| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2018 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #include "qimage.h" |
| 41 | |
| 42 | #include "qbuffer.h" |
| 43 | #include "qdatastream.h" |
| 44 | #include "qcolortransform.h" |
| 45 | #include "qmap.h" |
| 46 | #include "qtransform.h" |
| 47 | #include "qimagereader.h" |
| 48 | #include "qimagewriter.h" |
| 49 | #include "qstringlist.h" |
| 50 | #include "qvariant.h" |
| 51 | #include "qimagepixmapcleanuphooks_p.h" |
| 52 | #include <qpa/qplatformintegration.h> |
| 53 | #include <private/qguiapplication_p.h> |
| 54 | #include <ctype.h> |
| 55 | #include <stdlib.h> |
| 56 | #include <limits.h> |
| 57 | #include <qpa/qplatformpixmap.h> |
| 58 | #include <private/qcolortransform_p.h> |
| 59 | #include <private/qmemrotate_p.h> |
| 60 | #include <private/qimagescale_p.h> |
| 61 | #include <private/qpixellayout_p.h> |
| 62 | #include <private/qsimd_p.h> |
| 63 | |
| 64 | #include <qhash.h> |
| 65 | |
| 66 | #include <private/qpaintengine_raster_p.h> |
| 67 | |
| 68 | #include <private/qimage_p.h> |
| 69 | #include <private/qfont_p.h> |
| 70 | |
| 71 | #if QT_CONFIG(thread) |
| 72 | #include "qsemaphore.h" |
| 73 | #include "qthreadpool.h" |
| 74 | #endif |
| 75 | |
| 76 | #include <qtgui_tracepoints_p.h> |
| 77 | |
| 78 | QT_BEGIN_NAMESPACE |
| 79 | |
| 80 | static inline bool isLocked(QImageData *data) |
| 81 | { |
| 82 | return data != nullptr && data->is_locked; |
| 83 | } |
| 84 | |
| 85 | #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) |
| 86 | #pragma message disable narrowptr |
| 87 | #endif |
| 88 | |
| 89 | |
| 90 | #define QIMAGE_SANITYCHECK_MEMORY(image) \ |
| 91 | if ((image).isNull()) { \ |
| 92 | qWarning("QImage: out of memory, returning null image"); \ |
| 93 | return QImage(); \ |
| 94 | } |
| 95 | |
| 96 | |
| 97 | static QImage rotated90(const QImage &src); |
| 98 | static QImage rotated180(const QImage &src); |
| 99 | static QImage rotated270(const QImage &src); |
| 100 | |
| 101 | static int next_qimage_serial_number() |
| 102 | { |
| 103 | static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(0); |
| 104 | return 1 + serial.fetchAndAddRelaxed(1); |
| 105 | } |
| 106 | |
| 107 | QImageData::QImageData() |
| 108 | : ref(0), width(0), height(0), depth(0), nbytes(0), devicePixelRatio(1.0), data(nullptr), |
| 109 | format(QImage::Format_ARGB32), bytes_per_line(0), |
| 110 | ser_no(next_qimage_serial_number()), |
| 111 | detach_no(0), |
| 112 | dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), |
| 113 | dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), |
| 114 | offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), |
| 115 | is_cached(false), is_locked(false), cleanupFunction(nullptr), cleanupInfo(nullptr), |
| 116 | paintEngine(nullptr) |
| 117 | { |
| 118 | } |
| 119 | |
| 120 | /*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format) |
| 121 | |
| 122 | \internal |
| 123 | |
| 124 | Creates a new image data. |
| 125 | Returns \nullptr if invalid parameters are give or anything else failed. |
| 126 | */ |
| 127 | QImageData * QImageData::create(const QSize &size, QImage::Format format) |
| 128 | { |
| 129 | if (size.isEmpty() || format == QImage::Format_Invalid) |
| 130 | return nullptr; // invalid parameter(s) |
| 131 | |
| 132 | Q_TRACE_SCOPE(QImageData_create, size, format); |
| 133 | |
| 134 | int width = size.width(); |
| 135 | int height = size.height(); |
| 136 | int depth = qt_depthForFormat(format); |
| 137 | auto params = calculateImageParameters(width, height, depth); |
| 138 | if (!params.isValid()) |
| 139 | return nullptr; |
| 140 | |
| 141 | QScopedPointer<QImageData> d(new QImageData); |
| 142 | |
| 143 | switch (format) { |
| 144 | case QImage::Format_Mono: |
| 145 | case QImage::Format_MonoLSB: |
| 146 | d->colortable.resize(2); |
| 147 | d->colortable[0] = QColor(Qt::black).rgba(); |
| 148 | d->colortable[1] = QColor(Qt::white).rgba(); |
| 149 | break; |
| 150 | default: |
| 151 | break; |
| 152 | } |
| 153 | |
| 154 | d->width = width; |
| 155 | d->height = height; |
| 156 | d->depth = depth; |
| 157 | d->format = format; |
| 158 | d->has_alpha_clut = false; |
| 159 | d->is_cached = false; |
| 160 | |
| 161 | d->bytes_per_line = params.bytesPerLine; |
| 162 | d->nbytes = params.totalSize; |
| 163 | d->data = (uchar *)malloc(d->nbytes); |
| 164 | |
| 165 | if (!d->data) |
| 166 | return nullptr; |
| 167 | |
| 168 | d->ref.ref(); |
| 169 | return d.take(); |
| 170 | } |
| 171 | |
| 172 | QImageData::~QImageData() |
| 173 | { |
| 174 | if (cleanupFunction) |
| 175 | cleanupFunction(cleanupInfo); |
| 176 | if (is_cached) |
| 177 | QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no)); |
| 178 | delete paintEngine; |
| 179 | if (data && own_data) |
| 180 | free(data); |
| 181 | data = nullptr; |
| 182 | } |
| 183 | |
| 184 | #if defined(_M_ARM) |
| 185 | #pragma optimize("", off) |
| 186 | #endif |
| 187 | |
| 188 | bool QImageData::checkForAlphaPixels() const |
| 189 | { |
| 190 | bool has_alpha_pixels = false; |
| 191 | |
| 192 | switch (format) { |
| 193 | |
| 194 | case QImage::Format_Mono: |
| 195 | case QImage::Format_MonoLSB: |
| 196 | case QImage::Format_Indexed8: |
| 197 | has_alpha_pixels = has_alpha_clut; |
| 198 | break; |
| 199 | case QImage::Format_Alpha8: |
| 200 | has_alpha_pixels = true; |
| 201 | break; |
| 202 | case QImage::Format_ARGB32: |
| 203 | case QImage::Format_ARGB32_Premultiplied: { |
| 204 | const uchar *bits = data; |
| 205 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 206 | uint alphaAnd = 0xff000000; |
| 207 | for (int x=0; x<width; ++x) |
| 208 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
| 209 | has_alpha_pixels = (alphaAnd != 0xff000000); |
| 210 | bits += bytes_per_line; |
| 211 | } |
| 212 | } break; |
| 213 | |
| 214 | case QImage::Format_RGBA8888: |
| 215 | case QImage::Format_RGBA8888_Premultiplied: { |
| 216 | const uchar *bits = data; |
| 217 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 218 | uchar alphaAnd = 0xff; |
| 219 | for (int x=0; x<width; ++x) |
| 220 | alphaAnd &= bits[x * 4+ 3]; |
| 221 | has_alpha_pixels = (alphaAnd != 0xff); |
| 222 | bits += bytes_per_line; |
| 223 | } |
| 224 | } break; |
| 225 | |
| 226 | case QImage::Format_A2BGR30_Premultiplied: |
| 227 | case QImage::Format_A2RGB30_Premultiplied: { |
| 228 | const uchar *bits = data; |
| 229 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 230 | uint alphaAnd = 0xc0000000; |
| 231 | for (int x=0; x<width; ++x) |
| 232 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
| 233 | has_alpha_pixels = (alphaAnd != 0xc0000000); |
| 234 | bits += bytes_per_line; |
| 235 | } |
| 236 | } break; |
| 237 | |
| 238 | case QImage::Format_ARGB8555_Premultiplied: |
| 239 | case QImage::Format_ARGB8565_Premultiplied: { |
| 240 | const uchar *bits = data; |
| 241 | const uchar *end_bits = data + bytes_per_line; |
| 242 | |
| 243 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 244 | uchar alphaAnd = 0xff; |
| 245 | while (bits < end_bits) { |
| 246 | alphaAnd &= bits[0]; |
| 247 | bits += 3; |
| 248 | } |
| 249 | has_alpha_pixels = (alphaAnd != 0xff); |
| 250 | bits = end_bits; |
