1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * varbit.c |
4 | * Functions for the SQL datatypes BIT() and BIT VARYING(). |
5 | * |
6 | * The data structure contains the following elements: |
7 | * header -- length of the whole data structure (incl header) |
8 | * in bytes (as with all varying length datatypes) |
9 | * data section -- private data section for the bits data structures |
10 | * bitlength -- length of the bit string in bits |
11 | * bitdata -- bit string, most significant byte first |
12 | * |
13 | * The length of the bitdata vector should always be exactly as many |
14 | * bytes as are needed for the given bitlength. If the bitlength is |
15 | * not a multiple of 8, the extra low-order padding bits of the last |
16 | * byte must be zeroes. |
17 | * |
18 | * attypmod is defined as the length of the bit string in bits, or for |
19 | * varying bits the maximum length. |
20 | * |
21 | * Code originally contributed by Adriaan Joubert. |
22 | * |
23 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
24 | * Portions Copyright (c) 1994, Regents of the University of California |
25 | * |
26 | * IDENTIFICATION |
27 | * src/backend/utils/adt/varbit.c |
28 | * |
29 | *------------------------------------------------------------------------- |
30 | */ |
31 | |
32 | #include "postgres.h" |
33 | |
34 | #include "access/htup_details.h" |
35 | #include "common/int.h" |
36 | #include "libpq/pqformat.h" |
37 | #include "nodes/nodeFuncs.h" |
38 | #include "nodes/supportnodes.h" |
39 | #include "utils/array.h" |
40 | #include "utils/builtins.h" |
41 | #include "utils/varbit.h" |
42 | |
43 | #define HEXDIG(z) ((z)<10 ? ((z)+'0') : ((z)-10+'A')) |
44 | |
45 | /* Mask off any bits that should be zero in the last byte of a bitstring */ |
46 | #define VARBIT_PAD(vb) \ |
47 | do { \ |
48 | int32 pad_ = VARBITPAD(vb); \ |
49 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
50 | if (pad_ > 0) \ |
51 | *(VARBITS(vb) + VARBITBYTES(vb) - 1) &= BITMASK << pad_; \ |
52 | } while (0) |
53 | |
54 | /* |
55 | * Many functions work byte-by-byte, so they have a pointer handy to the |
56 | * last-plus-one byte, which saves a cycle or two. |
57 | */ |
58 | #define VARBIT_PAD_LAST(vb, ptr) \ |
59 | do { \ |
60 | int32 pad_ = VARBITPAD(vb); \ |
61 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
62 | if (pad_ > 0) \ |
63 | *((ptr) - 1) &= BITMASK << pad_; \ |
64 | } while (0) |
65 | |
66 | /* Assert proper padding of a bitstring */ |
67 | #ifdef USE_ASSERT_CHECKING |
68 | #define VARBIT_CORRECTLY_PADDED(vb) \ |
69 | do { \ |
70 | int32 pad_ = VARBITPAD(vb); \ |
71 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
72 | Assert(pad_ == 0 || \ |
73 | (*(VARBITS(vb) + VARBITBYTES(vb) - 1) & ~(BITMASK << pad_)) == 0); \ |
74 | } while (0) |
75 | #else |
76 | #define VARBIT_CORRECTLY_PADDED(vb) ((void) 0) |
77 | #endif |
78 | |
79 | static VarBit *bit_catenate(VarBit *arg1, VarBit *arg2); |
80 | static VarBit *bitsubstring(VarBit *arg, int32 s, int32 l, |
81 | bool length_not_specified); |
82 | static VarBit *bit_overlay(VarBit *t1, VarBit *t2, int sp, int sl); |
83 | |
84 | |
85 | /* |
86 | * common code for bittypmodin and varbittypmodin |
87 | */ |
88 | static int32 |
89 | anybit_typmodin(ArrayType *ta, const char *typename) |
90 | { |
91 | int32 typmod; |
92 | int32 *tl; |
93 | int n; |
94 | |
95 | tl = ArrayGetIntegerTypmods(ta, &n); |
96 | |
97 | /* |
98 | * we're not too tense about good error message here because grammar |
99 | * shouldn't allow wrong number of modifiers for BIT |
100 | */ |
101 | if (n != 1) |
102 | ereport(ERROR, |
103 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
104 | errmsg("invalid type modifier" ))); |
105 | |
106 | if (*tl < 1) |
107 | ereport(ERROR, |
108 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
109 | errmsg("length for type %s must be at least 1" , |
110 | typename))); |
111 | if (*tl > (MaxAttrSize * BITS_PER_BYTE)) |
112 | ereport(ERROR, |
113 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
114 | errmsg("length for type %s cannot exceed %d" , |
115 | typename, MaxAttrSize * BITS_PER_BYTE))); |
116 | |
117 | typmod = *tl; |
118 | |
119 | return typmod; |
120 | } |
121 | |
122 | /* |
123 | * common code for bittypmodout and varbittypmodout |
124 | */ |
125 | static char * |
126 | anybit_typmodout(int32 typmod) |
127 | { |
128 | char *res = (char *) palloc(64); |
129 | |
130 | if (typmod >= 0) |
131 | snprintf(res, 64, "(%d)" , typmod); |
132 | else |
133 | *res = '\0'; |
134 | |
135 | return res; |
136 | } |
137 | |
138 | |
139 | /* |
140 | * bit_in - |
141 | * converts a char string to the internal representation of a bitstring. |
142 | * The length is determined by the number of bits required plus |
143 | * VARHDRSZ bytes or from atttypmod. |
144 | */ |
145 | Datum |
146 | bit_in(PG_FUNCTION_ARGS) |
147 | { |
148 | char *input_string = PG_GETARG_CSTRING(0); |
149 | |
150 | #ifdef NOT_USED |
151 | Oid typelem = PG_GETARG_OID(1); |
152 | #endif |
153 | int32 atttypmod = PG_GETARG_INT32(2); |
154 | VarBit *result; /* The resulting bit string */ |
155 | char *sp; /* pointer into the character string */ |
156 | bits8 *r; /* pointer into the result */ |
157 | int len, /* Length of the whole data structure */ |
158 | bitlen, /* Number of bits in the bit string */ |
159 | slen; /* Length of the input string */ |
160 | bool bit_not_hex; /* false = hex string true = bit string */ |
161 | int bc; |
162 | bits8 x = 0; |
163 | |
164 | /* Check that the first character is a b or an x */ |
165 | if (input_string[0] == 'b' || input_string[0] == 'B') |
166 | { |
167 | bit_not_hex = true; |
168 | sp = input_string + 1; |
169 | } |
170 | else if (input_string[0] == 'x' || input_string[0] == 'X') |
171 | { |
172 | bit_not_hex = false; |
173 | sp = input_string + 1; |
174 | } |
175 | else |
176 | { |
177 | /* |
178 | * Otherwise it's binary. This allows things like cast('1001' as bit) |
179 | * to work transparently. |
180 | */ |
181 | bit_not_hex = true; |
182 | sp = input_string; |
183 | } |
184 | |
185 | /* |
186 | * Determine bitlength from input string. MaxAllocSize ensures a regular |
187 | * input is small enough, but we must check hex input. |
188 | */ |
189 | slen = strlen(sp); |
190 | if (bit_not_hex) |
191 | bitlen = slen; |
192 | else |
193 | { |
194 | if (slen > VARBITMAXLEN / 4) |
195 | ereport(ERROR, |
196 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
197 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
198 | VARBITMAXLEN))); |
199 | bitlen = slen * 4; |
200 | } |
201 | |
202 | /* |
203 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
204 | * sure that the bitstring fits. |
205 | */ |
206 | if (atttypmod <= 0) |
207 | atttypmod = bitlen; |
208 | else if (bitlen != atttypmod) |
209 | ereport(ERROR, |
210 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
211 | errmsg("bit string length %d does not match type bit(%d)" , |
212 | bitlen, atttypmod))); |
213 | |
