| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * varbit.c |
| 4 | * Functions for the SQL datatypes BIT() and BIT VARYING(). |
| 5 | * |
| 6 | * The data structure contains the following elements: |
| 7 | * header -- length of the whole data structure (incl header) |
| 8 | * in bytes (as with all varying length datatypes) |
| 9 | * data section -- private data section for the bits data structures |
| 10 | * bitlength -- length of the bit string in bits |
| 11 | * bitdata -- bit string, most significant byte first |
| 12 | * |
| 13 | * The length of the bitdata vector should always be exactly as many |
| 14 | * bytes as are needed for the given bitlength. If the bitlength is |
| 15 | * not a multiple of 8, the extra low-order padding bits of the last |
| 16 | * byte must be zeroes. |
| 17 | * |
| 18 | * attypmod is defined as the length of the bit string in bits, or for |
| 19 | * varying bits the maximum length. |
| 20 | * |
| 21 | * Code originally contributed by Adriaan Joubert. |
| 22 | * |
| 23 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 24 | * Portions Copyright (c) 1994, Regents of the University of California |
| 25 | * |
| 26 | * IDENTIFICATION |
| 27 | * src/backend/utils/adt/varbit.c |
| 28 | * |
| 29 | *------------------------------------------------------------------------- |
| 30 | */ |
| 31 | |
| 32 | #include "postgres.h" |
| 33 | |
| 34 | #include "access/htup_details.h" |
| 35 | #include "common/int.h" |
| 36 | #include "libpq/pqformat.h" |
| 37 | #include "nodes/nodeFuncs.h" |
| 38 | #include "nodes/supportnodes.h" |
| 39 | #include "utils/array.h" |
| 40 | #include "utils/builtins.h" |
| 41 | #include "utils/varbit.h" |
| 42 | |
| 43 | #define HEXDIG(z) ((z)<10 ? ((z)+'0') : ((z)-10+'A')) |
| 44 | |
| 45 | /* Mask off any bits that should be zero in the last byte of a bitstring */ |
| 46 | #define VARBIT_PAD(vb) \ |
| 47 | do { \ |
| 48 | int32 pad_ = VARBITPAD(vb); \ |
| 49 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
| 50 | if (pad_ > 0) \ |
| 51 | *(VARBITS(vb) + VARBITBYTES(vb) - 1) &= BITMASK << pad_; \ |
| 52 | } while (0) |
| 53 | |
| 54 | /* |
| 55 | * Many functions work byte-by-byte, so they have a pointer handy to the |
| 56 | * last-plus-one byte, which saves a cycle or two. |
| 57 | */ |
| 58 | #define VARBIT_PAD_LAST(vb, ptr) \ |
| 59 | do { \ |
| 60 | int32 pad_ = VARBITPAD(vb); \ |
| 61 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
| 62 | if (pad_ > 0) \ |
| 63 | *((ptr) - 1) &= BITMASK << pad_; \ |
| 64 | } while (0) |
| 65 | |
| 66 | /* Assert proper padding of a bitstring */ |
| 67 | #ifdef USE_ASSERT_CHECKING |
| 68 | #define VARBIT_CORRECTLY_PADDED(vb) \ |
| 69 | do { \ |
| 70 | int32 pad_ = VARBITPAD(vb); \ |
| 71 | Assert(pad_ >= 0 && pad_ < BITS_PER_BYTE); \ |
| 72 | Assert(pad_ == 0 || \ |
| 73 | (*(VARBITS(vb) + VARBITBYTES(vb) - 1) & ~(BITMASK << pad_)) == 0); \ |
| 74 | } while (0) |
| 75 | #else |
| 76 | #define VARBIT_CORRECTLY_PADDED(vb) ((void) 0) |
| 77 | #endif |
| 78 | |
| 79 | static VarBit *bit_catenate(VarBit *arg1, VarBit *arg2); |
| 80 | static VarBit *bitsubstring(VarBit *arg, int32 s, int32 l, |
| 81 | bool length_not_specified); |
| 82 | static VarBit *bit_overlay(VarBit *t1, VarBit *t2, int sp, int sl); |
| 83 | |
| 84 | |
| 85 | /* |
| 86 | * common code for bittypmodin and varbittypmodin |
| 87 | */ |
| 88 | static int32 |
| 89 | anybit_typmodin(ArrayType *ta, const char *typename) |
| 90 | { |
| 91 | int32 typmod; |
| 92 | int32 *tl; |
| 93 | int n; |
| 94 | |
| 95 | tl = ArrayGetIntegerTypmods(ta, &n); |
| 96 | |
| 97 | /* |
| 98 | * we're not too tense about good error message here because grammar |
| 99 | * shouldn't allow wrong number of modifiers for BIT |
| 100 | */ |
| 101 | if (n != 1) |
| 102 | ereport(ERROR, |
| 103 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 104 | errmsg("invalid type modifier" ))); |
| 105 | |
| 106 | if (*tl < 1) |
| 107 | ereport(ERROR, |
| 108 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 109 | errmsg("length for type %s must be at least 1" , |
| 110 | typename))); |
| 111 | if (*tl > (MaxAttrSize * BITS_PER_BYTE)) |
| 112 | ereport(ERROR, |
| 113 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 114 | errmsg("length for type %s cannot exceed %d" , |
| 115 | typename, MaxAttrSize * BITS_PER_BYTE))); |
| 116 | |
| 117 | typmod = *tl; |
| 118 | |
| 119 | return typmod; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * common code for bittypmodout and varbittypmodout |
| 124 | */ |
| 125 | static char * |
| 126 | anybit_typmodout(int32 typmod) |
| 127 | { |
| 128 | char *res = (char *) palloc(64); |
| 129 | |
| 130 | if (typmod >= 0) |
| 131 | snprintf(res, 64, "(%d)" , typmod); |
| 132 | else |
| 133 | *res = '\0'; |
| 134 | |
| 135 | return res; |
| 136 | } |
| 137 | |
| 138 | |
| 139 | /* |
| 140 | * bit_in - |
| 141 | * converts a char string to the internal representation of a bitstring. |
| 142 | * The length is determined by the number of bits required plus |
| 143 | * VARHDRSZ bytes or from atttypmod. |
| 144 | */ |
| 145 | Datum |
| 146 | bit_in(PG_FUNCTION_ARGS) |
| 147 | { |
| 148 | char *input_string = PG_GETARG_CSTRING(0); |
| 149 | |
| 150 | #ifdef NOT_USED |
| 151 | Oid typelem = PG_GETARG_OID(1); |
| 152 | #endif |
| 153 | int32 atttypmod = PG_GETARG_INT32(2); |
| 154 | VarBit *result; /* The resulting bit string */ |
| 155 | char *sp; /* pointer into the character string */ |
| 156 | bits8 *r; /* pointer into the result */ |
| 157 | int len, /* Length of the whole data structure */ |
| 158 | bitlen, /* Number of bits in the bit string */ |
| 159 | slen; /* Length of the input string */ |
| 160 | bool bit_not_hex; /* false = hex string true = bit string */ |
| 161 | int bc; |
| 162 | bits8 x = 0; |
| 163 | |
| 164 | /* Check that the first character is a b or an x */ |
| 165 | if (input_string[0] == 'b' || input_string[0] == 'B') |
| 166 | { |
| 167 | bit_not_hex = true; |
| 168 | sp = input_string + 1; |
| 169 | } |
| 170 | else if (input_string[0] == 'x' || input_string[0] == 'X') |
| 171 | { |
| 172 | bit_not_hex = false; |
| 173 | sp = input_string + 1; |
| 174 | } |
| 175 | else |
| 176 | { |
| 177 | /* |
| 178 | * Otherwise it's binary. This allows things like cast('1001' as bit) |
| 179 | * to work transparently. |
| 180 | */ |
| 181 | bit_not_hex = true; |
| 182 | sp = input_string; |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | * Determine bitlength from input string. MaxAllocSize ensures a regular |
| 187 | * input is small enough, but we must check hex input. |
| 188 | */ |
| 189 | slen = strlen(sp); |
| 190 | if (bit_not_hex) |
| 191 | bitlen = slen; |
| 192 | else |
| 193 | { |
| 194 | if (slen > VARBITMAXLEN / 4) |
| 195 | ereport(ERROR, |
| 196 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 197 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
| 198 | VARBITMAXLEN))); |
| 199 | bitlen = slen * 4; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
| 204 | * sure that the bitstring fits. |
| 205 | */ |
| 206 | if (atttypmod <= 0) |
| 207 | atttypmod = bitlen; |
| 208 | else if (bitlen != atttypmod) |
| 209 | ereport(ERROR, |
| 210 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 211 | errmsg("bit string length %d does not match type bit(%d)" , |
| 212 | bitlen, atttypmod))); |
| 213 | |
| 214 | len = VARBITTOTALLEN(atttypmod); |
| 215 | /* set to 0 so that *r is always initialised and string is zero-padded */ |
