1/*
2 * ARM CMSDK APB UART emulation
3 *
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12/* This is a model of the "APB UART" which is part of the Cortex-M
13 * System Design Kit (CMSDK) and documented in the Cortex-M System
14 * Design Kit Technical Reference Manual (ARM DDI0479C):
15 * https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit
16 */
17
18#include "qemu/osdep.h"
19#include "qemu/log.h"
20#include "qemu/module.h"
21#include "qapi/error.h"
22#include "trace.h"
23#include "hw/sysbus.h"
24#include "migration/vmstate.h"
25#include "hw/registerfields.h"
26#include "chardev/char-fe.h"
27#include "chardev/char-serial.h"
28#include "hw/char/cmsdk-apb-uart.h"
29#include "hw/irq.h"
30
31REG32(DATA, 0)
32REG32(STATE, 4)
33 FIELD(STATE, TXFULL, 0, 1)
34 FIELD(STATE, RXFULL, 1, 1)
35 FIELD(STATE, TXOVERRUN, 2, 1)
36 FIELD(STATE, RXOVERRUN, 3, 1)
37REG32(CTRL, 8)
38 FIELD(CTRL, TX_EN, 0, 1)
39 FIELD(CTRL, RX_EN, 1, 1)
40 FIELD(CTRL, TX_INTEN, 2, 1)
41 FIELD(CTRL, RX_INTEN, 3, 1)
42 FIELD(CTRL, TXO_INTEN, 4, 1)
43 FIELD(CTRL, RXO_INTEN, 5, 1)
44 FIELD(CTRL, HSTEST, 6, 1)
45REG32(INTSTATUS, 0xc)
46 FIELD(INTSTATUS, TX, 0, 1)
47 FIELD(INTSTATUS, RX, 1, 1)
48 FIELD(INTSTATUS, TXO, 2, 1)
49 FIELD(INTSTATUS, RXO, 3, 1)
50REG32(BAUDDIV, 0x10)
51REG32(PID4, 0xFD0)
52REG32(PID5, 0xFD4)
53REG32(PID6, 0xFD8)
54REG32(PID7, 0xFDC)
55REG32(PID0, 0xFE0)
56REG32(PID1, 0xFE4)
57REG32(PID2, 0xFE8)
58REG32(PID3, 0xFEC)
59REG32(CID0, 0xFF0)
60REG32(CID1, 0xFF4)
61REG32(CID2, 0xFF8)
62REG32(CID3, 0xFFC)
63
64/* PID/CID values */
65static const int uart_id[] = {
66 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
67 0x21, 0xb8, 0x1b, 0x00, /* PID0..PID3 */
68 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
69};
70
71static bool uart_baudrate_ok(CMSDKAPBUART *s)
72{
73 /* The minimum permitted bauddiv setting is 16, so we just ignore
74 * settings below that (usually this means the device has just
75 * been reset and not yet programmed).
76 */
77 return s->bauddiv >= 16 && s->bauddiv <= s->pclk_frq;
78}
79
80static void uart_update_parameters(CMSDKAPBUART *s)
81{
82 QEMUSerialSetParams ssp;
83
84 /* This UART is always 8N1 but the baud rate is programmable. */
85 if (!uart_baudrate_ok(s)) {
86 return;
87 }
88
89 ssp.data_bits = 8;
90 ssp.parity = 'N';
91 ssp.stop_bits = 1;
92 ssp.speed = s->pclk_frq / s->bauddiv;
93 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
94 trace_cmsdk_apb_uart_set_params(ssp.speed);
95}
96
97static void cmsdk_apb_uart_update(CMSDKAPBUART *s)
98{
99 /* update outbound irqs, including handling the way the rxo and txo
100 * interrupt status bits are just logical AND of the overrun bit in
101 * STATE and the overrun interrupt enable bit in CTRL.
102 */
103 uint32_t omask = (R_INTSTATUS_RXO_MASK | R_INTSTATUS_TXO_MASK);
104 s->intstatus &= ~omask;
105 s->intstatus |= (s->state & (s->ctrl >> 2) & omask);
106
107 qemu_set_irq(s->txint, !!(s->intstatus & R_INTSTATUS_TX_MASK));
108 qemu_set_irq(s->rxint, !!(s->intstatus & R_INTSTATUS_RX_MASK));
109 qemu_set_irq(s->txovrint, !!(s->intstatus & R_INTSTATUS_TXO_MASK));
110 qemu_set_irq(s->rxovrint, !!(s->intstatus & R_INTSTATUS_RXO_MASK));
111 qemu_set_irq(s->uartint, !!(s->intstatus));
112}
113
114static int uart_can_receive(void *opaque)
115{
116 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
117
118 /* We can take a char if RX is enabled and the buffer is empty */
119 if (s->ctrl & R_CTRL_RX_EN_MASK && !(s->state & R_STATE_RXFULL_MASK)) {
120 return 1;
121 }
122 return 0;
123}
124
125static void uart_receive(void *opaque, const uint8_t *buf, int size)
126{
127 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
128
129 trace_cmsdk_apb_uart_receive(*buf);
130
131 /* In fact uart_can_receive() ensures that we can't be
132 * called unless RX is enabled and the buffer is empty,
133 * but we include this logic as documentation of what the
134 * hardware does if a character arrives in these circumstances.