| 251 | end_bits += bytes_per_line; |
| 252 | } |
| 253 | } break; |
| 254 | |
| 255 | case QImage::Format_ARGB6666_Premultiplied: { |
| 256 | const uchar *bits = data; |
| 257 | const uchar *end_bits = data + bytes_per_line; |
| 258 | |
| 259 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 260 | uchar alphaAnd = 0xfc; |
| 261 | while (bits < end_bits) { |
| 262 | alphaAnd &= bits[0]; |
| 263 | bits += 3; |
| 264 | } |
| 265 | has_alpha_pixels = (alphaAnd != 0xfc); |
| 266 | bits = end_bits; |
| 267 | end_bits += bytes_per_line; |
| 268 | } |
| 269 | } break; |
| 270 | |
| 271 | case QImage::Format_ARGB4444_Premultiplied: { |
| 272 | const uchar *bits = data; |
| 273 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 274 | ushort alphaAnd = 0xf000; |
| 275 | for (int x=0; x<width; ++x) |
| 276 | alphaAnd &= reinterpret_cast<const ushort*>(bits)[x]; |
| 277 | has_alpha_pixels = (alphaAnd != 0xf000); |
| 278 | bits += bytes_per_line; |
| 279 | } |
| 280 | } break; |
| 281 | case QImage::Format_RGBA64: |
| 282 | case QImage::Format_RGBA64_Premultiplied: { |
| 283 | uchar *bits = data; |
| 284 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
| 285 | for (int x=0; x<width; ++x) { |
| 286 | has_alpha_pixels |= !(((QRgba64 *)bits)[x].isOpaque()); |
| 287 | } |
| 288 | bits += bytes_per_line; |
| 289 | } |
| 290 | } break; |
| 291 | |
| 292 | case QImage::Format_RGB32: |
| 293 | case QImage::Format_RGB16: |
| 294 | case QImage::Format_RGB444: |
| 295 | case QImage::Format_RGB555: |
| 296 | case QImage::Format_RGB666: |
| 297 | case QImage::Format_RGB888: |
| 298 | case QImage::Format_BGR888: |
| 299 | case QImage::Format_RGBX8888: |
| 300 | case QImage::Format_BGR30: |
| 301 | case QImage::Format_RGB30: |
| 302 | case QImage::Format_Grayscale8: |
| 303 | case QImage::Format_Grayscale16: |
| 304 | case QImage::Format_RGBX64: |
| 305 | break; |
| 306 | case QImage::Format_Invalid: |
| 307 | case QImage::NImageFormats: |
| 308 | Q_UNREACHABLE(); |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | return has_alpha_pixels; |
| 313 | } |
| 314 | #if defined(_M_ARM) |
| 315 | #pragma optimize("", on) |
| 316 | #endif |
| 317 | |
| 318 | /*! |
| 319 | \class QImage |
| 320 | |
| 321 | \inmodule QtGui |
| 322 | \ingroup painting |
| 323 | \ingroup shared |
| 324 | |
| 325 | \reentrant |
| 326 | |
| 327 | \brief The QImage class provides a hardware-independent image |
| 328 | representation that allows direct access to the pixel data, and |
| 329 | can be used as a paint device. |
| 330 | |
| 331 | Qt provides four classes for handling image data: QImage, QPixmap, |
| 332 | QBitmap and QPicture. QImage is designed and optimized for I/O, |
| 333 | and for direct pixel access and manipulation, while QPixmap is |
| 334 | designed and optimized for showing images on screen. QBitmap is |
| 335 | only a convenience class that inherits QPixmap, ensuring a |
| 336 | depth of 1. Finally, the QPicture class is a paint device that |
| 337 | records and replays QPainter commands. |
| 338 | |
| 339 | Because QImage is a QPaintDevice subclass, QPainter can be used to |
| 340 | draw directly onto images. When using QPainter on a QImage, the |
| 341 | painting can be performed in another thread than the current GUI |
| 342 | thread. |
| 343 | |
| 344 | The QImage class supports several image formats described by the |
| 345 | \l Format enum. These include monochrome, 8-bit, 32-bit and |
| 346 | alpha-blended images which are available in all versions of Qt |
| 347 | 4.x. |
| 348 | |
| 349 | QImage provides a collection of functions that can be used to |
| 350 | obtain a variety of information about the image. There are also |
| 351 | several functions that enables transformation of the image. |
| 352 | |
| 353 | QImage objects can be passed around by value since the QImage |
| 354 | class uses \l{Implicit Data Sharing}{implicit data |
| 355 | sharing}. QImage objects can also be streamed and compared. |
| 356 | |
| 357 | \note If you would like to load QImage objects in a static build of Qt, |
| 358 | refer to the \l{How to Create Qt Plugins}{Plugin HowTo}. |
| 359 | |
| 360 | \warning Painting on a QImage with the format |
| 361 | QImage::Format_Indexed8 is not supported. |
| 362 | |
| 363 | \tableofcontents |
| 364 | |
| 365 | \section1 Reading and Writing Image Files |
| 366 | |
| 367 | QImage provides several ways of loading an image file: The file |
| 368 | can be loaded when constructing the QImage object, or by using the |
| 369 | load() or loadFromData() functions later on. QImage also provides |
| 370 | the static fromData() function, constructing a QImage from the |
| 371 | given data. When loading an image, the file name can either refer |
| 372 | to an actual file on disk or to one of the application's embedded |
| 373 | resources. See \l{The Qt Resource System} overview for details |
| 374 | on how to embed images and other resource files in the |
| 375 | application's executable. |
| 376 | |
| 377 | Simply call the save() function to save a QImage object. |
| 378 | |
| 379 | The complete list of supported file formats are available through |
| 380 | the QImageReader::supportedImageFormats() and |
| 381 | QImageWriter::supportedImageFormats() functions. New file formats |
| 382 | can be added as plugins. By default, Qt supports the following |
| 383 | formats: |
| 384 | |
| 385 | \table |
| 386 | \header \li Format \li Description \li Qt's support |
| 387 | \row \li BMP \li Windows Bitmap \li Read/write |
| 388 | \row \li GIF \li Graphic Interchange Format (optional) \li Read |
| 389 | \row \li JPG \li Joint Photographic Experts Group \li Read/write |
| 390 | \row \li JPEG \li Joint Photographic Experts Group \li Read/write |
| 391 | \row \li PNG \li Portable Network Graphics \li Read/write |
| 392 | \row \li PBM \li Portable Bitmap \li Read |
| 393 | \row \li PGM \li Portable Graymap \li Read |
| 394 | \row \li PPM \li Portable Pixmap \li Read/write |
| 395 | \row \li XBM \li X11 Bitmap \li Read/write |
| 396 | \row \li XPM \li X11 Pixmap \li Read/write |
| 397 | \endtable |
| 398 | |
| 399 | \section1 Image Information |
| 400 | |
| 401 | QImage provides a collection of functions that can be used to |
| 402 | obtain a variety of information about the image: |
| 403 | |
| 404 | \table |
| 405 | \header |
| 406 | \li \li Available Functions |
| 407 | |
| 408 | \row |
| 409 | \li Geometry |
| 410 | \li |
| 411 | |
| 412 | The size(), width(), height(), dotsPerMeterX(), and |
| 413 | dotsPerMeterY() functions provide information about the image size |
| 414 | and aspect ratio. |
| 415 | |
| 416 | The rect() function returns the image's enclosing rectangle. The |
| 417 | valid() function tells if a given pair of coordinates is within |
| 418 | this rectangle. The offset() function returns the number of pixels |
| 419 | by which the image is intended to be offset by when positioned |
| 420 | relative to other images, which also can be manipulated using the |
| 421 | setOffset() function. |
| 422 | |
| 423 | \row |
| 424 | \li Colors |
| 425 | \li |
| 426 | |
| 427 | The color of a pixel can be retrieved by passing its coordinates |
