| 762 | * they are outliers and hence not very representative. Typical values for |
| 763 | * these parameters are 10 and 1. |
| 764 | * |
| 765 | * The function result is the selectivity, or -1 if there is no histogram |
| 766 | * or it's smaller than min_hist_size. |
| 767 | * |
| 768 | * The output parameter *hist_size receives the actual histogram size, |
| 769 | * or zero if no histogram. Callers may use this number to decide how |
| 770 | * much faith to put in the function result. |
| 771 | * |
| 772 | * Note that the result disregards both the most-common-values (if any) and |
| 773 | * null entries. The caller is expected to combine this result with |
| 774 | * statistics for those portions of the column population. It may also be |
| 775 | * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs. |
| 776 | */ |
| 777 | double |
| 778 | histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc, |
| 779 | Datum constval, bool varonleft, |
| 780 | int min_hist_size, int n_skip, |
| 781 | int *hist_size) |
| 782 | { |
| 783 | double result; |
| 784 | AttStatsSlot sslot; |
| 785 | |
| 786 | /* check sanity of parameters */ |
| 787 | Assert(n_skip >= 0); |
| 788 | Assert(min_hist_size > 2 * n_skip); |
| 789 | |
| 790 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 791 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
| 792 | get_attstatsslot(&sslot, vardata->statsTuple, |
| 793 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
| 794 | ATTSTATSSLOT_VALUES)) |
| 795 | { |
| 796 | *hist_size = sslot.nvalues; |
| 797 | if (sslot.nvalues >= min_hist_size) |
| 798 | { |
| 799 | int nmatch = 0; |
| 800 | int i; |
| 801 | |
| 802 | for (i = n_skip; i < sslot.nvalues - n_skip; i++) |
| 803 | { |
| 804 | if (varonleft ? |
| 805 | DatumGetBool(FunctionCall2Coll(opproc, |
| 806 | sslot.stacoll, |
| 807 | sslot.values[i], |
| 808 | constval)) : |
| 809 | DatumGetBool(FunctionCall2Coll(opproc, |
| 810 | sslot.stacoll, |
| 811 | constval, |
| 812 | sslot.values[i]))) |
| 813 | nmatch++; |
| 814 | } |
| 815 | result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip)); |
| 816 | } |
| 817 | else |
| 818 | result = -1; |
| 819 | free_attstatsslot(&sslot); |
| 820 | } |
| 821 | else |
| 822 | { |
| 823 | *hist_size = 0; |
| 824 | result = -1; |
| 825 | } |
| 826 | |
| 827 | return result; |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * ineq_histogram_selectivity - Examine the histogram for scalarineqsel |
| 832 | * |
| 833 | * Determine the fraction of the variable's histogram population that |
| 834 | * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST. |
| 835 | * The isgt and iseq flags distinguish which of the four cases apply. |
| 836 | * |
| 837 | * Returns -1 if there is no histogram (valid results will always be >= 0). |
| 838 | * |
| 839 | * Note that the result disregards both the most-common-values (if any) and |
| 840 | * null entries. The caller is expected to combine this result with |
| 841 | * statistics for those portions of the column population. |
| 842 | * |
| 843 | * This is exported so that some other estimation functions can use it. |
| 844 | */ |
| 845 | double |
| 846 | ineq_histogram_selectivity(PlannerInfo *root, |
| 847 | VariableStatData *vardata, |
| 848 | FmgrInfo *opproc, bool isgt, bool iseq, |
| 849 | Datum constval, Oid consttype) |
| 850 | { |
| 851 | double hist_selec; |
| 852 | AttStatsSlot sslot; |
| 853 | |
| 854 | hist_selec = -1.0; |
| 855 | |
| 856 | /* |
| 857 | * Someday, ANALYZE might store more than one histogram per rel/att, |
| 858 | * corresponding to more than one possible sort ordering defined for the |
| 859 | * column type. However, to make that work we will need to figure out |
| 860 | * which staop to search for --- it's not necessarily the one we have at |
| 861 | * hand! (For example, we might have a '<=' operator rather than the '<' |
| 862 | * operator that will appear in staop.) For now, assume that whatever |
| 863 | * appears in pg_statistic is sorted the same way our operator sorts, or |
| 864 | * the reverse way if isgt is true. |
| 865 | */ |
| 866 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 867 | statistic_proc_security_check(vardata, opproc->fn_oid) && |
| 868 | get_attstatsslot(&sslot, vardata->statsTuple, |
| 869 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
| 870 | ATTSTATSSLOT_VALUES)) |
| 871 | { |
| 872 | if (sslot.nvalues > 1) |
| 873 | { |
| 874 | /* |
| 875 | * Use binary search to find the desired location, namely the |
| 876 | * right end of the histogram bin containing the comparison value, |
| 877 | * which is the leftmost entry for which the comparison operator |
| 878 | * succeeds (if isgt) or fails (if !isgt). (If the given operator |
| 879 | * isn't actually sort-compatible with the histogram, you'll get |
| 880 | * garbage results ... but probably not any more garbage-y than |
| 881 | * you would have from the old linear search.) |
| 882 | * |
| 883 | * In this loop, we pay no attention to whether the operator iseq |
| 884 | * or not; that detail will be mopped up below. (We cannot tell, |
| 885 | * anyway, whether the operator thinks the values are equal.) |
| 886 | * |
| 887 | * If the binary search accesses the first or last histogram |
| 888 | * entry, we try to replace that endpoint with the true column min |
| 889 | * or max as found by get_actual_variable_range(). This |
| 890 | * ameliorates misestimates when the min or max is moving as a |
| 891 | * result of changes since the last ANALYZE. Note that this could |
| 892 | * result in effectively including MCVs into the histogram that |
| 893 | * weren't there before, but we don't try to correct for that. |
| 894 | */ |
| 895 | double histfrac; |
| 896 | int lobound = 0; /* first possible slot to search */ |
| 897 | int hibound = sslot.nvalues; /* last+1 slot to search */ |
| 898 | bool have_end = false; |
| 899 | |
| 900 | /* |
| 901 | * If there are only two histogram entries, we'll want up-to-date |
| 902 | * values for both. (If there are more than two, we need at most |
| 903 | * one of them to be updated, so we deal with that within the |
| 904 | * loop.) |
| 905 | */ |
| 906 | if (sslot.nvalues == 2) |
| 907 | have_end = get_actual_variable_range(root, |
| 908 | vardata, |
| 909 | sslot.staop, |
| 910 | &sslot.values[0], |
| 911 | &sslot.values[1]); |
| 912 | |
| 913 | while (lobound < hibound) |
| 914 | { |
| 915 | int probe = (lobound + hibound) / 2; |
| 916 | bool ltcmp; |
| 917 | |
| 918 | /* |
| 919 | * If we find ourselves about to compare to the first or last |
| 920 | * histogram entry, first try to replace it with the actual |
| 921 | * current min or max (unless we already did so above). |
| 922 | */ |
| 923 | if (probe == 0 && sslot.nvalues > 2) |
| 924 | have_end = get_actual_variable_range(root, |
| 925 | vardata, |
| 926 | sslot.staop, |
| 927 | &sslot.values[0], |
| 928 | NULL); |
| 929 | else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2) |
| 930 | have_end = get_actual_variable_range(root, |
| 931 | vardata, |
| 932 | sslot.staop, |
| 933 | NULL, |
| 934 | &sslot.values[probe]); |
| 935 | |
| 936 | ltcmp = DatumGetBool(FunctionCall2Coll(opproc, |
| 937 | sslot.stacoll, |
| 938 | sslot.values[probe], |
| 939 | constval)); |
| 940 | if (isgt) |
| 941 | ltcmp = !ltcmp; |
| 942 | if (ltcmp) |
| 943 | lobound = probe + 1; |
| 944 | else |
| 945 | hibound = probe; |
| 946 | } |
| 947 | |
| 948 | if (lobound <= 0) |
| 949 | { |
| 950 | /* |
| 951 | * Constant is below lower histogram boundary. More |
| 952 | * precisely, we have found that no entry in the histogram |
| 953 | * satisfies the inequality clause (if !isgt) or they all do |
| 954 | * (if isgt). We estimate that that's true of the entire |
| 955 | * table, so set histfrac to 0.0 (which we'll flip to 1.0 |
| 956 | * below, if isgt). |
| 957 | */ |
| 958 | histfrac = 0.0; |
| 959 | } |
| 960 | else if (lobound >= sslot.nvalues) |
| 961 | { |
| 962 | /* |
| 963 | * Inverse case: constant is above upper histogram boundary. |
| 964 | */ |
| 965 | histfrac = 1.0; |
| 966 | } |
| 967 | else |
| 968 | { |
| 969 | /* We have values[i-1] <= constant <= values[i]. */ |
| 970 | int i = lobound; |
| 971 | double eq_selec = 0; |
| 972 | double val, |
| 973 | high, |
| 974 | low; |
| 975 | double binfrac; |
| 976 | |
| 977 | /* |
| 978 | * In the cases where we'll need it below, obtain an estimate |
| 979 | * of the selectivity of "x = constval". We use a calculation |
| 980 | * similar to what var_eq_const() does for a non-MCV constant, |
| 981 | * ie, estimate that all distinct non-MCV values occur equally |
| 982 | * often. But multiplication by "1.0 - sumcommon - nullfrac" |
| 983 | * will be done by our caller, so we shouldn't do that here. |
| 984 | * Therefore we can't try to clamp the estimate by reference |
| 985 | * to the least common MCV; the result would be too small. |
| 986 | * |
| 987 | * Note: since this is effectively assuming that constval |
| 988 | * isn't an MCV, it's logically dubious if constval in fact is |
| 989 | * one. But we have to apply *some* correction for equality, |
| 990 | * and anyway we cannot tell if constval is an MCV, since we |
| 991 | * don't have a suitable equality operator at hand. |
| 992 | */ |
| 993 | if (i == 1 || isgt == iseq) |
| 994 | { |
| 995 | double otherdistinct; |
| 996 | bool isdefault; |
| 997 | AttStatsSlot mcvslot; |
| 998 | |
| 999 | /* Get estimated number of distinct values */ |
| 1000 | otherdistinct = get_variable_numdistinct(vardata, |
| 1001 | &isdefault); |
| 1002 | |
| 1003 | /* Subtract off the number of known MCVs */ |
| 1004 | if (get_attstatsslot(&mcvslot, vardata->statsTuple, |
| 1005 | STATISTIC_KIND_MCV, InvalidOid, |
| 1006 | ATTSTATSSLOT_NUMBERS)) |
| 1007 | { |
| 1008 | otherdistinct -= mcvslot.nnumbers; |
| 1009 | free_attstatsslot(&mcvslot); |
| 1010 | } |
| 1011 | |
| 1012 | /* If result doesn't seem sane, leave eq_selec at 0 */ |
| 1013 | if (otherdistinct > 1) |
| 1014 | eq_selec = 1.0 / otherdistinct; |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * Convert the constant and the two nearest bin boundary |
| 1019 | * values to a uniform comparison scale, and do a linear |
| 1020 | * interpolation within this bin. |
| 1021 | */ |
| 1022 | if (convert_to_scalar(constval, consttype, sslot.stacoll, |
| 1023 | &val, |
| 1024 | sslot.values[i - 1], sslot.values[i], |
| 1025 | vardata->vartype, |
| 1026 | &low, &high)) |
| 1027 | { |
| 1028 | if (high <= low) |
| 1029 | { |
| 1030 | /* cope if bin boundaries appear identical */ |
| 1031 | binfrac = 0.5; |
| 1032 | } |
| 1033 | else if (val <= low) |
| 1034 | binfrac = 0.0; |
| 1035 | else if (val >= high) |
| 1036 | binfrac = 1.0; |
| 1037 | else |
| 1038 | { |
| 1039 | binfrac = (val - low) / (high - low); |
| 1040 | |
| 1041 | /* |
| 1042 | * Watch out for the possibility that we got a NaN or |
| 1043 | * Infinity from the division. This can happen |
| 1044 | * despite the previous checks, if for example "low" |
| 1045 | * is -Infinity. |
| 1046 | */ |
| 1047 | if (isnan(binfrac) || |
| 1048 | binfrac < 0.0 || binfrac > 1.0) |
| 1049 | binfrac = 0.5; |
| 1050 | } |
| 1051 | } |
| 1052 | else |
| 1053 | { |
| 1054 | /* |
| 1055 | * Ideally we'd produce an error here, on the grounds that |
| 1056 | * the given operator shouldn't have scalarXXsel |
| 1057 | * registered as its selectivity func unless we can deal |
| 1058 | * with its operand types. But currently, all manner of |
| 1059 | * stuff is invoking scalarXXsel, so give a default |
| 1060 | * estimate until that can be fixed. |
| 1061 | */ |
| 1062 | binfrac = 0.5; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * Now, compute the overall selectivity across the values |
| 1067 | * represented by the histogram. We have i-1 full bins and |
| 1068 | * binfrac partial bin below the constant. |
| 1069 | */ |
| 1070 | histfrac = (double) (i - 1) + binfrac; |
| 1071 | histfrac /= (double) (sslot.nvalues - 1); |
| 1072 | |
| 1073 | /* |
| 1074 | * At this point, histfrac is an estimate of the fraction of |
| 1075 | * the population represented by the histogram that satisfies |
| 1076 | * "x <= constval". Somewhat remarkably, this statement is |
| 1077 | * true regardless of which operator we were doing the probes |
| 1078 | * with, so long as convert_to_scalar() delivers reasonable |
| 1079 | * results. If the probe constant is equal to some histogram |
| 1080 | * entry, we would have considered the bin to the left of that |
| 1081 | * entry if probing with "<" or ">=", or the bin to the right |
| 1082 | * if probing with "<=" or ">"; but binfrac would have come |
| 1083 | * out as 1.0 in the first case and 0.0 in the second, leading |
| 1084 | * to the same histfrac in either case. For probe constants |
| 1085 | * between histogram entries, we find the same bin and get the |
| 1086 | * same estimate with any operator. |
| 1087 | * |
| 1088 | * The fact that the estimate corresponds to "x <= constval" |
| 1089 | * and not "x < constval" is because of the way that ANALYZE |
| 1090 | * constructs the histogram: each entry is, effectively, the |
| 1091 | * rightmost value in its sample bucket. So selectivity |
| 1092 | * values that are exact multiples of 1/(histogram_size-1) |
| 1093 | * should be understood as estimates including a histogram |
| 1094 | * entry plus everything to its left. |
| 1095 | * |
| 1096 | * However, that breaks down for the first histogram entry, |
| 1097 | * which necessarily is the leftmost value in its sample |
| 1098 | * bucket. That means the first histogram bin is slightly |
| 1099 | * narrower than the rest, by an amount equal to eq_selec. |
| 1100 | * Another way to say that is that we want "x <= leftmost" to |
| 1101 | * be estimated as eq_selec not zero. So, if we're dealing |
| 1102 | * with the first bin (i==1), rescale to make that true while |
| 1103 | * adjusting the rest of that bin linearly. |
| 1104 | */ |
| 1105 | if (i == 1) |
| 1106 | histfrac += eq_selec * (1.0 - binfrac); |
| 1107 | |
| 1108 | /* |
| 1109 | * "x <= constval" is good if we want an estimate for "<=" or |
| 1110 | * ">", but if we are estimating for "<" or ">=", we now need |
| 1111 | * to decrease the estimate by eq_selec. |
| 1112 | */ |
| 1113 | if (isgt == iseq) |
| 1114 | histfrac -= eq_selec; |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * Now the estimate is finished for "<" and "<=" cases. If we are |
| 1119 | * estimating for ">" or ">=", flip it. |
| 1120 | */ |
| 1121 | hist_selec = isgt ? (1.0 - histfrac) : histfrac; |
| 1122 | |
| 1123 | /* |
| 1124 | * The histogram boundaries are only approximate to begin with, |
| 1125 | * and may well be out of date anyway. Therefore, don't believe |
| 1126 | * extremely small or large selectivity estimates --- unless we |
| 1127 | * got actual current endpoint values from the table, in which |
| 1128 | * case just do the usual sanity clamp. Somewhat arbitrarily, we |
| 1129 | * set the cutoff for other cases at a hundredth of the histogram |
| 1130 | * resolution. |
| 1131 | */ |
| 1132 | if (have_end) |
| 1133 | CLAMP_PROBABILITY(hist_selec); |
| 1134 | else |
| 1135 | { |
| 1136 | double cutoff = 0.01 / (double) (sslot.nvalues - 1); |
| 1137 | |
| 1138 | if (hist_selec < cutoff) |
| 1139 | hist_selec = cutoff; |
| 1140 | else if (hist_selec > 1.0 - cutoff) |
| 1141 | hist_selec = 1.0 - cutoff; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | free_attstatsslot(&sslot); |
| 1146 | } |
| 1147 | |
| 1148 | return hist_selec; |
| 1149 | } |
| 1150 | |
| 1151 | /* |
| 1152 | * Common wrapper function for the selectivity estimators that simply |
| 1153 | * invoke scalarineqsel(). |
| 1154 | */ |
| 1155 | static Datum |
| 1156 | scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq) |
| 1157 | { |
| 1158 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 1159 | Oid operator = PG_GETARG_OID(1); |
| 1160 | List *args = (List *) PG_GETARG_POINTER(2); |
| 1161 | int varRelid = PG_GETARG_INT32(3); |
| 1162 | VariableStatData vardata; |
| 1163 | Node *other; |
| 1164 | bool varonleft; |
| 1165 | Datum constval; |
| 1166 | Oid consttype; |
| 1167 | double selec; |
| 1168 | |
| 1169 | /* |
| 1170 | * If expression is not variable op something or something op variable, |
| 1171 | * then punt and return a default estimate. |
| 1172 | */ |
| 1173 | if (!get_restriction_variable(root, args, varRelid, |
| 1174 | &vardata, &other, &varonleft)) |
| 1175 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 1176 | |
| 1177 | /* |
| 1178 | * Can't do anything useful if the something is not a constant, either. |
| 1179 | */ |
| 1180 | if (!IsA(other, Const)) |
| 1181 | { |
| 1182 | ReleaseVariableStats(vardata); |
| 1183 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * If the constant is NULL, assume operator is strict and return zero, ie, |
| 1188 | * operator will never return TRUE. |
| 1189 | */ |
| 1190 | if (((Const *) other)->constisnull) |
| 1191 | { |
| 1192 | ReleaseVariableStats(vardata); |
| 1193 | PG_RETURN_FLOAT8(0.0); |
| 1194 | } |
| 1195 | constval = ((Const *) other)->constvalue; |
| 1196 | consttype = ((Const *) other)->consttype; |
| 1197 | |
| 1198 | /* |
| 1199 | * Force the var to be on the left to simplify logic in scalarineqsel. |
| 1200 | */ |
| 1201 | if (!varonleft) |
| 1202 | { |
| 1203 | operator = get_commutator(operator); |
| 1204 | if (!operator) |
| 1205 | { |
| 1206 | /* Use default selectivity (should we raise an error instead?) */ |
| 1207 | ReleaseVariableStats(vardata); |
| 1208 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 1209 | } |
| 1210 | isgt = !isgt; |
| 1211 | } |
| 1212 | |
| 1213 | /* The rest of the work is done by scalarineqsel(). */ |
| 1214 | selec = scalarineqsel(root, operator, isgt, iseq, |
| 1215 | &vardata, constval, consttype); |
| 1216 | |
| 1217 | ReleaseVariableStats(vardata); |
| 1218 | |
| 1219 | PG_RETURN_FLOAT8((float8) selec); |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | * scalarltsel - Selectivity of "<" for scalars. |
| 1224 | */ |
| 1225 | Datum |
| 1226 | scalarltsel(PG_FUNCTION_ARGS) |
| 1227 | { |
| 1228 | return scalarineqsel_wrapper(fcinfo, false, false); |
| 1229 | } |
| 1230 | |
| 1231 | /* |
| 1232 | * scalarlesel - Selectivity of "<=" for scalars. |
| 1233 | */ |
| 1234 | Datum |
| 1235 | scalarlesel(PG_FUNCTION_ARGS) |
| 1236 | { |
| 1237 | return scalarineqsel_wrapper(fcinfo, false, true); |
| 1238 | } |
| 1239 | |
| 1240 | /* |
| 1241 | * scalargtsel - Selectivity of ">" for scalars. |
| 1242 | */ |
| 1243 | Datum |
| 1244 | scalargtsel(PG_FUNCTION_ARGS) |
| 1245 | { |
| 1246 | return scalarineqsel_wrapper(fcinfo, true, false); |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * scalargesel - Selectivity of ">=" for scalars. |
| 1251 | */ |
| 1252 | Datum |
| 1253 | scalargesel(PG_FUNCTION_ARGS) |
| 1254 | { |
| 1255 | return scalarineqsel_wrapper(fcinfo, true, true); |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * boolvarsel - Selectivity of Boolean variable. |
| 1260 | * |
| 1261 | * This can actually be called on any boolean-valued expression. If it |
| 1262 | * involves only Vars of the specified relation, and if there are statistics |
| 1263 | * about the Var or expression (the latter is possible if it's indexed) then |
| 1264 | * we'll produce a real estimate; otherwise it's just a default. |
| 1265 | */ |
| 1266 | Selectivity |
| 1267 | boolvarsel(PlannerInfo *root, Node *arg, int varRelid) |
| 1268 | { |
| 1269 | VariableStatData vardata; |
| 1270 | double selec; |
| 1271 | |
| 1272 | examine_variable(root, arg, varRelid, &vardata); |
| 1273 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 1274 | { |
| 1275 | /* |
| 1276 | * A boolean variable V is equivalent to the clause V = 't', so we |
| 1277 | * compute the selectivity as if that is what we have. |
| 1278 | */ |
| 1279 | selec = var_eq_const(&vardata, BooleanEqualOperator, |
| 1280 | BoolGetDatum(true), false, true, false); |
| 1281 | } |
| 1282 | else |
| 1283 | { |
| 1284 | /* Otherwise, the default estimate is 0.5 */ |
| 1285 | selec = 0.5; |
| 1286 | } |
| 1287 | ReleaseVariableStats(vardata); |
| 1288 | return selec; |
| 1289 | } |
| 1290 | |
| 1291 | /* |
| 1292 | * booltestsel - Selectivity of BooleanTest Node. |
| 1293 | */ |
| 1294 | Selectivity |
| 1295 | booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg, |
| 1296 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
| 1297 | { |
| 1298 | VariableStatData vardata; |
| 1299 | double selec; |
| 1300 | |
| 1301 | examine_variable(root, arg, varRelid, &vardata); |
| 1302 | |
| 1303 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 1304 | { |
| 1305 | Form_pg_statistic stats; |
| 1306 | double freq_null; |
| 1307 | AttStatsSlot sslot; |
| 1308 | |
| 1309 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
| 1310 | freq_null = stats->stanullfrac; |
| 1311 | |
| 1312 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
| 1313 | STATISTIC_KIND_MCV, InvalidOid, |
| 1314 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS) |
| 1315 | && sslot.nnumbers > 0) |
| 1316 | { |
| 1317 | double freq_true; |
| 1318 | double freq_false; |
| 1319 | |
| 1320 | /* |
| 1321 | * Get first MCV frequency and derive frequency for true. |
| 1322 | */ |
| 1323 | if (DatumGetBool(sslot.values[0])) |
| 1324 | freq_true = sslot.numbers[0]; |
| 1325 | else |
| 1326 | freq_true = 1.0 - sslot.numbers[0] - freq_null; |
| 1327 | |
| 1328 | /* |
| 1329 | * Next derive frequency for false. Then use these as appropriate |
| 1330 | * to derive frequency for each case. |
| 1331 | */ |
| 1332 | freq_false = 1.0 - freq_true - freq_null; |
| 1333 | |
| 1334 | switch (booltesttype) |
| 1335 | { |
| 1336 | case IS_UNKNOWN: |
| 1337 | /* select only NULL values */ |
| 1338 | selec = freq_null; |
| 1339 | break; |
| 1340 | case IS_NOT_UNKNOWN: |
| 1341 | /* select non-NULL values */ |
| 1342 | selec = 1.0 - freq_null; |
| 1343 | break; |
| 1344 | case IS_TRUE: |
| 1345 | /* select only TRUE values */ |
| 1346 | selec = freq_true; |
| 1347 | break; |
| 1348 | case IS_NOT_TRUE: |
| 1349 | /* select non-TRUE values */ |
| 1350 | selec = 1.0 - freq_true; |
| 1351 | break; |
| 1352 | case IS_FALSE: |
| 1353 | /* select only FALSE values */ |
| 1354 | selec = freq_false; |
| 1355 | break; |
| 1356 | case IS_NOT_FALSE: |
| 1357 | /* select non-FALSE values */ |
| 1358 | selec = 1.0 - freq_false; |
| 1359 | break; |
| 1360 | default: |
| 1361 | elog(ERROR, "unrecognized booltesttype: %d" , |
| 1362 | (int) booltesttype); |
| 1363 | selec = 0.0; /* Keep compiler quiet */ |
| 1364 | break; |
| 1365 | } |
| 1366 | |
| 1367 | free_attstatsslot(&sslot); |
| 1368 | } |
| 1369 | else |
| 1370 | { |
| 1371 | /* |
| 1372 | * No most-common-value info available. Still have null fraction |
| 1373 | * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust |
| 1374 | * for null fraction and assume a 50-50 split of TRUE and FALSE. |
| 1375 | */ |
| 1376 | switch (booltesttype) |
| 1377 | { |
| 1378 | case IS_UNKNOWN: |
| 1379 | /* select only NULL values */ |
| 1380 | selec = freq_null; |
| 1381 | break; |
| 1382 | case IS_NOT_UNKNOWN: |
| 1383 | /* select non-NULL values */ |
| 1384 | selec = 1.0 - freq_null; |
| 1385 | break; |
| 1386 | case IS_TRUE: |
| 1387 | case IS_FALSE: |
| 1388 | /* Assume we select half of the non-NULL values */ |
| 1389 | selec = (1.0 - freq_null) / 2.0; |
| 1390 | break; |
| 1391 | case IS_NOT_TRUE: |
| 1392 | case IS_NOT_FALSE: |
| 1393 | /* Assume we select NULLs plus half of the non-NULLs */ |
| 1394 | /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */ |
| 1395 | selec = (freq_null + 1.0) / 2.0; |
| 1396 | break; |
| 1397 | default: |
| 1398 | elog(ERROR, "unrecognized booltesttype: %d" , |
| 1399 | (int) booltesttype); |
| 1400 | selec = 0.0; /* Keep compiler quiet */ |
| 1401 | break; |
| 1402 | } |
| 1403 | } |
| 1404 | } |
| 1405 | else |
| 1406 | { |
| 1407 | /* |
| 1408 | * If we can't get variable statistics for the argument, perhaps |
| 1409 | * clause_selectivity can do something with it. We ignore the |
| 1410 | * possibility of a NULL value when using clause_selectivity, and just |
| 1411 | * assume the value is either TRUE or FALSE. |
| 1412 | */ |
| 1413 | switch (booltesttype) |
| 1414 | { |
| 1415 | case IS_UNKNOWN: |
| 1416 | selec = DEFAULT_UNK_SEL; |
| 1417 | break; |
| 1418 | case IS_NOT_UNKNOWN: |
| 1419 | selec = DEFAULT_NOT_UNK_SEL; |
| 1420 | break; |
| 1421 | case IS_TRUE: |
| 1422 | case IS_NOT_FALSE: |
| 1423 | selec = (double) clause_selectivity(root, arg, |
| 1424 | varRelid, |
| 1425 | jointype, sjinfo); |
| 1426 | break; |
| 1427 | case IS_FALSE: |
| 1428 | case IS_NOT_TRUE: |
| 1429 | selec = 1.0 - (double) clause_selectivity(root, arg, |
| 1430 | varRelid, |
| 1431 | jointype, sjinfo); |
| 1432 | break; |
| 1433 | default: |
| 1434 | elog(ERROR, "unrecognized booltesttype: %d" , |
| 1435 | (int) booltesttype); |
| 1436 | selec = 0.0; /* Keep compiler quiet */ |
| 1437 | break; |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | ReleaseVariableStats(vardata); |
| 1442 | |
| 1443 | /* result should be in range, but make sure... */ |
| 1444 | CLAMP_PROBABILITY(selec); |
| 1445 | |
| 1446 | return (Selectivity) selec; |
| 1447 | } |
| 1448 | |
| 1449 | /* |
| 1450 | * nulltestsel - Selectivity of NullTest Node. |
| 1451 | */ |
| 1452 | Selectivity |
| 1453 | nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg, |
| 1454 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
| 1455 | { |
| 1456 | VariableStatData vardata; |
| 1457 | double selec; |
| 1458 | |
| 1459 | examine_variable(root, arg, varRelid, &vardata); |
| 1460 | |
| 1461 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 1462 | { |
| 1463 | Form_pg_statistic stats; |
| 1464 | double freq_null; |
| 1465 | |
| 1466 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
| 1467 | freq_null = stats->stanullfrac; |
| 1468 | |
| 1469 | switch (nulltesttype) |
| 1470 | { |
| 1471 | case IS_NULL: |
| 1472 | |
| 1473 | /* |
| 1474 | * Use freq_null directly. |
| 1475 | */ |
| 1476 | selec = freq_null; |
| 1477 | break; |
| 1478 | case IS_NOT_NULL: |
| 1479 | |
| 1480 | /* |
| 1481 | * Select not unknown (not null) values. Calculate from |
| 1482 | * freq_null. |
| 1483 | */ |
| 1484 | selec = 1.0 - freq_null; |
| 1485 | break; |
| 1486 | default: |
| 1487 | elog(ERROR, "unrecognized nulltesttype: %d" , |
| 1488 | (int) nulltesttype); |
| 1489 | return (Selectivity) 0; /* keep compiler quiet */ |
| 1490 | } |
| 1491 | } |
| 1492 | else if (vardata.var && IsA(vardata.var, Var) && |
| 1493 | ((Var *) vardata.var)->varattno < 0) |
| 1494 | { |
| 1495 | /* |
| 1496 | * There are no stats for system columns, but we know they are never |
| 1497 | * NULL. |
| 1498 | */ |
| 1499 | selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0; |
| 1500 | } |
| 1501 | else |
| 1502 | { |
| 1503 | /* |
| 1504 | * No ANALYZE stats available, so make a guess |
| 1505 | */ |
| 1506 | switch (nulltesttype) |
| 1507 | { |
| 1508 | case IS_NULL: |
| 1509 | selec = DEFAULT_UNK_SEL; |
| 1510 | break; |
| 1511 | case IS_NOT_NULL: |
| 1512 | selec = DEFAULT_NOT_UNK_SEL; |
| 1513 | break; |
| 1514 | default: |
| 1515 | elog(ERROR, "unrecognized nulltesttype: %d" , |
| 1516 | (int) nulltesttype); |
| 1517 | return (Selectivity) 0; /* keep compiler quiet */ |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | ReleaseVariableStats(vardata); |
| 1522 | |
| 1523 | /* result should be in range, but make sure... */ |
| 1524 | CLAMP_PROBABILITY(selec); |
| 1525 | |
| 1526 | return (Selectivity) selec; |
| 1527 | } |
| 1528 | |
| 1529 | /* |
| 1530 | * strip_array_coercion - strip binary-compatible relabeling from an array expr |
| 1531 | * |
| 1532 | * For array values, the parser normally generates ArrayCoerceExpr conversions, |
| 1533 | * but it seems possible that RelabelType might show up. Also, the planner |
| 1534 | * is not currently tense about collapsing stacked ArrayCoerceExpr nodes, |
| 1535 | * so we need to be ready to deal with more than one level. |
| 1536 | */ |
| 1537 | static Node * |
| 1538 | strip_array_coercion(Node *node) |
| 1539 | { |
| 1540 | for (;;) |
| 1541 | { |
| 1542 | if (node && IsA(node, ArrayCoerceExpr)) |
| 1543 | { |
| 1544 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
| 1545 | |
| 1546 | /* |
| 1547 | * If the per-element expression is just a RelabelType on top of |
| 1548 | * CaseTestExpr, then we know it's a binary-compatible relabeling. |
| 1549 | */ |
| 1550 | if (IsA(acoerce->elemexpr, RelabelType) && |
| 1551 | IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr)) |
| 1552 | node = (Node *) acoerce->arg; |
| 1553 | else |
| 1554 | break; |
| 1555 | } |
| 1556 | else if (node && IsA(node, RelabelType)) |
| 1557 | { |
| 1558 | /* We don't really expect this case, but may as well cope */ |
| 1559 | node = (Node *) ((RelabelType *) node)->arg; |
| 1560 | } |
| 1561 | else |
| 1562 | break; |
| 1563 | } |
| 1564 | return node; |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | * scalararraysel - Selectivity of ScalarArrayOpExpr Node. |
| 1569 | */ |
| 1570 | Selectivity |
| 1571 | scalararraysel(PlannerInfo *root, |
| 1572 | ScalarArrayOpExpr *clause, |
| 1573 | bool is_join_clause, |
| 1574 | int varRelid, |
| 1575 | JoinType jointype, |
| 1576 | SpecialJoinInfo *sjinfo) |
| 1577 | { |
| 1578 | Oid operator = clause->opno; |
| 1579 | bool useOr = clause->useOr; |
| 1580 | bool isEquality = false; |
| 1581 | bool isInequality = false; |
| 1582 | Node *leftop; |
| 1583 | Node *rightop; |
| 1584 | Oid nominal_element_type; |
| 1585 | Oid nominal_element_collation; |
| 1586 | TypeCacheEntry *typentry; |
| 1587 | RegProcedure oprsel; |
| 1588 | FmgrInfo oprselproc; |
| 1589 | Selectivity s1; |
| 1590 | Selectivity s1disjoint; |
| 1591 | |
| 1592 | /* First, deconstruct the expression */ |
| 1593 | Assert(list_length(clause->args) == 2); |
| 1594 | leftop = (Node *) linitial(clause->args); |
| 1595 | rightop = (Node *) lsecond(clause->args); |
| 1596 | |
| 1597 | /* aggressively reduce both sides to constants */ |
| 1598 | leftop = estimate_expression_value(root, leftop); |
| 1599 | rightop = estimate_expression_value(root, rightop); |
| 1600 | |
| 1601 | /* get nominal (after relabeling) element type of rightop */ |
