1/*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/error-report.h"
22#include "qemu/main-loop.h"
23#include "qapi/error.h"
24#include "qemu-common.h"
25#include "cpu.h"
26#include "hw/boards.h"
27#include "hw/hw.h"
28#include "hw/irq.h"
29#include "hw/qdev-properties.h"
30#include "hw/arm/boot.h"
31#include "hw/arm/omap.h"
32#include "sysemu/blockdev.h"
33#include "sysemu/sysemu.h"
34#include "hw/arm/soc_dma.h"
35#include "sysemu/qtest.h"
36#include "sysemu/reset.h"
37#include "sysemu/runstate.h"
38#include "qemu/range.h"
39#include "hw/sysbus.h"
40#include "qemu/cutils.h"
41#include "qemu/bcd.h"
42
43static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
44{
45 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
46 funcname, 8 * sz, addr);
47}
48
49/* Should signal the TCMI/GPMC */
50uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
51{
52 uint8_t ret;
53
54 omap_log_badwidth(__func__, addr, 1);
55 cpu_physical_memory_read(addr, &ret, 1);
56 return ret;
57}
58
59void omap_badwidth_write8(void *opaque, hwaddr addr,
60 uint32_t value)
61{
62 uint8_t val8 = value;
63
64 omap_log_badwidth(__func__, addr, 1);
65 cpu_physical_memory_write(addr, &val8, 1);
66}
67
68uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
69{
70 uint16_t ret;
71
72 omap_log_badwidth(__func__, addr, 2);
73 cpu_physical_memory_read(addr, &ret, 2);
74 return ret;
75}
76
77void omap_badwidth_write16(void *opaque, hwaddr addr,
78 uint32_t value)
79{
80 uint16_t val16 = value;
81
82 omap_log_badwidth(__func__, addr, 2);
83 cpu_physical_memory_write(addr, &val16, 2);
84}
85
86uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
87{
88 uint32_t ret;
89
90 omap_log_badwidth(__func__, addr, 4);
91 cpu_physical_memory_read(addr, &ret, 4);
92 return ret;
93}
94
95void omap_badwidth_write32(void *opaque, hwaddr addr,
96 uint32_t value)
97{
98 omap_log_badwidth(__func__, addr, 4);
99 cpu_physical_memory_write(addr, &value, 4);
100}
101
102/* MPU OS timers */
103struct omap_mpu_timer_s {
104 MemoryRegion iomem;
105 qemu_irq irq;
106 omap_clk clk;
107 uint32_t val;
108 int64_t time;
109 QEMUTimer *timer;
110 QEMUBH *tick;
111 int64_t rate;
112 int it_ena;
113
114 int enable;
115 int ptv;
116 int ar;
117 int st;
118 uint32_t reset_val;
119};
120
121static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
122{
123 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
124
125 if (timer->st && timer->enable && timer->rate)
126 return timer->val - muldiv64(distance >> (timer->ptv + 1),
127 timer->rate, NANOSECONDS_PER_SECOND);
128 else
129 return timer->val;
130}
131
132static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
133{
134 timer->val = omap_timer_read(timer);
135 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
136}
137
138static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
139{
140 int64_t expires;
141
142 if (timer->enable && timer->st && timer->rate) {
143 timer->val = timer->reset_val; /* Should skip this on clk enable */
144 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
145 NANOSECONDS_PER_SECOND, timer->rate);
146
147 /* If timer expiry would be sooner than in about 1 ms and
148 * auto-reload isn't set, then fire immediately. This is a hack
149 * to make systems like PalmOS run in acceptable time. PalmOS
150 * sets the interval to a very low value and polls the status bit
151 * in a busy loop when it wants to sleep just a couple of CPU
152 * ticks. */
153 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
154 timer_mod(timer->timer, timer->time + expires);
155 } else {
156 qemu_bh_schedule(timer->tick);
157 }
158 } else
159 timer_del(timer->timer);
160}
161
162static void omap_timer_fire(void *opaque)
163{
164 struct omap_mpu_timer_s *timer = opaque;
165
166 if (!timer->ar) {
167 timer->val = 0;
168 timer->st = 0;
169 }
170
171 if (timer->it_ena)
172 /* Edge-triggered irq */
173 qemu_irq_pulse(timer->irq);
174}
175
176static void omap_timer_tick(void *opaque)
177{
178 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
179
180 omap_timer_sync(timer);
181 omap_timer_fire(timer);
182 omap_timer_update(timer);
183}
184
185static void omap_timer_clk_update(void *opaque, int line, int on)
186{
187 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
188
189 omap_timer_sync(timer);
190 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
191 omap_timer_update(timer);
192}
193
194static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
195{
196 omap_clk_adduser(timer->clk,
197 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
198 timer->rate = omap_clk_getrate(timer->clk);
199}
200
201static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
202 unsigned size)
203{
204 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
205
206 if (size != 4) {
207 return omap_badwidth_read32(opaque, addr);
208 }
209
210 switch (addr) {
211 case 0x00: /* CNTL_TIMER */
212 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
213
214 case 0x04: /* LOAD_TIM */
215 break;
216
217 case 0x08: /* READ_TIM */
218 return omap_timer_read(s);
219 }
220
221 OMAP_BAD_REG(addr);
222 return 0;
223}
224
225static void omap_mpu_timer_write(void *opaque, hwaddr addr,
226 uint64_t value, unsigned size)
227{
228 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
229
230 if (size != 4) {
231 omap_badwidth_write32(opaque, addr, value);
232 return;
233 }
234
235 switch (addr) {
236 case 0x00: /* CNTL_TIMER */
237 omap_timer_sync(s);
238 s->enable = (value >> 5) & 1;
239 s->ptv = (value >> 2) & 7;
240 s->ar = (value >> 1) & 1;
241 s->st = value & 1;
242 omap_timer_update(s);
243 return;
244
245 case 0x04: /* LOAD_TIM */
246 s->reset_val = value;
247 return;
248
249 case 0x08: /* READ_TIM */
250 OMAP_RO_REG(addr);
251 break;
252
253 default:
254 OMAP_BAD_REG(addr);
255 }
256}
257
258static const MemoryRegionOps omap_mpu_timer_ops = {
259 .read = omap_mpu_timer_read,
260 .write = omap_mpu_timer_write,
261 .endianness = DEVICE_LITTLE_ENDIAN,
262};
263
264static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
265{
266 timer_del(s->timer);
267 s->enable = 0;
268 s->reset_val = 31337;
269 s->val = 0;
270 s->ptv = 0;
271 s->ar = 0;
272 s->st = 0;
273 s->it_ena = 1;
274}
275
276static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
277 hwaddr base,
278 qemu_irq irq, omap_clk clk)
279{
280 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
281
282 s->irq = irq;
283 s->clk = clk;
284 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
285 s->tick = qemu_bh_new(omap_timer_fire, s);
286 omap_mpu_timer_reset(s);
287 omap_timer_clk_setup(s);
288
289 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
290 "omap-mpu-timer", 0x100);
291
292 memory_region_add_subregion(system_memory, base, &s->iomem);
293
294 return s;
295}
296
297/* Watchdog timer */
298struct omap_watchdog_timer_s {
299 struct omap_mpu_timer_s timer;
300 MemoryRegion iomem;
301 uint8_t last_wr;
302 int mode;
303 int free;
304 int reset;
305};
306
307static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
308 unsigned size)
309{
310 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
311
312 if (size != 2) {
313 return omap_badwidth_read16(opaque, addr);
314 }
315
316 switch (addr) {
317 case 0x00: /* CNTL_TIMER */
318 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
319 (s->timer.st << 7) | (s->free << 1);
320
321 case 0x04: /* READ_TIMER */
322 return omap_timer_read(&s->timer);
323
324 case 0x08: /* TIMER_MODE */
325 return s->mode << 15;
326 }
327
328 OMAP_BAD_REG(addr);
329 return 0;
330}
331
332static void omap_wd_timer_write(void *opaque, hwaddr addr,
333 uint64_t value, unsigned size)
334{
335 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
336
337 if (size != 2) {
338 omap_badwidth_write16(opaque, addr, value);
339 return;
340 }
341
342 switch (addr) {
343 case 0x00: /* CNTL_TIMER */
344 omap_timer_sync(&s->timer);
345 s->timer.ptv = (value >> 9) & 7;
346 s->timer.ar = (value >> 8) & 1;
347 s->timer.st = (value >> 7) & 1;
348 s->free = (value >> 1) & 1;
349 omap_timer_update(&s->timer);
350 break;
351
352 case 0x04: /* LOAD_TIMER */
353 s->timer.reset_val = value & 0xffff;
354 break;
355
356 case 0x08: /* TIMER_MODE */
357 if (!s->mode && ((value >> 15) & 1))
358 omap_clk_get(s->timer.clk);
359 s->mode |= (value >> 15) & 1;
360 if (s->last_wr == 0xf5) {
361 if ((value & 0xff) == 0xa0) {
362 if (s->mode) {
363 s->mode = 0;
364 omap_clk_put(s->timer.clk);
365 }
366 } else {
367 /* XXX: on T|E hardware somehow this has no effect,
368 * on Zire 71 it works as specified. */
369 s->reset = 1;
370 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
371 }
372 }
373 s->last_wr = value & 0xff;
374 break;
375
376 default:
377 OMAP_BAD_REG(addr);
378 }
379}
380
381static const MemoryRegionOps omap_wd_timer_ops = {
382 .read = omap_wd_timer_read,
383 .write = omap_wd_timer_write,
384 .endianness = DEVICE_NATIVE_ENDIAN,
385};
386
387static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
388{
389 timer_del(s->timer.timer);
390 if (!s->mode)
391 omap_clk_get(s->timer.clk);
392 s->mode = 1;
393 s->free = 1;
394 s->reset = 0;
395 s->timer.enable = 1;
396 s->timer.it_ena = 1;
397 s->timer.reset_val = 0xffff;
398 s->timer.val = 0;
399 s->timer.st = 0;
400 s->timer.ptv = 0;
401 s->timer.ar = 0;
402 omap_timer_update(&s->timer);
403}
404
405static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
406 hwaddr base,
407 qemu_irq irq, omap_clk clk)
408{
409 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
410
411 s->timer.irq = irq;
412 s->timer.clk = clk;
413 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
414 omap_wd_timer_reset(s);
415 omap_timer_clk_setup(&s->timer);
416
417 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
418 "omap-wd-timer", 0x100);
419 memory_region_add_subregion(memory, base, &s->iomem);
420
421 return s;
422}
423
424/* 32-kHz timer */
425struct omap_32khz_timer_s {
426 struct omap_mpu_timer_s timer;
427 MemoryRegion iomem;
428};
429
430static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
431 unsigned size)
432{
433 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
434 int offset = addr & OMAP_MPUI_REG_MASK;
435
436 if (size != 4) {
437 return omap_badwidth_read32(opaque, addr);
438 }
439
440 switch (offset) {
441 case 0x00: /* TVR */
442 return s->timer.reset_val;
443
444 case 0x04: /* TCR */
445 return omap_timer_read(&s->timer);
446
447 case 0x08: /* CR */
448 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
449
450 default:
451 break;
452 }
453 OMAP_BAD_REG(addr);
454 return 0;
455}
456
457static void omap_os_timer_write(void *opaque, hwaddr addr,
458 uint64_t value, unsigned size)
459{
460 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
461 int offset = addr & OMAP_MPUI_REG_MASK;
462
463 if (size != 4) {
464 omap_badwidth_write32(opaque, addr, value);
465 return;
466 }
467
468 switch (offset) {
469 case 0x00: /* TVR */
470 s->timer.reset_val = value & 0x00ffffff;
471 break;
472
473 case 0x04: /* TCR */
474 OMAP_RO_REG(addr);
475 break;
476
477 case 0x08: /* CR */
478 s->timer.ar = (value >> 3) & 1;
479 s->timer.it_ena = (value >> 2) & 1;
480 if (s->timer.st != (value & 1) || (value & 2)) {
481 omap_timer_sync(&s->timer);
482 s->timer.enable = value & 1;
483 s->timer.st = value & 1;
484 omap_timer_update(&s->timer);
485 }
486 break;
487
488 default:
489 OMAP_BAD_REG(addr);
490 }
491}
492
493static const MemoryRegionOps omap_os_timer_ops = {
494 .read = omap_os_timer_read,
495 .write = omap_os_timer_write,
496 .endianness = DEVICE_NATIVE_ENDIAN,
497};
498
499static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
500{
501 timer_del(s->timer.timer);
502 s->timer.enable = 0;
503 s->timer.it_ena = 0;
504 s->timer.reset_val = 0x00ffffff;
505 s->timer.val = 0;
506 s->timer.st = 0;
507 s->timer.ptv = 0;
508 s->timer.ar = 1;
509}
510
511static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
512 hwaddr base,
513 qemu_irq irq, omap_clk clk)
514{
515 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
516
517 s->timer.irq = irq;
518 s->timer.clk = clk;
519 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
520 omap_os_timer_reset(s);
521 omap_timer_clk_setup(&s->timer);
522
523 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
524 "omap-os-timer", 0x800);
525 memory_region_add_subregion(memory, base, &s->iomem);
526
527 return s;
528}
529
530/* Ultra Low-Power Device Module */
531static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
532 unsigned size)
533{
534 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
535 uint16_t ret;
536
537 if (size != 2) {
538 return omap_badwidth_read16(opaque, addr);
539 }
540
541 switch (addr) {
542 case 0x14: /* IT_STATUS */
543 ret = s->ulpd_pm_regs[addr >> 2];
544 s->ulpd_pm_regs[addr >> 2] = 0;
545 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
546 return ret;
547
548 case 0x18: /* Reserved */
549 case 0x1c: /* Reserved */
550 case 0x20: /* Reserved */
551 case 0x28: /* Reserved */
552 case 0x2c: /* Reserved */
553 OMAP_BAD_REG(addr);
554 /* fall through */
555 case 0x00: /* COUNTER_32_LSB */
556 case 0x04: /* COUNTER_32_MSB */
557 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
558 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
559 case 0x10: /* GAUGING_CTRL */
560 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
561 case 0x30: /* CLOCK_CTRL */
562 case 0x34: /* SOFT_REQ */
563 case 0x38: /* COUNTER_32_FIQ */
564 case 0x3c: /* DPLL_CTRL */
565 case 0x40: /* STATUS_REQ */
566 /* XXX: check clk::usecount state for every clock */
567 case 0x48: /* LOCL_TIME */
568 case 0x4c: /* APLL_CTRL */
569 case 0x50: /* POWER_CTRL */
570 return s->ulpd_pm_regs[addr >> 2];
571 }
572
573 OMAP_BAD_REG(addr);
574 return 0;
575}
576
577static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
578 uint16_t diff, uint16_t value)
579{
580 if (diff & (1 << 4)) /* USB_MCLK_EN */
581 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
582 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