| 428 | to the pixel() function. The pixel() function returns the color |
| 429 | as a QRgb value indepedent of the image's format. |
| 430 | |
| 431 | In case of monochrome and 8-bit images, the colorCount() and |
| 432 | colorTable() functions provide information about the color |
| 433 | components used to store the image data: The colorTable() function |
| 434 | returns the image's entire color table. To obtain a single entry, |
| 435 | use the pixelIndex() function to retrieve the pixel index for a |
| 436 | given pair of coordinates, then use the color() function to |
| 437 | retrieve the color. Note that if you create an 8-bit image |
| 438 | manually, you have to set a valid color table on the image as |
| 439 | well. |
| 440 | |
| 441 | The hasAlphaChannel() function tells if the image's format |
| 442 | respects the alpha channel, or not. The allGray() and |
| 443 | isGrayscale() functions tell whether an image's colors are all |
| 444 | shades of gray. |
| 445 | |
| 446 | See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation} |
| 447 | and \l {QImage#Image Transformations}{Image Transformations} |
| 448 | sections. |
| 449 | |
| 450 | \row |
| 451 | \li Text |
| 452 | \li |
| 453 | |
| 454 | The text() function returns the image text associated with the |
| 455 | given text key. An image's text keys can be retrieved using the |
| 456 | textKeys() function. Use the setText() function to alter an |
| 457 | image's text. |
| 458 | |
| 459 | \row |
| 460 | \li Low-level information |
| 461 | \li |
| 462 | |
| 463 | The depth() function returns the depth of the image. The supported |
| 464 | depths are 1 (monochrome), 8, 16, 24 and 32 bits. The |
| 465 | bitPlaneCount() function tells how many of those bits that are |
| 466 | used. For more information see the |
| 467 | \l {QImage#Image Formats}{Image Formats} section. |
| 468 | |
| 469 | The format(), bytesPerLine(), and sizeInBytes() functions provide |
| 470 | low-level information about the data stored in the image. |
| 471 | |
| 472 | The cacheKey() function returns a number that uniquely |
| 473 | identifies the contents of this QImage object. |
| 474 | \endtable |
| 475 | |
| 476 | \section1 Pixel Manipulation |
| 477 | |
| 478 | The functions used to manipulate an image's pixels depend on the |
| 479 | image format. The reason is that monochrome and 8-bit images are |
| 480 | index-based and use a color lookup table, while 32-bit images |
| 481 | store ARGB values directly. For more information on image formats, |
| 482 | see the \l {Image Formats} section. |
| 483 | |
| 484 | In case of a 32-bit image, the setPixel() function can be used to |
| 485 | alter the color of the pixel at the given coordinates to any other |
| 486 | color specified as an ARGB quadruplet. To make a suitable QRgb |
| 487 | value, use the qRgb() (adding a default alpha component to the |
| 488 | given RGB values, i.e. creating an opaque color) or qRgba() |
| 489 | function. For example: |
| 490 | |
| 491 | \table |
| 492 | \header |
| 493 | \li {2,1}32-bit |
| 494 | \row |
| 495 | \li \inlineimage qimage-32bit_scaled.png |
| 496 | \li |
| 497 | \snippet code/src_gui_image_qimage.cpp 0 |
| 498 | \endtable |
| 499 | |
| 500 | In case of a 8-bit and monchrome images, the pixel value is only |
| 501 | an index from the image's color table. So the setPixel() function |
| 502 | can only be used to alter the color of the pixel at the given |
| 503 | coordinates to a predefined color from the image's color table, |
| 504 | i.e. it can only change the pixel's index value. To alter or add a |
| 505 | color to an image's color table, use the setColor() function. |
| 506 | |
| 507 | An entry in the color table is an ARGB quadruplet encoded as an |
| 508 | QRgb value. Use the qRgb() and qRgba() functions to make a |
| 509 | suitable QRgb value for use with the setColor() function. For |
| 510 | example: |
| 511 | |
| 512 | \table |
| 513 | \header |
| 514 | \li {2,1} 8-bit |
| 515 | \row |
| 516 | \li \inlineimage qimage-8bit_scaled.png |
| 517 | \li |
| 518 | \snippet code/src_gui_image_qimage.cpp 1 |
| 519 | \endtable |
| 520 | |
| 521 | For images with more than 8-bit per color-channel. The methods |
| 522 | setPixelColor() and pixelColor() can be used to set and get |
| 523 | with QColor values. |
| 524 | |
| 525 | QImage also provide the scanLine() function which returns a |
| 526 | pointer to the pixel data at the scanline with the given index, |
| 527 | and the bits() function which returns a pointer to the first pixel |
| 528 | data (this is equivalent to \c scanLine(0)). |
| 529 | |
| 530 | \section1 Image Formats |
| 531 | |
| 532 | Each pixel stored in a QImage is represented by an integer. The |
| 533 | size of the integer varies depending on the format. QImage |
| 534 | supports several image formats described by the \l Format |
| 535 | enum. |
| 536 | |
| 537 | Monochrome images are stored using 1-bit indexes into a color table |
| 538 | with at most two colors. There are two different types of |
| 539 | monochrome images: big endian (MSB first) or little endian (LSB |
| 540 | first) bit order. |
| 541 | |
| 542 | 8-bit images are stored using 8-bit indexes into a color table, |
| 543 | i.e. they have a single byte per pixel. The color table is a |
| 544 | QList<QRgb>, and the QRgb typedef is equivalent to an unsigned |
| 545 | int containing an ARGB quadruplet on the format 0xAARRGGBB. |
| 546 | |
| 547 | 32-bit images have no color table; instead, each pixel contains an |
| 548 | QRgb value. There are three different types of 32-bit images |
| 549 | storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB |
| 550 | values respectively. In the premultiplied format the red, green, |
| 551 | and blue channels are multiplied by the alpha component divided by |
| 552 | 255. |
| 553 | |
| 554 | An image's format can be retrieved using the format() |
| 555 | function. Use the convertToFormat() functions to convert an image |
| 556 | into another format. The allGray() and isGrayscale() functions |
| 557 | tell whether a color image can safely be converted to a grayscale |
| 558 | image. |
| 559 | |
| 560 | \section1 Image Transformations |
| 561 | |
| 562 | QImage supports a number of functions for creating a new image |
| 563 | that is a transformed version of the original: The |
| 564 | createAlphaMask() function builds and returns a 1-bpp mask from |
| 565 | the alpha buffer in this image, and the createHeuristicMask() |
| 566 | function creates and returns a 1-bpp heuristic mask for this |
| 567 | image. The latter function works by selecting a color from one of |
| 568 | the corners, then chipping away pixels of that color starting at |
| 569 | all the edges. |
| 570 | |
| 571 | The mirrored() function returns a mirror of the image in the |
| 572 | desired direction, the scaled() returns a copy of the image scaled |
| 573 | to a rectangle of the desired measures, and the rgbSwapped() function |
| 574 | constructs a BGR image from a RGB image. |
| 575 | |
| 576 | The scaledToWidth() and scaledToHeight() functions return scaled |
| 577 | copies of the image. |
| 578 | |
