1#include "qemu/osdep.h"
2#include "cpu.h"
3#include "exec/exec-all.h"
4#include "sysemu/kvm.h"
5#include "helper_regs.h"
6#include "mmu-hash64.h"
7#include "migration/cpu.h"
8#include "qapi/error.h"
9#include "qemu/main-loop.h"
10#include "kvm_ppc.h"
11#include "exec/helper-proto.h"
12
13static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
14{
15 PowerPCCPU *cpu = opaque;
16 CPUPPCState *env = &cpu->env;
17 unsigned int i, j;
18 target_ulong sdr1;
19 uint32_t fpscr, vscr;
20#if defined(TARGET_PPC64)
21 int32_t slb_nr;
22#endif
23 target_ulong xer;
24
25 for (i = 0; i < 32; i++) {
26 qemu_get_betls(f, &env->gpr[i]);
27 }
28#if !defined(TARGET_PPC64)
29 for (i = 0; i < 32; i++) {
30 qemu_get_betls(f, &env->gprh[i]);
31 }
32#endif
33 qemu_get_betls(f, &env->lr);
34 qemu_get_betls(f, &env->ctr);
35 for (i = 0; i < 8; i++) {
36 qemu_get_be32s(f, &env->crf[i]);
37 }
38 qemu_get_betls(f, &xer);
39 cpu_write_xer(env, xer);
40 qemu_get_betls(f, &env->reserve_addr);
41 qemu_get_betls(f, &env->msr);
42 for (i = 0; i < 4; i++) {
43 qemu_get_betls(f, &env->tgpr[i]);
44 }
45 for (i = 0; i < 32; i++) {
46 union {
47 float64 d;
48 uint64_t l;
49 } u;
50 u.l = qemu_get_be64(f);
51 *cpu_fpr_ptr(env, i) = u.d;
52 }
53 qemu_get_be32s(f, &fpscr);
54 env->fpscr = fpscr;
55 qemu_get_sbe32s(f, &env->access_type);
56#if defined(TARGET_PPC64)
57 qemu_get_betls(f, &env->spr[SPR_ASR]);
58 qemu_get_sbe32s(f, &slb_nr);
59#endif
60 qemu_get_betls(f, &sdr1);
61 for (i = 0; i < 32; i++) {
62 qemu_get_betls(f, &env->sr[i]);
63 }
64 for (i = 0; i < 2; i++) {
65 for (j = 0; j < 8; j++) {
66 qemu_get_betls(f, &env->DBAT[i][j]);
67 }
68 }
69 for (i = 0; i < 2; i++) {
70 for (j = 0; j < 8; j++) {
71 qemu_get_betls(f, &env->IBAT[i][j]);
72 }
73 }
74 qemu_get_sbe32s(f, &env->nb_tlb);
75 qemu_get_sbe32s(f, &env->tlb_per_way);
76 qemu_get_sbe32s(f, &env->nb_ways);
77 qemu_get_sbe32s(f, &env->last_way);
78 qemu_get_sbe32s(f, &env->id_tlbs);
79 qemu_get_sbe32s(f, &env->nb_pids);
80 if (env->tlb.tlb6) {
81 /* XXX assumes 6xx */
82 for (i = 0; i < env->nb_tlb; i++) {
83 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
84 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
85 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
86 }
87 }
88 for (i = 0; i < 4; i++) {
89 qemu_get_betls(f, &env->pb[i]);
90 }
91 for (i = 0; i < 1024; i++) {
92 qemu_get_betls(f, &env->spr[i]);
93 }
94 if (!cpu->vhyp) {
95 ppc_store_sdr1(env, sdr1);
96 }
97 qemu_get_be32s(f, &vscr);
98 helper_mtvscr(env, vscr);
99 qemu_get_be64s(f, &env->spe_acc);
100 qemu_get_be32s(f, &env->spe_fscr);
101 qemu_get_betls(f, &env->msr_mask);
102 qemu_get_be32s(f, &env->flags);
103 qemu_get_sbe32s(f, &env->error_code);
104 qemu_get_be32s(f, &env->pending_interrupts);
105 qemu_get_be32s(f, &env->irq_input_state);
106 for (i = 0; i < POWERPC_EXCP_NB; i++) {
107 qemu_get_betls(f, &env->excp_vectors[i]);
108 }
109 qemu_get_betls(f, &env->excp_prefix);
110 qemu_get_betls(f, &env->ivor_mask);
111 qemu_get_betls(f, &env->ivpr_mask);
112 qemu_get_betls(f, &env->hreset_vector);
113 qemu_get_betls(f, &env->nip);
114 qemu_get_betls(f, &env->hflags);
115 qemu_get_betls(f, &env->hflags_nmsr);
116 qemu_get_sbe32(f); /* Discard unused mmu_idx */
117 qemu_get_sbe32(f); /* Discard unused power_mode */
118
119 /* Recompute mmu indices */
120 hreg_compute_mem_idx(env);
121
122 return 0;
123}
124
125static int get_avr(QEMUFile *f, void *pv, size_t size,
126 const VMStateField *field)
127{
128 ppc_avr_t *v = pv;
129
130 v->u64[0] = qemu_get_be64(f);
131 v->u64[1] = qemu_get_be64(f);
132
133 return 0;
134}
135
136static int put_avr(QEMUFile *f, void *pv, size_t size,
137 const VMStateField *field, QJSON *vmdesc)
138{
139 ppc_avr_t *v = pv;
140
141 qemu_put_be64(f, v->u64[0]);
142 qemu_put_be64(f, v->u64[1]);
143 return 0;
144}
145
146static const VMStateInfo vmstate_info_avr = {
147 .name = "avr",
148 .get = get_avr,
149 .put = put_avr,
150};
151
152#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