214 | len = VARBITTOTALLEN(atttypmod); |
215 | /* set to 0 so that *r is always initialised and string is zero-padded */ |
216 | result = (VarBit *) palloc0(len); |
217 | SET_VARSIZE(result, len); |
218 | VARBITLEN(result) = atttypmod; |
219 | |
220 | r = VARBITS(result); |
221 | if (bit_not_hex) |
222 | { |
223 | /* Parse the bit representation of the string */ |
224 | /* We know it fits, as bitlen was compared to atttypmod */ |
225 | x = HIGHBIT; |
226 | for (; *sp; sp++) |
227 | { |
228 | if (*sp == '1') |
229 | *r |= x; |
230 | else if (*sp != '0') |
231 | ereport(ERROR, |
232 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
233 | errmsg("\"%c\" is not a valid binary digit" , |
234 | *sp))); |
235 | |
236 | x >>= 1; |
237 | if (x == 0) |
238 | { |
239 | x = HIGHBIT; |
240 | r++; |
241 | } |
242 | } |
243 | } |
244 | else |
245 | { |
246 | /* Parse the hex representation of the string */ |
247 | for (bc = 0; *sp; sp++) |
248 | { |
249 | if (*sp >= '0' && *sp <= '9') |
250 | x = (bits8) (*sp - '0'); |
251 | else if (*sp >= 'A' && *sp <= 'F') |
252 | x = (bits8) (*sp - 'A') + 10; |
253 | else if (*sp >= 'a' && *sp <= 'f') |
254 | x = (bits8) (*sp - 'a') + 10; |
255 | else |
256 | ereport(ERROR, |
257 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
258 | errmsg("\"%c\" is not a valid hexadecimal digit" , |
259 | *sp))); |
260 | |
261 | if (bc) |
262 | { |
263 | *r++ |= x; |
264 | bc = 0; |
265 | } |
266 | else |
267 | { |
268 | *r = x << 4; |
269 | bc = 1; |
270 | } |
271 | } |
272 | } |
273 | |
274 | PG_RETURN_VARBIT_P(result); |
275 | } |
276 | |
277 | |
278 | Datum |
279 | bit_out(PG_FUNCTION_ARGS) |
280 | { |
281 | #if 1 |
282 | /* same as varbit output */ |
283 | return varbit_out(fcinfo); |
284 | #else |
285 | |
286 | /* |
287 | * This is how one would print a hex string, in case someone wants to |
288 | * write a formatting function. |
289 | */ |
290 | VarBit *s = PG_GETARG_VARBIT_P(0); |
291 | char *result, |
292 | *r; |
293 | bits8 *sp; |
294 | int i, |
295 | len, |
296 | bitlen; |
297 | |
298 | /* Assertion to help catch any bit functions that don't pad correctly */ |
299 | VARBIT_CORRECTLY_PADDED(s); |
300 | |
301 | bitlen = VARBITLEN(s); |
302 | len = (bitlen + 3) / 4; |
303 | result = (char *) palloc(len + 2); |
304 | sp = VARBITS(s); |
305 | r = result; |
306 | *r++ = 'X'; |
307 | /* we cheat by knowing that we store full bytes zero padded */ |
308 | for (i = 0; i < len; i += 2, sp++) |
309 | { |
310 | *r++ = HEXDIG((*sp) >> 4); |
311 | *r++ = HEXDIG((*sp) & 0xF); |
312 | } |
313 | |
314 | /* |
315 | * Go back one step if we printed a hex number that was not part of the |
316 | * bitstring anymore |
317 | */ |
318 | if (i > len) |
319 | r--; |
320 | *r = '\0'; |
321 | |
322 | PG_RETURN_CSTRING(result); |
323 | #endif |
324 | } |
325 | |
326 | /* |
327 | * bit_recv - converts external binary format to bit |
328 | */ |
329 | Datum |
330 | bit_recv(PG_FUNCTION_ARGS) |
331 | { |
332 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
333 | |
334 | #ifdef NOT_USED |
335 | Oid typelem = PG_GETARG_OID(1); |
336 | #endif |
337 | int32 atttypmod = PG_GETARG_INT32(2); |
338 | VarBit *result; |
339 | int len, |
340 | bitlen; |
341 | |
342 | bitlen = pq_getmsgint(buf, sizeof(int32)); |
343 | if (bitlen < 0 || bitlen > VARBITMAXLEN) |
344 | ereport(ERROR, |
345 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
346 | errmsg("invalid length in external bit string" ))); |
347 | |
348 | /* |
349 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
350 | * sure that the bitstring fits. |
351 | */ |
352 | if (atttypmod > 0 && bitlen != atttypmod) |
353 | ereport(ERROR, |
354 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
355 | errmsg("bit string length %d does not match type bit(%d)" , |
356 | bitlen, atttypmod))); |
357 | |
358 | len = VARBITTOTALLEN(bitlen); |
359 | result = (VarBit *) palloc(len); |
360 | SET_VARSIZE(result, len); |
361 | VARBITLEN(result) = bitlen; |
362 | |
363 | pq_copymsgbytes(buf, (char *) VARBITS(result), VARBITBYTES(result)); |
364 | |
365 | /* Make sure last byte is correctly zero-padded */ |
366 | VARBIT_PAD(result); |
367 | |
368 | PG_RETURN_VARBIT_P(result); |
369 | } |
370 | |
371 | /* |
372 | * bit_send - converts bit to binary format |
373 | */ |
374 | Datum |
375 | bit_send(PG_FUNCTION_ARGS) |
376 | { |
377 | /* Exactly the same as varbit_send, so share code */ |
378 | return varbit_send(fcinfo); |
379 | } |
380 | |
381 | /* |
382 | * bit() |
383 | * Converts a bit() type to a specific internal length. |
384 | * len is the bitlength specified in the column definition. |
385 | * |
386 | * If doing implicit cast, raise error when source data is wrong length. |
387 | * If doing explicit cast, silently truncate or zero-pad to specified length. |
388 | */ |
389 | Datum |
390 | bit(PG_FUNCTION_ARGS) |
391 | { |
392 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
393 | int32 len = PG_GETARG_INT32(1); |
394 | bool isExplicit = PG_GETARG_BOOL(2); |
395 | VarBit *result; |
396 | int rlen; |
397 | |
398 | /* No work if typmod is invalid or supplied data matches it already */ |
399 | if (len <= 0 || len > VARBITMAXLEN || len == VARBITLEN(arg)) |
400 | PG_RETURN_VARBIT_P(arg); |
401 | |
402 | if (!isExplicit) |
403 | ereport(ERROR, |
404 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
405 | errmsg("bit string length %d does not match type bit(%d)" , |
406 | VARBITLEN(arg), len))); |
407 | |
408 | rlen = VARBITTOTALLEN(len); |
409 | /* set to 0 so that string is zero-padded */ |
410 | result = (VarBit *) palloc0(rlen); |
411 | SET_VARSIZE(result, rlen); |
412 | VARBITLEN(result) = len; |
413 | |
414 | memcpy(VARBITS(result), VARBITS(arg), |
415 | Min(VARBITBYTES(result), VARBITBYTES(arg))); |
416 | |
417 | /* |
418 | * Make sure last byte is zero-padded if needed. This is useless but safe |
419 | * if source data was shorter than target length (we assume the last byte |
420 | * of the source data was itself correctly zero-padded). |
421 | */ |
422 | VARBIT_PAD(result); |
423 | |
424 | PG_RETURN_VARBIT_P(result); |
425 | } |
426 | |
427 | Datum |
428 | bittypmodin(PG_FUNCTION_ARGS) |
429 | { |
430 | ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); |
431 | |
432 | PG_RETURN_INT32(anybit_typmodin(ta, "bit" )); |
433 | } |
434 | |
435 | Datum |
436 | bittypmodout(PG_FUNCTION_ARGS) |
437 | { |
438 | int32 typmod = PG_GETARG_INT32(0); |
439 | |
440 | PG_RETURN_CSTRING(anybit_typmodout(typmod)); |
441 | } |
442 | |
443 | |
444 | /* |
445 | * varbit_in - |
446 | * converts a string to the internal representation of a bitstring. |
447 | * This is the same as bit_in except that atttypmod is taken as |
448 | * the maximum length, not the exact length to force the bitstring to. |
449 | */ |
450 | Datum |
451 | varbit_in(PG_FUNCTION_ARGS) |
452 | { |
453 | char *input_string = PG_GETARG_CSTRING(0); |
454 | |
455 | #ifdef NOT_USED |
456 | Oid typelem = PG_GETARG_OID(1); |
457 | #endif |
458 | int32 atttypmod = PG_GETARG_INT32(2); |