| 579 | The transformed() function returns a copy of the image that is |
| 580 | transformed with the given transformation matrix and |
| 581 | transformation mode: Internally, the transformation matrix is |
| 582 | adjusted to compensate for unwanted translation, |
| 583 | i.e. transformed() returns the smallest image containing all |
| 584 | transformed points of the original image. The static trueMatrix() |
| 585 | function returns the actual matrix used for transforming the |
| 586 | image. |
| 587 | |
| 588 | There are also functions for changing attributes of an image |
| 589 | in-place: |
| 590 | |
| 591 | \table |
| 592 | \header \li Function \li Description |
| 593 | \row |
| 594 | \li setDotsPerMeterX() |
| 595 | \li Defines the aspect ratio by setting the number of pixels that fit |
| 596 | horizontally in a physical meter. |
| 597 | \row |
| 598 | \li setDotsPerMeterY() |
| 599 | \li Defines the aspect ratio by setting the number of pixels that fit |
| 600 | vertically in a physical meter. |
| 601 | \row |
| 602 | \li fill() |
| 603 | \li Fills the entire image with the given pixel value. |
| 604 | \row |
| 605 | \li invertPixels() |
| 606 | \li Inverts all pixel values in the image using the given InvertMode value. |
| 607 | \row |
| 608 | \li setColorTable() |
| 609 | \li Sets the color table used to translate color indexes. Only |
| 610 | monochrome and 8-bit formats. |
| 611 | \row |
| 612 | \li setColorCount() |
| 613 | \li Resizes the color table. Only monochrome and 8-bit formats. |
| 614 | |
| 615 | \endtable |
| 616 | |
| 617 | \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example}, |
| 618 | {Image Viewer Example}, {Scribble Example}, {Pixelator Example} |
| 619 | */ |
| 620 | |
| 621 | /*! |
| 622 | \fn QImage::QImage(QImage &&other) |
| 623 | |
| 624 | Move-constructs a QImage instance, making it point at the same |
| 625 | object that \a other was pointing to. |
| 626 | |
| 627 | \since 5.2 |
| 628 | */ |
| 629 | |
| 630 | /*! |
| 631 | \fn QImage &QImage::operator=(QImage &&other) |
| 632 | |
| 633 | Move-assigns \a other to this QImage instance. |
| 634 | |
| 635 | \since 5.2 |
| 636 | */ |
| 637 | |
| 638 | /*! |
| 639 | \typedef QImageCleanupFunction |
| 640 | \relates QImage |
| 641 | \since 5.0 |
| 642 | |
| 643 | A function with the following signature that can be used to |
| 644 | implement basic image memory management: |
| 645 | |
| 646 | \code |
| 647 | void myImageCleanupHandler(void *info); |
| 648 | \endcode |
| 649 | */ |
| 650 | |
| 651 | /*! |
| 652 | \enum QImage::InvertMode |
| 653 | |
| 654 | This enum type is used to describe how pixel values should be |
| 655 | inverted in the invertPixels() function. |
| 656 | |
| 657 | \value InvertRgb Invert only the RGB values and leave the alpha |
| 658 | channel unchanged. |
| 659 | |
| 660 | \value InvertRgba Invert all channels, including the alpha channel. |
| 661 | |
| 662 | \sa invertPixels() |
| 663 | */ |
| 664 | |
| 665 | /*! |
| 666 | \enum QImage::Format |
| 667 | |
| 668 | The following image formats are available in Qt. |
| 669 | See the notes after the table. |
| 670 | |
| 671 | \value Format_Invalid The image is invalid. |
| 672 | \value Format_Mono The image is stored using 1-bit per pixel. Bytes are |
| 673 | packed with the most significant bit (MSB) first. |
| 674 | \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are |
| 675 | packed with the less significant bit (LSB) first. |
| 676 | |
| 677 | \value Format_Indexed8 The image is stored using 8-bit indexes |
| 678 | into a colormap. |
| 679 | |
| 680 | \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). |
| 681 | |
| 682 | \value Format_ARGB32 The image is stored using a 32-bit ARGB |
| 683 | format (0xAARRGGBB). |
| 684 | |
| 685 | \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit |
| 686 | ARGB format (0xAARRGGBB), i.e. the red, |
| 687 | green, and blue channels are multiplied |
| 688 | by the alpha component divided by 255. (If RR, GG, or BB |
| 689 | has a higher value than the alpha channel, the results are |
| 690 | undefined.) Certain operations (such as image composition |
| 691 | using alpha blending) are faster using premultiplied ARGB32 |
| 692 | than with plain ARGB32. |
| 693 | |
| 694 | \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). |
| 695 | |
| 696 | \value Format_ARGB8565_Premultiplied The image is stored using a |
| 697 | premultiplied 24-bit ARGB format (8-5-6-5). |
| 698 | \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). |
| 699 | The unused most significant bits is always zero. |
| 700 | \value Format_ARGB6666_Premultiplied The image is stored using a |
| 701 | premultiplied 24-bit ARGB format (6-6-6-6). |
| 702 | \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). |
| 703 | The unused most significant bit is always zero. |
| 704 | \value Format_ARGB8555_Premultiplied The image is stored using a |
| 705 | premultiplied 24-bit ARGB format (8-5-5-5). |
| 706 | \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). |
| 707 | \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). |
| 708 | The unused bits are always zero. |
| 709 | \value Format_ARGB4444_Premultiplied The image is stored using a |
| 710 | premultiplied 16-bit ARGB format (4-4-4-4). |
| 711 | \value Format_RGBX8888 The image is stored using a 32-bit byte-ordered RGB(x) format (8-8-8-8). |
| 712 | This is the same as the Format_RGBA8888 except alpha must always be 255. (added in Qt 5.2) |
| 713 | \value Format_RGBA8888 The image is stored using a 32-bit byte-ordered RGBA format (8-8-8-8). |
| 714 | Unlike ARGB32 this is a byte-ordered format, which means the 32bit |
| 715 | encoding differs between big endian and little endian architectures, |
| 716 | being respectively (0xRRGGBBAA) and (0xAABBGGRR). The order of the colors |
| 717 | is the same on any architecture if read as bytes 0xRR,0xGG,0xBB,0xAA. (added in Qt 5.2) |
| 718 | \value Format_RGBA8888_Premultiplied The image is stored using a |
| 719 | premultiplied 32-bit byte-ordered RGBA format (8-8-8-8). (added in Qt 5.2) |
| 720 | \value Format_BGR30 The image is stored using a 32-bit BGR format (x-10-10-10). (added in Qt 5.4) |
| 721 | \value Format_A2BGR30_Premultiplied The image is stored using a 32-bit premultiplied ABGR format (2-10-10-10). (added in Qt 5.4) |
| 722 | \value Format_RGB30 The image is stored using a 32-bit RGB format (x-10-10-10). (added in Qt 5.4) |
| 723 | \value Format_A2RGB30_Premultiplied The image is stored using a 32-bit premultiplied ARGB format (2-10-10-10). (added in Qt 5.4) |
| 724 | \value Format_Alpha8 The image is stored using an 8-bit alpha only format. (added in Qt 5.5) |
| 725 | \value Format_Grayscale8 The image is stored using an 8-bit grayscale format. (added in Qt 5.5) |
| 726 | \value Format_Grayscale16 The image is stored using an 16-bit grayscale format. (added in Qt 5.13) |
| 727 | \value Format_RGBX64 The image is stored using a 64-bit halfword-ordered RGB(x) format (16-16-16-16). |
| 728 | This is the same as the Format_RGBA64 except alpha must always be 65535. (added in Qt 5.12) |
| 729 | \value Format_RGBA64 The image is stored using a 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) |