| 216 | result = (VarBit *) palloc0(len); |
| 217 | SET_VARSIZE(result, len); |
| 218 | VARBITLEN(result) = atttypmod; |
| 219 | |
| 220 | r = VARBITS(result); |
| 221 | if (bit_not_hex) |
| 222 | { |
| 223 | /* Parse the bit representation of the string */ |
| 224 | /* We know it fits, as bitlen was compared to atttypmod */ |
| 225 | x = HIGHBIT; |
| 226 | for (; *sp; sp++) |
| 227 | { |
| 228 | if (*sp == '1') |
| 229 | *r |= x; |
| 230 | else if (*sp != '0') |
| 231 | ereport(ERROR, |
| 232 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 233 | errmsg("\"%c\" is not a valid binary digit" , |
| 234 | *sp))); |
| 235 | |
| 236 | x >>= 1; |
| 237 | if (x == 0) |
| 238 | { |
| 239 | x = HIGHBIT; |
| 240 | r++; |
| 241 | } |
| 242 | } |
| 243 | } |
| 244 | else |
| 245 | { |
| 246 | /* Parse the hex representation of the string */ |
| 247 | for (bc = 0; *sp; sp++) |
| 248 | { |
| 249 | if (*sp >= '0' && *sp <= '9') |
| 250 | x = (bits8) (*sp - '0'); |
| 251 | else if (*sp >= 'A' && *sp <= 'F') |
| 252 | x = (bits8) (*sp - 'A') + 10; |
| 253 | else if (*sp >= 'a' && *sp <= 'f') |
| 254 | x = (bits8) (*sp - 'a') + 10; |
| 255 | else |
| 256 | ereport(ERROR, |
| 257 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 258 | errmsg("\"%c\" is not a valid hexadecimal digit" , |
| 259 | *sp))); |
| 260 | |
| 261 | if (bc) |
| 262 | { |
| 263 | *r++ |= x; |
| 264 | bc = 0; |
| 265 | } |
| 266 | else |
| 267 | { |
| 268 | *r = x << 4; |
| 269 | bc = 1; |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | PG_RETURN_VARBIT_P(result); |
| 275 | } |
| 276 | |
| 277 | |
| 278 | Datum |
| 279 | bit_out(PG_FUNCTION_ARGS) |
| 280 | { |
| 281 | #if 1 |
| 282 | /* same as varbit output */ |
| 283 | return varbit_out(fcinfo); |
| 284 | #else |
| 285 | |
| 286 | /* |
| 287 | * This is how one would print a hex string, in case someone wants to |
| 288 | * write a formatting function. |
| 289 | */ |
| 290 | VarBit *s = PG_GETARG_VARBIT_P(0); |
| 291 | char *result, |
| 292 | *r; |
| 293 | bits8 *sp; |
| 294 | int i, |
| 295 | len, |
| 296 | bitlen; |
| 297 | |
| 298 | /* Assertion to help catch any bit functions that don't pad correctly */ |
| 299 | VARBIT_CORRECTLY_PADDED(s); |
| 300 | |
| 301 | bitlen = VARBITLEN(s); |
| 302 | len = (bitlen + 3) / 4; |
| 303 | result = (char *) palloc(len + 2); |
| 304 | sp = VARBITS(s); |
| 305 | r = result; |
| 306 | *r++ = 'X'; |
| 307 | /* we cheat by knowing that we store full bytes zero padded */ |
| 308 | for (i = 0; i < len; i += 2, sp++) |
| 309 | { |
| 310 | *r++ = HEXDIG((*sp) >> 4); |
| 311 | *r++ = HEXDIG((*sp) & 0xF); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Go back one step if we printed a hex number that was not part of the |
| 316 | * bitstring anymore |
| 317 | */ |
| 318 | if (i > len) |
| 319 | r--; |
| 320 | *r = '\0'; |
| 321 | |
| 322 | PG_RETURN_CSTRING(result); |
| 323 | #endif |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * bit_recv - converts external binary format to bit |
| 328 | */ |
| 329 | Datum |
| 330 | bit_recv(PG_FUNCTION_ARGS) |
| 331 | { |
| 332 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 333 | |
| 334 | #ifdef NOT_USED |
| 335 | Oid typelem = PG_GETARG_OID(1); |
| 336 | #endif |
| 337 | int32 atttypmod = PG_GETARG_INT32(2); |
| 338 | VarBit *result; |
| 339 | int len, |
| 340 | bitlen; |
| 341 | |
| 342 | bitlen = pq_getmsgint(buf, sizeof(int32)); |
| 343 | if (bitlen < 0 || bitlen > VARBITMAXLEN) |
| 344 | ereport(ERROR, |
| 345 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 346 | errmsg("invalid length in external bit string" ))); |
| 347 | |
| 348 | /* |
| 349 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
| 350 | * sure that the bitstring fits. |
| 351 | */ |
| 352 | if (atttypmod > 0 && bitlen != atttypmod) |
| 353 | ereport(ERROR, |
| 354 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 355 | errmsg("bit string length %d does not match type bit(%d)" , |
| 356 | bitlen, atttypmod))); |
| 357 | |
| 358 | len = VARBITTOTALLEN(bitlen); |
| 359 | result = (VarBit *) palloc(len); |
| 360 | SET_VARSIZE(result, len); |
| 361 | VARBITLEN(result) = bitlen; |
| 362 | |
| 363 | pq_copymsgbytes(buf, (char *) VARBITS(result), VARBITBYTES(result)); |
| 364 | |
| 365 | /* Make sure last byte is correctly zero-padded */ |
| 366 | VARBIT_PAD(result); |
| 367 | |
| 368 | PG_RETURN_VARBIT_P(result); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * bit_send - converts bit to binary format |
| 373 | */ |
| 374 | Datum |
| 375 | bit_send(PG_FUNCTION_ARGS) |
| 376 | { |
| 377 | /* Exactly the same as varbit_send, so share code */ |
| 378 | return varbit_send(fcinfo); |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * bit() |
| 383 | * Converts a bit() type to a specific internal length. |
| 384 | * len is the bitlength specified in the column definition. |
| 385 | * |
| 386 | * If doing implicit cast, raise error when source data is wrong length. |
| 387 | * If doing explicit cast, silently truncate or zero-pad to specified length. |
| 388 | */ |
| 389 | Datum |
| 390 | bit(PG_FUNCTION_ARGS) |
| 391 | { |
| 392 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 393 | int32 len = PG_GETARG_INT32(1); |
| 394 | bool isExplicit = PG_GETARG_BOOL(2); |
| 395 | VarBit *result; |
| 396 | int rlen; |
| 397 | |
| 398 | /* No work if typmod is invalid or supplied data matches it already */ |
| 399 | if (len <= 0 || len > VARBITMAXLEN || len == VARBITLEN(arg)) |
| 400 | PG_RETURN_VARBIT_P(arg); |
| 401 | |
| 402 | if (!isExplicit) |
| 403 | ereport(ERROR, |
| 404 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 405 | errmsg("bit string length %d does not match type bit(%d)" , |
| 406 | VARBITLEN(arg), len))); |
| 407 | |
| 408 | rlen = VARBITTOTALLEN(len); |
| 409 | /* set to 0 so that string is zero-padded */ |
| 410 | result = (VarBit *) palloc0(rlen); |
| 411 | SET_VARSIZE(result, rlen); |
| 412 | VARBITLEN(result) = len; |
| 413 | |
| 414 | memcpy(VARBITS(result), VARBITS(arg), |
| 415 | Min(VARBITBYTES(result), VARBITBYTES(arg))); |
| 416 | |
| 417 | /* |
| 418 | * Make sure last byte is zero-padded if needed. This is useless but safe |
| 419 | * if source data was shorter than target length (we assume the last byte |
| 420 | * of the source data was itself correctly zero-padded). |
| 421 | */ |
| 422 | VARBIT_PAD(result); |
| 423 | |
| 424 | PG_RETURN_VARBIT_P(result); |
| 425 | } |
| 426 | |
| 427 | Datum |
| 428 | bittypmodin(PG_FUNCTION_ARGS) |
| 429 | { |
| 430 | ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); |
| 431 | |
| 432 | PG_RETURN_INT32(anybit_typmodin(ta, "bit" )); |
| 433 | } |
| 434 | |
| 435 | Datum |
| 436 | bittypmodout(PG_FUNCTION_ARGS) |
| 437 | { |
| 438 | int32 typmod = PG_GETARG_INT32(0); |
| 439 | |
| 440 | PG_RETURN_CSTRING(anybit_typmodout(typmod)); |
| 441 | } |
| 442 | |
| 443 | |
| 444 | /* |
| 445 | * varbit_in - |
| 446 | * converts a string to the internal representation of a bitstring. |
| 447 | * This is the same as bit_in except that atttypmod is taken as |
| 448 | * the maximum length, not the exact length to force the bitstring to. |
| 449 | */ |
| 450 | Datum |
| 451 | varbit_in(PG_FUNCTION_ARGS) |
| 452 | { |
| 453 | char *input_string = PG_GETARG_CSTRING(0); |
| 454 | |
| 455 | #ifdef NOT_USED |
| 456 | Oid typelem = PG_GETARG_OID(1); |
| 457 | #endif |
| 458 | int32 atttypmod = PG_GETARG_INT32(2); |