135 */
136 if (!(s->ctrl & R_CTRL_RX_EN_MASK)) {
137 /* Just drop the character on the floor */
138 return;
139 }
140
141 if (s->state & R_STATE_RXFULL_MASK) {
142 s->state |= R_STATE_RXOVERRUN_MASK;
143 }
144
145 s->rxbuf = *buf;
146 s->state |= R_STATE_RXFULL_MASK;
147 if (s->ctrl & R_CTRL_RX_INTEN_MASK) {
148 s->intstatus |= R_INTSTATUS_RX_MASK;
149 }
150 cmsdk_apb_uart_update(s);
151}
152
153static uint64_t uart_read(void *opaque, hwaddr offset, unsigned size)
154{
155 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
156 uint64_t r;
157
158 switch (offset) {
159 case A_DATA:
160 r = s->rxbuf;
161 s->state &= ~R_STATE_RXFULL_MASK;
162 cmsdk_apb_uart_update(s);
163 qemu_chr_fe_accept_input(&s->chr);
164 break;
165 case A_STATE:
166 r = s->state;
167 break;
168 case A_CTRL:
169 r = s->ctrl;
170 break;
171 case A_INTSTATUS:
172 r = s->intstatus;
173 break;
174 case A_BAUDDIV:
175 r = s->bauddiv;
176 break;
177 case A_PID4 ... A_CID3:
178 r = uart_id[(offset - A_PID4) / 4];
179 break;
180 default:
181 qemu_log_mask(LOG_GUEST_ERROR,
182 "CMSDK APB UART read: bad offset %x\n", (int) offset);
183 r = 0;
184 break;
185 }
186 trace_cmsdk_apb_uart_read(offset, r, size);
187 return r;
188}
189
190/* Try to send tx data, and arrange to be called back later if
191 * we can't (ie the char backend is busy/blocking).
192 */
193static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque)
194{
195 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
196 int ret;
197
198 s->watch_tag = 0;
199
200 if (!(s->ctrl & R_CTRL_TX_EN_MASK) || !(s->state & R_STATE_TXFULL_MASK)) {
201 return FALSE;
202 }
203
204 ret = qemu_chr_fe_write(&s->chr, &s->txbuf, 1);
205 if (ret <= 0) {
206 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
207 uart_transmit, s);
208 if (!s->watch_tag) {
209 /* Most common reason to be here is "no chardev backend":
210 * just insta-drain the buffer, so the serial output
211 * goes into a void, rather than blocking the guest.
212 */
213 goto buffer_drained;
214 }
215 /* Transmit pending */
216 trace_cmsdk_apb_uart_tx_pending();
217 return FALSE;
218 }
219
220buffer_drained:
221 /* Character successfully sent */
222 trace_cmsdk_apb_uart_tx(s->txbuf);
223 s->state &= ~R_STATE_TXFULL_MASK;
224 /* Going from TXFULL set to clear triggers the tx interrupt */
225 if (s->ctrl & R_CTRL_TX_INTEN_MASK) {
226 s->intstatus |= R_INTSTATUS_TX_MASK;
227 }
228 cmsdk_apb_uart_update(s);
229 return FALSE;
230}
231
232static void uart_cancel_transmit(CMSDKAPBUART *s)
233{
234 if (s->watch_tag) {
235 g_source_remove(s->watch_tag);
236 s->watch_tag = 0;
237 }
238}
239
240static void uart_write(void *opaque, hwaddr offset, uint64_t value,
241 unsigned size)
242{
243 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
244
245 trace_cmsdk_apb_uart_write(offset, value, size);
246
247 switch (offset) {
248 case A_DATA:
249 s->txbuf = value;
250 if (s->state & R_STATE_TXFULL_MASK) {
251 /* Buffer already full -- note the overrun and let the
252 * existing pending transmit callback handle the new char.
253 */
254 s->state |= R_STATE_TXOVERRUN_MASK;
255 cmsdk_apb_uart_update(s);
256 } else {
257 s->state |= R_STATE_TXFULL_MASK;
258 uart_transmit(NULL, G_IO_OUT, s);
259 }
260 break;
261 case A_STATE:
262 /* Bits 0 and 1 are read only; bits 2 and 3 are W1C */
263 s->state &= ~(value &
264 (R_STATE_TXOVERRUN_MASK | R_STATE_RXOVERRUN_MASK));
265 cmsdk_apb_uart_update(s);
266 break;
267 case A_CTRL:
268 s->ctrl = value & 0x7f;
269 if ((s->ctrl & R_CTRL_TX_EN_MASK) && !uart_baudrate_ok(s)) {
270 qemu_log_mask(LOG_GUEST_ERROR,
271 "CMSDK APB UART: Tx enabled with invalid baudrate\n");
272 }
273 cmsdk_apb_uart_update(s);
274 break;
275 case A_INTSTATUS:
276 /* All bits are W1C. Clearing the overrun interrupt bits really
277 * clears the overrun status bits in the STATE register (which
278 * is then reflected into the intstatus value by the update function).