| 730 | \value Format_RGBA64_Premultiplied The image is stored using a premultiplied 64-bit halfword-ordered |
| 731 | RGBA format (16-16-16-16). (added in Qt 5.12) |
| 732 | \value Format_BGR888 The image is stored using a 24-bit BGR format. (added in Qt 5.14) |
| 733 | |
| 734 | \note Drawing into a QImage with QImage::Format_Indexed8 is not |
| 735 | supported. |
| 736 | |
| 737 | \note Avoid most rendering directly to most of these formats using QPainter. Rendering |
| 738 | is best optimized to the \c Format_RGB32 and \c Format_ARGB32_Premultiplied formats, and secondarily for rendering to the |
| 739 | \c Format_RGB16, \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64 and \c Format_RGBA64_Premultiplied formats |
| 740 | |
| 741 | \sa format(), convertToFormat() |
| 742 | */ |
| 743 | |
| 744 | /***************************************************************************** |
| 745 | QImage member functions |
| 746 | *****************************************************************************/ |
| 747 | |
| 748 | /*! |
| 749 | Constructs a null image. |
| 750 | |
| 751 | \sa isNull() |
| 752 | */ |
| 753 | |
| 754 | QImage::QImage() noexcept |
| 755 | : QPaintDevice() |
| 756 | { |
| 757 | d = nullptr; |
| 758 | } |
| 759 | |
| 760 | /*! |
| 761 | Constructs an image with the given \a width, \a height and \a |
| 762 | format. |
| 763 | |
| 764 | A \l{isNull()}{null} image will be returned if memory cannot be allocated. |
| 765 | |
| 766 | \warning This will create a QImage with uninitialized data. Call |
| 767 | fill() to fill the image with an appropriate pixel value before |
| 768 | drawing onto it with QPainter. |
| 769 | */ |
| 770 | QImage::QImage(int width, int height, Format format) |
| 771 | : QImage(QSize(width, height), format) |
| 772 | { |
| 773 | } |
| 774 | |
| 775 | /*! |
| 776 | Constructs an image with the given \a size and \a format. |
| 777 | |
| 778 | A \l{isNull()}{null} image is returned if memory cannot be allocated. |
| 779 | |
| 780 | \warning This will create a QImage with uninitialized data. Call |
| 781 | fill() to fill the image with an appropriate pixel value before |
| 782 | drawing onto it with QPainter. |
| 783 | */ |
| 784 | QImage::QImage(const QSize &size, Format format) |
| 785 | : QPaintDevice() |
| 786 | { |
| 787 | d = QImageData::create(size, format); |
| 788 | } |
| 789 | |
| 790 | |
| 791 | |
| 792 | QImageData *QImageData::create(uchar *data, int width, int height, qsizetype bpl, QImage::Format format, bool readOnly, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
| 793 | { |
| 794 | if (width <= 0 || height <= 0 || !data || format == QImage::Format_Invalid) |
| 795 | return nullptr; |
| 796 | |
| 797 | const int depth = qt_depthForFormat(format); |
| 798 | auto params = calculateImageParameters(width, height, depth); |
| 799 | if (!params.isValid()) |
| 800 | return nullptr; |
| 801 | |
| 802 | if (bpl > 0) { |
| 803 | // can't overflow, because has calculateImageParameters already done this multiplication |
| 804 | const qsizetype min_bytes_per_line = (qsizetype(width) * depth + 7)/8; |
| 805 | if (bpl < min_bytes_per_line) |
| 806 | return nullptr; |
| 807 | |
| 808 | // recalculate the total with this value |
| 809 | params.bytesPerLine = bpl; |
| 810 | if (mul_overflow<qsizetype>(bpl, height, ¶ms.totalSize)) |
| 811 | return nullptr; |
| 812 | } |
| 813 | |
| 814 | QImageData *d = new QImageData; |
| 815 | d->ref.ref(); |
| 816 | |
| 817 | d->own_data = false; |
| 818 | d->ro_data = readOnly; |
| 819 | d->data = data; |
| 820 | d->width = width; |
| 821 | d->height = height; |
| 822 | d->depth = depth; |
| 823 | d->format = format; |
| 824 | |
| 825 | d->bytes_per_line = params.bytesPerLine; |
| 826 | d->nbytes = params.totalSize; |
| 827 | |
| 828 | d->cleanupFunction = cleanupFunction; |
| 829 | d->cleanupInfo = cleanupInfo; |
| 830 | |
| 831 | return d; |
| 832 | } |
| 833 | |
| 834 | /*! |
| 835 | Constructs an image with the given \a width, \a height and \a |
| 836 | format, that uses an existing memory buffer, \a data. The \a width |
| 837 | and \a height must be specified in pixels, \a data must be 32-bit aligned, |
| 838 | and each scanline of data in the image must also be 32-bit aligned. |
| 839 | |
| 840 | The buffer must remain valid throughout the life of the QImage and |
| 841 | all copies that have not been modified or otherwise detached from |
| 842 | the original buffer. The image does not delete the buffer at destruction. |
| 843 | You can provide a function pointer \a cleanupFunction along with an |
| 844 | extra pointer \a cleanupInfo that will be called when the last copy |
| 845 | is destroyed. |
| 846 | |
| 847 | If \a format is an indexed color format, the image color table is |
| 848 | initially empty and must be sufficiently expanded with |
| 849 | setColorCount() or setColorTable() before the image is used. |
| 850 | */ |
| 851 | QImage::QImage(uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
| 852 | : QPaintDevice() |
| 853 | { |
| 854 | d = QImageData::create(data, width, height, 0, format, false, cleanupFunction, cleanupInfo); |
| 855 | } |
| 856 | |
| 857 | /*! |
| 858 | Constructs an image with the given \a width, \a height and \a |
| 859 | format, that uses an existing read-only memory buffer, \a |
| 860 | data. The \a width and \a height must be specified in pixels, \a |
| 861 | data must be 32-bit aligned, and each scanline of data in the |
| 862 | image must also be 32-bit aligned. |
| 863 | |
| 864 | The buffer must remain valid throughout the life of the QImage and |
| 865 | all copies that have not been modified or otherwise detached from |
| 866 | the original buffer. The image does not delete the buffer at destruction. |
| 867 | You can provide a function pointer \a cleanupFunction along with an |
| 868 | extra pointer \a cleanupInfo that will be called when the last copy |
| 869 | is destroyed. |
| 870 | |
| 871 | If \a format is an indexed color format, the image color table is |
| 872 | initially empty and must be sufficiently expanded with |
| 873 | setColorCount() or setColorTable() before the image is used. |
| 874 | |
| 875 | Unlike the similar QImage constructor that takes a non-const data buffer, |
| 876 | this version will never alter the contents of the buffer. For example, |
| 877 | calling QImage::bits() will return a deep copy of the image, rather than |
| 878 | the buffer passed to the constructor. This allows for the efficiency of |
| 879 | constructing a QImage from raw data, without the possibility of the raw |
| 880 | data being changed. |
| 881 | */ |
| 882 | QImage::QImage(const uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
| 883 | : QPaintDevice() |
| 884 | { |
| 885 | d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true, cleanupFunction, cleanupInfo); |
| 886 | } |
| 887 | |
| 888 | /*! |
| 889 | Constructs an image with the given \a width, \a height and \a |
| 890 | format, that uses an existing memory buffer, \a data. The \a width |
| 891 | and \a height must be specified in pixels. \a bytesPerLine |
| 892 | specifies the number of bytes per line (stride). |
| 893 | |