| 1602 | nominal_element_type = get_base_element_type(exprType(rightop)); |
| 1603 | if (!OidIsValid(nominal_element_type)) |
| 1604 | return (Selectivity) 0.5; /* probably shouldn't happen */ |
| 1605 | /* get nominal collation, too, for generating constants */ |
| 1606 | nominal_element_collation = exprCollation(rightop); |
| 1607 | |
| 1608 | /* look through any binary-compatible relabeling of rightop */ |
| 1609 | rightop = strip_array_coercion(rightop); |
| 1610 | |
| 1611 | /* |
| 1612 | * Detect whether the operator is the default equality or inequality |
| 1613 | * operator of the array element type. |
| 1614 | */ |
| 1615 | typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR); |
| 1616 | if (OidIsValid(typentry->eq_opr)) |
| 1617 | { |
| 1618 | if (operator == typentry->eq_opr) |
| 1619 | isEquality = true; |
| 1620 | else if (get_negator(operator) == typentry->eq_opr) |
| 1621 | isInequality = true; |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * If it is equality or inequality, we might be able to estimate this as a |
| 1626 | * form of array containment; for instance "const = ANY(column)" can be |
| 1627 | * treated as "ARRAY[const] <@ column". scalararraysel_containment tries |
| 1628 | * that, and returns the selectivity estimate if successful, or -1 if not. |
| 1629 | */ |
| 1630 | if ((isEquality || isInequality) && !is_join_clause) |
| 1631 | { |
| 1632 | s1 = scalararraysel_containment(root, leftop, rightop, |
| 1633 | nominal_element_type, |
| 1634 | isEquality, useOr, varRelid); |
| 1635 | if (s1 >= 0.0) |
| 1636 | return s1; |
| 1637 | } |
| 1638 | |
| 1639 | /* |
| 1640 | * Look up the underlying operator's selectivity estimator. Punt if it |
| 1641 | * hasn't got one. |
| 1642 | */ |
| 1643 | if (is_join_clause) |
| 1644 | oprsel = get_oprjoin(operator); |
| 1645 | else |
| 1646 | oprsel = get_oprrest(operator); |
| 1647 | if (!oprsel) |
| 1648 | return (Selectivity) 0.5; |
| 1649 | fmgr_info(oprsel, &oprselproc); |
| 1650 | |
| 1651 | /* |
| 1652 | * In the array-containment check above, we must only believe that an |
| 1653 | * operator is equality or inequality if it is the default btree equality |
| 1654 | * operator (or its negator) for the element type, since those are the |
| 1655 | * operators that array containment will use. But in what follows, we can |
| 1656 | * be a little laxer, and also believe that any operators using eqsel() or |
| 1657 | * neqsel() as selectivity estimator act like equality or inequality. |
| 1658 | */ |
| 1659 | if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL) |
| 1660 | isEquality = true; |
| 1661 | else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL) |
| 1662 | isInequality = true; |
| 1663 | |
| 1664 | /* |
| 1665 | * We consider three cases: |
| 1666 | * |
| 1667 | * 1. rightop is an Array constant: deconstruct the array, apply the |
| 1668 | * operator's selectivity function for each array element, and merge the |
| 1669 | * results in the same way that clausesel.c does for AND/OR combinations. |
| 1670 | * |
| 1671 | * 2. rightop is an ARRAY[] construct: apply the operator's selectivity |
| 1672 | * function for each element of the ARRAY[] construct, and merge. |
| 1673 | * |
| 1674 | * 3. otherwise, make a guess ... |
| 1675 | */ |
| 1676 | if (rightop && IsA(rightop, Const)) |
| 1677 | { |
| 1678 | Datum arraydatum = ((Const *) rightop)->constvalue; |
| 1679 | bool arrayisnull = ((Const *) rightop)->constisnull; |
| 1680 | ArrayType *arrayval; |
| 1681 | int16 elmlen; |
| 1682 | bool elmbyval; |
| 1683 | char elmalign; |
| 1684 | int num_elems; |
| 1685 | Datum *elem_values; |
| 1686 | bool *elem_nulls; |
| 1687 | int i; |
| 1688 | |
| 1689 | if (arrayisnull) /* qual can't succeed if null array */ |
| 1690 | return (Selectivity) 0.0; |
| 1691 | arrayval = DatumGetArrayTypeP(arraydatum); |
| 1692 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| 1693 | &elmlen, &elmbyval, &elmalign); |
| 1694 | deconstruct_array(arrayval, |
| 1695 | ARR_ELEMTYPE(arrayval), |
| 1696 | elmlen, elmbyval, elmalign, |
| 1697 | &elem_values, &elem_nulls, &num_elems); |
| 1698 | |
| 1699 | /* |
| 1700 | * For generic operators, we assume the probability of success is |
| 1701 | * independent for each array element. But for "= ANY" or "<> ALL", |
| 1702 | * if the array elements are distinct (which'd typically be the case) |
| 1703 | * then the probabilities are disjoint, and we should just sum them. |
| 1704 | * |
| 1705 | * If we were being really tense we would try to confirm that the |
| 1706 | * elements are all distinct, but that would be expensive and it |
| 1707 | * doesn't seem to be worth the cycles; it would amount to penalizing |
| 1708 | * well-written queries in favor of poorly-written ones. However, we |
| 1709 | * do protect ourselves a little bit by checking whether the |
| 1710 | * disjointness assumption leads to an impossible (out of range) |
| 1711 | * probability; if so, we fall back to the normal calculation. |
| 1712 | */ |
| 1713 | s1 = s1disjoint = (useOr ? 0.0 : 1.0); |
| 1714 | |
| 1715 | for (i = 0; i < num_elems; i++) |
| 1716 | { |
| 1717 | List *args; |
| 1718 | Selectivity s2; |
| 1719 | |
| 1720 | args = list_make2(leftop, |
| 1721 | makeConst(nominal_element_type, |
| 1722 | -1, |
| 1723 | nominal_element_collation, |
| 1724 | elmlen, |
| 1725 | elem_values[i], |
| 1726 | elem_nulls[i], |
| 1727 | elmbyval)); |
| 1728 | if (is_join_clause) |
| 1729 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
| 1730 | clause->inputcollid, |
| 1731 | PointerGetDatum(root), |
| 1732 | ObjectIdGetDatum(operator), |
| 1733 | PointerGetDatum(args), |
| 1734 | Int16GetDatum(jointype), |
| 1735 | PointerGetDatum(sjinfo))); |
| 1736 | else |
| 1737 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
| 1738 | clause->inputcollid, |
| 1739 | PointerGetDatum(root), |
| 1740 | ObjectIdGetDatum(operator), |
| 1741 | PointerGetDatum(args), |
| 1742 | Int32GetDatum(varRelid))); |
| 1743 | |
| 1744 | if (useOr) |
| 1745 | { |
| 1746 | s1 = s1 + s2 - s1 * s2; |
| 1747 | if (isEquality) |
| 1748 | s1disjoint += s2; |
| 1749 | } |
| 1750 | else |
| 1751 | { |
| 1752 | s1 = s1 * s2; |
| 1753 | if (isInequality) |
| 1754 | s1disjoint += s2 - 1.0; |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | /* accept disjoint-probability estimate if in range */ |
| 1759 | if ((useOr ? isEquality : isInequality) && |
| 1760 | s1disjoint >= 0.0 && s1disjoint <= 1.0) |
| 1761 | s1 = s1disjoint; |
| 1762 | } |
| 1763 | else if (rightop && IsA(rightop, ArrayExpr) && |
| 1764 | !((ArrayExpr *) rightop)->multidims) |
| 1765 | { |
| 1766 | ArrayExpr *arrayexpr = (ArrayExpr *) rightop; |
| 1767 | int16 elmlen; |
| 1768 | bool elmbyval; |
| 1769 | ListCell *l; |
| 1770 | |
| 1771 | get_typlenbyval(arrayexpr->element_typeid, |
| 1772 | &elmlen, &elmbyval); |
| 1773 | |
| 1774 | /* |
| 1775 | * We use the assumption of disjoint probabilities here too, although |
| 1776 | * the odds of equal array elements are rather higher if the elements |
| 1777 | * are not all constants (which they won't be, else constant folding |
| 1778 | * would have reduced the ArrayExpr to a Const). In this path it's |
| 1779 | * critical to have the sanity check on the s1disjoint estimate. |
| 1780 | */ |
| 1781 | s1 = s1disjoint = (useOr ? 0.0 : 1.0); |
| 1782 | |
| 1783 | foreach(l, arrayexpr->elements) |
| 1784 | { |
| 1785 | Node *elem = (Node *) lfirst(l); |
| 1786 | List *args; |
| 1787 | Selectivity s2; |
| 1788 | |
| 1789 | /* |
| 1790 | * Theoretically, if elem isn't of nominal_element_type we should |
| 1791 | * insert a RelabelType, but it seems unlikely that any operator |
| 1792 | * estimation function would really care ... |
| 1793 | */ |
| 1794 | args = list_make2(leftop, elem); |
| 1795 | if (is_join_clause) |
| 1796 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
| 1797 | clause->inputcollid, |
| 1798 | PointerGetDatum(root), |
| 1799 | ObjectIdGetDatum(operator), |
| 1800 | PointerGetDatum(args), |
| 1801 | Int16GetDatum(jointype), |
| 1802 | PointerGetDatum(sjinfo))); |
| 1803 | else |
| 1804 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
| 1805 | clause->inputcollid, |
| 1806 | PointerGetDatum(root), |
| 1807 | ObjectIdGetDatum(operator), |
| 1808 | PointerGetDatum(args), |
| 1809 | Int32GetDatum(varRelid))); |
| 1810 | |
| 1811 | if (useOr) |
| 1812 | { |
| 1813 | s1 = s1 + s2 - s1 * s2; |
| 1814 | if (isEquality) |
| 1815 | s1disjoint += s2; |
| 1816 | } |
| 1817 | else |
| 1818 | { |
| 1819 | s1 = s1 * s2; |
| 1820 | if (isInequality) |
| 1821 | s1disjoint += s2 - 1.0; |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | /* accept disjoint-probability estimate if in range */ |
| 1826 | if ((useOr ? isEquality : isInequality) && |
| 1827 | s1disjoint >= 0.0 && s1disjoint <= 1.0) |
| 1828 | s1 = s1disjoint; |
| 1829 | } |
| 1830 | else |
| 1831 | { |
| 1832 | CaseTestExpr *dummyexpr; |
| 1833 | List *args; |
| 1834 | Selectivity s2; |
| 1835 | int i; |
| 1836 | |
| 1837 | /* |
| 1838 | * We need a dummy rightop to pass to the operator selectivity |
| 1839 | * routine. It can be pretty much anything that doesn't look like a |
| 1840 | * constant; CaseTestExpr is a convenient choice. |
| 1841 | */ |
| 1842 | dummyexpr = makeNode(CaseTestExpr); |
| 1843 | dummyexpr->typeId = nominal_element_type; |
| 1844 | dummyexpr->typeMod = -1; |
| 1845 | dummyexpr->collation = clause->inputcollid; |
| 1846 | args = list_make2(leftop, dummyexpr); |
| 1847 | if (is_join_clause) |
| 1848 | s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc, |
| 1849 | clause->inputcollid, |
| 1850 | PointerGetDatum(root), |
| 1851 | ObjectIdGetDatum(operator), |
| 1852 | PointerGetDatum(args), |
| 1853 | Int16GetDatum(jointype), |
| 1854 | PointerGetDatum(sjinfo))); |
| 1855 | else |
| 1856 | s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc, |
| 1857 | clause->inputcollid, |
| 1858 | PointerGetDatum(root), |
| 1859 | ObjectIdGetDatum(operator), |
| 1860 | PointerGetDatum(args), |
| 1861 | Int32GetDatum(varRelid))); |
| 1862 | s1 = useOr ? 0.0 : 1.0; |
| 1863 | |
| 1864 | /* |
| 1865 | * Arbitrarily assume 10 elements in the eventual array value (see |
| 1866 | * also estimate_array_length). We don't risk an assumption of |
| 1867 | * disjoint probabilities here. |
| 1868 | */ |
| 1869 | for (i = 0; i < 10; i++) |
| 1870 | { |
| 1871 | if (useOr) |
| 1872 | s1 = s1 + s2 - s1 * s2; |
| 1873 | else |
| 1874 | s1 = s1 * s2; |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | /* result should be in range, but make sure... */ |
| 1879 | CLAMP_PROBABILITY(s1); |
| 1880 | |
| 1881 | return s1; |
| 1882 | } |
| 1883 | |
| 1884 | /* |
| 1885 | * Estimate number of elements in the array yielded by an expression. |
| 1886 | * |
| 1887 | * It's important that this agree with scalararraysel. |
| 1888 | */ |
| 1889 | int |
| 1890 | estimate_array_length(Node *arrayexpr) |
| 1891 | { |
| 1892 | /* look through any binary-compatible relabeling of arrayexpr */ |
| 1893 | arrayexpr = strip_array_coercion(arrayexpr); |
| 1894 | |
| 1895 | if (arrayexpr && IsA(arrayexpr, Const)) |
| 1896 | { |
| 1897 | Datum arraydatum = ((Const *) arrayexpr)->constvalue; |
| 1898 | bool arrayisnull = ((Const *) arrayexpr)->constisnull; |
| 1899 | ArrayType *arrayval; |
| 1900 | |
| 1901 | if (arrayisnull) |
| 1902 | return 0; |
| 1903 | arrayval = DatumGetArrayTypeP(arraydatum); |
| 1904 | return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval)); |
| 1905 | } |
| 1906 | else if (arrayexpr && IsA(arrayexpr, ArrayExpr) && |
| 1907 | !((ArrayExpr *) arrayexpr)->multidims) |
| 1908 | { |
| 1909 | return list_length(((ArrayExpr *) arrayexpr)->elements); |
| 1910 | } |
| 1911 | else |
| 1912 | { |
| 1913 | /* default guess --- see also scalararraysel */ |
| 1914 | return 10; |
| 1915 | } |
| 1916 | } |
| 1917 | |
| 1918 | /* |
| 1919 | * rowcomparesel - Selectivity of RowCompareExpr Node. |
| 1920 | * |
| 1921 | * We estimate RowCompare selectivity by considering just the first (high |
| 1922 | * order) columns, which makes it equivalent to an ordinary OpExpr. While |
| 1923 | * this estimate could be refined by considering additional columns, it |
| 1924 | * seems unlikely that we could do a lot better without multi-column |
| 1925 | * statistics. |
| 1926 | */ |
| 1927 | Selectivity |
| 1928 | rowcomparesel(PlannerInfo *root, |
| 1929 | RowCompareExpr *clause, |
| 1930 | int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo) |
| 1931 | { |
| 1932 | Selectivity s1; |
| 1933 | Oid opno = linitial_oid(clause->opnos); |
| 1934 | Oid inputcollid = linitial_oid(clause->inputcollids); |
| 1935 | List *opargs; |
| 1936 | bool is_join_clause; |
| 1937 | |
| 1938 | /* Build equivalent arg list for single operator */ |
| 1939 | opargs = list_make2(linitial(clause->largs), linitial(clause->rargs)); |
| 1940 | |
| 1941 | /* |
| 1942 | * Decide if it's a join clause. This should match clausesel.c's |
| 1943 | * treat_as_join_clause(), except that we intentionally consider only the |
| 1944 | * leading columns and not the rest of the clause. |
| 1945 | */ |
| 1946 | if (varRelid != 0) |
| 1947 | { |
| 1948 | /* |
| 1949 | * Caller is forcing restriction mode (eg, because we are examining an |
| 1950 | * inner indexscan qual). |
| 1951 | */ |
| 1952 | is_join_clause = false; |
| 1953 | } |
| 1954 | else if (sjinfo == NULL) |
| 1955 | { |
| 1956 | /* |
| 1957 | * It must be a restriction clause, since it's being evaluated at a |
| 1958 | * scan node. |
| 1959 | */ |
| 1960 | is_join_clause = false; |
| 1961 | } |
| 1962 | else |
| 1963 | { |
| 1964 | /* |
| 1965 | * Otherwise, it's a join if there's more than one relation used. |
| 1966 | */ |
| 1967 | is_join_clause = (NumRelids((Node *) opargs) > 1); |
| 1968 | } |
| 1969 | |
| 1970 | if (is_join_clause) |
| 1971 | { |
| 1972 | /* Estimate selectivity for a join clause. */ |
| 1973 | s1 = join_selectivity(root, opno, |
| 1974 | opargs, |
| 1975 | inputcollid, |
| 1976 | jointype, |
| 1977 | sjinfo); |
| 1978 | } |
| 1979 | else |
| 1980 | { |
| 1981 | /* Estimate selectivity for a restriction clause. */ |
| 1982 | s1 = restriction_selectivity(root, opno, |
| 1983 | opargs, |
| 1984 | inputcollid, |
| 1985 | varRelid); |
| 1986 | } |
| 1987 | |
| 1988 | return s1; |
| 1989 | } |
| 1990 | |
| 1991 | /* |
| 1992 | * eqjoinsel - Join selectivity of "=" |
| 1993 | */ |
| 1994 | Datum |
| 1995 | eqjoinsel(PG_FUNCTION_ARGS) |
| 1996 | { |
| 1997 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 1998 | Oid operator = PG_GETARG_OID(1); |
| 1999 | List *args = (List *) PG_GETARG_POINTER(2); |
| 2000 | |
| 2001 | #ifdef NOT_USED |
| 2002 | JoinType jointype = (JoinType) PG_GETARG_INT16(3); |
| 2003 | #endif |
| 2004 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4); |
| 2005 | double selec; |
| 2006 | double selec_inner; |
| 2007 | VariableStatData vardata1; |
| 2008 | VariableStatData vardata2; |
| 2009 | double nd1; |
| 2010 | double nd2; |
| 2011 | bool isdefault1; |
| 2012 | bool isdefault2; |
| 2013 | Oid opfuncoid; |
| 2014 | AttStatsSlot sslot1; |
| 2015 | AttStatsSlot sslot2; |
| 2016 | Form_pg_statistic stats1 = NULL; |
| 2017 | Form_pg_statistic stats2 = NULL; |
| 2018 | bool have_mcvs1 = false; |
| 2019 | bool have_mcvs2 = false; |
| 2020 | bool join_is_reversed; |
| 2021 | RelOptInfo *inner_rel; |
| 2022 | |
| 2023 | get_join_variables(root, args, sjinfo, |
| 2024 | &vardata1, &vardata2, &join_is_reversed); |
| 2025 | |
| 2026 | nd1 = get_variable_numdistinct(&vardata1, &isdefault1); |
| 2027 | nd2 = get_variable_numdistinct(&vardata2, &isdefault2); |
| 2028 | |
| 2029 | opfuncoid = get_opcode(operator); |
| 2030 | |
| 2031 | memset(&sslot1, 0, sizeof(sslot1)); |
| 2032 | memset(&sslot2, 0, sizeof(sslot2)); |
| 2033 | |
| 2034 | if (HeapTupleIsValid(vardata1.statsTuple)) |
| 2035 | { |
| 2036 | /* note we allow use of nullfrac regardless of security check */ |
| 2037 | stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple); |
| 2038 | if (statistic_proc_security_check(&vardata1, opfuncoid)) |
| 2039 | have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple, |
| 2040 | STATISTIC_KIND_MCV, InvalidOid, |
| 2041 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); |
| 2042 | } |
| 2043 | |
| 2044 | if (HeapTupleIsValid(vardata2.statsTuple)) |
| 2045 | { |
| 2046 | /* note we allow use of nullfrac regardless of security check */ |
| 2047 | stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple); |
| 2048 | if (statistic_proc_security_check(&vardata2, opfuncoid)) |
| 2049 | have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple, |
| 2050 | STATISTIC_KIND_MCV, InvalidOid, |
| 2051 | ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS); |
| 2052 | } |
| 2053 | |
| 2054 | /* We need to compute the inner-join selectivity in all cases */ |
| 2055 | selec_inner = eqjoinsel_inner(opfuncoid, |
| 2056 | &vardata1, &vardata2, |
| 2057 | nd1, nd2, |
| 2058 | isdefault1, isdefault2, |
| 2059 | &sslot1, &sslot2, |
| 2060 | stats1, stats2, |
| 2061 | have_mcvs1, have_mcvs2); |
| 2062 | |
| 2063 | switch (sjinfo->jointype) |
| 2064 | { |
| 2065 | case JOIN_INNER: |
| 2066 | case JOIN_LEFT: |
| 2067 | case JOIN_FULL: |
| 2068 | selec = selec_inner; |
| 2069 | break; |
| 2070 | case JOIN_SEMI: |
| 2071 | case JOIN_ANTI: |
| 2072 | |
| 2073 | /* |
| 2074 | * Look up the join's inner relation. min_righthand is sufficient |
| 2075 | * information because neither SEMI nor ANTI joins permit any |
| 2076 | * reassociation into or out of their RHS, so the righthand will |
| 2077 | * always be exactly that set of rels. |
| 2078 | */ |
| 2079 | inner_rel = find_join_input_rel(root, sjinfo->min_righthand); |
| 2080 | |
| 2081 | if (!join_is_reversed) |
| 2082 | selec = eqjoinsel_semi(opfuncoid, |
| 2083 | &vardata1, &vardata2, |
| 2084 | nd1, nd2, |
| 2085 | isdefault1, isdefault2, |
| 2086 | &sslot1, &sslot2, |
| 2087 | stats1, stats2, |
| 2088 | have_mcvs1, have_mcvs2, |
| 2089 | inner_rel); |
| 2090 | else |
| 2091 | { |
| 2092 | Oid commop = get_commutator(operator); |
| 2093 | Oid commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid; |
| 2094 | |
| 2095 | selec = eqjoinsel_semi(commopfuncoid, |
| 2096 | &vardata2, &vardata1, |
| 2097 | nd2, nd1, |
| 2098 | isdefault2, isdefault1, |
| 2099 | &sslot2, &sslot1, |
| 2100 | stats2, stats1, |
| 2101 | have_mcvs2, have_mcvs1, |
| 2102 | inner_rel); |
| 2103 | } |
| 2104 | |
| 2105 | /* |
| 2106 | * We should never estimate the output of a semijoin to be more |
| 2107 | * rows than we estimate for an inner join with the same input |
| 2108 | * rels and join condition; it's obviously impossible for that to |
| 2109 | * happen. The former estimate is N1 * Ssemi while the latter is |
| 2110 | * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner. Doing |
| 2111 | * this is worthwhile because of the shakier estimation rules we |
| 2112 | * use in eqjoinsel_semi, particularly in cases where it has to |
| 2113 | * punt entirely. |
| 2114 | */ |
| 2115 | selec = Min(selec, inner_rel->rows * selec_inner); |
| 2116 | break; |
| 2117 | default: |
| 2118 | /* other values not expected here */ |
| 2119 | elog(ERROR, "unrecognized join type: %d" , |
| 2120 | (int) sjinfo->jointype); |
| 2121 | selec = 0; /* keep compiler quiet */ |
| 2122 | break; |
| 2123 | } |
| 2124 | |
| 2125 | free_attstatsslot(&sslot1); |
| 2126 | free_attstatsslot(&sslot2); |
| 2127 | |
| 2128 | ReleaseVariableStats(vardata1); |
| 2129 | ReleaseVariableStats(vardata2); |
| 2130 | |
| 2131 | CLAMP_PROBABILITY(selec); |
| 2132 | |
| 2133 | PG_RETURN_FLOAT8((float8) selec); |
| 2134 | } |
| 2135 | |
| 2136 | /* |
| 2137 | * eqjoinsel_inner --- eqjoinsel for normal inner join |
| 2138 | * |
| 2139 | * We also use this for LEFT/FULL outer joins; it's not presently clear |
| 2140 | * that it's worth trying to distinguish them here. |
| 2141 | */ |
| 2142 | static double |
| 2143 | eqjoinsel_inner(Oid opfuncoid, |
| 2144 | VariableStatData *vardata1, VariableStatData *vardata2, |
| 2145 | double nd1, double nd2, |
| 2146 | bool isdefault1, bool isdefault2, |
| 2147 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
| 2148 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
| 2149 | bool have_mcvs1, bool have_mcvs2) |
| 2150 | { |
| 2151 | double selec; |
| 2152 | |
| 2153 | if (have_mcvs1 && have_mcvs2) |
| 2154 | { |
| 2155 | /* |
| 2156 | * We have most-common-value lists for both relations. Run through |
| 2157 | * the lists to see which MCVs actually join to each other with the |
| 2158 | * given operator. This allows us to determine the exact join |
| 2159 | * selectivity for the portion of the relations represented by the MCV |
| 2160 | * lists. We still have to estimate for the remaining population, but |
| 2161 | * in a skewed distribution this gives us a big leg up in accuracy. |
| 2162 | * For motivation see the analysis in Y. Ioannidis and S. |
| 2163 | * Christodoulakis, "On the propagation of errors in the size of join |
| 2164 | * results", Technical Report 1018, Computer Science Dept., University |
| 2165 | * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu). |
| 2166 | */ |
| 2167 | FmgrInfo eqproc; |
| 2168 | bool *hasmatch1; |
| 2169 | bool *hasmatch2; |
| 2170 | double nullfrac1 = stats1->stanullfrac; |
| 2171 | double nullfrac2 = stats2->stanullfrac; |
| 2172 | double matchprodfreq, |
| 2173 | matchfreq1, |
| 2174 | matchfreq2, |
| 2175 | unmatchfreq1, |
| 2176 | unmatchfreq2, |
| 2177 | otherfreq1, |
| 2178 | otherfreq2, |
| 2179 | totalsel1, |
| 2180 | totalsel2; |
| 2181 | int i, |
| 2182 | nmatches; |
| 2183 | |
| 2184 | fmgr_info(opfuncoid, &eqproc); |
| 2185 | hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool)); |
| 2186 | hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool)); |
| 2187 | |
| 2188 | /* |
| 2189 | * Note we assume that each MCV will match at most one member of the |
| 2190 | * other MCV list. If the operator isn't really equality, there could |
| 2191 | * be multiple matches --- but we don't look for them, both for speed |
| 2192 | * and because the math wouldn't add up... |
| 2193 | */ |
| 2194 | matchprodfreq = 0.0; |
| 2195 | nmatches = 0; |
| 2196 | for (i = 0; i < sslot1->nvalues; i++) |
| 2197 | { |
| 2198 | int j; |
| 2199 | |
| 2200 | for (j = 0; j < sslot2->nvalues; j++) |
| 2201 | { |
| 2202 | if (hasmatch2[j]) |
| 2203 | continue; |
| 2204 | if (DatumGetBool(FunctionCall2Coll(&eqproc, |
| 2205 | sslot1->stacoll, |
| 2206 | sslot1->values[i], |
| 2207 | sslot2->values[j]))) |
| 2208 | { |
| 2209 | hasmatch1[i] = hasmatch2[j] = true; |
| 2210 | matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j]; |
| 2211 | nmatches++; |
| 2212 | break; |
| 2213 | } |
| 2214 | } |
| 2215 | } |
| 2216 | CLAMP_PROBABILITY(matchprodfreq); |
| 2217 | /* Sum up frequencies of matched and unmatched MCVs */ |
| 2218 | matchfreq1 = unmatchfreq1 = 0.0; |
| 2219 | for (i = 0; i < sslot1->nvalues; i++) |
| 2220 | { |
| 2221 | if (hasmatch1[i]) |
| 2222 | matchfreq1 += sslot1->numbers[i]; |
| 2223 | else |
| 2224 | unmatchfreq1 += sslot1->numbers[i]; |
| 2225 | } |
| 2226 | CLAMP_PROBABILITY(matchfreq1); |
| 2227 | CLAMP_PROBABILITY(unmatchfreq1); |
| 2228 | matchfreq2 = unmatchfreq2 = 0.0; |
| 2229 | for (i = 0; i < sslot2->nvalues; i++) |
| 2230 | { |
| 2231 | if (hasmatch2[i]) |
| 2232 | matchfreq2 += sslot2->numbers[i]; |
| 2233 | else |
| 2234 | unmatchfreq2 += sslot2->numbers[i]; |
| 2235 | } |
| 2236 | CLAMP_PROBABILITY(matchfreq2); |
| 2237 | CLAMP_PROBABILITY(unmatchfreq2); |
| 2238 | pfree(hasmatch1); |
| 2239 | pfree(hasmatch2); |
| 2240 | |
| 2241 | /* |
| 2242 | * Compute total frequency of non-null values that are not in the MCV |
| 2243 | * lists. |
| 2244 | */ |
| 2245 | otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1; |
| 2246 | otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2; |
| 2247 | CLAMP_PROBABILITY(otherfreq1); |
| 2248 | CLAMP_PROBABILITY(otherfreq2); |
| 2249 | |
| 2250 | /* |
| 2251 | * We can estimate the total selectivity from the point of view of |
| 2252 | * relation 1 as: the known selectivity for matched MCVs, plus |
| 2253 | * unmatched MCVs that are assumed to match against random members of |
| 2254 | * relation 2's non-MCV population, plus non-MCV values that are |
| 2255 | * assumed to match against random members of relation 2's unmatched |
| 2256 | * MCVs plus non-MCV values. |
| 2257 | */ |
| 2258 | totalsel1 = matchprodfreq; |
| 2259 | if (nd2 > sslot2->nvalues) |
| 2260 | totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues); |
| 2261 | if (nd2 > nmatches) |
| 2262 | totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) / |
| 2263 | (nd2 - nmatches); |
| 2264 | /* Same estimate from the point of view of relation 2. */ |
| 2265 | totalsel2 = matchprodfreq; |
| 2266 | if (nd1 > sslot1->nvalues) |
| 2267 | totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues); |
| 2268 | if (nd1 > nmatches) |
| 2269 | totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) / |
| 2270 | (nd1 - nmatches); |
| 2271 | |
| 2272 | /* |
| 2273 | * Use the smaller of the two estimates. This can be justified in |
| 2274 | * essentially the same terms as given below for the no-stats case: to |
| 2275 | * a first approximation, we are estimating from the point of view of |
| 2276 | * the relation with smaller nd. |
| 2277 | */ |
| 2278 | selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2; |
| 2279 | } |
| 2280 | else |
| 2281 | { |
| 2282 | /* |
| 2283 | * We do not have MCV lists for both sides. Estimate the join |
| 2284 | * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This |
| 2285 | * is plausible if we assume that the join operator is strict and the |
| 2286 | * non-null values are about equally distributed: a given non-null |
| 2287 | * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows |
| 2288 | * of rel2, so total join rows are at most |
| 2289 | * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of |
| 2290 | * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it |
| 2291 | * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression |
| 2292 | * with MIN() is an upper bound. Using the MIN() means we estimate |
| 2293 | * from the point of view of the relation with smaller nd (since the |
| 2294 | * larger nd is determining the MIN). It is reasonable to assume that |
| 2295 | * most tuples in this rel will have join partners, so the bound is |
| 2296 | * probably reasonably tight and should be taken as-is. |
| 2297 | * |
| 2298 | * XXX Can we be smarter if we have an MCV list for just one side? It |
| 2299 | * seems that if we assume equal distribution for the other side, we |
| 2300 | * end up with the same answer anyway. |
| 2301 | */ |
| 2302 | double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0; |
| 2303 | double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0; |
| 2304 | |
| 2305 | selec = (1.0 - nullfrac1) * (1.0 - nullfrac2); |
| 2306 | if (nd1 > nd2) |
| 2307 | selec /= nd1; |
| 2308 | else |
| 2309 | selec /= nd2; |
| 2310 | } |
| 2311 | |
| 2312 | return selec; |
| 2313 | } |
| 2314 | |
| 2315 | /* |
| 2316 | * eqjoinsel_semi --- eqjoinsel for semi join |
| 2317 | * |
| 2318 | * (Also used for anti join, which we are supposed to estimate the same way.) |
| 2319 | * Caller has ensured that vardata1 is the LHS variable. |
| 2320 | * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid. |
| 2321 | */ |
| 2322 | static double |
| 2323 | eqjoinsel_semi(Oid opfuncoid, |
| 2324 | VariableStatData *vardata1, VariableStatData *vardata2, |
| 2325 | double nd1, double nd2, |
| 2326 | bool isdefault1, bool isdefault2, |
| 2327 | AttStatsSlot *sslot1, AttStatsSlot *sslot2, |
| 2328 | Form_pg_statistic stats1, Form_pg_statistic stats2, |
| 2329 | bool have_mcvs1, bool have_mcvs2, |
| 2330 | RelOptInfo *inner_rel) |
| 2331 | { |
| 2332 | double selec; |
| 2333 | |
| 2334 | /* |
| 2335 | * We clamp nd2 to be not more than what we estimate the inner relation's |
| 2336 | * size to be. This is intuitively somewhat reasonable since obviously |
| 2337 | * there can't be more than that many distinct values coming from the |
| 2338 | * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1 |
| 2339 | * likewise) is that this is the only pathway by which restriction clauses |
| 2340 | * applied to the inner rel will affect the join result size estimate, |
| 2341 | * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by |
| 2342 | * only the outer rel's size. If we clamped nd1 we'd be double-counting |
| 2343 | * the selectivity of outer-rel restrictions. |
| 2344 | * |
| 2345 | * We can apply this clamping both with respect to the base relation from |
| 2346 | * which the join variable comes (if there is just one), and to the |
| 2347 | * immediate inner input relation of the current join. |
| 2348 | * |
| 2349 | * If we clamp, we can treat nd2 as being a non-default estimate; it's not |
| 2350 | * great, maybe, but it didn't come out of nowhere either. This is most |
| 2351 | * helpful when the inner relation is empty and consequently has no stats. |
| 2352 | */ |
| 2353 | if (vardata2->rel) |
| 2354 | { |
| 2355 | if (nd2 >= vardata2->rel->rows) |
| 2356 | { |
| 2357 | nd2 = vardata2->rel->rows; |
| 2358 | isdefault2 = false; |
| 2359 | } |
| 2360 | } |
| 2361 | if (nd2 >= inner_rel->rows) |
| 2362 | { |
| 2363 | nd2 = inner_rel->rows; |
| 2364 | isdefault2 = false; |
| 2365 | } |
| 2366 | |
| 2367 | if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid)) |
| 2368 | { |
| 2369 | /* |
| 2370 | * We have most-common-value lists for both relations. Run through |
| 2371 | * the lists to see which MCVs actually join to each other with the |
| 2372 | * given operator. This allows us to determine the exact join |
| 2373 | * selectivity for the portion of the relations represented by the MCV |
| 2374 | * lists. We still have to estimate for the remaining population, but |
| 2375 | * in a skewed distribution this gives us a big leg up in accuracy. |
| 2376 | */ |
| 2377 | FmgrInfo eqproc; |
| 2378 | bool *hasmatch1; |
| 2379 | bool *hasmatch2; |
| 2380 | double nullfrac1 = stats1->stanullfrac; |
| 2381 | double matchfreq1, |
| 2382 | uncertainfrac, |
| 2383 | uncertain; |
| 2384 | int i, |
| 2385 | nmatches, |