459 | VarBit *result; /* The resulting bit string */ |
460 | char *sp; /* pointer into the character string */ |
461 | bits8 *r; /* pointer into the result */ |
462 | int len, /* Length of the whole data structure */ |
463 | bitlen, /* Number of bits in the bit string */ |
464 | slen; /* Length of the input string */ |
465 | bool bit_not_hex; /* false = hex string true = bit string */ |
466 | int bc; |
467 | bits8 x = 0; |
468 | |
469 | /* Check that the first character is a b or an x */ |
470 | if (input_string[0] == 'b' || input_string[0] == 'B') |
471 | { |
472 | bit_not_hex = true; |
473 | sp = input_string + 1; |
474 | } |
475 | else if (input_string[0] == 'x' || input_string[0] == 'X') |
476 | { |
477 | bit_not_hex = false; |
478 | sp = input_string + 1; |
479 | } |
480 | else |
481 | { |
482 | bit_not_hex = true; |
483 | sp = input_string; |
484 | } |
485 | |
486 | /* |
487 | * Determine bitlength from input string. MaxAllocSize ensures a regular |
488 | * input is small enough, but we must check hex input. |
489 | */ |
490 | slen = strlen(sp); |
491 | if (bit_not_hex) |
492 | bitlen = slen; |
493 | else |
494 | { |
495 | if (slen > VARBITMAXLEN / 4) |
496 | ereport(ERROR, |
497 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
498 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
499 | VARBITMAXLEN))); |
500 | bitlen = slen * 4; |
501 | } |
502 | |
503 | /* |
504 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
505 | * sure that the bitstring fits. |
506 | */ |
507 | if (atttypmod <= 0) |
508 | atttypmod = bitlen; |
509 | else if (bitlen > atttypmod) |
510 | ereport(ERROR, |
511 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
512 | errmsg("bit string too long for type bit varying(%d)" , |
513 | atttypmod))); |
514 | |
515 | len = VARBITTOTALLEN(bitlen); |
516 | /* set to 0 so that *r is always initialised and string is zero-padded */ |
517 | result = (VarBit *) palloc0(len); |
518 | SET_VARSIZE(result, len); |
519 | VARBITLEN(result) = Min(bitlen, atttypmod); |
520 | |
521 | r = VARBITS(result); |
522 | if (bit_not_hex) |
523 | { |
524 | /* Parse the bit representation of the string */ |
525 | /* We know it fits, as bitlen was compared to atttypmod */ |
526 | x = HIGHBIT; |
527 | for (; *sp; sp++) |
528 | { |
529 | if (*sp == '1') |
530 | *r |= x; |
531 | else if (*sp != '0') |
532 | ereport(ERROR, |
533 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
534 | errmsg("\"%c\" is not a valid binary digit" , |
535 | *sp))); |
536 | |
537 | x >>= 1; |
538 | if (x == 0) |
539 | { |
540 | x = HIGHBIT; |
541 | r++; |
542 | } |
543 | } |
544 | } |
545 | else |
546 | { |
547 | /* Parse the hex representation of the string */ |
548 | for (bc = 0; *sp; sp++) |
549 | { |
550 | if (*sp >= '0' && *sp <= '9') |
551 | x = (bits8) (*sp - '0'); |
552 | else if (*sp >= 'A' && *sp <= 'F') |
553 | x = (bits8) (*sp - 'A') + 10; |
554 | else if (*sp >= 'a' && *sp <= 'f') |
555 | x = (bits8) (*sp - 'a') + 10; |
556 | else |
557 | ereport(ERROR, |
558 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
559 | errmsg("\"%c\" is not a valid hexadecimal digit" , |
560 | *sp))); |
561 | |
562 | if (bc) |
563 | { |
564 | *r++ |= x; |
565 | bc = 0; |
566 | } |
567 | else |
568 | { |
569 | *r = x << 4; |
570 | bc = 1; |
571 | } |
572 | } |
573 | } |
574 | |
575 | PG_RETURN_VARBIT_P(result); |
576 | } |
577 | |
578 | /* |
579 | * varbit_out - |
580 | * Prints the string as bits to preserve length accurately |
581 | * |
582 | * XXX varbit_recv() and hex input to varbit_in() can load a value that this |
583 | * cannot emit. Consider using hex output for such values. |
584 | */ |
585 | Datum |
586 | varbit_out(PG_FUNCTION_ARGS) |
587 | { |
588 | VarBit *s = PG_GETARG_VARBIT_P(0); |
589 | char *result, |
590 | *r; |
591 | bits8 *sp; |
592 | bits8 x; |
593 | int i, |
594 | k, |
595 | len; |
596 | |
597 | /* Assertion to help catch any bit functions that don't pad correctly */ |
598 | VARBIT_CORRECTLY_PADDED(s); |
599 | |
600 | len = VARBITLEN(s); |
601 | result = (char *) palloc(len + 1); |
602 | sp = VARBITS(s); |
603 | r = result; |
604 | for (i = 0; i <= len - BITS_PER_BYTE; i += BITS_PER_BYTE, sp++) |
605 | { |
606 | /* print full bytes */ |
607 | x = *sp; |
608 | for (k = 0; k < BITS_PER_BYTE; k++) |
609 | { |
610 | *r++ = IS_HIGHBIT_SET(x) ? '1' : '0'; |
611 | x <<= 1; |
612 | } |
613 | } |
614 | if (i < len) |
615 | { |
616 | /* print the last partial byte */ |
617 | x = *sp; |
618 | for (k = i; k < len; k++) |
619 | { |
620 | *r++ = IS_HIGHBIT_SET(x) ? '1' : '0'; |
621 | x <<= 1; |
622 | } |
623 | } |
624 | *r = '\0'; |
625 | |
626 | PG_RETURN_CSTRING(result); |
627 | } |
628 | |
629 | /* |
630 | * varbit_recv - converts external binary format to varbit |
631 | * |
632 | * External format is the bitlen as an int32, then the byte array. |
633 | */ |
634 | Datum |
635 | varbit_recv(PG_FUNCTION_ARGS) |
636 | { |
637 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
638 | |
639 | #ifdef NOT_USED |
640 | Oid typelem = PG_GETARG_OID(1); |
641 | #endif |
642 | int32 atttypmod = PG_GETARG_INT32(2); |
643 | VarBit *result; |
644 | int len, |
645 | bitlen; |
646 | |
647 | bitlen = pq_getmsgint(buf, sizeof(int32)); |
648 | if (bitlen < 0 || bitlen > VARBITMAXLEN) |
649 | ereport(ERROR, |
650 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
651 | errmsg("invalid length in external bit string" ))); |
652 | |
653 | /* |
654 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
655 | * sure that the bitstring fits. |
656 | */ |
657 | if (atttypmod > 0 && bitlen > atttypmod) |
658 | ereport(ERROR, |
659 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
660 | errmsg("bit string too long for type bit varying(%d)" , |
661 | atttypmod))); |
662 | |
663 | len = VARBITTOTALLEN(bitlen); |
664 | result = (VarBit *) palloc(len); |
665 | SET_VARSIZE(result, len); |
666 | VARBITLEN(result) = bitlen; |
667 | |
668 | pq_copymsgbytes(buf, (char *) VARBITS(result), VARBITBYTES(result)); |
669 | |
670 | /* Make sure last byte is correctly zero-padded */ |
671 | VARBIT_PAD(result); |
672 | |
673 | PG_RETURN_VARBIT_P(result); |
674 | } |
675 | |
676 | /* |
677 | * varbit_send - converts varbit to binary format |
678 | */ |
679 | Datum |
680 | varbit_send(PG_FUNCTION_ARGS) |
681 | { |
682 | VarBit *s = PG_GETARG_VARBIT_P(0); |
683 | StringInfoData buf; |
684 | |
685 | pq_begintypsend(&buf); |
686 | pq_sendint32(&buf, VARBITLEN(s)); |
687 | pq_sendbytes(&buf, (char *) VARBITS(s), VARBITBYTES(s)); |
688 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
689 | } |
690 | |
691 | /* |
692 | * varbit_support() |
693 | * |
694 | * Planner support function for the varbit() length coercion function. |
695 | * |
696 | * Currently, the only interesting thing we can do is flatten calls that set |
697 | * the new maximum length >= the previous maximum length. We can ignore the |
698 | * isExplicit argument, since that only affects truncation cases. |
699 | */ |