| 459 | VarBit *result; /* The resulting bit string */ |
| 460 | char *sp; /* pointer into the character string */ |
| 461 | bits8 *r; /* pointer into the result */ |
| 462 | int len, /* Length of the whole data structure */ |
| 463 | bitlen, /* Number of bits in the bit string */ |
| 464 | slen; /* Length of the input string */ |
| 465 | bool bit_not_hex; /* false = hex string true = bit string */ |
| 466 | int bc; |
| 467 | bits8 x = 0; |
| 468 | |
| 469 | /* Check that the first character is a b or an x */ |
| 470 | if (input_string[0] == 'b' || input_string[0] == 'B') |
| 471 | { |
| 472 | bit_not_hex = true; |
| 473 | sp = input_string + 1; |
| 474 | } |
| 475 | else if (input_string[0] == 'x' || input_string[0] == 'X') |
| 476 | { |
| 477 | bit_not_hex = false; |
| 478 | sp = input_string + 1; |
| 479 | } |
| 480 | else |
| 481 | { |
| 482 | bit_not_hex = true; |
| 483 | sp = input_string; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Determine bitlength from input string. MaxAllocSize ensures a regular |
| 488 | * input is small enough, but we must check hex input. |
| 489 | */ |
| 490 | slen = strlen(sp); |
| 491 | if (bit_not_hex) |
| 492 | bitlen = slen; |
| 493 | else |
| 494 | { |
| 495 | if (slen > VARBITMAXLEN / 4) |
| 496 | ereport(ERROR, |
| 497 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 498 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
| 499 | VARBITMAXLEN))); |
| 500 | bitlen = slen * 4; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
| 505 | * sure that the bitstring fits. |
| 506 | */ |
| 507 | if (atttypmod <= 0) |
| 508 | atttypmod = bitlen; |
| 509 | else if (bitlen > atttypmod) |
| 510 | ereport(ERROR, |
| 511 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
| 512 | errmsg("bit string too long for type bit varying(%d)" , |
| 513 | atttypmod))); |
| 514 | |
| 515 | len = VARBITTOTALLEN(bitlen); |
| 516 | /* set to 0 so that *r is always initialised and string is zero-padded */ |
| 517 | result = (VarBit *) palloc0(len); |
| 518 | SET_VARSIZE(result, len); |
| 519 | VARBITLEN(result) = Min(bitlen, atttypmod); |
| 520 | |
| 521 | r = VARBITS(result); |
| 522 | if (bit_not_hex) |
| 523 | { |
| 524 | /* Parse the bit representation of the string */ |
| 525 | /* We know it fits, as bitlen was compared to atttypmod */ |
| 526 | x = HIGHBIT; |
| 527 | for (; *sp; sp++) |
| 528 | { |
| 529 | if (*sp == '1') |
| 530 | *r |= x; |
| 531 | else if (*sp != '0') |
| 532 | ereport(ERROR, |
| 533 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 534 | errmsg("\"%c\" is not a valid binary digit" , |
| 535 | *sp))); |
| 536 | |
| 537 | x >>= 1; |
| 538 | if (x == 0) |
| 539 | { |
| 540 | x = HIGHBIT; |
| 541 | r++; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | else |
| 546 | { |
| 547 | /* Parse the hex representation of the string */ |
| 548 | for (bc = 0; *sp; sp++) |
| 549 | { |
| 550 | if (*sp >= '0' && *sp <= '9') |
| 551 | x = (bits8) (*sp - '0'); |
| 552 | else if (*sp >= 'A' && *sp <= 'F') |
| 553 | x = (bits8) (*sp - 'A') + 10; |
| 554 | else if (*sp >= 'a' && *sp <= 'f') |
| 555 | x = (bits8) (*sp - 'a') + 10; |
| 556 | else |
| 557 | ereport(ERROR, |
| 558 | (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| 559 | errmsg("\"%c\" is not a valid hexadecimal digit" , |
| 560 | *sp))); |
| 561 | |
| 562 | if (bc) |
| 563 | { |
| 564 | *r++ |= x; |
| 565 | bc = 0; |
| 566 | } |
| 567 | else |
| 568 | { |
| 569 | *r = x << 4; |
| 570 | bc = 1; |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | PG_RETURN_VARBIT_P(result); |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * varbit_out - |
| 580 | * Prints the string as bits to preserve length accurately |
| 581 | * |
| 582 | * XXX varbit_recv() and hex input to varbit_in() can load a value that this |
| 583 | * cannot emit. Consider using hex output for such values. |
| 584 | */ |
| 585 | Datum |
| 586 | varbit_out(PG_FUNCTION_ARGS) |
| 587 | { |
| 588 | VarBit *s = PG_GETARG_VARBIT_P(0); |
| 589 | char *result, |
| 590 | *r; |
| 591 | bits8 *sp; |
| 592 | bits8 x; |
| 593 | int i, |
| 594 | k, |
| 595 | len; |
| 596 | |
| 597 | /* Assertion to help catch any bit functions that don't pad correctly */ |
| 598 | VARBIT_CORRECTLY_PADDED(s); |
| 599 | |
| 600 | len = VARBITLEN(s); |
| 601 | result = (char *) palloc(len + 1); |
| 602 | sp = VARBITS(s); |
| 603 | r = result; |
| 604 | for (i = 0; i <= len - BITS_PER_BYTE; i += BITS_PER_BYTE, sp++) |
| 605 | { |
| 606 | /* print full bytes */ |
| 607 | x = *sp; |
| 608 | for (k = 0; k < BITS_PER_BYTE; k++) |
| 609 | { |
| 610 | *r++ = IS_HIGHBIT_SET(x) ? '1' : '0'; |
| 611 | x <<= 1; |
| 612 | } |
| 613 | } |
| 614 | if (i < len) |
| 615 | { |
| 616 | /* print the last partial byte */ |
| 617 | x = *sp; |
| 618 | for (k = i; k < len; k++) |
| 619 | { |
| 620 | *r++ = IS_HIGHBIT_SET(x) ? '1' : '0'; |
| 621 | x <<= 1; |
| 622 | } |
| 623 | } |
| 624 | *r = '\0'; |
| 625 | |
| 626 | PG_RETURN_CSTRING(result); |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * varbit_recv - converts external binary format to varbit |
| 631 | * |
| 632 | * External format is the bitlen as an int32, then the byte array. |
| 633 | */ |
| 634 | Datum |
| 635 | varbit_recv(PG_FUNCTION_ARGS) |
| 636 | { |
| 637 | StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| 638 | |
| 639 | #ifdef NOT_USED |
| 640 | Oid typelem = PG_GETARG_OID(1); |
| 641 | #endif |
| 642 | int32 atttypmod = PG_GETARG_INT32(2); |
| 643 | VarBit *result; |
| 644 | int len, |
| 645 | bitlen; |
| 646 | |
| 647 | bitlen = pq_getmsgint(buf, sizeof(int32)); |
| 648 | if (bitlen < 0 || bitlen > VARBITMAXLEN) |
| 649 | ereport(ERROR, |
| 650 | (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| 651 | errmsg("invalid length in external bit string" ))); |
| 652 | |
| 653 | /* |
| 654 | * Sometimes atttypmod is not supplied. If it is supplied we need to make |
| 655 | * sure that the bitstring fits. |
| 656 | */ |
| 657 | if (atttypmod > 0 && bitlen > atttypmod) |
| 658 | ereport(ERROR, |
| 659 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
| 660 | errmsg("bit string too long for type bit varying(%d)" , |
| 661 | atttypmod))); |
| 662 | |
| 663 | len = VARBITTOTALLEN(bitlen); |
| 664 | result = (VarBit *) palloc(len); |
| 665 | SET_VARSIZE(result, len); |
| 666 | VARBITLEN(result) = bitlen; |
| 667 | |
| 668 | pq_copymsgbytes(buf, (char *) VARBITS(result), VARBITBYTES(result)); |
| 669 | |
| 670 | /* Make sure last byte is correctly zero-padded */ |
| 671 | VARBIT_PAD(result); |
| 672 | |
| 673 | PG_RETURN_VARBIT_P(result); |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * varbit_send - converts varbit to binary format |
| 678 | */ |
| 679 | Datum |
| 680 | varbit_send(PG_FUNCTION_ARGS) |
| 681 | { |
| 682 | VarBit *s = PG_GETARG_VARBIT_P(0); |
| 683 | StringInfoData buf; |
| 684 | |
| 685 | pq_begintypsend(&buf); |
| 686 | pq_sendint32(&buf, VARBITLEN(s)); |
| 687 | pq_sendbytes(&buf, (char *) VARBITS(s), VARBITBYTES(s)); |
| 688 | PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * varbit_support() |
| 693 | * |
| 694 | * Planner support function for the varbit() length coercion function. |
| 695 | * |
| 696 | * Currently, the only interesting thing we can do is flatten calls that set |
| 697 | * the new maximum length >= the previous maximum length. We can ignore the |
| 698 | * isExplicit argument, since that only affects truncation cases. |
| 699 | */ |
| 700 | Datum |
| 701 | varbit_support(PG_FUNCTION_ARGS) |
