1/*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include "qemu/osdep.h"
20#include "hw/irq.h"
21#include "hw/sysbus.h"
22#include "migration/vmstate.h"
23#include "hw/qdev-core.h"
24#include "hw/pci/pci.h"
25#include "exec/address-spaces.h"
26#include "cpu.h"
27#include "trace.h"
28#include "qemu/log.h"
29#include "qemu/error-report.h"
30#include "qapi/error.h"
31
32#include "hw/arm/smmuv3.h"
33#include "smmuv3-internal.h"
34
35/**
36 * smmuv3_trigger_irq - pulse @irq if enabled and update
37 * GERROR register in case of GERROR interrupt
38 *
39 * @irq: irq type
40 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
41 */
42static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
43 uint32_t gerror_mask)
44{
45
46 bool pulse = false;
47
48 switch (irq) {
49 case SMMU_IRQ_EVTQ:
50 pulse = smmuv3_eventq_irq_enabled(s);
51 break;
52 case SMMU_IRQ_PRIQ:
53 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
54 break;
55 case SMMU_IRQ_CMD_SYNC:
56 pulse = true;
57 break;
58 case SMMU_IRQ_GERROR:
59 {
60 uint32_t pending = s->gerror ^ s->gerrorn;
61 uint32_t new_gerrors = ~pending & gerror_mask;
62
63 if (!new_gerrors) {
64 /* only toggle non pending errors */
65 return;
66 }
67 s->gerror ^= new_gerrors;
68 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
69
70 pulse = smmuv3_gerror_irq_enabled(s);
71 break;
72 }
73 }
74 if (pulse) {
75 trace_smmuv3_trigger_irq(irq);
76 qemu_irq_pulse(s->irq[irq]);
77 }
78}
79
80static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
81{
82 uint32_t pending = s->gerror ^ s->gerrorn;
83 uint32_t toggled = s->gerrorn ^ new_gerrorn;
84
85 if (toggled & ~pending) {
86 qemu_log_mask(LOG_GUEST_ERROR,
87 "guest toggles non pending errors = 0x%x\n",
88 toggled & ~pending);
89 }
90
91 /*
92 * We do not raise any error in case guest toggles bits corresponding
93 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
94 */
95 s->gerrorn = new_gerrorn;
96
97 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
98}
99
100static inline MemTxResult queue_read(SMMUQueue *q, void *data)
101{
102 dma_addr_t addr = Q_CONS_ENTRY(q);
103
104 return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
105}
106
107static MemTxResult queue_write(SMMUQueue *q, void *data)
108{
109 dma_addr_t addr = Q_PROD_ENTRY(q);
110 MemTxResult ret;
111
112 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
113 if (ret != MEMTX_OK) {
114 return ret;
115 }
116
117 queue_prod_incr(q);
118 return MEMTX_OK;
119}
120
121static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
122{
123 SMMUQueue *q = &s->eventq;
124 MemTxResult r;
125
126 if (!smmuv3_eventq_enabled(s)) {
127 return MEMTX_ERROR;
128 }
129
130 if (smmuv3_q_full(q)) {
131 return MEMTX_ERROR;
132 }
133
134 r = queue_write(q, evt);
135 if (r != MEMTX_OK) {
136 return r;
137 }
138
139 if (!smmuv3_q_empty(q)) {
140 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
141 }
142 return MEMTX_OK;
143}
144
145void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
146{
147 Evt evt = {};
148 MemTxResult r;
149
150 if (!smmuv3_eventq_enabled(s)) {
151 return;
152 }
153
154 EVT_SET_TYPE(&evt, info->type);
155 EVT_SET_SID(&evt, info->sid);
156
157 switch (info->type) {
158 case SMMU_EVT_NONE:
159 return;
160 case SMMU_EVT_F_UUT:
161 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
162 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
163 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
164 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
165 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
166 EVT_SET_IND(&evt, info->u.f_uut.ind);
167 break;
168 case SMMU_EVT_C_BAD_STREAMID:
169 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
170 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
171 break;
172 case SMMU_EVT_F_STE_FETCH:
173 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
174 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
175 EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
176 break;
177 case SMMU_EVT_C_BAD_STE:
178 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
179 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
180 break;
181 case SMMU_EVT_F_STREAM_DISABLED:
182 break;
183 case SMMU_EVT_F_TRANS_FORBIDDEN:
184 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
185 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
186 break;
187 case SMMU_EVT_C_BAD_SUBSTREAMID:
188 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
189 break;
190 case SMMU_EVT_F_CD_FETCH:
191 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
192 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
193 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
194 break;
195 case SMMU_EVT_C_BAD_CD:
196 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
197 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
198 break;
199 case SMMU_EVT_F_WALK_EABT:
200 case SMMU_EVT_F_TRANSLATION:
201 case SMMU_EVT_F_ADDR_SIZE:
202 case SMMU_EVT_F_ACCESS:
203 case SMMU_EVT_F_PERMISSION:
204 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
205 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
206 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
207 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
208 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
209 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
210 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
211 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
