1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include "qemu/osdep.h"
17#include <sys/ioctl.h>
18
19#include <linux/kvm.h>
20
21#include "qemu/atomic.h"
22#include "qemu/option.h"
23#include "qemu/config-file.h"
24#include "qemu/error-report.h"
25#include "qapi/error.h"
26#include "hw/pci/msi.h"
27#include "hw/pci/msix.h"
28#include "hw/s390x/adapter.h"
29#include "exec/gdbstub.h"
30#include "sysemu/kvm_int.h"
31#include "sysemu/runstate.h"
32#include "sysemu/cpus.h"
33#include "sysemu/sysemu.h"
34#include "qemu/bswap.h"
35#include "exec/memory.h"
36#include "exec/ram_addr.h"
37#include "exec/address-spaces.h"
38#include "qemu/event_notifier.h"
39#include "qemu/main-loop.h"
40#include "trace.h"
41#include "hw/irq.h"
42#include "sysemu/sev.h"
43#include "sysemu/balloon.h"
44
45#include "hw/boards.h"
46
47/* This check must be after config-host.h is included */
48#ifdef CONFIG_EVENTFD
49#include <sys/eventfd.h>
50#endif
51
52/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53 * need to use the real host PAGE_SIZE, as that's what KVM will use.
54 */
55#define PAGE_SIZE getpagesize()
56
57//#define DEBUG_KVM
58
59#ifdef DEBUG_KVM
60#define DPRINTF(fmt, ...) \
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
62#else
63#define DPRINTF(fmt, ...) \
64 do { } while (0)
65#endif
66
67#define KVM_MSI_HASHTAB_SIZE 256
68
69struct KVMParkedVcpu {
70 unsigned long vcpu_id;
71 int kvm_fd;
72 QLIST_ENTRY(KVMParkedVcpu) node;
73};
74
75struct KVMState
76{
77 AccelState parent_obj;
78
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 int coalesced_pio;
84 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
85 bool coalesced_flush_in_progress;
86 int vcpu_events;
87 int robust_singlestep;
88 int debugregs;
89#ifdef KVM_CAP_SET_GUEST_DEBUG
90 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
91#endif
92 int max_nested_state_len;
93 int many_ioeventfds;
94 int intx_set_mask;
95 bool sync_mmu;
96 bool manual_dirty_log_protect;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 GHashTable *gsimap;
103#ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing *irq_routes;
105 int nr_allocated_irq_routes;
106 unsigned long *used_gsi_bitmap;
107 unsigned int gsi_count;
108 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
109#endif
110 KVMMemoryListener memory_listener;
111 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
112
113 /* memory encryption */
114 void *memcrypt_handle;
115 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
116
117 /* For "info mtree -f" to tell if an MR is registered in KVM */
118 int nr_as;
119 struct KVMAs {
120 KVMMemoryListener *ml;
121 AddressSpace *as;
122 } *as;
123};
124
125KVMState *kvm_state;
126bool kvm_kernel_irqchip;
127bool kvm_split_irqchip;
128bool kvm_async_interrupts_allowed;
129bool kvm_halt_in_kernel_allowed;
130bool kvm_eventfds_allowed;
131bool kvm_irqfds_allowed;
132bool kvm_resamplefds_allowed;
133bool kvm_msi_via_irqfd_allowed;
134bool kvm_gsi_routing_allowed;
135bool kvm_gsi_direct_mapping;
136bool kvm_allowed;
137bool kvm_readonly_mem_allowed;
138bool kvm_vm_attributes_allowed;
139bool kvm_direct_msi_allowed;
140bool kvm_ioeventfd_any_length_allowed;
141bool kvm_msi_use_devid;
142static bool kvm_immediate_exit;
143
144static const KVMCapabilityInfo kvm_required_capabilites[] = {
145 KVM_CAP_INFO(USER_MEMORY),
146 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
147 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
148 KVM_CAP_LAST_INFO
149};
150
151#define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
152#define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
153
154int kvm_get_max_memslots(void)
155{
156 KVMState *s = KVM_STATE(current_machine->accelerator);
157
158 return s->nr_slots;
159}
160
161bool kvm_memcrypt_enabled(void)
162{
163 if (kvm_state && kvm_state->memcrypt_handle) {
164 return true;
165 }
166
167 return false;
168}
169
170int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
171{
172 if (kvm_state->memcrypt_handle &&
173 kvm_state->memcrypt_encrypt_data) {
174 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
175 ptr, len);
176 }
177
178 return 1;
179}
180
181/* Called with KVMMemoryListener.slots_lock held */
182static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
183{
184 KVMState *s = kvm_state;
185 int i;
186
187 for (i = 0; i < s->nr_slots; i++) {
188 if (kml->slots[i].memory_size == 0) {
189 return &kml->slots[i];
190 }
191 }
192
193 return NULL;
194}
195
196bool kvm_has_free_slot(MachineState *ms)
197{
198 KVMState *s = KVM_STATE(ms->accelerator);
199 bool result;
200 KVMMemoryListener *kml = &s->memory_listener;
201
202 kvm_slots_lock(kml);
203 result = !!kvm_get_free_slot(kml);
204 kvm_slots_unlock(kml);
205
206 return result;
207}
208
209/* Called with KVMMemoryListener.slots_lock held */
210static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
211{
212 KVMSlot *slot = kvm_get_free_slot(kml);
213
214 if (slot) {
215 return slot;
216 }
217
218 fprintf(stderr, "%s: no free slot available\n", __func__);
219 abort();
220}
221
222static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
223 hwaddr start_addr,
224 hwaddr size)
225{
226 KVMState *s = kvm_state;
227 int i;
228
229 for (i = 0; i < s->nr_slots; i++) {
230 KVMSlot *mem = &kml->slots[i];
231
232 if (start_addr == mem->start_addr && size == mem->memory_size) {
233 return mem;
234 }
235 }
236
237 return NULL;
238}
239
240/*
241 * Calculate and align the start address and the size of the section.
242 * Return the size. If the size is 0, the aligned section is empty.
243 */
244static hwaddr kvm_align_section(MemoryRegionSection *section,
245 hwaddr *start)
246{
247 hwaddr size = int128_get64(section->size);
248 hwaddr delta, aligned;
249
250 /* kvm works in page size chunks, but the function may be called
251 with sub-page size and unaligned start address. Pad the start
252 address to next and truncate size to previous page boundary. */
253 aligned = ROUND_UP(section->offset_within_address_space,
254 qemu_real_host_page_size);
255 delta = aligned - section->offset_within_address_space;
256 *start = aligned;
257 if (delta > size) {
258 return 0;
259 }
260
261 return (size - delta) & qemu_real_host_page_mask;
262}
263
264int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
265 hwaddr *phys_addr)
266{
267 KVMMemoryListener *kml = &s->memory_listener;
268 int i, ret = 0;
269
270 kvm_slots_lock(kml);
271 for (i = 0; i < s->nr_slots; i++) {
272 KVMSlot *mem = &kml->slots[i];
273
274 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
275 *phys_addr = mem->start_addr + (ram - mem->ram);
276 ret = 1;
277 break;
278 }
279 }
280 kvm_slots_unlock(kml);
281
282 return ret;
283}
284
285static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
286{
287 KVMState *s = kvm_state;
288 struct kvm_userspace_memory_region mem;
289 int ret;
290
291 mem.slot = slot->slot | (kml->as_id << 16);
292 mem.guest_phys_addr = slot->start_addr;
293 mem.userspace_addr = (unsigned long)slot->ram;
294 mem.flags = slot->flags;
295
296 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
297 /* Set the slot size to 0 before setting the slot to the desired
298 * value. This is needed based on KVM commit 75d61fbc. */
299 mem.memory_size = 0;
300 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
301 }
302 mem.memory_size = slot->memory_size;
303 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
304 slot->old_flags = mem.flags;
305 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
306 mem.memory_size, mem.userspace_addr, ret);
307 return ret;
308}
309
310int kvm_destroy_vcpu(CPUState *cpu)
311{
312 KVMState *s = kvm_state;
313 long mmap_size;
314 struct KVMParkedVcpu *vcpu = NULL;
315 int ret = 0;
316
317 DPRINTF("kvm_destroy_vcpu\n");
318
319 ret = kvm_arch_destroy_vcpu(cpu);
320 if (ret < 0) {
321 goto err;
322 }
323
324 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
325 if (mmap_size < 0) {
326 ret = mmap_size;
327 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
328 goto err;
329 }
330
331 ret = munmap(cpu->kvm_run, mmap_size);
332 if (ret < 0) {
333 goto err;
334 }
335
336 vcpu = g_malloc0(sizeof(*vcpu));
337 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
338 vcpu->kvm_fd = cpu->kvm_fd;
339 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
340err:
341 return ret;
342}
343
344static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
345{
346 struct KVMParkedVcpu *cpu;
347
348 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
349 if (cpu->vcpu_id == vcpu_id) {
350 int kvm_fd;
351
352 QLIST_REMOVE(cpu, node);
353 kvm_fd = cpu->kvm_fd;
354 g_free(cpu);
355 return kvm_fd;
356 }
357 }
358
359 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
360}
361
362int kvm_init_vcpu(CPUState *cpu)
363{
364 KVMState *s = kvm_state;
365 long mmap_size;
366 int ret;
367
368 DPRINTF("kvm_init_vcpu\n");
369
370 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
371 if (ret < 0) {
372 DPRINTF("kvm_create_vcpu failed\n");
373 goto err;
374 }
375
376 cpu->kvm_fd = ret;
377 cpu->kvm_state = s;
378 cpu->vcpu_dirty = true;
379
380 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
381 if (mmap_size < 0) {
382 ret = mmap_size;
383 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
384 goto err;
385 }
386
387 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
388 cpu->kvm_fd, 0);
389 if (cpu->kvm_run == MAP_FAILED) {
390 ret = -errno;
391 DPRINTF("mmap'ing vcpu state failed\n");
392 goto err;
393 }
394