583 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
584}
585
586static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
587 uint16_t diff, uint16_t value)
588{
589 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
590 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
591 if (diff & (1 << 1)) /* SOFT_COM_REQ */
592 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
593 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
594 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
595 if (diff & (1 << 3)) /* SOFT_USB_REQ */
596 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
597}
598
599static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
600 uint64_t value, unsigned size)
601{
602 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
603 int64_t now, ticks;
604 int div, mult;
605 static const int bypass_div[4] = { 1, 2, 4, 4 };
606 uint16_t diff;
607
608 if (size != 2) {
609 omap_badwidth_write16(opaque, addr, value);
610 return;
611 }
612
613 switch (addr) {
614 case 0x00: /* COUNTER_32_LSB */
615 case 0x04: /* COUNTER_32_MSB */
616 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
617 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
618 case 0x14: /* IT_STATUS */
619 case 0x40: /* STATUS_REQ */
620 OMAP_RO_REG(addr);
621 break;
622
623 case 0x10: /* GAUGING_CTRL */
624 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
625 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
626 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627
628 if (value & 1)
629 s->ulpd_gauge_start = now;
630 else {
631 now -= s->ulpd_gauge_start;
632
633 /* 32-kHz ticks */
634 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
635 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
636 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
637 if (ticks >> 32) /* OVERFLOW_32K */
638 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
639
640 /* High frequency ticks */
641 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
642 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
643 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
644 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
645 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
646
647 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
648 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
649 }
650 }
651 s->ulpd_pm_regs[addr >> 2] = value;
652 break;
653
654 case 0x18: /* Reserved */
655 case 0x1c: /* Reserved */
656 case 0x20: /* Reserved */
657 case 0x28: /* Reserved */
658 case 0x2c: /* Reserved */
659 OMAP_BAD_REG(addr);
660 /* fall through */
661 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
662 case 0x38: /* COUNTER_32_FIQ */
663 case 0x48: /* LOCL_TIME */
664 case 0x50: /* POWER_CTRL */
665 s->ulpd_pm_regs[addr >> 2] = value;
666 break;
667
668 case 0x30: /* CLOCK_CTRL */
669 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
670 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
671 omap_ulpd_clk_update(s, diff, value);
672 break;
673
674 case 0x34: /* SOFT_REQ */
675 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
676 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
677 omap_ulpd_req_update(s, diff, value);
678 break;
679
680 case 0x3c: /* DPLL_CTRL */
681 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
682 * omitted altogether, probably a typo. */
683 /* This register has identical semantics with DPLL(1:3) control
684 * registers, see omap_dpll_write() */
685 diff = s->ulpd_pm_regs[addr >> 2] & value;
686 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
687 if (diff & (0x3ff << 2)) {
688 if (value & (1 << 4)) { /* PLL_ENABLE */
689 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
690 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
691 } else {
692 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
693 mult = 1;
694 }
695 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
696 }
697
698 /* Enter the desired mode. */
699 s->ulpd_pm_regs[addr >> 2] =
700 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
701 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
702
703 /* Act as if the lock is restored. */
704 s->ulpd_pm_regs[addr >> 2] |= 2;
705 break;
706
707 case 0x4c: /* APLL_CTRL */
708 diff = s->ulpd_pm_regs[addr >> 2] & value;
709 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
710 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
711 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
712 (value & (1 << 0)) ? "apll" : "dpll4"));
713 break;
714
715 default:
716 OMAP_BAD_REG(addr);
717 }
718}
719
720static const MemoryRegionOps omap_ulpd_pm_ops = {
721 .read = omap_ulpd_pm_read,
722 .write = omap_ulpd_pm_write,
723 .endianness = DEVICE_NATIVE_ENDIAN,
724};
725
726static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
727{
728 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
729 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
730 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
731 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
732 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
733 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
734 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
735 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
737 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
738 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
739 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
740 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
741 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
742 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
743 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
744 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
745 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
746 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
747 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
748 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
749 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
750 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
751}
752
753static void omap_ulpd_pm_init(MemoryRegion *system_memory,
754 hwaddr base,
755 struct omap_mpu_state_s *mpu)
756{
757 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
758 "omap-ulpd-pm", 0x800);
759 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
760 omap_ulpd_pm_reset(mpu);
761}
762
763/* OMAP Pin Configuration */
764static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
765 unsigned size)
766{
767 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
768
769 if (size != 4) {
770 return omap_badwidth_read32(opaque, addr);
771 }
772
773 switch (addr) {
774 case 0x00: /* FUNC_MUX_CTRL_0 */
775 case 0x04: /* FUNC_MUX_CTRL_1 */
776 case 0x08: /* FUNC_MUX_CTRL_2 */
777 return s->func_mux_ctrl[addr >> 2];
778
779 case 0x0c: /* COMP_MODE_CTRL_0 */
780 return s->comp_mode_ctrl[0];
781
782 case 0x10: /* FUNC_MUX_CTRL_3 */
783 case 0x14: /* FUNC_MUX_CTRL_4 */
784 case 0x18: /* FUNC_MUX_CTRL_5 */
785 case 0x1c: /* FUNC_MUX_CTRL_6 */
786 case 0x20: /* FUNC_MUX_CTRL_7 */
787 case 0x24: /* FUNC_MUX_CTRL_8 */
788 case 0x28: /* FUNC_MUX_CTRL_9 */
789 case 0x2c: /* FUNC_MUX_CTRL_A */
790 case 0x30: /* FUNC_MUX_CTRL_B */
791 case 0x34: /* FUNC_MUX_CTRL_C */
792 case 0x38: /* FUNC_MUX_CTRL_D */
793 return s->func_mux_ctrl[(addr >> 2) - 1];
794
795 case 0x40: /* PULL_DWN_CTRL_0 */
796 case 0x44: /* PULL_DWN_CTRL_1 */
797 case 0x48: /* PULL_DWN_CTRL_2 */
798 case 0x4c: /* PULL_DWN_CTRL_3 */
799 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
800
801 case 0x50: /* GATE_INH_CTRL_0 */
802 return s->gate_inh_ctrl[0];
803
804 case 0x60: /* VOLTAGE_CTRL_0 */
805 return s->voltage_ctrl[0];
806
807 case 0x70: /* TEST_DBG_CTRL_0 */
808 return s->test_dbg_ctrl[0];
809
810 case 0x80: /* MOD_CONF_CTRL_0 */
811 return s->mod_conf_ctrl[0];
812 }
813
814 OMAP_BAD_REG(addr);
815 return 0;
816}
817
818static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
819 uint32_t diff, uint32_t value)
820{
821 if (s->compat1509) {
822 if (diff & (1 << 9)) /* BLUETOOTH */
823 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
824 (~value >> 9) & 1);
825 if (diff & (1 << 7)) /* USB.CLKO */
826 omap_clk_onoff(omap_findclk(s, "usb.clko"),
827 (value >> 7) & 1);
828 }
829}
830
831static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
832 uint32_t diff, uint32_t value)
833{
834 if (s->compat1509) {
835 if (diff & (1U << 31)) {
836 /* MCBSP3_CLK_HIZ_DI */
837 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
838 }
839 if (diff & (1 << 1)) {
840 /* CLK32K */
841 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
842 }
843 }
844}
845
846static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
847 uint32_t diff, uint32_t value)
848{
849 if (diff & (1U << 31)) {
850 /* CONF_MOD_UART3_CLK_MODE_R */
851 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
852 omap_findclk(s, ((value >> 31) & 1) ?
853 "ck_48m" : "armper_ck"));
854 }
855 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
856 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
857 omap_findclk(s, ((value >> 30) & 1) ?
858 "ck_48m" : "armper_ck"));
859 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
860 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
861 omap_findclk(s, ((value >> 29) & 1) ?
862 "ck_48m" : "armper_ck"));
863 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
864 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
865 omap_findclk(s, ((value >> 23) & 1) ?
866 "ck_48m" : "armper_ck"));
867 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
868 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
869 omap_findclk(s, ((value >> 12) & 1) ?
870 "ck_48m" : "armper_ck"));
871 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
872 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
873}
874
875static void omap_pin_cfg_write(void *opaque, hwaddr addr,
876 uint64_t value, unsigned size)
877{
878 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
879 uint32_t diff;
880
881 if (size != 4) {
882 omap_badwidth_write32(opaque, addr, value);
883 return;
884 }
885
886 switch (addr) {
887 case 0x00: /* FUNC_MUX_CTRL_0 */
888 diff = s->func_mux_ctrl[addr >> 2] ^ value;
889 s->func_mux_ctrl[addr >> 2] = value;
890 omap_pin_funcmux0_update(s, diff, value);
891 return;
892
893 case 0x04: /* FUNC_MUX_CTRL_1 */
894 diff = s->func_mux_ctrl[addr >> 2] ^ value;
895 s->func_mux_ctrl[addr >> 2] = value;
896 omap_pin_funcmux1_update(s, diff, value);
897 return;
898
899 case 0x08: /* FUNC_MUX_CTRL_2 */
900 s->func_mux_ctrl[addr >> 2] = value;
901 return;
902
903 case 0x0c: /* COMP_MODE_CTRL_0 */
904 s->comp_mode_ctrl[0] = value;
905 s->compat1509 = (value != 0x0000eaef);
906 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
907 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
908 return;
909
910 case 0x10: /* FUNC_MUX_CTRL_3 */
911 case 0x14: /* FUNC_MUX_CTRL_4 */
912 case 0x18: /* FUNC_MUX_CTRL_5 */
913 case 0x1c: /* FUNC_MUX_CTRL_6 */
914 case 0x20: /* FUNC_MUX_CTRL_7 */
915 case 0x24: /* FUNC_MUX_CTRL_8 */
916 case 0x28: /* FUNC_MUX_CTRL_9 */
917 case 0x2c: /* FUNC_MUX_CTRL_A */
918 case 0x30: /* FUNC_MUX_CTRL_B */
919 case 0x34: /* FUNC_MUX_CTRL_C */
920 case 0x38: /* FUNC_MUX_CTRL_D */
921 s->func_mux_ctrl[(addr >> 2) - 1] = value;
922 return;
923
924 case 0x40: /* PULL_DWN_CTRL_0 */
925 case 0x44: /* PULL_DWN_CTRL_1 */
926 case 0x48: /* PULL_DWN_CTRL_2 */
927 case 0x4c: /* PULL_DWN_CTRL_3 */
928 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
929 return;
930
931 case 0x50: /* GATE_INH_CTRL_0 */
932 s->gate_inh_ctrl[0] = value;
933 return;
934
935 case 0x60: /* VOLTAGE_CTRL_0 */
936 s->voltage_ctrl[0] = value;
937 return;
938
939 case 0x70: /* TEST_DBG_CTRL_0 */
940 s->test_dbg_ctrl[0] = value;
941 return;
942
943 case 0x80: /* MOD_CONF_CTRL_0 */
944 diff = s->mod_conf_ctrl[0] ^ value;
945 s->mod_conf_ctrl[0] = value;
946 omap_pin_modconf1_update(s, diff, value);
947 return;
948
949 default:
950 OMAP_BAD_REG(addr);
951 }
952}
953
954static const MemoryRegionOps omap_pin_cfg_ops = {
955 .read = omap_pin_cfg_read,
956 .write = omap_pin_cfg_write,
957 .endianness = DEVICE_NATIVE_ENDIAN,
958};
959
960static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
961{
962 /* Start in Compatibility Mode. */
963 mpu->compat1509 = 1;
964 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
965 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
966 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
967 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
968 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
969 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
970 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
971 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
972 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
973 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
974}
975
976static void omap_pin_cfg_init(MemoryRegion *system_memory,
977 hwaddr base,
978 struct omap_mpu_state_s *mpu)
979{
980 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
981 "omap-pin-cfg", 0x800);
982 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
983 omap_pin_cfg_reset(mpu);
984}
985
986/* Device Identification, Die Identification */
987static uint64_t omap_id_read(void *opaque, hwaddr addr,
988 unsigned size)
989{
990 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
991
992 if (size != 4) {
993 return omap_badwidth_read32(opaque, addr);
994 }
995
996 switch (addr) {
997 case 0xfffe1800: /* DIE_ID_LSB */
998 return 0xc9581f0e;
999 case 0xfffe1804: /* DIE_ID_MSB */
1000 return 0xa8858bfa;
1001
1002 case 0xfffe2000: /* PRODUCT_ID_LSB */
1003 return 0x00aaaafc;
1004 case 0xfffe2004: /* PRODUCT_ID_MSB */
1005 return 0xcafeb574;
1006
1007 case 0xfffed400: /* JTAG_ID_LSB */
1008 switch (s->mpu_model) {
1009 case omap310:
1010 return 0x03310315;
1011 case omap1510:
1012 return 0x03310115;
1013 default:
1014 hw_error("%s: bad mpu model\n", __func__);
1015 }