| 702 | { |
| 703 | Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| 704 | Node *ret = NULL; |
| 705 | |
| 706 | if (IsA(rawreq, SupportRequestSimplify)) |
| 707 | { |
| 708 | SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq; |
| 709 | FuncExpr *expr = req->fcall; |
| 710 | Node *typmod; |
| 711 | |
| 712 | Assert(list_length(expr->args) >= 2); |
| 713 | |
| 714 | typmod = (Node *) lsecond(expr->args); |
| 715 | |
| 716 | if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull) |
| 717 | { |
| 718 | Node *source = (Node *) linitial(expr->args); |
| 719 | int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue); |
| 720 | int32 old_max = exprTypmod(source); |
| 721 | int32 new_max = new_typmod; |
| 722 | |
| 723 | /* Note: varbit() treats typmod 0 as invalid, so we do too */ |
| 724 | if (new_max <= 0 || (old_max > 0 && old_max <= new_max)) |
| 725 | ret = relabel_to_typmod(source, new_typmod); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | PG_RETURN_POINTER(ret); |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * varbit() |
| 734 | * Converts a varbit() type to a specific internal length. |
| 735 | * len is the maximum bitlength specified in the column definition. |
| 736 | * |
| 737 | * If doing implicit cast, raise error when source data is too long. |
| 738 | * If doing explicit cast, silently truncate to max length. |
| 739 | */ |
| 740 | Datum |
| 741 | varbit(PG_FUNCTION_ARGS) |
| 742 | { |
| 743 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 744 | int32 len = PG_GETARG_INT32(1); |
| 745 | bool isExplicit = PG_GETARG_BOOL(2); |
| 746 | VarBit *result; |
| 747 | int rlen; |
| 748 | |
| 749 | /* No work if typmod is invalid or supplied data matches it already */ |
| 750 | if (len <= 0 || len >= VARBITLEN(arg)) |
| 751 | PG_RETURN_VARBIT_P(arg); |
| 752 | |
| 753 | if (!isExplicit) |
| 754 | ereport(ERROR, |
| 755 | (errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION), |
| 756 | errmsg("bit string too long for type bit varying(%d)" , |
| 757 | len))); |
| 758 | |
| 759 | rlen = VARBITTOTALLEN(len); |
| 760 | result = (VarBit *) palloc(rlen); |
| 761 | SET_VARSIZE(result, rlen); |
| 762 | VARBITLEN(result) = len; |
| 763 | |
| 764 | memcpy(VARBITS(result), VARBITS(arg), VARBITBYTES(result)); |
| 765 | |
| 766 | /* Make sure last byte is correctly zero-padded */ |
| 767 | VARBIT_PAD(result); |
| 768 | |
| 769 | PG_RETURN_VARBIT_P(result); |
| 770 | } |
| 771 | |
| 772 | Datum |
| 773 | varbittypmodin(PG_FUNCTION_ARGS) |
| 774 | { |
| 775 | ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0); |
| 776 | |
| 777 | PG_RETURN_INT32(anybit_typmodin(ta, "varbit" )); |
| 778 | } |
| 779 | |
| 780 | Datum |
| 781 | varbittypmodout(PG_FUNCTION_ARGS) |
| 782 | { |
| 783 | int32 typmod = PG_GETARG_INT32(0); |
| 784 | |
| 785 | PG_RETURN_CSTRING(anybit_typmodout(typmod)); |
| 786 | } |
| 787 | |
| 788 | |
| 789 | /* |
| 790 | * Comparison operators |
| 791 | * |
| 792 | * We only need one set of comparison operators for bitstrings, as the lengths |
| 793 | * are stored in the same way for zero-padded and varying bit strings. |
| 794 | * |
| 795 | * Note that the standard is not unambiguous about the comparison between |
| 796 | * zero-padded bit strings and varying bitstrings. If the same value is written |
| 797 | * into a zero padded bitstring as into a varying bitstring, but the zero |
| 798 | * padded bitstring has greater length, it will be bigger. |
| 799 | * |
| 800 | * Zeros from the beginning of a bitstring cannot simply be ignored, as they |
| 801 | * may be part of a bit string and may be significant. |
| 802 | * |
| 803 | * Note: btree indexes need these routines not to leak memory; therefore, |
| 804 | * be careful to free working copies of toasted datums. Most places don't |
| 805 | * need to be so careful. |
| 806 | */ |
| 807 | |
| 808 | /* |
| 809 | * bit_cmp |
| 810 | * |
| 811 | * Compares two bitstrings and returns <0, 0, >0 depending on whether the first |
| 812 | * string is smaller, equal, or bigger than the second. All bits are considered |
| 813 | * and additional zero bits may make one string smaller/larger than the other, |
| 814 | * even if their zero-padded values would be the same. |
| 815 | */ |
| 816 | static int32 |
| 817 | bit_cmp(VarBit *arg1, VarBit *arg2) |
| 818 | { |
| 819 | int bitlen1, |
| 820 | bytelen1, |
| 821 | bitlen2, |
| 822 | bytelen2; |
| 823 | int32 cmp; |
| 824 | |
| 825 | bytelen1 = VARBITBYTES(arg1); |
| 826 | bytelen2 = VARBITBYTES(arg2); |
| 827 | |
| 828 | cmp = memcmp(VARBITS(arg1), VARBITS(arg2), Min(bytelen1, bytelen2)); |
| 829 | if (cmp == 0) |
| 830 | { |
| 831 | bitlen1 = VARBITLEN(arg1); |
| 832 | bitlen2 = VARBITLEN(arg2); |
| 833 | if (bitlen1 != bitlen2) |
| 834 | cmp = (bitlen1 < bitlen2) ? -1 : 1; |
| 835 | } |
| 836 | return cmp; |
| 837 | } |
| 838 | |
| 839 | Datum |
| 840 | biteq(PG_FUNCTION_ARGS) |
| 841 | { |
| 842 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 843 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 844 | bool result; |
| 845 | int bitlen1, |
| 846 | bitlen2; |
| 847 | |
| 848 | bitlen1 = VARBITLEN(arg1); |
| 849 | bitlen2 = VARBITLEN(arg2); |
| 850 | |
| 851 | /* fast path for different-length inputs */ |
| 852 | if (bitlen1 != bitlen2) |
| 853 | result = false; |
| 854 | else |
| 855 | result = (bit_cmp(arg1, arg2) == 0); |
| 856 | |
| 857 | PG_FREE_IF_COPY(arg1, 0); |
| 858 | PG_FREE_IF_COPY(arg2, 1); |
| 859 | |
| 860 | PG_RETURN_BOOL(result); |
| 861 | } |
| 862 | |
| 863 | Datum |
| 864 | bitne(PG_FUNCTION_ARGS) |
| 865 | { |
| 866 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 867 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 868 | bool result; |
| 869 | int bitlen1, |
| 870 | bitlen2; |
| 871 | |
| 872 | bitlen1 = VARBITLEN(arg1); |
| 873 | bitlen2 = VARBITLEN(arg2); |
| 874 | |
| 875 | /* fast path for different-length inputs */ |
| 876 | if (bitlen1 != bitlen2) |
| 877 | result = true; |
| 878 | else |
| 879 | result = (bit_cmp(arg1, arg2) != 0); |
| 880 | |
| 881 | PG_FREE_IF_COPY(arg1, 0); |
| 882 | PG_FREE_IF_COPY(arg2, 1); |
| 883 | |
| 884 | PG_RETURN_BOOL(result); |
| 885 | } |
| 886 | |
| 887 | Datum |
| 888 | bitlt(PG_FUNCTION_ARGS) |
| 889 | { |
| 890 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 891 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 892 | bool result; |
| 893 | |
| 894 | result = (bit_cmp(arg1, arg2) < 0); |
| 895 | |
| 896 | PG_FREE_IF_COPY(arg1, 0); |
| 897 | PG_FREE_IF_COPY(arg2, 1); |
| 898 | |
| 899 | PG_RETURN_BOOL(result); |
| 900 | } |
| 901 | |
| 902 | Datum |
| 903 | bitle(PG_FUNCTION_ARGS) |
| 904 | { |
| 905 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 906 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 907 | bool result; |
| 908 | |
| 909 | result = (bit_cmp(arg1, arg2) <= 0); |
| 910 | |
| 911 | PG_FREE_IF_COPY(arg1, 0); |
| 912 | PG_FREE_IF_COPY(arg2, 1); |
| 913 | |
| 914 | PG_RETURN_BOOL(result); |
| 915 | } |
| 916 | |
| 917 | Datum |
| 918 | bitgt(PG_FUNCTION_ARGS) |
| 919 | { |
| 920 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 921 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 922 | bool result; |
| 923 | |
| 924 | result = (bit_cmp(arg1, arg2) > 0); |
| 925 | |
| 926 | PG_FREE_IF_COPY(arg1, 0); |
| 927 | PG_FREE_IF_COPY(arg2, 1); |
| 928 | |
| 929 | PG_RETURN_BOOL(result); |
| 930 | } |
| 931 | |
| 932 | Datum |