700 | Datum |
701 | varbit_support(PG_FUNCTION_ARGS) |
702 | { |
703 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
704 | Node *ret = NULL; |
705 | |
706 | if (IsA(rawreq, SupportRequestSimplify)) |
707 | { |
708 | SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq; |
709 | FuncExpr *expr = req->fcall; |
710 | Node *typmod; |
711 | |
712 | Assert(list_length(expr->args) >= 2); |
713 | |
714 | typmod = (Node *) lsecond(expr->args); |
715 | |
716 | if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull) |
717 | { |
718 | Node *source = (Node *) linitial(expr->args); |
719 | int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue); |
720 | int32 old_max = exprTypmod(source); |
721 | int32 new_max = new_typmod; |
722 | |
723 | /* Note: varbit() treats typmod 0 as invalid, so we do too */ |
724 | if (new_max <= 0 || (old_max > 0 && old_max <= new_max)) |
725 | ret = relabel_to_typmod(source, new_typmod); |
726 | } |
727 | } |
728 | |
729 | PG_RETURN_POINTER(ret); |
730 | } |
731 | |
732 | /* |
733 | * varbit() |
734 | * Converts a varbit() type to a specific internal length. |
735 | * len is the maximum bitlength specified in the column definition. |
736 | * |
737 | * If doing implicit cast, raise error when source data is too long. |
738 | * If doing explicit cast, silently truncate to max length. |
739 | */ |
740 | Datum |
741 | varbit(PG_FUNCTION_ARGS) |
742 | { |
743 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
744 | int32 len = PG_GETARG_INT32(1); |
745 | bool isExplicit = PG_GETARG_BOOL(2); |
746 | VarBit *result; |
747 | int rlen; |
748 | |
749 | /* No work if typmod is invalid or supplied data matches it already */ |
750 | if (len <= 0 || len >= VARBITLEN(arg)) |
751 | PG_RETURN_VARBIT_P(arg); |
752 | |
753 | if (!isExplicit) |
754 | ereport(ERROR, |
755 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
756 | errmsg("bit string too long for type bit varying(%d)" , |
757 | len))); |
758 | |
759 | rlen = VARBITTOTALLEN(len); |
760 | result = (VarBit *) palloc(rlen); |
761 | SET_VARSIZE(result, rlen); |
762 | VARBITLEN(result) = len; |
763 | |
764 | memcpy(VARBITS(result), VARBITS(arg), VARBITBYTES(result)); |
765 | |
766 | /* Make sure last byte is correctly zero-padded */ |
767 | VARBIT_PAD(result); |
768 | |
769 | PG_RETURN_VARBIT_P(result); |
770 | } |
771 | |
772 | Datum |
773 | varbittypmodin(PG_FUNCTION_ARGS) |
774 | { |
775 | ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); |
776 | |
777 | PG_RETURN_INT32(anybit_typmodin(ta, "varbit" )); |
778 | } |
779 | |
780 | Datum |
781 | varbittypmodout(PG_FUNCTION_ARGS) |
782 | { |
783 | int32 typmod = PG_GETARG_INT32(0); |
784 | |
785 | PG_RETURN_CSTRING(anybit_typmodout(typmod)); |
786 | } |
787 | |
788 | |
789 | /* |
790 | * Comparison operators |
791 | * |
792 | * We only need one set of comparison operators for bitstrings, as the lengths |
793 | * are stored in the same way for zero-padded and varying bit strings. |
794 | * |
795 | * Note that the standard is not unambiguous about the comparison between |
796 | * zero-padded bit strings and varying bitstrings. If the same value is written |
797 | * into a zero padded bitstring as into a varying bitstring, but the zero |
798 | * padded bitstring has greater length, it will be bigger. |
799 | * |
800 | * Zeros from the beginning of a bitstring cannot simply be ignored, as they |
801 | * may be part of a bit string and may be significant. |
802 | * |
803 | * Note: btree indexes need these routines not to leak memory; therefore, |
804 | * be careful to free working copies of toasted datums. Most places don't |
805 | * need to be so careful. |
806 | */ |
807 | |
808 | /* |
809 | * bit_cmp |
810 | * |
811 | * Compares two bitstrings and returns <0, 0, >0 depending on whether the first |
812 | * string is smaller, equal, or bigger than the second. All bits are considered |
813 | * and additional zero bits may make one string smaller/larger than the other, |
814 | * even if their zero-padded values would be the same. |
815 | */ |
816 | static int32 |
817 | bit_cmp(VarBit *arg1, VarBit *arg2) |
818 | { |
819 | int bitlen1, |
820 | bytelen1, |
821 | bitlen2, |
822 | bytelen2; |
823 | int32 cmp; |
824 | |
825 | bytelen1 = VARBITBYTES(arg1); |
826 | bytelen2 = VARBITBYTES(arg2); |
827 | |
828 | cmp = memcmp(VARBITS(arg1), VARBITS(arg2), Min(bytelen1, bytelen2)); |
829 | if (cmp == 0) |
830 | { |
831 | bitlen1 = VARBITLEN(arg1); |
832 | bitlen2 = VARBITLEN(arg2); |
833 | if (bitlen1 != bitlen2) |
834 | cmp = (bitlen1 < bitlen2) ? -1 : 1; |
835 | } |
836 | return cmp; |
837 | } |
838 | |
839 | Datum |
840 | biteq(PG_FUNCTION_ARGS) |
841 | { |
842 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
843 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
844 | bool result; |
845 | int bitlen1, |
846 | bitlen2; |
847 | |
848 | bitlen1 = VARBITLEN(arg1); |
849 | bitlen2 = VARBITLEN(arg2); |
850 | |
851 | /* fast path for different-length inputs */ |
852 | if (bitlen1 != bitlen2) |
853 | result = false; |
854 | else |
855 | result = (bit_cmp(arg1, arg2) == 0); |
856 | |
857 | PG_FREE_IF_COPY(arg1, 0); |
858 | PG_FREE_IF_COPY(arg2, 1); |
859 | |
860 | PG_RETURN_BOOL(result); |
861 | } |
862 | |
863 | Datum |
864 | bitne(PG_FUNCTION_ARGS) |
865 | { |
866 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
867 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
868 | bool result; |
869 | int bitlen1, |
870 | bitlen2; |
871 | |
872 | bitlen1 = VARBITLEN(arg1); |
873 | bitlen2 = VARBITLEN(arg2); |
874 | |
875 | /* fast path for different-length inputs */ |
876 | if (bitlen1 != bitlen2) |
877 | result = true; |
878 | else |
879 | result = (bit_cmp(arg1, arg2) != 0); |
880 | |
881 | PG_FREE_IF_COPY(arg1, 0); |
882 | PG_FREE_IF_COPY(arg2, 1); |
883 | |
884 | PG_RETURN_BOOL(result); |
885 | } |
886 | |
887 | Datum |
888 | bitlt(PG_FUNCTION_ARGS) |
889 | { |
890 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
891 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
892 | bool result; |
893 | |
894 | result = (bit_cmp(arg1, arg2) < 0); |
895 | |
896 | PG_FREE_IF_COPY(arg1, 0); |
897 | PG_FREE_IF_COPY(arg2, 1); |
898 | |
899 | PG_RETURN_BOOL(result); |
900 | } |
901 | |
902 | Datum |
903 | bitle(PG_FUNCTION_ARGS) |
904 | { |
905 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
906 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
907 | bool result; |
908 | |
909 | result = (bit_cmp(arg1, arg2) <= 0); |
910 | |
911 | PG_FREE_IF_COPY(arg1, 0); |
912 | PG_FREE_IF_COPY(arg2, 1); |
913 | |
914 | PG_RETURN_BOOL(result); |
915 | } |
916 | |
917 | Datum |
918 | bitgt(PG_FUNCTION_ARGS) |
919 | { |
920 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
921 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
922 | bool result; |
923 | |
924 | result = (bit_cmp(arg1, arg2) > 0); |
925 | |
926 | PG_FREE_IF_COPY(arg1, 0); |
927 | PG_FREE_IF_COPY(arg2, 1); |
928 | |
929 | PG_RETURN_BOOL(result); |
930 | } |
931 | |