153 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
154
155#define VMSTATE_AVR_ARRAY(_f, _s, _n) \
156 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
157
158static int get_fpr(QEMUFile *f, void *pv, size_t size,
159 const VMStateField *field)
160{
161 ppc_vsr_t *v = pv;
162
163 v->VsrD(0) = qemu_get_be64(f);
164
165 return 0;
166}
167
168static int put_fpr(QEMUFile *f, void *pv, size_t size,
169 const VMStateField *field, QJSON *vmdesc)
170{
171 ppc_vsr_t *v = pv;
172
173 qemu_put_be64(f, v->VsrD(0));
174 return 0;
175}
176
177static const VMStateInfo vmstate_info_fpr = {
178 .name = "fpr",
179 .get = get_fpr,
180 .put = put_fpr,
181};
182
183#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
184 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
185
186#define VMSTATE_FPR_ARRAY(_f, _s, _n) \
187 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
188
189static int get_vsr(QEMUFile *f, void *pv, size_t size,
190 const VMStateField *field)
191{
192 ppc_vsr_t *v = pv;
193
194 v->VsrD(1) = qemu_get_be64(f);
195
196 return 0;
197}
198
199static int put_vsr(QEMUFile *f, void *pv, size_t size,
200 const VMStateField *field, QJSON *vmdesc)
201{
202 ppc_vsr_t *v = pv;
203
204 qemu_put_be64(f, v->VsrD(1));
205 return 0;
206}
207
208static const VMStateInfo vmstate_info_vsr = {
209 .name = "vsr",
210 .get = get_vsr,
211 .put = put_vsr,
212};
213
214#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
215 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
216
217#define VMSTATE_VSR_ARRAY(_f, _s, _n) \
218 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
219
220static bool cpu_pre_2_8_migration(void *opaque, int version_id)
221{
222 PowerPCCPU *cpu = opaque;
223
224 return cpu->pre_2_8_migration;
225}
226
227#if defined(TARGET_PPC64)
228static bool cpu_pre_3_0_migration(void *opaque, int version_id)
229{
230 PowerPCCPU *cpu = opaque;
231
232 return cpu->pre_3_0_migration;
233}
234#endif
235
236static int cpu_pre_save(void *opaque)
237{
238 PowerPCCPU *cpu = opaque;
239 CPUPPCState *env = &cpu->env;
240 int i;
241 uint64_t insns_compat_mask =
242 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
243 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
244 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
245 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
246 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
247 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
248 | PPC_64B | PPC_64BX | PPC_ALTIVEC
249 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
250 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
251 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
252 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
253 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
254 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
255 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
256
257 env->spr[SPR_LR] = env->lr;
258 env->spr[SPR_CTR] = env->ctr;
259 env->spr[SPR_XER] = cpu_read_xer(env);
260#if defined(TARGET_PPC64)
261 env->spr[SPR_CFAR] = env->cfar;
262#endif
263 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
264
265 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
266 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
267 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
268 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
269 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
270 }
271 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
272 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
273 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
274 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
275 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
276 }
277
278 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
279 if (cpu->pre_2_8_migration) {
280 /*
281 * Mask out bits that got added to msr_mask since the versions
282 * which stupidly included it in the migration stream.