| 933 | bitge(PG_FUNCTION_ARGS) |
| 934 | { |
| 935 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 936 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 937 | bool result; |
| 938 | |
| 939 | result = (bit_cmp(arg1, arg2) >= 0); |
| 940 | |
| 941 | PG_FREE_IF_COPY(arg1, 0); |
| 942 | PG_FREE_IF_COPY(arg2, 1); |
| 943 | |
| 944 | PG_RETURN_BOOL(result); |
| 945 | } |
| 946 | |
| 947 | Datum |
| 948 | bitcmp(PG_FUNCTION_ARGS) |
| 949 | { |
| 950 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 951 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 952 | int32 result; |
| 953 | |
| 954 | result = bit_cmp(arg1, arg2); |
| 955 | |
| 956 | PG_FREE_IF_COPY(arg1, 0); |
| 957 | PG_FREE_IF_COPY(arg2, 1); |
| 958 | |
| 959 | PG_RETURN_INT32(result); |
| 960 | } |
| 961 | |
| 962 | /* |
| 963 | * bitcat |
| 964 | * Concatenation of bit strings |
| 965 | */ |
| 966 | Datum |
| 967 | bitcat(PG_FUNCTION_ARGS) |
| 968 | { |
| 969 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 970 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 971 | |
| 972 | PG_RETURN_VARBIT_P(bit_catenate(arg1, arg2)); |
| 973 | } |
| 974 | |
| 975 | static VarBit * |
| 976 | bit_catenate(VarBit *arg1, VarBit *arg2) |
| 977 | { |
| 978 | VarBit *result; |
| 979 | int bitlen1, |
| 980 | bitlen2, |
| 981 | bytelen, |
| 982 | bit1pad, |
| 983 | bit2shift; |
| 984 | bits8 *pr, |
| 985 | *pa; |
| 986 | |
| 987 | bitlen1 = VARBITLEN(arg1); |
| 988 | bitlen2 = VARBITLEN(arg2); |
| 989 | |
| 990 | if (bitlen1 > VARBITMAXLEN - bitlen2) |
| 991 | ereport(ERROR, |
| 992 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 993 | errmsg("bit string length exceeds the maximum allowed (%d)" , |
| 994 | VARBITMAXLEN))); |
| 995 | bytelen = VARBITTOTALLEN(bitlen1 + bitlen2); |
| 996 | |
| 997 | result = (VarBit *) palloc(bytelen); |
| 998 | SET_VARSIZE(result, bytelen); |
| 999 | VARBITLEN(result) = bitlen1 + bitlen2; |
| 1000 | |
| 1001 | /* Copy the first bitstring in */ |
| 1002 | memcpy(VARBITS(result), VARBITS(arg1), VARBITBYTES(arg1)); |
| 1003 | |
| 1004 | /* Copy the second bit string */ |
| 1005 | bit1pad = VARBITPAD(arg1); |
| 1006 | if (bit1pad == 0) |
| 1007 | { |
| 1008 | memcpy(VARBITS(result) + VARBITBYTES(arg1), VARBITS(arg2), |
| 1009 | VARBITBYTES(arg2)); |
| 1010 | } |
| 1011 | else if (bitlen2 > 0) |
| 1012 | { |
| 1013 | /* We need to shift all the bits to fit */ |
| 1014 | bit2shift = BITS_PER_BYTE - bit1pad; |
| 1015 | pr = VARBITS(result) + VARBITBYTES(arg1) - 1; |
| 1016 | for (pa = VARBITS(arg2); pa < VARBITEND(arg2); pa++) |
| 1017 | { |
| 1018 | *pr |= ((*pa >> bit2shift) & BITMASK); |
| 1019 | pr++; |
| 1020 | if (pr < VARBITEND(result)) |
| 1021 | *pr = (*pa << bit1pad) & BITMASK; |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | /* The pad bits should be already zero at this point */ |
| 1026 | |
| 1027 | return result; |
| 1028 | } |
| 1029 | |
| 1030 | /* |
| 1031 | * bitsubstr |
| 1032 | * retrieve a substring from the bit string. |
| 1033 | * Note, s is 1-based. |
| 1034 | * SQL draft 6.10 9) |
| 1035 | */ |
| 1036 | Datum |
| 1037 | bitsubstr(PG_FUNCTION_ARGS) |
| 1038 | { |
| 1039 | PG_RETURN_VARBIT_P(bitsubstring(PG_GETARG_VARBIT_P(0), |
| 1040 | PG_GETARG_INT32(1), |
| 1041 | PG_GETARG_INT32(2), |
| 1042 | false)); |
| 1043 | } |
| 1044 | |
| 1045 | Datum |
| 1046 | bitsubstr_no_len(PG_FUNCTION_ARGS) |
| 1047 | { |
| 1048 | PG_RETURN_VARBIT_P(bitsubstring(PG_GETARG_VARBIT_P(0), |
| 1049 | PG_GETARG_INT32(1), |
| 1050 | -1, true)); |
| 1051 | } |
| 1052 | |
| 1053 | static VarBit * |
| 1054 | bitsubstring(VarBit *arg, int32 s, int32 l, bool length_not_specified) |
| 1055 | { |
| 1056 | VarBit *result; |
| 1057 | int bitlen, |
| 1058 | rbitlen, |
| 1059 | len, |
| 1060 | ishift, |
| 1061 | i; |
| 1062 | int e, |
| 1063 | s1, |
| 1064 | e1; |
| 1065 | bits8 *r, |
| 1066 | *ps; |
| 1067 | |
| 1068 | bitlen = VARBITLEN(arg); |
| 1069 | s1 = Max(s, 1); |
| 1070 | /* If we do not have an upper bound, use end of string */ |
| 1071 | if (length_not_specified) |
| 1072 | { |
| 1073 | e1 = bitlen + 1; |
| 1074 | } |
| 1075 | else |
| 1076 | { |
| 1077 | e = s + l; |
| 1078 | |
| 1079 | /* |
| 1080 | * A negative value for L is the only way for the end position to be |
| 1081 | * before the start. SQL99 says to throw an error. |
| 1082 | */ |
| 1083 | if (e < s) |
| 1084 | ereport(ERROR, |
| 1085 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 1086 | errmsg("negative substring length not allowed" ))); |
| 1087 | e1 = Min(e, bitlen + 1); |
| 1088 | } |
| 1089 | if (s1 > bitlen || e1 <= s1) |
| 1090 | { |
| 1091 | /* Need to return a zero-length bitstring */ |
| 1092 | len = VARBITTOTALLEN(0); |
| 1093 | result = (VarBit *) palloc(len); |
| 1094 | SET_VARSIZE(result, len); |
| 1095 | VARBITLEN(result) = 0; |
| 1096 | } |
| 1097 | else |
| 1098 | { |
| 1099 | /* |
| 1100 | * OK, we've got a true substring starting at position s1-1 and ending |
| 1101 | * at position e1-1 |
| 1102 | */ |
| 1103 | rbitlen = e1 - s1; |
| 1104 | len = VARBITTOTALLEN(rbitlen); |
| 1105 | result = (VarBit *) palloc(len); |
| 1106 | SET_VARSIZE(result, len); |
| 1107 | VARBITLEN(result) = rbitlen; |
| 1108 | len -= VARHDRSZ + VARBITHDRSZ; |
| 1109 | /* Are we copying from a byte boundary? */ |
| 1110 | if ((s1 - 1) % BITS_PER_BYTE == 0) |
| 1111 | { |
| 1112 | /* Yep, we are copying bytes */ |
| 1113 | memcpy(VARBITS(result), VARBITS(arg) + (s1 - 1) / BITS_PER_BYTE, |
| 1114 | len); |
| 1115 | } |
| 1116 | else |
| 1117 | { |
| 1118 | /* Figure out how much we need to shift the sequence by */ |
| 1119 | ishift = (s1 - 1) % BITS_PER_BYTE; |
| 1120 | r = VARBITS(result); |
| 1121 | ps = VARBITS(arg) + (s1 - 1) / BITS_PER_BYTE; |
| 1122 | for (i = 0; i < len; i++) |
| 1123 | { |
| 1124 | *r = (*ps << ishift) & BITMASK; |
| 1125 | if ((++ps) < VARBITEND(arg)) |
| 1126 | *r |= *ps >> (BITS_PER_BYTE - ishift); |
| 1127 | r++; |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | /* Make sure last byte is correctly zero-padded */ |
| 1132 | VARBIT_PAD(result); |
| 1133 | } |
| 1134 | |
| 1135 | return result; |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * bitoverlay |
| 1140 | * Replace specified substring of first string with second |
| 1141 | * |
| 1142 | * The SQL standard defines OVERLAY() in terms of substring and concatenation. |
| 1143 | * This code is a direct implementation of what the standard says. |
| 1144 | */ |
| 1145 | Datum |
| 1146 | bitoverlay(PG_FUNCTION_ARGS) |
| 1147 | { |
| 1148 | VarBit *t1 = PG_GETARG_VARBIT_P(0); |
| 1149 | VarBit *t2 = PG_GETARG_VARBIT_P(1); |
| 1150 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 1151 | int sl = PG_GETARG_INT32(3); /* substring length */ |
| 1152 | |
| 1153 | PG_RETURN_VARBIT_P(bit_overlay(t1, t2, sp, sl)); |
| 1154 | } |
| 1155 | |
| 1156 | Datum |
| 1157 | bitoverlay_no_len(PG_FUNCTION_ARGS) |
| 1158 | { |
| 1159 | VarBit *t1 = PG_GETARG_VARBIT_P(0); |
| 1160 | VarBit *t2 = PG_GETARG_VARBIT_P(1); |
| 1161 | int sp = PG_GETARG_INT32(2); /* substring start position */ |
| 1162 | int sl; |
| 1163 | |
| 1164 | sl = VARBITLEN(t2); /* defaults to length(t2) */ |
| 1165 | PG_RETURN_VARBIT_P(bit_overlay(t1, t2, sp, sl)); |
| 1166 | } |
| 1167 | |
| 1168 | static VarBit * |
| 1169 | bit_overlay(VarBit *t1, VarBit *t2, int sp, int sl) |
| 1170 | { |
| 1171 | VarBit *result; |
| 1172 | VarBit *s1; |
| 1173 | VarBit *s2; |
| 1174 | int sp_pl_sl; |
| 1175 | |
| 1176 | /* |