395 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
396 s->coalesced_mmio_ring =
397 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
398 }
399
400 ret = kvm_arch_init_vcpu(cpu);
401err:
402 return ret;
403}
404
405/*
406 * dirty pages logging control
407 */
408
409static int kvm_mem_flags(MemoryRegion *mr)
410{
411 bool readonly = mr->readonly || memory_region_is_romd(mr);
412 int flags = 0;
413
414 if (memory_region_get_dirty_log_mask(mr) != 0) {
415 flags |= KVM_MEM_LOG_DIRTY_PAGES;
416 }
417 if (readonly && kvm_readonly_mem_allowed) {
418 flags |= KVM_MEM_READONLY;
419 }
420 return flags;
421}
422
423/* Called with KVMMemoryListener.slots_lock held */
424static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
425 MemoryRegion *mr)
426{
427 mem->flags = kvm_mem_flags(mr);
428
429 /* If nothing changed effectively, no need to issue ioctl */
430 if (mem->flags == mem->old_flags) {
431 return 0;
432 }
433
434 return kvm_set_user_memory_region(kml, mem, false);
435}
436
437static int kvm_section_update_flags(KVMMemoryListener *kml,
438 MemoryRegionSection *section)
439{
440 hwaddr start_addr, size;
441 KVMSlot *mem;
442 int ret = 0;
443
444 size = kvm_align_section(section, &start_addr);
445 if (!size) {
446 return 0;
447 }
448
449 kvm_slots_lock(kml);
450
451 mem = kvm_lookup_matching_slot(kml, start_addr, size);
452 if (!mem) {
453 /* We don't have a slot if we want to trap every access. */
454 goto out;
455 }
456
457 ret = kvm_slot_update_flags(kml, mem, section->mr);
458
459out:
460 kvm_slots_unlock(kml);
461 return ret;
462}
463
464static void kvm_log_start(MemoryListener *listener,
465 MemoryRegionSection *section,
466 int old, int new)
467{
468 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
469 int r;
470
471 if (old != 0) {
472 return;
473 }
474
475 r = kvm_section_update_flags(kml, section);
476 if (r < 0) {
477 abort();
478 }
479}
480
481static void kvm_log_stop(MemoryListener *listener,
482 MemoryRegionSection *section,
483 int old, int new)
484{
485 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
486 int r;
487
488 if (new != 0) {
489 return;
490 }
491
492 r = kvm_section_update_flags(kml, section);
493 if (r < 0) {
494 abort();
495 }
496}
497
498/* get kvm's dirty pages bitmap and update qemu's */
499static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
500 unsigned long *bitmap)
501{
502 ram_addr_t start = section->offset_within_region +
503 memory_region_get_ram_addr(section->mr);
504 ram_addr_t pages = int128_get64(section->size) / getpagesize();
505
506 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
507 return 0;
508}
509
510#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
511
512/**
513 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
514 *
515 * This function will first try to fetch dirty bitmap from the kernel,
516 * and then updates qemu's dirty bitmap.
517 *
518 * NOTE: caller must be with kml->slots_lock held.
519 *
520 * @kml: the KVM memory listener object
521 * @section: the memory section to sync the dirty bitmap with
522 */
523static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
524 MemoryRegionSection *section)
525{
526 KVMState *s = kvm_state;
527 struct kvm_dirty_log d = {};
528 KVMSlot *mem;
529 hwaddr start_addr, size;
530 int ret = 0;
531
532 size = kvm_align_section(section, &start_addr);
533 if (size) {
534 mem = kvm_lookup_matching_slot(kml, start_addr, size);
535 if (!mem) {
536 /* We don't have a slot if we want to trap every access. */
537 goto out;
538 }
539
540 /* XXX bad kernel interface alert
541 * For dirty bitmap, kernel allocates array of size aligned to
542 * bits-per-long. But for case when the kernel is 64bits and
543 * the userspace is 32bits, userspace can't align to the same
544 * bits-per-long, since sizeof(long) is different between kernel
545 * and user space. This way, userspace will provide buffer which
546 * may be 4 bytes less than the kernel will use, resulting in
547 * userspace memory corruption (which is not detectable by valgrind
548 * too, in most cases).
549 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
550 * a hope that sizeof(long) won't become >8 any time soon.
551 */
552 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
553 /*HOST_LONG_BITS*/ 64) / 8;
554 if (!mem->dirty_bmap) {
555 /* Allocate on the first log_sync, once and for all */
556 mem->dirty_bmap = g_malloc0(size);
557 }
558
559 d.dirty_bitmap = mem->dirty_bmap;
560 d.slot = mem->slot | (kml->as_id << 16);
561 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
562 DPRINTF("ioctl failed %d\n", errno);
563 ret = -1;
564 goto out;
565 }
566
567 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
568 }
569out:
570 return ret;
571}
572
573/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
574#define KVM_CLEAR_LOG_SHIFT 6
575#define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
576#define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
577
578/**
579 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
580 *
581 * NOTE: this will be a no-op if we haven't enabled manual dirty log
582 * protection in the host kernel because in that case this operation
583 * will be done within log_sync().
584 *
585 * @kml: the kvm memory listener
586 * @section: the memory range to clear dirty bitmap
587 */
588static int kvm_physical_log_clear(KVMMemoryListener *kml,
589 MemoryRegionSection *section)
590{
591 KVMState *s = kvm_state;
592 struct kvm_clear_dirty_log d;
593 uint64_t start, end, bmap_start, start_delta, bmap_npages, size;
594 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
595 KVMSlot *mem = NULL;
596 int ret, i;
597
598 if (!s->manual_dirty_log_protect) {
599 /* No need to do explicit clear */
600 return 0;
601 }
602
603 start = section->offset_within_address_space;
604 size = int128_get64(section->size);
605
606 if (!size) {
607 /* Nothing more we can do... */
608 return 0;
609 }
610
611 kvm_slots_lock(kml);
612
613 /* Find any possible slot that covers the section */
614 for (i = 0; i < s->nr_slots; i++) {
615 mem = &kml->slots[i];
616 if (mem->start_addr <= start &&
617 start + size <= mem->start_addr + mem->memory_size) {
618 break;
619 }
620 }
621
622 /*
623 * We should always find one memslot until this point, otherwise
624 * there could be something wrong from the upper layer
625 */
626 assert(mem && i != s->nr_slots);
627
628 /*
629 * We need to extend either the start or the size or both to
630 * satisfy the KVM interface requirement. Firstly, do the start
631 * page alignment on 64 host pages
632 */
633 bmap_start = (start - mem->start_addr) & KVM_CLEAR_LOG_MASK;
634 start_delta = start - mem->start_addr - bmap_start;
635 bmap_start /= psize;
636
637 /*
638 * The kernel interface has restriction on the size too, that either:
639 *
640 * (1) the size is 64 host pages aligned (just like the start), or
641 * (2) the size fills up until the end of the KVM memslot.
642 */
643 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
644 << KVM_CLEAR_LOG_SHIFT;
645 end = mem->memory_size / psize;
646 if (bmap_npages > end - bmap_start) {
647 bmap_npages = end - bmap_start;
648 }
649 start_delta /= psize;
650
651 /*
652 * Prepare the bitmap to clear dirty bits. Here we must guarantee
653 * that we won't clear any unknown dirty bits otherwise we might
654 * accidentally clear some set bits which are not yet synced from
655 * the kernel into QEMU's bitmap, then we'll lose track of the
656 * guest modifications upon those pages (which can directly lead
657 * to guest data loss or panic after migration).
658 *
659 * Layout of the KVMSlot.dirty_bmap:
660 *
661 * |<-------- bmap_npages -----------..>|
662 * [1]
663 * start_delta size
664 * |----------------|-------------|------------------|------------|
665 * ^ ^ ^ ^
666 * | | | |
667 * start bmap_start (start) end
668 * of memslot of memslot
669 *
670 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
671 */
672
673 assert(bmap_start % BITS_PER_LONG == 0);
674 /* We should never do log_clear before log_sync */
675 assert(mem->dirty_bmap);
676 if (start_delta) {
677 /* Slow path - we need to manipulate a temp bitmap */
678 bmap_clear = bitmap_new(bmap_npages);
679 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
680 bmap_start, start_delta + size / psize);
681 /*
682 * We need to fill the holes at start because that was not
683 * specified by the caller and we extended the bitmap only for
684 * 64 pages alignment
685 */
686 bitmap_clear(bmap_clear, 0, start_delta);
687 d.dirty_bitmap = bmap_clear;
688 } else {
689 /* Fast path - start address aligns well with BITS_PER_LONG */
690 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
691 }
692
693 d.first_page = bmap_start;
694 /* It should never overflow. If it happens, say something */
695 assert(bmap_npages <= UINT32_MAX);
696 d.num_pages = bmap_npages;
697 d.slot = mem->slot | (kml->as_id << 16);
698
699 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
700 ret = -errno;
701 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
702 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
703 __func__, d.slot, (uint64_t)d.first_page,
704 (uint32_t)d.num_pages, ret);
705 } else {
706 ret = 0;
707 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
708 }
709
710 /*
711 * After we have updated the remote dirty bitmap, we update the
712 * cached bitmap as well for the memslot, then if another user
713 * clears the same region we know we shouldn't clear it again on
714 * the remote otherwise it's data loss as well.