932 | Datum |
933 | bitge(PG_FUNCTION_ARGS) |
934 | { |
935 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
936 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
937 | bool result; |
938 | |
939 | result = (bit_cmp(arg1, arg2) >= 0); |
940 | |
941 | PG_FREE_IF_COPY(arg1, 0); |
942 | PG_FREE_IF_COPY(arg2, 1); |
943 | |
944 | PG_RETURN_BOOL(result); |
945 | } |
946 | |
947 | Datum |
948 | bitcmp(PG_FUNCTION_ARGS) |
949 | { |
950 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
951 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
952 | int32 result; |
953 | |
954 | result = bit_cmp(arg1, arg2); |
955 | |
956 | PG_FREE_IF_COPY(arg1, 0); |
957 | PG_FREE_IF_COPY(arg2, 1); |
958 | |
959 | PG_RETURN_INT32(result); |
960 | } |
961 | |
962 | /* |
963 | * bitcat |
964 | * Concatenation of bit strings |
965 | */ |
966 | Datum |
967 | bitcat(PG_FUNCTION_ARGS) |
968 | { |
969 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
970 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
971 | |
972 | PG_RETURN_VARBIT_P(bit_catenate(arg1, arg2)); |
973 | } |
974 | |
975 | static VarBit * |
976 | bit_catenate(VarBit *arg1, VarBit *arg2) |
977 | { |
978 | VarBit *result; |
979 | int bitlen1, |
980 | bitlen2, |
981 | bytelen, |
982 | bit1pad, |
983 | bit2shift; |
984 | bits8 *pr, |
985 | *pa; |
986 | |
987 | bitlen1 = VARBITLEN(arg1); |
988 | bitlen2 = VARBITLEN(arg2); |
989 | |
990 | if (bitlen1 > VARBITMAXLEN - bitlen2) |
991 | ereport(ERROR, |
992 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
993 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
994 | VARBITMAXLEN))); |
995 | bytelen = VARBITTOTALLEN(bitlen1 + bitlen2); |
996 | |
997 | result = (VarBit *) palloc(bytelen); |
998 | SET_VARSIZE(result, bytelen); |
999 | VARBITLEN(result) = bitlen1 + bitlen2; |
1000 | |
1001 | /* Copy the first bitstring in */ |
1002 | memcpy(VARBITS(result), VARBITS(arg1), VARBITBYTES(arg1)); |
1003 | |
1004 | /* Copy the second bit string */ |
1005 | bit1pad = VARBITPAD(arg1); |
1006 | if (bit1pad == 0) |
1007 | { |
1008 | memcpy(VARBITS(result) + VARBITBYTES(arg1), VARBITS(arg2), |
1009 | VARBITBYTES(arg2)); |
1010 | } |
1011 | else if (bitlen2 > 0) |
1012 | { |
1013 | /* We need to shift all the bits to fit */ |
1014 | bit2shift = BITS_PER_BYTE - bit1pad; |
1015 | pr = VARBITS(result) + VARBITBYTES(arg1) - 1; |
1016 | for (pa = VARBITS(arg2); pa < VARBITEND(arg2); pa++) |
1017 | { |
1018 | *pr |= ((*pa >> bit2shift) & BITMASK); |
1019 | pr++; |
1020 | if (pr < VARBITEND(result)) |
1021 | *pr = (*pa << bit1pad) & BITMASK; |
1022 | } |
1023 | } |
1024 | |
1025 | /* The pad bits should be already zero at this point */ |
1026 | |
1027 | return result; |
1028 | } |
1029 | |
1030 | /* |
1031 | * bitsubstr |
1032 | * retrieve a substring from the bit string. |
1033 | * Note, s is 1-based. |
1034 | * SQL draft 6.10 9) |
1035 | */ |
1036 | Datum |
1037 | bitsubstr(PG_FUNCTION_ARGS) |
1038 | { |
1039 | PG_RETURN_VARBIT_P(bitsubstring(PG_GETARG_VARBIT_P(0), |
1040 | PG_GETARG_INT32(1), |
1041 | PG_GETARG_INT32(2), |
1042 | false)); |
1043 | } |
1044 | |
1045 | Datum |
1046 | bitsubstr_no_len(PG_FUNCTION_ARGS) |
1047 | { |
1048 | PG_RETURN_VARBIT_P(bitsubstring(PG_GETARG_VARBIT_P(0), |
1049 | PG_GETARG_INT32(1), |
1050 | -1, true)); |
1051 | } |
1052 | |
1053 | static VarBit * |
1054 | bitsubstring(VarBit *arg, int32 s, int32 l, bool length_not_specified) |
1055 | { |
1056 | VarBit *result; |
1057 | int bitlen, |
1058 | rbitlen, |
1059 | len, |
1060 | ishift, |
1061 | i; |
1062 | int e, |
1063 | s1, |
1064 | e1; |
1065 | bits8 *r, |
1066 | *ps; |
1067 | |
1068 | bitlen = VARBITLEN(arg); |
1069 | s1 = Max(s, 1); |
1070 | /* If we do not have an upper bound, use end of string */ |
1071 | if (length_not_specified) |
1072 | { |
1073 | e1 = bitlen + 1; |
1074 | } |
1075 | else |
1076 | { |
1077 | e = s + l; |
1078 | |
1079 | /* |
1080 | * A negative value for L is the only way for the end position to be |
1081 | * before the start. SQL99 says to throw an error. |
1082 | */ |
1083 | if (e < s) |
1084 | ereport(ERROR, |
1085 | (errcode(ERRCODE_SUBSTRING_ERROR), |
1086 | errmsg("negative substring length not allowed" ))); |
1087 | e1 = Min(e, bitlen + 1); |
1088 | } |
1089 | if (s1 > bitlen || e1 <= s1) |
1090 | { |
1091 | /* Need to return a zero-length bitstring */ |
1092 | len = VARBITTOTALLEN(0); |
1093 | result = (VarBit *) palloc(len); |
1094 | SET_VARSIZE(result, len); |
1095 | VARBITLEN(result) = 0; |
1096 | } |
1097 | else |
1098 | { |
1099 | /* |
1100 | * OK, we've got a true substring starting at position s1-1 and ending |
1101 | * at position e1-1 |
1102 | */ |
1103 | rbitlen = e1 - s1; |
1104 | len = VARBITTOTALLEN(rbitlen); |
1105 | result = (VarBit *) palloc(len); |
1106 | SET_VARSIZE(result, len); |
1107 | VARBITLEN(result) = rbitlen; |
1108 | len -= VARHDRSZ + VARBITHDRSZ; |
1109 | /* Are we copying from a byte boundary? */ |
1110 | if ((s1 - 1) % BITS_PER_BYTE == 0) |
1111 | { |
1112 | /* Yep, we are copying bytes */ |
1113 | memcpy(VARBITS(result), VARBITS(arg) + (s1 - 1) / BITS_PER_BYTE, |
1114 | len); |
1115 | } |
1116 | else |
1117 | { |
1118 | /* Figure out how much we need to shift the sequence by */ |
1119 | ishift = (s1 - 1) % BITS_PER_BYTE; |
1120 | r = VARBITS(result); |
1121 | ps = VARBITS(arg) + (s1 - 1) / BITS_PER_BYTE; |
1122 | for (i = 0; i < len; i++) |
1123 | { |
1124 | *r = (*ps << ishift) & BITMASK; |
1125 | if ((++ps) < VARBITEND(arg)) |
1126 | *r |= *ps >> (BITS_PER_BYTE - ishift); |
1127 | r++; |
1128 | } |
1129 | } |
1130 | |
1131 | /* Make sure last byte is correctly zero-padded */ |
1132 | VARBIT_PAD(result); |
1133 | } |
1134 | |
1135 | return result; |
1136 | } |
1137 | |
1138 | /* |
1139 | * bitoverlay |
1140 | * Replace specified substring of first string with second |
1141 | * |
1142 | * The SQL standard defines OVERLAY() in terms of substring and concatenation. |
1143 | * This code is a direct implementation of what the standard says. |
1144 | */ |
1145 | Datum |
1146 | bitoverlay(PG_FUNCTION_ARGS) |
1147 | { |
1148 | VarBit *t1 = PG_GETARG_VARBIT_P(0); |
1149 | VarBit *t2 = PG_GETARG_VARBIT_P(1); |
1150 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
1151 | int sl = PG_GETARG_INT32(3); /* substring length */ |
1152 | |
1153 | PG_RETURN_VARBIT_P(bit_overlay(t1, t2, sp, sl)); |
1154 | } |
1155 | |
1156 | Datum |
1157 | bitoverlay_no_len(PG_FUNCTION_ARGS) |
1158 | { |
1159 | VarBit *t1 = PG_GETARG_VARBIT_P(0); |
1160 | VarBit *t2 = PG_GETARG_VARBIT_P(1); |
1161 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
1162 | int sl; |
1163 | |
1164 | sl = VARBITLEN(t2); /* defaults to length(t2) */ |
1165 | PG_RETURN_VARBIT_P(bit_overlay(t1, t2, sp, sl)); |
1166 | } |
1167 | |
1168 | static VarBit * |
1169 | bit_overlay(VarBit *t1, VarBit *t2, int sp, int sl) |
1170 | { |
1171 | VarBit *result; |
1172 | VarBit *s1; |
1173 | VarBit *s2; |
1174 | int sp_pl_sl; |
1175 | |
1176 | /* |