1016 break;
1017
1018 case 0xfffed404: /* JTAG_ID_MSB */
1019 switch (s->mpu_model) {
1020 case omap310:
1021 return 0xfb57402f;
1022 case omap1510:
1023 return 0xfb47002f;
1024 default:
1025 hw_error("%s: bad mpu model\n", __func__);
1026 }
1027 break;
1028 }
1029
1030 OMAP_BAD_REG(addr);
1031 return 0;
1032}
1033
1034static void omap_id_write(void *opaque, hwaddr addr,
1035 uint64_t value, unsigned size)
1036{
1037 if (size != 4) {
1038 omap_badwidth_write32(opaque, addr, value);
1039 return;
1040 }
1041
1042 OMAP_BAD_REG(addr);
1043}
1044
1045static const MemoryRegionOps omap_id_ops = {
1046 .read = omap_id_read,
1047 .write = omap_id_write,
1048 .endianness = DEVICE_NATIVE_ENDIAN,
1049};
1050
1051static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1052{
1053 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1054 "omap-id", 0x100000000ULL);
1055 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1056 0xfffe1800, 0x800);
1057 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1058 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1059 0xfffed400, 0x100);
1060 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1061 if (!cpu_is_omap15xx(mpu)) {
1062 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1063 &mpu->id_iomem, 0xfffe2000, 0x800);
1064 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1065 }
1066}
1067
1068/* MPUI Control (Dummy) */
1069static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1070 unsigned size)
1071{
1072 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1073
1074 if (size != 4) {
1075 return omap_badwidth_read32(opaque, addr);
1076 }
1077
1078 switch (addr) {
1079 case 0x00: /* CTRL */
1080 return s->mpui_ctrl;
1081 case 0x04: /* DEBUG_ADDR */
1082 return 0x01ffffff;
1083 case 0x08: /* DEBUG_DATA */
1084 return 0xffffffff;
1085 case 0x0c: /* DEBUG_FLAG */
1086 return 0x00000800;
1087 case 0x10: /* STATUS */
1088 return 0x00000000;
1089
1090 /* Not in OMAP310 */
1091 case 0x14: /* DSP_STATUS */
1092 case 0x18: /* DSP_BOOT_CONFIG */
1093 return 0x00000000;
1094 case 0x1c: /* DSP_MPUI_CONFIG */
1095 return 0x0000ffff;
1096 }
1097
1098 OMAP_BAD_REG(addr);
1099 return 0;
1100}
1101
1102static void omap_mpui_write(void *opaque, hwaddr addr,
1103 uint64_t value, unsigned size)
1104{
1105 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1106
1107 if (size != 4) {
1108 omap_badwidth_write32(opaque, addr, value);
1109 return;
1110 }
1111
1112 switch (addr) {
1113 case 0x00: /* CTRL */
1114 s->mpui_ctrl = value & 0x007fffff;
1115 break;
1116
1117 case 0x04: /* DEBUG_ADDR */
1118 case 0x08: /* DEBUG_DATA */
1119 case 0x0c: /* DEBUG_FLAG */
1120 case 0x10: /* STATUS */
1121 /* Not in OMAP310 */
1122 case 0x14: /* DSP_STATUS */
1123 OMAP_RO_REG(addr);
1124 break;
1125 case 0x18: /* DSP_BOOT_CONFIG */
1126 case 0x1c: /* DSP_MPUI_CONFIG */
1127 break;
1128
1129 default:
1130 OMAP_BAD_REG(addr);
1131 }
1132}
1133
1134static const MemoryRegionOps omap_mpui_ops = {
1135 .read = omap_mpui_read,
1136 .write = omap_mpui_write,
1137 .endianness = DEVICE_NATIVE_ENDIAN,
1138};
1139
1140static void omap_mpui_reset(struct omap_mpu_state_s *s)
1141{
1142 s->mpui_ctrl = 0x0003ff1b;
1143}
1144
1145static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1146 struct omap_mpu_state_s *mpu)
1147{
1148 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1149 "omap-mpui", 0x100);
1150 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1151
1152 omap_mpui_reset(mpu);
1153}
1154
1155/* TIPB Bridges */
1156struct omap_tipb_bridge_s {
1157 qemu_irq abort;
1158 MemoryRegion iomem;
1159
1160 int width_intr;
1161 uint16_t control;
1162 uint16_t alloc;
1163 uint16_t buffer;
1164 uint16_t enh_control;
1165};
1166
1167static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1168 unsigned size)
1169{
1170 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171
1172 if (size < 2) {
1173 return omap_badwidth_read16(opaque, addr);
1174 }
1175
1176 switch (addr) {
1177 case 0x00: /* TIPB_CNTL */
1178 return s->control;
1179 case 0x04: /* TIPB_BUS_ALLOC */
1180 return s->alloc;
1181 case 0x08: /* MPU_TIPB_CNTL */
1182 return s->buffer;
1183 case 0x0c: /* ENHANCED_TIPB_CNTL */
1184 return s->enh_control;
1185 case 0x10: /* ADDRESS_DBG */
1186 case 0x14: /* DATA_DEBUG_LOW */
1187 case 0x18: /* DATA_DEBUG_HIGH */
1188 return 0xffff;
1189 case 0x1c: /* DEBUG_CNTR_SIG */
1190 return 0x00f8;
1191 }
1192
1193 OMAP_BAD_REG(addr);
1194 return 0;
1195}
1196
1197static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1198 uint64_t value, unsigned size)
1199{
1200 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1201
1202 if (size < 2) {
1203 omap_badwidth_write16(opaque, addr, value);
1204 return;
1205 }
1206
1207 switch (addr) {
1208 case 0x00: /* TIPB_CNTL */
1209 s->control = value & 0xffff;
1210 break;
1211
1212 case 0x04: /* TIPB_BUS_ALLOC */
1213 s->alloc = value & 0x003f;
1214 break;
1215
1216 case 0x08: /* MPU_TIPB_CNTL */
1217 s->buffer = value & 0x0003;
1218 break;
1219
1220 case 0x0c: /* ENHANCED_TIPB_CNTL */
1221 s->width_intr = !(value & 2);
1222 s->enh_control = value & 0x000f;
1223 break;
1224
1225 case 0x10: /* ADDRESS_DBG */
1226 case 0x14: /* DATA_DEBUG_LOW */
1227 case 0x18: /* DATA_DEBUG_HIGH */
1228 case 0x1c: /* DEBUG_CNTR_SIG */
1229 OMAP_RO_REG(addr);
1230 break;
1231
1232 default:
1233 OMAP_BAD_REG(addr);
1234 }
1235}
1236
1237static const MemoryRegionOps omap_tipb_bridge_ops = {
1238 .read = omap_tipb_bridge_read,
1239 .write = omap_tipb_bridge_write,
1240 .endianness = DEVICE_NATIVE_ENDIAN,
1241};
1242
1243static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1244{
1245 s->control = 0xffff;
1246 s->alloc = 0x0009;
1247 s->buffer = 0x0000;
1248 s->enh_control = 0x000f;
1249}
1250
1251static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1252 MemoryRegion *memory, hwaddr base,
1253 qemu_irq abort_irq, omap_clk clk)
1254{
1255 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1256
1257 s->abort = abort_irq;
1258 omap_tipb_bridge_reset(s);
1259
1260 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1261 "omap-tipb-bridge", 0x100);
1262 memory_region_add_subregion(memory, base, &s->iomem);
1263
1264 return s;
1265}
1266
1267/* Dummy Traffic Controller's Memory Interface */
1268static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1269 unsigned size)
1270{
1271 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1272 uint32_t ret;
1273
1274 if (size != 4) {
1275 return omap_badwidth_read32(opaque, addr);
1276 }
1277
1278 switch (addr) {
1279 case 0x00: /* IMIF_PRIO */
1280 case 0x04: /* EMIFS_PRIO */
1281 case 0x08: /* EMIFF_PRIO */
1282 case 0x0c: /* EMIFS_CONFIG */
1283 case 0x10: /* EMIFS_CS0_CONFIG */
1284 case 0x14: /* EMIFS_CS1_CONFIG */
1285 case 0x18: /* EMIFS_CS2_CONFIG */
1286 case 0x1c: /* EMIFS_CS3_CONFIG */
1287 case 0x24: /* EMIFF_MRS */
1288 case 0x28: /* TIMEOUT1 */
1289 case 0x2c: /* TIMEOUT2 */
1290 case 0x30: /* TIMEOUT3 */
1291 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1292 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1293 return s->tcmi_regs[addr >> 2];
1294
1295 case 0x20: /* EMIFF_SDRAM_CONFIG */
1296 ret = s->tcmi_regs[addr >> 2];
1297 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1298 /* XXX: We can try using the VGA_DIRTY flag for this */
1299 return ret;
1300 }
1301
1302 OMAP_BAD_REG(addr);
1303 return 0;
1304}
1305
1306static void omap_tcmi_write(void *opaque, hwaddr addr,
1307 uint64_t value, unsigned size)
1308{
1309 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1310
1311 if (size != 4) {
1312 omap_badwidth_write32(opaque, addr, value);
1313 return;
1314 }
1315
1316 switch (addr) {
1317 case 0x00: /* IMIF_PRIO */
1318 case 0x04: /* EMIFS_PRIO */
1319 case 0x08: /* EMIFF_PRIO */
1320 case 0x10: /* EMIFS_CS0_CONFIG */
1321 case 0x14: /* EMIFS_CS1_CONFIG */
1322 case 0x18: /* EMIFS_CS2_CONFIG */
1323 case 0x1c: /* EMIFS_CS3_CONFIG */
1324 case 0x20: /* EMIFF_SDRAM_CONFIG */
1325 case 0x24: /* EMIFF_MRS */
1326 case 0x28: /* TIMEOUT1 */
1327 case 0x2c: /* TIMEOUT2 */
1328 case 0x30: /* TIMEOUT3 */
1329 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1330 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1331 s->tcmi_regs[addr >> 2] = value;
1332 break;
1333 case 0x0c: /* EMIFS_CONFIG */
1334 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1335 break;
1336
1337 default:
1338 OMAP_BAD_REG(addr);
1339 }
1340}
1341
1342static const MemoryRegionOps omap_tcmi_ops = {
1343 .read = omap_tcmi_read,
1344 .write = omap_tcmi_write,
1345 .endianness = DEVICE_NATIVE_ENDIAN,
1346};
1347
1348static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1349{
1350 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1351 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1353 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1354 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1355 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1358 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1359 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1360 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1361 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1362 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1363 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1364 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1365}
1366
1367static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1368 struct omap_mpu_state_s *mpu)
1369{
1370 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1371 "omap-tcmi", 0x100);
1372 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1373 omap_tcmi_reset(mpu);
1374}
1375
1376/* Digital phase-locked loops control */
1377struct dpll_ctl_s {
1378 MemoryRegion iomem;
1379 uint16_t mode;
1380 omap_clk dpll;
1381};
1382
1383static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1384 unsigned size)
1385{
1386 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1387
1388 if (size != 2) {
1389 return omap_badwidth_read16(opaque, addr);
1390 }
1391
1392 if (addr == 0x00) /* CTL_REG */
1393 return s->mode;
1394
1395 OMAP_BAD_REG(addr);
1396 return 0;
1397}
1398
1399static void omap_dpll_write(void *opaque, hwaddr addr,
1400 uint64_t value, unsigned size)
1401{
1402 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1403 uint16_t diff;
1404 static const int bypass_div[4] = { 1, 2, 4, 4 };
1405 int div, mult;
1406
1407 if (size != 2) {
1408 omap_badwidth_write16(opaque, addr, value);
1409 return;
1410 }
1411
1412 if (addr == 0x00) { /* CTL_REG */
1413 /* See omap_ulpd_pm_write() too */
1414 diff = s->mode & value;
1415 s->mode = value & 0x2fff;
1416 if (diff & (0x3ff << 2)) {
1417 if (value & (1 << 4)) { /* PLL_ENABLE */
1418 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1419 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1420 } else {
1421 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1422 mult = 1;
1423 }
1424 omap_clk_setrate(s->dpll, div, mult);
1425 }
1426
1427 /* Enter the desired mode. */
1428 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1429
1430 /* Act as if the lock is restored. */
1431 s->mode |= 2;
1432 } else {
1433 OMAP_BAD_REG(addr);
1434 }
1435}
1436
1437static const MemoryRegionOps omap_dpll_ops = {
1438 .read = omap_dpll_read,
1439 .write = omap_dpll_write,
1440 .endianness = DEVICE_NATIVE_ENDIAN,
1441};
1442
1443static void omap_dpll_reset(struct dpll_ctl_s *s)
1444{
1445 s->mode = 0x2002;
1446 omap_clk_setrate(s->dpll, 1, 1);
1447}
1448
1449static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1450 hwaddr base, omap_clk clk)
1451{
1452 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1453 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1454
1455 s->dpll = clk;
1456 omap_dpll_reset(s);
1457
1458 memory_region_add_subregion(memory, base, &s->iomem);
1459 return s;
1460}
1461
1462/* MPU Clock/Reset/Power Mode Control */
1463static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1464 unsigned size)
1465{
1466 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1467
1468 if (size != 2) {
1469 return omap_badwidth_read16(opaque, addr);
1470 }
1471
1472 switch (addr) {
1473 case 0x00: /* ARM_CKCTL */
1474 return s->clkm.arm_ckctl;
1475
1476 case 0x04: /* ARM_IDLECT1 */
1477 return s->clkm.arm_idlect1;
1478
1479 case 0x08: /* ARM_IDLECT2 */
1480 return s->clkm.arm_idlect2;
1481
1482 case 0x0c: /* ARM_EWUPCT */
1483 return s->clkm.arm_ewupct;
1484
1485 case 0x10: /* ARM_RSTCT1 */
1486 return s->clkm.arm_rstct1;
1487
1488 case 0x14: /* ARM_RSTCT2 */
1489 return s->clkm.arm_rstct2;
1490
1491 case 0x18: /* ARM_SYSST */
1492 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1493
1494 case 0x1c: /* ARM_CKOUT1 */
1495 return s->clkm.arm_ckout1;
1496
1497 case 0x20: /* ARM_CKOUT2 */
1498 break;
1499 }
1500
1501 OMAP_BAD_REG(addr);
1502 return 0;
1503}
1504
1505static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1506 uint16_t diff, uint16_t value)
1507{
1508 omap_clk clk;
1509
1510 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1511 if (value & (1 << 14))
1512 /* Reserved */;
1513 else {
1514 clk = omap_findclk(s, "arminth_ck");
1515 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1516 }
1517 }
1518 if (diff & (1 << 12)) { /* ARM_TIMXO */
1519 clk = omap_findclk(s, "armtim_ck");
1520 if (value & (1 << 12))
1521 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1522 else
1523 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1524 }
1525 /* XXX: en_dspck */
1526 if (diff & (3 << 10)) { /* DSPMMUDIV */
1527 clk = omap_findclk(s, "dspmmu_ck");
1528 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1529 }
1530 if (diff & (3 << 8)) { /* TCDIV */
1531 clk = omap_findclk(s, "tc_ck");
1532 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1533 }
1534 if (diff & (3 << 6)) { /* DSPDIV */
1535 clk = omap_findclk(s, "dsp_ck");
1536 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1537 }
1538 if (diff & (3 << 4)) { /* ARMDIV */
1539 clk = omap_findclk(s, "arm_ck");