| 2386 | clamped_nvalues2; |
| 2387 | |
| 2388 | /* |
| 2389 | * The clamping above could have resulted in nd2 being less than |
| 2390 | * sslot2->nvalues; in which case, we assume that precisely the nd2 |
| 2391 | * most common values in the relation will appear in the join input, |
| 2392 | * and so compare to only the first nd2 members of the MCV list. Of |
| 2393 | * course this is frequently wrong, but it's the best bet we can make. |
| 2394 | */ |
| 2395 | clamped_nvalues2 = Min(sslot2->nvalues, nd2); |
| 2396 | |
| 2397 | fmgr_info(opfuncoid, &eqproc); |
| 2398 | hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool)); |
| 2399 | hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool)); |
| 2400 | |
| 2401 | /* |
| 2402 | * Note we assume that each MCV will match at most one member of the |
| 2403 | * other MCV list. If the operator isn't really equality, there could |
| 2404 | * be multiple matches --- but we don't look for them, both for speed |
| 2405 | * and because the math wouldn't add up... |
| 2406 | */ |
| 2407 | nmatches = 0; |
| 2408 | for (i = 0; i < sslot1->nvalues; i++) |
| 2409 | { |
| 2410 | int j; |
| 2411 | |
| 2412 | for (j = 0; j < clamped_nvalues2; j++) |
| 2413 | { |
| 2414 | if (hasmatch2[j]) |
| 2415 | continue; |
| 2416 | if (DatumGetBool(FunctionCall2Coll(&eqproc, |
| 2417 | sslot1->stacoll, |
| 2418 | sslot1->values[i], |
| 2419 | sslot2->values[j]))) |
| 2420 | { |
| 2421 | hasmatch1[i] = hasmatch2[j] = true; |
| 2422 | nmatches++; |
| 2423 | break; |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | /* Sum up frequencies of matched MCVs */ |
| 2428 | matchfreq1 = 0.0; |
| 2429 | for (i = 0; i < sslot1->nvalues; i++) |
| 2430 | { |
| 2431 | if (hasmatch1[i]) |
| 2432 | matchfreq1 += sslot1->numbers[i]; |
| 2433 | } |
| 2434 | CLAMP_PROBABILITY(matchfreq1); |
| 2435 | pfree(hasmatch1); |
| 2436 | pfree(hasmatch2); |
| 2437 | |
| 2438 | /* |
| 2439 | * Now we need to estimate the fraction of relation 1 that has at |
| 2440 | * least one join partner. We know for certain that the matched MCVs |
| 2441 | * do, so that gives us a lower bound, but we're really in the dark |
| 2442 | * about everything else. Our crude approach is: if nd1 <= nd2 then |
| 2443 | * assume all non-null rel1 rows have join partners, else assume for |
| 2444 | * the uncertain rows that a fraction nd2/nd1 have join partners. We |
| 2445 | * can discount the known-matched MCVs from the distinct-values counts |
| 2446 | * before doing the division. |
| 2447 | * |
| 2448 | * Crude as the above is, it's completely useless if we don't have |
| 2449 | * reliable ndistinct values for both sides. Hence, if either nd1 or |
| 2450 | * nd2 is default, punt and assume half of the uncertain rows have |
| 2451 | * join partners. |
| 2452 | */ |
| 2453 | if (!isdefault1 && !isdefault2) |
| 2454 | { |
| 2455 | nd1 -= nmatches; |
| 2456 | nd2 -= nmatches; |
| 2457 | if (nd1 <= nd2 || nd2 < 0) |
| 2458 | uncertainfrac = 1.0; |
| 2459 | else |
| 2460 | uncertainfrac = nd2 / nd1; |
| 2461 | } |
| 2462 | else |
| 2463 | uncertainfrac = 0.5; |
| 2464 | uncertain = 1.0 - matchfreq1 - nullfrac1; |
| 2465 | CLAMP_PROBABILITY(uncertain); |
| 2466 | selec = matchfreq1 + uncertainfrac * uncertain; |
| 2467 | } |
| 2468 | else |
| 2469 | { |
| 2470 | /* |
| 2471 | * Without MCV lists for both sides, we can only use the heuristic |
| 2472 | * about nd1 vs nd2. |
| 2473 | */ |
| 2474 | double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0; |
| 2475 | |
| 2476 | if (!isdefault1 && !isdefault2) |
| 2477 | { |
| 2478 | if (nd1 <= nd2 || nd2 < 0) |
| 2479 | selec = 1.0 - nullfrac1; |
| 2480 | else |
| 2481 | selec = (nd2 / nd1) * (1.0 - nullfrac1); |
| 2482 | } |
| 2483 | else |
| 2484 | selec = 0.5 * (1.0 - nullfrac1); |
| 2485 | } |
| 2486 | |
| 2487 | return selec; |
| 2488 | } |
| 2489 | |
| 2490 | /* |
| 2491 | * neqjoinsel - Join selectivity of "!=" |
| 2492 | */ |
| 2493 | Datum |
| 2494 | neqjoinsel(PG_FUNCTION_ARGS) |
| 2495 | { |
| 2496 | PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| 2497 | Oid operator = PG_GETARG_OID(1); |
| 2498 | List *args = (List *) PG_GETARG_POINTER(2); |
| 2499 | JoinType jointype = (JoinType) PG_GETARG_INT16(3); |
| 2500 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4); |
| 2501 | float8 result; |
| 2502 | |
| 2503 | if (jointype == JOIN_SEMI || jointype == JOIN_ANTI) |
| 2504 | { |
| 2505 | /* |
| 2506 | * For semi-joins, if there is more than one distinct value in the RHS |
| 2507 | * relation then every non-null LHS row must find a row to join since |
| 2508 | * it can only be equal to one of them. We'll assume that there is |
| 2509 | * always more than one distinct RHS value for the sake of stability, |
| 2510 | * though in theory we could have special cases for empty RHS |
| 2511 | * (selectivity = 0) and single-distinct-value RHS (selectivity = |
| 2512 | * fraction of LHS that has the same value as the single RHS value). |
| 2513 | * |
| 2514 | * For anti-joins, if we use the same assumption that there is more |
| 2515 | * than one distinct key in the RHS relation, then every non-null LHS |
| 2516 | * row must be suppressed by the anti-join. |
| 2517 | * |
| 2518 | * So either way, the selectivity estimate should be 1 - nullfrac. |
| 2519 | */ |
| 2520 | VariableStatData leftvar; |
| 2521 | VariableStatData rightvar; |
| 2522 | bool reversed; |
| 2523 | HeapTuple statsTuple; |
| 2524 | double nullfrac; |
| 2525 | |
| 2526 | get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed); |
| 2527 | statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple; |
| 2528 | if (HeapTupleIsValid(statsTuple)) |
| 2529 | nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac; |
| 2530 | else |
| 2531 | nullfrac = 0.0; |
| 2532 | ReleaseVariableStats(leftvar); |
| 2533 | ReleaseVariableStats(rightvar); |
| 2534 | |
| 2535 | result = 1.0 - nullfrac; |
| 2536 | } |
| 2537 | else |
| 2538 | { |
| 2539 | /* |
| 2540 | * We want 1 - eqjoinsel() where the equality operator is the one |
| 2541 | * associated with this != operator, that is, its negator. |
| 2542 | */ |
| 2543 | Oid eqop = get_negator(operator); |
| 2544 | |
| 2545 | if (eqop) |
| 2546 | { |
| 2547 | result = DatumGetFloat8(DirectFunctionCall5(eqjoinsel, |
| 2548 | PointerGetDatum(root), |
| 2549 | ObjectIdGetDatum(eqop), |
| 2550 | PointerGetDatum(args), |
| 2551 | Int16GetDatum(jointype), |
| 2552 | PointerGetDatum(sjinfo))); |
| 2553 | } |
| 2554 | else |
| 2555 | { |
| 2556 | /* Use default selectivity (should we raise an error instead?) */ |
| 2557 | result = DEFAULT_EQ_SEL; |
| 2558 | } |
| 2559 | result = 1.0 - result; |
| 2560 | } |
| 2561 | |
| 2562 | PG_RETURN_FLOAT8(result); |
| 2563 | } |
| 2564 | |
| 2565 | /* |
| 2566 | * scalarltjoinsel - Join selectivity of "<" for scalars |
| 2567 | */ |
| 2568 | Datum |
| 2569 | scalarltjoinsel(PG_FUNCTION_ARGS) |
| 2570 | { |
| 2571 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 2572 | } |
| 2573 | |
| 2574 | /* |
| 2575 | * scalarlejoinsel - Join selectivity of "<=" for scalars |
| 2576 | */ |
| 2577 | Datum |
| 2578 | scalarlejoinsel(PG_FUNCTION_ARGS) |
| 2579 | { |
| 2580 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 2581 | } |
| 2582 | |
| 2583 | /* |
| 2584 | * scalargtjoinsel - Join selectivity of ">" for scalars |
| 2585 | */ |
| 2586 | Datum |
| 2587 | scalargtjoinsel(PG_FUNCTION_ARGS) |
| 2588 | { |
| 2589 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 2590 | } |
| 2591 | |
| 2592 | /* |
| 2593 | * scalargejoinsel - Join selectivity of ">=" for scalars |
| 2594 | */ |
| 2595 | Datum |
| 2596 | scalargejoinsel(PG_FUNCTION_ARGS) |
| 2597 | { |
| 2598 | PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL); |
| 2599 | } |
| 2600 | |
| 2601 | |
| 2602 | /* |
| 2603 | * mergejoinscansel - Scan selectivity of merge join. |
| 2604 | * |
| 2605 | * A merge join will stop as soon as it exhausts either input stream. |
| 2606 | * Therefore, if we can estimate the ranges of both input variables, |
| 2607 | * we can estimate how much of the input will actually be read. This |
| 2608 | * can have a considerable impact on the cost when using indexscans. |
| 2609 | * |
| 2610 | * Also, we can estimate how much of each input has to be read before the |
| 2611 | * first join pair is found, which will affect the join's startup time. |
| 2612 | * |
| 2613 | * clause should be a clause already known to be mergejoinable. opfamily, |
| 2614 | * strategy, and nulls_first specify the sort ordering being used. |
| 2615 | * |
| 2616 | * The outputs are: |
| 2617 | * *leftstart is set to the fraction of the left-hand variable expected |
| 2618 | * to be scanned before the first join pair is found (0 to 1). |
| 2619 | * *leftend is set to the fraction of the left-hand variable expected |
| 2620 | * to be scanned before the join terminates (0 to 1). |
| 2621 | * *rightstart, *rightend similarly for the right-hand variable. |
| 2622 | */ |
| 2623 | void |
| 2624 | mergejoinscansel(PlannerInfo *root, Node *clause, |
| 2625 | Oid opfamily, int strategy, bool nulls_first, |
| 2626 | Selectivity *leftstart, Selectivity *leftend, |
| 2627 | Selectivity *rightstart, Selectivity *rightend) |
| 2628 | { |
| 2629 | Node *left, |
| 2630 | *right; |
| 2631 | VariableStatData leftvar, |
| 2632 | rightvar; |
| 2633 | int op_strategy; |
| 2634 | Oid op_lefttype; |
| 2635 | Oid op_righttype; |
| 2636 | Oid opno, |
| 2637 | lsortop, |
| 2638 | rsortop, |
| 2639 | lstatop, |
| 2640 | rstatop, |
| 2641 | ltop, |
| 2642 | leop, |
| 2643 | revltop, |
| 2644 | revleop; |
| 2645 | bool isgt; |
| 2646 | Datum leftmin, |
| 2647 | leftmax, |
| 2648 | rightmin, |
| 2649 | rightmax; |
| 2650 | double selec; |
| 2651 | |
| 2652 | /* Set default results if we can't figure anything out. */ |
| 2653 | /* XXX should default "start" fraction be a bit more than 0? */ |
| 2654 | *leftstart = *rightstart = 0.0; |
| 2655 | *leftend = *rightend = 1.0; |
| 2656 | |
| 2657 | /* Deconstruct the merge clause */ |
| 2658 | if (!is_opclause(clause)) |
| 2659 | return; /* shouldn't happen */ |
| 2660 | opno = ((OpExpr *) clause)->opno; |
| 2661 | left = get_leftop((Expr *) clause); |
| 2662 | right = get_rightop((Expr *) clause); |
| 2663 | if (!right) |
| 2664 | return; /* shouldn't happen */ |
| 2665 | |
| 2666 | /* Look for stats for the inputs */ |
| 2667 | examine_variable(root, left, 0, &leftvar); |
| 2668 | examine_variable(root, right, 0, &rightvar); |
| 2669 | |
| 2670 | /* Extract the operator's declared left/right datatypes */ |
| 2671 | get_op_opfamily_properties(opno, opfamily, false, |
| 2672 | &op_strategy, |
| 2673 | &op_lefttype, |
| 2674 | &op_righttype); |
| 2675 | Assert(op_strategy == BTEqualStrategyNumber); |
| 2676 | |
| 2677 | /* |
| 2678 | * Look up the various operators we need. If we don't find them all, it |
| 2679 | * probably means the opfamily is broken, but we just fail silently. |
| 2680 | * |
| 2681 | * Note: we expect that pg_statistic histograms will be sorted by the '<' |
| 2682 | * operator, regardless of which sort direction we are considering. |
| 2683 | */ |
| 2684 | switch (strategy) |
| 2685 | { |
| 2686 | case BTLessStrategyNumber: |
| 2687 | isgt = false; |
| 2688 | if (op_lefttype == op_righttype) |
| 2689 | { |
| 2690 | /* easy case */ |
| 2691 | ltop = get_opfamily_member(opfamily, |
| 2692 | op_lefttype, op_righttype, |
| 2693 | BTLessStrategyNumber); |
| 2694 | leop = get_opfamily_member(opfamily, |
| 2695 | op_lefttype, op_righttype, |
| 2696 | BTLessEqualStrategyNumber); |
| 2697 | lsortop = ltop; |
| 2698 | rsortop = ltop; |
| 2699 | lstatop = lsortop; |
| 2700 | rstatop = rsortop; |
| 2701 | revltop = ltop; |
| 2702 | revleop = leop; |
| 2703 | } |
| 2704 | else |
| 2705 | { |
| 2706 | ltop = get_opfamily_member(opfamily, |
| 2707 | op_lefttype, op_righttype, |
| 2708 | BTLessStrategyNumber); |
| 2709 | leop = get_opfamily_member(opfamily, |
| 2710 | op_lefttype, op_righttype, |
| 2711 | BTLessEqualStrategyNumber); |
| 2712 | lsortop = get_opfamily_member(opfamily, |
| 2713 | op_lefttype, op_lefttype, |
| 2714 | BTLessStrategyNumber); |
| 2715 | rsortop = get_opfamily_member(opfamily, |
| 2716 | op_righttype, op_righttype, |
| 2717 | BTLessStrategyNumber); |
| 2718 | lstatop = lsortop; |
| 2719 | rstatop = rsortop; |
| 2720 | revltop = get_opfamily_member(opfamily, |
| 2721 | op_righttype, op_lefttype, |
| 2722 | BTLessStrategyNumber); |
| 2723 | revleop = get_opfamily_member(opfamily, |
| 2724 | op_righttype, op_lefttype, |
| 2725 | BTLessEqualStrategyNumber); |
| 2726 | } |
| 2727 | break; |
| 2728 | case BTGreaterStrategyNumber: |
| 2729 | /* descending-order case */ |
| 2730 | isgt = true; |
| 2731 | if (op_lefttype == op_righttype) |
| 2732 | { |
| 2733 | /* easy case */ |
| 2734 | ltop = get_opfamily_member(opfamily, |
| 2735 | op_lefttype, op_righttype, |
| 2736 | BTGreaterStrategyNumber); |
| 2737 | leop = get_opfamily_member(opfamily, |
| 2738 | op_lefttype, op_righttype, |
| 2739 | BTGreaterEqualStrategyNumber); |
| 2740 | lsortop = ltop; |
| 2741 | rsortop = ltop; |
| 2742 | lstatop = get_opfamily_member(opfamily, |
| 2743 | op_lefttype, op_lefttype, |
| 2744 | BTLessStrategyNumber); |
| 2745 | rstatop = lstatop; |
| 2746 | revltop = ltop; |
| 2747 | revleop = leop; |
| 2748 | } |
| 2749 | else |
| 2750 | { |
| 2751 | ltop = get_opfamily_member(opfamily, |
| 2752 | op_lefttype, op_righttype, |
| 2753 | BTGreaterStrategyNumber); |
| 2754 | leop = get_opfamily_member(opfamily, |
| 2755 | op_lefttype, op_righttype, |
| 2756 | BTGreaterEqualStrategyNumber); |
| 2757 | lsortop = get_opfamily_member(opfamily, |
| 2758 | op_lefttype, op_lefttype, |
| 2759 | BTGreaterStrategyNumber); |
| 2760 | rsortop = get_opfamily_member(opfamily, |
| 2761 | op_righttype, op_righttype, |
| 2762 | BTGreaterStrategyNumber); |
| 2763 | lstatop = get_opfamily_member(opfamily, |
| 2764 | op_lefttype, op_lefttype, |
| 2765 | BTLessStrategyNumber); |
| 2766 | rstatop = get_opfamily_member(opfamily, |
| 2767 | op_righttype, op_righttype, |
| 2768 | BTLessStrategyNumber); |
| 2769 | revltop = get_opfamily_member(opfamily, |
| 2770 | op_righttype, op_lefttype, |
| 2771 | BTGreaterStrategyNumber); |
| 2772 | revleop = get_opfamily_member(opfamily, |
| 2773 | op_righttype, op_lefttype, |
| 2774 | BTGreaterEqualStrategyNumber); |
| 2775 | } |
| 2776 | break; |
| 2777 | default: |
| 2778 | goto fail; /* shouldn't get here */ |
| 2779 | } |
| 2780 | |
| 2781 | if (!OidIsValid(lsortop) || |
| 2782 | !OidIsValid(rsortop) || |
| 2783 | !OidIsValid(lstatop) || |
| 2784 | !OidIsValid(rstatop) || |
| 2785 | !OidIsValid(ltop) || |
| 2786 | !OidIsValid(leop) || |
| 2787 | !OidIsValid(revltop) || |
| 2788 | !OidIsValid(revleop)) |
| 2789 | goto fail; /* insufficient info in catalogs */ |
| 2790 | |
| 2791 | /* Try to get ranges of both inputs */ |
| 2792 | if (!isgt) |
| 2793 | { |
| 2794 | if (!get_variable_range(root, &leftvar, lstatop, |
| 2795 | &leftmin, &leftmax)) |
| 2796 | goto fail; /* no range available from stats */ |
| 2797 | if (!get_variable_range(root, &rightvar, rstatop, |
| 2798 | &rightmin, &rightmax)) |
| 2799 | goto fail; /* no range available from stats */ |
| 2800 | } |
| 2801 | else |
| 2802 | { |
| 2803 | /* need to swap the max and min */ |
| 2804 | if (!get_variable_range(root, &leftvar, lstatop, |
| 2805 | &leftmax, &leftmin)) |
| 2806 | goto fail; /* no range available from stats */ |
| 2807 | if (!get_variable_range(root, &rightvar, rstatop, |
| 2808 | &rightmax, &rightmin)) |
| 2809 | goto fail; /* no range available from stats */ |
| 2810 | } |
| 2811 | |
| 2812 | /* |
| 2813 | * Now, the fraction of the left variable that will be scanned is the |
| 2814 | * fraction that's <= the right-side maximum value. But only believe |
| 2815 | * non-default estimates, else stick with our 1.0. |
| 2816 | */ |
| 2817 | selec = scalarineqsel(root, leop, isgt, true, &leftvar, |
| 2818 | rightmax, op_righttype); |
| 2819 | if (selec != DEFAULT_INEQ_SEL) |
| 2820 | *leftend = selec; |
| 2821 | |
| 2822 | /* And similarly for the right variable. */ |
| 2823 | selec = scalarineqsel(root, revleop, isgt, true, &rightvar, |
| 2824 | leftmax, op_lefttype); |
| 2825 | if (selec != DEFAULT_INEQ_SEL) |
| 2826 | *rightend = selec; |
| 2827 | |
| 2828 | /* |
| 2829 | * Only one of the two "end" fractions can really be less than 1.0; |
| 2830 | * believe the smaller estimate and reset the other one to exactly 1.0. If |
| 2831 | * we get exactly equal estimates (as can easily happen with self-joins), |
| 2832 | * believe neither. |
| 2833 | */ |
| 2834 | if (*leftend > *rightend) |
| 2835 | *leftend = 1.0; |
| 2836 | else if (*leftend < *rightend) |
| 2837 | *rightend = 1.0; |
| 2838 | else |
| 2839 | *leftend = *rightend = 1.0; |
| 2840 | |
| 2841 | /* |
| 2842 | * Also, the fraction of the left variable that will be scanned before the |
| 2843 | * first join pair is found is the fraction that's < the right-side |
| 2844 | * minimum value. But only believe non-default estimates, else stick with |
| 2845 | * our own default. |
| 2846 | */ |
| 2847 | selec = scalarineqsel(root, ltop, isgt, false, &leftvar, |
| 2848 | rightmin, op_righttype); |
| 2849 | if (selec != DEFAULT_INEQ_SEL) |
| 2850 | *leftstart = selec; |
| 2851 | |
| 2852 | /* And similarly for the right variable. */ |
| 2853 | selec = scalarineqsel(root, revltop, isgt, false, &rightvar, |
| 2854 | leftmin, op_lefttype); |
| 2855 | if (selec != DEFAULT_INEQ_SEL) |
| 2856 | *rightstart = selec; |
| 2857 | |
| 2858 | /* |
| 2859 | * Only one of the two "start" fractions can really be more than zero; |
| 2860 | * believe the larger estimate and reset the other one to exactly 0.0. If |
| 2861 | * we get exactly equal estimates (as can easily happen with self-joins), |
| 2862 | * believe neither. |
| 2863 | */ |
| 2864 | if (*leftstart < *rightstart) |
| 2865 | *leftstart = 0.0; |
| 2866 | else if (*leftstart > *rightstart) |
| 2867 | *rightstart = 0.0; |
| 2868 | else |
| 2869 | *leftstart = *rightstart = 0.0; |
| 2870 | |
| 2871 | /* |
| 2872 | * If the sort order is nulls-first, we're going to have to skip over any |
| 2873 | * nulls too. These would not have been counted by scalarineqsel, and we |
| 2874 | * can safely add in this fraction regardless of whether we believe |
| 2875 | * scalarineqsel's results or not. But be sure to clamp the sum to 1.0! |
| 2876 | */ |
| 2877 | if (nulls_first) |
| 2878 | { |
| 2879 | Form_pg_statistic stats; |
| 2880 | |
| 2881 | if (HeapTupleIsValid(leftvar.statsTuple)) |
| 2882 | { |
| 2883 | stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple); |
| 2884 | *leftstart += stats->stanullfrac; |
| 2885 | CLAMP_PROBABILITY(*leftstart); |
| 2886 | *leftend += stats->stanullfrac; |
| 2887 | CLAMP_PROBABILITY(*leftend); |
| 2888 | } |
| 2889 | if (HeapTupleIsValid(rightvar.statsTuple)) |
| 2890 | { |
| 2891 | stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple); |
| 2892 | *rightstart += stats->stanullfrac; |
| 2893 | CLAMP_PROBABILITY(*rightstart); |
| 2894 | *rightend += stats->stanullfrac; |
| 2895 | CLAMP_PROBABILITY(*rightend); |
| 2896 | } |
| 2897 | } |
| 2898 | |
| 2899 | /* Disbelieve start >= end, just in case that can happen */ |
| 2900 | if (*leftstart >= *leftend) |
| 2901 | { |
| 2902 | *leftstart = 0.0; |
| 2903 | *leftend = 1.0; |
| 2904 | } |
| 2905 | if (*rightstart >= *rightend) |
| 2906 | { |
| 2907 | *rightstart = 0.0; |
| 2908 | *rightend = 1.0; |
| 2909 | } |
| 2910 | |
| 2911 | fail: |
| 2912 | ReleaseVariableStats(leftvar); |
| 2913 | ReleaseVariableStats(rightvar); |
| 2914 | } |
| 2915 | |
| 2916 | |
| 2917 | /* |
| 2918 | * Helper routine for estimate_num_groups: add an item to a list of |
| 2919 | * GroupVarInfos, but only if it's not known equal to any of the existing |
| 2920 | * entries. |
| 2921 | */ |
| 2922 | typedef struct |
| 2923 | { |
| 2924 | Node *var; /* might be an expression, not just a Var */ |
| 2925 | RelOptInfo *rel; /* relation it belongs to */ |
| 2926 | double ndistinct; /* # distinct values */ |
| 2927 | } GroupVarInfo; |
| 2928 | |
| 2929 | static List * |
| 2930 | add_unique_group_var(PlannerInfo *root, List *varinfos, |
| 2931 | Node *var, VariableStatData *vardata) |
| 2932 | { |
| 2933 | GroupVarInfo *varinfo; |
| 2934 | double ndistinct; |
| 2935 | bool isdefault; |
| 2936 | ListCell *lc; |
| 2937 | |
| 2938 | ndistinct = get_variable_numdistinct(vardata, &isdefault); |
| 2939 | |
| 2940 | /* cannot use foreach here because of possible list_delete */ |
| 2941 | lc = list_head(varinfos); |
| 2942 | while (lc) |
| 2943 | { |
| 2944 | varinfo = (GroupVarInfo *) lfirst(lc); |
| 2945 | |
| 2946 | /* must advance lc before list_delete possibly pfree's it */ |
| 2947 | lc = lnext(lc); |
| 2948 | |
| 2949 | /* Drop exact duplicates */ |
| 2950 | if (equal(var, varinfo->var)) |
| 2951 | return varinfos; |
| 2952 | |
| 2953 | /* |
| 2954 | * Drop known-equal vars, but only if they belong to different |
| 2955 | * relations (see comments for estimate_num_groups) |
| 2956 | */ |
| 2957 | if (vardata->rel != varinfo->rel && |
| 2958 | exprs_known_equal(root, var, varinfo->var)) |
| 2959 | { |
| 2960 | if (varinfo->ndistinct <= ndistinct) |
| 2961 | { |
| 2962 | /* Keep older item, forget new one */ |
| 2963 | return varinfos; |
| 2964 | } |
| 2965 | else |
| 2966 | { |
| 2967 | /* Delete the older item */ |
| 2968 | varinfos = list_delete_ptr(varinfos, varinfo); |
| 2969 | } |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo)); |
| 2974 | |
| 2975 | varinfo->var = var; |
| 2976 | varinfo->rel = vardata->rel; |
| 2977 | varinfo->ndistinct = ndistinct; |
| 2978 | varinfos = lappend(varinfos, varinfo); |
| 2979 | return varinfos; |
| 2980 | } |
| 2981 | |
| 2982 | /* |
| 2983 | * estimate_num_groups - Estimate number of groups in a grouped query |
| 2984 | * |
| 2985 | * Given a query having a GROUP BY clause, estimate how many groups there |
| 2986 | * will be --- ie, the number of distinct combinations of the GROUP BY |
| 2987 | * expressions. |
| 2988 | * |
| 2989 | * This routine is also used to estimate the number of rows emitted by |
| 2990 | * a DISTINCT filtering step; that is an isomorphic problem. (Note: |
| 2991 | * actually, we only use it for DISTINCT when there's no grouping or |
| 2992 | * aggregation ahead of the DISTINCT.) |
| 2993 | * |
| 2994 | * Inputs: |
| 2995 | * root - the query |
| 2996 | * groupExprs - list of expressions being grouped by |
| 2997 | * input_rows - number of rows estimated to arrive at the group/unique |
| 2998 | * filter step |
| 2999 | * pgset - NULL, or a List** pointing to a grouping set to filter the |
| 3000 | * groupExprs against |
| 3001 | * |
| 3002 | * Given the lack of any cross-correlation statistics in the system, it's |
| 3003 | * impossible to do anything really trustworthy with GROUP BY conditions |
| 3004 | * involving multiple Vars. We should however avoid assuming the worst |
| 3005 | * case (all possible cross-product terms actually appear as groups) since |
| 3006 | * very often the grouped-by Vars are highly correlated. Our current approach |
| 3007 | * is as follows: |
| 3008 | * 1. Expressions yielding boolean are assumed to contribute two groups, |
| 3009 | * independently of their content, and are ignored in the subsequent |
| 3010 | * steps. This is mainly because tests like "col IS NULL" break the |
| 3011 | * heuristic used in step 2 especially badly. |
| 3012 | * 2. Reduce the given expressions to a list of unique Vars used. For |
| 3013 | * example, GROUP BY a, a + b is treated the same as GROUP BY a, b. |
| 3014 | * It is clearly correct not to count the same Var more than once. |
| 3015 | * It is also reasonable to treat f(x) the same as x: f() cannot |
| 3016 | * increase the number of distinct values (unless it is volatile, |
| 3017 | * which we consider unlikely for grouping), but it probably won't |
| 3018 | * reduce the number of distinct values much either. |
| 3019 | * As a special case, if a GROUP BY expression can be matched to an |
| 3020 | * expressional index for which we have statistics, then we treat the |
| 3021 | * whole expression as though it were just a Var. |
| 3022 | * 3. If the list contains Vars of different relations that are known equal |
| 3023 | * due to equivalence classes, then drop all but one of the Vars from each |
| 3024 | * known-equal set, keeping the one with smallest estimated # of values |
| 3025 | * (since the extra values of the others can't appear in joined rows). |
| 3026 | * Note the reason we only consider Vars of different relations is that |
| 3027 | * if we considered ones of the same rel, we'd be double-counting the |
| 3028 | * restriction selectivity of the equality in the next step. |
| 3029 | * 4. For Vars within a single source rel, we multiply together the numbers |
| 3030 | * of values, clamp to the number of rows in the rel (divided by 10 if |
| 3031 | * more than one Var), and then multiply by a factor based on the |
| 3032 | * selectivity of the restriction clauses for that rel. When there's |
| 3033 | * more than one Var, the initial product is probably too high (it's the |
| 3034 | * worst case) but clamping to a fraction of the rel's rows seems to be a |
| 3035 | * helpful heuristic for not letting the estimate get out of hand. (The |
| 3036 | * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor |
| 3037 | * we multiply by to adjust for the restriction selectivity assumes that |
| 3038 | * the restriction clauses are independent of the grouping, which may not |
| 3039 | * be a valid assumption, but it's hard to do better. |
| 3040 | * 5. If there are Vars from multiple rels, we repeat step 4 for each such |
| 3041 | * rel, and multiply the results together. |
| 3042 | * Note that rels not containing grouped Vars are ignored completely, as are |
| 3043 | * join clauses. Such rels cannot increase the number of groups, and we |
| 3044 | * assume such clauses do not reduce the number either (somewhat bogus, |
| 3045 | * but we don't have the info to do better). |
| 3046 | */ |
| 3047 | double |
| 3048 | estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, |
| 3049 | List **pgset) |
| 3050 | { |
| 3051 | List *varinfos = NIL; |
| 3052 | double srf_multiplier = 1.0; |
| 3053 | double numdistinct; |
| 3054 | ListCell *l; |
| 3055 | int i; |
| 3056 | |
| 3057 | /* |
| 3058 | * We don't ever want to return an estimate of zero groups, as that tends |
| 3059 | * to lead to division-by-zero and other unpleasantness. The input_rows |
| 3060 | * estimate is usually already at least 1, but clamp it just in case it |
| 3061 | * isn't. |
| 3062 | */ |
| 3063 | input_rows = clamp_row_est(input_rows); |
| 3064 | |
| 3065 | /* |
| 3066 | * If no grouping columns, there's exactly one group. (This can't happen |
| 3067 | * for normal cases with GROUP BY or DISTINCT, but it is possible for |
| 3068 | * corner cases with set operations.) |
| 3069 | */ |
| 3070 | if (groupExprs == NIL || (pgset && list_length(*pgset) < 1)) |
| 3071 | return 1.0; |
| 3072 | |
| 3073 | /* |
| 3074 | * Count groups derived from boolean grouping expressions. For other |
| 3075 | * expressions, find the unique Vars used, treating an expression as a Var |
| 3076 | * if we can find stats for it. For each one, record the statistical |
| 3077 | * estimate of number of distinct values (total in its table, without |
| 3078 | * regard for filtering). |
| 3079 | */ |
| 3080 | numdistinct = 1.0; |
| 3081 | |
| 3082 | i = 0; |
| 3083 | foreach(l, groupExprs) |
| 3084 | { |
| 3085 | Node *groupexpr = (Node *) lfirst(l); |
| 3086 | double this_srf_multiplier; |
| 3087 | VariableStatData vardata; |
| 3088 | List *varshere; |
| 3089 | ListCell *l2; |
| 3090 | |
| 3091 | /* is expression in this grouping set? */ |
| 3092 | if (pgset && !list_member_int(*pgset, i++)) |
| 3093 | continue; |
| 3094 | |
| 3095 | /* |
| 3096 | * Set-returning functions in grouping columns are a bit problematic. |
| 3097 | * The code below will effectively ignore their SRF nature and come up |
| 3098 | * with a numdistinct estimate as though they were scalar functions. |
| 3099 | * We compensate by scaling up the end result by the largest SRF |
| 3100 | * rowcount estimate. (This will be an overestimate if the SRF |
| 3101 | * produces multiple copies of any output value, but it seems best to |
| 3102 | * assume the SRF's outputs are distinct. In any case, it's probably |
| 3103 | * pointless to worry too much about this without much better |
| 3104 | * estimates for SRF output rowcounts than we have today.) |
| 3105 | */ |
| 3106 | this_srf_multiplier = expression_returns_set_rows(root, groupexpr); |
| 3107 | if (srf_multiplier < this_srf_multiplier) |
| 3108 | srf_multiplier = this_srf_multiplier; |
| 3109 | |
| 3110 | /* Short-circuit for expressions returning boolean */ |
| 3111 | if (exprType(groupexpr) == BOOLOID) |
| 3112 | { |
| 3113 | numdistinct *= 2.0; |
| 3114 | continue; |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * If examine_variable is able to deduce anything about the GROUP BY |
| 3119 | * expression, treat it as a single variable even if it's really more |
| 3120 | * complicated. |
| 3121 | */ |
| 3122 | examine_variable(root, groupexpr, 0, &vardata); |
| 3123 | if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique) |
| 3124 | { |
| 3125 | varinfos = add_unique_group_var(root, varinfos, |
| 3126 | groupexpr, &vardata); |
| 3127 | ReleaseVariableStats(vardata); |
| 3128 | continue; |
| 3129 | } |
| 3130 | ReleaseVariableStats(vardata); |
| 3131 | |
| 3132 | /* |
| 3133 | * Else pull out the component Vars. Handle PlaceHolderVars by |
| 3134 | * recursing into their arguments (effectively assuming that the |
| 3135 | * PlaceHolderVar doesn't change the number of groups, which boils |
| 3136 | * down to ignoring the possible addition of nulls to the result set). |
| 3137 | */ |
| 3138 | varshere = pull_var_clause(groupexpr, |
| 3139 | PVC_RECURSE_AGGREGATES | |
| 3140 | PVC_RECURSE_WINDOWFUNCS | |
| 3141 | PVC_RECURSE_PLACEHOLDERS); |
| 3142 | |
| 3143 | /* |
| 3144 | * If we find any variable-free GROUP BY item, then either it is a |
| 3145 | * constant (and we can ignore it) or it contains a volatile function; |
| 3146 | * in the latter case we punt and assume that each input row will |