| 1177 | * Check for possible integer-overflow cases. For negative sp, throw a |
| 1178 | * "substring length" error because that's what should be expected |
| 1179 | * according to the spec's definition of OVERLAY(). |
| 1180 | */ |
| 1181 | if (sp <= 0) |
| 1182 | ereport(ERROR, |
| 1183 | (errcode(ERRCODE_SUBSTRING_ERROR), |
| 1184 | errmsg("negative substring length not allowed" ))); |
| 1185 | if (pg_add_s32_overflow(sp, sl, &sp_pl_sl)) |
| 1186 | ereport(ERROR, |
| 1187 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1188 | errmsg("integer out of range" ))); |
| 1189 | |
| 1190 | s1 = bitsubstring(t1, 1, sp - 1, false); |
| 1191 | s2 = bitsubstring(t1, sp_pl_sl, -1, true); |
| 1192 | result = bit_catenate(s1, t2); |
| 1193 | result = bit_catenate(result, s2); |
| 1194 | |
| 1195 | return result; |
| 1196 | } |
| 1197 | |
| 1198 | /* |
| 1199 | * bitlength, bitoctetlength |
| 1200 | * Return the length of a bit string |
| 1201 | */ |
| 1202 | Datum |
| 1203 | bitlength(PG_FUNCTION_ARGS) |
| 1204 | { |
| 1205 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1206 | |
| 1207 | PG_RETURN_INT32(VARBITLEN(arg)); |
| 1208 | } |
| 1209 | |
| 1210 | Datum |
| 1211 | bitoctetlength(PG_FUNCTION_ARGS) |
| 1212 | { |
| 1213 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1214 | |
| 1215 | PG_RETURN_INT32(VARBITBYTES(arg)); |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * bit_and |
| 1220 | * perform a logical AND on two bit strings. |
| 1221 | */ |
| 1222 | Datum |
| 1223 | bit_and(PG_FUNCTION_ARGS) |
| 1224 | { |
| 1225 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 1226 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 1227 | VarBit *result; |
| 1228 | int len, |
| 1229 | bitlen1, |
| 1230 | bitlen2, |
| 1231 | i; |
| 1232 | bits8 *p1, |
| 1233 | *p2, |
| 1234 | *r; |
| 1235 | |
| 1236 | bitlen1 = VARBITLEN(arg1); |
| 1237 | bitlen2 = VARBITLEN(arg2); |
| 1238 | if (bitlen1 != bitlen2) |
| 1239 | ereport(ERROR, |
| 1240 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 1241 | errmsg("cannot AND bit strings of different sizes" ))); |
| 1242 | |
| 1243 | len = VARSIZE(arg1); |
| 1244 | result = (VarBit *) palloc(len); |
| 1245 | SET_VARSIZE(result, len); |
| 1246 | VARBITLEN(result) = bitlen1; |
| 1247 | |
| 1248 | p1 = VARBITS(arg1); |
| 1249 | p2 = VARBITS(arg2); |
| 1250 | r = VARBITS(result); |
| 1251 | for (i = 0; i < VARBITBYTES(arg1); i++) |
| 1252 | *r++ = *p1++ & *p2++; |
| 1253 | |
| 1254 | /* Padding is not needed as & of 0 pads is 0 */ |
| 1255 | |
| 1256 | PG_RETURN_VARBIT_P(result); |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * bit_or |
| 1261 | * perform a logical OR on two bit strings. |
| 1262 | */ |
| 1263 | Datum |
| 1264 | bit_or(PG_FUNCTION_ARGS) |
| 1265 | { |
| 1266 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 1267 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 1268 | VarBit *result; |
| 1269 | int len, |
| 1270 | bitlen1, |
| 1271 | bitlen2, |
| 1272 | i; |
| 1273 | bits8 *p1, |
| 1274 | *p2, |
| 1275 | *r; |
| 1276 | |
| 1277 | bitlen1 = VARBITLEN(arg1); |
| 1278 | bitlen2 = VARBITLEN(arg2); |
| 1279 | if (bitlen1 != bitlen2) |
| 1280 | ereport(ERROR, |
| 1281 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 1282 | errmsg("cannot OR bit strings of different sizes" ))); |
| 1283 | len = VARSIZE(arg1); |
| 1284 | result = (VarBit *) palloc(len); |
| 1285 | SET_VARSIZE(result, len); |
| 1286 | VARBITLEN(result) = bitlen1; |
| 1287 | |
| 1288 | p1 = VARBITS(arg1); |
| 1289 | p2 = VARBITS(arg2); |
| 1290 | r = VARBITS(result); |
| 1291 | for (i = 0; i < VARBITBYTES(arg1); i++) |
| 1292 | *r++ = *p1++ | *p2++; |
| 1293 | |
| 1294 | /* Padding is not needed as | of 0 pads is 0 */ |
| 1295 | |
| 1296 | PG_RETURN_VARBIT_P(result); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * bitxor |
| 1301 | * perform a logical XOR on two bit strings. |
| 1302 | */ |
| 1303 | Datum |
| 1304 | bitxor(PG_FUNCTION_ARGS) |
| 1305 | { |
| 1306 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 1307 | VarBit *arg2 = PG_GETARG_VARBIT_P(1); |
| 1308 | VarBit *result; |
| 1309 | int len, |
| 1310 | bitlen1, |
| 1311 | bitlen2, |
| 1312 | i; |
| 1313 | bits8 *p1, |
| 1314 | *p2, |
| 1315 | *r; |
| 1316 | |
| 1317 | bitlen1 = VARBITLEN(arg1); |
| 1318 | bitlen2 = VARBITLEN(arg2); |
| 1319 | if (bitlen1 != bitlen2) |
| 1320 | ereport(ERROR, |
| 1321 | (errcode(ERRCODE_STRING_DATA_LENGTH_MISMATCH), |
| 1322 | errmsg("cannot XOR bit strings of different sizes" ))); |
| 1323 | |
| 1324 | len = VARSIZE(arg1); |
| 1325 | result = (VarBit *) palloc(len); |
| 1326 | SET_VARSIZE(result, len); |
| 1327 | VARBITLEN(result) = bitlen1; |
| 1328 | |
| 1329 | p1 = VARBITS(arg1); |
| 1330 | p2 = VARBITS(arg2); |
| 1331 | r = VARBITS(result); |
| 1332 | for (i = 0; i < VARBITBYTES(arg1); i++) |
| 1333 | *r++ = *p1++ ^ *p2++; |
| 1334 | |
| 1335 | /* Padding is not needed as ^ of 0 pads is 0 */ |
| 1336 | |
| 1337 | PG_RETURN_VARBIT_P(result); |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * bitnot |
| 1342 | * perform a logical NOT on a bit string. |
| 1343 | */ |
| 1344 | Datum |
| 1345 | bitnot(PG_FUNCTION_ARGS) |
| 1346 | { |
| 1347 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1348 | VarBit *result; |
| 1349 | bits8 *p, |
| 1350 | *r; |
| 1351 | |
| 1352 | result = (VarBit *) palloc(VARSIZE(arg)); |
| 1353 | SET_VARSIZE(result, VARSIZE(arg)); |
| 1354 | VARBITLEN(result) = VARBITLEN(arg); |
| 1355 | |
| 1356 | p = VARBITS(arg); |
| 1357 | r = VARBITS(result); |
| 1358 | for (; p < VARBITEND(arg); p++) |
| 1359 | *r++ = ~*p; |
| 1360 | |
| 1361 | /* Must zero-pad the result, because extra bits are surely 1's here */ |
| 1362 | VARBIT_PAD_LAST(result, r); |
| 1363 | |
| 1364 | PG_RETURN_VARBIT_P(result); |
| 1365 | } |
| 1366 | |
| 1367 | /* |
| 1368 | * bitshiftleft |
| 1369 | * do a left shift (i.e. towards the beginning of the string) |
| 1370 | */ |
| 1371 | Datum |
| 1372 | bitshiftleft(PG_FUNCTION_ARGS) |
| 1373 | { |
| 1374 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1375 | int32 shft = PG_GETARG_INT32(1); |
| 1376 | VarBit *result; |
| 1377 | int byte_shift, |
| 1378 | ishift, |
| 1379 | len; |
| 1380 | bits8 *p, |
| 1381 | *r; |
| 1382 | |
| 1383 | /* Negative shift is a shift to the right */ |
| 1384 | if (shft < 0) |
| 1385 | { |
| 1386 | /* Prevent integer overflow in negation */ |
| 1387 | if (shft < -VARBITMAXLEN) |
| 1388 | shft = -VARBITMAXLEN; |
| 1389 | PG_RETURN_DATUM(DirectFunctionCall2(bitshiftright, |
| 1390 | VarBitPGetDatum(arg), |
| 1391 | Int32GetDatum(-shft))); |
| 1392 | } |
| 1393 | |
| 1394 | result = (VarBit *) palloc(VARSIZE(arg)); |
| 1395 | SET_VARSIZE(result, VARSIZE(arg)); |
| 1396 | VARBITLEN(result) = VARBITLEN(arg); |
| 1397 | r = VARBITS(result); |
| 1398 | |
| 1399 | /* If we shifted all the bits out, return an all-zero string */ |
| 1400 | if (shft >= VARBITLEN(arg)) |
| 1401 | { |
| 1402 | MemSet(r, 0, VARBITBYTES(arg)); |
| 1403 | PG_RETURN_VARBIT_P(result); |
| 1404 | } |
| 1405 | |
| 1406 | byte_shift = shft / BITS_PER_BYTE; |
| 1407 | ishift = shft % BITS_PER_BYTE; |
| 1408 | p = VARBITS(arg) + byte_shift; |
| 1409 | |
| 1410 | if (ishift == 0) |
| 1411 | { |
| 1412 | /* Special case: we can do a memcpy */ |
| 1413 | len = VARBITBYTES(arg) - byte_shift; |
| 1414 | memcpy(r, p, len); |
| 1415 | MemSet(r + len, 0, byte_shift); |
| 1416 | } |
| 1417 | else |
| 1418 | { |