283 */
284 target_ulong metamask = 0
285#if defined(TARGET_PPC64)
286 | (1ULL << MSR_TS0)
287 | (1ULL << MSR_TS1)
288#endif
289 ;
290 cpu->mig_msr_mask = env->msr_mask & ~metamask;
291 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
292 /*
293 * CPU models supported by old machines all have
294 * PPC_MEM_TLBIE, so we set it unconditionally to allow
295 * backward migration from a POWER9 host to a POWER8 host.
296 */
297 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
298 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
299 cpu->mig_nb_BATs = env->nb_BATs;
300 }
301 if (cpu->pre_3_0_migration) {
302 if (cpu->hash64_opts) {
303 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
304 }
305 }
306
307 return 0;
308}
309
310/*
311 * Determine if a given PVR is a "close enough" match to the CPU
312 * object. For TCG and KVM PR it would probably be sufficient to
313 * require an exact PVR match. However for KVM HV the user is
314 * restricted to a PVR exactly matching the host CPU. The correct way
315 * to handle this is to put the guest into an architected
316 * compatibility mode. However, to allow a more forgiving transition
317 * and migration from before this was widely done, we allow migration
318 * between sufficiently similar PVRs, as determined by the CPU class's
319 * pvr_match() hook.
320 */
321static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
322{
323 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
324
325 if (pvr == pcc->pvr) {
326 return true;
327 }
328 return pcc->pvr_match(pcc, pvr);
329}
330
331static int cpu_post_load(void *opaque, int version_id)
332{
333 PowerPCCPU *cpu = opaque;
334 CPUPPCState *env = &cpu->env;
335 int i;
336 target_ulong msr;
337
338 /*
339 * If we're operating in compat mode, we should be ok as long as
340 * the destination supports the same compatiblity mode.
341 *
342 * Otherwise, however, we require that the destination has exactly
343 * the same CPU model as the source.
344 */
345
346#if defined(TARGET_PPC64)
347 if (cpu->compat_pvr) {
348 uint32_t compat_pvr = cpu->compat_pvr;
349 Error *local_err = NULL;
350
351 cpu->compat_pvr = 0;
352 ppc_set_compat(cpu, compat_pvr, &local_err);
353 if (local_err) {
354 error_report_err(local_err);
355 return -1;
356 }
357 } else
358#endif
359 {
360 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
361 return -1;
362 }
363 }
364
365 /*
366 * If we're running with KVM HV, there is a chance that the guest
367 * is running with KVM HV and its kernel does not have the
368 * capability of dealing with a different PVR other than this
369 * exact host PVR in KVM_SET_SREGS. If that happens, the
370 * guest freezes after migration.
371 *
372 * The function kvmppc_pvr_workaround_required does this verification
373 * by first checking if the kernel has the cap, returning true immediately
374 * if that is the case. Otherwise, it checks if we're running in KVM PR.
375 * If the guest kernel does not have the cap and we're not running KVM-PR
376 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
377 * receive the PVR it expects as a workaround.