| 3147 | * yield a distinct group. |
| 3148 | */ |
| 3149 | if (varshere == NIL) |
| 3150 | { |
| 3151 | if (contain_volatile_functions(groupexpr)) |
| 3152 | return input_rows; |
| 3153 | continue; |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * Else add variables to varinfos list |
| 3158 | */ |
| 3159 | foreach(l2, varshere) |
| 3160 | { |
| 3161 | Node *var = (Node *) lfirst(l2); |
| 3162 | |
| 3163 | examine_variable(root, var, 0, &vardata); |
| 3164 | varinfos = add_unique_group_var(root, varinfos, var, &vardata); |
| 3165 | ReleaseVariableStats(vardata); |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | /* |
| 3170 | * If now no Vars, we must have an all-constant or all-boolean GROUP BY |
| 3171 | * list. |
| 3172 | */ |
| 3173 | if (varinfos == NIL) |
| 3174 | { |
| 3175 | /* Apply SRF multiplier as we would do in the long path */ |
| 3176 | numdistinct *= srf_multiplier; |
| 3177 | /* Round off */ |
| 3178 | numdistinct = ceil(numdistinct); |
| 3179 | /* Guard against out-of-range answers */ |
| 3180 | if (numdistinct > input_rows) |
| 3181 | numdistinct = input_rows; |
| 3182 | if (numdistinct < 1.0) |
| 3183 | numdistinct = 1.0; |
| 3184 | return numdistinct; |
| 3185 | } |
| 3186 | |
| 3187 | /* |
| 3188 | * Group Vars by relation and estimate total numdistinct. |
| 3189 | * |
| 3190 | * For each iteration of the outer loop, we process the frontmost Var in |
| 3191 | * varinfos, plus all other Vars in the same relation. We remove these |
| 3192 | * Vars from the newvarinfos list for the next iteration. This is the |
| 3193 | * easiest way to group Vars of same rel together. |
| 3194 | */ |
| 3195 | do |
| 3196 | { |
| 3197 | GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos); |
| 3198 | RelOptInfo *rel = varinfo1->rel; |
| 3199 | double reldistinct = 1; |
| 3200 | double relmaxndistinct = reldistinct; |
| 3201 | int relvarcount = 0; |
| 3202 | List *newvarinfos = NIL; |
| 3203 | List *relvarinfos = NIL; |
| 3204 | |
| 3205 | /* |
| 3206 | * Split the list of varinfos in two - one for the current rel, one |
| 3207 | * for remaining Vars on other rels. |
| 3208 | */ |
| 3209 | relvarinfos = lcons(varinfo1, relvarinfos); |
| 3210 | for_each_cell(l, lnext(list_head(varinfos))) |
| 3211 | { |
| 3212 | GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l); |
| 3213 | |
| 3214 | if (varinfo2->rel == varinfo1->rel) |
| 3215 | { |
| 3216 | /* varinfos on current rel */ |
| 3217 | relvarinfos = lcons(varinfo2, relvarinfos); |
| 3218 | } |
| 3219 | else |
| 3220 | { |
| 3221 | /* not time to process varinfo2 yet */ |
| 3222 | newvarinfos = lcons(varinfo2, newvarinfos); |
| 3223 | } |
| 3224 | } |
| 3225 | |
| 3226 | /* |
| 3227 | * Get the numdistinct estimate for the Vars of this rel. We |
| 3228 | * iteratively search for multivariate n-distinct with maximum number |
| 3229 | * of vars; assuming that each var group is independent of the others, |
| 3230 | * we multiply them together. Any remaining relvarinfos after no more |
| 3231 | * multivariate matches are found are assumed independent too, so |
| 3232 | * their individual ndistinct estimates are multiplied also. |
| 3233 | * |
| 3234 | * While iterating, count how many separate numdistinct values we |
| 3235 | * apply. We apply a fudge factor below, but only if we multiplied |
| 3236 | * more than one such values. |
| 3237 | */ |
| 3238 | while (relvarinfos) |
| 3239 | { |
| 3240 | double mvndistinct; |
| 3241 | |
| 3242 | if (estimate_multivariate_ndistinct(root, rel, &relvarinfos, |
| 3243 | &mvndistinct)) |
| 3244 | { |
| 3245 | reldistinct *= mvndistinct; |
| 3246 | if (relmaxndistinct < mvndistinct) |
| 3247 | relmaxndistinct = mvndistinct; |
| 3248 | relvarcount++; |
| 3249 | } |
| 3250 | else |
| 3251 | { |
| 3252 | foreach(l, relvarinfos) |
| 3253 | { |
| 3254 | GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l); |
| 3255 | |
| 3256 | reldistinct *= varinfo2->ndistinct; |
| 3257 | if (relmaxndistinct < varinfo2->ndistinct) |
| 3258 | relmaxndistinct = varinfo2->ndistinct; |
| 3259 | relvarcount++; |
| 3260 | } |
| 3261 | |
| 3262 | /* we're done with this relation */ |
| 3263 | relvarinfos = NIL; |
| 3264 | } |
| 3265 | } |
| 3266 | |
| 3267 | /* |
| 3268 | * Sanity check --- don't divide by zero if empty relation. |
| 3269 | */ |
| 3270 | Assert(IS_SIMPLE_REL(rel)); |
| 3271 | if (rel->tuples > 0) |
| 3272 | { |
| 3273 | /* |
| 3274 | * Clamp to size of rel, or size of rel / 10 if multiple Vars. The |
| 3275 | * fudge factor is because the Vars are probably correlated but we |
| 3276 | * don't know by how much. We should never clamp to less than the |
| 3277 | * largest ndistinct value for any of the Vars, though, since |
| 3278 | * there will surely be at least that many groups. |
| 3279 | */ |
| 3280 | double clamp = rel->tuples; |
| 3281 | |
| 3282 | if (relvarcount > 1) |
| 3283 | { |
| 3284 | clamp *= 0.1; |
| 3285 | if (clamp < relmaxndistinct) |
| 3286 | { |
| 3287 | clamp = relmaxndistinct; |
| 3288 | /* for sanity in case some ndistinct is too large: */ |
| 3289 | if (clamp > rel->tuples) |
| 3290 | clamp = rel->tuples; |
| 3291 | } |
| 3292 | } |
| 3293 | if (reldistinct > clamp) |
| 3294 | reldistinct = clamp; |
| 3295 | |
| 3296 | /* |
| 3297 | * Update the estimate based on the restriction selectivity, |
| 3298 | * guarding against division by zero when reldistinct is zero. |
| 3299 | * Also skip this if we know that we are returning all rows. |
| 3300 | */ |
| 3301 | if (reldistinct > 0 && rel->rows < rel->tuples) |
| 3302 | { |
| 3303 | /* |
| 3304 | * Given a table containing N rows with n distinct values in a |
| 3305 | * uniform distribution, if we select p rows at random then |
| 3306 | * the expected number of distinct values selected is |
| 3307 | * |
| 3308 | * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1)) |
| 3309 | * |
| 3310 | * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!) |
| 3311 | * |
| 3312 | * See "Approximating block accesses in database |
| 3313 | * organizations", S. B. Yao, Communications of the ACM, |
| 3314 | * Volume 20 Issue 4, April 1977 Pages 260-261. |
| 3315 | * |
| 3316 | * Alternatively, re-arranging the terms from the factorials, |
| 3317 | * this may be written as |
| 3318 | * |
| 3319 | * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1)) |
| 3320 | * |
| 3321 | * This form of the formula is more efficient to compute in |
| 3322 | * the common case where p is larger than N/n. Additionally, |
| 3323 | * as pointed out by Dell'Era, if i << N for all terms in the |
| 3324 | * product, it can be approximated by |
| 3325 | * |
| 3326 | * n * (1 - ((N-p)/N)^(N/n)) |
| 3327 | * |
| 3328 | * See "Expected distinct values when selecting from a bag |
| 3329 | * without replacement", Alberto Dell'Era, |
| 3330 | * http://www.adellera.it/investigations/distinct_balls/. |
| 3331 | * |
| 3332 | * The condition i << N is equivalent to n >> 1, so this is a |
| 3333 | * good approximation when the number of distinct values in |
| 3334 | * the table is large. It turns out that this formula also |
| 3335 | * works well even when n is small. |
| 3336 | */ |
| 3337 | reldistinct *= |
| 3338 | (1 - pow((rel->tuples - rel->rows) / rel->tuples, |
| 3339 | rel->tuples / reldistinct)); |
| 3340 | } |
| 3341 | reldistinct = clamp_row_est(reldistinct); |
| 3342 | |
| 3343 | /* |
| 3344 | * Update estimate of total distinct groups. |
| 3345 | */ |
| 3346 | numdistinct *= reldistinct; |
| 3347 | } |
| 3348 | |
| 3349 | varinfos = newvarinfos; |
| 3350 | } while (varinfos != NIL); |
| 3351 | |
| 3352 | /* Now we can account for the effects of any SRFs */ |
| 3353 | numdistinct *= srf_multiplier; |
| 3354 | |
| 3355 | /* Round off */ |
| 3356 | numdistinct = ceil(numdistinct); |
| 3357 | |
| 3358 | /* Guard against out-of-range answers */ |
| 3359 | if (numdistinct > input_rows) |
| 3360 | numdistinct = input_rows; |
| 3361 | if (numdistinct < 1.0) |
| 3362 | numdistinct = 1.0; |
| 3363 | |
| 3364 | return numdistinct; |
| 3365 | } |
| 3366 | |
| 3367 | /* |
| 3368 | * Estimate hash bucket statistics when the specified expression is used |
| 3369 | * as a hash key for the given number of buckets. |
| 3370 | * |
| 3371 | * This attempts to determine two values: |
| 3372 | * |
| 3373 | * 1. The frequency of the most common value of the expression (returns |
| 3374 | * zero into *mcv_freq if we can't get that). |
| 3375 | * |
| 3376 | * 2. The "bucketsize fraction", ie, average number of entries in a bucket |
| 3377 | * divided by total tuples in relation. |
| 3378 | * |
| 3379 | * XXX This is really pretty bogus since we're effectively assuming that the |
| 3380 | * distribution of hash keys will be the same after applying restriction |
| 3381 | * clauses as it was in the underlying relation. However, we are not nearly |
| 3382 | * smart enough to figure out how the restrict clauses might change the |
| 3383 | * distribution, so this will have to do for now. |
| 3384 | * |
| 3385 | * We are passed the number of buckets the executor will use for the given |
| 3386 | * input relation. If the data were perfectly distributed, with the same |
| 3387 | * number of tuples going into each available bucket, then the bucketsize |
| 3388 | * fraction would be 1/nbuckets. But this happy state of affairs will occur |
| 3389 | * only if (a) there are at least nbuckets distinct data values, and (b) |
| 3390 | * we have a not-too-skewed data distribution. Otherwise the buckets will |
| 3391 | * be nonuniformly occupied. If the other relation in the join has a key |
| 3392 | * distribution similar to this one's, then the most-loaded buckets are |
| 3393 | * exactly those that will be probed most often. Therefore, the "average" |
| 3394 | * bucket size for costing purposes should really be taken as something close |
| 3395 | * to the "worst case" bucket size. We try to estimate this by adjusting the |
| 3396 | * fraction if there are too few distinct data values, and then scaling up |
| 3397 | * by the ratio of the most common value's frequency to the average frequency. |
| 3398 | * |
| 3399 | * If no statistics are available, use a default estimate of 0.1. This will |
| 3400 | * discourage use of a hash rather strongly if the inner relation is large, |
| 3401 | * which is what we want. We do not want to hash unless we know that the |
| 3402 | * inner rel is well-dispersed (or the alternatives seem much worse). |
| 3403 | * |
| 3404 | * The caller should also check that the mcv_freq is not so large that the |
| 3405 | * most common value would by itself require an impractically large bucket. |
| 3406 | * In a hash join, the executor can split buckets if they get too big, but |
| 3407 | * obviously that doesn't help for a bucket that contains many duplicates of |
| 3408 | * the same value. |
| 3409 | */ |
| 3410 | void |
| 3411 | estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets, |
| 3412 | Selectivity *mcv_freq, |
| 3413 | Selectivity *bucketsize_frac) |
| 3414 | { |
| 3415 | VariableStatData vardata; |
| 3416 | double estfract, |
| 3417 | ndistinct, |
| 3418 | stanullfrac, |
| 3419 | avgfreq; |
| 3420 | bool isdefault; |
| 3421 | AttStatsSlot sslot; |
| 3422 | |
| 3423 | examine_variable(root, hashkey, 0, &vardata); |
| 3424 | |
| 3425 | /* Look up the frequency of the most common value, if available */ |
| 3426 | *mcv_freq = 0.0; |
| 3427 | |
| 3428 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 3429 | { |
| 3430 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
| 3431 | STATISTIC_KIND_MCV, InvalidOid, |
| 3432 | ATTSTATSSLOT_NUMBERS)) |
| 3433 | { |
| 3434 | /* |
| 3435 | * The first MCV stat is for the most common value. |
| 3436 | */ |
| 3437 | if (sslot.nnumbers > 0) |
| 3438 | *mcv_freq = sslot.numbers[0]; |
| 3439 | free_attstatsslot(&sslot); |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | /* Get number of distinct values */ |
| 3444 | ndistinct = get_variable_numdistinct(&vardata, &isdefault); |
| 3445 | |
| 3446 | /* |
| 3447 | * If ndistinct isn't real, punt. We normally return 0.1, but if the |
| 3448 | * mcv_freq is known to be even higher than that, use it instead. |
| 3449 | */ |
| 3450 | if (isdefault) |
| 3451 | { |
| 3452 | *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq); |
| 3453 | ReleaseVariableStats(vardata); |
| 3454 | return; |
| 3455 | } |
| 3456 | |
| 3457 | /* Get fraction that are null */ |
| 3458 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 3459 | { |
| 3460 | Form_pg_statistic stats; |
| 3461 | |
| 3462 | stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
| 3463 | stanullfrac = stats->stanullfrac; |
| 3464 | } |
| 3465 | else |
| 3466 | stanullfrac = 0.0; |
| 3467 | |
| 3468 | /* Compute avg freq of all distinct data values in raw relation */ |
| 3469 | avgfreq = (1.0 - stanullfrac) / ndistinct; |
| 3470 | |
| 3471 | /* |
| 3472 | * Adjust ndistinct to account for restriction clauses. Observe we are |
| 3473 | * assuming that the data distribution is affected uniformly by the |
| 3474 | * restriction clauses! |
| 3475 | * |
| 3476 | * XXX Possibly better way, but much more expensive: multiply by |
| 3477 | * selectivity of rel's restriction clauses that mention the target Var. |
| 3478 | */ |
| 3479 | if (vardata.rel && vardata.rel->tuples > 0) |
| 3480 | { |
| 3481 | ndistinct *= vardata.rel->rows / vardata.rel->tuples; |
| 3482 | ndistinct = clamp_row_est(ndistinct); |
| 3483 | } |
| 3484 | |
| 3485 | /* |
| 3486 | * Initial estimate of bucketsize fraction is 1/nbuckets as long as the |
| 3487 | * number of buckets is less than the expected number of distinct values; |
| 3488 | * otherwise it is 1/ndistinct. |
| 3489 | */ |
| 3490 | if (ndistinct > nbuckets) |
| 3491 | estfract = 1.0 / nbuckets; |
| 3492 | else |
| 3493 | estfract = 1.0 / ndistinct; |
| 3494 | |
| 3495 | /* |
| 3496 | * Adjust estimated bucketsize upward to account for skewed distribution. |
| 3497 | */ |
| 3498 | if (avgfreq > 0.0 && *mcv_freq > avgfreq) |
| 3499 | estfract *= *mcv_freq / avgfreq; |
| 3500 | |
| 3501 | /* |
| 3502 | * Clamp bucketsize to sane range (the above adjustment could easily |
| 3503 | * produce an out-of-range result). We set the lower bound a little above |
| 3504 | * zero, since zero isn't a very sane result. |
| 3505 | */ |
| 3506 | if (estfract < 1.0e-6) |
| 3507 | estfract = 1.0e-6; |
| 3508 | else if (estfract > 1.0) |
| 3509 | estfract = 1.0; |
| 3510 | |
| 3511 | *bucketsize_frac = (Selectivity) estfract; |
| 3512 | |
| 3513 | ReleaseVariableStats(vardata); |
| 3514 | } |
| 3515 | |
| 3516 | /* |
| 3517 | * estimate_hashagg_tablesize |
| 3518 | * estimate the number of bytes that a hash aggregate hashtable will |
| 3519 | * require based on the agg_costs, path width and number of groups. |
| 3520 | * |
| 3521 | * We return the result as "double" to forestall any possible overflow |
| 3522 | * problem in the multiplication by dNumGroups. |
| 3523 | * |
| 3524 | * XXX this may be over-estimating the size now that hashagg knows to omit |
| 3525 | * unneeded columns from the hashtable. Also for mixed-mode grouping sets, |
| 3526 | * grouping columns not in the hashed set are counted here even though hashagg |
| 3527 | * won't store them. Is this a problem? |
| 3528 | */ |
| 3529 | double |
| 3530 | estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, |
| 3531 | double dNumGroups) |
| 3532 | { |
| 3533 | Size hashentrysize; |
| 3534 | |
| 3535 | /* Estimate per-hash-entry space at tuple width... */ |
| 3536 | hashentrysize = MAXALIGN(path->pathtarget->width) + |
| 3537 | MAXALIGN(SizeofMinimalTupleHeader); |
| 3538 | |
| 3539 | /* plus space for pass-by-ref transition values... */ |
| 3540 | hashentrysize += agg_costs->transitionSpace; |
| 3541 | /* plus the per-hash-entry overhead */ |
| 3542 | hashentrysize += hash_agg_entry_size(agg_costs->numAggs); |
| 3543 | |
| 3544 | /* |
| 3545 | * Note that this disregards the effect of fill-factor and growth policy |
| 3546 | * of the hash table. That's probably ok, given that the default |
| 3547 | * fill-factor is relatively high. It'd be hard to meaningfully factor in |
| 3548 | * "double-in-size" growth policies here. |
| 3549 | */ |
| 3550 | return hashentrysize * dNumGroups; |
| 3551 | } |
| 3552 | |
| 3553 | |
| 3554 | /*------------------------------------------------------------------------- |
| 3555 | * |
| 3556 | * Support routines |
| 3557 | * |
| 3558 | *------------------------------------------------------------------------- |
| 3559 | */ |
| 3560 | |
| 3561 | /* |
| 3562 | * Find applicable ndistinct statistics for the given list of VarInfos (which |
| 3563 | * must all belong to the given rel), and update *ndistinct to the estimate of |
| 3564 | * the MVNDistinctItem that best matches. If a match it found, *varinfos is |
| 3565 | * updated to remove the list of matched varinfos. |
| 3566 | * |
| 3567 | * Varinfos that aren't for simple Vars are ignored. |
| 3568 | * |
| 3569 | * Return true if we're able to find a match, false otherwise. |
| 3570 | */ |
| 3571 | static bool |
| 3572 | estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel, |
| 3573 | List **varinfos, double *ndistinct) |
| 3574 | { |
| 3575 | ListCell *lc; |
| 3576 | Bitmapset *attnums = NULL; |
| 3577 | int nmatches; |
| 3578 | Oid statOid = InvalidOid; |
| 3579 | MVNDistinct *stats; |
| 3580 | Bitmapset *matched = NULL; |
| 3581 | |
| 3582 | /* bail out immediately if the table has no extended statistics */ |
| 3583 | if (!rel->statlist) |
| 3584 | return false; |
| 3585 | |
| 3586 | /* Determine the attnums we're looking for */ |
| 3587 | foreach(lc, *varinfos) |
| 3588 | { |
| 3589 | GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc); |
| 3590 | |
| 3591 | Assert(varinfo->rel == rel); |
| 3592 | |
| 3593 | if (IsA(varinfo->var, Var)) |
| 3594 | { |
| 3595 | attnums = bms_add_member(attnums, |
| 3596 | ((Var *) varinfo->var)->varattno); |
| 3597 | } |
| 3598 | } |
| 3599 | |
| 3600 | /* look for the ndistinct statistics matching the most vars */ |
| 3601 | nmatches = 1; /* we require at least two matches */ |
| 3602 | foreach(lc, rel->statlist) |
| 3603 | { |
| 3604 | StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc); |
| 3605 | Bitmapset *shared; |
| 3606 | int nshared; |
| 3607 | |
| 3608 | /* skip statistics of other kinds */ |
| 3609 | if (info->kind != STATS_EXT_NDISTINCT) |
| 3610 | continue; |
| 3611 | |
| 3612 | /* compute attnums shared by the vars and the statistics object */ |
| 3613 | shared = bms_intersect(info->keys, attnums); |
| 3614 | nshared = bms_num_members(shared); |
| 3615 | |
| 3616 | /* |
| 3617 | * Does this statistics object match more columns than the currently |
| 3618 | * best object? If so, use this one instead. |
| 3619 | * |
| 3620 | * XXX This should break ties using name of the object, or something |
| 3621 | * like that, to make the outcome stable. |
| 3622 | */ |
| 3623 | if (nshared > nmatches) |
| 3624 | { |
| 3625 | statOid = info->statOid; |
| 3626 | nmatches = nshared; |
| 3627 | matched = shared; |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | /* No match? */ |
| 3632 | if (statOid == InvalidOid) |
| 3633 | return false; |
| 3634 | Assert(nmatches > 1 && matched != NULL); |
| 3635 | |
| 3636 | stats = statext_ndistinct_load(statOid); |
| 3637 | |
| 3638 | /* |
| 3639 | * If we have a match, search it for the specific item that matches (there |
| 3640 | * must be one), and construct the output values. |
| 3641 | */ |
| 3642 | if (stats) |
| 3643 | { |
| 3644 | int i; |
| 3645 | List *newlist = NIL; |
| 3646 | MVNDistinctItem *item = NULL; |
| 3647 | |
| 3648 | /* Find the specific item that exactly matches the combination */ |
| 3649 | for (i = 0; i < stats->nitems; i++) |
| 3650 | { |
| 3651 | MVNDistinctItem *tmpitem = &stats->items[i]; |
| 3652 | |
| 3653 | if (bms_subset_compare(tmpitem->attrs, matched) == BMS_EQUAL) |
| 3654 | { |
| 3655 | item = tmpitem; |
| 3656 | break; |
| 3657 | } |
| 3658 | } |
| 3659 | |
| 3660 | /* make sure we found an item */ |
| 3661 | if (!item) |
| 3662 | elog(ERROR, "corrupt MVNDistinct entry" ); |
| 3663 | |
| 3664 | /* Form the output varinfo list, keeping only unmatched ones */ |
| 3665 | foreach(lc, *varinfos) |
| 3666 | { |
| 3667 | GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc); |
| 3668 | AttrNumber attnum; |
| 3669 | |
| 3670 | if (!IsA(varinfo->var, Var)) |
| 3671 | { |
| 3672 | newlist = lappend(newlist, varinfo); |
| 3673 | continue; |
| 3674 | } |
| 3675 | |
| 3676 | attnum = ((Var *) varinfo->var)->varattno; |
| 3677 | if (!bms_is_member(attnum, matched)) |
| 3678 | newlist = lappend(newlist, varinfo); |
| 3679 | } |
| 3680 | |
| 3681 | *varinfos = newlist; |
| 3682 | *ndistinct = item->ndistinct; |
| 3683 | return true; |
| 3684 | } |
| 3685 | |
| 3686 | return false; |
| 3687 | } |
| 3688 | |
| 3689 | /* |
| 3690 | * convert_to_scalar |
| 3691 | * Convert non-NULL values of the indicated types to the comparison |
| 3692 | * scale needed by scalarineqsel(). |
| 3693 | * Returns "true" if successful. |
| 3694 | * |
| 3695 | * XXX this routine is a hack: ideally we should look up the conversion |
| 3696 | * subroutines in pg_type. |
| 3697 | * |
| 3698 | * All numeric datatypes are simply converted to their equivalent |
| 3699 | * "double" values. (NUMERIC values that are outside the range of "double" |
| 3700 | * are clamped to +/- HUGE_VAL.) |
| 3701 | * |
| 3702 | * String datatypes are converted by convert_string_to_scalar(), |
| 3703 | * which is explained below. The reason why this routine deals with |
| 3704 | * three values at a time, not just one, is that we need it for strings. |
| 3705 | * |
| 3706 | * The bytea datatype is just enough different from strings that it has |
| 3707 | * to be treated separately. |
| 3708 | * |
| 3709 | * The several datatypes representing absolute times are all converted |
| 3710 | * to Timestamp, which is actually a double, and then we just use that |
| 3711 | * double value. Note this will give correct results even for the "special" |
| 3712 | * values of Timestamp, since those are chosen to compare correctly; |
| 3713 | * see timestamp_cmp. |
| 3714 | * |
| 3715 | * The several datatypes representing relative times (intervals) are all |
| 3716 | * converted to measurements expressed in seconds. |
| 3717 | */ |
| 3718 | static bool |
| 3719 | convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue, |
| 3720 | Datum lobound, Datum hibound, Oid boundstypid, |
| 3721 | double *scaledlobound, double *scaledhibound) |
| 3722 | { |
| 3723 | bool failure = false; |
| 3724 | |
| 3725 | /* |
| 3726 | * Both the valuetypid and the boundstypid should exactly match the |
| 3727 | * declared input type(s) of the operator we are invoked for. However, |
| 3728 | * extensions might try to use scalarineqsel as estimator for operators |
| 3729 | * with input type(s) we don't handle here; in such cases, we want to |
| 3730 | * return false, not fail. In any case, we mustn't assume that valuetypid |
| 3731 | * and boundstypid are identical. |
| 3732 | * |
| 3733 | * XXX The histogram we are interpolating between points of could belong |
| 3734 | * to a column that's only binary-compatible with the declared type. In |
| 3735 | * essence we are assuming that the semantics of binary-compatible types |
| 3736 | * are enough alike that we can use a histogram generated with one type's |
| 3737 | * operators to estimate selectivity for the other's. This is outright |
| 3738 | * wrong in some cases --- in particular signed versus unsigned |
| 3739 | * interpretation could trip us up. But it's useful enough in the |
| 3740 | * majority of cases that we do it anyway. Should think about more |
| 3741 | * rigorous ways to do it. |
| 3742 | */ |
| 3743 | switch (valuetypid) |
| 3744 | { |
| 3745 | /* |
| 3746 | * Built-in numeric types |
| 3747 | */ |
| 3748 | case BOOLOID: |
| 3749 | case INT2OID: |
| 3750 | case INT4OID: |
| 3751 | case INT8OID: |
| 3752 | case FLOAT4OID: |
| 3753 | case FLOAT8OID: |
| 3754 | case NUMERICOID: |
| 3755 | case OIDOID: |
| 3756 | case REGPROCOID: |
| 3757 | case REGPROCEDUREOID: |
| 3758 | case REGOPEROID: |
| 3759 | case REGOPERATOROID: |
| 3760 | case REGCLASSOID: |
| 3761 | case REGTYPEOID: |
| 3762 | case REGCONFIGOID: |
| 3763 | case REGDICTIONARYOID: |
| 3764 | case REGROLEOID: |
| 3765 | case REGNAMESPACEOID: |
| 3766 | *scaledvalue = convert_numeric_to_scalar(value, valuetypid, |
| 3767 | &failure); |
| 3768 | *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid, |
| 3769 | &failure); |
| 3770 | *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid, |
| 3771 | &failure); |
| 3772 | return !failure; |
| 3773 | |
| 3774 | /* |
| 3775 | * Built-in string types |
| 3776 | */ |
| 3777 | case CHAROID: |
| 3778 | case BPCHAROID: |
| 3779 | case VARCHAROID: |
| 3780 | case TEXTOID: |
| 3781 | case NAMEOID: |
| 3782 | { |
| 3783 | char *valstr = convert_string_datum(value, valuetypid, |
| 3784 | collid, &failure); |
| 3785 | char *lostr = convert_string_datum(lobound, boundstypid, |
| 3786 | collid, &failure); |
| 3787 | char *histr = convert_string_datum(hibound, boundstypid, |
| 3788 | collid, &failure); |
| 3789 | |
| 3790 | /* |
| 3791 | * Bail out if any of the values is not of string type. We |
| 3792 | * might leak converted strings for the other value(s), but |
| 3793 | * that's not worth troubling over. |
| 3794 | */ |
| 3795 | if (failure) |
| 3796 | return false; |
| 3797 | |
| 3798 | convert_string_to_scalar(valstr, scaledvalue, |
| 3799 | lostr, scaledlobound, |
| 3800 | histr, scaledhibound); |
| 3801 | pfree(valstr); |
| 3802 | pfree(lostr); |
| 3803 | pfree(histr); |
| 3804 | return true; |
| 3805 | } |
| 3806 | |
| 3807 | /* |
| 3808 | * Built-in bytea type |
| 3809 | */ |
| 3810 | case BYTEAOID: |
| 3811 | { |
| 3812 | /* We only support bytea vs bytea comparison */ |
| 3813 | if (boundstypid != BYTEAOID) |
| 3814 | return false; |
| 3815 | convert_bytea_to_scalar(value, scaledvalue, |
| 3816 | lobound, scaledlobound, |
| 3817 | hibound, scaledhibound); |
| 3818 | return true; |
| 3819 | } |
| 3820 | |
| 3821 | /* |
| 3822 | * Built-in time types |
| 3823 | */ |
| 3824 | case TIMESTAMPOID: |
| 3825 | case TIMESTAMPTZOID: |
| 3826 | case DATEOID: |
| 3827 | case INTERVALOID: |
| 3828 | case TIMEOID: |
| 3829 | case TIMETZOID: |
| 3830 | *scaledvalue = convert_timevalue_to_scalar(value, valuetypid, |
| 3831 | &failure); |
| 3832 | *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid, |
| 3833 | &failure); |
| 3834 | *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid, |
| 3835 | &failure); |
| 3836 | return !failure; |
| 3837 | |
| 3838 | /* |
| 3839 | * Built-in network types |
| 3840 | */ |
| 3841 | case INETOID: |
| 3842 | case CIDROID: |
| 3843 | case MACADDROID: |
| 3844 | case MACADDR8OID: |
| 3845 | *scaledvalue = convert_network_to_scalar(value, valuetypid, |
| 3846 | &failure); |
| 3847 | *scaledlobound = convert_network_to_scalar(lobound, boundstypid, |
| 3848 | &failure); |
| 3849 | *scaledhibound = convert_network_to_scalar(hibound, boundstypid, |
| 3850 | &failure); |
| 3851 | return !failure; |
| 3852 | } |
| 3853 | /* Don't know how to convert */ |
| 3854 | *scaledvalue = *scaledlobound = *scaledhibound = 0; |
| 3855 | return false; |
| 3856 | } |
| 3857 | |
| 3858 | /* |
| 3859 | * Do convert_to_scalar()'s work for any numeric data type. |
| 3860 | * |
| 3861 | * On failure (e.g., unsupported typid), set *failure to true; |
| 3862 | * otherwise, that variable is not changed. |
| 3863 | */ |
| 3864 | static double |
| 3865 | convert_numeric_to_scalar(Datum value, Oid typid, bool *failure) |
| 3866 | { |
| 3867 | switch (typid) |
| 3868 | { |
| 3869 | case BOOLOID: |
| 3870 | return (double) DatumGetBool(value); |
| 3871 | case INT2OID: |
| 3872 | return (double) DatumGetInt16(value); |
| 3873 | case INT4OID: |
| 3874 | return (double) DatumGetInt32(value); |
| 3875 | case INT8OID: |
| 3876 | return (double) DatumGetInt64(value); |
| 3877 | case FLOAT4OID: |
| 3878 | return (double) DatumGetFloat4(value); |
| 3879 | case FLOAT8OID: |
| 3880 | return (double) DatumGetFloat8(value); |
| 3881 | case NUMERICOID: |
| 3882 | /* Note: out-of-range values will be clamped to +-HUGE_VAL */ |
| 3883 | return (double) |
| 3884 | DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow, |
| 3885 | value)); |
| 3886 | case OIDOID: |
| 3887 | case REGPROCOID: |
| 3888 | case REGPROCEDUREOID: |
| 3889 | case REGOPEROID: |
| 3890 | case REGOPERATOROID: |
| 3891 | case REGCLASSOID: |
| 3892 | case REGTYPEOID: |
| 3893 | case REGCONFIGOID: |
| 3894 | case REGDICTIONARYOID: |
| 3895 | case REGROLEOID: |
| 3896 | case REGNAMESPACEOID: |
| 3897 | /* we can treat OIDs as integers... */ |
| 3898 | return (double) DatumGetObjectId(value); |
| 3899 | } |
| 3900 | |
| 3901 | *failure = true; |
| 3902 | return 0; |
| 3903 | } |
| 3904 | |
| 3905 | /* |
| 3906 | * Do convert_to_scalar()'s work for any character-string data type. |
| 3907 | * |
| 3908 | * String datatypes are converted to a scale that ranges from 0 to 1, |
| 3909 | * where we visualize the bytes of the string as fractional digits. |
| 3910 | * |
| 3911 | * We do not want the base to be 256, however, since that tends to |
| 3912 | * generate inflated selectivity estimates; few databases will have |
| 3913 | * occurrences of all 256 possible byte values at each position. |
| 3914 | * Instead, use the smallest and largest byte values seen in the bounds |
| 3915 | * as the estimated range for each byte, after some fudging to deal with |
| 3916 | * the fact that we probably aren't going to see the full range that way. |
| 3917 | * |
| 3918 | * An additional refinement is that we discard any common prefix of the |
| 3919 | * three strings before computing the scaled values. This allows us to |
| 3920 | * "zoom in" when we encounter a narrow data range. An example is a phone |
| 3921 | * number database where all the values begin with the same area code. |
| 3922 | * (Actually, the bounds will be adjacent histogram-bin-boundary values, |
| 3923 | * so this is more likely to happen than you might think.) |
| 3924 | */ |
| 3925 | static void |
| 3926 | convert_string_to_scalar(char *value, |
| 3927 | double *scaledvalue, |
| 3928 | char *lobound, |