715 */
716 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
717 size / psize);
718 /* This handles the NULL case well */
719 g_free(bmap_clear);
720
721 kvm_slots_unlock(kml);
722
723 return ret;
724}
725
726static void kvm_coalesce_mmio_region(MemoryListener *listener,
727 MemoryRegionSection *secion,
728 hwaddr start, hwaddr size)
729{
730 KVMState *s = kvm_state;
731
732 if (s->coalesced_mmio) {
733 struct kvm_coalesced_mmio_zone zone;
734
735 zone.addr = start;
736 zone.size = size;
737 zone.pad = 0;
738
739 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
740 }
741}
742
743static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
744 MemoryRegionSection *secion,
745 hwaddr start, hwaddr size)
746{
747 KVMState *s = kvm_state;
748
749 if (s->coalesced_mmio) {
750 struct kvm_coalesced_mmio_zone zone;
751
752 zone.addr = start;
753 zone.size = size;
754 zone.pad = 0;
755
756 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
757 }
758}
759
760static void kvm_coalesce_pio_add(MemoryListener *listener,
761 MemoryRegionSection *section,
762 hwaddr start, hwaddr size)
763{
764 KVMState *s = kvm_state;
765
766 if (s->coalesced_pio) {
767 struct kvm_coalesced_mmio_zone zone;
768
769 zone.addr = start;
770 zone.size = size;
771 zone.pio = 1;
772
773 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
774 }
775}
776
777static void kvm_coalesce_pio_del(MemoryListener *listener,
778 MemoryRegionSection *section,
779 hwaddr start, hwaddr size)
780{
781 KVMState *s = kvm_state;
782
783 if (s->coalesced_pio) {
784 struct kvm_coalesced_mmio_zone zone;
785
786 zone.addr = start;
787 zone.size = size;
788 zone.pio = 1;
789
790 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
791 }
792}
793
794static MemoryListener kvm_coalesced_pio_listener = {
795 .coalesced_io_add = kvm_coalesce_pio_add,
796 .coalesced_io_del = kvm_coalesce_pio_del,
797};
798
799int kvm_check_extension(KVMState *s, unsigned int extension)
800{
801 int ret;
802
803 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
804 if (ret < 0) {
805 ret = 0;
806 }
807
808 return ret;
809}
810
811int kvm_vm_check_extension(KVMState *s, unsigned int extension)
812{
813 int ret;
814
815 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
816 if (ret < 0) {
817 /* VM wide version not implemented, use global one instead */
818 ret = kvm_check_extension(s, extension);
819 }
820
821 return ret;
822}
823
824static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
825{
826#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
827 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
828 * endianness, but the memory core hands them in target endianness.
829 * For example, PPC is always treated as big-endian even if running
830 * on KVM and on PPC64LE. Correct here.
831 */
832 switch (size) {
833 case 2:
834 val = bswap16(val);
835 break;
836 case 4:
837 val = bswap32(val);
838 break;
839 }
840#endif
841 return val;
842}
843
844static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
845 bool assign, uint32_t size, bool datamatch)
846{
847 int ret;
848 struct kvm_ioeventfd iofd = {
849 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
850 .addr = addr,
851 .len = size,
852 .flags = 0,
853 .fd = fd,
854 };
855
856 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
857 datamatch);
858 if (!kvm_enabled()) {
859 return -ENOSYS;
860 }
861
862 if (datamatch) {
863 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
864 }
865 if (!assign) {
866 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
867 }
868
869 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
870
871 if (ret < 0) {
872 return -errno;
873 }
874
875 return 0;
876}
877
878static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
879 bool assign, uint32_t size, bool datamatch)
880{
881 struct kvm_ioeventfd kick = {
882 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
883 .addr = addr,
884 .flags = KVM_IOEVENTFD_FLAG_PIO,
885 .len = size,
886 .fd = fd,
887 };
888 int r;
889 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
890 if (!kvm_enabled()) {
891 return -ENOSYS;
892 }
893 if (datamatch) {
894 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
895 }
896 if (!assign) {
897 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
898 }
899 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
900 if (r < 0) {
901 return r;
902 }
903 return 0;
904}
905
906
907static int kvm_check_many_ioeventfds(void)
908{
909 /* Userspace can use ioeventfd for io notification. This requires a host
910 * that supports eventfd(2) and an I/O thread; since eventfd does not
911 * support SIGIO it cannot interrupt the vcpu.
912 *
913 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
914 * can avoid creating too many ioeventfds.
915 */
916#if defined(CONFIG_EVENTFD)
917 int ioeventfds[7];
918 int i, ret = 0;
919 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
920 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
921 if (ioeventfds[i] < 0) {
922 break;
923 }
924 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
925 if (ret < 0) {
926 close(ioeventfds[i]);
927 break;
928 }
929 }
930
931 /* Decide whether many devices are supported or not */
932 ret = i == ARRAY_SIZE(ioeventfds);
933
934 while (i-- > 0) {
935 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
936 close(ioeventfds[i]);
937 }
938 return ret;
939#else
940 return 0;
941#endif
942}
943
944static const KVMCapabilityInfo *
945kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
946{
947 while (list->name) {
948 if (!kvm_check_extension(s, list->value)) {
949 return list;
950 }
951 list++;
952 }
953 return NULL;
954}
955
956static void kvm_set_phys_mem(KVMMemoryListener *kml,
957 MemoryRegionSection *section, bool add)
958{
959 KVMSlot *mem;
960 int err;
961 MemoryRegion *mr = section->mr;
962 bool writeable = !mr->readonly && !mr->rom_device;
963 hwaddr start_addr, size;
964 void *ram;
965
966 if (!memory_region_is_ram(mr)) {
967 if (writeable || !kvm_readonly_mem_allowed) {
968 return;
969 } else if (!mr->romd_mode) {
970 /* If the memory device is not in romd_mode, then we actually want
971 * to remove the kvm memory slot so all accesses will trap. */
972 add = false;
973 }
974 }
975
976 size = kvm_align_section(section, &start_addr);
977 if (!size) {
978 return;
979 }
980
981 /* use aligned delta to align the ram address */
982 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
983 (start_addr - section->offset_within_address_space);
984
985 kvm_slots_lock(kml);
986
987 if (!add) {
988 mem = kvm_lookup_matching_slot(kml, start_addr, size);
989 if (!mem) {
990 goto out;
991 }
992 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
993 kvm_physical_sync_dirty_bitmap(kml, section);
994 }
995
996 /* unregister the slot */
997 g_free(mem->dirty_bmap);
998 mem->dirty_bmap = NULL;
999 mem->memory_size = 0;
1000 mem->flags = 0;
1001 err = kvm_set_user_memory_region(kml, mem, false);
1002 if (err) {
1003 fprintf(stderr, "%s: error unregistering slot: %s\n",
1004 __func__, strerror(-err));
1005 abort();
1006 }
1007 goto out;
1008 }
1009
1010 /* register the new slot */
1011 mem = kvm_alloc_slot(kml);
1012 mem->memory_size = size;
1013 mem->start_addr = start_addr;
1014 mem->ram = ram;
1015 mem->flags = kvm_mem_flags(mr);
1016
1017 err = kvm_set_user_memory_region(kml, mem, true);
1018 if (err) {
1019 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1020 strerror(-err));
1021 abort();
1022 }
1023
1024out:
1025 kvm_slots_unlock(kml);
1026}
1027
1028static void kvm_region_add(MemoryListener *listener,
1029 MemoryRegionSection *section)
1030{
1031 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1032
1033 memory_region_ref(section->mr);
1034 kvm_set_phys_mem(kml, section, true);
1035}
1036
1037static void kvm_region_del(MemoryListener *listener,
1038 MemoryRegionSection *section)
1039{
1040 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1041
1042 kvm_set_phys_mem(kml, section, false);
1043 memory_region_unref(section->mr);
1044}
1045
1046static void kvm_log_sync(MemoryListener *listener,
1047 MemoryRegionSection *section)
1048{
1049 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1050 int r;
1051
1052 kvm_slots_lock(kml);