378 *
379 */
380 if (kvmppc_pvr_workaround_required(cpu)) {
381 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
382 }
383
384 env->lr = env->spr[SPR_LR];
385 env->ctr = env->spr[SPR_CTR];
386 cpu_write_xer(env, env->spr[SPR_XER]);
387#if defined(TARGET_PPC64)
388 env->cfar = env->spr[SPR_CFAR];
389#endif
390 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
391
392 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
393 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
394 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
395 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
396 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
397 }
398 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
399 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
400 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
401 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
402 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
403 }
404
405 if (!cpu->vhyp) {
406 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
407 }
408
409 /*
410 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
411 * before restoring
412 */
413 msr = env->msr;
414 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
415 ppc_store_msr(env, msr);
416
417 hreg_compute_mem_idx(env);
418
419 return 0;
420}
421
422static bool fpu_needed(void *opaque)
423{
424 PowerPCCPU *cpu = opaque;
425
426 return cpu->env.insns_flags & PPC_FLOAT;
427}
428
429static const VMStateDescription vmstate_fpu = {
430 .name = "cpu/fpu",
431 .version_id = 1,
432 .minimum_version_id = 1,
433 .needed = fpu_needed,
434 .fields = (VMStateField[]) {
435 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
436 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
437 VMSTATE_END_OF_LIST()
438 },
439};
440
441static bool altivec_needed(void *opaque)
442{
443 PowerPCCPU *cpu = opaque;
444
445 return cpu->env.insns_flags & PPC_ALTIVEC;
446}
447
448static int get_vscr(QEMUFile *f, void *opaque, size_t size,
449 const VMStateField *field)
450{
451 PowerPCCPU *cpu = opaque;
452 helper_mtvscr(&cpu->env, qemu_get_be32(f));
453 return 0;
454}
455
456static int put_vscr(QEMUFile *f, void *opaque, size_t size,
457 const VMStateField *field, QJSON *vmdesc)
458{
459 PowerPCCPU *cpu = opaque;
460 qemu_put_be32(f, helper_mfvscr(&cpu->env));
461 return 0;
462}
463
464static const VMStateInfo vmstate_vscr = {
465 .name = "cpu/altivec/vscr",
466 .get = get_vscr,
467 .put = put_vscr,
468};
469
470static const VMStateDescription vmstate_altivec = {
471 .name = "cpu/altivec",
472 .version_id = 1,
473 .minimum_version_id = 1,
474 .needed = altivec_needed,
475 .fields = (VMStateField[]) {
476 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
477 /*
478 * Save the architecture value of the vscr, not the internally
479 * expanded version. Since this architecture value does not
480 * exist in memory to be stored, this requires a but of hoop
481 * jumping. We want OFFSET=0 so that we effectively pass CPU
482 * to the helper functions.
483 */
484 {
485 .name = "vscr",
486 .version_id = 0,
487 .size = sizeof(uint32_t),
488 .info = &vmstate_vscr,
489 .flags = VMS_SINGLE,
490 .offset = 0
491 },
492 VMSTATE_END_OF_LIST()
493 },
494};
495
496static bool vsx_needed(void *opaque)
497{
498 PowerPCCPU *cpu = opaque;
499
500 return cpu->env.insns_flags2 & PPC2_VSX;
501}
502
503static const VMStateDescription vmstate_vsx = {
504 .name = "cpu/vsx",
505 .version_id = 1,
506 .minimum_version_id = 1,
507 .needed = vsx_needed,
508 .fields = (VMStateField[]) {
509 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
510 VMSTATE_END_OF_LIST()
511 },
512};
513
514#ifdef TARGET_PPC64
515/* Transactional memory state */
516static bool tm_needed(void *opaque)
517{
518 PowerPCCPU *cpu = opaque;
519 CPUPPCState *env = &cpu->env;
520 return msr_ts;
521}
522
523static const VMStateDescription vmstate_tm = {
524 .name = "cpu/tm",
525 .version_id = 1,
526 .minimum_version_id = 1,
527 .minimum_version_id_old = 1,
528 .needed = tm_needed,
529 .fields = (VMStateField []) {
530 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
531 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
532 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
533 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
534 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