1540 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1541 }
1542 if (diff & (3 << 2)) { /* LCDDIV */
1543 clk = omap_findclk(s, "lcd_ck");
1544 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1545 }
1546 if (diff & (3 << 0)) { /* PERDIV */
1547 clk = omap_findclk(s, "armper_ck");
1548 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1549 }
1550}
1551
1552static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1553 uint16_t diff, uint16_t value)
1554{
1555 omap_clk clk;
1556
1557 if (value & (1 << 11)) { /* SETARM_IDLE */
1558 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1559 }
1560 if (!(value & (1 << 10))) { /* WKUP_MODE */
1561 /* XXX: disable wakeup from IRQ */
1562 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1563 }
1564
1565#define SET_CANIDLE(clock, bit) \
1566 if (diff & (1 << bit)) { \
1567 clk = omap_findclk(s, clock); \
1568 omap_clk_canidle(clk, (value >> bit) & 1); \
1569 }
1570 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1571 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1572 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1573 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1574 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1575 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1576 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1577 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1578 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1579 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1580 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1581 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1582 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1583 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1584}
1585
1586static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1587 uint16_t diff, uint16_t value)
1588{
1589 omap_clk clk;
1590
1591#define SET_ONOFF(clock, bit) \
1592 if (diff & (1 << bit)) { \
1593 clk = omap_findclk(s, clock); \
1594 omap_clk_onoff(clk, (value >> bit) & 1); \
1595 }
1596 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1597 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1598 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1599 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1600 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1601 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1602 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1603 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1604 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1605 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1606 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1607}
1608
1609static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1610 uint16_t diff, uint16_t value)
1611{
1612 omap_clk clk;
1613
1614 if (diff & (3 << 4)) { /* TCLKOUT */
1615 clk = omap_findclk(s, "tclk_out");
1616 switch ((value >> 4) & 3) {
1617 case 1:
1618 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1619 omap_clk_onoff(clk, 1);
1620 break;
1621 case 2:
1622 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1623 omap_clk_onoff(clk, 1);
1624 break;
1625 default:
1626 omap_clk_onoff(clk, 0);
1627 }
1628 }
1629 if (diff & (3 << 2)) { /* DCLKOUT */
1630 clk = omap_findclk(s, "dclk_out");
1631 switch ((value >> 2) & 3) {
1632 case 0:
1633 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1634 break;
1635 case 1:
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1637 break;
1638 case 2:
1639 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1640 break;
1641 case 3:
1642 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1643 break;
1644 }
1645 }
1646 if (diff & (3 << 0)) { /* ACLKOUT */
1647 clk = omap_findclk(s, "aclk_out");
1648 switch ((value >> 0) & 3) {
1649 case 1:
1650 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1651 omap_clk_onoff(clk, 1);
1652 break;
1653 case 2:
1654 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1655 omap_clk_onoff(clk, 1);
1656 break;
1657 case 3:
1658 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1659 omap_clk_onoff(clk, 1);
1660 break;
1661 default:
1662 omap_clk_onoff(clk, 0);
1663 }
1664 }
1665}
1666
1667static void omap_clkm_write(void *opaque, hwaddr addr,
1668 uint64_t value, unsigned size)
1669{
1670 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1671 uint16_t diff;
1672 omap_clk clk;
1673 static const char *clkschemename[8] = {
1674 "fully synchronous", "fully asynchronous", "synchronous scalable",
1675 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1676 };
1677
1678 if (size != 2) {
1679 omap_badwidth_write16(opaque, addr, value);
1680 return;
1681 }
1682
1683 switch (addr) {
1684 case 0x00: /* ARM_CKCTL */
1685 diff = s->clkm.arm_ckctl ^ value;
1686 s->clkm.arm_ckctl = value & 0x7fff;
1687 omap_clkm_ckctl_update(s, diff, value);
1688 return;
1689
1690 case 0x04: /* ARM_IDLECT1 */
1691 diff = s->clkm.arm_idlect1 ^ value;
1692 s->clkm.arm_idlect1 = value & 0x0fff;
1693 omap_clkm_idlect1_update(s, diff, value);
1694 return;
1695
1696 case 0x08: /* ARM_IDLECT2 */
1697 diff = s->clkm.arm_idlect2 ^ value;
1698 s->clkm.arm_idlect2 = value & 0x07ff;
1699 omap_clkm_idlect2_update(s, diff, value);
1700 return;
1701
1702 case 0x0c: /* ARM_EWUPCT */
1703 s->clkm.arm_ewupct = value & 0x003f;
1704 return;
1705
1706 case 0x10: /* ARM_RSTCT1 */
1707 diff = s->clkm.arm_rstct1 ^ value;
1708 s->clkm.arm_rstct1 = value & 0x0007;
1709 if (value & 9) {
1710 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1711 s->clkm.cold_start = 0xa;
1712 }
1713 if (diff & ~value & 4) { /* DSP_RST */
1714 omap_mpui_reset(s);
1715 omap_tipb_bridge_reset(s->private_tipb);
1716 omap_tipb_bridge_reset(s->public_tipb);
1717 }
1718 if (diff & 2) { /* DSP_EN */
1719 clk = omap_findclk(s, "dsp_ck");
1720 omap_clk_canidle(clk, (~value >> 1) & 1);
1721 }
1722 return;
1723
1724 case 0x14: /* ARM_RSTCT2 */
1725 s->clkm.arm_rstct2 = value & 0x0001;
1726 return;
1727
1728 case 0x18: /* ARM_SYSST */
1729 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1730 s->clkm.clocking_scheme = (value >> 11) & 7;
1731 printf("%s: clocking scheme set to %s\n", __func__,
1732 clkschemename[s->clkm.clocking_scheme]);
1733 }
1734 s->clkm.cold_start &= value & 0x3f;
1735 return;
1736
1737 case 0x1c: /* ARM_CKOUT1 */
1738 diff = s->clkm.arm_ckout1 ^ value;
1739 s->clkm.arm_ckout1 = value & 0x003f;
1740 omap_clkm_ckout1_update(s, diff, value);
1741 return;
1742
1743 case 0x20: /* ARM_CKOUT2 */
1744 default:
1745 OMAP_BAD_REG(addr);
1746 }
1747}
1748
1749static const MemoryRegionOps omap_clkm_ops = {
1750 .read = omap_clkm_read,
1751 .write = omap_clkm_write,
1752 .endianness = DEVICE_NATIVE_ENDIAN,
1753};
1754
1755static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1756 unsigned size)
1757{
1758 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1759 CPUState *cpu = CPU(s->cpu);
1760
1761 if (size != 2) {
1762 return omap_badwidth_read16(opaque, addr);
1763 }
1764
1765 switch (addr) {
1766 case 0x04: /* DSP_IDLECT1 */
1767 return s->clkm.dsp_idlect1;
1768
1769 case 0x08: /* DSP_IDLECT2 */
1770 return s->clkm.dsp_idlect2;
1771
1772 case 0x14: /* DSP_RSTCT2 */
1773 return s->clkm.dsp_rstct2;
1774
1775 case 0x18: /* DSP_SYSST */
1776 cpu = CPU(s->cpu);
1777 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1778 (cpu->halted << 6); /* Quite useless... */
1779 }
1780
1781 OMAP_BAD_REG(addr);
1782 return 0;
1783}
1784
1785static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1786 uint16_t diff, uint16_t value)
1787{
1788 omap_clk clk;
1789
1790 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1791}
1792
1793static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1794 uint16_t diff, uint16_t value)
1795{
1796 omap_clk clk;
1797
1798 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1799}
1800
1801static void omap_clkdsp_write(void *opaque, hwaddr addr,
1802 uint64_t value, unsigned size)
1803{
1804 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1805 uint16_t diff;
1806
1807 if (size != 2) {
1808 omap_badwidth_write16(opaque, addr, value);
1809 return;
1810 }
1811
1812 switch (addr) {
1813 case 0x04: /* DSP_IDLECT1 */
1814 diff = s->clkm.dsp_idlect1 ^ value;
1815 s->clkm.dsp_idlect1 = value & 0x01f7;
1816 omap_clkdsp_idlect1_update(s, diff, value);
1817 break;
1818
1819 case 0x08: /* DSP_IDLECT2 */
1820 s->clkm.dsp_idlect2 = value & 0x0037;
1821 diff = s->clkm.dsp_idlect1 ^ value;
1822 omap_clkdsp_idlect2_update(s, diff, value);
1823 break;
1824
1825 case 0x14: /* DSP_RSTCT2 */
1826 s->clkm.dsp_rstct2 = value & 0x0001;
1827 break;
1828
1829 case 0x18: /* DSP_SYSST */
1830 s->clkm.cold_start &= value & 0x3f;
1831 break;
1832
1833 default:
1834 OMAP_BAD_REG(addr);
1835 }
1836}
1837
1838static const MemoryRegionOps omap_clkdsp_ops = {
1839 .read = omap_clkdsp_read,
1840 .write = omap_clkdsp_write,
1841 .endianness = DEVICE_NATIVE_ENDIAN,
1842};
1843
1844static void omap_clkm_reset(struct omap_mpu_state_s *s)
1845{
1846 if (s->wdt && s->wdt->reset)
1847 s->clkm.cold_start = 0x6;
1848 s->clkm.clocking_scheme = 0;
1849 omap_clkm_ckctl_update(s, ~0, 0x3000);
1850 s->clkm.arm_ckctl = 0x3000;
1851 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1852 s->clkm.arm_idlect1 = 0x0400;
1853 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1854 s->clkm.arm_idlect2 = 0x0100;
1855 s->clkm.arm_ewupct = 0x003f;
1856 s->clkm.arm_rstct1 = 0x0000;
1857 s->clkm.arm_rstct2 = 0x0000;
1858 s->clkm.arm_ckout1 = 0x0015;
1859 s->clkm.dpll1_mode = 0x2002;
1860 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1861 s->clkm.dsp_idlect1 = 0x0040;
1862 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1863 s->clkm.dsp_idlect2 = 0x0000;
1864 s->clkm.dsp_rstct2 = 0x0000;
1865}
1866
1867static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1868 hwaddr dsp_base, struct omap_mpu_state_s *s)
1869{
1870 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1871 "omap-clkm", 0x100);
1872 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1873 "omap-clkdsp", 0x1000);
1874
1875 s->clkm.arm_idlect1 = 0x03ff;
1876 s->clkm.arm_idlect2 = 0x0100;
1877 s->clkm.dsp_idlect1 = 0x0002;
1878 omap_clkm_reset(s);
1879 s->clkm.cold_start = 0x3a;
1880
1881 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1882 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1883}
1884
1885/* MPU I/O */
1886struct omap_mpuio_s {
1887 qemu_irq irq;
1888 qemu_irq kbd_irq;
1889 qemu_irq *in;
1890 qemu_irq handler[16];
1891 qemu_irq wakeup;
1892 MemoryRegion iomem;
1893
1894 uint16_t inputs;
1895 uint16_t outputs;
1896 uint16_t dir;
1897 uint16_t edge;
1898 uint16_t mask;
1899 uint16_t ints;
1900
1901 uint16_t debounce;
1902 uint16_t latch;
1903 uint8_t event;
1904
1905 uint8_t buttons[5];
1906 uint8_t row_latch;
1907 uint8_t cols;
1908 int kbd_mask;
1909 int clk;
1910};
1911
1912static void omap_mpuio_set(void *opaque, int line, int level)
1913{
1914 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915 uint16_t prev = s->inputs;
1916
1917 if (level)
1918 s->inputs |= 1 << line;
1919 else
1920 s->inputs &= ~(1 << line);
1921
1922 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1923 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1924 s->ints |= 1 << line;
1925 qemu_irq_raise(s->irq);
1926 /* TODO: wakeup */
1927 }
1928 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1929 (s->event >> 1) == line) /* PIN_SELECT */
1930 s->latch = s->inputs;
1931 }
1932}
1933
1934static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1935{
1936 int i;
1937 uint8_t *row, rows = 0, cols = ~s->cols;
1938
1939 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1940 if (*row & cols)
1941 rows |= i;
1942
1943 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1944 s->row_latch = ~rows;
1945}
1946
1947static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1948 unsigned size)
1949{
1950 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1951 int offset = addr & OMAP_MPUI_REG_MASK;
1952 uint16_t ret;
1953
1954 if (size != 2) {
1955 return omap_badwidth_read16(opaque, addr);
1956 }
1957
1958 switch (offset) {
1959 case 0x00: /* INPUT_LATCH */
1960 return s->inputs;
1961
1962 case 0x04: /* OUTPUT_REG */
1963 return s->outputs;
1964
1965 case 0x08: /* IO_CNTL */
1966 return s->dir;
1967
1968 case 0x10: /* KBR_LATCH */
1969 return s->row_latch;
1970
1971 case 0x14: /* KBC_REG */
1972 return s->cols;
1973
1974 case 0x18: /* GPIO_EVENT_MODE_REG */
1975 return s->event;
1976
1977 case 0x1c: /* GPIO_INT_EDGE_REG */
1978 return s->edge;
1979
1980 case 0x20: /* KBD_INT */
1981 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1982
1983 case 0x24: /* GPIO_INT */
1984 ret = s->ints;
1985 s->ints &= s->mask;
1986 if (ret)
1987 qemu_irq_lower(s->irq);
1988 return ret;
1989
1990 case 0x28: /* KBD_MASKIT */
1991 return s->kbd_mask;
1992
1993 case 0x2c: /* GPIO_MASKIT */
1994 return s->mask;
1995
1996 case 0x30: /* GPIO_DEBOUNCING_REG */
1997 return s->debounce;
1998
1999 case 0x34: /* GPIO_LATCH_REG */
2000 return s->latch;
2001 }
2002
2003 OMAP_BAD_REG(addr);
2004 return 0;
2005}
2006
2007static void omap_mpuio_write(void *opaque, hwaddr addr,
2008 uint64_t value, unsigned size)
2009{
2010 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2011 int offset = addr & OMAP_MPUI_REG_MASK;
2012 uint16_t diff;
2013 int ln;
2014
2015 if (size != 2) {
2016 omap_badwidth_write16(opaque, addr, value);
2017 return;
2018 }
2019
2020 switch (offset) {
2021 case 0x04: /* OUTPUT_REG */
2022 diff = (s->outputs ^ value) & ~s->dir;
2023 s->outputs = value;
2024 while ((ln = ctz32(diff)) != 32) {
2025 if (s->handler[ln])
2026 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027 diff &= ~(1 << ln);
2028 }
2029 break;
2030
2031 case 0x08: /* IO_CNTL */
2032 diff = s->outputs & (s->dir ^ value);
2033 s->dir = value;
2034
2035 value = s->outputs & ~s->dir;
2036 while ((ln = ctz32(diff)) != 32) {
2037 if (s->handler[ln])
2038 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2039 diff &= ~(1 << ln);