1053 r = kvm_physical_sync_dirty_bitmap(kml, section);
1054 kvm_slots_unlock(kml);
1055 if (r < 0) {
1056 abort();
1057 }
1058}
1059
1060static void kvm_log_clear(MemoryListener *listener,
1061 MemoryRegionSection *section)
1062{
1063 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1064 int r;
1065
1066 r = kvm_physical_log_clear(kml, section);
1067 if (r < 0) {
1068 error_report_once("%s: kvm log clear failed: mr=%s "
1069 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1070 section->mr->name, section->offset_within_region,
1071 int128_get64(section->size));
1072 abort();
1073 }
1074}
1075
1076static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1077 MemoryRegionSection *section,
1078 bool match_data, uint64_t data,
1079 EventNotifier *e)
1080{
1081 int fd = event_notifier_get_fd(e);
1082 int r;
1083
1084 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1085 data, true, int128_get64(section->size),
1086 match_data);
1087 if (r < 0) {
1088 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1089 __func__, strerror(-r), -r);
1090 abort();
1091 }
1092}
1093
1094static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1095 MemoryRegionSection *section,
1096 bool match_data, uint64_t data,
1097 EventNotifier *e)
1098{
1099 int fd = event_notifier_get_fd(e);
1100 int r;
1101
1102 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1103 data, false, int128_get64(section->size),
1104 match_data);
1105 if (r < 0) {
1106 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1107 __func__, strerror(-r), -r);
1108 abort();
1109 }
1110}
1111
1112static void kvm_io_ioeventfd_add(MemoryListener *listener,
1113 MemoryRegionSection *section,
1114 bool match_data, uint64_t data,
1115 EventNotifier *e)
1116{
1117 int fd = event_notifier_get_fd(e);
1118 int r;
1119
1120 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1121 data, true, int128_get64(section->size),
1122 match_data);
1123 if (r < 0) {
1124 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1125 __func__, strerror(-r), -r);
1126 abort();
1127 }
1128}
1129
1130static void kvm_io_ioeventfd_del(MemoryListener *listener,
1131 MemoryRegionSection *section,
1132 bool match_data, uint64_t data,
1133 EventNotifier *e)
1134
1135{
1136 int fd = event_notifier_get_fd(e);
1137 int r;
1138
1139 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1140 data, false, int128_get64(section->size),
1141 match_data);
1142 if (r < 0) {
1143 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1144 __func__, strerror(-r), -r);
1145 abort();
1146 }
1147}
1148
1149void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1150 AddressSpace *as, int as_id)
1151{
1152 int i;
1153
1154 qemu_mutex_init(&kml->slots_lock);
1155 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1156 kml->as_id = as_id;
1157
1158 for (i = 0; i < s->nr_slots; i++) {
1159 kml->slots[i].slot = i;
1160 }
1161
1162 kml->listener.region_add = kvm_region_add;
1163 kml->listener.region_del = kvm_region_del;
1164 kml->listener.log_start = kvm_log_start;
1165 kml->listener.log_stop = kvm_log_stop;
1166 kml->listener.log_sync = kvm_log_sync;
1167 kml->listener.log_clear = kvm_log_clear;
1168 kml->listener.priority = 10;
1169
1170 memory_listener_register(&kml->listener, as);
1171
1172 for (i = 0; i < s->nr_as; ++i) {
1173 if (!s->as[i].as) {
1174 s->as[i].as = as;
1175 s->as[i].ml = kml;
1176 break;
1177 }
1178 }
1179}
1180
1181static MemoryListener kvm_io_listener = {
1182 .eventfd_add = kvm_io_ioeventfd_add,
1183 .eventfd_del = kvm_io_ioeventfd_del,
1184 .priority = 10,
1185};
1186
1187int kvm_set_irq(KVMState *s, int irq, int level)
1188{
1189 struct kvm_irq_level event;
1190 int ret;
1191
1192 assert(kvm_async_interrupts_enabled());
1193
1194 event.level = level;
1195 event.irq = irq;
1196 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1197 if (ret < 0) {
1198 perror("kvm_set_irq");
1199 abort();
1200 }
1201
1202 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1203}
1204
1205#ifdef KVM_CAP_IRQ_ROUTING
1206typedef struct KVMMSIRoute {
1207 struct kvm_irq_routing_entry kroute;
1208 QTAILQ_ENTRY(KVMMSIRoute) entry;
1209} KVMMSIRoute;
1210
1211static void set_gsi(KVMState *s, unsigned int gsi)
1212{
1213 set_bit(gsi, s->used_gsi_bitmap);
1214}
1215
1216static void clear_gsi(KVMState *s, unsigned int gsi)
1217{
1218 clear_bit(gsi, s->used_gsi_bitmap);
1219}
1220
1221void kvm_init_irq_routing(KVMState *s)
1222{
1223 int gsi_count, i;
1224
1225 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1226 if (gsi_count > 0) {
1227 /* Round up so we can search ints using ffs */
1228 s->used_gsi_bitmap = bitmap_new(gsi_count);
1229 s->gsi_count = gsi_count;
1230 }
1231
1232 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1233 s->nr_allocated_irq_routes = 0;
1234
1235 if (!kvm_direct_msi_allowed) {
1236 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1237 QTAILQ_INIT(&s->msi_hashtab[i]);
1238 }
1239 }
1240
1241 kvm_arch_init_irq_routing(s);
1242}
1243
1244void kvm_irqchip_commit_routes(KVMState *s)
1245{
1246 int ret;
1247
1248 if (kvm_gsi_direct_mapping()) {
1249 return;
1250 }
1251
1252 if (!kvm_gsi_routing_enabled()) {
1253 return;
1254 }
1255
1256 s->irq_routes->flags = 0;
1257 trace_kvm_irqchip_commit_routes();
1258 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1259 assert(ret == 0);
1260}
1261
1262static void kvm_add_routing_entry(KVMState *s,
1263 struct kvm_irq_routing_entry *entry)
1264{
1265 struct kvm_irq_routing_entry *new;
1266 int n, size;
1267
1268 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1269 n = s->nr_allocated_irq_routes * 2;
1270 if (n < 64) {
1271 n = 64;
1272 }
1273 size = sizeof(struct kvm_irq_routing);
1274 size += n * sizeof(*new);
1275 s->irq_routes = g_realloc(s->irq_routes, size);
1276 s->nr_allocated_irq_routes = n;
1277 }
1278 n = s->irq_routes->nr++;
1279 new = &s->irq_routes->entries[n];
1280
1281 *new = *entry;
1282
1283 set_gsi(s, entry->gsi);
1284}
1285
1286static int kvm_update_routing_entry(KVMState *s,
1287 struct kvm_irq_routing_entry *new_entry)
1288{
1289 struct kvm_irq_routing_entry *entry;
1290 int n;
1291
1292 for (n = 0; n < s->irq_routes->nr; n++) {
1293 entry = &s->irq_routes->entries[n];
1294 if (entry->gsi != new_entry->gsi) {
1295 continue;
1296 }
1297
1298 if(!memcmp(entry, new_entry, sizeof *entry)) {
1299 return 0;
1300 }
1301
1302 *entry = *new_entry;
1303
1304 return 0;
1305 }
1306
1307 return -ESRCH;
1308}
1309
1310void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1311{
1312 struct kvm_irq_routing_entry e = {};
1313
1314 assert(pin < s->gsi_count);
1315
1316 e.gsi = irq;
1317 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1318 e.flags = 0;
1319 e.u.irqchip.irqchip = irqchip;
1320 e.u.irqchip.pin = pin;
1321 kvm_add_routing_entry(s, &e);
1322}
1323
1324void kvm_irqchip_release_virq(KVMState *s, int virq)
1325{
1326 struct kvm_irq_routing_entry *e;
1327 int i;
1328
1329 if (kvm_gsi_direct_mapping()) {
1330 return;
1331 }
1332
1333 for (i = 0; i < s->irq_routes->nr; i++) {
1334 e = &s->irq_routes->entries[i];
1335 if (e->gsi == virq) {
1336 s->irq_routes->nr--;
1337 *e = s->irq_routes->entries[s->irq_routes->nr];
1338 }
1339 }
1340 clear_gsi(s, virq);
1341 kvm_arch_release_virq_post(virq);
1342 trace_kvm_irqchip_release_virq(virq);
1343}
1344
1345static unsigned int kvm_hash_msi(uint32_t data)
1346{
1347 /* This is optimized for IA32 MSI layout. However, no other arch shall
1348 * repeat the mistake of not providing a direct MSI injection API. */
1349 return data & 0xff;
1350}
1351
1352static void kvm_flush_dynamic_msi_routes(KVMState *s)
1353{
1354 KVMMSIRoute *route, *next;
1355 unsigned int hash;
1356
1357 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1358 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1359 kvm_irqchip_release_virq(s, route->kroute.gsi);
1360 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1361 g_free(route);
1362 }
1363 }
1364}
1365
1366static int kvm_irqchip_get_virq(KVMState *s)
1367{
1368 int next_virq;
1369
1370 /*
1371 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1372 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1373 * number can succeed even though a new route entry cannot be added.