| 894 | The buffer must remain valid throughout the life of the QImage and |
| 895 | all copies that have not been modified or otherwise detached from |
| 896 | the original buffer. The image does not delete the buffer at destruction. |
| 897 | You can provide a function pointer \a cleanupFunction along with an |
| 898 | extra pointer \a cleanupInfo that will be called when the last copy |
| 899 | is destroyed. |
| 900 | |
| 901 | If \a format is an indexed color format, the image color table is |
| 902 | initially empty and must be sufficiently expanded with |
| 903 | setColorCount() or setColorTable() before the image is used. |
| 904 | */ |
| 905 | |
| 906 | QImage::QImage(uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
| 907 | :QPaintDevice() |
| 908 | { |
| 909 | d = QImageData::create(data, width, height, bytesPerLine, format, false, cleanupFunction, cleanupInfo); |
| 910 | } |
| 911 | |
| 912 | /*! |
| 913 | Constructs an image with the given \a width, \a height and \a |
| 914 | format, that uses an existing memory buffer, \a data. The \a width |
| 915 | and \a height must be specified in pixels. \a bytesPerLine |
| 916 | specifies the number of bytes per line (stride). |
| 917 | |
| 918 | The buffer must remain valid throughout the life of the QImage and |
| 919 | all copies that have not been modified or otherwise detached from |
| 920 | the original buffer. The image does not delete the buffer at destruction. |
| 921 | You can provide a function pointer \a cleanupFunction along with an |
| 922 | extra pointer \a cleanupInfo that will be called when the last copy |
| 923 | is destroyed. |
| 924 | |
| 925 | If \a format is an indexed color format, the image color table is |
| 926 | initially empty and must be sufficiently expanded with |
| 927 | setColorCount() or setColorTable() before the image is used. |
| 928 | |
| 929 | Unlike the similar QImage constructor that takes a non-const data buffer, |
| 930 | this version will never alter the contents of the buffer. For example, |
| 931 | calling QImage::bits() will return a deep copy of the image, rather than |
| 932 | the buffer passed to the constructor. This allows for the efficiency of |
| 933 | constructing a QImage from raw data, without the possibility of the raw |
| 934 | data being changed. |
| 935 | */ |
| 936 | |
| 937 | QImage::QImage(const uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
| 938 | :QPaintDevice() |
| 939 | { |
| 940 | d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true, cleanupFunction, cleanupInfo); |
| 941 | } |
| 942 | |
| 943 | /*! |
| 944 | Constructs an image and tries to load the image from the file with |
| 945 | the given \a fileName. |
| 946 | |
| 947 | The loader attempts to read the image using the specified \a |
| 948 | format. If the \a format is not specified (which is the default), |
| 949 | it is auto-detected based on the file's suffix and header. For |
| 950 | details, see {QImageReader::setAutoDetectImageFormat()}{QImageReader}. |
| 951 | |
| 952 | If the loading of the image failed, this object is a null image. |
| 953 | |
| 954 | The file name can either refer to an actual file on disk or to one |
| 955 | of the application's embedded resources. See the |
| 956 | \l{resources.html}{Resource System} overview for details on how to |
| 957 | embed images and other resource files in the application's |
| 958 | executable. |
| 959 | |
| 960 | \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
| 961 | */ |
| 962 | |
| 963 | QImage::QImage(const QString &fileName, const char *format) |
| 964 | : QPaintDevice() |
| 965 | { |
| 966 | d = nullptr; |
| 967 | load(fileName, format); |
| 968 | } |
| 969 | |
| 970 | #ifndef QT_NO_IMAGEFORMAT_XPM |
| 971 | extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); |
| 972 | |
| 973 | /*! |
| 974 | Constructs an image from the given \a xpm image. |
| 975 | |
| 976 | Make sure that the image is a valid XPM image. Errors are silently |
| 977 | ignored. |
| 978 | |
| 979 | Note that it's possible to squeeze the XPM variable a little bit |
| 980 | by using an unusual declaration: |
| 981 | |
| 982 | \snippet code/src_gui_image_qimage.cpp 2 |
| 983 | |
| 984 | The extra \c const makes the entire definition read-only, which is |
| 985 | slightly more efficient (e.g., when the code is in a shared |
| 986 | library) and able to be stored in ROM with the application. |
| 987 | */ |
| 988 | |
| 989 | QImage::QImage(const char * const xpm[]) |
| 990 | : QPaintDevice() |
| 991 | { |
| 992 | d = nullptr; |
| 993 | if (!xpm) |
| 994 | return; |
| 995 | if (!qt_read_xpm_image_or_array(nullptr, xpm, *this)) |
| 996 | // Issue: Warning because the constructor may be ambigious |
| 997 | qWarning("QImage::QImage(), XPM is not supported" ); |
| 998 | } |
| 999 | #endif // QT_NO_IMAGEFORMAT_XPM |
| 1000 | |
| 1001 | /*! |
| 1002 | Constructs a shallow copy of the given \a image. |
| 1003 | |
| 1004 | For more information about shallow copies, see the \l {Implicit |
| 1005 | Data Sharing} documentation. |
| 1006 | |
| 1007 | \sa copy() |
| 1008 | */ |
| 1009 | |
| 1010 | QImage::QImage(const QImage &image) |
| 1011 | : QPaintDevice() |
| 1012 | { |
| 1013 | if (image.paintingActive() || isLocked(image.d)) { |
| 1014 | d = nullptr; |
| 1015 | image.copy().swap(*this); |
| 1016 | } else { |
| 1017 | d = image.d; |
| 1018 | if (d) |
| 1019 | d->ref.ref(); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | /*! |
| 1024 | Destroys the image and cleans up. |
| 1025 | */ |
| 1026 | |
| 1027 | QImage::~QImage() |
| 1028 | { |
| 1029 | if (d && !d->ref.deref()) |
| 1030 | delete d; |
| 1031 | } |
| 1032 | |
| 1033 | /*! |
| 1034 | Assigns a shallow copy of the given \a image to this image and |
| 1035 | returns a reference to this image. |
| 1036 | |
| 1037 | For more information about shallow copies, see the \l {Implicit |
| 1038 | Data Sharing} documentation. |
| 1039 | |
| 1040 | \sa copy(), QImage() |
| 1041 | */ |
| 1042 | |
| 1043 | QImage &QImage::operator=(const QImage &image) |
| 1044 | { |
| 1045 | if (image.paintingActive() || isLocked(image.d)) { |
| 1046 | operator=(image.copy()); |
| 1047 | } else { |
| 1048 | if (image.d) |
| 1049 | image.d->ref.ref(); |
| 1050 | if (d && !d->ref.deref()) |
| 1051 | delete d; |
| 1052 | d = image.d; |
| 1053 | } |
| 1054 | return *this; |
| 1055 | } |
| 1056 | |
| 1057 | /*! |
| 1058 | \fn void QImage::swap(QImage &other) |
| 1059 | \since 4.8 |
| 1060 | |
| 1061 | Swaps image \a other with this image. This operation is very |
| 1062 | fast and never fails. |
| 1063 | */ |
| 1064 | |
| 1065 | /*! |
| 1066 | \internal |
| 1067 | */ |
| 1068 | int QImage::devType() const |
| 1069 | { |
| 1070 | return QInternal::Image; |
| 1071 | } |
| 1072 | |
| 1073 | /*! |
| 1074 | Returns the image as a QVariant. |
| 1075 | */ |
| 1076 | QImage::operator QVariant() const |
| 1077 | { |
| 1078 | return QVariant::fromValue(*this); |
| 1079 | } |
| 1080 | |
| 1081 | /*! |
| 1082 | \internal |
| 1083 | |
| 1084 | If multiple images share common data, this image makes a copy of |
| 1085 | the data and detaches itself from the sharing mechanism, making |