1177 | * Check for possible integer-overflow cases. For negative sp, throw a |
1178 | * "substring length" error because that's what should be expected |
1179 | * according to the spec's definition of OVERLAY(). |
1180 | */ |
1181 | if (sp <= 0) |
1182 | ereport(ERROR, |
1183 | (errcode(ERRCODE_SUBSTRING_ERROR), |
1184 | errmsg("negative substring length not allowed" ))); |
1185 | if (pg_add_s32_overflow(sp, sl, &sp_pl_sl)) |
1186 | ereport(ERROR, |
1187 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1188 | errmsg("integer out of range" ))); |
1189 | |
1190 | s1 = bitsubstring(t1, 1, sp - 1, false); |
1191 | s2 = bitsubstring(t1, sp_pl_sl, -1, true); |
1192 | result = bit_catenate(s1, t2); |
1193 | result = bit_catenate(result, s2); |
1194 | |
1195 | return result; |
1196 | } |
1197 | |
1198 | /* |
1199 | * bitlength, bitoctetlength |
1200 | * Return the length of a bit string |
1201 | */ |
1202 | Datum |
1203 | bitlength(PG_FUNCTION_ARGS) |
1204 | { |
1205 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1206 | |
1207 | PG_RETURN_INT32(VARBITLEN(arg)); |
1208 | } |
1209 | |
1210 | Datum |
1211 | bitoctetlength(PG_FUNCTION_ARGS) |
1212 | { |
1213 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1214 | |
1215 | PG_RETURN_INT32(VARBITBYTES(arg)); |
1216 | } |
1217 | |
1218 | /* |
1219 | * bit_and |
1220 | * perform a logical AND on two bit strings. |
1221 | */ |
1222 | Datum |
1223 | bit_and(PG_FUNCTION_ARGS) |
1224 | { |
1225 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
1226 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
1227 | VarBit *result; |
1228 | int len, |
1229 | bitlen1, |
1230 | bitlen2, |
1231 | i; |
1232 | bits8 *p1, |
1233 | *p2, |
1234 | *r; |
1235 | |
1236 | bitlen1 = VARBITLEN(arg1); |
1237 | bitlen2 = VARBITLEN(arg2); |
1238 | if (bitlen1 != bitlen2) |
1239 | ereport(ERROR, |
1240 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
1241 | errmsg("cannot AND bit strings of different sizes" ))); |
1242 | |
1243 | len = VARSIZE(arg1); |
1244 | result = (VarBit *) palloc(len); |
1245 | SET_VARSIZE(result, len); |
1246 | VARBITLEN(result) = bitlen1; |
1247 | |
1248 | p1 = VARBITS(arg1); |
1249 | p2 = VARBITS(arg2); |
1250 | r = VARBITS(result); |
1251 | for (i = 0; i < VARBITBYTES(arg1); i++) |
1252 | *r++ = *p1++ & *p2++; |
1253 | |
1254 | /* Padding is not needed as & of 0 pads is 0 */ |
1255 | |
1256 | PG_RETURN_VARBIT_P(result); |
1257 | } |
1258 | |
1259 | /* |
1260 | * bit_or |
1261 | * perform a logical OR on two bit strings. |
1262 | */ |
1263 | Datum |
1264 | bit_or(PG_FUNCTION_ARGS) |
1265 | { |
1266 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
1267 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
1268 | VarBit *result; |
1269 | int len, |
1270 | bitlen1, |
1271 | bitlen2, |
1272 | i; |
1273 | bits8 *p1, |
1274 | *p2, |
1275 | *r; |
1276 | |
1277 | bitlen1 = VARBITLEN(arg1); |
1278 | bitlen2 = VARBITLEN(arg2); |
1279 | if (bitlen1 != bitlen2) |
1280 | ereport(ERROR, |
1281 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
1282 | errmsg("cannot OR bit strings of different sizes" ))); |
1283 | len = VARSIZE(arg1); |
1284 | result = (VarBit *) palloc(len); |
1285 | SET_VARSIZE(result, len); |
1286 | VARBITLEN(result) = bitlen1; |
1287 | |
1288 | p1 = VARBITS(arg1); |
1289 | p2 = VARBITS(arg2); |
1290 | r = VARBITS(result); |
1291 | for (i = 0; i < VARBITBYTES(arg1); i++) |
1292 | *r++ = *p1++ | *p2++; |
1293 | |
1294 | /* Padding is not needed as | of 0 pads is 0 */ |
1295 | |
1296 | PG_RETURN_VARBIT_P(result); |
1297 | } |
1298 | |
1299 | /* |
1300 | * bitxor |
1301 | * perform a logical XOR on two bit strings. |
1302 | */ |
1303 | Datum |
1304 | bitxor(PG_FUNCTION_ARGS) |
1305 | { |
1306 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
1307 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
1308 | VarBit *result; |
1309 | int len, |
1310 | bitlen1, |
1311 | bitlen2, |
1312 | i; |
1313 | bits8 *p1, |
1314 | *p2, |
1315 | *r; |
1316 | |
1317 | bitlen1 = VARBITLEN(arg1); |
1318 | bitlen2 = VARBITLEN(arg2); |
1319 | if (bitlen1 != bitlen2) |
1320 | ereport(ERROR, |
1321 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
1322 | errmsg("cannot XOR bit strings of different sizes" ))); |
1323 | |
1324 | len = VARSIZE(arg1); |
1325 | result = (VarBit *) palloc(len); |
1326 | SET_VARSIZE(result, len); |
1327 | VARBITLEN(result) = bitlen1; |
1328 | |
1329 | p1 = VARBITS(arg1); |
1330 | p2 = VARBITS(arg2); |
1331 | r = VARBITS(result); |
1332 | for (i = 0; i < VARBITBYTES(arg1); i++) |
1333 | *r++ = *p1++ ^ *p2++; |
1334 | |
1335 | /* Padding is not needed as ^ of 0 pads is 0 */ |
1336 | |
1337 | PG_RETURN_VARBIT_P(result); |
1338 | } |
1339 | |
1340 | /* |
1341 | * bitnot |
1342 | * perform a logical NOT on a bit string. |
1343 | */ |
1344 | Datum |
1345 | bitnot(PG_FUNCTION_ARGS) |
1346 | { |
1347 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1348 | VarBit *result; |
1349 | bits8 *p, |
1350 | *r; |
1351 | |
1352 | result = (VarBit *) palloc(VARSIZE(arg)); |
1353 | SET_VARSIZE(result, VARSIZE(arg)); |
1354 | VARBITLEN(result) = VARBITLEN(arg); |
1355 | |
1356 | p = VARBITS(arg); |
1357 | r = VARBITS(result); |
1358 | for (; p < VARBITEND(arg); p++) |
1359 | *r++ = ~*p; |
1360 | |
1361 | /* Must zero-pad the result, because extra bits are surely 1's here */ |
1362 | VARBIT_PAD_LAST(result, r); |
1363 | |
1364 | PG_RETURN_VARBIT_P(result); |
1365 | } |
1366 | |
1367 | /* |
1368 | * bitshiftleft |
1369 | * do a left shift (i.e. towards the beginning of the string) |
1370 | */ |
1371 | Datum |
1372 | bitshiftleft(PG_FUNCTION_ARGS) |
1373 | { |
1374 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1375 | int32 shft = PG_GETARG_INT32(1); |
1376 | VarBit *result; |
1377 | int byte_shift, |
1378 | ishift, |
1379 | len; |
1380 | bits8 *p, |
1381 | *r; |
1382 | |
1383 | /* Negative shift is a shift to the right */ |
1384 | if (shft < 0) |
1385 | { |
1386 | /* Prevent integer overflow in negation */ |
1387 | if (shft < -VARBITMAXLEN) |
1388 | shft = -VARBITMAXLEN; |
1389 | PG_RETURN_DATUM(DirectFunctionCall2(bitshiftright, |
1390 | VarBitPGetDatum(arg), |
1391 | Int32GetDatum(-shft))); |
1392 | } |
1393 | |
1394 | result = (VarBit *) palloc(VARSIZE(arg)); |
1395 | SET_VARSIZE(result, VARSIZE(arg)); |
1396 | VARBITLEN(result) = VARBITLEN(arg); |
1397 | r = VARBITS(result); |
1398 | |
1399 | /* If we shifted all the bits out, return an all-zero string */ |
1400 | if (shft >= VARBITLEN(arg)) |
1401 | { |
1402 | MemSet(r, 0, VARBITBYTES(arg)); |
1403 | PG_RETURN_VARBIT_P(result); |
1404 | } |
1405 | |
1406 | byte_shift = shft / BITS_PER_BYTE; |
1407 | ishift = shft % BITS_PER_BYTE; |
1408 | p = VARBITS(arg) + byte_shift; |
1409 | |
1410 | if (ishift == 0) |
1411 | { |
1412 | /* Special case: we can do a memcpy */ |
1413 | len = VARBITBYTES(arg) - byte_shift; |
1414 | memcpy(r, p, len); |
1415 | MemSet(r + len, 0, byte_shift); |
1416 | } |
1417 | else |
1418 | { |
1419 | for (; p < VARBITEND(arg); r++) |
1420 | { |