1374 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1375 */
1376 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1377 kvm_flush_dynamic_msi_routes(s);
1378 }
1379
1380 /* Return the lowest unused GSI in the bitmap */
1381 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1382 if (next_virq >= s->gsi_count) {
1383 return -ENOSPC;
1384 } else {
1385 return next_virq;
1386 }
1387}
1388
1389static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1390{
1391 unsigned int hash = kvm_hash_msi(msg.data);
1392 KVMMSIRoute *route;
1393
1394 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1395 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1396 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1397 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1398 return route;
1399 }
1400 }
1401 return NULL;
1402}
1403
1404int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1405{
1406 struct kvm_msi msi;
1407 KVMMSIRoute *route;
1408
1409 if (kvm_direct_msi_allowed) {
1410 msi.address_lo = (uint32_t)msg.address;
1411 msi.address_hi = msg.address >> 32;
1412 msi.data = le32_to_cpu(msg.data);
1413 msi.flags = 0;
1414 memset(msi.pad, 0, sizeof(msi.pad));
1415
1416 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1417 }
1418
1419 route = kvm_lookup_msi_route(s, msg);
1420 if (!route) {
1421 int virq;
1422
1423 virq = kvm_irqchip_get_virq(s);
1424 if (virq < 0) {
1425 return virq;
1426 }
1427
1428 route = g_malloc0(sizeof(KVMMSIRoute));
1429 route->kroute.gsi = virq;
1430 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1431 route->kroute.flags = 0;
1432 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1433 route->kroute.u.msi.address_hi = msg.address >> 32;
1434 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1435
1436 kvm_add_routing_entry(s, &route->kroute);
1437 kvm_irqchip_commit_routes(s);
1438
1439 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1440 entry);
1441 }
1442
1443 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1444
1445 return kvm_set_irq(s, route->kroute.gsi, 1);
1446}
1447
1448int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1449{
1450 struct kvm_irq_routing_entry kroute = {};
1451 int virq;
1452 MSIMessage msg = {0, 0};
1453
1454 if (pci_available && dev) {
1455 msg = pci_get_msi_message(dev, vector);
1456 }
1457
1458 if (kvm_gsi_direct_mapping()) {
1459 return kvm_arch_msi_data_to_gsi(msg.data);
1460 }
1461
1462 if (!kvm_gsi_routing_enabled()) {
1463 return -ENOSYS;
1464 }
1465
1466 virq = kvm_irqchip_get_virq(s);
1467 if (virq < 0) {
1468 return virq;
1469 }
1470
1471 kroute.gsi = virq;
1472 kroute.type = KVM_IRQ_ROUTING_MSI;
1473 kroute.flags = 0;
1474 kroute.u.msi.address_lo = (uint32_t)msg.address;
1475 kroute.u.msi.address_hi = msg.address >> 32;
1476 kroute.u.msi.data = le32_to_cpu(msg.data);
1477 if (pci_available && kvm_msi_devid_required()) {
1478 kroute.flags = KVM_MSI_VALID_DEVID;
1479 kroute.u.msi.devid = pci_requester_id(dev);
1480 }
1481 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1482 kvm_irqchip_release_virq(s, virq);
1483 return -EINVAL;
1484 }
1485
1486 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1487 vector, virq);
1488
1489 kvm_add_routing_entry(s, &kroute);
1490 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1491 kvm_irqchip_commit_routes(s);
1492
1493 return virq;
1494}
1495
1496int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1497 PCIDevice *dev)
1498{
1499 struct kvm_irq_routing_entry kroute = {};
1500
1501 if (kvm_gsi_direct_mapping()) {
1502 return 0;
1503 }
1504
1505 if (!kvm_irqchip_in_kernel()) {
1506 return -ENOSYS;
1507 }
1508
1509 kroute.gsi = virq;
1510 kroute.type = KVM_IRQ_ROUTING_MSI;
1511 kroute.flags = 0;
1512 kroute.u.msi.address_lo = (uint32_t)msg.address;
1513 kroute.u.msi.address_hi = msg.address >> 32;
1514 kroute.u.msi.data = le32_to_cpu(msg.data);
1515 if (pci_available && kvm_msi_devid_required()) {
1516 kroute.flags = KVM_MSI_VALID_DEVID;
1517 kroute.u.msi.devid = pci_requester_id(dev);
1518 }
1519 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1520 return -EINVAL;
1521 }
1522
1523 trace_kvm_irqchip_update_msi_route(virq);
1524
1525 return kvm_update_routing_entry(s, &kroute);
1526}
1527
1528static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1529 bool assign)
1530{
1531 struct kvm_irqfd irqfd = {
1532 .fd = fd,
1533 .gsi = virq,
1534 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1535 };
1536
1537 if (rfd != -1) {
1538 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1539 irqfd.resamplefd = rfd;
1540 }
1541
1542 if (!kvm_irqfds_enabled()) {
1543 return -ENOSYS;
1544 }
1545
1546 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1547}
1548
1549int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1550{
1551 struct kvm_irq_routing_entry kroute = {};
1552 int virq;
1553
1554 if (!kvm_gsi_routing_enabled()) {
1555 return -ENOSYS;
1556 }
1557
1558 virq = kvm_irqchip_get_virq(s);
1559 if (virq < 0) {
1560 return virq;
1561 }
1562
1563 kroute.gsi = virq;
1564 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1565 kroute.flags = 0;
1566 kroute.u.adapter.summary_addr = adapter->summary_addr;
1567 kroute.u.adapter.ind_addr = adapter->ind_addr;
1568 kroute.u.adapter.summary_offset = adapter->summary_offset;
1569 kroute.u.adapter.ind_offset = adapter->ind_offset;
1570 kroute.u.adapter.adapter_id = adapter->adapter_id;
1571
1572 kvm_add_routing_entry(s, &kroute);
1573
1574 return virq;
1575}
1576
1577int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1578{
1579 struct kvm_irq_routing_entry kroute = {};
1580 int virq;
1581
1582 if (!kvm_gsi_routing_enabled()) {
1583 return -ENOSYS;
1584 }
1585 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1586 return -ENOSYS;
1587 }
1588 virq = kvm_irqchip_get_virq(s);
1589 if (virq < 0) {
1590 return virq;
1591 }
1592
1593 kroute.gsi = virq;
1594 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1595 kroute.flags = 0;
1596 kroute.u.hv_sint.vcpu = vcpu;
1597 kroute.u.hv_sint.sint = sint;
1598
1599 kvm_add_routing_entry(s, &kroute);
1600 kvm_irqchip_commit_routes(s);
1601
1602 return virq;
1603}
1604
1605#else /* !KVM_CAP_IRQ_ROUTING */
1606
1607void kvm_init_irq_routing(KVMState *s)
1608{
1609}
1610
1611void kvm_irqchip_release_virq(KVMState *s, int virq)
1612{
1613}
1614
1615int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1616{
1617 abort();
1618}
1619
1620int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1621{
1622 return -ENOSYS;
1623}
1624
1625int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1626{
1627 return -ENOSYS;
1628}
1629
1630int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1631{
1632 return -ENOSYS;
1633}
1634
1635static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1636{
1637 abort();
1638}
1639
1640int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1641{
1642 return -ENOSYS;
1643}
1644#endif /* !KVM_CAP_IRQ_ROUTING */
1645
1646int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1647 EventNotifier *rn, int virq)
1648{
1649 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1650 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1651}
1652
1653int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1654 int virq)
1655{
1656 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1657 false);
1658}
1659
1660int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1661 EventNotifier *rn, qemu_irq irq)
1662{
1663 gpointer key, gsi;
1664 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1665
1666 if (!found) {
1667 return -ENXIO;
1668 }
1669 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1670}
1671
1672int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1673 qemu_irq irq)
1674{
1675 gpointer key, gsi;
1676 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1677
1678 if (!found) {
1679 return -ENXIO;
1680 }
1681 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1682}
1683
1684void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1685{
1686 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1687}
1688
1689static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1690{
1691 int ret;
1692
1693 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1694 ;
1695 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1696 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1697 if (ret < 0) {
1698 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1699 exit(1);
1700 }
1701 } else {
1702 return;
1703 }
1704
1705 /* First probe and see if there's a arch-specific hook to create the
1706 * in-kernel irqchip for us */
1707 ret = kvm_arch_irqchip_create(machine, s);
1708 if (ret == 0) {
1709 if (machine_kernel_irqchip_split(machine)) {
1710 perror("Split IRQ chip mode not supported.");
1711 exit(1);
1712 } else {
1713 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1714 }
1715 }
1716 if (ret < 0) {
1717 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1718 exit(1);
1719 }
1720
1721 kvm_kernel_irqchip = true;
1722 /* If we have an in-kernel IRQ chip then we must have asynchronous
1723 * interrupt delivery (though the reverse is not necessarily true)
1724 */
1725 kvm_async_interrupts_allowed = true;
1726 kvm_halt_in_kernel_allowed = true;
1727
1728 kvm_init_irq_routing(s);
1729
1730 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1731}
1732
1733/* Find number of supported CPUs using the recommended
1734 * procedure from the kernel API documentation to cope with
1735 * older kernels that may be missing capabilities.
1736 */
1737static int kvm_recommended_vcpus(KVMState *s)
1738{
1739 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1740 return (ret) ? ret : 4;
1741}
1742
1743static int kvm_max_vcpus(KVMState *s)
1744{
1745 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1746 return (ret) ? ret : kvm_recommended_vcpus(s);
1747}
1748
1749static int kvm_max_vcpu_id(KVMState *s)
1750{
1751 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1752 return (ret) ? ret : kvm_max_vcpus(s);
1753}
1754
1755bool kvm_vcpu_id_is_valid(int vcpu_id)
1756{
1757 KVMState *s = KVM_STATE(current_machine->accelerator);
1758 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1759}
1760
1761static int kvm_init(MachineState *ms)
1762{
1763 MachineClass *mc = MACHINE_GET_CLASS(ms);
1764 static const char upgrade_note[] =
1765 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1766 "(see http://sourceforge.net/projects/kvm).\n";
1767 struct {
1768 const char *name;
1769 int num;
1770 } num_cpus[] = {
1771 { "SMP", ms->smp.cpus },
1772 { "hotpluggable", ms->smp.max_cpus },
1773 { NULL, }
1774 }, *nc = num_cpus;
1775 int soft_vcpus_limit, hard_vcpus_limit;
1776 KVMState *s;
1777 const KVMCapabilityInfo *missing_cap;
1778 int ret;
1779 int type = 0;
1780 const char *kvm_type;
1781
1782 s = KVM_STATE(ms->accelerator);
1783
1784 /*
1785 * On systems where the kernel can support different base page
1786 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1787 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1788 * page size for the system though.