| 1086 | sure that this image is the only one referring to the data. |
| 1087 | |
| 1088 | Nothing is done if there is just a single reference. |
| 1089 | |
| 1090 | \sa copy(), {QImage::isDetached()}{isDetached()}, {Implicit Data Sharing} |
| 1091 | */ |
| 1092 | void QImage::detach() |
| 1093 | { |
| 1094 | if (d) { |
| 1095 | if (d->is_cached && d->ref.loadRelaxed() == 1) |
| 1096 | QImagePixmapCleanupHooks::executeImageHooks(cacheKey()); |
| 1097 | |
| 1098 | if (d->ref.loadRelaxed() != 1 || d->ro_data) |
| 1099 | *this = copy(); |
| 1100 | |
| 1101 | if (d) |
| 1102 | ++d->detach_no; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | |
| 1107 | static void copyPhysicalMetadata(QImageData *dst, const QImageData *src) |
| 1108 | { |
| 1109 | dst->dpmx = src->dpmx; |
| 1110 | dst->dpmy = src->dpmy; |
| 1111 | dst->devicePixelRatio = src->devicePixelRatio; |
| 1112 | } |
| 1113 | |
| 1114 | static void copyMetadata(QImageData *dst, const QImageData *src) |
| 1115 | { |
| 1116 | // Doesn't copy colortable and alpha_clut, or offset. |
| 1117 | copyPhysicalMetadata(dst, src); |
| 1118 | dst->text = src->text; |
| 1119 | dst->colorSpace = src->colorSpace; |
| 1120 | } |
| 1121 | |
| 1122 | static void copyMetadata(QImage *dst, const QImage &src) |
| 1123 | { |
| 1124 | dst->setDotsPerMeterX(src.dotsPerMeterX()); |
| 1125 | dst->setDotsPerMeterY(src.dotsPerMeterY()); |
| 1126 | dst->setDevicePixelRatio(src.devicePixelRatio()); |
| 1127 | const auto textKeys = src.textKeys(); |
| 1128 | for (const auto &key: textKeys) |
| 1129 | dst->setText(key, src.text(key)); |
| 1130 | |
| 1131 | } |
| 1132 | |
| 1133 | /*! |
| 1134 | \fn QImage QImage::copy(int x, int y, int width, int height) const |
| 1135 | \overload |
| 1136 | |
| 1137 | The returned image is copied from the position (\a x, \a y) in |
| 1138 | this image, and will always have the given \a width and \a height. |
| 1139 | In areas beyond this image, pixels are set to 0. |
| 1140 | |
| 1141 | */ |
| 1142 | |
| 1143 | /*! |
| 1144 | \fn QImage QImage::copy(const QRect& rectangle) const |
| 1145 | |
| 1146 | Returns a sub-area of the image as a new image. |
| 1147 | |
| 1148 | The returned image is copied from the position (\a |
| 1149 | {rectangle}.x(), \a{rectangle}.y()) in this image, and will always |
| 1150 | have the size of the given \a rectangle. |
| 1151 | |
| 1152 | In areas beyond this image, pixels are set to 0. For 32-bit RGB |
| 1153 | images, this means black; for 32-bit ARGB images, this means |
| 1154 | transparent black; for 8-bit images, this means the color with |
| 1155 | index 0 in the color table which can be anything; for 1-bit |
| 1156 | images, this means Qt::color0. |
| 1157 | |
| 1158 | If the given \a rectangle is a null rectangle the entire image is |
| 1159 | copied. |
| 1160 | |
| 1161 | \sa QImage() |
| 1162 | */ |
| 1163 | QImage QImage::copy(const QRect& r) const |
| 1164 | { |
| 1165 | Q_TRACE_SCOPE(QImage_copy, r); |
| 1166 | if (!d) |
| 1167 | return QImage(); |
| 1168 | |
| 1169 | if (r.isNull()) { |
| 1170 | QImage image(d->width, d->height, d->format); |
| 1171 | if (image.isNull()) |
| 1172 | return image; |
| 1173 | |
| 1174 | // Qt for Embedded Linux can create images with non-default bpl |
| 1175 | // make sure we don't crash. |
| 1176 | if (image.d->nbytes != d->nbytes) { |
| 1177 | qsizetype bpl = qMin(bytesPerLine(), image.bytesPerLine()); |
| 1178 | for (int i = 0; i < height(); i++) |
| 1179 | memcpy(image.scanLine(i), scanLine(i), bpl); |
| 1180 | } else |
| 1181 | memcpy(image.bits(), bits(), d->nbytes); |
| 1182 | image.d->colortable = d->colortable; |
| 1183 | image.d->offset = d->offset; |
| 1184 | image.d->has_alpha_clut = d->has_alpha_clut; |
| 1185 | copyMetadata(image.d, d); |
| 1186 | return image; |
| 1187 | } |
| 1188 | |
| 1189 | int x = r.x(); |
| 1190 | int y = r.y(); |
| 1191 | int w = r.width(); |
| 1192 | int h = r.height(); |
| 1193 | |
| 1194 | int dx = 0; |
| 1195 | int dy = 0; |
| 1196 | if (w <= 0 || h <= 0) |
| 1197 | return QImage(); |
| 1198 | |
| 1199 | QImage image(w, h, d->format); |
| 1200 | if (image.isNull()) |
| 1201 | return image; |
| 1202 | |
| 1203 | if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { |
| 1204 | // bitBlt will not cover entire image - clear it. |
| 1205 | image.fill(0); |
| 1206 | if (x < 0) { |
| 1207 | dx = -x; |
| 1208 | x = 0; |
| 1209 | } |
| 1210 | if (y < 0) { |
| 1211 | dy = -y; |
| 1212 | y = 0; |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | image.d->colortable = d->colortable; |
| 1217 | |
| 1218 | int pixels_to_copy = qMax(w - dx, 0); |
| 1219 | if (x > d->width) |
| 1220 | pixels_to_copy = 0; |
| 1221 | else if (pixels_to_copy > d->width - x) |
| 1222 | pixels_to_copy = d->width - x; |
| 1223 | int lines_to_copy = qMax(h - dy, 0); |
| 1224 | if (y > d->height) |
| 1225 | lines_to_copy = 0; |
| 1226 | else if (lines_to_copy > d->height - y) |
| 1227 | lines_to_copy = d->height - y; |
| 1228 | |
| 1229 | bool byteAligned = true; |
| 1230 | if (d->format == Format_Mono || d->format == Format_MonoLSB) |
| 1231 | byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); |
| 1232 | |
| 1233 | if (byteAligned) { |
| 1234 | const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; |
| 1235 | uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; |
| 1236 | const qsizetype bytes_to_copy = (qsizetype(pixels_to_copy) * d->depth) >> 3; |
| 1237 | for (int i = 0; i < lines_to_copy; ++i) { |
| 1238 | memcpy(dest, src, bytes_to_copy); |
| 1239 | src += d->bytes_per_line; |
| 1240 | dest += image.d->bytes_per_line; |
| 1241 | } |
| 1242 | } else if (d->format == Format_Mono) { |
| 1243 | const uchar *src = d->data + y * d->bytes_per_line; |
| 1244 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
| 1245 | for (int i = 0; i < lines_to_copy; ++i) { |
| 1246 | for (int j = 0; j < pixels_to_copy; ++j) { |
| 1247 | if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) |
| 1248 | dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); |
| 1249 | else |
| 1250 | dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); |
| 1251 | } |
| 1252 | src += d->bytes_per_line; |
| 1253 | dest += image.d->bytes_per_line; |
| 1254 | } |
| 1255 | } else { // Format_MonoLSB |
| 1256 | Q_ASSERT(d->format == Format_MonoLSB); |
| 1257 | const uchar *src = d->data + y * d->bytes_per_line; |
| 1258 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
| 1259 | for (int i = 0; i < lines_to_copy; ++i) { |
| 1260 | for (int j = 0; j < pixels_to_copy; ++j) { |
| 1261 | if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) |
| 1262 | dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); |
| 1263 | else |
| 1264 | dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); |
| 1265 | } |
| 1266 | src += d->bytes_per_line; |
| 1267 | dest += image.d->bytes_per_line; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | copyMetadata(image.d, d); |
| 1272 | image.d->offset = offset(); |
| 1273 | image.d->has_alpha_clut = d->has_alpha_clut; |
| 1274 | return image; |
| 1275 | } |
| 1276 | |
| 1277 | |
| 1278 | /*! |
| 1279 | \fn bool QImage::isNull() const |
| 1280 | |
| 1281 | Returns \c true if it is a null image, otherwise returns \c false. |