2040 }
2041 break;
2042
2043 case 0x14: /* KBC_REG */
2044 s->cols = value;
2045 omap_mpuio_kbd_update(s);
2046 break;
2047
2048 case 0x18: /* GPIO_EVENT_MODE_REG */
2049 s->event = value & 0x1f;
2050 break;
2051
2052 case 0x1c: /* GPIO_INT_EDGE_REG */
2053 s->edge = value;
2054 break;
2055
2056 case 0x28: /* KBD_MASKIT */
2057 s->kbd_mask = value & 1;
2058 omap_mpuio_kbd_update(s);
2059 break;
2060
2061 case 0x2c: /* GPIO_MASKIT */
2062 s->mask = value;
2063 break;
2064
2065 case 0x30: /* GPIO_DEBOUNCING_REG */
2066 s->debounce = value & 0x1ff;
2067 break;
2068
2069 case 0x00: /* INPUT_LATCH */
2070 case 0x10: /* KBR_LATCH */
2071 case 0x20: /* KBD_INT */
2072 case 0x24: /* GPIO_INT */
2073 case 0x34: /* GPIO_LATCH_REG */
2074 OMAP_RO_REG(addr);
2075 return;
2076
2077 default:
2078 OMAP_BAD_REG(addr);
2079 return;
2080 }
2081}
2082
2083static const MemoryRegionOps omap_mpuio_ops = {
2084 .read = omap_mpuio_read,
2085 .write = omap_mpuio_write,
2086 .endianness = DEVICE_NATIVE_ENDIAN,
2087};
2088
2089static void omap_mpuio_reset(struct omap_mpuio_s *s)
2090{
2091 s->inputs = 0;
2092 s->outputs = 0;
2093 s->dir = ~0;
2094 s->event = 0;
2095 s->edge = 0;
2096 s->kbd_mask = 0;
2097 s->mask = 0;
2098 s->debounce = 0;
2099 s->latch = 0;
2100 s->ints = 0;
2101 s->row_latch = 0x1f;
2102 s->clk = 1;
2103}
2104
2105static void omap_mpuio_onoff(void *opaque, int line, int on)
2106{
2107 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2108
2109 s->clk = on;
2110 if (on)
2111 omap_mpuio_kbd_update(s);
2112}
2113
2114static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2115 hwaddr base,
2116 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2117 omap_clk clk)
2118{
2119 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2120
2121 s->irq = gpio_int;
2122 s->kbd_irq = kbd_int;
2123 s->wakeup = wakeup;
2124 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2125 omap_mpuio_reset(s);
2126
2127 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2128 "omap-mpuio", 0x800);
2129 memory_region_add_subregion(memory, base, &s->iomem);
2130
2131 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2132
2133 return s;
2134}
2135
2136qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2137{
2138 return s->in;
2139}
2140
2141void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2142{
2143 if (line >= 16 || line < 0)
2144 hw_error("%s: No GPIO line %i\n", __func__, line);
2145 s->handler[line] = handler;
2146}
2147
2148void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2149{
2150 if (row >= 5 || row < 0)
2151 hw_error("%s: No key %i-%i\n", __func__, col, row);
2152
2153 if (down)
2154 s->buttons[row] |= 1 << col;
2155 else
2156 s->buttons[row] &= ~(1 << col);
2157
2158 omap_mpuio_kbd_update(s);
2159}
2160
2161/* MicroWire Interface */
2162struct omap_uwire_s {
2163 MemoryRegion iomem;
2164 qemu_irq txirq;
2165 qemu_irq rxirq;
2166 qemu_irq txdrq;
2167
2168 uint16_t txbuf;
2169 uint16_t rxbuf;
2170 uint16_t control;
2171 uint16_t setup[5];
2172
2173 uWireSlave *chip[4];
2174};
2175
2176static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177{
2178 int chipselect = (s->control >> 10) & 3; /* INDEX */
2179 uWireSlave *slave = s->chip[chipselect];
2180
2181 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2182 if (s->control & (1 << 12)) /* CS_CMD */
2183 if (slave && slave->send)
2184 slave->send(slave->opaque,
2185 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186 s->control &= ~(1 << 14); /* CSRB */
2187 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188 * a DRQ. When is the level IRQ supposed to be reset? */
2189 }
2190
2191 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2192 if (s->control & (1 << 12)) /* CS_CMD */
2193 if (slave && slave->receive)
2194 s->rxbuf = slave->receive(slave->opaque);
2195 s->control |= 1 << 15; /* RDRB */
2196 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197 * a DRQ. When is the level IRQ supposed to be reset? */
2198 }
2199}
2200
2201static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2202 unsigned size)
2203{
2204 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2205 int offset = addr & OMAP_MPUI_REG_MASK;
2206
2207 if (size != 2) {
2208 return omap_badwidth_read16(opaque, addr);
2209 }
2210
2211 switch (offset) {
2212 case 0x00: /* RDR */
2213 s->control &= ~(1 << 15); /* RDRB */
2214 return s->rxbuf;
2215
2216 case 0x04: /* CSR */
2217 return s->control;
2218
2219 case 0x08: /* SR1 */
2220 return s->setup[0];
2221 case 0x0c: /* SR2 */
2222 return s->setup[1];
2223 case 0x10: /* SR3 */
2224 return s->setup[2];
2225 case 0x14: /* SR4 */
2226 return s->setup[3];
2227 case 0x18: /* SR5 */
2228 return s->setup[4];
2229 }
2230
2231 OMAP_BAD_REG(addr);
2232 return 0;
2233}
2234
2235static void omap_uwire_write(void *opaque, hwaddr addr,
2236 uint64_t value, unsigned size)
2237{
2238 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2239 int offset = addr & OMAP_MPUI_REG_MASK;
2240
2241 if (size != 2) {
2242 omap_badwidth_write16(opaque, addr, value);
2243 return;
2244 }
2245
2246 switch (offset) {
2247 case 0x00: /* TDR */
2248 s->txbuf = value; /* TD */
2249 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2250 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2251 (s->control & (1 << 12)))) { /* CS_CMD */
2252 s->control |= 1 << 14; /* CSRB */
2253 omap_uwire_transfer_start(s);
2254 }
2255 break;
2256
2257 case 0x04: /* CSR */
2258 s->control = value & 0x1fff;
2259 if (value & (1 << 13)) /* START */
2260 omap_uwire_transfer_start(s);
2261 break;
2262
2263 case 0x08: /* SR1 */
2264 s->setup[0] = value & 0x003f;
2265 break;
2266
2267 case 0x0c: /* SR2 */
2268 s->setup[1] = value & 0x0fc0;
2269 break;
2270
2271 case 0x10: /* SR3 */
2272 s->setup[2] = value & 0x0003;
2273 break;
2274
2275 case 0x14: /* SR4 */
2276 s->setup[3] = value & 0x0001;
2277 break;
2278
2279 case 0x18: /* SR5 */
2280 s->setup[4] = value & 0x000f;
2281 break;
2282
2283 default:
2284 OMAP_BAD_REG(addr);
2285 return;
2286 }
2287}
2288
2289static const MemoryRegionOps omap_uwire_ops = {
2290 .read = omap_uwire_read,
2291 .write = omap_uwire_write,
2292 .endianness = DEVICE_NATIVE_ENDIAN,
2293};
2294
2295static void omap_uwire_reset(struct omap_uwire_s *s)
2296{
2297 s->control = 0;
2298 s->setup[0] = 0;
2299 s->setup[1] = 0;
2300 s->setup[2] = 0;
2301 s->setup[3] = 0;
2302 s->setup[4] = 0;
2303}
2304
2305static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2306 hwaddr base,
2307 qemu_irq txirq, qemu_irq rxirq,
2308 qemu_irq dma,
2309 omap_clk clk)
2310{
2311 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312
2313 s->txirq = txirq;
2314 s->rxirq = rxirq;
2315 s->txdrq = dma;
2316 omap_uwire_reset(s);
2317
2318 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2319 memory_region_add_subregion(system_memory, base, &s->iomem);
2320
2321 return s;
2322}
2323
2324void omap_uwire_attach(struct omap_uwire_s *s,
2325 uWireSlave *slave, int chipselect)
2326{
2327 if (chipselect < 0 || chipselect > 3) {
2328 error_report("%s: Bad chipselect %i", __func__, chipselect);
2329 exit(-1);
2330 }
2331
2332 s->chip[chipselect] = slave;
2333}
2334
2335/* Pseudonoise Pulse-Width Light Modulator */
2336struct omap_pwl_s {
2337 MemoryRegion iomem;
2338 uint8_t output;
2339 uint8_t level;
2340 uint8_t enable;
2341 int clk;
2342};
2343
2344static void omap_pwl_update(struct omap_pwl_s *s)
2345{
2346 int output = (s->clk && s->enable) ? s->level : 0;
2347
2348 if (output != s->output) {
2349 s->output = output;
2350 printf("%s: Backlight now at %i/256\n", __func__, output);
2351 }
2352}
2353
2354static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2355 unsigned size)
2356{
2357 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2358 int offset = addr & OMAP_MPUI_REG_MASK;
2359
2360 if (size != 1) {
2361 return omap_badwidth_read8(opaque, addr);
2362 }
2363
2364 switch (offset) {
2365 case 0x00: /* PWL_LEVEL */
2366 return s->level;
2367 case 0x04: /* PWL_CTRL */
2368 return s->enable;
2369 }
2370 OMAP_BAD_REG(addr);
2371 return 0;
2372}
2373
2374static void omap_pwl_write(void *opaque, hwaddr addr,
2375 uint64_t value, unsigned size)
2376{
2377 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2378 int offset = addr & OMAP_MPUI_REG_MASK;
2379
2380 if (size != 1) {
2381 omap_badwidth_write8(opaque, addr, value);
2382 return;
2383 }
2384
2385 switch (offset) {
2386 case 0x00: /* PWL_LEVEL */
2387 s->level = value;
2388 omap_pwl_update(s);
2389 break;
2390 case 0x04: /* PWL_CTRL */
2391 s->enable = value & 1;
2392 omap_pwl_update(s);
2393 break;
2394 default:
2395 OMAP_BAD_REG(addr);
2396 return;
2397 }
2398}
2399
2400static const MemoryRegionOps omap_pwl_ops = {
2401 .read = omap_pwl_read,
2402 .write = omap_pwl_write,
2403 .endianness = DEVICE_NATIVE_ENDIAN,
2404};
2405
2406static void omap_pwl_reset(struct omap_pwl_s *s)
2407{
2408 s->output = 0;
2409 s->level = 0;
2410 s->enable = 0;
2411 s->clk = 1;
2412 omap_pwl_update(s);
2413}
2414
2415static void omap_pwl_clk_update(void *opaque, int line, int on)
2416{
2417 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2418
2419 s->clk = on;
2420 omap_pwl_update(s);
2421}
2422
2423static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2424 hwaddr base,
2425 omap_clk clk)
2426{
2427 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2428
2429 omap_pwl_reset(s);
2430
2431 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2432 "omap-pwl", 0x800);
2433 memory_region_add_subregion(system_memory, base, &s->iomem);
2434
2435 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2436 return s;
2437}
2438
2439/* Pulse-Width Tone module */
2440struct omap_pwt_s {
2441 MemoryRegion iomem;
2442 uint8_t frc;
2443 uint8_t vrc;
2444 uint8_t gcr;
2445 omap_clk clk;
2446};
2447
2448static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2449 unsigned size)
2450{
2451 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2452 int offset = addr & OMAP_MPUI_REG_MASK;
2453
2454 if (size != 1) {
2455 return omap_badwidth_read8(opaque, addr);
2456 }
2457
2458 switch (offset) {
2459 case 0x00: /* FRC */
2460 return s->frc;
2461 case 0x04: /* VCR */
2462 return s->vrc;
2463 case 0x08: /* GCR */
2464 return s->gcr;
2465 }
2466 OMAP_BAD_REG(addr);
2467 return 0;
2468}
2469
2470static void omap_pwt_write(void *opaque, hwaddr addr,
2471 uint64_t value, unsigned size)
2472{
2473 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2474 int offset = addr & OMAP_MPUI_REG_MASK;
2475
2476 if (size != 1) {
2477 omap_badwidth_write8(opaque, addr, value);
2478 return;
2479 }
2480
2481 switch (offset) {
2482 case 0x00: /* FRC */
2483 s->frc = value & 0x3f;
2484 break;
2485 case 0x04: /* VRC */
2486 if ((value ^ s->vrc) & 1) {
2487 if (value & 1)
2488 printf("%s: %iHz buzz on\n", __func__, (int)
2489 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2490 ((omap_clk_getrate(s->clk) >> 3) /
2491 /* Pre-multiplexer divider */
2492 ((s->gcr & 2) ? 1 : 154) /
2493 /* Octave multiplexer */
2494 (2 << (value & 3)) *
2495 /* 101/107 divider */
2496 ((value & (1 << 2)) ? 101 : 107) *
2497 /* 49/55 divider */
2498 ((value & (1 << 3)) ? 49 : 55) *
2499 /* 50/63 divider */
2500 ((value & (1 << 4)) ? 50 : 63) *
2501 /* 80/127 divider */
2502 ((value & (1 << 5)) ? 80 : 127) /
2503 (107 * 55 * 63 * 127)));
2504 else
2505 printf("%s: silence!\n", __func__);
2506 }
2507 s->vrc = value & 0x7f;
2508 break;
2509 case 0x08: /* GCR */
2510 s->gcr = value & 3;
2511 break;
2512 default:
2513 OMAP_BAD_REG(addr);
2514 return;
2515 }
2516}
2517
2518static const MemoryRegionOps omap_pwt_ops = {
2519 .read =omap_pwt_read,
2520 .write = omap_pwt_write,
2521 .endianness = DEVICE_NATIVE_ENDIAN,
2522};
2523
2524static void omap_pwt_reset(struct omap_pwt_s *s)
2525{
2526 s->frc = 0;
2527 s->vrc = 0;
2528 s->gcr = 0;
2529}
2530
2531static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2532 hwaddr base,
2533 omap_clk clk)
2534{
2535 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2536 s->clk = clk;
2537 omap_pwt_reset(s);
2538
2539 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2540 "omap-pwt", 0x800);
2541 memory_region_add_subregion(system_memory, base, &s->iomem);
2542 return s;
2543}
2544
2545/* Real-time Clock module */
2546struct omap_rtc_s {
2547 MemoryRegion iomem;
2548 qemu_irq irq;
2549 qemu_irq alarm;
2550 QEMUTimer *clk;
2551
2552 uint8_t interrupts;
2553 uint8_t status;
2554 int16_t comp_reg;
2555 int running;
2556 int pm_am;
2557 int auto_comp;
2558 int round;
2559 struct tm alarm_tm;
2560 time_t alarm_ti;
2561
2562 struct tm current_tm;
2563 time_t ti;
2564 uint64_t tick;
2565};
2566
2567static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2568{
2569 /* s->alarm is level-triggered */
2570 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2571}
2572
2573static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2574{
2575 s->alarm_ti = mktimegm(&s->alarm_tm);
2576 if (s->alarm_ti == -1)
2577 printf("%s: conversion failed\n", __func__);
2578}
2579
2580static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2581 unsigned size)
2582{
2583 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2584 int offset = addr & OMAP_MPUI_REG_MASK;
2585 uint8_t i;
2586
2587 if (size != 1) {
2588 return omap_badwidth_read8(opaque, addr);
2589 }
2590
2591 switch (offset) {
2592 case 0x00: /* SECONDS_REG */
2593 return to_bcd(s->current_tm.tm_sec);
2594
2595 case 0x04: /* MINUTES_REG */
2596 return to_bcd(s->current_tm.tm_min);
2597
2598 case 0x08: /* HOURS_REG */
2599 if (s->pm_am)
2600 return ((s->current_tm.tm_hour > 11) << 7) |
2601 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2602 else
2603 return to_bcd(s->current_tm.tm_hour);
2604
2605 case 0x0c: /* DAYS_REG */
2606 return to_bcd(s->current_tm.tm_mday);
2607
2608 case 0x10: /* MONTHS_REG */
2609 return to_bcd(s->current_tm.tm_mon + 1);
2610
2611 case 0x14: /* YEARS_REG */
2612 return to_bcd(s->current_tm.tm_year % 100);
2613
2614 case 0x18: /* WEEK_REG */