| 3929 | double *scaledlobound, |
| 3930 | char *hibound, |
| 3931 | double *scaledhibound) |
| 3932 | { |
| 3933 | int rangelo, |
| 3934 | rangehi; |
| 3935 | char *sptr; |
| 3936 | |
| 3937 | rangelo = rangehi = (unsigned char) hibound[0]; |
| 3938 | for (sptr = lobound; *sptr; sptr++) |
| 3939 | { |
| 3940 | if (rangelo > (unsigned char) *sptr) |
| 3941 | rangelo = (unsigned char) *sptr; |
| 3942 | if (rangehi < (unsigned char) *sptr) |
| 3943 | rangehi = (unsigned char) *sptr; |
| 3944 | } |
| 3945 | for (sptr = hibound; *sptr; sptr++) |
| 3946 | { |
| 3947 | if (rangelo > (unsigned char) *sptr) |
| 3948 | rangelo = (unsigned char) *sptr; |
| 3949 | if (rangehi < (unsigned char) *sptr) |
| 3950 | rangehi = (unsigned char) *sptr; |
| 3951 | } |
| 3952 | /* If range includes any upper-case ASCII chars, make it include all */ |
| 3953 | if (rangelo <= 'Z' && rangehi >= 'A') |
| 3954 | { |
| 3955 | if (rangelo > 'A') |
| 3956 | rangelo = 'A'; |
| 3957 | if (rangehi < 'Z') |
| 3958 | rangehi = 'Z'; |
| 3959 | } |
| 3960 | /* Ditto lower-case */ |
| 3961 | if (rangelo <= 'z' && rangehi >= 'a') |
| 3962 | { |
| 3963 | if (rangelo > 'a') |
| 3964 | rangelo = 'a'; |
| 3965 | if (rangehi < 'z') |
| 3966 | rangehi = 'z'; |
| 3967 | } |
| 3968 | /* Ditto digits */ |
| 3969 | if (rangelo <= '9' && rangehi >= '0') |
| 3970 | { |
| 3971 | if (rangelo > '0') |
| 3972 | rangelo = '0'; |
| 3973 | if (rangehi < '9') |
| 3974 | rangehi = '9'; |
| 3975 | } |
| 3976 | |
| 3977 | /* |
| 3978 | * If range includes less than 10 chars, assume we have not got enough |
| 3979 | * data, and make it include regular ASCII set. |
| 3980 | */ |
| 3981 | if (rangehi - rangelo < 9) |
| 3982 | { |
| 3983 | rangelo = ' '; |
| 3984 | rangehi = 127; |
| 3985 | } |
| 3986 | |
| 3987 | /* |
| 3988 | * Now strip any common prefix of the three strings. |
| 3989 | */ |
| 3990 | while (*lobound) |
| 3991 | { |
| 3992 | if (*lobound != *hibound || *lobound != *value) |
| 3993 | break; |
| 3994 | lobound++, hibound++, value++; |
| 3995 | } |
| 3996 | |
| 3997 | /* |
| 3998 | * Now we can do the conversions. |
| 3999 | */ |
| 4000 | *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi); |
| 4001 | *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi); |
| 4002 | *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi); |
| 4003 | } |
| 4004 | |
| 4005 | static double |
| 4006 | convert_one_string_to_scalar(char *value, int rangelo, int rangehi) |
| 4007 | { |
| 4008 | int slen = strlen(value); |
| 4009 | double num, |
| 4010 | denom, |
| 4011 | base; |
| 4012 | |
| 4013 | if (slen <= 0) |
| 4014 | return 0.0; /* empty string has scalar value 0 */ |
| 4015 | |
| 4016 | /* |
| 4017 | * There seems little point in considering more than a dozen bytes from |
| 4018 | * the string. Since base is at least 10, that will give us nominal |
| 4019 | * resolution of at least 12 decimal digits, which is surely far more |
| 4020 | * precision than this estimation technique has got anyway (especially in |
| 4021 | * non-C locales). Also, even with the maximum possible base of 256, this |
| 4022 | * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not |
| 4023 | * overflow on any known machine. |
| 4024 | */ |
| 4025 | if (slen > 12) |
| 4026 | slen = 12; |
| 4027 | |
| 4028 | /* Convert initial characters to fraction */ |
| 4029 | base = rangehi - rangelo + 1; |
| 4030 | num = 0.0; |
| 4031 | denom = base; |
| 4032 | while (slen-- > 0) |
| 4033 | { |
| 4034 | int ch = (unsigned char) *value++; |
| 4035 | |
| 4036 | if (ch < rangelo) |
| 4037 | ch = rangelo - 1; |
| 4038 | else if (ch > rangehi) |
| 4039 | ch = rangehi + 1; |
| 4040 | num += ((double) (ch - rangelo)) / denom; |
| 4041 | denom *= base; |
| 4042 | } |
| 4043 | |
| 4044 | return num; |
| 4045 | } |
| 4046 | |
| 4047 | /* |
| 4048 | * Convert a string-type Datum into a palloc'd, null-terminated string. |
| 4049 | * |
| 4050 | * On failure (e.g., unsupported typid), set *failure to true; |
| 4051 | * otherwise, that variable is not changed. (We'll return NULL on failure.) |
| 4052 | * |
| 4053 | * When using a non-C locale, we must pass the string through strxfrm() |
| 4054 | * before continuing, so as to generate correct locale-specific results. |
| 4055 | */ |
| 4056 | static char * |
| 4057 | convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure) |
| 4058 | { |
| 4059 | char *val; |
| 4060 | |
| 4061 | switch (typid) |
| 4062 | { |
| 4063 | case CHAROID: |
| 4064 | val = (char *) palloc(2); |
| 4065 | val[0] = DatumGetChar(value); |
| 4066 | val[1] = '\0'; |
| 4067 | break; |
| 4068 | case BPCHAROID: |
| 4069 | case VARCHAROID: |
| 4070 | case TEXTOID: |
| 4071 | val = TextDatumGetCString(value); |
| 4072 | break; |
| 4073 | case NAMEOID: |
| 4074 | { |
| 4075 | NameData *nm = (NameData *) DatumGetPointer(value); |
| 4076 | |
| 4077 | val = pstrdup(NameStr(*nm)); |
| 4078 | break; |
| 4079 | } |
| 4080 | default: |
| 4081 | *failure = true; |
| 4082 | return NULL; |
| 4083 | } |
| 4084 | |
| 4085 | if (!lc_collate_is_c(collid)) |
| 4086 | { |
| 4087 | char *xfrmstr; |
| 4088 | size_t xfrmlen; |
| 4089 | size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY; |
| 4090 | |
| 4091 | /* |
| 4092 | * XXX: We could guess at a suitable output buffer size and only call |
| 4093 | * strxfrm twice if our guess is too small. |
| 4094 | * |
| 4095 | * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return |
| 4096 | * bogus data or set an error. This is not really a problem unless it |
| 4097 | * crashes since it will only give an estimation error and nothing |
| 4098 | * fatal. |
| 4099 | */ |
| 4100 | #if _MSC_VER == 1400 /* VS.Net 2005 */ |
| 4101 | |
| 4102 | /* |
| 4103 | * |
| 4104 | * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=99694 |
| 4105 | */ |
| 4106 | { |
| 4107 | char x[1]; |
| 4108 | |
| 4109 | xfrmlen = strxfrm(x, val, 0); |
| 4110 | } |
| 4111 | #else |
| 4112 | xfrmlen = strxfrm(NULL, val, 0); |
| 4113 | #endif |
| 4114 | #ifdef WIN32 |
| 4115 | |
| 4116 | /* |
| 4117 | * On Windows, strxfrm returns INT_MAX when an error occurs. Instead |
| 4118 | * of trying to allocate this much memory (and fail), just return the |
| 4119 | * original string unmodified as if we were in the C locale. |
| 4120 | */ |
| 4121 | if (xfrmlen == INT_MAX) |
| 4122 | return val; |
| 4123 | #endif |
| 4124 | xfrmstr = (char *) palloc(xfrmlen + 1); |
| 4125 | xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1); |
| 4126 | |
| 4127 | /* |
| 4128 | * Some systems (e.g., glibc) can return a smaller value from the |
| 4129 | * second call than the first; thus the Assert must be <= not ==. |
| 4130 | */ |
| 4131 | Assert(xfrmlen2 <= xfrmlen); |
| 4132 | pfree(val); |
| 4133 | val = xfrmstr; |
| 4134 | } |
| 4135 | |
| 4136 | return val; |
| 4137 | } |
| 4138 | |
| 4139 | /* |
| 4140 | * Do convert_to_scalar()'s work for any bytea data type. |
| 4141 | * |
| 4142 | * Very similar to convert_string_to_scalar except we can't assume |
| 4143 | * null-termination and therefore pass explicit lengths around. |
| 4144 | * |
| 4145 | * Also, assumptions about likely "normal" ranges of characters have been |
| 4146 | * removed - a data range of 0..255 is always used, for now. (Perhaps |
| 4147 | * someday we will add information about actual byte data range to |
| 4148 | * pg_statistic.) |
| 4149 | */ |
| 4150 | static void |
| 4151 | convert_bytea_to_scalar(Datum value, |
| 4152 | double *scaledvalue, |
| 4153 | Datum lobound, |
| 4154 | double *scaledlobound, |
| 4155 | Datum hibound, |
| 4156 | double *scaledhibound) |
| 4157 | { |
| 4158 | bytea *valuep = DatumGetByteaPP(value); |
| 4159 | bytea *loboundp = DatumGetByteaPP(lobound); |
| 4160 | bytea *hiboundp = DatumGetByteaPP(hibound); |
| 4161 | int rangelo, |
| 4162 | rangehi, |
| 4163 | valuelen = VARSIZE_ANY_EXHDR(valuep), |
| 4164 | loboundlen = VARSIZE_ANY_EXHDR(loboundp), |
| 4165 | hiboundlen = VARSIZE_ANY_EXHDR(hiboundp), |
| 4166 | i, |
| 4167 | minlen; |
| 4168 | unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep); |
| 4169 | unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp); |
| 4170 | unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp); |
| 4171 | |
| 4172 | /* |
| 4173 | * Assume bytea data is uniformly distributed across all byte values. |
| 4174 | */ |
| 4175 | rangelo = 0; |
| 4176 | rangehi = 255; |
| 4177 | |
| 4178 | /* |
| 4179 | * Now strip any common prefix of the three strings. |
| 4180 | */ |
| 4181 | minlen = Min(Min(valuelen, loboundlen), hiboundlen); |
| 4182 | for (i = 0; i < minlen; i++) |
| 4183 | { |
| 4184 | if (*lostr != *histr || *lostr != *valstr) |
| 4185 | break; |
| 4186 | lostr++, histr++, valstr++; |
| 4187 | loboundlen--, hiboundlen--, valuelen--; |
| 4188 | } |
| 4189 | |
| 4190 | /* |
| 4191 | * Now we can do the conversions. |
| 4192 | */ |
| 4193 | *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi); |
| 4194 | *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi); |
| 4195 | *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi); |
| 4196 | } |
| 4197 | |
| 4198 | static double |
| 4199 | convert_one_bytea_to_scalar(unsigned char *value, int valuelen, |
| 4200 | int rangelo, int rangehi) |
| 4201 | { |
| 4202 | double num, |
| 4203 | denom, |
| 4204 | base; |
| 4205 | |
| 4206 | if (valuelen <= 0) |
| 4207 | return 0.0; /* empty string has scalar value 0 */ |
| 4208 | |
| 4209 | /* |
| 4210 | * Since base is 256, need not consider more than about 10 chars (even |
| 4211 | * this many seems like overkill) |
| 4212 | */ |
| 4213 | if (valuelen > 10) |
| 4214 | valuelen = 10; |
| 4215 | |
| 4216 | /* Convert initial characters to fraction */ |
| 4217 | base = rangehi - rangelo + 1; |
| 4218 | num = 0.0; |
| 4219 | denom = base; |
| 4220 | while (valuelen-- > 0) |
| 4221 | { |
| 4222 | int ch = *value++; |
| 4223 | |
| 4224 | if (ch < rangelo) |
| 4225 | ch = rangelo - 1; |
| 4226 | else if (ch > rangehi) |
| 4227 | ch = rangehi + 1; |
| 4228 | num += ((double) (ch - rangelo)) / denom; |
| 4229 | denom *= base; |
| 4230 | } |
| 4231 | |
| 4232 | return num; |
| 4233 | } |
| 4234 | |
| 4235 | /* |
| 4236 | * Do convert_to_scalar()'s work for any timevalue data type. |
| 4237 | * |
| 4238 | * On failure (e.g., unsupported typid), set *failure to true; |
| 4239 | * otherwise, that variable is not changed. |
| 4240 | */ |
| 4241 | static double |
| 4242 | convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure) |
| 4243 | { |
| 4244 | switch (typid) |
| 4245 | { |
| 4246 | case TIMESTAMPOID: |
| 4247 | return DatumGetTimestamp(value); |
| 4248 | case TIMESTAMPTZOID: |
| 4249 | return DatumGetTimestampTz(value); |
| 4250 | case DATEOID: |
| 4251 | return date2timestamp_no_overflow(DatumGetDateADT(value)); |
| 4252 | case INTERVALOID: |
| 4253 | { |
| 4254 | Interval *interval = DatumGetIntervalP(value); |
| 4255 | |
| 4256 | /* |
| 4257 | * Convert the month part of Interval to days using assumed |
| 4258 | * average month length of 365.25/12.0 days. Not too |
| 4259 | * accurate, but plenty good enough for our purposes. |
| 4260 | */ |
| 4261 | return interval->time + interval->day * (double) USECS_PER_DAY + |
| 4262 | interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY); |
| 4263 | } |
| 4264 | case TIMEOID: |
| 4265 | return DatumGetTimeADT(value); |
| 4266 | case TIMETZOID: |
| 4267 | { |
| 4268 | TimeTzADT *timetz = DatumGetTimeTzADTP(value); |
| 4269 | |
| 4270 | /* use GMT-equivalent time */ |
| 4271 | return (double) (timetz->time + (timetz->zone * 1000000.0)); |
| 4272 | } |
| 4273 | } |
| 4274 | |
| 4275 | *failure = true; |
| 4276 | return 0; |
| 4277 | } |
| 4278 | |
| 4279 | |
| 4280 | /* |
| 4281 | * get_restriction_variable |
| 4282 | * Examine the args of a restriction clause to see if it's of the |
| 4283 | * form (variable op pseudoconstant) or (pseudoconstant op variable), |
| 4284 | * where "variable" could be either a Var or an expression in vars of a |
| 4285 | * single relation. If so, extract information about the variable, |
| 4286 | * and also indicate which side it was on and the other argument. |
| 4287 | * |
| 4288 | * Inputs: |
| 4289 | * root: the planner info |
| 4290 | * args: clause argument list |
| 4291 | * varRelid: see specs for restriction selectivity functions |
| 4292 | * |
| 4293 | * Outputs: (these are valid only if true is returned) |
| 4294 | * *vardata: gets information about variable (see examine_variable) |
| 4295 | * *other: gets other clause argument, aggressively reduced to a constant |
| 4296 | * *varonleft: set true if variable is on the left, false if on the right |
| 4297 | * |
| 4298 | * Returns true if a variable is identified, otherwise false. |
| 4299 | * |
| 4300 | * Note: if there are Vars on both sides of the clause, we must fail, because |
| 4301 | * callers are expecting that the other side will act like a pseudoconstant. |
| 4302 | */ |
| 4303 | bool |
| 4304 | get_restriction_variable(PlannerInfo *root, List *args, int varRelid, |
| 4305 | VariableStatData *vardata, Node **other, |
| 4306 | bool *varonleft) |
| 4307 | { |
| 4308 | Node *left, |
| 4309 | *right; |
| 4310 | VariableStatData rdata; |
| 4311 | |
| 4312 | /* Fail if not a binary opclause (probably shouldn't happen) */ |
| 4313 | if (list_length(args) != 2) |
| 4314 | return false; |
| 4315 | |
| 4316 | left = (Node *) linitial(args); |
| 4317 | right = (Node *) lsecond(args); |
| 4318 | |
| 4319 | /* |
| 4320 | * Examine both sides. Note that when varRelid is nonzero, Vars of other |
| 4321 | * relations will be treated as pseudoconstants. |
| 4322 | */ |
| 4323 | examine_variable(root, left, varRelid, vardata); |
| 4324 | examine_variable(root, right, varRelid, &rdata); |
| 4325 | |
| 4326 | /* |
| 4327 | * If one side is a variable and the other not, we win. |
| 4328 | */ |
| 4329 | if (vardata->rel && rdata.rel == NULL) |
| 4330 | { |
| 4331 | *varonleft = true; |
| 4332 | *other = estimate_expression_value(root, rdata.var); |
| 4333 | /* Assume we need no ReleaseVariableStats(rdata) here */ |
| 4334 | return true; |
| 4335 | } |
| 4336 | |
| 4337 | if (vardata->rel == NULL && rdata.rel) |
| 4338 | { |
| 4339 | *varonleft = false; |
| 4340 | *other = estimate_expression_value(root, vardata->var); |
| 4341 | /* Assume we need no ReleaseVariableStats(*vardata) here */ |
| 4342 | *vardata = rdata; |
| 4343 | return true; |
| 4344 | } |
| 4345 | |
| 4346 | /* Oops, clause has wrong structure (probably var op var) */ |
| 4347 | ReleaseVariableStats(*vardata); |
| 4348 | ReleaseVariableStats(rdata); |
| 4349 | |
| 4350 | return false; |
| 4351 | } |
| 4352 | |
| 4353 | /* |
| 4354 | * get_join_variables |
| 4355 | * Apply examine_variable() to each side of a join clause. |
| 4356 | * Also, attempt to identify whether the join clause has the same |
| 4357 | * or reversed sense compared to the SpecialJoinInfo. |
| 4358 | * |
| 4359 | * We consider the join clause "normal" if it is "lhs_var OP rhs_var", |
| 4360 | * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases |
| 4361 | * where we can't tell for sure, we default to assuming it's normal. |
| 4362 | */ |
| 4363 | void |
| 4364 | get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo, |
| 4365 | VariableStatData *vardata1, VariableStatData *vardata2, |
| 4366 | bool *join_is_reversed) |
| 4367 | { |
| 4368 | Node *left, |
| 4369 | *right; |
| 4370 | |
| 4371 | if (list_length(args) != 2) |
| 4372 | elog(ERROR, "join operator should take two arguments" ); |
| 4373 | |
| 4374 | left = (Node *) linitial(args); |
| 4375 | right = (Node *) lsecond(args); |
| 4376 | |
| 4377 | examine_variable(root, left, 0, vardata1); |
| 4378 | examine_variable(root, right, 0, vardata2); |
| 4379 | |
| 4380 | if (vardata1->rel && |
| 4381 | bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand)) |
| 4382 | *join_is_reversed = true; /* var1 is on RHS */ |
| 4383 | else if (vardata2->rel && |
| 4384 | bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand)) |
| 4385 | *join_is_reversed = true; /* var2 is on LHS */ |
| 4386 | else |
| 4387 | *join_is_reversed = false; |
| 4388 | } |
| 4389 | |
| 4390 | /* |
| 4391 | * examine_variable |
| 4392 | * Try to look up statistical data about an expression. |
| 4393 | * Fill in a VariableStatData struct to describe the expression. |
| 4394 | * |
| 4395 | * Inputs: |
| 4396 | * root: the planner info |
| 4397 | * node: the expression tree to examine |
| 4398 | * varRelid: see specs for restriction selectivity functions |
| 4399 | * |
| 4400 | * Outputs: *vardata is filled as follows: |
| 4401 | * var: the input expression (with any binary relabeling stripped, if |
| 4402 | * it is or contains a variable; but otherwise the type is preserved) |
| 4403 | * rel: RelOptInfo for relation containing variable; NULL if expression |
| 4404 | * contains no Vars (NOTE this could point to a RelOptInfo of a |
| 4405 | * subquery, not one in the current query). |
| 4406 | * statsTuple: the pg_statistic entry for the variable, if one exists; |
| 4407 | * otherwise NULL. |
| 4408 | * freefunc: pointer to a function to release statsTuple with. |
| 4409 | * vartype: exposed type of the expression; this should always match |
| 4410 | * the declared input type of the operator we are estimating for. |
| 4411 | * atttype, atttypmod: actual type/typmod of the "var" expression. This is |
| 4412 | * commonly the same as the exposed type of the variable argument, |
| 4413 | * but can be different in binary-compatible-type cases. |
| 4414 | * isunique: true if we were able to match the var to a unique index or a |
| 4415 | * single-column DISTINCT clause, implying its values are unique for |
| 4416 | * this query. (Caution: this should be trusted for statistical |
| 4417 | * purposes only, since we do not check indimmediate nor verify that |
| 4418 | * the exact same definition of equality applies.) |
| 4419 | * acl_ok: true if current user has permission to read the column(s) |
| 4420 | * underlying the pg_statistic entry. This is consulted by |
| 4421 | * statistic_proc_security_check(). |
| 4422 | * |
| 4423 | * Caller is responsible for doing ReleaseVariableStats() before exiting. |
| 4424 | */ |
| 4425 | void |
| 4426 | examine_variable(PlannerInfo *root, Node *node, int varRelid, |
| 4427 | VariableStatData *vardata) |
| 4428 | { |
| 4429 | Node *basenode; |
| 4430 | Relids varnos; |
| 4431 | RelOptInfo *onerel; |
| 4432 | |
| 4433 | /* Make sure we don't return dangling pointers in vardata */ |
| 4434 | MemSet(vardata, 0, sizeof(VariableStatData)); |
| 4435 | |
| 4436 | /* Save the exposed type of the expression */ |
| 4437 | vardata->vartype = exprType(node); |
| 4438 | |
| 4439 | /* Look inside any binary-compatible relabeling */ |
| 4440 | |
| 4441 | if (IsA(node, RelabelType)) |
| 4442 | basenode = (Node *) ((RelabelType *) node)->arg; |
| 4443 | else |
| 4444 | basenode = node; |
| 4445 | |
| 4446 | /* Fast path for a simple Var */ |
| 4447 | |
| 4448 | if (IsA(basenode, Var) && |
| 4449 | (varRelid == 0 || varRelid == ((Var *) basenode)->varno)) |
| 4450 | { |
| 4451 | Var *var = (Var *) basenode; |
| 4452 | |
| 4453 | /* Set up result fields other than the stats tuple */ |
| 4454 | vardata->var = basenode; /* return Var without relabeling */ |
| 4455 | vardata->rel = find_base_rel(root, var->varno); |
| 4456 | vardata->atttype = var->vartype; |
| 4457 | vardata->atttypmod = var->vartypmod; |
| 4458 | vardata->isunique = has_unique_index(vardata->rel, var->varattno); |
| 4459 | |
| 4460 | /* Try to locate some stats */ |
| 4461 | examine_simple_variable(root, var, vardata); |
| 4462 | |
| 4463 | return; |
| 4464 | } |
| 4465 | |
| 4466 | /* |
| 4467 | * Okay, it's a more complicated expression. Determine variable |
| 4468 | * membership. Note that when varRelid isn't zero, only vars of that |
| 4469 | * relation are considered "real" vars. |
| 4470 | */ |
| 4471 | varnos = pull_varnos(basenode); |
| 4472 | |
| 4473 | onerel = NULL; |
| 4474 | |
| 4475 | switch (bms_membership(varnos)) |
| 4476 | { |
| 4477 | case BMS_EMPTY_SET: |
| 4478 | /* No Vars at all ... must be pseudo-constant clause */ |
| 4479 | break; |
| 4480 | case BMS_SINGLETON: |
| 4481 | if (varRelid == 0 || bms_is_member(varRelid, varnos)) |
| 4482 | { |
| 4483 | onerel = find_base_rel(root, |
| 4484 | (varRelid ? varRelid : bms_singleton_member(varnos))); |
| 4485 | vardata->rel = onerel; |
| 4486 | node = basenode; /* strip any relabeling */ |
| 4487 | } |
| 4488 | /* else treat it as a constant */ |
| 4489 | break; |
| 4490 | case BMS_MULTIPLE: |
| 4491 | if (varRelid == 0) |
| 4492 | { |
| 4493 | /* treat it as a variable of a join relation */ |
| 4494 | vardata->rel = find_join_rel(root, varnos); |
| 4495 | node = basenode; /* strip any relabeling */ |
| 4496 | } |
| 4497 | else if (bms_is_member(varRelid, varnos)) |
| 4498 | { |
| 4499 | /* ignore the vars belonging to other relations */ |
| 4500 | vardata->rel = find_base_rel(root, varRelid); |
| 4501 | node = basenode; /* strip any relabeling */ |
| 4502 | /* note: no point in expressional-index search here */ |
| 4503 | } |
| 4504 | /* else treat it as a constant */ |
| 4505 | break; |
| 4506 | } |
| 4507 | |
| 4508 | bms_free(varnos); |
| 4509 | |
| 4510 | vardata->var = node; |
| 4511 | vardata->atttype = exprType(node); |
| 4512 | vardata->atttypmod = exprTypmod(node); |
| 4513 | |
| 4514 | if (onerel) |
| 4515 | { |
| 4516 | /* |
| 4517 | * We have an expression in vars of a single relation. Try to match |
| 4518 | * it to expressional index columns, in hopes of finding some |
| 4519 | * statistics. |
| 4520 | * |
| 4521 | * Note that we consider all index columns including INCLUDE columns, |
| 4522 | * since there could be stats for such columns. But the test for |
| 4523 | * uniqueness needs to be warier. |
| 4524 | * |
| 4525 | * XXX it's conceivable that there are multiple matches with different |
| 4526 | * index opfamilies; if so, we need to pick one that matches the |
| 4527 | * operator we are estimating for. FIXME later. |
| 4528 | */ |
| 4529 | ListCell *ilist; |
| 4530 | |
| 4531 | foreach(ilist, onerel->indexlist) |
| 4532 | { |
| 4533 | IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist); |
| 4534 | ListCell *indexpr_item; |
| 4535 | int pos; |
| 4536 | |
| 4537 | indexpr_item = list_head(index->indexprs); |
| 4538 | if (indexpr_item == NULL) |
| 4539 | continue; /* no expressions here... */ |
| 4540 | |
| 4541 | for (pos = 0; pos < index->ncolumns; pos++) |
| 4542 | { |
| 4543 | if (index->indexkeys[pos] == 0) |
| 4544 | { |
| 4545 | Node *indexkey; |
| 4546 | |
| 4547 | if (indexpr_item == NULL) |
| 4548 | elog(ERROR, "too few entries in indexprs list" ); |
| 4549 | indexkey = (Node *) lfirst(indexpr_item); |
| 4550 | if (indexkey && IsA(indexkey, RelabelType)) |
| 4551 | indexkey = (Node *) ((RelabelType *) indexkey)->arg; |
| 4552 | if (equal(node, indexkey)) |
| 4553 | { |
| 4554 | /* |
| 4555 | * Found a match ... is it a unique index? Tests here |
| 4556 | * should match has_unique_index(). |
| 4557 | */ |
| 4558 | if (index->unique && |
| 4559 | index->nkeycolumns == 1 && |
| 4560 | pos == 0 && |
| 4561 | (index->indpred == NIL || index->predOK)) |
| 4562 | vardata->isunique = true; |
| 4563 | |
| 4564 | /* |
| 4565 | * Has it got stats? We only consider stats for |
| 4566 | * non-partial indexes, since partial indexes probably |
| 4567 | * don't reflect whole-relation statistics; the above |
| 4568 | * check for uniqueness is the only info we take from |
| 4569 | * a partial index. |
| 4570 | * |
| 4571 | * An index stats hook, however, must make its own |
| 4572 | * decisions about what to do with partial indexes. |
| 4573 | */ |
| 4574 | if (get_index_stats_hook && |
| 4575 | (*get_index_stats_hook) (root, index->indexoid, |
| 4576 | pos + 1, vardata)) |
| 4577 | { |
| 4578 | /* |
| 4579 | * The hook took control of acquiring a stats |
| 4580 | * tuple. If it did supply a tuple, it'd better |
| 4581 | * have supplied a freefunc. |
| 4582 | */ |
| 4583 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 4584 | !vardata->freefunc) |
| 4585 | elog(ERROR, "no function provided to release variable stats with" ); |
| 4586 | } |
| 4587 | else if (index->indpred == NIL) |
| 4588 | { |
| 4589 | vardata->statsTuple = |
| 4590 | SearchSysCache3(STATRELATTINH, |
| 4591 | ObjectIdGetDatum(index->indexoid), |
| 4592 | Int16GetDatum(pos + 1), |
| 4593 | BoolGetDatum(false)); |
| 4594 | vardata->freefunc = ReleaseSysCache; |
| 4595 | |
| 4596 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 4597 | { |
| 4598 | /* Get index's table for permission check */ |
| 4599 | RangeTblEntry *rte; |
| 4600 | Oid userid; |
| 4601 | |
| 4602 | rte = planner_rt_fetch(index->rel->relid, root); |
| 4603 | Assert(rte->rtekind == RTE_RELATION); |
| 4604 | |
| 4605 | /* |
| 4606 | * Use checkAsUser if it's set, in case we're |
| 4607 | * accessing the table via a view. |
| 4608 | */ |
| 4609 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
| 4610 | |
| 4611 | /* |
| 4612 | * For simplicity, we insist on the whole |
| 4613 | * table being selectable, rather than trying |
| 4614 | * to identify which column(s) the index |
| 4615 | * depends on. Also require all rows to be |
| 4616 | * selectable --- there must be no |
| 4617 | * securityQuals from security barrier views |
| 4618 | * or RLS policies. |
| 4619 | */ |
| 4620 | vardata->acl_ok = |
| 4621 | rte->securityQuals == NIL && |
| 4622 | (pg_class_aclcheck(rte->relid, userid, |
| 4623 | ACL_SELECT) == ACLCHECK_OK); |
| 4624 | } |
| 4625 | else |
| 4626 | { |
| 4627 | /* suppress leakproofness checks later */ |
| 4628 | vardata->acl_ok = true; |
| 4629 | } |
| 4630 | } |
| 4631 | if (vardata->statsTuple) |
| 4632 | break; |
| 4633 | } |
| 4634 | indexpr_item = lnext(indexpr_item); |
| 4635 | } |
| 4636 | } |
| 4637 | if (vardata->statsTuple) |
| 4638 | break; |
| 4639 | } |
| 4640 | } |
| 4641 | } |
| 4642 | |
| 4643 | /* |
| 4644 | * examine_simple_variable |
| 4645 | * Handle a simple Var for examine_variable |
| 4646 | * |
| 4647 | * This is split out as a subroutine so that we can recurse to deal with |
| 4648 | * Vars referencing subqueries. |
| 4649 | * |
| 4650 | * We already filled in all the fields of *vardata except for the stats tuple. |
| 4651 | */ |
| 4652 | static void |
| 4653 | examine_simple_variable(PlannerInfo *root, Var *var, |
| 4654 | VariableStatData *vardata) |
| 4655 | { |
| 4656 | RangeTblEntry *rte = root->simple_rte_array[var->varno]; |
| 4657 | |
| 4658 | Assert(IsA(rte, RangeTblEntry)); |
| 4659 | |
| 4660 | if (get_relation_stats_hook && |
| 4661 | (*get_relation_stats_hook) (root, rte, var->varattno, vardata)) |
| 4662 | { |
| 4663 | /* |
| 4664 | * The hook took control of acquiring a stats tuple. If it did supply |
| 4665 | * a tuple, it'd better have supplied a freefunc. |
| 4666 | */ |
| 4667 | if (HeapTupleIsValid(vardata->statsTuple) && |
| 4668 | !vardata->freefunc) |
| 4669 | elog(ERROR, "no function provided to release variable stats with" ); |
| 4670 | } |
| 4671 | else if (rte->rtekind == RTE_RELATION) |
| 4672 | { |
| 4673 | /* |
| 4674 | * Plain table or parent of an inheritance appendrel, so look up the |
| 4675 | * column in pg_statistic |
| 4676 | */ |
| 4677 | vardata->statsTuple = SearchSysCache3(STATRELATTINH, |
| 4678 | ObjectIdGetDatum(rte->relid), |
| 4679 | Int16GetDatum(var->varattno), |
| 4680 | BoolGetDatum(rte->inh)); |
| 4681 | vardata->freefunc = ReleaseSysCache; |
| 4682 | |
| 4683 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 4684 | { |
| 4685 | Oid userid; |
| 4686 | |
| 4687 | /* |
| 4688 | * Check if user has permission to read this column. We require |
| 4689 | * all rows to be accessible, so there must be no securityQuals |
| 4690 | * from security barrier views or RLS policies. Use checkAsUser |
| 4691 | * if it's set, in case we're accessing the table via a view. |
| 4692 | */ |
| 4693 | userid = rte->checkAsUser ? rte->checkAsUser : GetUserId(); |
| 4694 | |
| 4695 | vardata->acl_ok = |
| 4696 | rte->securityQuals == NIL && |
| 4697 | ((pg_class_aclcheck(rte->relid, userid, |
| 4698 | ACL_SELECT) == ACLCHECK_OK) || |
| 4699 | (pg_attribute_aclcheck(rte->relid, var->varattno, userid, |
| 4700 | ACL_SELECT) == ACLCHECK_OK)); |
| 4701 | } |
| 4702 | else |
| 4703 | { |
| 4704 | /* suppress any possible leakproofness checks later */ |
| 4705 | vardata->acl_ok = true; |
| 4706 | } |
| 4707 | } |
| 4708 | else if (rte->rtekind == RTE_SUBQUERY && !rte->inh) |
| 4709 | { |
| 4710 | /* |
| 4711 | * Plain subquery (not one that was converted to an appendrel). |
| 4712 | */ |
| 4713 | Query *subquery = rte->subquery; |
| 4714 | RelOptInfo *rel; |
| 4715 | TargetEntry *ste; |
| 4716 | |
| 4717 | /* |
| 4718 | * Punt if it's a whole-row var rather than a plain column reference. |
| 4719 | */ |
| 4720 | if (var->varattno == InvalidAttrNumber) |
| 4721 | return; |
| 4722 | |
| 4723 | /* |
| 4724 | * Punt if subquery uses set operations or GROUP BY, as these will |
| 4725 | * mash underlying columns' stats beyond recognition. (Set ops are |
| 4726 | * particularly nasty; if we forged ahead, we would return stats |
| 4727 | * relevant to only the leftmost subselect...) DISTINCT is also |
| 4728 | * problematic, but we check that later because there is a possibility |
| 4729 | * of learning something even with it. |
| 4730 | */ |
| 4731 | if (subquery->setOperations || |
| 4732 | subquery->groupClause) |
| 4733 | return; |
| 4734 | |
| 4735 | /* |
| 4736 | * OK, fetch RelOptInfo for subquery. Note that we don't change the |
| 4737 | * rel returned in vardata, since caller expects it to be a rel of the |
| 4738 | * caller's query level. Because we might already be recursing, we |
| 4739 | * can't use that rel pointer either, but have to look up the Var's |
| 4740 | * rel afresh. |
| 4741 | */ |
| 4742 | rel = find_base_rel(root, var->varno); |
| 4743 | |
| 4744 | /* If the subquery hasn't been planned yet, we have to punt */ |
| 4745 | if (rel->subroot == NULL) |
| 4746 | return; |
| 4747 | Assert(IsA(rel->subroot, PlannerInfo)); |
| 4748 | |
| 4749 | /* |
| 4750 | * Switch our attention to the subquery as mangled by the planner. It |
| 4751 | * was okay to look at the pre-planning version for the tests above, |
| 4752 | * but now we need a Var that will refer to the subroot's live |