1421 | *r = *p << ishift; |
1422 | if ((++p) < VARBITEND(arg)) |
1423 | *r |= *p >> (BITS_PER_BYTE - ishift); |
1424 | } |
1425 | for (; r < VARBITEND(result); r++) |
1426 | *r = 0; |
1427 | } |
1428 | |
1429 | /* The pad bits should be already zero at this point */ |
1430 | |
1431 | PG_RETURN_VARBIT_P(result); |
1432 | } |
1433 | |
1434 | /* |
1435 | * bitshiftright |
1436 | * do a right shift (i.e. towards the end of the string) |
1437 | */ |
1438 | Datum |
1439 | bitshiftright(PG_FUNCTION_ARGS) |
1440 | { |
1441 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1442 | int32 shft = PG_GETARG_INT32(1); |
1443 | VarBit *result; |
1444 | int byte_shift, |
1445 | ishift, |
1446 | len; |
1447 | bits8 *p, |
1448 | *r; |
1449 | |
1450 | /* Negative shift is a shift to the left */ |
1451 | if (shft < 0) |
1452 | { |
1453 | /* Prevent integer overflow in negation */ |
1454 | if (shft < -VARBITMAXLEN) |
1455 | shft = -VARBITMAXLEN; |
1456 | PG_RETURN_DATUM(DirectFunctionCall2(bitshiftleft, |
1457 | VarBitPGetDatum(arg), |
1458 | Int32GetDatum(-shft))); |
1459 | } |
1460 | |
1461 | result = (VarBit *) palloc(VARSIZE(arg)); |
1462 | SET_VARSIZE(result, VARSIZE(arg)); |
1463 | VARBITLEN(result) = VARBITLEN(arg); |
1464 | r = VARBITS(result); |
1465 | |
1466 | /* If we shifted all the bits out, return an all-zero string */ |
1467 | if (shft >= VARBITLEN(arg)) |
1468 | { |
1469 | MemSet(r, 0, VARBITBYTES(arg)); |
1470 | PG_RETURN_VARBIT_P(result); |
1471 | } |
1472 | |
1473 | byte_shift = shft / BITS_PER_BYTE; |
1474 | ishift = shft % BITS_PER_BYTE; |
1475 | p = VARBITS(arg); |
1476 | |
1477 | /* Set the first part of the result to 0 */ |
1478 | MemSet(r, 0, byte_shift); |
1479 | r += byte_shift; |
1480 | |
1481 | if (ishift == 0) |
1482 | { |
1483 | /* Special case: we can do a memcpy */ |
1484 | len = VARBITBYTES(arg) - byte_shift; |
1485 | memcpy(r, p, len); |
1486 | } |
1487 | else |
1488 | { |
1489 | if (r < VARBITEND(result)) |
1490 | *r = 0; /* initialize first byte */ |
1491 | for (; r < VARBITEND(result); p++) |
1492 | { |
1493 | *r |= *p >> ishift; |
1494 | if ((++r) < VARBITEND(result)) |
1495 | *r = (*p << (BITS_PER_BYTE - ishift)) & BITMASK; |
1496 | } |
1497 | /* We may have shifted 1's into the pad bits, so fix that */ |
1498 | VARBIT_PAD_LAST(result, r); |
1499 | } |
1500 | |
1501 | PG_RETURN_VARBIT_P(result); |
1502 | } |
1503 | |
1504 | /* |
1505 | * This is not defined in any standard. We retain the natural ordering of |
1506 | * bits here, as it just seems more intuitive. |
1507 | */ |
1508 | Datum |
1509 | bitfromint4(PG_FUNCTION_ARGS) |
1510 | { |
1511 | int32 a = PG_GETARG_INT32(0); |
1512 | int32 typmod = PG_GETARG_INT32(1); |
1513 | VarBit *result; |
1514 | bits8 *r; |
1515 | int rlen; |
1516 | int destbitsleft, |
1517 | srcbitsleft; |
1518 | |
1519 | if (typmod <= 0 || typmod > VARBITMAXLEN) |
1520 | typmod = 1; /* default bit length */ |
1521 | |
1522 | rlen = VARBITTOTALLEN(typmod); |
1523 | result = (VarBit *) palloc(rlen); |
1524 | SET_VARSIZE(result, rlen); |
1525 | VARBITLEN(result) = typmod; |
1526 | |
1527 | r = VARBITS(result); |
1528 | destbitsleft = typmod; |
1529 | srcbitsleft = 32; |
1530 | /* drop any input bits that don't fit */ |
1531 | srcbitsleft = Min(srcbitsleft, destbitsleft); |
1532 | /* sign-fill any excess bytes in output */ |
1533 | while (destbitsleft >= srcbitsleft + 8) |
1534 | { |
1535 | *r++ = (bits8) ((a < 0) ? BITMASK : 0); |
1536 | destbitsleft -= 8; |
1537 | } |
1538 | /* store first fractional byte */ |
1539 | if (destbitsleft > srcbitsleft) |
1540 | { |
1541 | unsigned int val = (unsigned int) (a >> (destbitsleft - 8)); |
1542 | |
1543 | /* Force sign-fill in case the compiler implements >> as zero-fill */ |
1544 | if (a < 0) |
1545 | val |= ((unsigned int) -1) << (srcbitsleft + 8 - destbitsleft); |
1546 | *r++ = (bits8) (val & BITMASK); |
1547 | destbitsleft -= 8; |
1548 | } |
1549 | /* Now srcbitsleft and destbitsleft are the same, need not track both */ |
1550 | /* store whole bytes */ |
1551 | while (destbitsleft >= 8) |
1552 | { |
1553 | *r++ = (bits8) ((a >> (destbitsleft - 8)) & BITMASK); |
1554 | destbitsleft -= 8; |
1555 | } |
1556 | /* store last fractional byte */ |
1557 | if (destbitsleft > 0) |
1558 | *r = (bits8) ((a << (8 - destbitsleft)) & BITMASK); |
1559 | |
1560 | PG_RETURN_VARBIT_P(result); |
1561 | } |
1562 | |
1563 | Datum |
1564 | bittoint4(PG_FUNCTION_ARGS) |
1565 | { |
1566 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1567 | uint32 result; |
1568 | bits8 *r; |
1569 | |
1570 | /* Check that the bit string is not too long */ |
1571 | if (VARBITLEN(arg) > sizeof(result) * BITS_PER_BYTE) |
1572 | ereport(ERROR, |
1573 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1574 | errmsg("integer out of range" ))); |
1575 | |
1576 | result = 0; |
1577 | for (r = VARBITS(arg); r < VARBITEND(arg); r++) |
1578 | { |
1579 | result <<= BITS_PER_BYTE; |
1580 | result |= *r; |
1581 | } |
1582 | /* Now shift the result to take account of the padding at the end */ |
1583 | result >>= VARBITPAD(arg); |
1584 | |
1585 | PG_RETURN_INT32(result); |
1586 | } |
1587 | |
1588 | Datum |
1589 | bitfromint8(PG_FUNCTION_ARGS) |
1590 | { |
1591 | int64 a = PG_GETARG_INT64(0); |
1592 | int32 typmod = PG_GETARG_INT32(1); |
1593 | VarBit *result; |
1594 | bits8 *r; |
1595 | int rlen; |
1596 | int destbitsleft, |
1597 | srcbitsleft; |
1598 | |
1599 | if (typmod <= 0 || typmod > VARBITMAXLEN) |
1600 | typmod = 1; /* default bit length */ |
1601 | |
1602 | rlen = VARBITTOTALLEN(typmod); |
1603 | result = (VarBit *) palloc(rlen); |
1604 | SET_VARSIZE(result, rlen); |
1605 | VARBITLEN(result) = typmod; |
1606 | |
1607 | r = VARBITS(result); |
1608 | destbitsleft = typmod; |
1609 | srcbitsleft = 64; |
1610 | /* drop any input bits that don't fit */ |
1611 | srcbitsleft = Min(srcbitsleft, destbitsleft); |
1612 | /* sign-fill any excess bytes in output */ |
1613 | while (destbitsleft >= srcbitsleft + 8) |
1614 | { |
1615 | *r++ = (bits8) ((a < 0) ? BITMASK : 0); |
1616 | destbitsleft -= 8; |
1617 | } |
1618 | /* store first fractional byte */ |
1619 | if (destbitsleft > srcbitsleft) |
1620 | { |
1621 | unsigned int val = (unsigned int) (a >> (destbitsleft - 8)); |
1622 | |
1623 | /* Force sign-fill in case the compiler implements >> as zero-fill */ |
1624 | if (a < 0) |
1625 | val |= ((unsigned int) -1) << (srcbitsleft + 8 - destbitsleft); |
1626 | *r++ = (bits8) (val & BITMASK); |
1627 | destbitsleft -= 8; |
1628 | } |
1629 | /* Now srcbitsleft and destbitsleft are the same, need not track both */ |
1630 | /* store whole bytes */ |
1631 | while (destbitsleft >= 8) |
1632 | { |
1633 | *r++ = (bits8) ((a >> (destbitsleft - 8)) & BITMASK); |
1634 | destbitsleft -= 8; |
1635 | } |
1636 | /* store last fractional byte */ |
1637 | if (destbitsleft > 0) |
1638 | *r = (bits8) ((a << (8 - destbitsleft)) & BITMASK); |
1639 | |
1640 | PG_RETURN_VARBIT_P(result); |
1641 | } |
1642 | |
1643 | Datum |