212 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
213 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
214 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
215 break;
216 case SMMU_EVT_F_CFG_CONFLICT:
217 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
218 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
219 break;
220 /* rest is not implemented */
221 case SMMU_EVT_F_BAD_ATS_TREQ:
222 case SMMU_EVT_F_TLB_CONFLICT:
223 case SMMU_EVT_E_PAGE_REQ:
224 default:
225 g_assert_not_reached();
226 }
227
228 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
229 r = smmuv3_write_eventq(s, &evt);
230 if (r != MEMTX_OK) {
231 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
232 }
233 info->recorded = true;
234}
235
236static void smmuv3_init_regs(SMMUv3State *s)
237{
238 /**
239 * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
240 * multi-level stream table
241 */
242 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
243 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
244 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
245 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
246 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
248 /* terminated transaction will always be aborted/error returned */
249 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
250 /* 2-level stream table supported */
251 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
252
253 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
254 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
255 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
256
257 /* 4K and 64K granule support */
258 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
259 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
260 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
261
262 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
263 s->cmdq.prod = 0;
264 s->cmdq.cons = 0;
265 s->cmdq.entry_size = sizeof(struct Cmd);
266 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
267 s->eventq.prod = 0;
268 s->eventq.cons = 0;
269 s->eventq.entry_size = sizeof(struct Evt);
270
271 s->features = 0;
272 s->sid_split = 0;
273}
274
275static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
276 SMMUEventInfo *event)
277{
278 int ret;
279
280 trace_smmuv3_get_ste(addr);
281 /* TODO: guarantee 64-bit single-copy atomicity */
282 ret = dma_memory_read(&address_space_memory, addr,
283 (void *)buf, sizeof(*buf));
284 if (ret != MEMTX_OK) {
285 qemu_log_mask(LOG_GUEST_ERROR,
286 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
287 event->type = SMMU_EVT_F_STE_FETCH;
288 event->u.f_ste_fetch.addr = addr;
289 return -EINVAL;
290 }
291 return 0;
292
293}
294
295/* @ssid > 0 not supported yet */
296static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
297 CD *buf, SMMUEventInfo *event)
298{
299 dma_addr_t addr = STE_CTXPTR(ste);
300 int ret;
301
302 trace_smmuv3_get_cd(addr);
303 /* TODO: guarantee 64-bit single-copy atomicity */
304 ret = dma_memory_read(&address_space_memory, addr,
305 (void *)buf, sizeof(*buf));
306 if (ret != MEMTX_OK) {
307 qemu_log_mask(LOG_GUEST_ERROR,
308 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
309 event->type = SMMU_EVT_F_CD_FETCH;
310 event->u.f_ste_fetch.addr = addr;
311 return -EINVAL;
312 }
313 return 0;
314}
315
316/* Returns < 0 in case of invalid STE, 0 otherwise */
317static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
318 STE *ste, SMMUEventInfo *event)
319{
320 uint32_t config;
321
322 if (!STE_VALID(ste)) {
323 if (!event->inval_ste_allowed) {
324 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
325 }
326 goto bad_ste;
327 }
328
329 config = STE_CONFIG(ste);
330
331 if (STE_CFG_ABORT(config)) {
332 cfg->aborted = true;
333 return 0;
334 }
335
336 if (STE_CFG_BYPASS(config)) {
337 cfg->bypassed = true;
338 return 0;
339 }
340
341 if (STE_CFG_S2_ENABLED(config)) {
342 qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
343 goto bad_ste;
344 }
345
346 if (STE_S1CDMAX(ste) != 0) {
347 qemu_log_mask(LOG_UNIMP,
348 "SMMUv3 does not support multiple context descriptors yet\n");
349 goto bad_ste;
350 }
351
352 if (STE_S1STALLD(ste)) {
353 qemu_log_mask(LOG_UNIMP,
354 "SMMUv3 S1 stalling fault model not allowed yet\n");
355 goto bad_ste;
356 }
357 return 0;
358
359bad_ste:
360 event->type = SMMU_EVT_C_BAD_STE;
361 return -EINVAL;
362}
363
364/**
365 * smmu_find_ste - Return the stream table entry associated
366 * to the sid
367 *
368 * @s: smmuv3 handle
369 * @sid: stream ID
370 * @ste: returned stream table entry
371 * @event: handle to an event info
372 *
373 * Supports linear and 2-level stream table
374 * Return 0 on success, -EINVAL otherwise
375 */
376static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
377 SMMUEventInfo *event)
378{
379 dma_addr_t addr;
380 int ret;
381
382 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
383 /* Check SID range */
384 if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
385 event->type = SMMU_EVT_C_BAD_STREAMID;
386 return -EINVAL;
387 }
388 if (s->features & SMMU_FEATURE_2LVL_STE) {
389 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
390 dma_addr_t strtab_base, l1ptr, l2ptr;
391 STEDesc l1std;
392
393 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
394 l1_ste_offset = sid >> s->sid_split;
395 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