| 4753 | * RelOptInfos. For instance, if any subquery pullup happened during |
| 4754 | * planning, Vars in the targetlist might have gotten replaced, and we |
| 4755 | * need to see the replacement expressions. |
| 4756 | */ |
| 4757 | subquery = rel->subroot->parse; |
| 4758 | Assert(IsA(subquery, Query)); |
| 4759 | |
| 4760 | /* Get the subquery output expression referenced by the upper Var */ |
| 4761 | ste = get_tle_by_resno(subquery->targetList, var->varattno); |
| 4762 | if (ste == NULL || ste->resjunk) |
| 4763 | elog(ERROR, "subquery %s does not have attribute %d" , |
| 4764 | rte->eref->aliasname, var->varattno); |
| 4765 | var = (Var *) ste->expr; |
| 4766 | |
| 4767 | /* |
| 4768 | * If subquery uses DISTINCT, we can't make use of any stats for the |
| 4769 | * variable ... but, if it's the only DISTINCT column, we are entitled |
| 4770 | * to consider it unique. We do the test this way so that it works |
| 4771 | * for cases involving DISTINCT ON. |
| 4772 | */ |
| 4773 | if (subquery->distinctClause) |
| 4774 | { |
| 4775 | if (list_length(subquery->distinctClause) == 1 && |
| 4776 | targetIsInSortList(ste, InvalidOid, subquery->distinctClause)) |
| 4777 | vardata->isunique = true; |
| 4778 | /* cannot go further */ |
| 4779 | return; |
| 4780 | } |
| 4781 | |
| 4782 | /* |
| 4783 | * If the sub-query originated from a view with the security_barrier |
| 4784 | * attribute, we must not look at the variable's statistics, though it |
| 4785 | * seems all right to notice the existence of a DISTINCT clause. So |
| 4786 | * stop here. |
| 4787 | * |
| 4788 | * This is probably a harsher restriction than necessary; it's |
| 4789 | * certainly OK for the selectivity estimator (which is a C function, |
| 4790 | * and therefore omnipotent anyway) to look at the statistics. But |
| 4791 | * many selectivity estimators will happily *invoke the operator |
| 4792 | * function* to try to work out a good estimate - and that's not OK. |
| 4793 | * So for now, don't dig down for stats. |
| 4794 | */ |
| 4795 | if (rte->security_barrier) |
| 4796 | return; |
| 4797 | |
| 4798 | /* Can only handle a simple Var of subquery's query level */ |
| 4799 | if (var && IsA(var, Var) && |
| 4800 | var->varlevelsup == 0) |
| 4801 | { |
| 4802 | /* |
| 4803 | * OK, recurse into the subquery. Note that the original setting |
| 4804 | * of vardata->isunique (which will surely be false) is left |
| 4805 | * unchanged in this situation. That's what we want, since even |
| 4806 | * if the underlying column is unique, the subquery may have |
| 4807 | * joined to other tables in a way that creates duplicates. |
| 4808 | */ |
| 4809 | examine_simple_variable(rel->subroot, var, vardata); |
| 4810 | } |
| 4811 | } |
| 4812 | else |
| 4813 | { |
| 4814 | /* |
| 4815 | * Otherwise, the Var comes from a FUNCTION, VALUES, or CTE RTE. (We |
| 4816 | * won't see RTE_JOIN here because join alias Vars have already been |
| 4817 | * flattened.) There's not much we can do with function outputs, but |
| 4818 | * maybe someday try to be smarter about VALUES and/or CTEs. |
| 4819 | */ |
| 4820 | } |
| 4821 | } |
| 4822 | |
| 4823 | /* |
| 4824 | * Check whether it is permitted to call func_oid passing some of the |
| 4825 | * pg_statistic data in vardata. We allow this either if the user has SELECT |
| 4826 | * privileges on the table or column underlying the pg_statistic data or if |
| 4827 | * the function is marked leak-proof. |
| 4828 | */ |
| 4829 | bool |
| 4830 | statistic_proc_security_check(VariableStatData *vardata, Oid func_oid) |
| 4831 | { |
| 4832 | if (vardata->acl_ok) |
| 4833 | return true; |
| 4834 | |
| 4835 | if (!OidIsValid(func_oid)) |
| 4836 | return false; |
| 4837 | |
| 4838 | if (get_func_leakproof(func_oid)) |
| 4839 | return true; |
| 4840 | |
| 4841 | ereport(DEBUG2, |
| 4842 | (errmsg_internal("not using statistics because function \"%s\" is not leak-proof" , |
| 4843 | get_func_name(func_oid)))); |
| 4844 | return false; |
| 4845 | } |
| 4846 | |
| 4847 | /* |
| 4848 | * get_variable_numdistinct |
| 4849 | * Estimate the number of distinct values of a variable. |
| 4850 | * |
| 4851 | * vardata: results of examine_variable |
| 4852 | * *isdefault: set to true if the result is a default rather than based on |
| 4853 | * anything meaningful. |
| 4854 | * |
| 4855 | * NB: be careful to produce a positive integral result, since callers may |
| 4856 | * compare the result to exact integer counts, or might divide by it. |
| 4857 | */ |
| 4858 | double |
| 4859 | get_variable_numdistinct(VariableStatData *vardata, bool *isdefault) |
| 4860 | { |
| 4861 | double stadistinct; |
| 4862 | double stanullfrac = 0.0; |
| 4863 | double ntuples; |
| 4864 | |
| 4865 | *isdefault = false; |
| 4866 | |
| 4867 | /* |
| 4868 | * Determine the stadistinct value to use. There are cases where we can |
| 4869 | * get an estimate even without a pg_statistic entry, or can get a better |
| 4870 | * value than is in pg_statistic. Grab stanullfrac too if we can find it |
| 4871 | * (otherwise, assume no nulls, for lack of any better idea). |
| 4872 | */ |
| 4873 | if (HeapTupleIsValid(vardata->statsTuple)) |
| 4874 | { |
| 4875 | /* Use the pg_statistic entry */ |
| 4876 | Form_pg_statistic stats; |
| 4877 | |
| 4878 | stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| 4879 | stadistinct = stats->stadistinct; |
| 4880 | stanullfrac = stats->stanullfrac; |
| 4881 | } |
| 4882 | else if (vardata->vartype == BOOLOID) |
| 4883 | { |
| 4884 | /* |
| 4885 | * Special-case boolean columns: presumably, two distinct values. |
| 4886 | * |
| 4887 | * Are there any other datatypes we should wire in special estimates |
| 4888 | * for? |
| 4889 | */ |
| 4890 | stadistinct = 2.0; |
| 4891 | } |
| 4892 | else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES) |
| 4893 | { |
| 4894 | /* |
| 4895 | * If the Var represents a column of a VALUES RTE, assume it's unique. |
| 4896 | * This could of course be very wrong, but it should tend to be true |
| 4897 | * in well-written queries. We could consider examining the VALUES' |
| 4898 | * contents to get some real statistics; but that only works if the |
| 4899 | * entries are all constants, and it would be pretty expensive anyway. |
| 4900 | */ |
| 4901 | stadistinct = -1.0; /* unique (and all non null) */ |
| 4902 | } |
| 4903 | else |
| 4904 | { |
| 4905 | /* |
| 4906 | * We don't keep statistics for system columns, but in some cases we |
| 4907 | * can infer distinctness anyway. |
| 4908 | */ |
| 4909 | if (vardata->var && IsA(vardata->var, Var)) |
| 4910 | { |
| 4911 | switch (((Var *) vardata->var)->varattno) |
| 4912 | { |
| 4913 | case SelfItemPointerAttributeNumber: |
| 4914 | stadistinct = -1.0; /* unique (and all non null) */ |
| 4915 | break; |
| 4916 | case TableOidAttributeNumber: |
| 4917 | stadistinct = 1.0; /* only 1 value */ |
| 4918 | break; |
| 4919 | default: |
| 4920 | stadistinct = 0.0; /* means "unknown" */ |
| 4921 | break; |
| 4922 | } |
| 4923 | } |
| 4924 | else |
| 4925 | stadistinct = 0.0; /* means "unknown" */ |
| 4926 | |
| 4927 | /* |
| 4928 | * XXX consider using estimate_num_groups on expressions? |
| 4929 | */ |
| 4930 | } |
| 4931 | |
| 4932 | /* |
| 4933 | * If there is a unique index or DISTINCT clause for the variable, assume |
| 4934 | * it is unique no matter what pg_statistic says; the statistics could be |
| 4935 | * out of date, or we might have found a partial unique index that proves |
| 4936 | * the var is unique for this query. However, we'd better still believe |
| 4937 | * the null-fraction statistic. |
| 4938 | */ |
| 4939 | if (vardata->isunique) |
| 4940 | stadistinct = -1.0 * (1.0 - stanullfrac); |
| 4941 | |
| 4942 | /* |
| 4943 | * If we had an absolute estimate, use that. |
| 4944 | */ |
| 4945 | if (stadistinct > 0.0) |
| 4946 | return clamp_row_est(stadistinct); |
| 4947 | |
| 4948 | /* |
| 4949 | * Otherwise we need to get the relation size; punt if not available. |
| 4950 | */ |
| 4951 | if (vardata->rel == NULL) |
| 4952 | { |
| 4953 | *isdefault = true; |
| 4954 | return DEFAULT_NUM_DISTINCT; |
| 4955 | } |
| 4956 | ntuples = vardata->rel->tuples; |
| 4957 | if (ntuples <= 0.0) |
| 4958 | { |
| 4959 | *isdefault = true; |
| 4960 | return DEFAULT_NUM_DISTINCT; |
| 4961 | } |
| 4962 | |
| 4963 | /* |
| 4964 | * If we had a relative estimate, use that. |
| 4965 | */ |
| 4966 | if (stadistinct < 0.0) |
| 4967 | return clamp_row_est(-stadistinct * ntuples); |
| 4968 | |
| 4969 | /* |
| 4970 | * With no data, estimate ndistinct = ntuples if the table is small, else |
| 4971 | * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so |
| 4972 | * that the behavior isn't discontinuous. |
| 4973 | */ |
| 4974 | if (ntuples < DEFAULT_NUM_DISTINCT) |
| 4975 | return clamp_row_est(ntuples); |
| 4976 | |
| 4977 | *isdefault = true; |
| 4978 | return DEFAULT_NUM_DISTINCT; |
| 4979 | } |
| 4980 | |
| 4981 | /* |
| 4982 | * get_variable_range |
| 4983 | * Estimate the minimum and maximum value of the specified variable. |
| 4984 | * If successful, store values in *min and *max, and return true. |
| 4985 | * If no data available, return false. |
| 4986 | * |
| 4987 | * sortop is the "<" comparison operator to use. This should generally |
| 4988 | * be "<" not ">", as only the former is likely to be found in pg_statistic. |
| 4989 | */ |
| 4990 | static bool |
| 4991 | get_variable_range(PlannerInfo *root, VariableStatData *vardata, Oid sortop, |
| 4992 | Datum *min, Datum *max) |
| 4993 | { |
| 4994 | Datum tmin = 0; |
| 4995 | Datum tmax = 0; |
| 4996 | bool have_data = false; |
| 4997 | int16 typLen; |
| 4998 | bool typByVal; |
| 4999 | Oid opfuncoid; |
| 5000 | AttStatsSlot sslot; |
| 5001 | int i; |
| 5002 | |
| 5003 | /* |
| 5004 | * XXX It's very tempting to try to use the actual column min and max, if |
| 5005 | * we can get them relatively-cheaply with an index probe. However, since |
| 5006 | * this function is called many times during join planning, that could |
| 5007 | * have unpleasant effects on planning speed. Need more investigation |
| 5008 | * before enabling this. |
| 5009 | */ |
| 5010 | #ifdef NOT_USED |
| 5011 | if (get_actual_variable_range(root, vardata, sortop, min, max)) |
| 5012 | return true; |
| 5013 | #endif |
| 5014 | |
| 5015 | if (!HeapTupleIsValid(vardata->statsTuple)) |
| 5016 | { |
| 5017 | /* no stats available, so default result */ |
| 5018 | return false; |
| 5019 | } |
| 5020 | |
| 5021 | /* |
| 5022 | * If we can't apply the sortop to the stats data, just fail. In |
| 5023 | * principle, if there's a histogram and no MCVs, we could return the |
| 5024 | * histogram endpoints without ever applying the sortop ... but it's |
| 5025 | * probably not worth trying, because whatever the caller wants to do with |
| 5026 | * the endpoints would likely fail the security check too. |
| 5027 | */ |
| 5028 | if (!statistic_proc_security_check(vardata, |
| 5029 | (opfuncoid = get_opcode(sortop)))) |
| 5030 | return false; |
| 5031 | |
| 5032 | get_typlenbyval(vardata->atttype, &typLen, &typByVal); |
| 5033 | |
| 5034 | /* |
| 5035 | * If there is a histogram, grab the first and last values. |
| 5036 | * |
| 5037 | * If there is a histogram that is sorted with some other operator than |
| 5038 | * the one we want, fail --- this suggests that there is data we can't |
| 5039 | * use. |
| 5040 | */ |
| 5041 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 5042 | STATISTIC_KIND_HISTOGRAM, sortop, |
| 5043 | ATTSTATSSLOT_VALUES)) |
| 5044 | { |
| 5045 | if (sslot.nvalues > 0) |
| 5046 | { |
| 5047 | tmin = datumCopy(sslot.values[0], typByVal, typLen); |
| 5048 | tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen); |
| 5049 | have_data = true; |
| 5050 | } |
| 5051 | free_attstatsslot(&sslot); |
| 5052 | } |
| 5053 | else if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 5054 | STATISTIC_KIND_HISTOGRAM, InvalidOid, |
| 5055 | 0)) |
| 5056 | { |
| 5057 | free_attstatsslot(&sslot); |
| 5058 | return false; |
| 5059 | } |
| 5060 | |
| 5061 | /* |
| 5062 | * If we have most-common-values info, look for extreme MCVs. This is |
| 5063 | * needed even if we also have a histogram, since the histogram excludes |
| 5064 | * the MCVs. However, usually the MCVs will not be the extreme values, so |
| 5065 | * avoid unnecessary data copying. |
| 5066 | */ |
| 5067 | if (get_attstatsslot(&sslot, vardata->statsTuple, |
| 5068 | STATISTIC_KIND_MCV, InvalidOid, |
| 5069 | ATTSTATSSLOT_VALUES)) |
| 5070 | { |
| 5071 | bool tmin_is_mcv = false; |
| 5072 | bool tmax_is_mcv = false; |
| 5073 | FmgrInfo opproc; |
| 5074 | |
| 5075 | fmgr_info(opfuncoid, &opproc); |
| 5076 | |
| 5077 | for (i = 0; i < sslot.nvalues; i++) |
| 5078 | { |
| 5079 | if (!have_data) |
| 5080 | { |
| 5081 | tmin = tmax = sslot.values[i]; |
| 5082 | tmin_is_mcv = tmax_is_mcv = have_data = true; |
| 5083 | continue; |
| 5084 | } |
| 5085 | if (DatumGetBool(FunctionCall2Coll(&opproc, |
| 5086 | sslot.stacoll, |
| 5087 | sslot.values[i], tmin))) |
| 5088 | { |
| 5089 | tmin = sslot.values[i]; |
| 5090 | tmin_is_mcv = true; |
| 5091 | } |
| 5092 | if (DatumGetBool(FunctionCall2Coll(&opproc, |
| 5093 | sslot.stacoll, |
| 5094 | tmax, sslot.values[i]))) |
| 5095 | { |
| 5096 | tmax = sslot.values[i]; |
| 5097 | tmax_is_mcv = true; |
| 5098 | } |
| 5099 | } |
| 5100 | if (tmin_is_mcv) |
| 5101 | tmin = datumCopy(tmin, typByVal, typLen); |
| 5102 | if (tmax_is_mcv) |
| 5103 | tmax = datumCopy(tmax, typByVal, typLen); |
| 5104 | free_attstatsslot(&sslot); |
| 5105 | } |
| 5106 | |
| 5107 | *min = tmin; |
| 5108 | *max = tmax; |
| 5109 | return have_data; |
| 5110 | } |
| 5111 | |
| 5112 | |
| 5113 | /* |
| 5114 | * get_actual_variable_range |
| 5115 | * Attempt to identify the current *actual* minimum and/or maximum |
| 5116 | * of the specified variable, by looking for a suitable btree index |
| 5117 | * and fetching its low and/or high values. |
| 5118 | * If successful, store values in *min and *max, and return true. |
| 5119 | * (Either pointer can be NULL if that endpoint isn't needed.) |
| 5120 | * If no data available, return false. |
| 5121 | * |
| 5122 | * sortop is the "<" comparison operator to use. |
| 5123 | */ |
| 5124 | static bool |
| 5125 | get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata, |
| 5126 | Oid sortop, |
| 5127 | Datum *min, Datum *max) |
| 5128 | { |
| 5129 | bool have_data = false; |
| 5130 | RelOptInfo *rel = vardata->rel; |
| 5131 | RangeTblEntry *rte; |
| 5132 | ListCell *lc; |
| 5133 | |
| 5134 | /* No hope if no relation or it doesn't have indexes */ |
| 5135 | if (rel == NULL || rel->indexlist == NIL) |
| 5136 | return false; |
| 5137 | /* If it has indexes it must be a plain relation */ |
| 5138 | rte = root->simple_rte_array[rel->relid]; |
| 5139 | Assert(rte->rtekind == RTE_RELATION); |
| 5140 | |
| 5141 | /* Search through the indexes to see if any match our problem */ |
| 5142 | foreach(lc, rel->indexlist) |
| 5143 | { |
| 5144 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
| 5145 | ScanDirection indexscandir; |
| 5146 | |
| 5147 | /* Ignore non-btree indexes */ |
| 5148 | if (index->relam != BTREE_AM_OID) |
| 5149 | continue; |
| 5150 | |
| 5151 | /* |
| 5152 | * Ignore partial indexes --- we only want stats that cover the entire |
| 5153 | * relation. |
| 5154 | */ |
| 5155 | if (index->indpred != NIL) |
| 5156 | continue; |
| 5157 | |
| 5158 | /* |
| 5159 | * The index list might include hypothetical indexes inserted by a |
| 5160 | * get_relation_info hook --- don't try to access them. |
| 5161 | */ |
| 5162 | if (index->hypothetical) |
| 5163 | continue; |
| 5164 | |
| 5165 | /* |
| 5166 | * The first index column must match the desired variable and sort |
| 5167 | * operator --- but we can use a descending-order index. |
| 5168 | */ |
| 5169 | if (!match_index_to_operand(vardata->var, 0, index)) |
| 5170 | continue; |
| 5171 | switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0])) |
| 5172 | { |
| 5173 | case BTLessStrategyNumber: |
| 5174 | if (index->reverse_sort[0]) |
| 5175 | indexscandir = BackwardScanDirection; |
| 5176 | else |
| 5177 | indexscandir = ForwardScanDirection; |
| 5178 | break; |
| 5179 | case BTGreaterStrategyNumber: |
| 5180 | if (index->reverse_sort[0]) |
| 5181 | indexscandir = ForwardScanDirection; |
| 5182 | else |
| 5183 | indexscandir = BackwardScanDirection; |
| 5184 | break; |
| 5185 | default: |
| 5186 | /* index doesn't match the sortop */ |
| 5187 | continue; |
| 5188 | } |
| 5189 | |
| 5190 | /* |
| 5191 | * Found a suitable index to extract data from. Set up some data that |
| 5192 | * can be used by both invocations of get_actual_variable_endpoint. |
| 5193 | */ |
| 5194 | { |
| 5195 | MemoryContext tmpcontext; |
| 5196 | MemoryContext oldcontext; |
| 5197 | Relation heapRel; |
| 5198 | Relation indexRel; |
| 5199 | TupleTableSlot *slot; |
| 5200 | int16 typLen; |
| 5201 | bool typByVal; |
| 5202 | ScanKeyData scankeys[1]; |
| 5203 | |
| 5204 | /* Make sure any cruft gets recycled when we're done */ |
| 5205 | tmpcontext = AllocSetContextCreate(CurrentMemoryContext, |
| 5206 | "get_actual_variable_range workspace" , |
| 5207 | ALLOCSET_DEFAULT_SIZES); |
| 5208 | oldcontext = MemoryContextSwitchTo(tmpcontext); |
| 5209 | |
| 5210 | /* |
| 5211 | * Open the table and index so we can read from them. We should |
| 5212 | * already have some type of lock on each. |
| 5213 | */ |
| 5214 | heapRel = table_open(rte->relid, NoLock); |
| 5215 | indexRel = index_open(index->indexoid, NoLock); |
| 5216 | |
| 5217 | /* build some stuff needed for indexscan execution */ |
| 5218 | slot = table_slot_create(heapRel, NULL); |
| 5219 | get_typlenbyval(vardata->atttype, &typLen, &typByVal); |
| 5220 | |
| 5221 | /* set up an IS NOT NULL scan key so that we ignore nulls */ |
| 5222 | ScanKeyEntryInitialize(&scankeys[0], |
| 5223 | SK_ISNULL | SK_SEARCHNOTNULL, |
| 5224 | 1, /* index col to scan */ |
| 5225 | InvalidStrategy, /* no strategy */ |
| 5226 | InvalidOid, /* no strategy subtype */ |
| 5227 | InvalidOid, /* no collation */ |
| 5228 | InvalidOid, /* no reg proc for this */ |
| 5229 | (Datum) 0); /* constant */ |
| 5230 | |
| 5231 | /* If min is requested ... */ |
| 5232 | if (min) |
| 5233 | { |
| 5234 | have_data = get_actual_variable_endpoint(heapRel, |
| 5235 | indexRel, |
| 5236 | indexscandir, |
| 5237 | scankeys, |
| 5238 | typLen, |
| 5239 | typByVal, |
| 5240 | slot, |
| 5241 | oldcontext, |
| 5242 | min); |
| 5243 | } |
| 5244 | else |
| 5245 | { |
| 5246 | /* If min not requested, assume index is nonempty */ |
| 5247 | have_data = true; |
| 5248 | } |
| 5249 | |
| 5250 | /* If max is requested, and we didn't find the index is empty */ |
| 5251 | if (max && have_data) |
| 5252 | { |
| 5253 | /* scan in the opposite direction; all else is the same */ |
| 5254 | have_data = get_actual_variable_endpoint(heapRel, |
| 5255 | indexRel, |
| 5256 | -indexscandir, |
| 5257 | scankeys, |
| 5258 | typLen, |
| 5259 | typByVal, |
| 5260 | slot, |
| 5261 | oldcontext, |
| 5262 | max); |
| 5263 | } |
| 5264 | |
| 5265 | /* Clean everything up */ |
| 5266 | ExecDropSingleTupleTableSlot(slot); |
| 5267 | |
| 5268 | index_close(indexRel, NoLock); |
| 5269 | table_close(heapRel, NoLock); |
| 5270 | |
| 5271 | MemoryContextSwitchTo(oldcontext); |
| 5272 | MemoryContextDelete(tmpcontext); |
| 5273 | |
| 5274 | /* And we're done */ |
| 5275 | break; |
| 5276 | } |
| 5277 | } |
| 5278 | |
| 5279 | return have_data; |
| 5280 | } |
| 5281 | |
| 5282 | /* |
| 5283 | * Get one endpoint datum (min or max depending on indexscandir) from the |
| 5284 | * specified index. Return true if successful, false if index is empty. |
| 5285 | * On success, endpoint value is stored to *endpointDatum (and copied into |
| 5286 | * outercontext). |
| 5287 | * |
| 5288 | * scankeys is a 1-element scankey array set up to reject nulls. |
| 5289 | * typLen/typByVal describe the datatype of the index's first column. |
| 5290 | * tableslot is a slot suitable to hold table tuples, in case we need |
| 5291 | * to probe the heap. |
| 5292 | * (We could compute these values locally, but that would mean computing them |
| 5293 | * twice when get_actual_variable_range needs both the min and the max.) |
| 5294 | */ |
| 5295 | static bool |
| 5296 | get_actual_variable_endpoint(Relation heapRel, |
| 5297 | Relation indexRel, |
| 5298 | ScanDirection indexscandir, |
| 5299 | ScanKey scankeys, |
| 5300 | int16 typLen, |
| 5301 | bool typByVal, |
| 5302 | TupleTableSlot *tableslot, |
| 5303 | MemoryContext outercontext, |
| 5304 | Datum *endpointDatum) |
| 5305 | { |
| 5306 | bool have_data = false; |
| 5307 | SnapshotData SnapshotNonVacuumable; |
| 5308 | IndexScanDesc index_scan; |
| 5309 | Buffer vmbuffer = InvalidBuffer; |
| 5310 | ItemPointer tid; |
| 5311 | Datum values[INDEX_MAX_KEYS]; |
| 5312 | bool isnull[INDEX_MAX_KEYS]; |
| 5313 | MemoryContext oldcontext; |
| 5314 | |
| 5315 | /* |
| 5316 | * We use the index-only-scan machinery for this. With mostly-static |
| 5317 | * tables that's a win because it avoids a heap visit. It's also a win |
| 5318 | * for dynamic data, but the reason is less obvious; read on for details. |
| 5319 | * |
| 5320 | * In principle, we should scan the index with our current active |
| 5321 | * snapshot, which is the best approximation we've got to what the query |
| 5322 | * will see when executed. But that won't be exact if a new snap is taken |
| 5323 | * before running the query, and it can be very expensive if a lot of |
| 5324 | * recently-dead or uncommitted rows exist at the beginning or end of the |
| 5325 | * index (because we'll laboriously fetch each one and reject it). |
| 5326 | * Instead, we use SnapshotNonVacuumable. That will accept recently-dead |
| 5327 | * and uncommitted rows as well as normal visible rows. On the other |
| 5328 | * hand, it will reject known-dead rows, and thus not give a bogus answer |
| 5329 | * when the extreme value has been deleted (unless the deletion was quite |
| 5330 | * recent); that case motivates not using SnapshotAny here. |
| 5331 | * |
| 5332 | * A crucial point here is that SnapshotNonVacuumable, with |
| 5333 | * RecentGlobalXmin as horizon, yields the inverse of the condition that |
| 5334 | * the indexscan will use to decide that index entries are killable (see |
| 5335 | * heap_hot_search_buffer()). Therefore, if the snapshot rejects a tuple |
| 5336 | * (or more precisely, all tuples of a HOT chain) and we have to continue |
| 5337 | * scanning past it, we know that the indexscan will mark that index entry |
| 5338 | * killed. That means that the next get_actual_variable_endpoint() call |
| 5339 | * will not have to re-consider that index entry. In this way we avoid |
| 5340 | * repetitive work when this function is used a lot during planning. |
| 5341 | * |
| 5342 | * But using SnapshotNonVacuumable creates a hazard of its own. In a |
| 5343 | * recently-created index, some index entries may point at "broken" HOT |
| 5344 | * chains in which not all the tuple versions contain data matching the |
| 5345 | * index entry. The live tuple version(s) certainly do match the index, |
| 5346 | * but SnapshotNonVacuumable can accept recently-dead tuple versions that |
| 5347 | * don't match. Hence, if we took data from the selected heap tuple, we |
| 5348 | * might get a bogus answer that's not close to the index extremal value, |
| 5349 | * or could even be NULL. We avoid this hazard because we take the data |
| 5350 | * from the index entry not the heap. |
| 5351 | */ |
| 5352 | InitNonVacuumableSnapshot(SnapshotNonVacuumable, RecentGlobalXmin); |
| 5353 | |
| 5354 | index_scan = index_beginscan(heapRel, indexRel, |
| 5355 | &SnapshotNonVacuumable, |
| 5356 | 1, 0); |
| 5357 | /* Set it up for index-only scan */ |
| 5358 | index_scan->xs_want_itup = true; |
| 5359 | index_rescan(index_scan, scankeys, 1, NULL, 0); |
| 5360 | |
| 5361 | /* Fetch first/next tuple in specified direction */ |
| 5362 | while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL) |
| 5363 | { |
| 5364 | if (!VM_ALL_VISIBLE(heapRel, |
| 5365 | ItemPointerGetBlockNumber(tid), |
| 5366 | &vmbuffer)) |
| 5367 | { |
| 5368 | /* Rats, we have to visit the heap to check visibility */ |
| 5369 | if (!index_fetch_heap(index_scan, tableslot)) |
| 5370 | continue; /* no visible tuple, try next index entry */ |
| 5371 | |
| 5372 | /* We don't actually need the heap tuple for anything */ |
| 5373 | ExecClearTuple(tableslot); |
| 5374 | |
| 5375 | /* |
| 5376 | * We don't care whether there's more than one visible tuple in |
| 5377 | * the HOT chain; if any are visible, that's good enough. |
| 5378 | */ |
| 5379 | } |
| 5380 | |
| 5381 | /* |
| 5382 | * We expect that btree will return data in IndexTuple not HeapTuple |
| 5383 | * format. It's not lossy either. |
| 5384 | */ |
| 5385 | if (!index_scan->xs_itup) |
| 5386 | elog(ERROR, "no data returned for index-only scan" ); |
| 5387 | if (index_scan->xs_recheck) |
| 5388 | elog(ERROR, "unexpected recheck indication from btree" ); |
| 5389 | |
| 5390 | /* OK to deconstruct the index tuple */ |
| 5391 | index_deform_tuple(index_scan->xs_itup, |
| 5392 | index_scan->xs_itupdesc, |
| 5393 | values, isnull); |
| 5394 | |
| 5395 | /* Shouldn't have got a null, but be careful */ |
| 5396 | if (isnull[0]) |
| 5397 | elog(ERROR, "found unexpected null value in index \"%s\"" , |
| 5398 | RelationGetRelationName(indexRel)); |
| 5399 | |
| 5400 | /* Copy the index column value out to caller's context */ |
| 5401 | oldcontext = MemoryContextSwitchTo(outercontext); |
| 5402 | *endpointDatum = datumCopy(values[0], typByVal, typLen); |
| 5403 | MemoryContextSwitchTo(oldcontext); |
| 5404 | have_data = true; |
| 5405 | break; |
| 5406 | } |
| 5407 | |
| 5408 | if (vmbuffer != InvalidBuffer) |
| 5409 | ReleaseBuffer(vmbuffer); |
| 5410 | index_endscan(index_scan); |
| 5411 | |
| 5412 | return have_data; |
| 5413 | } |
| 5414 | |
| 5415 | /* |
| 5416 | * find_join_input_rel |
| 5417 | * Look up the input relation for a join. |
| 5418 | * |
| 5419 | * We assume that the input relation's RelOptInfo must have been constructed |
| 5420 | * already. |
| 5421 | */ |
| 5422 | static RelOptInfo * |
| 5423 | find_join_input_rel(PlannerInfo *root, Relids relids) |
| 5424 | { |
| 5425 | RelOptInfo *rel = NULL; |
| 5426 | |
| 5427 | switch (bms_membership(relids)) |
| 5428 | { |
| 5429 | case BMS_EMPTY_SET: |
| 5430 | /* should not happen */ |
| 5431 | break; |
| 5432 | case BMS_SINGLETON: |
| 5433 | rel = find_base_rel(root, bms_singleton_member(relids)); |
| 5434 | break; |
| 5435 | case BMS_MULTIPLE: |
| 5436 | rel = find_join_rel(root, relids); |
| 5437 | break; |
| 5438 | } |
| 5439 | |
| 5440 | if (rel == NULL) |
| 5441 | elog(ERROR, "could not find RelOptInfo for given relids" ); |
| 5442 | |
| 5443 | return rel; |
| 5444 | } |
| 5445 | |
| 5446 | |
| 5447 | /*------------------------------------------------------------------------- |
| 5448 | * |
| 5449 | * Index cost estimation functions |
| 5450 | * |
| 5451 | *------------------------------------------------------------------------- |
| 5452 | */ |
| 5453 | |
| 5454 | /* |
| 5455 | * Extract the actual indexquals (as RestrictInfos) from an IndexClause list |
| 5456 | */ |
| 5457 | List * |
| 5458 | get_quals_from_indexclauses(List *indexclauses) |
| 5459 | { |
| 5460 | List *result = NIL; |
| 5461 | ListCell *lc; |
| 5462 | |
| 5463 | foreach(lc, indexclauses) |
| 5464 | { |
| 5465 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
| 5466 | ListCell *lc2; |
| 5467 | |
| 5468 | foreach(lc2, iclause->indexquals) |
| 5469 | { |
| 5470 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
| 5471 | |
| 5472 | result = lappend(result, rinfo); |
| 5473 | } |
| 5474 | } |
| 5475 | return result; |
| 5476 | } |
| 5477 | |
| 5478 | /* |
| 5479 | * Compute the total evaluation cost of the comparison operands in a list |
| 5480 | * of index qual expressions. Since we know these will be evaluated just |
| 5481 | * once per scan, there's no need to distinguish startup from per-row cost. |
| 5482 | * |
| 5483 | * This can be used either on the result of get_quals_from_indexclauses(), |
| 5484 | * or directly on an indexorderbys list. In both cases, we expect that the |
| 5485 | * index key expression is on the left side of binary clauses. |
| 5486 | */ |
| 5487 | Cost |
| 5488 | index_other_operands_eval_cost(PlannerInfo *root, List *indexquals) |
| 5489 | { |
| 5490 | Cost qual_arg_cost = 0; |
| 5491 | ListCell *lc; |
| 5492 | |
| 5493 | foreach(lc, indexquals) |
| 5494 | { |
| 5495 | Expr *clause = (Expr *) lfirst(lc); |
| 5496 | Node *other_operand; |
| 5497 | QualCost index_qual_cost; |
| 5498 | |
| 5499 | /* |
| 5500 | * Index quals will have RestrictInfos, indexorderbys won't. Look |
| 5501 | * through RestrictInfo if present. |
| 5502 | */ |
| 5503 | if (IsA(clause, RestrictInfo)) |
| 5504 | clause = ((RestrictInfo *) clause)->clause; |
| 5505 | |
| 5506 | if (IsA(clause, OpExpr)) |
| 5507 | { |
| 5508 | OpExpr *op = (OpExpr *) clause; |
| 5509 | |
| 5510 | other_operand = (Node *) lsecond(op->args); |
| 5511 | } |
| 5512 | else if (IsA(clause, RowCompareExpr)) |
| 5513 | { |
| 5514 | RowCompareExpr *rc = (RowCompareExpr *) clause; |
| 5515 | |
| 5516 | other_operand = (Node *) rc->rargs; |
| 5517 | } |
| 5518 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 5519 | { |
| 5520 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 5521 | |
| 5522 | other_operand = (Node *) lsecond(saop->args); |
| 5523 | } |
| 5524 | else if (IsA(clause, NullTest)) |
| 5525 | { |
| 5526 | other_operand = NULL; |
| 5527 | } |
| 5528 | else |
| 5529 | { |
| 5530 | elog(ERROR, "unsupported indexqual type: %d" , |
| 5531 | (int) nodeTag(clause)); |
| 5532 | other_operand = NULL; /* keep compiler quiet */ |
| 5533 | } |
| 5534 | |
| 5535 | cost_qual_eval_node(&index_qual_cost, other_operand, root); |
| 5536 | qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple; |
| 5537 | } |
| 5538 | return qual_arg_cost; |
| 5539 | } |
| 5540 | |
| 5541 | void |
| 5542 | genericcostestimate(PlannerInfo *root, |
| 5543 | IndexPath *path, |
| 5544 | double loop_count, |
| 5545 | GenericCosts *costs) |
| 5546 | { |
| 5547 | IndexOptInfo *index = path->indexinfo; |