1644 | bittoint8(PG_FUNCTION_ARGS) |
1645 | { |
1646 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
1647 | uint64 result; |
1648 | bits8 *r; |
1649 | |
1650 | /* Check that the bit string is not too long */ |
1651 | if (VARBITLEN(arg) > sizeof(result) * BITS_PER_BYTE) |
1652 | ereport(ERROR, |
1653 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
1654 | errmsg("bigint out of range" ))); |
1655 | |
1656 | result = 0; |
1657 | for (r = VARBITS(arg); r < VARBITEND(arg); r++) |
1658 | { |
1659 | result <<= BITS_PER_BYTE; |
1660 | result |= *r; |
1661 | } |
1662 | /* Now shift the result to take account of the padding at the end */ |
1663 | result >>= VARBITPAD(arg); |
1664 | |
1665 | PG_RETURN_INT64(result); |
1666 | } |
1667 | |
1668 | |
1669 | /* |
1670 | * Determines the position of S2 in the bitstring S1 (1-based string). |
1671 | * If S2 does not appear in S1 this function returns 0. |
1672 | * If S2 is of length 0 this function returns 1. |
1673 | * Compatible in usage with POSITION() functions for other data types. |
1674 | */ |
1675 | Datum |
1676 | bitposition(PG_FUNCTION_ARGS) |
1677 | { |
1678 | VarBit *str = PG_GETARG_VARBIT_P(0); |
1679 | VarBit *substr = PG_GETARG_VARBIT_P(1); |
1680 | int substr_length, |
1681 | str_length, |
1682 | i, |
1683 | is; |
1684 | bits8 *s, /* pointer into substring */ |
1685 | *p; /* pointer into str */ |
1686 | bits8 cmp, /* shifted substring byte to compare */ |
1687 | mask1, /* mask for substring byte shifted right */ |
1688 | mask2, /* mask for substring byte shifted left */ |
1689 | end_mask, /* pad mask for last substring byte */ |
1690 | str_mask; /* pad mask for last string byte */ |
1691 | bool is_match; |
1692 | |
1693 | /* Get the substring length */ |
1694 | substr_length = VARBITLEN(substr); |
1695 | str_length = VARBITLEN(str); |
1696 | |
1697 | /* String has zero length or substring longer than string, return 0 */ |
1698 | if ((str_length == 0) || (substr_length > str_length)) |
1699 | PG_RETURN_INT32(0); |
1700 | |
1701 | /* zero-length substring means return 1 */ |
1702 | if (substr_length == 0) |
1703 | PG_RETURN_INT32(1); |
1704 | |
1705 | /* Initialise the padding masks */ |
1706 | end_mask = BITMASK << VARBITPAD(substr); |
1707 | str_mask = BITMASK << VARBITPAD(str); |
1708 | for (i = 0; i < VARBITBYTES(str) - VARBITBYTES(substr) + 1; i++) |
1709 | { |
1710 | for (is = 0; is < BITS_PER_BYTE; is++) |
1711 | { |
1712 | is_match = true; |
1713 | p = VARBITS(str) + i; |
1714 | mask1 = BITMASK >> is; |
1715 | mask2 = ~mask1; |
1716 | for (s = VARBITS(substr); |
1717 | is_match && s < VARBITEND(substr); s++) |
1718 | { |
1719 | cmp = *s >> is; |
1720 | if (s == VARBITEND(substr) - 1) |
1721 | { |
1722 | mask1 &= end_mask >> is; |
1723 | if (p == VARBITEND(str) - 1) |
1724 | { |
1725 | /* Check that there is enough of str left */ |
1726 | if (mask1 & ~str_mask) |
1727 | { |
1728 | is_match = false; |
1729 | break; |
1730 | } |
1731 | mask1 &= str_mask; |
1732 | } |
1733 | } |
1734 | is_match = ((cmp ^ *p) & mask1) == 0; |
1735 | if (!is_match) |
1736 | break; |
1737 | /* Move on to the next byte */ |
1738 | p++; |
1739 | if (p == VARBITEND(str)) |
1740 | { |
1741 | mask2 = end_mask << (BITS_PER_BYTE - is); |
1742 | is_match = mask2 == 0; |
1743 | #if 0 |
1744 | elog(DEBUG4, "S. %d %d em=%2x sm=%2x r=%d" , |
1745 | i, is, end_mask, mask2, is_match); |
1746 | #endif |
1747 | break; |
1748 | } |
1749 | cmp = *s << (BITS_PER_BYTE - is); |
1750 | if (s == VARBITEND(substr) - 1) |
1751 | { |
1752 | mask2 &= end_mask << (BITS_PER_BYTE - is); |
1753 | if (p == VARBITEND(str) - 1) |
1754 | { |
1755 | if (mask2 & ~str_mask) |
1756 | { |
1757 | is_match = false; |
1758 | break; |
1759 | } |
1760 | mask2 &= str_mask; |
1761 | } |
1762 | } |
1763 | is_match = ((cmp ^ *p) & mask2) == 0; |
1764 | } |
1765 | /* Have we found a match? */ |
1766 | if (is_match) |
1767 | PG_RETURN_INT32(i * BITS_PER_BYTE + is + 1); |
1768 | } |
1769 | } |
1770 | PG_RETURN_INT32(0); |
1771 | } |
1772 | |
1773 | |
1774 | /* |
1775 | * bitsetbit |
1776 | * |
1777 | * Given an instance of type 'bit' creates a new one with |
1778 | * the Nth bit set to the given value. |
1779 | * |
1780 | * The bit location is specified left-to-right in a zero-based fashion |
1781 | * consistent with the other get_bit and set_bit functions, but |
1782 | * inconsistent with the standard substring, position, overlay functions |
1783 | */ |
1784 | Datum |
1785 | bitsetbit(PG_FUNCTION_ARGS) |
1786 | { |
1787 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
1788 | int32 n = PG_GETARG_INT32(1); |
1789 | int32 newBit = PG_GETARG_INT32(2); |
1790 | VarBit *result; |
1791 | int len, |
1792 | bitlen; |
1793 | bits8 *r, |
1794 | *p; |
1795 | int byteNo, |
1796 | bitNo; |
1797 | |
1798 | bitlen = VARBITLEN(arg1); |
1799 | if (n < 0 || n >= bitlen) |
1800 | ereport(ERROR, |
1801 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
1802 | errmsg("bit index %d out of valid range (0..%d)" , |
1803 | n, bitlen - 1))); |
1804 | |
1805 | /* |
1806 | * sanity check! |
1807 | */ |
1808 | if (newBit != 0 && newBit != 1) |
1809 | ereport(ERROR, |
1810 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
1811 | errmsg("new bit must be 0 or 1" ))); |
1812 | |
1813 | len = VARSIZE(arg1); |
1814 | result = (VarBit *) palloc(len); |
1815 | SET_VARSIZE(result, len); |
1816 | VARBITLEN(result) = bitlen; |
1817 | |
1818 | p = VARBITS(arg1); |
1819 | r = VARBITS(result); |
1820 | |
1821 | memcpy(r, p, VARBITBYTES(arg1)); |
1822 | |
1823 | byteNo = n / BITS_PER_BYTE; |
1824 | bitNo = BITS_PER_BYTE - 1 - (n % BITS_PER_BYTE); |
1825 | |
1826 | /* |
1827 | * Update the byte. |
1828 | */ |
1829 | if (newBit == 0) |
1830 | r[byteNo] &= (~(1 << bitNo)); |
1831 | else |
1832 | r[byteNo] |= (1 << bitNo); |
1833 | |
1834 | PG_RETURN_VARBIT_P(result); |
1835 | } |
1836 | |
1837 | /* |
1838 | * bitgetbit |
1839 | * |
1840 | * returns the value of the Nth bit of a bit array (0 or 1). |
1841 | * |
1842 | * The bit location is specified left-to-right in a zero-based fashion |
1843 | * consistent with the other get_bit and set_bit functions, but |
1844 | * inconsistent with the standard substring, position, overlay functions |
1845 | */ |
1846 | Datum |
1847 | bitgetbit(PG_FUNCTION_ARGS) |
1848 | { |
1849 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
1850 | int32 n = PG_GETARG_INT32(1); |
1851 | int bitlen; |
1852 | bits8 *p; |
1853 | int byteNo, |
1854 | bitNo; |
1855 | |
1856 | bitlen = VARBITLEN(arg1); |
1857 | if (n < 0 || n >= bitlen) |
1858 | ereport(ERROR, |
1859 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
1860 | errmsg("bit index %d out of valid range (0..%d)" , |
1861 | n, bitlen - 1))); |
1862 | |
1863 | p = VARBITS(arg1); |
1864 | |
1865 | byteNo = n / BITS_PER_BYTE; |
1866 | bitNo = BITS_PER_BYTE - 1 - (n % BITS_PER_BYTE); |
1867 | |
1868 | if (p[byteNo] & (1 << bitNo)) |
1869 | PG_RETURN_INT32(1); |
1870 | else |
1871 | PG_RETURN_INT32(0); |
1872 | } |
1873 | |