396 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
397 /* TODO: guarantee 64-bit single-copy atomicity */
398 ret = dma_memory_read(&address_space_memory, l1ptr,
399 (uint8_t *)&l1std, sizeof(l1std));
400 if (ret != MEMTX_OK) {
401 qemu_log_mask(LOG_GUEST_ERROR,
402 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
403 event->type = SMMU_EVT_F_STE_FETCH;
404 event->u.f_ste_fetch.addr = l1ptr;
405 return -EINVAL;
406 }
407
408 span = L1STD_SPAN(&l1std);
409
410 if (!span) {
411 /* l2ptr is not valid */
412 if (!event->inval_ste_allowed) {
413 qemu_log_mask(LOG_GUEST_ERROR,
414 "invalid sid=%d (L1STD span=0)\n", sid);
415 }
416 event->type = SMMU_EVT_C_BAD_STREAMID;
417 return -EINVAL;
418 }
419 max_l2_ste = (1 << span) - 1;
420 l2ptr = l1std_l2ptr(&l1std);
421 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
422 l2ptr, l2_ste_offset, max_l2_ste);
423 if (l2_ste_offset > max_l2_ste) {
424 qemu_log_mask(LOG_GUEST_ERROR,
425 "l2_ste_offset=%d > max_l2_ste=%d\n",
426 l2_ste_offset, max_l2_ste);
427 event->type = SMMU_EVT_C_BAD_STE;
428 return -EINVAL;
429 }
430 addr = l2ptr + l2_ste_offset * sizeof(*ste);
431 } else {
432 addr = s->strtab_base + sid * sizeof(*ste);
433 }
434
435 if (smmu_get_ste(s, addr, ste, event)) {
436 return -EINVAL;
437 }
438
439 return 0;
440}
441
442static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
443{
444 int ret = -EINVAL;
445 int i;
446
447 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
448 goto bad_cd;
449 }
450 if (!CD_A(cd)) {
451 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
452 }
453 if (CD_S(cd)) {
454 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
455 }
456 if (CD_HA(cd) || CD_HD(cd)) {
457 goto bad_cd; /* HTTU = 0 */
458 }
459
460 /* we support only those at the moment */
461 cfg->aa64 = true;
462 cfg->stage = 1;
463
464 cfg->oas = oas2bits(CD_IPS(cd));
465 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
466 cfg->tbi = CD_TBI(cd);
467 cfg->asid = CD_ASID(cd);
468
469 trace_smmuv3_decode_cd(cfg->oas);
470
471 /* decode data dependent on TT */
472 for (i = 0; i <= 1; i++) {
473 int tg, tsz;
474 SMMUTransTableInfo *tt = &cfg->tt[i];
475
476 cfg->tt[i].disabled = CD_EPD(cd, i);
477 if (cfg->tt[i].disabled) {
478 continue;
479 }
480
481 tsz = CD_TSZ(cd, i);
482 if (tsz < 16 || tsz > 39) {
483 goto bad_cd;
484 }
485
486 tg = CD_TG(cd, i);
487 tt->granule_sz = tg2granule(tg, i);
488 if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
489 goto bad_cd;
490 }
491
492 tt->tsz = tsz;
493 tt->ttb = CD_TTB(cd, i);
494 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
495 goto bad_cd;
496 }
497 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
498 }
499
500 event->record_trans_faults = CD_R(cd);
501
502 return 0;
503
504bad_cd:
505 event->type = SMMU_EVT_C_BAD_CD;
506 return ret;
507}
508
509/**
510 * smmuv3_decode_config - Prepare the translation configuration
511 * for the @mr iommu region
512 * @mr: iommu memory region the translation config must be prepared for
513 * @cfg: output translation configuration which is populated through
514 * the different configuration decoding steps
515 * @event: must be zero'ed by the caller
516 *
517 * return < 0 in case of config decoding error (@event is filled
518 * accordingly). Return 0 otherwise.
519 */
520static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
521 SMMUEventInfo *event)
522{
523 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
524 uint32_t sid = smmu_get_sid(sdev);
525 SMMUv3State *s = sdev->smmu;
526 int ret;
527 STE ste;
528 CD cd;
529
530 ret = smmu_find_ste(s, sid, &ste, event);
531 if (ret) {
532 return ret;
533 }
534
535 ret = decode_ste(s, cfg, &ste, event);
536 if (ret) {
537 return ret;
538 }
539
540 if (cfg->aborted || cfg->bypassed) {
541 return 0;
542 }
543
544 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
545 if (ret) {
546 return ret;
547 }
548
549 return decode_cd(cfg, &cd, event);
550}
551
552/**
553 * smmuv3_get_config - Look up for a cached copy of configuration data for
554 * @sdev and on cache miss performs a configuration structure decoding from
555 * guest RAM.
556 *
557 * @sdev: SMMUDevice handle
558 * @event: output event info
559 *
560 * The configuration cache contains data resulting from both STE and CD
561 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
562 * by the SMMUDevice handle.
563 */
564static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
565{
566 SMMUv3State *s = sdev->smmu;
567 SMMUState *bc = &s->smmu_state;
568 SMMUTransCfg *cfg;
569
570 cfg = g_hash_table_lookup(bc->configs, sdev);
571 if (cfg) {
572 sdev->cfg_cache_hits++;
573 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
574 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
575 100 * sdev->cfg_cache_hits /
576 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
577 } else {
578 sdev->cfg_cache_misses++;
579 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
580 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
581 100 * sdev->cfg_cache_hits /
582 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
583 cfg = g_new0(SMMUTransCfg, 1);
584
585 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
586 g_hash_table_insert(bc->configs, sdev, cfg);
587 } else {
588 g_free(cfg);
589 cfg = NULL;
590 }
591 }
592 return cfg;
593}
594
595static void smmuv3_flush_config(SMMUDevice *sdev)
596{
597 SMMUv3State *s = sdev->smmu;
598 SMMUState *bc = &s->smmu_state;