535 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
536 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
537 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
538 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
539 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
540 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
542 VMSTATE_END_OF_LIST()
543 },
544};
545#endif
546
547static bool sr_needed(void *opaque)
548{
549#ifdef TARGET_PPC64
550 PowerPCCPU *cpu = opaque;
551
552 return !(cpu->env.mmu_model & POWERPC_MMU_64);
553#else
554 return true;
555#endif
556}
557
558static const VMStateDescription vmstate_sr = {
559 .name = "cpu/sr",
560 .version_id = 1,
561 .minimum_version_id = 1,
562 .needed = sr_needed,
563 .fields = (VMStateField[]) {
564 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
565 VMSTATE_END_OF_LIST()
566 },
567};
568
569#ifdef TARGET_PPC64
570static int get_slbe(QEMUFile *f, void *pv, size_t size,
571 const VMStateField *field)
572{
573 ppc_slb_t *v = pv;
574
575 v->esid = qemu_get_be64(f);
576 v->vsid = qemu_get_be64(f);
577
578 return 0;
579}
580
581static int put_slbe(QEMUFile *f, void *pv, size_t size,
582 const VMStateField *field, QJSON *vmdesc)
583{
584 ppc_slb_t *v = pv;
585
586 qemu_put_be64(f, v->esid);
587 qemu_put_be64(f, v->vsid);
588 return 0;
589}
590
591static const VMStateInfo vmstate_info_slbe = {
592 .name = "slbe",
593 .get = get_slbe,
594 .put = put_slbe,
595};
596
597#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
598 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
599
600#define VMSTATE_SLB_ARRAY(_f, _s, _n) \
601 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
602
603static bool slb_needed(void *opaque)
604{
605 PowerPCCPU *cpu = opaque;
606
607 /* We don't support any of the old segment table based 64-bit CPUs */
608 return cpu->env.mmu_model & POWERPC_MMU_64;
609}
610
611static int slb_post_load(void *opaque, int version_id)
612{
613 PowerPCCPU *cpu = opaque;
614 CPUPPCState *env = &cpu->env;
615 int i;
616
617 /*
618 * We've pulled in the raw esid and vsid values from the migration
619 * stream, but we need to recompute the page size pointers
620 */
621 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
622 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
623 /* Migration source had bad values in its SLB */
624 return -1;
625 }
626 }
627
628 return 0;
629}
630
631static const VMStateDescription vmstate_slb = {
632 .name = "cpu/slb",
633 .version_id = 1,
634 .minimum_version_id = 1,
635 .needed = slb_needed,
636 .post_load = slb_post_load,
637 .fields = (VMStateField[]) {
638 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
639 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
640 VMSTATE_END_OF_LIST()
641 }
642};
643#endif /* TARGET_PPC64 */
644
645static const VMStateDescription vmstate_tlb6xx_entry = {
646 .name = "cpu/tlb6xx_entry",
647 .version_id = 1,
648 .minimum_version_id = 1,
649 .fields = (VMStateField[]) {
650 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
651 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
652 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
653 VMSTATE_END_OF_LIST()
654 },
655};
656
657static bool tlb6xx_needed(void *opaque)
658{
659 PowerPCCPU *cpu = opaque;
660 CPUPPCState *env = &cpu->env;
661
662 return env->nb_tlb && (env->tlb_type == TLB_6XX);
663}
664
665static const VMStateDescription vmstate_tlb6xx = {
666 .name = "cpu/tlb6xx",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .needed = tlb6xx_needed,
670 .fields = (VMStateField[]) {
671 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
672 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
673 env.nb_tlb,
674 vmstate_tlb6xx_entry,
675 ppc6xx_tlb_t),
676 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
677 VMSTATE_END_OF_LIST()
678 }
679};
680
681static const VMStateDescription vmstate_tlbemb_entry = {
682 .name = "cpu/tlbemb_entry",
683 .version_id = 1,
684 .minimum_version_id = 1,
685 .fields = (VMStateField[]) {
686 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
687 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
688 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
689 VMSTATE_UINTTL(size, ppcemb_tlb_t),
690 VMSTATE_UINT32(prot, ppcemb_tlb_t),
691 VMSTATE_UINT32(attr, ppcemb_tlb_t),
692 VMSTATE_END_OF_LIST()
693 },
694};
695
696static bool tlbemb_needed(void *opaque)