| 5548 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
| 5549 | List *indexOrderBys = path->indexorderbys; |
| 5550 | Cost indexStartupCost; |
| 5551 | Cost indexTotalCost; |
| 5552 | Selectivity indexSelectivity; |
| 5553 | double indexCorrelation; |
| 5554 | double numIndexPages; |
| 5555 | double numIndexTuples; |
| 5556 | double spc_random_page_cost; |
| 5557 | double num_sa_scans; |
| 5558 | double num_outer_scans; |
| 5559 | double num_scans; |
| 5560 | double qual_op_cost; |
| 5561 | double qual_arg_cost; |
| 5562 | List *selectivityQuals; |
| 5563 | ListCell *l; |
| 5564 | |
| 5565 | /* |
| 5566 | * If the index is partial, AND the index predicate with the explicitly |
| 5567 | * given indexquals to produce a more accurate idea of the index |
| 5568 | * selectivity. |
| 5569 | */ |
| 5570 | selectivityQuals = add_predicate_to_index_quals(index, indexQuals); |
| 5571 | |
| 5572 | /* |
| 5573 | * Check for ScalarArrayOpExpr index quals, and estimate the number of |
| 5574 | * index scans that will be performed. |
| 5575 | */ |
| 5576 | num_sa_scans = 1; |
| 5577 | foreach(l, indexQuals) |
| 5578 | { |
| 5579 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); |
| 5580 | |
| 5581 | if (IsA(rinfo->clause, ScalarArrayOpExpr)) |
| 5582 | { |
| 5583 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause; |
| 5584 | int alength = estimate_array_length(lsecond(saop->args)); |
| 5585 | |
| 5586 | if (alength > 1) |
| 5587 | num_sa_scans *= alength; |
| 5588 | } |
| 5589 | } |
| 5590 | |
| 5591 | /* Estimate the fraction of main-table tuples that will be visited */ |
| 5592 | indexSelectivity = clauselist_selectivity(root, selectivityQuals, |
| 5593 | index->rel->relid, |
| 5594 | JOIN_INNER, |
| 5595 | NULL); |
| 5596 | |
| 5597 | /* |
| 5598 | * If caller didn't give us an estimate, estimate the number of index |
| 5599 | * tuples that will be visited. We do it in this rather peculiar-looking |
| 5600 | * way in order to get the right answer for partial indexes. |
| 5601 | */ |
| 5602 | numIndexTuples = costs->numIndexTuples; |
| 5603 | if (numIndexTuples <= 0.0) |
| 5604 | { |
| 5605 | numIndexTuples = indexSelectivity * index->rel->tuples; |
| 5606 | |
| 5607 | /* |
| 5608 | * The above calculation counts all the tuples visited across all |
| 5609 | * scans induced by ScalarArrayOpExpr nodes. We want to consider the |
| 5610 | * average per-indexscan number, so adjust. This is a handy place to |
| 5611 | * round to integer, too. (If caller supplied tuple estimate, it's |
| 5612 | * responsible for handling these considerations.) |
| 5613 | */ |
| 5614 | numIndexTuples = rint(numIndexTuples / num_sa_scans); |
| 5615 | } |
| 5616 | |
| 5617 | /* |
| 5618 | * We can bound the number of tuples by the index size in any case. Also, |
| 5619 | * always estimate at least one tuple is touched, even when |
| 5620 | * indexSelectivity estimate is tiny. |
| 5621 | */ |
| 5622 | if (numIndexTuples > index->tuples) |
| 5623 | numIndexTuples = index->tuples; |
| 5624 | if (numIndexTuples < 1.0) |
| 5625 | numIndexTuples = 1.0; |
| 5626 | |
| 5627 | /* |
| 5628 | * Estimate the number of index pages that will be retrieved. |
| 5629 | * |
| 5630 | * We use the simplistic method of taking a pro-rata fraction of the total |
| 5631 | * number of index pages. In effect, this counts only leaf pages and not |
| 5632 | * any overhead such as index metapage or upper tree levels. |
| 5633 | * |
| 5634 | * In practice access to upper index levels is often nearly free because |
| 5635 | * those tend to stay in cache under load; moreover, the cost involved is |
| 5636 | * highly dependent on index type. We therefore ignore such costs here |
| 5637 | * and leave it to the caller to add a suitable charge if needed. |
| 5638 | */ |
| 5639 | if (index->pages > 1 && index->tuples > 1) |
| 5640 | numIndexPages = ceil(numIndexTuples * index->pages / index->tuples); |
| 5641 | else |
| 5642 | numIndexPages = 1.0; |
| 5643 | |
| 5644 | /* fetch estimated page cost for tablespace containing index */ |
| 5645 | get_tablespace_page_costs(index->reltablespace, |
| 5646 | &spc_random_page_cost, |
| 5647 | NULL); |
| 5648 | |
| 5649 | /* |
| 5650 | * Now compute the disk access costs. |
| 5651 | * |
| 5652 | * The above calculations are all per-index-scan. However, if we are in a |
| 5653 | * nestloop inner scan, we can expect the scan to be repeated (with |
| 5654 | * different search keys) for each row of the outer relation. Likewise, |
| 5655 | * ScalarArrayOpExpr quals result in multiple index scans. This creates |
| 5656 | * the potential for cache effects to reduce the number of disk page |
| 5657 | * fetches needed. We want to estimate the average per-scan I/O cost in |
| 5658 | * the presence of caching. |
| 5659 | * |
| 5660 | * We use the Mackert-Lohman formula (see costsize.c for details) to |
| 5661 | * estimate the total number of page fetches that occur. While this |
| 5662 | * wasn't what it was designed for, it seems a reasonable model anyway. |
| 5663 | * Note that we are counting pages not tuples anymore, so we take N = T = |
| 5664 | * index size, as if there were one "tuple" per page. |
| 5665 | */ |
| 5666 | num_outer_scans = loop_count; |
| 5667 | num_scans = num_sa_scans * num_outer_scans; |
| 5668 | |
| 5669 | if (num_scans > 1) |
| 5670 | { |
| 5671 | double pages_fetched; |
| 5672 | |
| 5673 | /* total page fetches ignoring cache effects */ |
| 5674 | pages_fetched = numIndexPages * num_scans; |
| 5675 | |
| 5676 | /* use Mackert and Lohman formula to adjust for cache effects */ |
| 5677 | pages_fetched = index_pages_fetched(pages_fetched, |
| 5678 | index->pages, |
| 5679 | (double) index->pages, |
| 5680 | root); |
| 5681 | |
| 5682 | /* |
| 5683 | * Now compute the total disk access cost, and then report a pro-rated |
| 5684 | * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr, |
| 5685 | * since that's internal to the indexscan.) |
| 5686 | */ |
| 5687 | indexTotalCost = (pages_fetched * spc_random_page_cost) |
| 5688 | / num_outer_scans; |
| 5689 | } |
| 5690 | else |
| 5691 | { |
| 5692 | /* |
| 5693 | * For a single index scan, we just charge spc_random_page_cost per |
| 5694 | * page touched. |
| 5695 | */ |
| 5696 | indexTotalCost = numIndexPages * spc_random_page_cost; |
| 5697 | } |
| 5698 | |
| 5699 | /* |
| 5700 | * CPU cost: any complex expressions in the indexquals will need to be |
| 5701 | * evaluated once at the start of the scan to reduce them to runtime keys |
| 5702 | * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple |
| 5703 | * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per |
| 5704 | * indexqual operator. Because we have numIndexTuples as a per-scan |
| 5705 | * number, we have to multiply by num_sa_scans to get the correct result |
| 5706 | * for ScalarArrayOpExpr cases. Similarly add in costs for any index |
| 5707 | * ORDER BY expressions. |
| 5708 | * |
| 5709 | * Note: this neglects the possible costs of rechecking lossy operators. |
| 5710 | * Detecting that that might be needed seems more expensive than it's |
| 5711 | * worth, though, considering all the other inaccuracies here ... |
| 5712 | */ |
| 5713 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) + |
| 5714 | index_other_operands_eval_cost(root, indexOrderBys); |
| 5715 | qual_op_cost = cpu_operator_cost * |
| 5716 | (list_length(indexQuals) + list_length(indexOrderBys)); |
| 5717 | |
| 5718 | indexStartupCost = qual_arg_cost; |
| 5719 | indexTotalCost += qual_arg_cost; |
| 5720 | indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost); |
| 5721 | |
| 5722 | /* |
| 5723 | * Generic assumption about index correlation: there isn't any. |
| 5724 | */ |
| 5725 | indexCorrelation = 0.0; |
| 5726 | |
| 5727 | /* |
| 5728 | * Return everything to caller. |
| 5729 | */ |
| 5730 | costs->indexStartupCost = indexStartupCost; |
| 5731 | costs->indexTotalCost = indexTotalCost; |
| 5732 | costs->indexSelectivity = indexSelectivity; |
| 5733 | costs->indexCorrelation = indexCorrelation; |
| 5734 | costs->numIndexPages = numIndexPages; |
| 5735 | costs->numIndexTuples = numIndexTuples; |
| 5736 | costs->spc_random_page_cost = spc_random_page_cost; |
| 5737 | costs->num_sa_scans = num_sa_scans; |
| 5738 | } |
| 5739 | |
| 5740 | /* |
| 5741 | * If the index is partial, add its predicate to the given qual list. |
| 5742 | * |
| 5743 | * ANDing the index predicate with the explicitly given indexquals produces |
| 5744 | * a more accurate idea of the index's selectivity. However, we need to be |
| 5745 | * careful not to insert redundant clauses, because clauselist_selectivity() |
| 5746 | * is easily fooled into computing a too-low selectivity estimate. Our |
| 5747 | * approach is to add only the predicate clause(s) that cannot be proven to |
| 5748 | * be implied by the given indexquals. This successfully handles cases such |
| 5749 | * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50". |
| 5750 | * There are many other cases where we won't detect redundancy, leading to a |
| 5751 | * too-low selectivity estimate, which will bias the system in favor of using |
| 5752 | * partial indexes where possible. That is not necessarily bad though. |
| 5753 | * |
| 5754 | * Note that indexQuals contains RestrictInfo nodes while the indpred |
| 5755 | * does not, so the output list will be mixed. This is OK for both |
| 5756 | * predicate_implied_by() and clauselist_selectivity(), but might be |
| 5757 | * problematic if the result were passed to other things. |
| 5758 | */ |
| 5759 | List * |
| 5760 | add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals) |
| 5761 | { |
| 5762 | List * = NIL; |
| 5763 | ListCell *lc; |
| 5764 | |
| 5765 | if (index->indpred == NIL) |
| 5766 | return indexQuals; |
| 5767 | |
| 5768 | foreach(lc, index->indpred) |
| 5769 | { |
| 5770 | Node *predQual = (Node *) lfirst(lc); |
| 5771 | List *oneQual = list_make1(predQual); |
| 5772 | |
| 5773 | if (!predicate_implied_by(oneQual, indexQuals, false)) |
| 5774 | predExtraQuals = list_concat(predExtraQuals, oneQual); |
| 5775 | } |
| 5776 | /* list_concat avoids modifying the passed-in indexQuals list */ |
| 5777 | return list_concat(predExtraQuals, indexQuals); |
| 5778 | } |
| 5779 | |
| 5780 | |
| 5781 | void |
| 5782 | btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 5783 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 5784 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 5785 | double *indexPages) |
| 5786 | { |
| 5787 | IndexOptInfo *index = path->indexinfo; |
| 5788 | GenericCosts costs; |
| 5789 | Oid relid; |
| 5790 | AttrNumber colnum; |
| 5791 | VariableStatData vardata; |
| 5792 | double numIndexTuples; |
| 5793 | Cost descentCost; |
| 5794 | List *indexBoundQuals; |
| 5795 | int indexcol; |
| 5796 | bool eqQualHere; |
| 5797 | bool found_saop; |
| 5798 | bool found_is_null_op; |
| 5799 | double num_sa_scans; |
| 5800 | ListCell *lc; |
| 5801 | |
| 5802 | /* |
| 5803 | * For a btree scan, only leading '=' quals plus inequality quals for the |
| 5804 | * immediately next attribute contribute to index selectivity (these are |
| 5805 | * the "boundary quals" that determine the starting and stopping points of |
| 5806 | * the index scan). Additional quals can suppress visits to the heap, so |
| 5807 | * it's OK to count them in indexSelectivity, but they should not count |
| 5808 | * for estimating numIndexTuples. So we must examine the given indexquals |
| 5809 | * to find out which ones count as boundary quals. We rely on the |
| 5810 | * knowledge that they are given in index column order. |
| 5811 | * |
| 5812 | * For a RowCompareExpr, we consider only the first column, just as |
| 5813 | * rowcomparesel() does. |
| 5814 | * |
| 5815 | * If there's a ScalarArrayOpExpr in the quals, we'll actually perform N |
| 5816 | * index scans not one, but the ScalarArrayOpExpr's operator can be |
| 5817 | * considered to act the same as it normally does. |
| 5818 | */ |
| 5819 | indexBoundQuals = NIL; |
| 5820 | indexcol = 0; |
| 5821 | eqQualHere = false; |
| 5822 | found_saop = false; |
| 5823 | found_is_null_op = false; |
| 5824 | num_sa_scans = 1; |
| 5825 | foreach(lc, path->indexclauses) |
| 5826 | { |
| 5827 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
| 5828 | ListCell *lc2; |
| 5829 | |
| 5830 | if (indexcol != iclause->indexcol) |
| 5831 | { |
| 5832 | /* Beginning of a new column's quals */ |
| 5833 | if (!eqQualHere) |
| 5834 | break; /* done if no '=' qual for indexcol */ |
| 5835 | eqQualHere = false; |
| 5836 | indexcol++; |
| 5837 | if (indexcol != iclause->indexcol) |
| 5838 | break; /* no quals at all for indexcol */ |
| 5839 | } |
| 5840 | |
| 5841 | /* Examine each indexqual associated with this index clause */ |
| 5842 | foreach(lc2, iclause->indexquals) |
| 5843 | { |
| 5844 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
| 5845 | Expr *clause = rinfo->clause; |
| 5846 | Oid clause_op = InvalidOid; |
| 5847 | int op_strategy; |
| 5848 | |
| 5849 | if (IsA(clause, OpExpr)) |
| 5850 | { |
| 5851 | OpExpr *op = (OpExpr *) clause; |
| 5852 | |
| 5853 | clause_op = op->opno; |
| 5854 | } |
| 5855 | else if (IsA(clause, RowCompareExpr)) |
| 5856 | { |
| 5857 | RowCompareExpr *rc = (RowCompareExpr *) clause; |
| 5858 | |
| 5859 | clause_op = linitial_oid(rc->opnos); |
| 5860 | } |
| 5861 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 5862 | { |
| 5863 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 5864 | Node *other_operand = (Node *) lsecond(saop->args); |
| 5865 | int alength = estimate_array_length(other_operand); |
| 5866 | |
| 5867 | clause_op = saop->opno; |
| 5868 | found_saop = true; |
| 5869 | /* count number of SA scans induced by indexBoundQuals only */ |
| 5870 | if (alength > 1) |
| 5871 | num_sa_scans *= alength; |
| 5872 | } |
| 5873 | else if (IsA(clause, NullTest)) |
| 5874 | { |
| 5875 | NullTest *nt = (NullTest *) clause; |
| 5876 | |
| 5877 | if (nt->nulltesttype == IS_NULL) |
| 5878 | { |
| 5879 | found_is_null_op = true; |
| 5880 | /* IS NULL is like = for selectivity purposes */ |
| 5881 | eqQualHere = true; |
| 5882 | } |
| 5883 | } |
| 5884 | else |
| 5885 | elog(ERROR, "unsupported indexqual type: %d" , |
| 5886 | (int) nodeTag(clause)); |
| 5887 | |
| 5888 | /* check for equality operator */ |
| 5889 | if (OidIsValid(clause_op)) |
| 5890 | { |
| 5891 | op_strategy = get_op_opfamily_strategy(clause_op, |
| 5892 | index->opfamily[indexcol]); |
| 5893 | Assert(op_strategy != 0); /* not a member of opfamily?? */ |
| 5894 | if (op_strategy == BTEqualStrategyNumber) |
| 5895 | eqQualHere = true; |
| 5896 | } |
| 5897 | |
| 5898 | indexBoundQuals = lappend(indexBoundQuals, rinfo); |
| 5899 | } |
| 5900 | } |
| 5901 | |
| 5902 | /* |
| 5903 | * If index is unique and we found an '=' clause for each column, we can |
| 5904 | * just assume numIndexTuples = 1 and skip the expensive |
| 5905 | * clauselist_selectivity calculations. However, a ScalarArrayOp or |
| 5906 | * NullTest invalidates that theory, even though it sets eqQualHere. |
| 5907 | */ |
| 5908 | if (index->unique && |
| 5909 | indexcol == index->nkeycolumns - 1 && |
| 5910 | eqQualHere && |
| 5911 | !found_saop && |
| 5912 | !found_is_null_op) |
| 5913 | numIndexTuples = 1.0; |
| 5914 | else |
| 5915 | { |
| 5916 | List *selectivityQuals; |
| 5917 | Selectivity btreeSelectivity; |
| 5918 | |
| 5919 | /* |
| 5920 | * If the index is partial, AND the index predicate with the |
| 5921 | * index-bound quals to produce a more accurate idea of the number of |
| 5922 | * rows covered by the bound conditions. |
| 5923 | */ |
| 5924 | selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals); |
| 5925 | |
| 5926 | btreeSelectivity = clauselist_selectivity(root, selectivityQuals, |
| 5927 | index->rel->relid, |
| 5928 | JOIN_INNER, |
| 5929 | NULL); |
| 5930 | numIndexTuples = btreeSelectivity * index->rel->tuples; |
| 5931 | |
| 5932 | /* |
| 5933 | * As in genericcostestimate(), we have to adjust for any |
| 5934 | * ScalarArrayOpExpr quals included in indexBoundQuals, and then round |
| 5935 | * to integer. |
| 5936 | */ |
| 5937 | numIndexTuples = rint(numIndexTuples / num_sa_scans); |
| 5938 | } |
| 5939 | |
| 5940 | /* |
| 5941 | * Now do generic index cost estimation. |
| 5942 | */ |
| 5943 | MemSet(&costs, 0, sizeof(costs)); |
| 5944 | costs.numIndexTuples = numIndexTuples; |
| 5945 | |
| 5946 | genericcostestimate(root, path, loop_count, &costs); |
| 5947 | |
| 5948 | /* |
| 5949 | * Add a CPU-cost component to represent the costs of initial btree |
| 5950 | * descent. We don't charge any I/O cost for touching upper btree levels, |
| 5951 | * since they tend to stay in cache, but we still have to do about log2(N) |
| 5952 | * comparisons to descend a btree of N leaf tuples. We charge one |
| 5953 | * cpu_operator_cost per comparison. |
| 5954 | * |
| 5955 | * If there are ScalarArrayOpExprs, charge this once per SA scan. The |
| 5956 | * ones after the first one are not startup cost so far as the overall |
| 5957 | * plan is concerned, so add them only to "total" cost. |
| 5958 | */ |
| 5959 | if (index->tuples > 1) /* avoid computing log(0) */ |
| 5960 | { |
| 5961 | descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost; |
| 5962 | costs.indexStartupCost += descentCost; |
| 5963 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 5964 | } |
| 5965 | |
| 5966 | /* |
| 5967 | * Even though we're not charging I/O cost for touching upper btree pages, |
| 5968 | * it's still reasonable to charge some CPU cost per page descended |
| 5969 | * through. Moreover, if we had no such charge at all, bloated indexes |
| 5970 | * would appear to have the same search cost as unbloated ones, at least |
| 5971 | * in cases where only a single leaf page is expected to be visited. This |
| 5972 | * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page |
| 5973 | * touched. The number of such pages is btree tree height plus one (ie, |
| 5974 | * we charge for the leaf page too). As above, charge once per SA scan. |
| 5975 | */ |
| 5976 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
| 5977 | costs.indexStartupCost += descentCost; |
| 5978 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 5979 | |
| 5980 | /* |
| 5981 | * If we can get an estimate of the first column's ordering correlation C |
| 5982 | * from pg_statistic, estimate the index correlation as C for a |
| 5983 | * single-column index, or C * 0.75 for multiple columns. (The idea here |
| 5984 | * is that multiple columns dilute the importance of the first column's |
| 5985 | * ordering, but don't negate it entirely. Before 8.0 we divided the |
| 5986 | * correlation by the number of columns, but that seems too strong.) |
| 5987 | */ |
| 5988 | MemSet(&vardata, 0, sizeof(vardata)); |
| 5989 | |
| 5990 | if (index->indexkeys[0] != 0) |
| 5991 | { |
| 5992 | /* Simple variable --- look to stats for the underlying table */ |
| 5993 | RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root); |
| 5994 | |
| 5995 | Assert(rte->rtekind == RTE_RELATION); |
| 5996 | relid = rte->relid; |
| 5997 | Assert(relid != InvalidOid); |
| 5998 | colnum = index->indexkeys[0]; |
| 5999 | |
| 6000 | if (get_relation_stats_hook && |
| 6001 | (*get_relation_stats_hook) (root, rte, colnum, &vardata)) |
| 6002 | { |
| 6003 | /* |
| 6004 | * The hook took control of acquiring a stats tuple. If it did |
| 6005 | * supply a tuple, it'd better have supplied a freefunc. |
| 6006 | */ |
| 6007 | if (HeapTupleIsValid(vardata.statsTuple) && |
| 6008 | !vardata.freefunc) |
| 6009 | elog(ERROR, "no function provided to release variable stats with" ); |
| 6010 | } |
| 6011 | else |
| 6012 | { |
| 6013 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
| 6014 | ObjectIdGetDatum(relid), |
| 6015 | Int16GetDatum(colnum), |
| 6016 | BoolGetDatum(rte->inh)); |
| 6017 | vardata.freefunc = ReleaseSysCache; |
| 6018 | } |
| 6019 | } |
| 6020 | else |
| 6021 | { |
| 6022 | /* Expression --- maybe there are stats for the index itself */ |
| 6023 | relid = index->indexoid; |
| 6024 | colnum = 1; |
| 6025 | |
| 6026 | if (get_index_stats_hook && |
| 6027 | (*get_index_stats_hook) (root, relid, colnum, &vardata)) |
| 6028 | { |
| 6029 | /* |
| 6030 | * The hook took control of acquiring a stats tuple. If it did |
| 6031 | * supply a tuple, it'd better have supplied a freefunc. |
| 6032 | */ |
| 6033 | if (HeapTupleIsValid(vardata.statsTuple) && |
| 6034 | !vardata.freefunc) |
| 6035 | elog(ERROR, "no function provided to release variable stats with" ); |
| 6036 | } |
| 6037 | else |
| 6038 | { |
| 6039 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
| 6040 | ObjectIdGetDatum(relid), |
| 6041 | Int16GetDatum(colnum), |
| 6042 | BoolGetDatum(false)); |
| 6043 | vardata.freefunc = ReleaseSysCache; |
| 6044 | } |
| 6045 | } |
| 6046 | |
| 6047 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 6048 | { |
| 6049 | Oid sortop; |
| 6050 | AttStatsSlot sslot; |
| 6051 | |
| 6052 | sortop = get_opfamily_member(index->opfamily[0], |
| 6053 | index->opcintype[0], |
| 6054 | index->opcintype[0], |
| 6055 | BTLessStrategyNumber); |
| 6056 | if (OidIsValid(sortop) && |
| 6057 | get_attstatsslot(&sslot, vardata.statsTuple, |
| 6058 | STATISTIC_KIND_CORRELATION, sortop, |
| 6059 | ATTSTATSSLOT_NUMBERS)) |
| 6060 | { |
| 6061 | double varCorrelation; |
| 6062 | |
| 6063 | Assert(sslot.nnumbers == 1); |
| 6064 | varCorrelation = sslot.numbers[0]; |
| 6065 | |
| 6066 | if (index->reverse_sort[0]) |
| 6067 | varCorrelation = -varCorrelation; |
| 6068 | |
| 6069 | if (index->nkeycolumns > 1) |
| 6070 | costs.indexCorrelation = varCorrelation * 0.75; |
| 6071 | else |
| 6072 | costs.indexCorrelation = varCorrelation; |
| 6073 | |
| 6074 | free_attstatsslot(&sslot); |
| 6075 | } |
| 6076 | } |
| 6077 | |
| 6078 | ReleaseVariableStats(vardata); |
| 6079 | |
| 6080 | *indexStartupCost = costs.indexStartupCost; |
| 6081 | *indexTotalCost = costs.indexTotalCost; |
| 6082 | *indexSelectivity = costs.indexSelectivity; |
| 6083 | *indexCorrelation = costs.indexCorrelation; |
| 6084 | *indexPages = costs.numIndexPages; |
| 6085 | } |
| 6086 | |
| 6087 | void |
| 6088 | hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 6089 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 6090 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 6091 | double *indexPages) |
| 6092 | { |
| 6093 | GenericCosts costs; |
| 6094 | |
| 6095 | MemSet(&costs, 0, sizeof(costs)); |
| 6096 | |
| 6097 | genericcostestimate(root, path, loop_count, &costs); |
| 6098 | |
| 6099 | /* |
| 6100 | * A hash index has no descent costs as such, since the index AM can go |
| 6101 | * directly to the target bucket after computing the hash value. There |
| 6102 | * are a couple of other hash-specific costs that we could conceivably add |
| 6103 | * here, though: |
| 6104 | * |
| 6105 | * Ideally we'd charge spc_random_page_cost for each page in the target |
| 6106 | * bucket, not just the numIndexPages pages that genericcostestimate |
| 6107 | * thought we'd visit. However in most cases we don't know which bucket |
| 6108 | * that will be. There's no point in considering the average bucket size |
| 6109 | * because the hash AM makes sure that's always one page. |
| 6110 | * |
| 6111 | * Likewise, we could consider charging some CPU for each index tuple in |
| 6112 | * the bucket, if we knew how many there were. But the per-tuple cost is |
| 6113 | * just a hash value comparison, not a general datatype-dependent |
| 6114 | * comparison, so any such charge ought to be quite a bit less than |
| 6115 | * cpu_operator_cost; which makes it probably not worth worrying about. |
| 6116 | * |
| 6117 | * A bigger issue is that chance hash-value collisions will result in |
| 6118 | * wasted probes into the heap. We don't currently attempt to model this |
| 6119 | * cost on the grounds that it's rare, but maybe it's not rare enough. |
| 6120 | * (Any fix for this ought to consider the generic lossy-operator problem, |
| 6121 | * though; it's not entirely hash-specific.) |
| 6122 | */ |
| 6123 | |
| 6124 | *indexStartupCost = costs.indexStartupCost; |
| 6125 | *indexTotalCost = costs.indexTotalCost; |
| 6126 | *indexSelectivity = costs.indexSelectivity; |
| 6127 | *indexCorrelation = costs.indexCorrelation; |
| 6128 | *indexPages = costs.numIndexPages; |
| 6129 | } |
| 6130 | |
| 6131 | void |
| 6132 | gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 6133 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 6134 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 6135 | double *indexPages) |
| 6136 | { |
| 6137 | IndexOptInfo *index = path->indexinfo; |
| 6138 | GenericCosts costs; |
| 6139 | Cost descentCost; |
| 6140 | |
| 6141 | MemSet(&costs, 0, sizeof(costs)); |
| 6142 | |
| 6143 | genericcostestimate(root, path, loop_count, &costs); |
| 6144 | |
| 6145 | /* |
| 6146 | * We model index descent costs similarly to those for btree, but to do |
| 6147 | * that we first need an idea of the tree height. We somewhat arbitrarily |
| 6148 | * assume that the fanout is 100, meaning the tree height is at most |
| 6149 | * log100(index->pages). |
| 6150 | * |
| 6151 | * Although this computation isn't really expensive enough to require |
| 6152 | * caching, we might as well use index->tree_height to cache it. |
| 6153 | */ |
| 6154 | if (index->tree_height < 0) /* unknown? */ |
| 6155 | { |
| 6156 | if (index->pages > 1) /* avoid computing log(0) */ |
| 6157 | index->tree_height = (int) (log(index->pages) / log(100.0)); |
| 6158 | else |
| 6159 | index->tree_height = 0; |
| 6160 | } |
| 6161 | |
| 6162 | /* |
| 6163 | * Add a CPU-cost component to represent the costs of initial descent. We |
| 6164 | * just use log(N) here not log2(N) since the branching factor isn't |
| 6165 | * necessarily two anyway. As for btree, charge once per SA scan. |
| 6166 | */ |
| 6167 | if (index->tuples > 1) /* avoid computing log(0) */ |
| 6168 | { |
| 6169 | descentCost = ceil(log(index->tuples)) * cpu_operator_cost; |
| 6170 | costs.indexStartupCost += descentCost; |
| 6171 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 6172 | } |
| 6173 | |
| 6174 | /* |
| 6175 | * Likewise add a per-page charge, calculated the same as for btrees. |
| 6176 | */ |
| 6177 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
| 6178 | costs.indexStartupCost += descentCost; |
| 6179 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 6180 | |
| 6181 | *indexStartupCost = costs.indexStartupCost; |
| 6182 | *indexTotalCost = costs.indexTotalCost; |
| 6183 | *indexSelectivity = costs.indexSelectivity; |
| 6184 | *indexCorrelation = costs.indexCorrelation; |
| 6185 | *indexPages = costs.numIndexPages; |
| 6186 | } |
| 6187 | |
| 6188 | void |
| 6189 | spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 6190 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 6191 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 6192 | double *indexPages) |
| 6193 | { |
| 6194 | IndexOptInfo *index = path->indexinfo; |
| 6195 | GenericCosts costs; |
| 6196 | Cost descentCost; |
| 6197 | |
| 6198 | MemSet(&costs, 0, sizeof(costs)); |
| 6199 | |
| 6200 | genericcostestimate(root, path, loop_count, &costs); |
| 6201 | |
| 6202 | /* |
| 6203 | * We model index descent costs similarly to those for btree, but to do |
| 6204 | * that we first need an idea of the tree height. We somewhat arbitrarily |
| 6205 | * assume that the fanout is 100, meaning the tree height is at most |
| 6206 | * log100(index->pages). |
| 6207 | * |
| 6208 | * Although this computation isn't really expensive enough to require |
| 6209 | * caching, we might as well use index->tree_height to cache it. |
| 6210 | */ |
| 6211 | if (index->tree_height < 0) /* unknown? */ |
| 6212 | { |
| 6213 | if (index->pages > 1) /* avoid computing log(0) */ |
| 6214 | index->tree_height = (int) (log(index->pages) / log(100.0)); |
| 6215 | else |
| 6216 | index->tree_height = 0; |
| 6217 | } |
| 6218 | |
| 6219 | /* |
| 6220 | * Add a CPU-cost component to represent the costs of initial descent. We |
| 6221 | * just use log(N) here not log2(N) since the branching factor isn't |
| 6222 | * necessarily two anyway. As for btree, charge once per SA scan. |
| 6223 | */ |
| 6224 | if (index->tuples > 1) /* avoid computing log(0) */ |
| 6225 | { |
| 6226 | descentCost = ceil(log(index->tuples)) * cpu_operator_cost; |
| 6227 | costs.indexStartupCost += descentCost; |
| 6228 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 6229 | } |
| 6230 | |
| 6231 | /* |
| 6232 | * Likewise add a per-page charge, calculated the same as for btrees. |
| 6233 | */ |
| 6234 | descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost; |
| 6235 | costs.indexStartupCost += descentCost; |
| 6236 | costs.indexTotalCost += costs.num_sa_scans * descentCost; |
| 6237 | |
| 6238 | *indexStartupCost = costs.indexStartupCost; |
| 6239 | *indexTotalCost = costs.indexTotalCost; |
| 6240 | *indexSelectivity = costs.indexSelectivity; |
| 6241 | *indexCorrelation = costs.indexCorrelation; |
| 6242 | *indexPages = costs.numIndexPages; |
| 6243 | } |
| 6244 | |
| 6245 | |
| 6246 | /* |
| 6247 | * Support routines for gincostestimate |
| 6248 | */ |
| 6249 | |
| 6250 | typedef struct |
| 6251 | { |
| 6252 | bool haveFullScan; |
| 6253 | double partialEntries; |
| 6254 | double exactEntries; |
| 6255 | double searchEntries; |
| 6256 | double arrayScans; |
| 6257 | } GinQualCounts; |
| 6258 | |
| 6259 | /* |
| 6260 | * Estimate the number of index terms that need to be searched for while |
| 6261 | * testing the given GIN query, and increment the counts in *counts |
| 6262 | * appropriately. If the query is unsatisfiable, return false. |
| 6263 | */ |
| 6264 | static bool |
| 6265 | gincost_pattern(IndexOptInfo *index, int indexcol, |
| 6266 | Oid clause_op, Datum query, |
| 6267 | GinQualCounts *counts) |
| 6268 | { |
| 6269 | Oid ; |
| 6270 | Oid collation; |
| 6271 | int strategy_op; |
| 6272 | Oid lefttype, |
| 6273 | righttype; |
| 6274 | int32 nentries = 0; |
| 6275 | bool *partial_matches = NULL; |
| 6276 | Pointer * = NULL; |
| 6277 | bool *nullFlags = NULL; |
| 6278 | int32 searchMode = GIN_SEARCH_MODE_DEFAULT; |
| 6279 | int32 i; |
| 6280 | |
| 6281 | Assert(indexcol < index->nkeycolumns); |