1789 */
1790 assert(TARGET_PAGE_SIZE <= getpagesize());
1791
1792 s->sigmask_len = 8;
1793
1794#ifdef KVM_CAP_SET_GUEST_DEBUG
1795 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1796#endif
1797 QLIST_INIT(&s->kvm_parked_vcpus);
1798 s->vmfd = -1;
1799 s->fd = qemu_open("/dev/kvm", O_RDWR);
1800 if (s->fd == -1) {
1801 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1802 ret = -errno;
1803 goto err;
1804 }
1805
1806 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1807 if (ret < KVM_API_VERSION) {
1808 if (ret >= 0) {
1809 ret = -EINVAL;
1810 }
1811 fprintf(stderr, "kvm version too old\n");
1812 goto err;
1813 }
1814
1815 if (ret > KVM_API_VERSION) {
1816 ret = -EINVAL;
1817 fprintf(stderr, "kvm version not supported\n");
1818 goto err;
1819 }
1820
1821 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1822 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1823
1824 /* If unspecified, use the default value */
1825 if (!s->nr_slots) {
1826 s->nr_slots = 32;
1827 }
1828
1829 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
1830 if (s->nr_as <= 1) {
1831 s->nr_as = 1;
1832 }
1833 s->as = g_new0(struct KVMAs, s->nr_as);
1834
1835 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1836 if (mc->kvm_type) {
1837 type = mc->kvm_type(ms, kvm_type);
1838 } else if (kvm_type) {
1839 ret = -EINVAL;
1840 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1841 goto err;
1842 }
1843
1844 do {
1845 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1846 } while (ret == -EINTR);
1847
1848 if (ret < 0) {
1849 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1850 strerror(-ret));
1851
1852#ifdef TARGET_S390X
1853 if (ret == -EINVAL) {
1854 fprintf(stderr,
1855 "Host kernel setup problem detected. Please verify:\n");
1856 fprintf(stderr, "- for kernels supporting the switch_amode or"
1857 " user_mode parameters, whether\n");
1858 fprintf(stderr,
1859 " user space is running in primary address space\n");
1860 fprintf(stderr,
1861 "- for kernels supporting the vm.allocate_pgste sysctl, "
1862 "whether it is enabled\n");
1863 }
1864#endif
1865 goto err;
1866 }
1867
1868 s->vmfd = ret;
1869
1870 /* check the vcpu limits */
1871 soft_vcpus_limit = kvm_recommended_vcpus(s);
1872 hard_vcpus_limit = kvm_max_vcpus(s);
1873
1874 while (nc->name) {
1875 if (nc->num > soft_vcpus_limit) {
1876 warn_report("Number of %s cpus requested (%d) exceeds "
1877 "the recommended cpus supported by KVM (%d)",
1878 nc->name, nc->num, soft_vcpus_limit);
1879
1880 if (nc->num > hard_vcpus_limit) {
1881 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1882 "the maximum cpus supported by KVM (%d)\n",
1883 nc->name, nc->num, hard_vcpus_limit);
1884 exit(1);
1885 }
1886 }
1887 nc++;
1888 }
1889
1890 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1891 if (!missing_cap) {
1892 missing_cap =
1893 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1894 }
1895 if (missing_cap) {
1896 ret = -EINVAL;
1897 fprintf(stderr, "kvm does not support %s\n%s",
1898 missing_cap->name, upgrade_note);
1899 goto err;
1900 }
1901
1902 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1903 s->coalesced_pio = s->coalesced_mmio &&
1904 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
1905
1906 s->manual_dirty_log_protect =
1907 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
1908 if (s->manual_dirty_log_protect) {
1909 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 1);
1910 if (ret) {
1911 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1912 "but failed. Falling back to the legacy mode. ");
1913 s->manual_dirty_log_protect = false;
1914 }
1915 }
1916
1917#ifdef KVM_CAP_VCPU_EVENTS
1918 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1919#endif
1920
1921 s->robust_singlestep =
1922 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1923
1924#ifdef KVM_CAP_DEBUGREGS
1925 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1926#endif
1927
1928 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
1929
1930#ifdef KVM_CAP_IRQ_ROUTING
1931 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1932#endif
1933
1934 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1935
1936 s->irq_set_ioctl = KVM_IRQ_LINE;
1937 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1938 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1939 }
1940
1941 kvm_readonly_mem_allowed =
1942 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1943
1944 kvm_eventfds_allowed =
1945 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1946
1947 kvm_irqfds_allowed =
1948 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1949
1950 kvm_resamplefds_allowed =
1951 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1952
1953 kvm_vm_attributes_allowed =
1954 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1955
1956 kvm_ioeventfd_any_length_allowed =
1957 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1958
1959 kvm_state = s;
1960
1961 /*
1962 * if memory encryption object is specified then initialize the memory
1963 * encryption context.
1964 */
1965 if (ms->memory_encryption) {
1966 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
1967 if (!kvm_state->memcrypt_handle) {
1968 ret = -1;
1969 goto err;
1970 }
1971
1972 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
1973 }
1974
1975 ret = kvm_arch_init(ms, s);
1976 if (ret < 0) {
1977 goto err;
1978 }
1979
1980 if (machine_kernel_irqchip_allowed(ms)) {
1981 kvm_irqchip_create(ms, s);
1982 }
1983
1984 if (kvm_eventfds_allowed) {
1985 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1986 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1987 }
1988 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
1989 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
1990
1991 kvm_memory_listener_register(s, &s->memory_listener,
1992 &address_space_memory, 0);
1993 memory_listener_register(&kvm_io_listener,
1994 &address_space_io);
1995 memory_listener_register(&kvm_coalesced_pio_listener,
1996 &address_space_io);
1997
1998 s->many_ioeventfds = kvm_check_many_ioeventfds();
1999
2000 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2001 if (!s->sync_mmu) {
2002 qemu_balloon_inhibit(true);
2003 }
2004
2005 return 0;
2006
2007err:
2008 assert(ret < 0);
2009 if (s->vmfd >= 0) {
2010 close(s->vmfd);
2011 }
2012 if (s->fd != -1) {
2013 close(s->fd);
2014 }
2015 g_free(s->memory_listener.slots);
2016
2017 return ret;
2018}
2019
2020void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2021{
2022 s->sigmask_len = sigmask_len;
2023}
2024
2025static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2026 int size, uint32_t count)
2027{
2028 int i;
2029 uint8_t *ptr = data;
2030
2031 for (i = 0; i < count; i++) {
2032 address_space_rw(&address_space_io, port, attrs,
2033 ptr, size,
2034 direction == KVM_EXIT_IO_OUT);
2035 ptr += size;
2036 }
2037}
2038
2039static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2040{
2041 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2042 run->internal.suberror);
2043
2044 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2045 int i;
2046
2047 for (i = 0; i < run->internal.ndata; ++i) {
2048 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2049 i, (uint64_t)run->internal.data[i]);
2050 }
2051 }
2052 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2053 fprintf(stderr, "emulation failure\n");
2054 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2055 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2056 return EXCP_INTERRUPT;
2057 }
2058 }
2059 /* FIXME: Should trigger a qmp message to let management know
2060 * something went wrong.
2061 */
2062 return -1;
2063}
2064
2065void kvm_flush_coalesced_mmio_buffer(void)
2066{
2067 KVMState *s = kvm_state;
2068
2069 if (s->coalesced_flush_in_progress) {
2070 return;
2071 }
2072
2073 s->coalesced_flush_in_progress = true;
2074
2075 if (s->coalesced_mmio_ring) {
2076 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2077 while (ring->first != ring->last) {
2078 struct kvm_coalesced_mmio *ent;
2079
2080 ent = &ring->coalesced_mmio[ring->first];
2081
2082 if (ent->pio == 1) {
2083 address_space_rw(&address_space_io, ent->phys_addr,
2084 MEMTXATTRS_UNSPECIFIED, ent->data,
2085 ent->len, true);
2086 } else {
2087 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2088 }
2089 smp_wmb();
2090 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2091 }
2092 }
2093
2094 s->coalesced_flush_in_progress = false;
2095}
2096
2097static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2098{
2099 if (!cpu->vcpu_dirty) {
2100 kvm_arch_get_registers(cpu);
2101 cpu->vcpu_dirty = true;
2102 }
2103}
2104
2105void kvm_cpu_synchronize_state(CPUState *cpu)
2106{
2107 if (!cpu->vcpu_dirty) {
2108 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2109 }
2110}
2111
2112static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2113{
2114 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2115 cpu->vcpu_dirty = false;
2116}
2117
2118void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2119{
2120 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2121}
2122
2123static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2124{
2125 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2126 cpu->vcpu_dirty = false;
2127}
2128
2129void kvm_cpu_synchronize_post_init(CPUState *cpu)
2130{
2131 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2132}
2133
2134static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2135{
2136 cpu->vcpu_dirty = true;
2137}
2138
2139void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2140{
2141 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2142}
2143
2144#ifdef KVM_HAVE_MCE_INJECTION
2145static __thread void *pending_sigbus_addr;
2146static __thread int pending_sigbus_code;
2147static __thread bool have_sigbus_pending;
2148#endif
2149
2150static void kvm_cpu_kick(CPUState *cpu)
2151{
2152 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2153}
2154
2155static void kvm_cpu_kick_self(void)
2156{
2157 if (kvm_immediate_exit) {
2158 kvm_cpu_kick(current_cpu);
2159 } else {
2160 qemu_cpu_kick_self();
2161 }
2162}
2163
2164static void kvm_eat_signals(CPUState *cpu)
2165{
2166 struct timespec ts = { 0, 0 };
2167 siginfo_t siginfo;
2168 sigset_t waitset;
2169 sigset_t chkset;
2170 int r;
2171
2172 if (kvm_immediate_exit) {
2173 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2174 /* Write kvm_run->immediate_exit before the cpu->exit_request
2175 * write in kvm_cpu_exec.