2615 return s->current_tm.tm_wday;
2616
2617 case 0x20: /* ALARM_SECONDS_REG */
2618 return to_bcd(s->alarm_tm.tm_sec);
2619
2620 case 0x24: /* ALARM_MINUTES_REG */
2621 return to_bcd(s->alarm_tm.tm_min);
2622
2623 case 0x28: /* ALARM_HOURS_REG */
2624 if (s->pm_am)
2625 return ((s->alarm_tm.tm_hour > 11) << 7) |
2626 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2627 else
2628 return to_bcd(s->alarm_tm.tm_hour);
2629
2630 case 0x2c: /* ALARM_DAYS_REG */
2631 return to_bcd(s->alarm_tm.tm_mday);
2632
2633 case 0x30: /* ALARM_MONTHS_REG */
2634 return to_bcd(s->alarm_tm.tm_mon + 1);
2635
2636 case 0x34: /* ALARM_YEARS_REG */
2637 return to_bcd(s->alarm_tm.tm_year % 100);
2638
2639 case 0x40: /* RTC_CTRL_REG */
2640 return (s->pm_am << 3) | (s->auto_comp << 2) |
2641 (s->round << 1) | s->running;
2642
2643 case 0x44: /* RTC_STATUS_REG */
2644 i = s->status;
2645 s->status &= ~0x3d;
2646 return i;
2647
2648 case 0x48: /* RTC_INTERRUPTS_REG */
2649 return s->interrupts;
2650
2651 case 0x4c: /* RTC_COMP_LSB_REG */
2652 return ((uint16_t) s->comp_reg) & 0xff;
2653
2654 case 0x50: /* RTC_COMP_MSB_REG */
2655 return ((uint16_t) s->comp_reg) >> 8;
2656 }
2657
2658 OMAP_BAD_REG(addr);
2659 return 0;
2660}
2661
2662static void omap_rtc_write(void *opaque, hwaddr addr,
2663 uint64_t value, unsigned size)
2664{
2665 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2666 int offset = addr & OMAP_MPUI_REG_MASK;
2667 struct tm new_tm;
2668 time_t ti[2];
2669
2670 if (size != 1) {
2671 omap_badwidth_write8(opaque, addr, value);
2672 return;
2673 }
2674
2675 switch (offset) {
2676 case 0x00: /* SECONDS_REG */
2677#ifdef ALMDEBUG
2678 printf("RTC SEC_REG <-- %02x\n", value);
2679#endif
2680 s->ti -= s->current_tm.tm_sec;
2681 s->ti += from_bcd(value);
2682 return;
2683
2684 case 0x04: /* MINUTES_REG */
2685#ifdef ALMDEBUG
2686 printf("RTC MIN_REG <-- %02x\n", value);
2687#endif
2688 s->ti -= s->current_tm.tm_min * 60;
2689 s->ti += from_bcd(value) * 60;
2690 return;
2691
2692 case 0x08: /* HOURS_REG */
2693#ifdef ALMDEBUG
2694 printf("RTC HRS_REG <-- %02x\n", value);
2695#endif
2696 s->ti -= s->current_tm.tm_hour * 3600;
2697 if (s->pm_am) {
2698 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2699 s->ti += ((value >> 7) & 1) * 43200;
2700 } else
2701 s->ti += from_bcd(value & 0x3f) * 3600;
2702 return;
2703
2704 case 0x0c: /* DAYS_REG */
2705#ifdef ALMDEBUG
2706 printf("RTC DAY_REG <-- %02x\n", value);
2707#endif
2708 s->ti -= s->current_tm.tm_mday * 86400;
2709 s->ti += from_bcd(value) * 86400;
2710 return;
2711
2712 case 0x10: /* MONTHS_REG */
2713#ifdef ALMDEBUG
2714 printf("RTC MTH_REG <-- %02x\n", value);
2715#endif
2716 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2717 new_tm.tm_mon = from_bcd(value);
2718 ti[0] = mktimegm(&s->current_tm);
2719 ti[1] = mktimegm(&new_tm);
2720
2721 if (ti[0] != -1 && ti[1] != -1) {
2722 s->ti -= ti[0];
2723 s->ti += ti[1];
2724 } else {
2725 /* A less accurate version */
2726 s->ti -= s->current_tm.tm_mon * 2592000;
2727 s->ti += from_bcd(value) * 2592000;
2728 }
2729 return;
2730
2731 case 0x14: /* YEARS_REG */
2732#ifdef ALMDEBUG
2733 printf("RTC YRS_REG <-- %02x\n", value);
2734#endif
2735 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2736 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2737 ti[0] = mktimegm(&s->current_tm);
2738 ti[1] = mktimegm(&new_tm);
2739
2740 if (ti[0] != -1 && ti[1] != -1) {
2741 s->ti -= ti[0];
2742 s->ti += ti[1];
2743 } else {
2744 /* A less accurate version */
2745 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2746 s->ti += (time_t)from_bcd(value) * 31536000;
2747 }
2748 return;
2749
2750 case 0x18: /* WEEK_REG */
2751 return; /* Ignored */
2752
2753 case 0x20: /* ALARM_SECONDS_REG */
2754#ifdef ALMDEBUG
2755 printf("ALM SEC_REG <-- %02x\n", value);
2756#endif
2757 s->alarm_tm.tm_sec = from_bcd(value);
2758 omap_rtc_alarm_update(s);
2759 return;
2760
2761 case 0x24: /* ALARM_MINUTES_REG */
2762#ifdef ALMDEBUG
2763 printf("ALM MIN_REG <-- %02x\n", value);
2764#endif
2765 s->alarm_tm.tm_min = from_bcd(value);
2766 omap_rtc_alarm_update(s);
2767 return;
2768
2769 case 0x28: /* ALARM_HOURS_REG */
2770#ifdef ALMDEBUG
2771 printf("ALM HRS_REG <-- %02x\n", value);
2772#endif
2773 if (s->pm_am)
2774 s->alarm_tm.tm_hour =
2775 ((from_bcd(value & 0x3f)) % 12) +
2776 ((value >> 7) & 1) * 12;
2777 else
2778 s->alarm_tm.tm_hour = from_bcd(value);
2779 omap_rtc_alarm_update(s);
2780 return;
2781
2782 case 0x2c: /* ALARM_DAYS_REG */
2783#ifdef ALMDEBUG
2784 printf("ALM DAY_REG <-- %02x\n", value);
2785#endif
2786 s->alarm_tm.tm_mday = from_bcd(value);
2787 omap_rtc_alarm_update(s);
2788 return;
2789
2790 case 0x30: /* ALARM_MONTHS_REG */
2791#ifdef ALMDEBUG
2792 printf("ALM MON_REG <-- %02x\n", value);
2793#endif
2794 s->alarm_tm.tm_mon = from_bcd(value);
2795 omap_rtc_alarm_update(s);
2796 return;
2797
2798 case 0x34: /* ALARM_YEARS_REG */
2799#ifdef ALMDEBUG
2800 printf("ALM YRS_REG <-- %02x\n", value);
2801#endif
2802 s->alarm_tm.tm_year = from_bcd(value);
2803 omap_rtc_alarm_update(s);
2804 return;
2805
2806 case 0x40: /* RTC_CTRL_REG */
2807#ifdef ALMDEBUG
2808 printf("RTC CONTROL <-- %02x\n", value);
2809#endif
2810 s->pm_am = (value >> 3) & 1;
2811 s->auto_comp = (value >> 2) & 1;
2812 s->round = (value >> 1) & 1;
2813 s->running = value & 1;
2814 s->status &= 0xfd;
2815 s->status |= s->running << 1;
2816 return;
2817
2818 case 0x44: /* RTC_STATUS_REG */
2819#ifdef ALMDEBUG
2820 printf("RTC STATUSL <-- %02x\n", value);
2821#endif
2822 s->status &= ~((value & 0xc0) ^ 0x80);
2823 omap_rtc_interrupts_update(s);
2824 return;
2825
2826 case 0x48: /* RTC_INTERRUPTS_REG */
2827#ifdef ALMDEBUG
2828 printf("RTC INTRS <-- %02x\n", value);
2829#endif
2830 s->interrupts = value;
2831 return;
2832
2833 case 0x4c: /* RTC_COMP_LSB_REG */
2834#ifdef ALMDEBUG
2835 printf("RTC COMPLSB <-- %02x\n", value);
2836#endif
2837 s->comp_reg &= 0xff00;
2838 s->comp_reg |= 0x00ff & value;
2839 return;
2840
2841 case 0x50: /* RTC_COMP_MSB_REG */
2842#ifdef ALMDEBUG
2843 printf("RTC COMPMSB <-- %02x\n", value);
2844#endif
2845 s->comp_reg &= 0x00ff;
2846 s->comp_reg |= 0xff00 & (value << 8);
2847 return;
2848
2849 default:
2850 OMAP_BAD_REG(addr);
2851 return;
2852 }
2853}
2854
2855static const MemoryRegionOps omap_rtc_ops = {
2856 .read = omap_rtc_read,
2857 .write = omap_rtc_write,
2858 .endianness = DEVICE_NATIVE_ENDIAN,
2859};
2860
2861static void omap_rtc_tick(void *opaque)
2862{
2863 struct omap_rtc_s *s = opaque;
2864
2865 if (s->round) {
2866 /* Round to nearest full minute. */
2867 if (s->current_tm.tm_sec < 30)
2868 s->ti -= s->current_tm.tm_sec;
2869 else
2870 s->ti += 60 - s->current_tm.tm_sec;
2871
2872 s->round = 0;
2873 }
2874
2875 localtime_r(&s->ti, &s->current_tm);
2876
2877 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2878 s->status |= 0x40;
2879 omap_rtc_interrupts_update(s);
2880 }
2881
2882 if (s->interrupts & 0x04)
2883 switch (s->interrupts & 3) {
2884 case 0:
2885 s->status |= 0x04;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 case 1:
2889 if (s->current_tm.tm_sec)
2890 break;
2891 s->status |= 0x08;
2892 qemu_irq_pulse(s->irq);
2893 break;
2894 case 2:
2895 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2896 break;
2897 s->status |= 0x10;
2898 qemu_irq_pulse(s->irq);
2899 break;
2900 case 3:
2901 if (s->current_tm.tm_sec ||
2902 s->current_tm.tm_min || s->current_tm.tm_hour)
2903 break;
2904 s->status |= 0x20;
2905 qemu_irq_pulse(s->irq);
2906 break;
2907 }
2908
2909 /* Move on */
2910 if (s->running)
2911 s->ti ++;
2912 s->tick += 1000;
2913
2914 /*
2915 * Every full hour add a rough approximation of the compensation
2916 * register to the 32kHz Timer (which drives the RTC) value.
2917 */
2918 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2919 s->tick += s->comp_reg * 1000 / 32768;
2920
2921 timer_mod(s->clk, s->tick);
2922}
2923
2924static void omap_rtc_reset(struct omap_rtc_s *s)
2925{
2926 struct tm tm;
2927
2928 s->interrupts = 0;
2929 s->comp_reg = 0;
2930 s->running = 0;
2931 s->pm_am = 0;
2932 s->auto_comp = 0;
2933 s->round = 0;
2934 s->tick = qemu_clock_get_ms(rtc_clock);
2935 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2936 s->alarm_tm.tm_mday = 0x01;
2937 s->status = 1 << 7;
2938 qemu_get_timedate(&tm, 0);
2939 s->ti = mktimegm(&tm);
2940
2941 omap_rtc_alarm_update(s);
2942 omap_rtc_tick(s);
2943}
2944
2945static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2946 hwaddr base,
2947 qemu_irq timerirq, qemu_irq alarmirq,
2948 omap_clk clk)
2949{
2950 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2951
2952 s->irq = timerirq;
2953 s->alarm = alarmirq;
2954 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2955
2956 omap_rtc_reset(s);
2957
2958 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2959 "omap-rtc", 0x800);
2960 memory_region_add_subregion(system_memory, base, &s->iomem);
2961
2962 return s;
2963}
2964
2965/* Multi-channel Buffered Serial Port interfaces */
2966struct omap_mcbsp_s {
2967 MemoryRegion iomem;
2968 qemu_irq txirq;
2969 qemu_irq rxirq;
2970 qemu_irq txdrq;
2971 qemu_irq rxdrq;
2972
2973 uint16_t spcr[2];
2974 uint16_t rcr[2];
2975 uint16_t xcr[2];
2976 uint16_t srgr[2];
2977 uint16_t mcr[2];
2978 uint16_t pcr;
2979 uint16_t rcer[8];
2980 uint16_t xcer[8];
2981 int tx_rate;
2982 int rx_rate;
2983 int tx_req;
2984 int rx_req;
2985
2986 I2SCodec *codec;
2987 QEMUTimer *source_timer;
2988 QEMUTimer *sink_timer;
2989};
2990
2991static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2992{
2993 int irq;
2994
2995 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2996 case 0:
2997 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2998 break;
2999 case 3:
3000 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3001 break;
3002 default:
3003 irq = 0;
3004 break;
3005 }
3006
3007 if (irq)
3008 qemu_irq_pulse(s->rxirq);
3009
3010 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3011 case 0:
3012 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3013 break;
3014 case 3:
3015 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3016 break;
3017 default:
3018 irq = 0;
3019 break;
3020 }
3021
3022 if (irq)
3023 qemu_irq_pulse(s->txirq);
3024}
3025
3026static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3027{
3028 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3029 s->spcr[0] |= 1 << 2; /* RFULL */
3030 s->spcr[0] |= 1 << 1; /* RRDY */
3031 qemu_irq_raise(s->rxdrq);
3032 omap_mcbsp_intr_update(s);
3033}
3034
3035static void omap_mcbsp_source_tick(void *opaque)
3036{
3037 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3038 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3039
3040 if (!s->rx_rate)
3041 return;
3042 if (s->rx_req)
3043 printf("%s: Rx FIFO overrun\n", __func__);
3044
3045 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3046
3047 omap_mcbsp_rx_newdata(s);
3048 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3049 NANOSECONDS_PER_SECOND);
3050}
3051
3052static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3053{
3054 if (!s->codec || !s->codec->rts)
3055 omap_mcbsp_source_tick(s);
3056 else if (s->codec->in.len) {
3057 s->rx_req = s->codec->in.len;
3058 omap_mcbsp_rx_newdata(s);
3059 }
3060}
3061
3062static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3063{
3064 timer_del(s->source_timer);
3065}
3066
3067static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3068{
3069 s->spcr[0] &= ~(1 << 1); /* RRDY */
3070 qemu_irq_lower(s->rxdrq);
3071 omap_mcbsp_intr_update(s);
3072}
3073
3074static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3075{
3076 s->spcr[1] |= 1 << 1; /* XRDY */
3077 qemu_irq_raise(s->txdrq);
3078 omap_mcbsp_intr_update(s);
3079}
3080
3081static void omap_mcbsp_sink_tick(void *opaque)
3082{
3083 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3084 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3085
3086 if (!s->tx_rate)
3087 return;
3088 if (s->tx_req)
3089 printf("%s: Tx FIFO underrun\n", __func__);
3090
3091 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3092
3093 omap_mcbsp_tx_newdata(s);
3094 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3095 NANOSECONDS_PER_SECOND);
3096}
3097
3098static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3099{
3100 if (!s->codec || !s->codec->cts)
3101 omap_mcbsp_sink_tick(s);
3102 else if (s->codec->out.size) {
3103 s->tx_req = s->codec->out.size;
3104 omap_mcbsp_tx_newdata(s);
3105 }
3106}
3107
3108static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3109{
3110 s->spcr[1] &= ~(1 << 1); /* XRDY */
3111 qemu_irq_lower(s->txdrq);
3112 omap_mcbsp_intr_update(s);
3113 if (s->codec && s->codec->cts)
3114 s->codec->tx_swallow(s->codec->opaque);
3115}
3116
3117static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3118{
3119 s->tx_req = 0;
3120 omap_mcbsp_tx_done(s);
3121 timer_del(s->sink_timer);
3122}
3123
3124static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3125{
3126 int prev_rx_rate, prev_tx_rate;
3127 int rx_rate = 0, tx_rate = 0;
3128 int cpu_rate = 1500000; /* XXX */
3129
3130 /* TODO: check CLKSTP bit */
3131 if (s->spcr[1] & (1 << 6)) { /* GRST */
3132 if (s->spcr[0] & (1 << 0)) { /* RRST */
3133 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3134 (s->pcr & (1 << 8))) { /* CLKRM */
3135 if (~s->pcr & (1 << 7)) /* SCLKME */
3136 rx_rate = cpu_rate /
3137 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3138 } else
3139 if (s->codec)
3140 rx_rate = s->codec->rx_rate;
3141 }
3142
3143 if (s->spcr[1] & (1 << 0)) { /* XRST */
3144 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3145 (s->pcr & (1 << 9))) { /* CLKXM */
3146 if (~s->pcr & (1 << 7)) /* SCLKME */
3147 tx_rate = cpu_rate /
3148 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3149 } else
3150 if (s->codec)
3151 tx_rate = s->codec->tx_rate;
3152 }
3153 }
3154 prev_tx_rate = s->tx_rate;
3155 prev_rx_rate = s->rx_rate;
3156 s->tx_rate = tx_rate;
3157 s->rx_rate = rx_rate;
3158
3159 if (s->codec)