599
600 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
601 g_hash_table_remove(bc->configs, sdev);
602}
603
604static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
605 IOMMUAccessFlags flag, int iommu_idx)
606{
607 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
608 SMMUv3State *s = sdev->smmu;
609 uint32_t sid = smmu_get_sid(sdev);
610 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
611 .sid = sid,
612 .inval_ste_allowed = false};
613 SMMUPTWEventInfo ptw_info = {};
614 SMMUTranslationStatus status;
615 SMMUState *bs = ARM_SMMU(s);
616 uint64_t page_mask, aligned_addr;
617 IOMMUTLBEntry *cached_entry = NULL;
618 SMMUTransTableInfo *tt;
619 SMMUTransCfg *cfg = NULL;
620 IOMMUTLBEntry entry = {
621 .target_as = &address_space_memory,
622 .iova = addr,
623 .translated_addr = addr,
624 .addr_mask = ~(hwaddr)0,
625 .perm = IOMMU_NONE,
626 };
627 SMMUIOTLBKey key, *new_key;
628
629 qemu_mutex_lock(&s->mutex);
630
631 if (!smmu_enabled(s)) {
632 status = SMMU_TRANS_DISABLE;
633 goto epilogue;
634 }
635
636 cfg = smmuv3_get_config(sdev, &event);
637 if (!cfg) {
638 status = SMMU_TRANS_ERROR;
639 goto epilogue;
640 }
641
642 if (cfg->aborted) {
643 status = SMMU_TRANS_ABORT;
644 goto epilogue;
645 }
646
647 if (cfg->bypassed) {
648 status = SMMU_TRANS_BYPASS;
649 goto epilogue;
650 }
651
652 tt = select_tt(cfg, addr);
653 if (!tt) {
654 if (event.record_trans_faults) {
655 event.type = SMMU_EVT_F_TRANSLATION;
656 event.u.f_translation.addr = addr;
657 event.u.f_translation.rnw = flag & 0x1;
658 }
659 status = SMMU_TRANS_ERROR;
660 goto epilogue;
661 }
662
663 page_mask = (1ULL << (tt->granule_sz)) - 1;
664 aligned_addr = addr & ~page_mask;
665
666 key.asid = cfg->asid;
667 key.iova = aligned_addr;
668
669 cached_entry = g_hash_table_lookup(bs->iotlb, &key);
670 if (cached_entry) {
671 cfg->iotlb_hits++;
672 trace_smmu_iotlb_cache_hit(cfg->asid, aligned_addr,
673 cfg->iotlb_hits, cfg->iotlb_misses,
674 100 * cfg->iotlb_hits /
675 (cfg->iotlb_hits + cfg->iotlb_misses));
676 if ((flag & IOMMU_WO) && !(cached_entry->perm & IOMMU_WO)) {
677 status = SMMU_TRANS_ERROR;
678 if (event.record_trans_faults) {
679 event.type = SMMU_EVT_F_PERMISSION;
680 event.u.f_permission.addr = addr;
681 event.u.f_permission.rnw = flag & 0x1;
682 }
683 } else {
684 status = SMMU_TRANS_SUCCESS;
685 }
686 goto epilogue;
687 }
688
689 cfg->iotlb_misses++;
690 trace_smmu_iotlb_cache_miss(cfg->asid, addr & ~page_mask,
691 cfg->iotlb_hits, cfg->iotlb_misses,
692 100 * cfg->iotlb_hits /
693 (cfg->iotlb_hits + cfg->iotlb_misses));
694
695 if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
696 smmu_iotlb_inv_all(bs);
697 }
698
699 cached_entry = g_new0(IOMMUTLBEntry, 1);
700
701 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
702 g_free(cached_entry);
703 switch (ptw_info.type) {
704 case SMMU_PTW_ERR_WALK_EABT:
705 event.type = SMMU_EVT_F_WALK_EABT;
706 event.u.f_walk_eabt.addr = addr;
707 event.u.f_walk_eabt.rnw = flag & 0x1;
708 event.u.f_walk_eabt.class = 0x1;
709 event.u.f_walk_eabt.addr2 = ptw_info.addr;
710 break;
711 case SMMU_PTW_ERR_TRANSLATION:
712 if (event.record_trans_faults) {
713 event.type = SMMU_EVT_F_TRANSLATION;
714 event.u.f_translation.addr = addr;
715 event.u.f_translation.rnw = flag & 0x1;
716 }
717 break;
718 case SMMU_PTW_ERR_ADDR_SIZE:
719 if (event.record_trans_faults) {
720 event.type = SMMU_EVT_F_ADDR_SIZE;
721 event.u.f_addr_size.addr = addr;
722 event.u.f_addr_size.rnw = flag & 0x1;
723 }
724 break;
725 case SMMU_PTW_ERR_ACCESS:
726 if (event.record_trans_faults) {
727 event.type = SMMU_EVT_F_ACCESS;
728 event.u.f_access.addr = addr;
729 event.u.f_access.rnw = flag & 0x1;
730 }
731 break;
732 case SMMU_PTW_ERR_PERMISSION:
733 if (event.record_trans_faults) {
734 event.type = SMMU_EVT_F_PERMISSION;
735 event.u.f_permission.addr = addr;
736 event.u.f_permission.rnw = flag & 0x1;
737 }
738 break;
739 default:
740 g_assert_not_reached();
741 }
742 status = SMMU_TRANS_ERROR;
743 } else {
744 new_key = g_new0(SMMUIOTLBKey, 1);
745 new_key->asid = cfg->asid;
746 new_key->iova = aligned_addr;
747 g_hash_table_insert(bs->iotlb, new_key, cached_entry);
748 status = SMMU_TRANS_SUCCESS;
749 }
750
751epilogue:
752 qemu_mutex_unlock(&s->mutex);
753 switch (status) {
754 case SMMU_TRANS_SUCCESS:
755 entry.perm = flag;
756 entry.translated_addr = cached_entry->translated_addr +
757 (addr & page_mask);
758 entry.addr_mask = cached_entry->addr_mask;
759 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
760 entry.translated_addr, entry.perm);
761 break;
762 case SMMU_TRANS_DISABLE:
763 entry.perm = flag;
764 entry.addr_mask = ~TARGET_PAGE_MASK;
765 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
766 entry.perm);
767 break;
768 case SMMU_TRANS_BYPASS:
769 entry.perm = flag;
770 entry.addr_mask = ~TARGET_PAGE_MASK;
771 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
772 entry.perm);
773 break;
774 case SMMU_TRANS_ABORT:
775 /* no event is recorded on abort */
776 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
777 entry.perm);
778 break;
779 case SMMU_TRANS_ERROR:
780 qemu_log_mask(LOG_GUEST_ERROR,
781 "%s translation failed for iova=0x%"PRIx64"(%s)\n",
782 mr->parent_obj.name, addr, smmu_event_string(event.type));
783 smmuv3_record_event(s, &event);
784 break;
785 }
786
787 return entry;
788}
789
790/**
791 * smmuv3_notify_iova - call the notifier @n for a given
792 * @asid and @iova tuple.