2176 */
2177 smp_wmb();
2178 return;
2179 }
2180
2181 sigemptyset(&waitset);
2182 sigaddset(&waitset, SIG_IPI);
2183
2184 do {
2185 r = sigtimedwait(&waitset, &siginfo, &ts);
2186 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2187 perror("sigtimedwait");
2188 exit(1);
2189 }
2190
2191 r = sigpending(&chkset);
2192 if (r == -1) {
2193 perror("sigpending");
2194 exit(1);
2195 }
2196 } while (sigismember(&chkset, SIG_IPI));
2197}
2198
2199int kvm_cpu_exec(CPUState *cpu)
2200{
2201 struct kvm_run *run = cpu->kvm_run;
2202 int ret, run_ret;
2203
2204 DPRINTF("kvm_cpu_exec()\n");
2205
2206 if (kvm_arch_process_async_events(cpu)) {
2207 atomic_set(&cpu->exit_request, 0);
2208 return EXCP_HLT;
2209 }
2210
2211 qemu_mutex_unlock_iothread();
2212 cpu_exec_start(cpu);
2213
2214 do {
2215 MemTxAttrs attrs;
2216
2217 if (cpu->vcpu_dirty) {
2218 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2219 cpu->vcpu_dirty = false;
2220 }
2221
2222 kvm_arch_pre_run(cpu, run);
2223 if (atomic_read(&cpu->exit_request)) {
2224 DPRINTF("interrupt exit requested\n");
2225 /*
2226 * KVM requires us to reenter the kernel after IO exits to complete
2227 * instruction emulation. This self-signal will ensure that we
2228 * leave ASAP again.
2229 */
2230 kvm_cpu_kick_self();
2231 }
2232
2233 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2234 * Matching barrier in kvm_eat_signals.
2235 */
2236 smp_rmb();
2237
2238 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2239
2240 attrs = kvm_arch_post_run(cpu, run);
2241
2242#ifdef KVM_HAVE_MCE_INJECTION
2243 if (unlikely(have_sigbus_pending)) {
2244 qemu_mutex_lock_iothread();
2245 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2246 pending_sigbus_addr);
2247 have_sigbus_pending = false;
2248 qemu_mutex_unlock_iothread();
2249 }
2250#endif
2251
2252 if (run_ret < 0) {
2253 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2254 DPRINTF("io window exit\n");
2255 kvm_eat_signals(cpu);
2256 ret = EXCP_INTERRUPT;
2257 break;
2258 }
2259 fprintf(stderr, "error: kvm run failed %s\n",
2260 strerror(-run_ret));
2261#ifdef TARGET_PPC
2262 if (run_ret == -EBUSY) {
2263 fprintf(stderr,
2264 "This is probably because your SMT is enabled.\n"
2265 "VCPU can only run on primary threads with all "
2266 "secondary threads offline.\n");
2267 }
2268#endif
2269 ret = -1;
2270 break;
2271 }
2272
2273 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2274 switch (run->exit_reason) {
2275 case KVM_EXIT_IO:
2276 DPRINTF("handle_io\n");
2277 /* Called outside BQL */
2278 kvm_handle_io(run->io.port, attrs,
2279 (uint8_t *)run + run->io.data_offset,
2280 run->io.direction,
2281 run->io.size,
2282 run->io.count);
2283 ret = 0;
2284 break;
2285 case KVM_EXIT_MMIO:
2286 DPRINTF("handle_mmio\n");
2287 /* Called outside BQL */
2288 address_space_rw(&address_space_memory,
2289 run->mmio.phys_addr, attrs,
2290 run->mmio.data,
2291 run->mmio.len,
2292 run->mmio.is_write);
2293 ret = 0;
2294 break;
2295 case KVM_EXIT_IRQ_WINDOW_OPEN:
2296 DPRINTF("irq_window_open\n");
2297 ret = EXCP_INTERRUPT;
2298 break;
2299 case KVM_EXIT_SHUTDOWN:
2300 DPRINTF("shutdown\n");
2301 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2302 ret = EXCP_INTERRUPT;
2303 break;
2304 case KVM_EXIT_UNKNOWN:
2305 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2306 (uint64_t)run->hw.hardware_exit_reason);
2307 ret = -1;
2308 break;
2309 case KVM_EXIT_INTERNAL_ERROR:
2310 ret = kvm_handle_internal_error(cpu, run);
2311 break;
2312 case KVM_EXIT_SYSTEM_EVENT:
2313 switch (run->system_event.type) {
2314 case KVM_SYSTEM_EVENT_SHUTDOWN:
2315 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2316 ret = EXCP_INTERRUPT;
2317 break;
2318 case KVM_SYSTEM_EVENT_RESET:
2319 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2320 ret = EXCP_INTERRUPT;
2321 break;
2322 case KVM_SYSTEM_EVENT_CRASH:
2323 kvm_cpu_synchronize_state(cpu);
2324 qemu_mutex_lock_iothread();
2325 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2326 qemu_mutex_unlock_iothread();
2327 ret = 0;
2328 break;
2329 default:
2330 DPRINTF("kvm_arch_handle_exit\n");
2331 ret = kvm_arch_handle_exit(cpu, run);
2332 break;
2333 }
2334 break;
2335 default:
2336 DPRINTF("kvm_arch_handle_exit\n");
2337 ret = kvm_arch_handle_exit(cpu, run);
2338 break;
2339 }
2340 } while (ret == 0);
2341
2342 cpu_exec_end(cpu);
2343 qemu_mutex_lock_iothread();
2344
2345 if (ret < 0) {
2346 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2347 vm_stop(RUN_STATE_INTERNAL_ERROR);
2348 }
2349
2350 atomic_set(&cpu->exit_request, 0);
2351 return ret;
2352}
2353
2354int kvm_ioctl(KVMState *s, int type, ...)
2355{
2356 int ret;
2357 void *arg;
2358 va_list ap;
2359
2360 va_start(ap, type);
2361 arg = va_arg(ap, void *);
2362 va_end(ap);
2363
2364 trace_kvm_ioctl(type, arg);
2365 ret = ioctl(s->fd, type, arg);
2366 if (ret == -1) {
2367 ret = -errno;
2368 }
2369 return ret;
2370}
2371
2372int kvm_vm_ioctl(KVMState *s, int type, ...)
2373{
2374 int ret;
2375 void *arg;
2376 va_list ap;
2377
2378 va_start(ap, type);
2379 arg = va_arg(ap, void *);
2380 va_end(ap);
2381
2382 trace_kvm_vm_ioctl(type, arg);
2383 ret = ioctl(s->vmfd, type, arg);
2384 if (ret == -1) {
2385 ret = -errno;
2386 }
2387 return ret;
2388}
2389
2390int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2391{
2392 int ret;
2393 void *arg;
2394 va_list ap;
2395
2396 va_start(ap, type);
2397 arg = va_arg(ap, void *);
2398 va_end(ap);
2399
2400 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2401 ret = ioctl(cpu->kvm_fd, type, arg);
2402 if (ret == -1) {
2403 ret = -errno;
2404 }
2405 return ret;
2406}
2407
2408int kvm_device_ioctl(int fd, int type, ...)