| 1419 | for (; p < VARBITEND(arg); r++) |
| 1420 | { |
| 1421 | *r = *p << ishift; |
| 1422 | if ((++p) < VARBITEND(arg)) |
| 1423 | *r |= *p >> (BITS_PER_BYTE - ishift); |
| 1424 | } |
| 1425 | for (; r < VARBITEND(result); r++) |
| 1426 | *r = 0; |
| 1427 | } |
| 1428 | |
| 1429 | /* The pad bits should be already zero at this point */ |
| 1430 | |
| 1431 | PG_RETURN_VARBIT_P(result); |
| 1432 | } |
| 1433 | |
| 1434 | /* |
| 1435 | * bitshiftright |
| 1436 | * do a right shift (i.e. towards the end of the string) |
| 1437 | */ |
| 1438 | Datum |
| 1439 | bitshiftright(PG_FUNCTION_ARGS) |
| 1440 | { |
| 1441 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1442 | int32 shft = PG_GETARG_INT32(1); |
| 1443 | VarBit *result; |
| 1444 | int byte_shift, |
| 1445 | ishift, |
| 1446 | len; |
| 1447 | bits8 *p, |
| 1448 | *r; |
| 1449 | |
| 1450 | /* Negative shift is a shift to the left */ |
| 1451 | if (shft < 0) |
| 1452 | { |
| 1453 | /* Prevent integer overflow in negation */ |
| 1454 | if (shft < -VARBITMAXLEN) |
| 1455 | shft = -VARBITMAXLEN; |
| 1456 | PG_RETURN_DATUM(DirectFunctionCall2(bitshiftleft, |
| 1457 | VarBitPGetDatum(arg), |
| 1458 | Int32GetDatum(-shft))); |
| 1459 | } |
| 1460 | |
| 1461 | result = (VarBit *) palloc(VARSIZE(arg)); |
| 1462 | SET_VARSIZE(result, VARSIZE(arg)); |
| 1463 | VARBITLEN(result) = VARBITLEN(arg); |
| 1464 | r = VARBITS(result); |
| 1465 | |
| 1466 | /* If we shifted all the bits out, return an all-zero string */ |
| 1467 | if (shft >= VARBITLEN(arg)) |
| 1468 | { |
| 1469 | MemSet(r, 0, VARBITBYTES(arg)); |
| 1470 | PG_RETURN_VARBIT_P(result); |
| 1471 | } |
| 1472 | |
| 1473 | byte_shift = shft / BITS_PER_BYTE; |
| 1474 | ishift = shft % BITS_PER_BYTE; |
| 1475 | p = VARBITS(arg); |
| 1476 | |
| 1477 | /* Set the first part of the result to 0 */ |
| 1478 | MemSet(r, 0, byte_shift); |
| 1479 | r += byte_shift; |
| 1480 | |
| 1481 | if (ishift == 0) |
| 1482 | { |
| 1483 | /* Special case: we can do a memcpy */ |
| 1484 | len = VARBITBYTES(arg) - byte_shift; |
| 1485 | memcpy(r, p, len); |
| 1486 | } |
| 1487 | else |
| 1488 | { |
| 1489 | if (r < VARBITEND(result)) |
| 1490 | *r = 0; /* initialize first byte */ |
| 1491 | for (; r < VARBITEND(result); p++) |
| 1492 | { |
| 1493 | *r |= *p >> ishift; |
| 1494 | if ((++r) < VARBITEND(result)) |
| 1495 | *r = (*p << (BITS_PER_BYTE - ishift)) & BITMASK; |
| 1496 | } |
| 1497 | /* We may have shifted 1's into the pad bits, so fix that */ |
| 1498 | VARBIT_PAD_LAST(result, r); |
| 1499 | } |
| 1500 | |
| 1501 | PG_RETURN_VARBIT_P(result); |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * This is not defined in any standard. We retain the natural ordering of |
| 1506 | * bits here, as it just seems more intuitive. |
| 1507 | */ |
| 1508 | Datum |
| 1509 | bitfromint4(PG_FUNCTION_ARGS) |
| 1510 | { |
| 1511 | int32 a = PG_GETARG_INT32(0); |
| 1512 | int32 typmod = PG_GETARG_INT32(1); |
| 1513 | VarBit *result; |
| 1514 | bits8 *r; |
| 1515 | int rlen; |
| 1516 | int destbitsleft, |
| 1517 | srcbitsleft; |
| 1518 | |
| 1519 | if (typmod <= 0 || typmod > VARBITMAXLEN) |
| 1520 | typmod = 1; /* default bit length */ |
| 1521 | |
| 1522 | rlen = VARBITTOTALLEN(typmod); |
| 1523 | result = (VarBit *) palloc(rlen); |
| 1524 | SET_VARSIZE(result, rlen); |
| 1525 | VARBITLEN(result) = typmod; |
| 1526 | |
| 1527 | r = VARBITS(result); |
| 1528 | destbitsleft = typmod; |
| 1529 | srcbitsleft = 32; |
| 1530 | /* drop any input bits that don't fit */ |
| 1531 | srcbitsleft = Min(srcbitsleft, destbitsleft); |
| 1532 | /* sign-fill any excess bytes in output */ |
| 1533 | while (destbitsleft >= srcbitsleft + 8) |
| 1534 | { |
| 1535 | *r++ = (bits8) ((a < 0) ? BITMASK : 0); |
| 1536 | destbitsleft -= 8; |
| 1537 | } |
| 1538 | /* store first fractional byte */ |
| 1539 | if (destbitsleft > srcbitsleft) |
| 1540 | { |
| 1541 | unsigned int val = (unsigned int) (a >> (destbitsleft - 8)); |
| 1542 | |
| 1543 | /* Force sign-fill in case the compiler implements >> as zero-fill */ |
| 1544 | if (a < 0) |
| 1545 | val |= ((unsigned int) -1) << (srcbitsleft + 8 - destbitsleft); |
| 1546 | *r++ = (bits8) (val & BITMASK); |
| 1547 | destbitsleft -= 8; |
| 1548 | } |
| 1549 | /* Now srcbitsleft and destbitsleft are the same, need not track both */ |
| 1550 | /* store whole bytes */ |
| 1551 | while (destbitsleft >= 8) |
| 1552 | { |
| 1553 | *r++ = (bits8) ((a >> (destbitsleft - 8)) & BITMASK); |
| 1554 | destbitsleft -= 8; |
| 1555 | } |
| 1556 | /* store last fractional byte */ |
| 1557 | if (destbitsleft > 0) |
| 1558 | *r = (bits8) ((a << (8 - destbitsleft)) & BITMASK); |
| 1559 | |
| 1560 | PG_RETURN_VARBIT_P(result); |
| 1561 | } |
| 1562 | |
| 1563 | Datum |
| 1564 | bittoint4(PG_FUNCTION_ARGS) |
| 1565 | { |
| 1566 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1567 | uint32 result; |
| 1568 | bits8 *r; |
| 1569 | |
| 1570 | /* Check that the bit string is not too long */ |
| 1571 | if (VARBITLEN(arg) > sizeof(result) * BITS_PER_BYTE) |
| 1572 | ereport(ERROR, |
| 1573 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1574 | errmsg("integer out of range" ))); |
| 1575 | |
| 1576 | result = 0; |
| 1577 | for (r = VARBITS(arg); r < VARBITEND(arg); r++) |
| 1578 | { |
| 1579 | result <<= BITS_PER_BYTE; |
| 1580 | result |= *r; |
| 1581 | } |
| 1582 | /* Now shift the result to take account of the padding at the end */ |
| 1583 | result >>= VARBITPAD(arg); |
| 1584 | |
| 1585 | PG_RETURN_INT32(result); |
| 1586 | } |
| 1587 | |
| 1588 | Datum |
| 1589 | bitfromint8(PG_FUNCTION_ARGS) |
| 1590 | { |
| 1591 | int64 a = PG_GETARG_INT64(0); |
| 1592 | int32 typmod = PG_GETARG_INT32(1); |
| 1593 | VarBit *result; |
| 1594 | bits8 *r; |
| 1595 | int rlen; |
| 1596 | int destbitsleft, |
| 1597 | srcbitsleft; |
| 1598 | |
| 1599 | if (typmod <= 0 || typmod > VARBITMAXLEN) |
| 1600 | typmod = 1; /* default bit length */ |
| 1601 | |
| 1602 | rlen = VARBITTOTALLEN(typmod); |
| 1603 | result = (VarBit *) palloc(rlen); |
| 1604 | SET_VARSIZE(result, rlen); |
| 1605 | VARBITLEN(result) = typmod; |
| 1606 | |
| 1607 | r = VARBITS(result); |
| 1608 | destbitsleft = typmod; |
| 1609 | srcbitsleft = 64; |
| 1610 | /* drop any input bits that don't fit */ |
| 1611 | srcbitsleft = Min(srcbitsleft, destbitsleft); |
| 1612 | /* sign-fill any excess bytes in output */ |
| 1613 | while (destbitsleft >= srcbitsleft + 8) |
| 1614 | { |
| 1615 | *r++ = (bits8) ((a < 0) ? BITMASK : 0); |
| 1616 | destbitsleft -= 8; |
| 1617 | } |
| 1618 | /* store first fractional byte */ |
| 1619 | if (destbitsleft > srcbitsleft) |
| 1620 | { |
| 1621 | unsigned int val = (unsigned int) (a >> (destbitsleft - 8)); |
| 1622 | |
| 1623 | /* Force sign-fill in case the compiler implements >> as zero-fill */ |
| 1624 | if (a < 0) |
| 1625 | val |= ((unsigned int) -1) << (srcbitsleft + 8 - destbitsleft); |
| 1626 | *r++ = (bits8) (val & BITMASK); |
| 1627 | destbitsleft -= 8; |
| 1628 | } |
| 1629 | /* Now srcbitsleft and destbitsleft are the same, need not track both */ |
| 1630 | /* store whole bytes */ |
| 1631 | while (destbitsleft >= 8) |
| 1632 | { |
| 1633 | *r++ = (bits8) ((a >> (destbitsleft - 8)) & BITMASK); |
| 1634 | destbitsleft -= 8; |
| 1635 | } |
| 1636 | /* store last fractional byte */ |
| 1637 | if (destbitsleft > 0) |
| 1638 | *r = (bits8) ((a << (8 - destbitsleft)) & BITMASK); |
| 1639 | |
| 1640 | PG_RETURN_VARBIT_P(result); |
| 1641 | } |
| 1642 | |