793 *
794 * @mr: IOMMU mr region handle
795 * @n: notifier to be called
796 * @asid: address space ID or negative value if we don't care
797 * @iova: iova
798 */
799static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
800 IOMMUNotifier *n,
801 int asid,
802 dma_addr_t iova)
803{
804 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
805 SMMUEventInfo event = {.inval_ste_allowed = true};
806 SMMUTransTableInfo *tt;
807 SMMUTransCfg *cfg;
808 IOMMUTLBEntry entry;
809
810 cfg = smmuv3_get_config(sdev, &event);
811 if (!cfg) {
812 return;
813 }
814
815 if (asid >= 0 && cfg->asid != asid) {
816 return;
817 }
818
819 tt = select_tt(cfg, iova);
820 if (!tt) {
821 return;
822 }
823
824 entry.target_as = &address_space_memory;
825 entry.iova = iova;
826 entry.addr_mask = (1 << tt->granule_sz) - 1;
827 entry.perm = IOMMU_NONE;
828
829 memory_region_notify_one(n, &entry);
830}
831
832/* invalidate an asid/iova tuple in all mr's */
833static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova)
834{
835 SMMUDevice *sdev;
836
837 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
838 IOMMUMemoryRegion *mr = &sdev->iommu;
839 IOMMUNotifier *n;
840
841 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova);
842
843 IOMMU_NOTIFIER_FOREACH(n, mr) {
844 smmuv3_notify_iova(mr, n, asid, iova);
845 }
846 }
847}
848
849static int smmuv3_cmdq_consume(SMMUv3State *s)
850{
851 SMMUState *bs = ARM_SMMU(s);
852 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
853 SMMUQueue *q = &s->cmdq;
854 SMMUCommandType type = 0;
855
856 if (!smmuv3_cmdq_enabled(s)) {
857 return 0;
858 }
859 /*
860 * some commands depend on register values, typically CR0. In case those
861 * register values change while handling the command, spec says it
862 * is UNPREDICTABLE whether the command is interpreted under the new
863 * or old value.
864 */
865
866 while (!smmuv3_q_empty(q)) {
867 uint32_t pending = s->gerror ^ s->gerrorn;
868 Cmd cmd;
869
870 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
871 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
872
873 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
874 break;
875 }
876
877 if (queue_read(q, &cmd) != MEMTX_OK) {
878 cmd_error = SMMU_CERROR_ABT;
879 break;
880 }
881
882 type = CMD_TYPE(&cmd);
883
884 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
885
886 qemu_mutex_lock(&s->mutex);
887 switch (type) {
888 case SMMU_CMD_SYNC:
889 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
890 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
891 }
892 break;
893 case SMMU_CMD_PREFETCH_CONFIG:
894 case SMMU_CMD_PREFETCH_ADDR:
895 break;
896 case SMMU_CMD_CFGI_STE:
897 {
898 uint32_t sid = CMD_SID(&cmd);
899 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
900 SMMUDevice *sdev;
901
902 if (CMD_SSEC(&cmd)) {
903 cmd_error = SMMU_CERROR_ILL;
904 break;
905 }
906
907 if (!mr) {
908 break;
909 }
910
911 trace_smmuv3_cmdq_cfgi_ste(sid);
912 sdev = container_of(mr, SMMUDevice, iommu);
913 smmuv3_flush_config(sdev);
914
915 break;
916 }
917 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
918 {
919 uint32_t start = CMD_SID(&cmd), end, i;
920 uint8_t range = CMD_STE_RANGE(&cmd);
921
922 if (CMD_SSEC(&cmd)) {
923 cmd_error = SMMU_CERROR_ILL;
924 break;
925 }
926
927 end = start + (1 << (range + 1)) - 1;
928 trace_smmuv3_cmdq_cfgi_ste_range(start, end);
929
930 for (i = start; i <= end; i++) {
931 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, i);
932 SMMUDevice *sdev;
933
934 if (!mr) {
935 continue;
936 }
937 sdev = container_of(mr, SMMUDevice, iommu);
938 smmuv3_flush_config(sdev);
939 }
940 break;
941 }
942 case SMMU_CMD_CFGI_CD:
943 case SMMU_CMD_CFGI_CD_ALL:
944 {
945 uint32_t sid = CMD_SID(&cmd);
946 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
947 SMMUDevice *sdev;
948
949 if (CMD_SSEC(&cmd)) {
950 cmd_error = SMMU_CERROR_ILL;
951 break;
952 }
953
954 if (!mr) {
955 break;
956 }
957
958 trace_smmuv3_cmdq_cfgi_cd(sid);
959 sdev = container_of(mr, SMMUDevice, iommu);
960 smmuv3_flush_config(sdev);
961 break;
962 }
963 case SMMU_CMD_TLBI_NH_ASID:
964 {
965 uint16_t asid = CMD_ASID(&cmd);
966
967 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
968 smmu_inv_notifiers_all(&s->smmu_state);
969 smmu_iotlb_inv_asid(bs, asid);
970 break;
971 }
972 case SMMU_CMD_TLBI_NH_ALL:
973 case SMMU_CMD_TLBI_NSNH_ALL:
974 trace_smmuv3_cmdq_tlbi_nh();
975 smmu_inv_notifiers_all(&s->smmu_state);
976 smmu_iotlb_inv_all(bs);
977 break;
978 case SMMU_CMD_TLBI_NH_VAA:
979 {
980 dma_addr_t addr = CMD_ADDR(&cmd);
981 uint16_t vmid = CMD_VMID(&cmd);
982
983 trace_smmuv3_cmdq_tlbi_nh_vaa(vmid, addr);
984 smmuv3_inv_notifiers_iova(bs, -1, addr);
985 smmu_iotlb_inv_all(bs);
986 break;
987 }
988 case SMMU_CMD_TLBI_NH_VA:
989 {
990 uint16_t asid = CMD_ASID(&cmd);
991 uint16_t vmid = CMD_VMID(&cmd);
992 dma_addr_t addr = CMD_ADDR(&cmd);
993 bool leaf = CMD_LEAF(&cmd);
994
995 trace_smmuv3_cmdq_tlbi_nh_va(vmid, asid, addr, leaf);
996 smmuv3_inv_notifiers_iova(bs, asid, addr);
997 smmu_iotlb_inv_iova(bs, asid, addr);
998 break;
999 }