279 */
280 s->state &= ~(value & (R_INTSTATUS_TXO_MASK | R_INTSTATUS_RXO_MASK));
281 s->intstatus &= ~value;
282 cmsdk_apb_uart_update(s);
283 break;
284 case A_BAUDDIV:
285 s->bauddiv = value & 0xFFFFF;
286 uart_update_parameters(s);
287 break;
288 case A_PID4 ... A_CID3:
289 qemu_log_mask(LOG_GUEST_ERROR,
290 "CMSDK APB UART write: write to RO offset 0x%x\n",
291 (int)offset);
292 break;
293 default:
294 qemu_log_mask(LOG_GUEST_ERROR,
295 "CMSDK APB UART write: bad offset 0x%x\n", (int) offset);
296 break;
297 }
298}
299
300static const MemoryRegionOps uart_ops = {
301 .read = uart_read,
302 .write = uart_write,
303 .endianness = DEVICE_LITTLE_ENDIAN,
304};
305
306static void cmsdk_apb_uart_reset(DeviceState *dev)
307{
308 CMSDKAPBUART *s = CMSDK_APB_UART(dev);
309
310 trace_cmsdk_apb_uart_reset();
311 uart_cancel_transmit(s);
312 s->state = 0;
313 s->ctrl = 0;
314 s->intstatus = 0;
315 s->bauddiv = 0;
316 s->txbuf = 0;
317 s->rxbuf = 0;
318}
319
320static void cmsdk_apb_uart_init(Object *obj)
321{
322 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
323 CMSDKAPBUART *s = CMSDK_APB_UART(obj);
324
325 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
326 sysbus_init_mmio(sbd, &s->iomem);
327 sysbus_init_irq(sbd, &s->txint);
328 sysbus_init_irq(sbd, &s->rxint);
329 sysbus_init_irq(sbd, &s->txovrint);
330 sysbus_init_irq(sbd, &s->rxovrint);
331 sysbus_init_irq(sbd, &s->uartint);
332}
333
334static void cmsdk_apb_uart_realize(DeviceState *dev, Error **errp)
335{
336 CMSDKAPBUART *s = CMSDK_APB_UART(dev);
337
338 if (s->pclk_frq == 0) {
339 error_setg(errp, "CMSDK APB UART: pclk-frq property must be set");
340 return;
341 }
342
343 /* This UART has no flow control, so we do not need to register
344 * an event handler to deal with CHR_EVENT_BREAK.
345 */
346 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
347 NULL, NULL, s, NULL, true);
348}
349
350static int cmsdk_apb_uart_post_load(void *opaque, int version_id)
351{
352 CMSDKAPBUART *s = CMSDK_APB_UART(opaque);
353
354 /* If we have a pending character, arrange to resend it. */
355 if (s->state & R_STATE_TXFULL_MASK) {
356 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
357 uart_transmit, s);
358 }
359 uart_update_parameters(s);
360 return 0;
361}
362
363static const VMStateDescription cmsdk_apb_uart_vmstate = {
364 .name = "cmsdk-apb-uart",
365 .version_id = 1,
366 .minimum_version_id = 1,
367 .post_load = cmsdk_apb_uart_post_load,
368 .fields = (VMStateField[]) {
369 VMSTATE_UINT32(state, CMSDKAPBUART),
370 VMSTATE_UINT32(ctrl, CMSDKAPBUART),
371 VMSTATE_UINT32(intstatus, CMSDKAPBUART),
372 VMSTATE_UINT32(bauddiv, CMSDKAPBUART),
373 VMSTATE_UINT8(txbuf, CMSDKAPBUART),
374 VMSTATE_UINT8(rxbuf, CMSDKAPBUART),
375 VMSTATE_END_OF_LIST()
376 }
377};
378
379static Property cmsdk_apb_uart_properties[] = {
380 DEFINE_PROP_CHR("chardev", CMSDKAPBUART, chr),
381 DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBUART, pclk_frq, 0),
382 DEFINE_PROP_END_OF_LIST(),
383};
384
385static void cmsdk_apb_uart_class_init(ObjectClass *klass, void *data)
386{
387 DeviceClass *dc = DEVICE_CLASS(klass);
388
389 dc->realize = cmsdk_apb_uart_realize;
390 dc->vmsd = &cmsdk_apb_uart_vmstate;
391 dc->reset = cmsdk_apb_uart_reset;
392 dc->props = cmsdk_apb_uart_properties;
393}
394
395static const TypeInfo cmsdk_apb_uart_info = {
396 .name = TYPE_CMSDK_APB_UART,
397 .parent = TYPE_SYS_BUS_DEVICE,
398 .instance_size = sizeof(CMSDKAPBUART),
399 .instance_init = cmsdk_apb_uart_init,
400 .class_init = cmsdk_apb_uart_class_init,
401};
402
403static void cmsdk_apb_uart_register_types(void)
404{
405 type_register_static(&cmsdk_apb_uart_info);
406}
407
408type_init(cmsdk_apb_uart_register_types);
409