| 1643 | Datum |
| 1644 | bittoint8(PG_FUNCTION_ARGS) |
| 1645 | { |
| 1646 | VarBit *arg = PG_GETARG_VARBIT_P(0); |
| 1647 | uint64 result; |
| 1648 | bits8 *r; |
| 1649 | |
| 1650 | /* Check that the bit string is not too long */ |
| 1651 | if (VARBITLEN(arg) > sizeof(result) * BITS_PER_BYTE) |
| 1652 | ereport(ERROR, |
| 1653 | (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), |
| 1654 | errmsg("bigint out of range" ))); |
| 1655 | |
| 1656 | result = 0; |
| 1657 | for (r = VARBITS(arg); r < VARBITEND(arg); r++) |
| 1658 | { |
| 1659 | result <<= BITS_PER_BYTE; |
| 1660 | result |= *r; |
| 1661 | } |
| 1662 | /* Now shift the result to take account of the padding at the end */ |
| 1663 | result >>= VARBITPAD(arg); |
| 1664 | |
| 1665 | PG_RETURN_INT64(result); |
| 1666 | } |
| 1667 | |
| 1668 | |
| 1669 | /* |
| 1670 | * Determines the position of S2 in the bitstring S1 (1-based string). |
| 1671 | * If S2 does not appear in S1 this function returns 0. |
| 1672 | * If S2 is of length 0 this function returns 1. |
| 1673 | * Compatible in usage with POSITION() functions for other data types. |
| 1674 | */ |
| 1675 | Datum |
| 1676 | bitposition(PG_FUNCTION_ARGS) |
| 1677 | { |
| 1678 | VarBit *str = PG_GETARG_VARBIT_P(0); |
| 1679 | VarBit *substr = PG_GETARG_VARBIT_P(1); |
| 1680 | int substr_length, |
| 1681 | str_length, |
| 1682 | i, |
| 1683 | is; |
| 1684 | bits8 *s, /* pointer into substring */ |
| 1685 | *p; /* pointer into str */ |
| 1686 | bits8 cmp, /* shifted substring byte to compare */ |
| 1687 | mask1, /* mask for substring byte shifted right */ |
| 1688 | mask2, /* mask for substring byte shifted left */ |
| 1689 | end_mask, /* pad mask for last substring byte */ |
| 1690 | str_mask; /* pad mask for last string byte */ |
| 1691 | bool is_match; |
| 1692 | |
| 1693 | /* Get the substring length */ |
| 1694 | substr_length = VARBITLEN(substr); |
| 1695 | str_length = VARBITLEN(str); |
| 1696 | |
| 1697 | /* String has zero length or substring longer than string, return 0 */ |
| 1698 | if ((str_length == 0) || (substr_length > str_length)) |
| 1699 | PG_RETURN_INT32(0); |
| 1700 | |
| 1701 | /* zero-length substring means return 1 */ |
| 1702 | if (substr_length == 0) |
| 1703 | PG_RETURN_INT32(1); |
| 1704 | |
| 1705 | /* Initialise the padding masks */ |
| 1706 | end_mask = BITMASK << VARBITPAD(substr); |
| 1707 | str_mask = BITMASK << VARBITPAD(str); |
| 1708 | for (i = 0; i < VARBITBYTES(str) - VARBITBYTES(substr) + 1; i++) |
| 1709 | { |
| 1710 | for (is = 0; is < BITS_PER_BYTE; is++) |
| 1711 | { |
| 1712 | is_match = true; |
| 1713 | p = VARBITS(str) + i; |
| 1714 | mask1 = BITMASK >> is; |
| 1715 | mask2 = ~mask1; |
| 1716 | for (s = VARBITS(substr); |
| 1717 | is_match && s < VARBITEND(substr); s++) |
| 1718 | { |
| 1719 | cmp = *s >> is; |
| 1720 | if (s == VARBITEND(substr) - 1) |
| 1721 | { |
| 1722 | mask1 &= end_mask >> is; |
| 1723 | if (p == VARBITEND(str) - 1) |
| 1724 | { |
| 1725 | /* Check that there is enough of str left */ |
| 1726 | if (mask1 & ~str_mask) |
| 1727 | { |
| 1728 | is_match = false; |
| 1729 | break; |
| 1730 | } |
| 1731 | mask1 &= str_mask; |
| 1732 | } |
| 1733 | } |
| 1734 | is_match = ((cmp ^ *p) & mask1) == 0; |
| 1735 | if (!is_match) |
| 1736 | break; |
| 1737 | /* Move on to the next byte */ |
| 1738 | p++; |
| 1739 | if (p == VARBITEND(str)) |
| 1740 | { |
| 1741 | mask2 = end_mask << (BITS_PER_BYTE - is); |
| 1742 | is_match = mask2 == 0; |
| 1743 | #if 0 |
| 1744 | elog(DEBUG4, "S. %d %d em=%2x sm=%2x r=%d" , |
| 1745 | i, is, end_mask, mask2, is_match); |
| 1746 | #endif |
| 1747 | break; |
| 1748 | } |
| 1749 | cmp = *s << (BITS_PER_BYTE - is); |
| 1750 | if (s == VARBITEND(substr) - 1) |
| 1751 | { |
| 1752 | mask2 &= end_mask << (BITS_PER_BYTE - is); |
| 1753 | if (p == VARBITEND(str) - 1) |
| 1754 | { |
| 1755 | if (mask2 & ~str_mask) |
| 1756 | { |
| 1757 | is_match = false; |
| 1758 | break; |
| 1759 | } |
| 1760 | mask2 &= str_mask; |
| 1761 | } |
| 1762 | } |
| 1763 | is_match = ((cmp ^ *p) & mask2) == 0; |
| 1764 | } |
| 1765 | /* Have we found a match? */ |
| 1766 | if (is_match) |
| 1767 | PG_RETURN_INT32(i * BITS_PER_BYTE + is + 1); |
| 1768 | } |
| 1769 | } |
| 1770 | PG_RETURN_INT32(0); |
| 1771 | } |
| 1772 | |
| 1773 | |
| 1774 | /* |
| 1775 | * bitsetbit |
| 1776 | * |
| 1777 | * Given an instance of type 'bit' creates a new one with |
| 1778 | * the Nth bit set to the given value. |
| 1779 | * |
| 1780 | * The bit location is specified left-to-right in a zero-based fashion |
| 1781 | * consistent with the other get_bit and set_bit functions, but |
| 1782 | * inconsistent with the standard substring, position, overlay functions |
| 1783 | */ |
| 1784 | Datum |
| 1785 | bitsetbit(PG_FUNCTION_ARGS) |
| 1786 | { |
| 1787 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 1788 | int32 n = PG_GETARG_INT32(1); |
| 1789 | int32 newBit = PG_GETARG_INT32(2); |
| 1790 | VarBit *result; |
| 1791 | int len, |
| 1792 | bitlen; |
| 1793 | bits8 *r, |
| 1794 | *p; |
| 1795 | int byteNo, |
| 1796 | bitNo; |
| 1797 | |
| 1798 | bitlen = VARBITLEN(arg1); |
| 1799 | if (n < 0 || n >= bitlen) |
| 1800 | ereport(ERROR, |
| 1801 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 1802 | errmsg("bit index %d out of valid range (0..%d)" , |
| 1803 | n, bitlen - 1))); |
| 1804 | |
| 1805 | /* |
| 1806 | * sanity check! |
| 1807 | */ |
| 1808 | if (newBit != 0 && newBit != 1) |
| 1809 | ereport(ERROR, |
| 1810 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 1811 | errmsg("new bit must be 0 or 1" ))); |
| 1812 | |
| 1813 | len = VARSIZE(arg1); |
| 1814 | result = (VarBit *) palloc(len); |
| 1815 | SET_VARSIZE(result, len); |
| 1816 | VARBITLEN(result) = bitlen; |
| 1817 | |
| 1818 | p = VARBITS(arg1); |
| 1819 | r = VARBITS(result); |
| 1820 | |
| 1821 | memcpy(r, p, VARBITBYTES(arg1)); |
| 1822 | |
| 1823 | byteNo = n / BITS_PER_BYTE; |
| 1824 | bitNo = BITS_PER_BYTE - 1 - (n % BITS_PER_BYTE); |
| 1825 | |
| 1826 | /* |
| 1827 | * Update the byte. |
| 1828 | */ |
| 1829 | if (newBit == 0) |
| 1830 | r[byteNo] &= (~(1 << bitNo)); |
| 1831 | else |
| 1832 | r[byteNo] |= (1 << bitNo); |
| 1833 | |
| 1834 | PG_RETURN_VARBIT_P(result); |
| 1835 | } |
| 1836 | |
| 1837 | /* |
| 1838 | * bitgetbit |
| 1839 | * |
| 1840 | * returns the value of the Nth bit of a bit array (0 or 1). |
| 1841 | * |
| 1842 | * The bit location is specified left-to-right in a zero-based fashion |
| 1843 | * consistent with the other get_bit and set_bit functions, but |
| 1844 | * inconsistent with the standard substring, position, overlay functions |
| 1845 | */ |
| 1846 | Datum |
| 1847 | bitgetbit(PG_FUNCTION_ARGS) |
| 1848 | { |
| 1849 | VarBit *arg1 = PG_GETARG_VARBIT_P(0); |
| 1850 | int32 n = PG_GETARG_INT32(1); |
| 1851 | int bitlen; |
| 1852 | bits8 *p; |
| 1853 | int byteNo, |
| 1854 | bitNo; |
| 1855 | |
| 1856 | bitlen = VARBITLEN(arg1); |
| 1857 | if (n < 0 || n >= bitlen) |
| 1858 | ereport(ERROR, |
| 1859 | (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| 1860 | errmsg("bit index %d out of valid range (0..%d)" , |
| 1861 | n, bitlen - 1))); |
| 1862 | |
| 1863 | p = VARBITS(arg1); |
| 1864 | |
| 1865 | byteNo = n / BITS_PER_BYTE; |
| 1866 | bitNo = BITS_PER_BYTE - 1 - (n % BITS_PER_BYTE); |
| 1867 | |
| 1868 | if (p[byteNo] & (1 << bitNo)) |
| 1869 | PG_RETURN_INT32(1); |
| 1870 | else |
| 1871 | PG_RETURN_INT32(0); |
| 1872 | } |
| 1873 | |