2409{
2410 int ret;
2411 void *arg;
2412 va_list ap;
2413
2414 va_start(ap, type);
2415 arg = va_arg(ap, void *);
2416 va_end(ap);
2417
2418 trace_kvm_device_ioctl(fd, type, arg);
2419 ret = ioctl(fd, type, arg);
2420 if (ret == -1) {
2421 ret = -errno;
2422 }
2423 return ret;
2424}
2425
2426int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2427{
2428 int ret;
2429 struct kvm_device_attr attribute = {
2430 .group = group,
2431 .attr = attr,
2432 };
2433
2434 if (!kvm_vm_attributes_allowed) {
2435 return 0;
2436 }
2437
2438 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2439 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2440 return ret ? 0 : 1;
2441}
2442
2443int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2444{
2445 struct kvm_device_attr attribute = {
2446 .group = group,
2447 .attr = attr,
2448 .flags = 0,
2449 };
2450
2451 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2452}
2453
2454int kvm_device_access(int fd, int group, uint64_t attr,
2455 void *val, bool write, Error **errp)
2456{
2457 struct kvm_device_attr kvmattr;
2458 int err;
2459
2460 kvmattr.flags = 0;
2461 kvmattr.group = group;
2462 kvmattr.attr = attr;
2463 kvmattr.addr = (uintptr_t)val;
2464
2465 err = kvm_device_ioctl(fd,
2466 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2467 &kvmattr);
2468 if (err < 0) {
2469 error_setg_errno(errp, -err,
2470 "KVM_%s_DEVICE_ATTR failed: Group %d "
2471 "attr 0x%016" PRIx64,
2472 write ? "SET" : "GET", group, attr);
2473 }
2474 return err;
2475}
2476
2477bool kvm_has_sync_mmu(void)
2478{
2479 return kvm_state->sync_mmu;
2480}
2481
2482int kvm_has_vcpu_events(void)
2483{
2484 return kvm_state->vcpu_events;
2485}
2486
2487int kvm_has_robust_singlestep(void)
2488{
2489 return kvm_state->robust_singlestep;
2490}
2491
2492int kvm_has_debugregs(void)
2493{
2494 return kvm_state->debugregs;
2495}
2496
2497int kvm_max_nested_state_length(void)
2498{
2499 return kvm_state->max_nested_state_len;
2500}
2501
2502int kvm_has_many_ioeventfds(void)
2503{
2504 if (!kvm_enabled()) {
2505 return 0;
2506 }
2507 return kvm_state->many_ioeventfds;
2508}
2509
2510int kvm_has_gsi_routing(void)
2511{
2512#ifdef KVM_CAP_IRQ_ROUTING
2513 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2514#else
2515 return false;
2516#endif
2517}
2518
2519int kvm_has_intx_set_mask(void)
2520{
2521 return kvm_state->intx_set_mask;
2522}
2523
2524bool kvm_arm_supports_user_irq(void)
2525{
2526 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2527}
2528
2529#ifdef KVM_CAP_SET_GUEST_DEBUG
2530struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2531 target_ulong pc)
2532{
2533 struct kvm_sw_breakpoint *bp;
2534
2535 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2536 if (bp->pc == pc) {
2537 return bp;
2538 }
2539 }
2540 return NULL;
2541}
2542
2543int kvm_sw_breakpoints_active(CPUState *cpu)
2544{
2545 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2546}
2547
2548struct kvm_set_guest_debug_data {
2549 struct kvm_guest_debug dbg;
2550 int err;
2551};
2552
2553static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2554{
2555 struct kvm_set_guest_debug_data *dbg_data =
2556 (struct kvm_set_guest_debug_data *) data.host_ptr;
2557
2558 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2559 &dbg_data->dbg);
2560}
2561
2562int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2563{
2564 struct kvm_set_guest_debug_data data;
2565
2566 data.dbg.control = reinject_trap;
2567
2568 if (cpu->singlestep_enabled) {
2569 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2570 }
2571 kvm_arch_update_guest_debug(cpu, &data.dbg);
2572
2573 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2574 RUN_ON_CPU_HOST_PTR(&data));
2575 return data.err;
2576}
2577
2578int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2579 target_ulong len, int type)
2580{
2581 struct kvm_sw_breakpoint *bp;
2582 int err;
2583
2584 if (type == GDB_BREAKPOINT_SW) {
2585 bp = kvm_find_sw_breakpoint(cpu, addr);
2586 if (bp) {
2587 bp->use_count++;
2588 return 0;
2589 }
2590
2591 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2592 bp->pc = addr;
2593 bp->use_count = 1;
2594 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2595 if (err) {
2596 g_free(bp);
2597 return err;
2598 }
2599
2600 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2601 } else {
2602 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2603 if (err) {
2604 return err;
2605 }
2606 }
2607
2608 CPU_FOREACH(cpu) {
2609 err = kvm_update_guest_debug(cpu, 0);
2610 if (err) {
2611 return err;
2612 }
2613 }
2614 return 0;
2615}
2616
2617int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2618 target_ulong len, int type)
2619{
2620 struct kvm_sw_breakpoint *bp;
2621 int err;
2622
2623 if (type == GDB_BREAKPOINT_SW) {
2624 bp = kvm_find_sw_breakpoint(cpu, addr);
2625 if (!bp) {
2626 return -ENOENT;
2627 }
2628
2629 if (bp->use_count > 1) {
2630 bp->use_count--;
2631 return 0;
2632 }
2633
2634 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2635 if (err) {
2636 return err;
2637 }
2638
2639 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2640 g_free(bp);
2641 } else {
2642 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2643 if (err) {
2644 return err;
2645 }
2646 }
2647
2648 CPU_FOREACH(cpu) {
2649 err = kvm_update_guest_debug(cpu, 0);
2650 if (err) {
2651 return err;
2652 }
2653 }
2654 return 0;
2655}
2656
2657void kvm_remove_all_breakpoints(CPUState *cpu)
2658{
2659 struct kvm_sw_breakpoint *bp, *next;
2660 KVMState *s = cpu->kvm_state;
2661 CPUState *tmpcpu;
2662
2663 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2664 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2665 /* Try harder to find a CPU that currently sees the breakpoint. */
2666 CPU_FOREACH(tmpcpu) {
2667 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2668 break;
2669 }
2670 }
2671 }
2672 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2673 g_free(bp);
2674 }
2675 kvm_arch_remove_all_hw_breakpoints();
2676
2677 CPU_FOREACH(cpu) {
2678 kvm_update_guest_debug(cpu, 0);
2679 }
2680}
2681
2682#else /* !KVM_CAP_SET_GUEST_DEBUG */
2683
2684int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2685{
2686 return -EINVAL;
2687}
2688
2689int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2690 target_ulong len, int type)
2691{
2692 return -EINVAL;
2693}
2694
2695int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2696 target_ulong len, int type)
2697{
2698 return -EINVAL;
2699}
2700
2701void kvm_remove_all_breakpoints(CPUState *cpu)
2702{
2703}
2704#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2705
2706static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2707{
2708 KVMState *s = kvm_state;
2709 struct kvm_signal_mask *sigmask;
2710 int r;
2711
2712 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2713
2714 sigmask->len = s->sigmask_len;
2715 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2716 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2717 g_free(sigmask);
2718
2719 return r;
2720}
2721
2722static void kvm_ipi_signal(int sig)
2723{
2724 if (current_cpu) {
2725 assert(kvm_immediate_exit);
2726 kvm_cpu_kick(current_cpu);
2727 }
2728}
2729
2730void kvm_init_cpu_signals(CPUState *cpu)
2731{
2732 int r;
2733 sigset_t set;
2734 struct sigaction sigact;
2735
2736 memset(&sigact, 0, sizeof(sigact));
2737 sigact.sa_handler = kvm_ipi_signal;
2738 sigaction(SIG_IPI, &sigact, NULL);
2739
2740 pthread_sigmask(SIG_BLOCK, NULL, &set);
2741#if defined KVM_HAVE_MCE_INJECTION
2742 sigdelset(&set, SIGBUS);
2743 pthread_sigmask(SIG_SETMASK, &set, NULL);
2744#endif
2745 sigdelset(&set, SIG_IPI);
2746 if (kvm_immediate_exit) {
2747 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2748 } else {
2749 r = kvm_set_signal_mask(cpu, &set);
2750 }
2751 if (r) {
2752 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2753 exit(1);
2754 }
2755}
2756
2757/* Called asynchronously in VCPU thread. */
2758int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2759{
2760#ifdef KVM_HAVE_MCE_INJECTION
2761 if (have_sigbus_pending) {
2762 return 1;
2763 }
2764 have_sigbus_pending = true;
2765 pending_sigbus_addr = addr;
2766 pending_sigbus_code = code;
2767 atomic_set(&cpu->exit_request, 1);
2768 return 0;
2769#else
2770 return 1;
2771#endif
2772}
2773
2774/* Called synchronously (via signalfd) in main thread. */
2775int kvm_on_sigbus(int code, void *addr)
2776{
2777#ifdef KVM_HAVE_MCE_INJECTION
2778 /* Action required MCE kills the process if SIGBUS is blocked. Because
2779 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2780 * we can only get action optional here.
2781 */
2782 assert(code != BUS_MCEERR_AR);
2783 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2784 return 0;
2785#else
2786 return 1;
2787#endif
2788}
2789
2790int kvm_create_device(KVMState *s, uint64_t type, bool test)
2791{
2792 int ret;
2793 struct kvm_create_device create_dev;
2794
2795 create_dev.type = type;
2796 create_dev.fd = -1;
2797 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2798
2799 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2800 return -ENOTSUP;
2801 }
2802
2803 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2804 if (ret) {
2805 return ret;
2806 }
2807
2808 return test ? 0 : create_dev.fd;
2809}
2810
2811bool kvm_device_supported(int vmfd, uint64_t type)
2812{
2813 struct kvm_create_device create_dev = {
2814 .type = type,
2815 .fd = -1,
2816 .flags = KVM_CREATE_DEVICE_TEST,
2817 };
2818
2819 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2820 return false;
2821 }
2822
2823 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2824}
2825
2826int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2827{
2828 struct kvm_one_reg reg;
2829 int r;
2830
2831 reg.id = id;
2832 reg.addr = (uintptr_t) source;
2833 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2834 if (r) {
2835 trace_kvm_failed_reg_set(id, strerror(-r));
2836 }
2837 return r;
2838}
2839
2840int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2841{
2842 struct kvm_one_reg reg;
2843 int r;
2844
2845 reg.id = id;
2846 reg.addr = (uintptr_t) target;
2847 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2848 if (r) {
2849 trace_kvm_failed_reg_get(id, strerror(-r));
2850 }
2851 return r;
2852}
2853
2854static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
2855 hwaddr start_addr, hwaddr size)
2856{
2857 KVMState *kvm = KVM_STATE(ms->accelerator);
2858 int i;
2859
2860 for (i = 0; i < kvm->nr_as; ++i) {
2861 if (kvm->as[i].as == as && kvm->as[i].ml) {
2862 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
2863 start_addr, size);
2864 }
2865 }
2866
2867 return false;
2868}
2869
2870static void kvm_accel_class_init(ObjectClass *oc, void *data)
2871{
2872 AccelClass *ac = ACCEL_CLASS(oc);
2873 ac->name = "KVM";
2874 ac->init_machine = kvm_init;
2875 ac->has_memory = kvm_accel_has_memory;
2876 ac->allowed = &kvm_allowed;
2877}
2878
2879static const TypeInfo kvm_accel_type = {
2880 .name = TYPE_KVM_ACCEL,
2881 .parent = TYPE_ACCEL,
2882 .class_init = kvm_accel_class_init,
2883 .instance_size = sizeof(KVMState),
2884};
2885
2886static void kvm_type_init(void)
2887{
2888 type_register_static(&kvm_accel_type);
2889}
2890
2891type_init(kvm_type_init);
2892