3160 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3161
3162 if (!prev_tx_rate && tx_rate)
3163 omap_mcbsp_tx_start(s);
3164 else if (s->tx_rate && !tx_rate)
3165 omap_mcbsp_tx_stop(s);
3166
3167 if (!prev_rx_rate && rx_rate)
3168 omap_mcbsp_rx_start(s);
3169 else if (prev_tx_rate && !tx_rate)
3170 omap_mcbsp_rx_stop(s);
3171}
3172
3173static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3174 unsigned size)
3175{
3176 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3177 int offset = addr & OMAP_MPUI_REG_MASK;
3178 uint16_t ret;
3179
3180 if (size != 2) {
3181 return omap_badwidth_read16(opaque, addr);
3182 }
3183
3184 switch (offset) {
3185 case 0x00: /* DRR2 */
3186 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3187 return 0x0000;
3188 /* Fall through. */
3189 case 0x02: /* DRR1 */
3190 if (s->rx_req < 2) {
3191 printf("%s: Rx FIFO underrun\n", __func__);
3192 omap_mcbsp_rx_done(s);
3193 } else {
3194 s->tx_req -= 2;
3195 if (s->codec && s->codec->in.len >= 2) {
3196 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3197 ret |= s->codec->in.fifo[s->codec->in.start ++];
3198 s->codec->in.len -= 2;
3199 } else
3200 ret = 0x0000;
3201 if (!s->tx_req)
3202 omap_mcbsp_rx_done(s);
3203 return ret;
3204 }
3205 return 0x0000;
3206
3207 case 0x04: /* DXR2 */
3208 case 0x06: /* DXR1 */
3209 return 0x0000;
3210
3211 case 0x08: /* SPCR2 */
3212 return s->spcr[1];
3213 case 0x0a: /* SPCR1 */
3214 return s->spcr[0];
3215 case 0x0c: /* RCR2 */
3216 return s->rcr[1];
3217 case 0x0e: /* RCR1 */
3218 return s->rcr[0];
3219 case 0x10: /* XCR2 */
3220 return s->xcr[1];
3221 case 0x12: /* XCR1 */
3222 return s->xcr[0];
3223 case 0x14: /* SRGR2 */
3224 return s->srgr[1];
3225 case 0x16: /* SRGR1 */
3226 return s->srgr[0];
3227 case 0x18: /* MCR2 */
3228 return s->mcr[1];
3229 case 0x1a: /* MCR1 */
3230 return s->mcr[0];
3231 case 0x1c: /* RCERA */
3232 return s->rcer[0];
3233 case 0x1e: /* RCERB */
3234 return s->rcer[1];
3235 case 0x20: /* XCERA */
3236 return s->xcer[0];
3237 case 0x22: /* XCERB */
3238 return s->xcer[1];
3239 case 0x24: /* PCR0 */
3240 return s->pcr;
3241 case 0x26: /* RCERC */
3242 return s->rcer[2];
3243 case 0x28: /* RCERD */
3244 return s->rcer[3];
3245 case 0x2a: /* XCERC */
3246 return s->xcer[2];
3247 case 0x2c: /* XCERD */
3248 return s->xcer[3];
3249 case 0x2e: /* RCERE */
3250 return s->rcer[4];
3251 case 0x30: /* RCERF */
3252 return s->rcer[5];
3253 case 0x32: /* XCERE */
3254 return s->xcer[4];
3255 case 0x34: /* XCERF */
3256 return s->xcer[5];
3257 case 0x36: /* RCERG */
3258 return s->rcer[6];
3259 case 0x38: /* RCERH */
3260 return s->rcer[7];
3261 case 0x3a: /* XCERG */
3262 return s->xcer[6];
3263 case 0x3c: /* XCERH */
3264 return s->xcer[7];
3265 }
3266
3267 OMAP_BAD_REG(addr);
3268 return 0;
3269}
3270
3271static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3272 uint32_t value)
3273{
3274 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3275 int offset = addr & OMAP_MPUI_REG_MASK;
3276
3277 switch (offset) {
3278 case 0x00: /* DRR2 */
3279 case 0x02: /* DRR1 */
3280 OMAP_RO_REG(addr);
3281 return;
3282
3283 case 0x04: /* DXR2 */
3284 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3285 return;
3286 /* Fall through. */
3287 case 0x06: /* DXR1 */
3288 if (s->tx_req > 1) {
3289 s->tx_req -= 2;
3290 if (s->codec && s->codec->cts) {
3291 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3292 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3293 }
3294 if (s->tx_req < 2)
3295 omap_mcbsp_tx_done(s);
3296 } else
3297 printf("%s: Tx FIFO overrun\n", __func__);
3298 return;
3299
3300 case 0x08: /* SPCR2 */
3301 s->spcr[1] &= 0x0002;
3302 s->spcr[1] |= 0x03f9 & value;
3303 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3304 if (~value & 1) /* XRST */
3305 s->spcr[1] &= ~6;
3306 omap_mcbsp_req_update(s);
3307 return;
3308 case 0x0a: /* SPCR1 */
3309 s->spcr[0] &= 0x0006;
3310 s->spcr[0] |= 0xf8f9 & value;
3311 if (value & (1 << 15)) /* DLB */
3312 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3313 if (~value & 1) { /* RRST */
3314 s->spcr[0] &= ~6;
3315 s->rx_req = 0;
3316 omap_mcbsp_rx_done(s);
3317 }
3318 omap_mcbsp_req_update(s);
3319 return;
3320
3321 case 0x0c: /* RCR2 */
3322 s->rcr[1] = value & 0xffff;
3323 return;
3324 case 0x0e: /* RCR1 */
3325 s->rcr[0] = value & 0x7fe0;
3326 return;
3327 case 0x10: /* XCR2 */
3328 s->xcr[1] = value & 0xffff;
3329 return;
3330 case 0x12: /* XCR1 */
3331 s->xcr[0] = value & 0x7fe0;
3332 return;
3333 case 0x14: /* SRGR2 */
3334 s->srgr[1] = value & 0xffff;
3335 omap_mcbsp_req_update(s);
3336 return;
3337 case 0x16: /* SRGR1 */
3338 s->srgr[0] = value & 0xffff;
3339 omap_mcbsp_req_update(s);
3340 return;
3341 case 0x18: /* MCR2 */
3342 s->mcr[1] = value & 0x03e3;
3343 if (value & 3) /* XMCM */
3344 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3345 return;
3346 case 0x1a: /* MCR1 */
3347 s->mcr[0] = value & 0x03e1;
3348 if (value & 1) /* RMCM */
3349 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3350 return;
3351 case 0x1c: /* RCERA */
3352 s->rcer[0] = value & 0xffff;
3353 return;
3354 case 0x1e: /* RCERB */
3355 s->rcer[1] = value & 0xffff;
3356 return;
3357 case 0x20: /* XCERA */
3358 s->xcer[0] = value & 0xffff;
3359 return;
3360 case 0x22: /* XCERB */
3361 s->xcer[1] = value & 0xffff;
3362 return;
3363 case 0x24: /* PCR0 */
3364 s->pcr = value & 0x7faf;
3365 return;
3366 case 0x26: /* RCERC */
3367 s->rcer[2] = value & 0xffff;
3368 return;
3369 case 0x28: /* RCERD */
3370 s->rcer[3] = value & 0xffff;
3371 return;
3372 case 0x2a: /* XCERC */
3373 s->xcer[2] = value & 0xffff;
3374 return;
3375 case 0x2c: /* XCERD */
3376 s->xcer[3] = value & 0xffff;
3377 return;
3378 case 0x2e: /* RCERE */
3379 s->rcer[4] = value & 0xffff;
3380 return;
3381 case 0x30: /* RCERF */
3382 s->rcer[5] = value & 0xffff;
3383 return;
3384 case 0x32: /* XCERE */
3385 s->xcer[4] = value & 0xffff;
3386 return;
3387 case 0x34: /* XCERF */
3388 s->xcer[5] = value & 0xffff;
3389 return;
3390 case 0x36: /* RCERG */
3391 s->rcer[6] = value & 0xffff;
3392 return;
3393 case 0x38: /* RCERH */
3394 s->rcer[7] = value & 0xffff;
3395 return;
3396 case 0x3a: /* XCERG */
3397 s->xcer[6] = value & 0xffff;
3398 return;
3399 case 0x3c: /* XCERH */
3400 s->xcer[7] = value & 0xffff;
3401 return;
3402 }
3403
3404 OMAP_BAD_REG(addr);
3405}
3406
3407static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3408 uint32_t value)
3409{
3410 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3411 int offset = addr & OMAP_MPUI_REG_MASK;
3412
3413 if (offset == 0x04) { /* DXR */
3414 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3415 return;
3416 if (s->tx_req > 3) {
3417 s->tx_req -= 4;
3418 if (s->codec && s->codec->cts) {
3419 s->codec->out.fifo[s->codec->out.len ++] =
3420 (value >> 24) & 0xff;
3421 s->codec->out.fifo[s->codec->out.len ++] =
3422 (value >> 16) & 0xff;
3423 s->codec->out.fifo[s->codec->out.len ++] =
3424 (value >> 8) & 0xff;
3425 s->codec->out.fifo[s->codec->out.len ++] =
3426 (value >> 0) & 0xff;
3427 }
3428 if (s->tx_req < 4)
3429 omap_mcbsp_tx_done(s);
3430 } else
3431 printf("%s: Tx FIFO overrun\n", __func__);
3432 return;
3433 }
3434
3435 omap_badwidth_write16(opaque, addr, value);
3436}
3437
3438static void omap_mcbsp_write(void *opaque, hwaddr addr,
3439 uint64_t value, unsigned size)
3440{
3441 switch (size) {
3442 case 2:
3443 omap_mcbsp_writeh(opaque, addr, value);
3444 break;
3445 case 4:
3446 omap_mcbsp_writew(opaque, addr, value);
3447 break;
3448 default:
3449 omap_badwidth_write16(opaque, addr, value);
3450 }
3451}
3452
3453static const MemoryRegionOps omap_mcbsp_ops = {
3454 .read = omap_mcbsp_read,
3455 .write = omap_mcbsp_write,
3456 .endianness = DEVICE_NATIVE_ENDIAN,
3457};
3458
3459static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3460{
3461 memset(&s->spcr, 0, sizeof(s->spcr));
3462 memset(&s->rcr, 0, sizeof(s->rcr));
3463 memset(&s->xcr, 0, sizeof(s->xcr));
3464 s->srgr[0] = 0x0001;
3465 s->srgr[1] = 0x2000;
3466 memset(&s->mcr, 0, sizeof(s->mcr));
3467 memset(&s->pcr, 0, sizeof(s->pcr));
3468 memset(&s->rcer, 0, sizeof(s->rcer));
3469 memset(&s->xcer, 0, sizeof(s->xcer));
3470 s->tx_req = 0;
3471 s->rx_req = 0;
3472 s->tx_rate = 0;
3473 s->rx_rate = 0;
3474 timer_del(s->source_timer);
3475 timer_del(s->sink_timer);
3476}
3477
3478static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3479 hwaddr base,
3480 qemu_irq txirq, qemu_irq rxirq,
3481 qemu_irq *dma, omap_clk clk)
3482{
3483 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3484
3485 s->txirq = txirq;
3486 s->rxirq = rxirq;
3487 s->txdrq = dma[0];
3488 s->rxdrq = dma[1];
3489 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3490 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3491 omap_mcbsp_reset(s);
3492
3493 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3494 memory_region_add_subregion(system_memory, base, &s->iomem);
3495
3496 return s;
3497}
3498
3499static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3500{
3501 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502
3503 if (s->rx_rate) {
3504 s->rx_req = s->codec->in.len;
3505 omap_mcbsp_rx_newdata(s);
3506 }
3507}
3508
3509static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3510{
3511 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3512
3513 if (s->tx_rate) {
3514 s->tx_req = s->codec->out.size;
3515 omap_mcbsp_tx_newdata(s);
3516 }
3517}
3518
3519void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3520{
3521 s->codec = slave;
3522 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3523 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3524}
3525
3526/* LED Pulse Generators */
3527struct omap_lpg_s {
3528 MemoryRegion iomem;
3529 QEMUTimer *tm;
3530
3531 uint8_t control;
3532 uint8_t power;
3533 int64_t on;
3534 int64_t period;
3535 int clk;
3536 int cycle;
3537};
3538
3539static void omap_lpg_tick(void *opaque)
3540{
3541 struct omap_lpg_s *s = opaque;
3542
3543 if (s->cycle)
3544 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3545 else
3546 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3547
3548 s->cycle = !s->cycle;
3549 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3550}
3551
3552static void omap_lpg_update(struct omap_lpg_s *s)
3553{
3554 int64_t on, period = 1, ticks = 1000;
3555 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3556
3557 if (~s->control & (1 << 6)) /* LPGRES */
3558 on = 0;
3559 else if (s->control & (1 << 7)) /* PERM_ON */
3560 on = period;
3561 else {
3562 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3563 256 / 32);
3564 on = (s->clk && s->power) ? muldiv64(ticks,
3565 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3566 }
3567
3568 timer_del(s->tm);
3569 if (on == period && s->on < s->period)
3570 printf("%s: LED is on\n", __func__);
3571 else if (on == 0 && s->on)
3572 printf("%s: LED is off\n", __func__);
3573 else if (on && (on != s->on || period != s->period)) {
3574 s->cycle = 0;
3575 s->on = on;
3576 s->period = period;
3577 omap_lpg_tick(s);
3578 return;
3579 }
3580
3581 s->on = on;
3582 s->period = period;
3583}
3584
3585static void omap_lpg_reset(struct omap_lpg_s *s)
3586{
3587 s->control = 0x00;
3588 s->power = 0x00;
3589 s->clk = 1;
3590 omap_lpg_update(s);
3591}
3592
3593static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3594 unsigned size)
3595{
3596 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3597 int offset = addr & OMAP_MPUI_REG_MASK;
3598
3599 if (size != 1) {
3600 return omap_badwidth_read8(opaque, addr);
3601 }
3602
3603 switch (offset) {
3604 case 0x00: /* LCR */
3605 return s->control;
3606
3607 case 0x04: /* PMR */
3608 return s->power;
3609 }
3610
3611 OMAP_BAD_REG(addr);
3612 return 0;
3613}
3614
3615static void omap_lpg_write(void *opaque, hwaddr addr,
3616 uint64_t value, unsigned size)
3617{
3618 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3619 int offset = addr & OMAP_MPUI_REG_MASK;
3620
3621 if (size != 1) {
3622 omap_badwidth_write8(opaque, addr, value);
3623 return;
3624 }
3625
3626 switch (offset) {
3627 case 0x00: /* LCR */
3628 if (~value & (1 << 6)) /* LPGRES */
3629 omap_lpg_reset(s);
3630 s->control = value & 0xff;
3631 omap_lpg_update(s);
3632 return;
3633
3634 case 0x04: /* PMR */
3635 s->power = value & 0x01;
3636 omap_lpg_update(s);
3637 return;
3638
3639 default:
3640 OMAP_BAD_REG(addr);
3641 return;
3642 }
3643}
3644
3645static const MemoryRegionOps omap_lpg_ops = {
3646 .read = omap_lpg_read,
3647 .write = omap_lpg_write,
3648 .endianness = DEVICE_NATIVE_ENDIAN,
3649};
3650
3651static void omap_lpg_clk_update(void *opaque, int line, int on)
3652{
3653 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3654
3655 s->clk = on;
3656 omap_lpg_update(s);
3657}
3658
3659static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3660 hwaddr base, omap_clk clk)
3661{
3662 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3663
3664 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3665
3666 omap_lpg_reset(s);
3667
3668 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3669 memory_region_add_subregion(system_memory, base, &s->iomem);
3670
3671 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3672
3673 return s;
3674}
3675
3676/* MPUI Peripheral Bridge configuration */
3677static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3678 unsigned size)
3679{
3680 if (size != 2) {
3681 return omap_badwidth_read16(opaque, addr);
3682 }
3683
3684 if (addr == OMAP_MPUI_BASE) /* CMR */
3685 return 0xfe4d;
3686
3687 OMAP_BAD_REG(addr);
3688 return 0;
3689}
3690
3691static void omap_mpui_io_write(void *opaque, hwaddr addr,
3692 uint64_t value, unsigned size)
3693{
3694 /* FIXME: infinite loop */
3695 omap_badwidth_write16(opaque, addr, value);
3696}
3697
3698static const MemoryRegionOps omap_mpui_io_ops = {
3699 .read = omap_mpui_io_read,
3700 .write = omap_mpui_io_write,
3701 .endianness = DEVICE_NATIVE_ENDIAN,
3702};
3703
3704static void omap_setup_mpui_io(MemoryRegion *system_memory,