697{
698 PowerPCCPU *cpu = opaque;
699 CPUPPCState *env = &cpu->env;
700
701 return env->nb_tlb && (env->tlb_type == TLB_EMB);
702}
703
704static bool pbr403_needed(void *opaque)
705{
706 PowerPCCPU *cpu = opaque;
707 uint32_t pvr = cpu->env.spr[SPR_PVR];
708
709 return (pvr & 0xffff0000) == 0x00200000;
710}
711
712static const VMStateDescription vmstate_pbr403 = {
713 .name = "cpu/pbr403",
714 .version_id = 1,
715 .minimum_version_id = 1,
716 .needed = pbr403_needed,
717 .fields = (VMStateField[]) {
718 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
719 VMSTATE_END_OF_LIST()
720 },
721};
722
723static const VMStateDescription vmstate_tlbemb = {
724 .name = "cpu/tlb6xx",
725 .version_id = 1,
726 .minimum_version_id = 1,
727 .needed = tlbemb_needed,
728 .fields = (VMStateField[]) {
729 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
730 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
731 env.nb_tlb,
732 vmstate_tlbemb_entry,
733 ppcemb_tlb_t),
734 /* 403 protection registers */
735 VMSTATE_END_OF_LIST()
736 },
737 .subsections = (const VMStateDescription*[]) {
738 &vmstate_pbr403,
739 NULL
740 }
741};
742
743static const VMStateDescription vmstate_tlbmas_entry = {
744 .name = "cpu/tlbmas_entry",
745 .version_id = 1,
746 .minimum_version_id = 1,
747 .fields = (VMStateField[]) {
748 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
749 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
750 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
751 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
752 VMSTATE_END_OF_LIST()
753 },
754};
755
756static bool tlbmas_needed(void *opaque)
757{
758 PowerPCCPU *cpu = opaque;
759 CPUPPCState *env = &cpu->env;
760
761 return env->nb_tlb && (env->tlb_type == TLB_MAS);
762}
763
764static const VMStateDescription vmstate_tlbmas = {
765 .name = "cpu/tlbmas",
766 .version_id = 1,
767 .minimum_version_id = 1,
768 .needed = tlbmas_needed,
769 .fields = (VMStateField[]) {
770 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
771 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
772 env.nb_tlb,
773 vmstate_tlbmas_entry,
774 ppcmas_tlb_t),
775 VMSTATE_END_OF_LIST()
776 }
777};
778
779static bool compat_needed(void *opaque)
780{
781 PowerPCCPU *cpu = opaque;
782
783 assert(!(cpu->compat_pvr && !cpu->vhyp));
784 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
785}
786
787static const VMStateDescription vmstate_compat = {
788 .name = "cpu/compat",
789 .version_id = 1,
790 .minimum_version_id = 1,
791 .needed = compat_needed,
792 .fields = (VMStateField[]) {
793 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
794 VMSTATE_END_OF_LIST()
795 }
796};
797
798const VMStateDescription vmstate_ppc_cpu = {
799 .name = "cpu",
800 .version_id = 5,
801 .minimum_version_id = 5,
802 .minimum_version_id_old = 4,
803 .load_state_old = cpu_load_old,
804 .pre_save = cpu_pre_save,
805 .post_load = cpu_post_load,
806 .fields = (VMStateField[]) {
807 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
808
809 /* User mode architected state */
810 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
811#if !defined(TARGET_PPC64)
812 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
813#endif
814 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
815 VMSTATE_UINTTL(env.nip, PowerPCCPU),
816
817 /* SPRs */
818 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
819 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
820
821 /* Reservation */
822 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
823
824 /* Supervisor mode architected state */
825 VMSTATE_UINTTL(env.msr, PowerPCCPU),
826
827 /* Internal state */
828 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
829 /* FIXME: access_type? */
830
831 /* Sanity checking */
832 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
833 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
834 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
835 cpu_pre_2_8_migration),
836 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
837 VMSTATE_END_OF_LIST()
838 },
839 .subsections = (const VMStateDescription*[]) {
840 &vmstate_fpu,
841 &vmstate_altivec,
842 &vmstate_vsx,
843 &vmstate_sr,
844#ifdef TARGET_PPC64
845 &vmstate_tm,
846 &vmstate_slb,
847#endif /* TARGET_PPC64 */
848 &vmstate_tlb6xx,
849 &vmstate_tlbemb,
850 &vmstate_tlbmas,
851 &vmstate_compat,
852 NULL
853 }
854};
855