1000 case SMMU_CMD_TLBI_EL3_ALL:
1001 case SMMU_CMD_TLBI_EL3_VA:
1002 case SMMU_CMD_TLBI_EL2_ALL:
1003 case SMMU_CMD_TLBI_EL2_ASID:
1004 case SMMU_CMD_TLBI_EL2_VA:
1005 case SMMU_CMD_TLBI_EL2_VAA:
1006 case SMMU_CMD_TLBI_S12_VMALL:
1007 case SMMU_CMD_TLBI_S2_IPA:
1008 case SMMU_CMD_ATC_INV:
1009 case SMMU_CMD_PRI_RESP:
1010 case SMMU_CMD_RESUME:
1011 case SMMU_CMD_STALL_TERM:
1012 trace_smmuv3_unhandled_cmd(type);
1013 break;
1014 default:
1015 cmd_error = SMMU_CERROR_ILL;
1016 qemu_log_mask(LOG_GUEST_ERROR,
1017 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1018 break;
1019 }
1020 qemu_mutex_unlock(&s->mutex);
1021 if (cmd_error) {
1022 break;
1023 }
1024 /*
1025 * We only increment the cons index after the completion of
1026 * the command. We do that because the SYNC returns immediately
1027 * and does not check the completion of previous commands
1028 */
1029 queue_cons_incr(q);
1030 }
1031
1032 if (cmd_error) {
1033 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1034 smmu_write_cmdq_err(s, cmd_error);
1035 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1036 }
1037
1038 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1039 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1040
1041 return 0;
1042}
1043
1044static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1045 uint64_t data, MemTxAttrs attrs)
1046{
1047 switch (offset) {
1048 case A_GERROR_IRQ_CFG0:
1049 s->gerror_irq_cfg0 = data;
1050 return MEMTX_OK;
1051 case A_STRTAB_BASE:
1052 s->strtab_base = data;
1053 return MEMTX_OK;
1054 case A_CMDQ_BASE:
1055 s->cmdq.base = data;
1056 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1057 if (s->cmdq.log2size > SMMU_CMDQS) {
1058 s->cmdq.log2size = SMMU_CMDQS;
1059 }
1060 return MEMTX_OK;
1061 case A_EVENTQ_BASE:
1062 s->eventq.base = data;
1063 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1064 if (s->eventq.log2size > SMMU_EVENTQS) {
1065 s->eventq.log2size = SMMU_EVENTQS;
1066 }
1067 return MEMTX_OK;
1068 case A_EVENTQ_IRQ_CFG0:
1069 s->eventq_irq_cfg0 = data;
1070 return MEMTX_OK;
1071 default:
1072 qemu_log_mask(LOG_UNIMP,
1073 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1074 __func__, offset);
1075 return MEMTX_OK;
1076 }
1077}
1078
1079static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1080 uint64_t data, MemTxAttrs attrs)
1081{
1082 switch (offset) {
1083 case A_CR0:
1084 s->cr[0] = data;
1085 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1086 /* in case the command queue has been enabled */
1087 smmuv3_cmdq_consume(s);
1088 return MEMTX_OK;
1089 case A_CR1:
1090 s->cr[1] = data;
1091 return MEMTX_OK;
1092 case A_CR2:
1093 s->cr[2] = data;
1094 return MEMTX_OK;
1095 case A_IRQ_CTRL:
1096 s->irq_ctrl = data;
1097 return MEMTX_OK;
1098 case A_GERRORN:
1099 smmuv3_write_gerrorn(s, data);
1100 /*
1101 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1102 * be processed again
1103 */
1104 smmuv3_cmdq_consume(s);
1105 return MEMTX_OK;
1106 case A_GERROR_IRQ_CFG0: /* 64b */
1107 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1108 return MEMTX_OK;
1109 case A_GERROR_IRQ_CFG0 + 4:
1110 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1111 return MEMTX_OK;
1112 case A_GERROR_IRQ_CFG1:
1113 s->gerror_irq_cfg1 = data;
1114 return MEMTX_OK;
1115 case A_GERROR_IRQ_CFG2:
1116 s->gerror_irq_cfg2 = data;
1117 return MEMTX_OK;
1118 case A_STRTAB_BASE: /* 64b */
1119 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1120 return MEMTX_OK;
1121 case A_STRTAB_BASE + 4:
1122 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1123 return MEMTX_OK;
1124 case A_STRTAB_BASE_CFG:
1125 s->strtab_base_cfg = data;
1126 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1127 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1128 s->features |= SMMU_FEATURE_2LVL_STE;
1129 }
1130 return MEMTX_OK;
1131 case A_CMDQ_BASE: /* 64b */
1132 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1133 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1134 if (s->cmdq.log2size > SMMU_CMDQS) {
1135 s->cmdq.log2size = SMMU_CMDQS;
1136 }
1137 return MEMTX_OK;
1138 case A_CMDQ_BASE + 4: /* 64b */
1139 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1140 return MEMTX_OK;
1141 case A_CMDQ_PROD:
1142 s->cmdq.prod = data;
1143 smmuv3_cmdq_consume(s);
1144 return MEMTX_OK;
1145 case A_CMDQ_CONS:
1146 s->cmdq.cons = data;
1147 return MEMTX_OK;
1148 case A_EVENTQ_BASE: /* 64b */
1149 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1150 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1151 if (s->eventq.log2size > SMMU_EVENTQS) {
1152 s->eventq.log2size = SMMU_EVENTQS;
1153 }
1154 return MEMTX_OK;
1155 case A_EVENTQ_BASE + 4:
1156 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1157 return MEMTX_OK;
1158 case A_EVENTQ_PROD:
1159 s->eventq.prod = data;
1160 return MEMTX_OK;
1161 case A_EVENTQ_CONS:
1162 s->eventq.cons = data;
1163 return MEMTX_OK;
1164 case A_EVENTQ_IRQ_CFG0: /* 64b */
1165 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1166 return MEMTX_OK;
1167 case A_EVENTQ_IRQ_CFG0 + 4:
1168 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1169 return MEMTX_OK;
1170 case A_EVENTQ_IRQ_CFG1:
1171 s->eventq_irq_cfg1 = data;
1172 return MEMTX_OK;
1173 case A_EVENTQ_IRQ_CFG2:
1174 s->eventq_irq_cfg2 = data;
1175 return MEMTX_OK;
1176 default:
1177 qemu_log_mask(LOG_UNIMP,
1178 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1179 __func__, offset);
1180 return MEMTX_OK;
1181 }
1182}
1183
1184static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1185 unsigned size, MemTxAttrs attrs)
1186{
1187 SMMUState *sys = opaque;
1188 SMMUv3State *s = ARM_SMMUV3(sys);
1189 MemTxResult r;
1190
1191 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1192 offset &= ~0x10000;
1193
1194 switch (size) {
1195 case 8:
1196 r = smmu_writell(s, offset, data, attrs);
1197 break;
1198 case 4:
1199 r = smmu_writel(s, offset, data, attrs);
1200 break;
1201 default:
1202 r = MEMTX_ERROR;
1203 break;
1204 }
1205
1206 trace_smmuv3_write_mmio(offset, data, size, r);
1207 return r;
1208}
1209
1210static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1211 uint64_t *data, MemTxAttrs attrs)
1212{
1213 switch (offset) {
1214 case A_GERROR_IRQ_CFG0:
1215 *data = s->gerror_irq_cfg0;
1216 return MEMTX_OK;
1217 case A_STRTAB_BASE:
1218 *data = s->strtab_base;
1219 return MEMTX_OK;
1220 case A_CMDQ_BASE:
1221 *data = s->cmdq.base;
1222 return MEMTX_OK;
1223 case A_EVENTQ_BASE:
1224 *data = s->eventq.base;
1225 return MEMTX_OK;
1226 default:
1227 *data = 0;
1228 qemu_log_mask(LOG_UNIMP,
1229 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1230 __func__, offset);
1231 return MEMTX_OK;
1232 }
1233}
1234
1235static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1236 uint64_t *data, MemTxAttrs attrs)
1237{
1238 switch (offset) {
1239 case A_IDREGS ... A_IDREGS + 0x2f:
1240 *data = smmuv3_idreg(offset - A_IDREGS);
1241 return MEMTX_OK;
1242 case A_IDR0 ... A_IDR5:
1243 *data = s->idr[(offset - A_IDR0) / 4];
1244 return MEMTX_OK;
1245 case A_IIDR:
1246 *data = s->iidr;
1247 return MEMTX_OK;
1248 case A_CR0:
1249 *data = s->cr[0];
1250 return MEMTX_OK;
1251 case A_CR0ACK:
1252 *data = s->cr0ack;
1253 return MEMTX_OK;
1254 case A_CR1:
1255 *data = s->cr[1];
1256 return MEMTX_OK;
1257 case A_CR2:
1258 *data = s->cr[2];
1259 return MEMTX_OK;
1260 case A_STATUSR:
1261 *data = s->statusr;
1262 return MEMTX_OK;
1263 case A_IRQ_CTRL:
1264 case A_IRQ_CTRL_ACK:
1265 *data = s->irq_ctrl;
1266 return MEMTX_OK;
1267 case A_GERROR:
1268 *data = s->gerror;
1269 return MEMTX_OK;
1270 case A_GERRORN:
1271 *data = s->gerrorn;
1272 return MEMTX_OK;
1273 case A_GERROR_IRQ_CFG0: /* 64b */
1274 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1275 return MEMTX_OK;
1276 case A_GERROR_IRQ_CFG0 + 4:
1277 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1278 return MEMTX_OK;
1279 case A_GERROR_IRQ_CFG1:
1280 *data = s->gerror_irq_cfg1;
1281 return MEMTX_OK;
1282 case A_GERROR_IRQ_CFG2:
1283 *data = s->gerror_irq_cfg2;
1284 return MEMTX_OK;
1285 case A_STRTAB_BASE: /* 64b */
1286 *data = extract64(s->strtab_base, 0, 32);
1287 return MEMTX_OK;
1288 case A_STRTAB_BASE + 4: /* 64b */
1289 *data = extract64(s->strtab_base, 32, 32);
1290 return MEMTX_OK;
1291 case A_STRTAB_BASE_CFG:
1292 *data = s->strtab_base_cfg;
1293 return MEMTX_OK;
1294 case A_CMDQ_BASE: /* 64b */
1295 *data = extract64(s->cmdq.base, 0, 32);
1296 return MEMTX_OK;
1297 case A_CMDQ_BASE + 4:
1298 *data = extract64(s->cmdq.base, 32, 32);
1299 return MEMTX_OK;
1300 case A_CMDQ_PROD:
1301 *data = s->cmdq.prod;
1302 return MEMTX_OK;
1303 case A_CMDQ_CONS:
1304 *data = s->cmdq.cons;
1305 return MEMTX_OK;
1306 case A_EVENTQ_BASE: /* 64b */
1307 *data = extract64(s->eventq.base, 0, 32);
1308 return MEMTX_OK;
1309 case A_EVENTQ_BASE + 4: /* 64b */
1310 *data = extract64(s->eventq.base, 32, 32);
1311 return MEMTX_OK;
1312 case A_EVENTQ_PROD:
1313 *data = s->eventq.prod;
1314 return MEMTX_OK;
1315 case A_EVENTQ_CONS:
1316 *data = s->eventq.cons;
1317 return MEMTX_OK;
1318 default:
1319 *data = 0;
1320 qemu_log_mask(LOG_UNIMP,
1321 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1322 __func__, offset);
1323 return MEMTX_OK;
1324 }
1325}
1326
1327static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1328 unsigned size, MemTxAttrs attrs)
1329{
1330 SMMUState *sys = opaque;
1331 SMMUv3State *s = ARM_SMMUV3(sys);
1332 MemTxResult r;
1333
1334 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1335 offset &= ~0x10000;
1336
1337 switch (size) {
1338 case 8:
1339 r = smmu_readll(s, offset, data, attrs);
1340 break;
1341 case 4:
1342 r = smmu_readl(s, offset, data, attrs);
1343 break;
1344 default:
1345 r = MEMTX_ERROR;
1346 break;
1347 }
1348
1349 trace_smmuv3_read_mmio(offset, *data, size, r);
1350 return r;
1351}
1352
1353static const MemoryRegionOps smmu_mem_ops = {
1354 .read_with_attrs = smmu_read_mmio,
1355 .write_with_attrs = smmu_write_mmio,
1356 .endianness = DEVICE_LITTLE_ENDIAN,
1357 .valid = {
1358 .min_access_size = 4,
1359 .max_access_size = 8,
1360 },
1361 .impl = {
1362 .min_access_size = 4,
1363 .max_access_size = 8,
1364 },