| 6282 | |
| 6283 | /* |
| 6284 | * Get the operator's strategy number and declared input data types within |
| 6285 | * the index opfamily. (We don't need the latter, but we use |
| 6286 | * get_op_opfamily_properties because it will throw error if it fails to |
| 6287 | * find a matching pg_amop entry.) |
| 6288 | */ |
| 6289 | get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false, |
| 6290 | &strategy_op, &lefttype, &righttype); |
| 6291 | |
| 6292 | /* |
| 6293 | * GIN always uses the "default" support functions, which are those with |
| 6294 | * lefttype == righttype == the opclass' opcintype (see |
| 6295 | * IndexSupportInitialize in relcache.c). |
| 6296 | */ |
| 6297 | extractProcOid = get_opfamily_proc(index->opfamily[indexcol], |
| 6298 | index->opcintype[indexcol], |
| 6299 | index->opcintype[indexcol], |
| 6300 | GIN_EXTRACTQUERY_PROC); |
| 6301 | |
| 6302 | if (!OidIsValid(extractProcOid)) |
| 6303 | { |
| 6304 | /* should not happen; throw same error as index_getprocinfo */ |
| 6305 | elog(ERROR, "missing support function %d for attribute %d of index \"%s\"" , |
| 6306 | GIN_EXTRACTQUERY_PROC, indexcol + 1, |
| 6307 | get_rel_name(index->indexoid)); |
| 6308 | } |
| 6309 | |
| 6310 | /* |
| 6311 | * Choose collation to pass to extractProc (should match initGinState). |
| 6312 | */ |
| 6313 | if (OidIsValid(index->indexcollations[indexcol])) |
| 6314 | collation = index->indexcollations[indexcol]; |
| 6315 | else |
| 6316 | collation = DEFAULT_COLLATION_OID; |
| 6317 | |
| 6318 | OidFunctionCall7Coll(extractProcOid, |
| 6319 | collation, |
| 6320 | query, |
| 6321 | PointerGetDatum(&nentries), |
| 6322 | UInt16GetDatum(strategy_op), |
| 6323 | PointerGetDatum(&partial_matches), |
| 6324 | PointerGetDatum(&extra_data), |
| 6325 | PointerGetDatum(&nullFlags), |
| 6326 | PointerGetDatum(&searchMode)); |
| 6327 | |
| 6328 | if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT) |
| 6329 | { |
| 6330 | /* No match is possible */ |
| 6331 | return false; |
| 6332 | } |
| 6333 | |
| 6334 | for (i = 0; i < nentries; i++) |
| 6335 | { |
| 6336 | /* |
| 6337 | * For partial match we haven't any information to estimate number of |
| 6338 | * matched entries in index, so, we just estimate it as 100 |
| 6339 | */ |
| 6340 | if (partial_matches && partial_matches[i]) |
| 6341 | counts->partialEntries += 100; |
| 6342 | else |
| 6343 | counts->exactEntries++; |
| 6344 | |
| 6345 | counts->searchEntries++; |
| 6346 | } |
| 6347 | |
| 6348 | if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY) |
| 6349 | { |
| 6350 | /* Treat "include empty" like an exact-match item */ |
| 6351 | counts->exactEntries++; |
| 6352 | counts->searchEntries++; |
| 6353 | } |
| 6354 | else if (searchMode != GIN_SEARCH_MODE_DEFAULT) |
| 6355 | { |
| 6356 | /* It's GIN_SEARCH_MODE_ALL */ |
| 6357 | counts->haveFullScan = true; |
| 6358 | } |
| 6359 | |
| 6360 | return true; |
| 6361 | } |
| 6362 | |
| 6363 | /* |
| 6364 | * Estimate the number of index terms that need to be searched for while |
| 6365 | * testing the given GIN index clause, and increment the counts in *counts |
| 6366 | * appropriately. If the query is unsatisfiable, return false. |
| 6367 | */ |
| 6368 | static bool |
| 6369 | gincost_opexpr(PlannerInfo *root, |
| 6370 | IndexOptInfo *index, |
| 6371 | int indexcol, |
| 6372 | OpExpr *clause, |
| 6373 | GinQualCounts *counts) |
| 6374 | { |
| 6375 | Oid clause_op = clause->opno; |
| 6376 | Node *operand = (Node *) lsecond(clause->args); |
| 6377 | |
| 6378 | /* aggressively reduce to a constant, and look through relabeling */ |
| 6379 | operand = estimate_expression_value(root, operand); |
| 6380 | |
| 6381 | if (IsA(operand, RelabelType)) |
| 6382 | operand = (Node *) ((RelabelType *) operand)->arg; |
| 6383 | |
| 6384 | /* |
| 6385 | * It's impossible to call extractQuery method for unknown operand. So |
| 6386 | * unless operand is a Const we can't do much; just assume there will be |
| 6387 | * one ordinary search entry from the operand at runtime. |
| 6388 | */ |
| 6389 | if (!IsA(operand, Const)) |
| 6390 | { |
| 6391 | counts->exactEntries++; |
| 6392 | counts->searchEntries++; |
| 6393 | return true; |
| 6394 | } |
| 6395 | |
| 6396 | /* If Const is null, there can be no matches */ |
| 6397 | if (((Const *) operand)->constisnull) |
| 6398 | return false; |
| 6399 | |
| 6400 | /* Otherwise, apply extractQuery and get the actual term counts */ |
| 6401 | return gincost_pattern(index, indexcol, clause_op, |
| 6402 | ((Const *) operand)->constvalue, |
| 6403 | counts); |
| 6404 | } |
| 6405 | |
| 6406 | /* |
| 6407 | * Estimate the number of index terms that need to be searched for while |
| 6408 | * testing the given GIN index clause, and increment the counts in *counts |
| 6409 | * appropriately. If the query is unsatisfiable, return false. |
| 6410 | * |
| 6411 | * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime, |
| 6412 | * each of which involves one value from the RHS array, plus all the |
| 6413 | * non-array quals (if any). To model this, we average the counts across |
| 6414 | * the RHS elements, and add the averages to the counts in *counts (which |
| 6415 | * correspond to per-indexscan costs). We also multiply counts->arrayScans |
| 6416 | * by N, causing gincostestimate to scale up its estimates accordingly. |
| 6417 | */ |
| 6418 | static bool |
| 6419 | gincost_scalararrayopexpr(PlannerInfo *root, |
| 6420 | IndexOptInfo *index, |
| 6421 | int indexcol, |
| 6422 | ScalarArrayOpExpr *clause, |
| 6423 | double numIndexEntries, |
| 6424 | GinQualCounts *counts) |
| 6425 | { |
| 6426 | Oid clause_op = clause->opno; |
| 6427 | Node *rightop = (Node *) lsecond(clause->args); |
| 6428 | ArrayType *arrayval; |
| 6429 | int16 elmlen; |
| 6430 | bool elmbyval; |
| 6431 | char elmalign; |
| 6432 | int numElems; |
| 6433 | Datum *elemValues; |
| 6434 | bool *elemNulls; |
| 6435 | GinQualCounts arraycounts; |
| 6436 | int numPossible = 0; |
| 6437 | int i; |
| 6438 | |
| 6439 | Assert(clause->useOr); |
| 6440 | |
| 6441 | /* aggressively reduce to a constant, and look through relabeling */ |
| 6442 | rightop = estimate_expression_value(root, rightop); |
| 6443 | |
| 6444 | if (IsA(rightop, RelabelType)) |
| 6445 | rightop = (Node *) ((RelabelType *) rightop)->arg; |
| 6446 | |
| 6447 | /* |
| 6448 | * It's impossible to call extractQuery method for unknown operand. So |
| 6449 | * unless operand is a Const we can't do much; just assume there will be |
| 6450 | * one ordinary search entry from each array entry at runtime, and fall |
| 6451 | * back on a probably-bad estimate of the number of array entries. |
| 6452 | */ |
| 6453 | if (!IsA(rightop, Const)) |
| 6454 | { |
| 6455 | counts->exactEntries++; |
| 6456 | counts->searchEntries++; |
| 6457 | counts->arrayScans *= estimate_array_length(rightop); |
| 6458 | return true; |
| 6459 | } |
| 6460 | |
| 6461 | /* If Const is null, there can be no matches */ |
| 6462 | if (((Const *) rightop)->constisnull) |
| 6463 | return false; |
| 6464 | |
| 6465 | /* Otherwise, extract the array elements and iterate over them */ |
| 6466 | arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue); |
| 6467 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| 6468 | &elmlen, &elmbyval, &elmalign); |
| 6469 | deconstruct_array(arrayval, |
| 6470 | ARR_ELEMTYPE(arrayval), |
| 6471 | elmlen, elmbyval, elmalign, |
| 6472 | &elemValues, &elemNulls, &numElems); |
| 6473 | |
| 6474 | memset(&arraycounts, 0, sizeof(arraycounts)); |
| 6475 | |
| 6476 | for (i = 0; i < numElems; i++) |
| 6477 | { |
| 6478 | GinQualCounts elemcounts; |
| 6479 | |
| 6480 | /* NULL can't match anything, so ignore, as the executor will */ |
| 6481 | if (elemNulls[i]) |
| 6482 | continue; |
| 6483 | |
| 6484 | /* Otherwise, apply extractQuery and get the actual term counts */ |
| 6485 | memset(&elemcounts, 0, sizeof(elemcounts)); |
| 6486 | |
| 6487 | if (gincost_pattern(index, indexcol, clause_op, elemValues[i], |
| 6488 | &elemcounts)) |
| 6489 | { |
| 6490 | /* We ignore array elements that are unsatisfiable patterns */ |
| 6491 | numPossible++; |
| 6492 | |
| 6493 | if (elemcounts.haveFullScan) |
| 6494 | { |
| 6495 | /* |
| 6496 | * Full index scan will be required. We treat this as if |
| 6497 | * every key in the index had been listed in the query; is |
| 6498 | * that reasonable? |
| 6499 | */ |
| 6500 | elemcounts.partialEntries = 0; |
| 6501 | elemcounts.exactEntries = numIndexEntries; |
| 6502 | elemcounts.searchEntries = numIndexEntries; |
| 6503 | } |
| 6504 | arraycounts.partialEntries += elemcounts.partialEntries; |
| 6505 | arraycounts.exactEntries += elemcounts.exactEntries; |
| 6506 | arraycounts.searchEntries += elemcounts.searchEntries; |
| 6507 | } |
| 6508 | } |
| 6509 | |
| 6510 | if (numPossible == 0) |
| 6511 | { |
| 6512 | /* No satisfiable patterns in the array */ |
| 6513 | return false; |
| 6514 | } |
| 6515 | |
| 6516 | /* |
| 6517 | * Now add the averages to the global counts. This will give us an |
| 6518 | * estimate of the average number of terms searched for in each indexscan, |
| 6519 | * including contributions from both array and non-array quals. |
| 6520 | */ |
| 6521 | counts->partialEntries += arraycounts.partialEntries / numPossible; |
| 6522 | counts->exactEntries += arraycounts.exactEntries / numPossible; |
| 6523 | counts->searchEntries += arraycounts.searchEntries / numPossible; |
| 6524 | |
| 6525 | counts->arrayScans *= numPossible; |
| 6526 | |
| 6527 | return true; |
| 6528 | } |
| 6529 | |
| 6530 | /* |
| 6531 | * GIN has search behavior completely different from other index types |
| 6532 | */ |
| 6533 | void |
| 6534 | gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 6535 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 6536 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 6537 | double *indexPages) |
| 6538 | { |
| 6539 | IndexOptInfo *index = path->indexinfo; |
| 6540 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
| 6541 | List *selectivityQuals; |
| 6542 | double numPages = index->pages, |
| 6543 | numTuples = index->tuples; |
| 6544 | double numEntryPages, |
| 6545 | numDataPages, |
| 6546 | numPendingPages, |
| 6547 | numEntries; |
| 6548 | GinQualCounts counts; |
| 6549 | bool matchPossible; |
| 6550 | double partialScale; |
| 6551 | double entryPagesFetched, |
| 6552 | dataPagesFetched, |
| 6553 | dataPagesFetchedBySel; |
| 6554 | double qual_op_cost, |
| 6555 | qual_arg_cost, |
| 6556 | spc_random_page_cost, |
| 6557 | outer_scans; |
| 6558 | Relation indexRel; |
| 6559 | GinStatsData ginStats; |
| 6560 | ListCell *lc; |
| 6561 | |
| 6562 | /* |
| 6563 | * Obtain statistical information from the meta page, if possible. Else |
| 6564 | * set ginStats to zeroes, and we'll cope below. |
| 6565 | */ |
| 6566 | if (!index->hypothetical) |
| 6567 | { |
| 6568 | /* Lock should have already been obtained in plancat.c */ |
| 6569 | indexRel = index_open(index->indexoid, NoLock); |
| 6570 | ginGetStats(indexRel, &ginStats); |
| 6571 | index_close(indexRel, NoLock); |
| 6572 | } |
| 6573 | else |
| 6574 | { |
| 6575 | memset(&ginStats, 0, sizeof(ginStats)); |
| 6576 | } |
| 6577 | |
| 6578 | /* |
| 6579 | * Assuming we got valid (nonzero) stats at all, nPendingPages can be |
| 6580 | * trusted, but the other fields are data as of the last VACUUM. We can |
| 6581 | * scale them up to account for growth since then, but that method only |
| 6582 | * goes so far; in the worst case, the stats might be for a completely |
| 6583 | * empty index, and scaling them will produce pretty bogus numbers. |
| 6584 | * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if |
| 6585 | * it's grown more than that, fall back to estimating things only from the |
| 6586 | * assumed-accurate index size. But we'll trust nPendingPages in any case |
| 6587 | * so long as it's not clearly insane, ie, more than the index size. |
| 6588 | */ |
| 6589 | if (ginStats.nPendingPages < numPages) |
| 6590 | numPendingPages = ginStats.nPendingPages; |
| 6591 | else |
| 6592 | numPendingPages = 0; |
| 6593 | |
| 6594 | if (numPages > 0 && ginStats.nTotalPages <= numPages && |
| 6595 | ginStats.nTotalPages > numPages / 4 && |
| 6596 | ginStats.nEntryPages > 0 && ginStats.nEntries > 0) |
| 6597 | { |
| 6598 | /* |
| 6599 | * OK, the stats seem close enough to sane to be trusted. But we |
| 6600 | * still need to scale them by the ratio numPages / nTotalPages to |
| 6601 | * account for growth since the last VACUUM. |
| 6602 | */ |
| 6603 | double scale = numPages / ginStats.nTotalPages; |
| 6604 | |
| 6605 | numEntryPages = ceil(ginStats.nEntryPages * scale); |
| 6606 | numDataPages = ceil(ginStats.nDataPages * scale); |
| 6607 | numEntries = ceil(ginStats.nEntries * scale); |
| 6608 | /* ensure we didn't round up too much */ |
| 6609 | numEntryPages = Min(numEntryPages, numPages - numPendingPages); |
| 6610 | numDataPages = Min(numDataPages, |
| 6611 | numPages - numPendingPages - numEntryPages); |
| 6612 | } |
| 6613 | else |
| 6614 | { |
| 6615 | /* |
| 6616 | * We might get here because it's a hypothetical index, or an index |
| 6617 | * created pre-9.1 and never vacuumed since upgrading (in which case |
| 6618 | * its stats would read as zeroes), or just because it's grown too |
| 6619 | * much since the last VACUUM for us to put our faith in scaling. |
| 6620 | * |
| 6621 | * Invent some plausible internal statistics based on the index page |
| 6622 | * count (and clamp that to at least 10 pages, just in case). We |
| 6623 | * estimate that 90% of the index is entry pages, and the rest is data |
| 6624 | * pages. Estimate 100 entries per entry page; this is rather bogus |
| 6625 | * since it'll depend on the size of the keys, but it's more robust |
| 6626 | * than trying to predict the number of entries per heap tuple. |
| 6627 | */ |
| 6628 | numPages = Max(numPages, 10); |
| 6629 | numEntryPages = floor((numPages - numPendingPages) * 0.90); |
| 6630 | numDataPages = numPages - numPendingPages - numEntryPages; |
| 6631 | numEntries = floor(numEntryPages * 100); |
| 6632 | } |
| 6633 | |
| 6634 | /* In an empty index, numEntries could be zero. Avoid divide-by-zero */ |
| 6635 | if (numEntries < 1) |
| 6636 | numEntries = 1; |
| 6637 | |
| 6638 | /* |
| 6639 | * If the index is partial, AND the index predicate with the index-bound |
| 6640 | * quals to produce a more accurate idea of the number of rows covered by |
| 6641 | * the bound conditions. |
| 6642 | */ |
| 6643 | selectivityQuals = add_predicate_to_index_quals(index, indexQuals); |
| 6644 | |
| 6645 | /* Estimate the fraction of main-table tuples that will be visited */ |
| 6646 | *indexSelectivity = clauselist_selectivity(root, selectivityQuals, |
| 6647 | index->rel->relid, |
| 6648 | JOIN_INNER, |
| 6649 | NULL); |
| 6650 | |
| 6651 | /* fetch estimated page cost for tablespace containing index */ |
| 6652 | get_tablespace_page_costs(index->reltablespace, |
| 6653 | &spc_random_page_cost, |
| 6654 | NULL); |
| 6655 | |
| 6656 | /* |
| 6657 | * Generic assumption about index correlation: there isn't any. |
| 6658 | */ |
| 6659 | *indexCorrelation = 0.0; |
| 6660 | |
| 6661 | /* |
| 6662 | * Examine quals to estimate number of search entries & partial matches |
| 6663 | */ |
| 6664 | memset(&counts, 0, sizeof(counts)); |
| 6665 | counts.arrayScans = 1; |
| 6666 | matchPossible = true; |
| 6667 | |
| 6668 | foreach(lc, path->indexclauses) |
| 6669 | { |
| 6670 | IndexClause *iclause = lfirst_node(IndexClause, lc); |
| 6671 | ListCell *lc2; |
| 6672 | |
| 6673 | foreach(lc2, iclause->indexquals) |
| 6674 | { |
| 6675 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2); |
| 6676 | Expr *clause = rinfo->clause; |
| 6677 | |
| 6678 | if (IsA(clause, OpExpr)) |
| 6679 | { |
| 6680 | matchPossible = gincost_opexpr(root, |
| 6681 | index, |
| 6682 | iclause->indexcol, |
| 6683 | (OpExpr *) clause, |
| 6684 | &counts); |
| 6685 | if (!matchPossible) |
| 6686 | break; |
| 6687 | } |
| 6688 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 6689 | { |
| 6690 | matchPossible = gincost_scalararrayopexpr(root, |
| 6691 | index, |
| 6692 | iclause->indexcol, |
| 6693 | (ScalarArrayOpExpr *) clause, |
| 6694 | numEntries, |
| 6695 | &counts); |
| 6696 | if (!matchPossible) |
| 6697 | break; |
| 6698 | } |
| 6699 | else |
| 6700 | { |
| 6701 | /* shouldn't be anything else for a GIN index */ |
| 6702 | elog(ERROR, "unsupported GIN indexqual type: %d" , |
| 6703 | (int) nodeTag(clause)); |
| 6704 | } |
| 6705 | } |
| 6706 | } |
| 6707 | |
| 6708 | /* Fall out if there were any provably-unsatisfiable quals */ |
| 6709 | if (!matchPossible) |
| 6710 | { |
| 6711 | *indexStartupCost = 0; |
| 6712 | *indexTotalCost = 0; |
| 6713 | *indexSelectivity = 0; |
| 6714 | return; |
| 6715 | } |
| 6716 | |
| 6717 | if (counts.haveFullScan || indexQuals == NIL) |
| 6718 | { |
| 6719 | /* |
| 6720 | * Full index scan will be required. We treat this as if every key in |
| 6721 | * the index had been listed in the query; is that reasonable? |
| 6722 | */ |
| 6723 | counts.partialEntries = 0; |
| 6724 | counts.exactEntries = numEntries; |
| 6725 | counts.searchEntries = numEntries; |
| 6726 | } |
| 6727 | |
| 6728 | /* Will we have more than one iteration of a nestloop scan? */ |
| 6729 | outer_scans = loop_count; |
| 6730 | |
| 6731 | /* |
| 6732 | * Compute cost to begin scan, first of all, pay attention to pending |
| 6733 | * list. |
| 6734 | */ |
| 6735 | entryPagesFetched = numPendingPages; |
| 6736 | |
| 6737 | /* |
| 6738 | * Estimate number of entry pages read. We need to do |
| 6739 | * counts.searchEntries searches. Use a power function as it should be, |
| 6740 | * but tuples on leaf pages usually is much greater. Here we include all |
| 6741 | * searches in entry tree, including search of first entry in partial |
| 6742 | * match algorithm |
| 6743 | */ |
| 6744 | entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15))); |
| 6745 | |
| 6746 | /* |
| 6747 | * Add an estimate of entry pages read by partial match algorithm. It's a |
| 6748 | * scan over leaf pages in entry tree. We haven't any useful stats here, |
| 6749 | * so estimate it as proportion. Because counts.partialEntries is really |
| 6750 | * pretty bogus (see code above), it's possible that it is more than |
| 6751 | * numEntries; clamp the proportion to ensure sanity. |
| 6752 | */ |
| 6753 | partialScale = counts.partialEntries / numEntries; |
| 6754 | partialScale = Min(partialScale, 1.0); |
| 6755 | |
| 6756 | entryPagesFetched += ceil(numEntryPages * partialScale); |
| 6757 | |
| 6758 | /* |
| 6759 | * Partial match algorithm reads all data pages before doing actual scan, |
| 6760 | * so it's a startup cost. Again, we haven't any useful stats here, so |
| 6761 | * estimate it as proportion. |
| 6762 | */ |
| 6763 | dataPagesFetched = ceil(numDataPages * partialScale); |
| 6764 | |
| 6765 | /* |
| 6766 | * Calculate cache effects if more than one scan due to nestloops or array |
| 6767 | * quals. The result is pro-rated per nestloop scan, but the array qual |
| 6768 | * factor shouldn't be pro-rated (compare genericcostestimate). |
| 6769 | */ |
| 6770 | if (outer_scans > 1 || counts.arrayScans > 1) |
| 6771 | { |
| 6772 | entryPagesFetched *= outer_scans * counts.arrayScans; |
| 6773 | entryPagesFetched = index_pages_fetched(entryPagesFetched, |
| 6774 | (BlockNumber) numEntryPages, |
| 6775 | numEntryPages, root); |
| 6776 | entryPagesFetched /= outer_scans; |
| 6777 | dataPagesFetched *= outer_scans * counts.arrayScans; |
| 6778 | dataPagesFetched = index_pages_fetched(dataPagesFetched, |
| 6779 | (BlockNumber) numDataPages, |
| 6780 | numDataPages, root); |
| 6781 | dataPagesFetched /= outer_scans; |
| 6782 | } |
| 6783 | |
| 6784 | /* |
| 6785 | * Here we use random page cost because logically-close pages could be far |
| 6786 | * apart on disk. |
| 6787 | */ |
| 6788 | *indexStartupCost = (entryPagesFetched + dataPagesFetched) * spc_random_page_cost; |
| 6789 | |
| 6790 | /* |
| 6791 | * Now compute the number of data pages fetched during the scan. |
| 6792 | * |
| 6793 | * We assume every entry to have the same number of items, and that there |
| 6794 | * is no overlap between them. (XXX: tsvector and array opclasses collect |
| 6795 | * statistics on the frequency of individual keys; it would be nice to use |
| 6796 | * those here.) |
| 6797 | */ |
| 6798 | dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries); |
| 6799 | |
| 6800 | /* |
| 6801 | * If there is a lot of overlap among the entries, in particular if one of |
| 6802 | * the entries is very frequent, the above calculation can grossly |
| 6803 | * under-estimate. As a simple cross-check, calculate a lower bound based |
| 6804 | * on the overall selectivity of the quals. At a minimum, we must read |
| 6805 | * one item pointer for each matching entry. |
| 6806 | * |
| 6807 | * The width of each item pointer varies, based on the level of |
| 6808 | * compression. We don't have statistics on that, but an average of |
| 6809 | * around 3 bytes per item is fairly typical. |
| 6810 | */ |
| 6811 | dataPagesFetchedBySel = ceil(*indexSelectivity * |
| 6812 | (numTuples / (BLCKSZ / 3))); |
| 6813 | if (dataPagesFetchedBySel > dataPagesFetched) |
| 6814 | dataPagesFetched = dataPagesFetchedBySel; |
| 6815 | |
| 6816 | /* Account for cache effects, the same as above */ |
| 6817 | if (outer_scans > 1 || counts.arrayScans > 1) |
| 6818 | { |
| 6819 | dataPagesFetched *= outer_scans * counts.arrayScans; |
| 6820 | dataPagesFetched = index_pages_fetched(dataPagesFetched, |
| 6821 | (BlockNumber) numDataPages, |
| 6822 | numDataPages, root); |
| 6823 | dataPagesFetched /= outer_scans; |
| 6824 | } |
| 6825 | |
| 6826 | /* And apply random_page_cost as the cost per page */ |
| 6827 | *indexTotalCost = *indexStartupCost + |
| 6828 | dataPagesFetched * spc_random_page_cost; |
| 6829 | |
| 6830 | /* |
| 6831 | * Add on index qual eval costs, much as in genericcostestimate. But we |
| 6832 | * can disregard indexorderbys, since GIN doesn't support those. |
| 6833 | */ |
| 6834 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals); |
| 6835 | qual_op_cost = cpu_operator_cost * list_length(indexQuals); |
| 6836 | |
| 6837 | *indexStartupCost += qual_arg_cost; |
| 6838 | *indexTotalCost += qual_arg_cost; |
| 6839 | *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost + qual_op_cost); |
| 6840 | *indexPages = dataPagesFetched; |
| 6841 | } |
| 6842 | |
| 6843 | /* |
| 6844 | * BRIN has search behavior completely different from other index types |
| 6845 | */ |
| 6846 | void |
| 6847 | brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, |
| 6848 | Cost *indexStartupCost, Cost *indexTotalCost, |
| 6849 | Selectivity *indexSelectivity, double *indexCorrelation, |
| 6850 | double *indexPages) |
| 6851 | { |
| 6852 | IndexOptInfo *index = path->indexinfo; |
| 6853 | List *indexQuals = get_quals_from_indexclauses(path->indexclauses); |
| 6854 | double numPages = index->pages; |
| 6855 | RelOptInfo *baserel = index->rel; |
| 6856 | RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root); |
| 6857 | Cost spc_seq_page_cost; |
| 6858 | Cost spc_random_page_cost; |
| 6859 | double qual_arg_cost; |
| 6860 | double qualSelectivity; |
| 6861 | BrinStatsData statsData; |
| 6862 | double indexRanges; |
| 6863 | double minimalRanges; |
| 6864 | double estimatedRanges; |
| 6865 | double selec; |
| 6866 | Relation indexRel; |
| 6867 | ListCell *l; |
| 6868 | VariableStatData vardata; |
| 6869 | |
| 6870 | Assert(rte->rtekind == RTE_RELATION); |
| 6871 | |
| 6872 | /* fetch estimated page cost for the tablespace containing the index */ |
| 6873 | get_tablespace_page_costs(index->reltablespace, |
| 6874 | &spc_random_page_cost, |
| 6875 | &spc_seq_page_cost); |
| 6876 | |
| 6877 | /* |
| 6878 | * Obtain some data from the index itself. A lock should have already |
| 6879 | * been obtained on the index in plancat.c. |
| 6880 | */ |
| 6881 | indexRel = index_open(index->indexoid, NoLock); |
| 6882 | brinGetStats(indexRel, &statsData); |
| 6883 | index_close(indexRel, NoLock); |
| 6884 | |
| 6885 | /* |
| 6886 | * Compute index correlation |
| 6887 | * |
| 6888 | * Because we can use all index quals equally when scanning, we can use |
| 6889 | * the largest correlation (in absolute value) among columns used by the |
| 6890 | * query. Start at zero, the worst possible case. If we cannot find any |
| 6891 | * correlation statistics, we will keep it as 0. |
| 6892 | */ |
| 6893 | *indexCorrelation = 0; |
| 6894 | |
| 6895 | foreach(l, path->indexclauses) |
| 6896 | { |
| 6897 | IndexClause *iclause = lfirst_node(IndexClause, l); |
| 6898 | AttrNumber attnum = index->indexkeys[iclause->indexcol]; |
| 6899 | |
| 6900 | /* attempt to lookup stats in relation for this index column */ |
| 6901 | if (attnum != 0) |
| 6902 | { |
| 6903 | /* Simple variable -- look to stats for the underlying table */ |
| 6904 | if (get_relation_stats_hook && |
| 6905 | (*get_relation_stats_hook) (root, rte, attnum, &vardata)) |
| 6906 | { |
| 6907 | /* |
| 6908 | * The hook took control of acquiring a stats tuple. If it |
| 6909 | * did supply a tuple, it'd better have supplied a freefunc. |
| 6910 | */ |
| 6911 | if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc) |
| 6912 | elog(ERROR, |
| 6913 | "no function provided to release variable stats with" ); |
| 6914 | } |
| 6915 | else |
| 6916 | { |
| 6917 | vardata.statsTuple = |
| 6918 | SearchSysCache3(STATRELATTINH, |
| 6919 | ObjectIdGetDatum(rte->relid), |
| 6920 | Int16GetDatum(attnum), |
| 6921 | BoolGetDatum(false)); |
| 6922 | vardata.freefunc = ReleaseSysCache; |
| 6923 | } |
| 6924 | } |
| 6925 | else |
| 6926 | { |
| 6927 | /* |
| 6928 | * Looks like we've found an expression column in the index. Let's |
| 6929 | * see if there's any stats for it. |
| 6930 | */ |
| 6931 | |
| 6932 | /* get the attnum from the 0-based index. */ |
| 6933 | attnum = iclause->indexcol + 1; |
| 6934 | |
| 6935 | if (get_index_stats_hook && |
| 6936 | (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata)) |
| 6937 | { |
| 6938 | /* |
| 6939 | * The hook took control of acquiring a stats tuple. If it |
| 6940 | * did supply a tuple, it'd better have supplied a freefunc. |
| 6941 | */ |
| 6942 | if (HeapTupleIsValid(vardata.statsTuple) && |
| 6943 | !vardata.freefunc) |
| 6944 | elog(ERROR, "no function provided to release variable stats with" ); |
| 6945 | } |
| 6946 | else |
| 6947 | { |
| 6948 | vardata.statsTuple = SearchSysCache3(STATRELATTINH, |
| 6949 | ObjectIdGetDatum(index->indexoid), |
| 6950 | Int16GetDatum(attnum), |
| 6951 | BoolGetDatum(false)); |
| 6952 | vardata.freefunc = ReleaseSysCache; |
| 6953 | } |
| 6954 | } |
| 6955 | |
| 6956 | if (HeapTupleIsValid(vardata.statsTuple)) |
| 6957 | { |
| 6958 | AttStatsSlot sslot; |
| 6959 | |
| 6960 | if (get_attstatsslot(&sslot, vardata.statsTuple, |
| 6961 | STATISTIC_KIND_CORRELATION, InvalidOid, |
| 6962 | ATTSTATSSLOT_NUMBERS)) |
| 6963 | { |
| 6964 | double varCorrelation = 0.0; |
| 6965 | |
| 6966 | if (sslot.nnumbers > 0) |
| 6967 | varCorrelation = Abs(sslot.numbers[0]); |
| 6968 | |
| 6969 | if (varCorrelation > *indexCorrelation) |
| 6970 | *indexCorrelation = varCorrelation; |
| 6971 | |
| 6972 | free_attstatsslot(&sslot); |
| 6973 | } |
| 6974 | } |
| 6975 | |
| 6976 | ReleaseVariableStats(vardata); |
| 6977 | } |
| 6978 | |
| 6979 | qualSelectivity = clauselist_selectivity(root, indexQuals, |
| 6980 | baserel->relid, |
| 6981 | JOIN_INNER, NULL); |
| 6982 | |
| 6983 | /* work out the actual number of ranges in the index */ |
| 6984 | indexRanges = Max(ceil((double) baserel->pages / statsData.pagesPerRange), |
| 6985 | 1.0); |
| 6986 | |
| 6987 | /* |
| 6988 | * Now calculate the minimum possible ranges we could match with if all of |
| 6989 | * the rows were in the perfect order in the table's heap. |
| 6990 | */ |
| 6991 | minimalRanges = ceil(indexRanges * qualSelectivity); |
| 6992 | |
| 6993 | /* |
| 6994 | * Now estimate the number of ranges that we'll touch by using the |
| 6995 | * indexCorrelation from the stats. Careful not to divide by zero (note |
| 6996 | * we're using the absolute value of the correlation). |
| 6997 | */ |
| 6998 | if (*indexCorrelation < 1.0e-10) |
| 6999 | estimatedRanges = indexRanges; |
| 7000 | else |
| 7001 | estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges); |
| 7002 | |
| 7003 | /* we expect to visit this portion of the table */ |
| 7004 | selec = estimatedRanges / indexRanges; |
| 7005 | |
| 7006 | CLAMP_PROBABILITY(selec); |
| 7007 | |
| 7008 | *indexSelectivity = selec; |
| 7009 | |
| 7010 | /* |
| 7011 | * Compute the index qual costs, much as in genericcostestimate, to add to |
| 7012 | * the index costs. We can disregard indexorderbys, since BRIN doesn't |
| 7013 | * support those. |
| 7014 | */ |
| 7015 | qual_arg_cost = index_other_operands_eval_cost(root, indexQuals); |
| 7016 | |
| 7017 | /* |
| 7018 | * Compute the startup cost as the cost to read the whole revmap |
| 7019 | * sequentially, including the cost to execute the index quals. |
| 7020 | */ |
| 7021 | *indexStartupCost = |
| 7022 | spc_seq_page_cost * statsData.revmapNumPages * loop_count; |
| 7023 | *indexStartupCost += qual_arg_cost; |
| 7024 | |
| 7025 | /* |
| 7026 | * To read a BRIN index there might be a bit of back and forth over |
| 7027 | * regular pages, as revmap might point to them out of sequential order; |
| 7028 | * calculate the total cost as reading the whole index in random order. |
| 7029 | */ |
| 7030 | *indexTotalCost = *indexStartupCost + |
| 7031 | spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count; |
| 7032 | |
| 7033 | /* |
| 7034 | * Charge a small amount per range tuple which we expect to match to. This |
| 7035 | * is meant to reflect the costs of manipulating the bitmap. The BRIN scan |
| 7036 | * will set a bit for each page in the range when we find a matching |
| 7037 | * range, so we must multiply the charge by the number of pages in the |
| 7038 | * range. |
| 7039 | */ |
| 7040 | *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges * |
| 7041 | statsData.pagesPerRange; |
| 7042 | |
| 7043 | *indexPages = index->pages; |
| 7044 | } |
| 7045 | |