3705 struct omap_mpu_state_s *mpu)
3706{
3707 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3708 "omap-mpui-io", 0x7fff);
3709 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3710 &mpu->mpui_io_iomem);
3711}
3712
3713/* General chip reset */
3714static void omap1_mpu_reset(void *opaque)
3715{
3716 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3717
3718 omap_dma_reset(mpu->dma);
3719 omap_mpu_timer_reset(mpu->timer[0]);
3720 omap_mpu_timer_reset(mpu->timer[1]);
3721 omap_mpu_timer_reset(mpu->timer[2]);
3722 omap_wd_timer_reset(mpu->wdt);
3723 omap_os_timer_reset(mpu->os_timer);
3724 omap_lcdc_reset(mpu->lcd);
3725 omap_ulpd_pm_reset(mpu);
3726 omap_pin_cfg_reset(mpu);
3727 omap_mpui_reset(mpu);
3728 omap_tipb_bridge_reset(mpu->private_tipb);
3729 omap_tipb_bridge_reset(mpu->public_tipb);
3730 omap_dpll_reset(mpu->dpll[0]);
3731 omap_dpll_reset(mpu->dpll[1]);
3732 omap_dpll_reset(mpu->dpll[2]);
3733 omap_uart_reset(mpu->uart[0]);
3734 omap_uart_reset(mpu->uart[1]);
3735 omap_uart_reset(mpu->uart[2]);
3736 omap_mmc_reset(mpu->mmc);
3737 omap_mpuio_reset(mpu->mpuio);
3738 omap_uwire_reset(mpu->microwire);
3739 omap_pwl_reset(mpu->pwl);
3740 omap_pwt_reset(mpu->pwt);
3741 omap_rtc_reset(mpu->rtc);
3742 omap_mcbsp_reset(mpu->mcbsp1);
3743 omap_mcbsp_reset(mpu->mcbsp2);
3744 omap_mcbsp_reset(mpu->mcbsp3);
3745 omap_lpg_reset(mpu->led[0]);
3746 omap_lpg_reset(mpu->led[1]);
3747 omap_clkm_reset(mpu);
3748 cpu_reset(CPU(mpu->cpu));
3749}
3750
3751static const struct omap_map_s {
3752 hwaddr phys_dsp;
3753 hwaddr phys_mpu;
3754 uint32_t size;
3755 const char *name;
3756} omap15xx_dsp_mm[] = {
3757 /* Strobe 0 */
3758 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3759 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3760 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3761 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3762 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3763 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3764 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3765 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3766 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3767 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3768 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3769 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3770 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3771 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3772 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3773 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3774 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3775 /* Strobe 1 */
3776 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3777
3778 { 0 }
3779};
3780
3781static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3782 const struct omap_map_s *map)
3783{
3784 MemoryRegion *io;
3785
3786 for (; map->phys_dsp; map ++) {
3787 io = g_new(MemoryRegion, 1);
3788 memory_region_init_alias(io, NULL, map->name,
3789 system_memory, map->phys_mpu, map->size);
3790 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3791 }
3792}
3793
3794void omap_mpu_wakeup(void *opaque, int irq, int req)
3795{
3796 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3797 CPUState *cpu = CPU(mpu->cpu);
3798
3799 if (cpu->halted) {
3800 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3801 }
3802}
3803
3804static const struct dma_irq_map omap1_dma_irq_map[] = {
3805 { 0, OMAP_INT_DMA_CH0_6 },
3806 { 0, OMAP_INT_DMA_CH1_7 },
3807 { 0, OMAP_INT_DMA_CH2_8 },
3808 { 0, OMAP_INT_DMA_CH3 },
3809 { 0, OMAP_INT_DMA_CH4 },
3810 { 0, OMAP_INT_DMA_CH5 },
3811 { 1, OMAP_INT_1610_DMA_CH6 },
3812 { 1, OMAP_INT_1610_DMA_CH7 },
3813 { 1, OMAP_INT_1610_DMA_CH8 },
3814 { 1, OMAP_INT_1610_DMA_CH9 },
3815 { 1, OMAP_INT_1610_DMA_CH10 },
3816 { 1, OMAP_INT_1610_DMA_CH11 },
3817 { 1, OMAP_INT_1610_DMA_CH12 },
3818 { 1, OMAP_INT_1610_DMA_CH13 },
3819 { 1, OMAP_INT_1610_DMA_CH14 },
3820 { 1, OMAP_INT_1610_DMA_CH15 }
3821};
3822
3823/* DMA ports for OMAP1 */
3824static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3825 hwaddr addr)
3826{
3827 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3828}
3829
3830static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3831 hwaddr addr)
3832{
3833 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3834 addr);
3835}
3836
3837static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3838 hwaddr addr)
3839{
3840 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3841}
3842
3843static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3844 hwaddr addr)
3845{
3846 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3847}
3848
3849static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3850 hwaddr addr)
3851{
3852 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3853}
3854
3855static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3856 hwaddr addr)
3857{
3858 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3859}
3860
3861struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3862 unsigned long sdram_size,
3863 const char *cpu_type)
3864{
3865 int i;
3866 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3867 qemu_irq dma_irqs[6];
3868 DriveInfo *dinfo;
3869 SysBusDevice *busdev;
3870
3871 /* Core */
3872 s->mpu_model = omap310;
3873 s->cpu = ARM_CPU(cpu_create(cpu_type));
3874 s->sdram_size = sdram_size;
3875 s->sram_size = OMAP15XX_SRAM_SIZE;
3876
3877 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3878
3879 /* Clocks */
3880 omap_clk_init(s);
3881
3882 /* Memory-mapped stuff */
3883 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3884 s->sdram_size);
3885 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3886 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3887 &error_fatal);
3888 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3889
3890 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3891
3892 s->ih[0] = qdev_create(NULL, "omap-intc");
3893 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3894 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3895 qdev_init_nofail(s->ih[0]);
3896 busdev = SYS_BUS_DEVICE(s->ih[0]);
3897 sysbus_connect_irq(busdev, 0,
3898 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3899 sysbus_connect_irq(busdev, 1,
3900 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3901 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3902 s->ih[1] = qdev_create(NULL, "omap-intc");
3903 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3904 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3905 qdev_init_nofail(s->ih[1]);
3906 busdev = SYS_BUS_DEVICE(s->ih[1]);
3907 sysbus_connect_irq(busdev, 0,
3908 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3909 /* The second interrupt controller's FIQ output is not wired up */
3910 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3911
3912 for (i = 0; i < 6; i++) {
3913 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3914 omap1_dma_irq_map[i].intr);
3915 }
3916 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3917 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3918 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3919
3920 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3921 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3922 s->port[imif ].addr_valid = omap_validate_imif_addr;
3923 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3924 s->port[local ].addr_valid = omap_validate_local_addr;
3925 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3926
3927 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3928 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3929 OMAP_EMIFF_BASE, s->sdram_size);
3930 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3931 OMAP_IMIF_BASE, s->sram_size);
3932
3933 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3934 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3935 omap_findclk(s, "mputim_ck"));
3936 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3937 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3938 omap_findclk(s, "mputim_ck"));
3939 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3940 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3941 omap_findclk(s, "mputim_ck"));
3942
3943 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3944 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3945 omap_findclk(s, "armwdt_ck"));
3946
3947 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3948 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3949 omap_findclk(s, "clk32-kHz"));
3950
3951 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3952 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3953 omap_dma_get_lcdch(s->dma),
3954 omap_findclk(s, "lcd_ck"));
3955
3956 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3957 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3958 omap_id_init(system_memory, s);
3959
3960 omap_mpui_init(system_memory, 0xfffec900, s);
3961
3962 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3963 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3964 omap_findclk(s, "tipb_ck"));
3965 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3966 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3967 omap_findclk(s, "tipb_ck"));
3968
3969 omap_tcmi_init(system_memory, 0xfffecc00, s);
3970
3971 s->uart[0] = omap_uart_init(0xfffb0000,
3972 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3973 omap_findclk(s, "uart1_ck"),
3974 omap_findclk(s, "uart1_ck"),
3975 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3976 "uart1",
3977 serial_hd(0));
3978 s->uart[1] = omap_uart_init(0xfffb0800,
3979 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3980 omap_findclk(s, "uart2_ck"),
3981 omap_findclk(s, "uart2_ck"),
3982 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3983 "uart2",
3984 serial_hd(0) ? serial_hd(1) : NULL);
3985 s->uart[2] = omap_uart_init(0xfffb9800,
3986 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3987 omap_findclk(s, "uart3_ck"),
3988 omap_findclk(s, "uart3_ck"),
3989 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3990 "uart3",
3991 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3992
3993 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3994 omap_findclk(s, "dpll1"));
3995 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3996 omap_findclk(s, "dpll2"));
3997 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3998 omap_findclk(s, "dpll3"));
3999
4000 dinfo = drive_get(IF_SD, 0, 0);
4001 if (!dinfo && !qtest_enabled()) {
4002 warn_report("missing SecureDigital device");
4003 }
4004 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4005 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4007 &s->drq[OMAP_DMA_MMC_TX],
4008 omap_findclk(s, "mmc_ck"));
4009
4010 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4011 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4012 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4013 s->wakeup, omap_findclk(s, "clk32-kHz"));
4014
4015 s->gpio = qdev_create(NULL, "omap-gpio");
4016 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4017 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4018 qdev_init_nofail(s->gpio);
4019 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4020 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4021 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4022
4023 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4025 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4026 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4027
4028 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4029 omap_findclk(s, "armxor_ck"));
4030 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4031 omap_findclk(s, "armxor_ck"));
4032
4033 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4034 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4035 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4036 qdev_init_nofail(s->i2c[0]);
4037 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4038 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4039 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4040 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4041 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4042
4043 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4045 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4046 omap_findclk(s, "clk32-kHz"));
4047
4048 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4050 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4051 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4052 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4053 qdev_get_gpio_in(s->ih[0],
4054 OMAP_INT_310_McBSP2_TX),
4055 qdev_get_gpio_in(s->ih[0],
4056 OMAP_INT_310_McBSP2_RX),
4057 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4058 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4059 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4060 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4061 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4062
4063 s->led[0] = omap_lpg_init(system_memory,
4064 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4065 s->led[1] = omap_lpg_init(system_memory,
4066 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4067
4068 /* Register mappings not currenlty implemented:
4069 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4070 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4071 * USB W2FC fffb4000 - fffb47ff
4072 * Camera Interface fffb6800 - fffb6fff
4073 * USB Host fffba000 - fffba7ff
4074 * FAC fffba800 - fffbafff
4075 * HDQ/1-Wire fffbc000 - fffbc7ff
4076 * TIPB switches fffbc800 - fffbcfff
4077 * Mailbox fffcf000 - fffcf7ff
4078 * Local bus IF fffec100 - fffec1ff
4079 * Local bus MMU fffec200 - fffec2ff
4080 * DSP MMU fffed200 - fffed2ff
4081 */
4082
4083 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4084 omap_setup_mpui_io(system_memory, s);
4085
4086 qemu_register_reset(omap1_mpu_reset, s);
4087
4088 return s;
4089}
4090