1365};
1366
1367static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1368{
1369 int i;
1370
1371 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1372 sysbus_init_irq(dev, &s->irq[i]);
1373 }
1374}
1375
1376static void smmu_reset(DeviceState *dev)
1377{
1378 SMMUv3State *s = ARM_SMMUV3(dev);
1379 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1380
1381 c->parent_reset(dev);
1382
1383 smmuv3_init_regs(s);
1384}
1385
1386static void smmu_realize(DeviceState *d, Error **errp)
1387{
1388 SMMUState *sys = ARM_SMMU(d);
1389 SMMUv3State *s = ARM_SMMUV3(sys);
1390 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1391 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1392 Error *local_err = NULL;
1393
1394 c->parent_realize(d, &local_err);
1395 if (local_err) {
1396 error_propagate(errp, local_err);
1397 return;
1398 }
1399
1400 qemu_mutex_init(&s->mutex);
1401
1402 memory_region_init_io(&sys->iomem, OBJECT(s),
1403 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1404
1405 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1406
1407 sysbus_init_mmio(dev, &sys->iomem);
1408
1409 smmu_init_irq(s, dev);
1410}
1411
1412static const VMStateDescription vmstate_smmuv3_queue = {
1413 .name = "smmuv3_queue",
1414 .version_id = 1,
1415 .minimum_version_id = 1,
1416 .fields = (VMStateField[]) {
1417 VMSTATE_UINT64(base, SMMUQueue),
1418 VMSTATE_UINT32(prod, SMMUQueue),
1419 VMSTATE_UINT32(cons, SMMUQueue),
1420 VMSTATE_UINT8(log2size, SMMUQueue),
1421 VMSTATE_END_OF_LIST(),
1422 },
1423};
1424
1425static const VMStateDescription vmstate_smmuv3 = {
1426 .name = "smmuv3",
1427 .version_id = 1,
1428 .minimum_version_id = 1,
1429 .fields = (VMStateField[]) {
1430 VMSTATE_UINT32(features, SMMUv3State),
1431 VMSTATE_UINT8(sid_size, SMMUv3State),
1432 VMSTATE_UINT8(sid_split, SMMUv3State),
1433
1434 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1435 VMSTATE_UINT32(cr0ack, SMMUv3State),
1436 VMSTATE_UINT32(statusr, SMMUv3State),
1437 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1438 VMSTATE_UINT32(gerror, SMMUv3State),
1439 VMSTATE_UINT32(gerrorn, SMMUv3State),
1440 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1441 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1442 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1443 VMSTATE_UINT64(strtab_base, SMMUv3State),
1444 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1445 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1446 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1447 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1448
1449 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1450 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1451
1452 VMSTATE_END_OF_LIST(),
1453 },
1454};
1455
1456static void smmuv3_instance_init(Object *obj)
1457{
1458 /* Nothing much to do here as of now */
1459}
1460
1461static void smmuv3_class_init(ObjectClass *klass, void *data)
1462{
1463 DeviceClass *dc = DEVICE_CLASS(klass);
1464 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1465
1466 dc->vmsd = &vmstate_smmuv3;
1467 device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1468 c->parent_realize = dc->realize;
1469 dc->realize = smmu_realize;
1470}
1471
1472static void smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1473 IOMMUNotifierFlag old,
1474 IOMMUNotifierFlag new)
1475{
1476 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1477 SMMUv3State *s3 = sdev->smmu;
1478 SMMUState *s = &(s3->smmu_state);
1479
1480 if (new & IOMMU_NOTIFIER_MAP) {
1481 int bus_num = pci_bus_num(sdev->bus);
1482 PCIDevice *pcidev = pci_find_device(sdev->bus, bus_num, sdev->devfn);
1483
1484 warn_report("SMMUv3 does not support notification on MAP: "
1485 "device %s will not function properly", pcidev->name);
1486 }
1487
1488 if (old == IOMMU_NOTIFIER_NONE) {
1489 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1490 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1491 } else if (new == IOMMU_NOTIFIER_NONE) {
1492 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1493 QLIST_REMOVE(sdev, next);
1494 }
1495}
1496
1497static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1498 void *data)
1499{
1500 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1501
1502 imrc->translate = smmuv3_translate;
1503 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1504}
1505
1506static const TypeInfo smmuv3_type_info = {
1507 .name = TYPE_ARM_SMMUV3,
1508 .parent = TYPE_ARM_SMMU,
1509 .instance_size = sizeof(SMMUv3State),
1510 .instance_init = smmuv3_instance_init,
1511 .class_size = sizeof(SMMUv3Class),
1512 .class_init = smmuv3_class_init,
1513};
1514
1515static const TypeInfo smmuv3_iommu_memory_region_info = {
1516 .parent = TYPE_IOMMU_MEMORY_REGION,
1517 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1518 .class_init = smmuv3_iommu_memory_region_class_init,
1519};
1520
1521static void smmuv3_register_types(void)
1522{
1523 type_register(&smmuv3_type_info);
1524 type_register(&smmuv3_iommu_memory_region_info);
1525}
1526
1527type_init(smmuv3_register_types)
1528
1529