| 1282 | |
| 1283 | A null image has all parameters set to zero and no allocated data. |
| 1284 | */ |
| 1285 | bool QImage::isNull() const |
| 1286 | { |
| 1287 | return !d; |
| 1288 | } |
| 1289 | |
| 1290 | /*! |
| 1291 | \fn int QImage::width() const |
| 1292 | |
| 1293 | Returns the width of the image. |
| 1294 | |
| 1295 | \sa {QImage#Image Information}{Image Information} |
| 1296 | */ |
| 1297 | int QImage::width() const |
| 1298 | { |
| 1299 | return d ? d->width : 0; |
| 1300 | } |
| 1301 | |
| 1302 | /*! |
| 1303 | \fn int QImage::height() const |
| 1304 | |
| 1305 | Returns the height of the image. |
| 1306 | |
| 1307 | \sa {QImage#Image Information}{Image Information} |
| 1308 | */ |
| 1309 | int QImage::height() const |
| 1310 | { |
| 1311 | return d ? d->height : 0; |
| 1312 | } |
| 1313 | |
| 1314 | /*! |
| 1315 | \fn QSize QImage::size() const |
| 1316 | |
| 1317 | Returns the size of the image, i.e. its width() and height(). |
| 1318 | |
| 1319 | \sa {QImage#Image Information}{Image Information} |
| 1320 | */ |
| 1321 | QSize QImage::size() const |
| 1322 | { |
| 1323 | return d ? QSize(d->width, d->height) : QSize(0, 0); |
| 1324 | } |
| 1325 | |
| 1326 | /*! |
| 1327 | \fn QRect QImage::rect() const |
| 1328 | |
| 1329 | Returns the enclosing rectangle (0, 0, width(), height()) of the |
| 1330 | image. |
| 1331 | |
| 1332 | \sa {QImage#Image Information}{Image Information} |
| 1333 | */ |
| 1334 | QRect QImage::rect() const |
| 1335 | { |
| 1336 | return d ? QRect(0, 0, d->width, d->height) : QRect(); |
| 1337 | } |
| 1338 | |
| 1339 | /*! |
| 1340 | Returns the depth of the image. |
| 1341 | |
| 1342 | The image depth is the number of bits used to store a single |
| 1343 | pixel, also called bits per pixel (bpp). |
| 1344 | |
| 1345 | The supported depths are 1, 8, 16, 24, 32 and 64. |
| 1346 | |
| 1347 | \sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats}, |
| 1348 | {QImage#Image Information}{Image Information} |
| 1349 | |
| 1350 | */ |
| 1351 | int QImage::depth() const |
| 1352 | { |
| 1353 | return d ? d->depth : 0; |
| 1354 | } |
| 1355 | |
| 1356 | /*! |
| 1357 | \since 4.6 |
| 1358 | \fn int QImage::colorCount() const |
| 1359 | |
| 1360 | Returns the size of the color table for the image. |
| 1361 | |
| 1362 | Notice that colorCount() returns 0 for 32-bpp images because these |
| 1363 | images do not use color tables, but instead encode pixel values as |
| 1364 | ARGB quadruplets. |
| 1365 | |
| 1366 | \sa setColorCount(), {QImage#Image Information}{Image Information} |
| 1367 | */ |
| 1368 | int QImage::colorCount() const |
| 1369 | { |
| 1370 | return d ? d->colortable.size() : 0; |
| 1371 | } |
| 1372 | |
| 1373 | /*! |
| 1374 | Sets the color table used to translate color indexes to QRgb |
| 1375 | values, to the specified \a colors. |
| 1376 | |
| 1377 | When the image is used, the color table must be large enough to |
| 1378 | have entries for all the pixel/index values present in the image, |
| 1379 | otherwise the results are undefined. |
| 1380 | |
| 1381 | \sa colorTable(), setColor(), {QImage#Image Transformations}{Image |
| 1382 | Transformations} |
| 1383 | */ |
| 1384 | void QImage::setColorTable(const QList<QRgb> &colors) |
| 1385 | { |
| 1386 | if (!d) |
| 1387 | return; |
| 1388 | detach(); |
| 1389 | |
| 1390 | // In case detach() ran out of memory |
| 1391 | if (!d) |
| 1392 | return; |
| 1393 | |
| 1394 | d->colortable = colors; |
| 1395 | d->has_alpha_clut = false; |
| 1396 | for (int i = 0; i < d->colortable.size(); ++i) { |
| 1397 | if (qAlpha(d->colortable.at(i)) != 255) { |
| 1398 | d->has_alpha_clut = true; |
| 1399 | break; |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | /*! |
| 1405 | Returns a list of the colors contained in the image's color table, |
| 1406 | or an empty list if the image does not have a color table |
| 1407 | |
| 1408 | \sa setColorTable(), colorCount(), color() |
| 1409 | */ |
| 1410 | QList<QRgb> QImage::colorTable() const |
| 1411 | { |
| 1412 | return d ? d->colortable : QList<QRgb>(); |
| 1413 | } |
| 1414 | |
| 1415 | /*! |
| 1416 | Returns the device pixel ratio for the image. This is the |
| 1417 | ratio between \e{device pixels} and \e{device independent pixels}. |
| 1418 | |
| 1419 | Use this function when calculating layout geometry based on |
| 1420 | the image size: QSize layoutSize = image.size() / image.devicePixelRatio() |
| 1421 | |
| 1422 | The default value is 1.0. |
| 1423 | |
| 1424 | \sa setDevicePixelRatio(), QImageReader |
| 1425 | */ |
| 1426 | qreal QImage::devicePixelRatio() const |
| 1427 | { |
| 1428 | if (!d) |
| 1429 | return 1.0; |
| 1430 | return d->devicePixelRatio; |
| 1431 | } |
| 1432 | |
| 1433 | /*! |
| 1434 | Sets the device pixel ratio for the image. This is the |
| 1435 | ratio between image pixels and device-independent pixels. |
| 1436 | |
| 1437 | The default \a scaleFactor is 1.0. Setting it to something else has |
| 1438 | two effects: |
| 1439 | |
| 1440 | QPainters that are opened on the image will be scaled. For |
| 1441 | example, painting on a 200x200 image if with a ratio of 2.0 |
| 1442 | will result in effective (device-independent) painting bounds |
| 1443 | of 100x100. |
| 1444 | |
| 1445 | Code paths in Qt that calculate layout geometry based on the |
| 1446 | image size will take the ratio into account: |
| 1447 | QSize layoutSize = image.size() / image.devicePixelRatio() |
| 1448 | The net effect of this is that the image is displayed as |
| 1449 | high-DPI image rather than a large image |
| 1450 | (see \l{Drawing High Resolution Versions of Pixmaps and Images}). |
| 1451 | |
| 1452 | \sa devicePixelRatio() |
| 1453 | */ |
| 1454 | void QImage::setDevicePixelRatio(qreal scaleFactor) |
| 1455 | { |
| 1456 | if (!d) |
| 1457 | return; |
| 1458 | |
| 1459 | if (scaleFactor == d->devicePixelRatio) |
| 1460 | return; |
| 1461 | |
| 1462 | detach(); |
| 1463 | if (d) |
| 1464 | d->devicePixelRatio = scaleFactor; |
| 1465 | } |
| 1466 | |
| 1467 | /*! |
| 1468 | \since 5.10 |
| 1469 | Returns the image data size in bytes. |
| 1470 | |
| 1471 | \sa bytesPerLine(), bits(), {QImage#Image Information}{Image |
| 1472 | Information} |
| 1473 | */ |
| 1474 | qsizetype QImage::sizeInBytes() const |
| 1475 | { |
| 1476 | return d ? d->nbytes : 0; |
| 1477 | } |
| 1478 | |
| 1479 | /*! |
| 1480 | Returns the number of bytes per image scanline. |
| 1481 | |
| 1482 | This is equivalent to sizeInBytes() / height() if height() is non-zero. |
| 1483 | |
| 1484 | \sa scanLine() |
| 1485 | */ |
| 1486 | qsizetype QImage::bytesPerLine() const |
| 1487 | { |
| 1488 | return d ? d->bytes_per_line : 0; |
| 1489 | } |
| 1490 | |
| 1491 | |
| 1492 | /*! |
| 1493 | Returns the color in the color table at index \a i. The first |
| 1494 | color is at index 0. |
| 1495 | |
| 1496 | The colors in an image's color table are specified as ARGB |
| 1497 | quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and |
| 1498 | qBlue() functions to get the color value components. |
| 1499 | |
| 1500 | \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel |
| 1501 | Manipulation} |
| 1502 | */ |
| 1503 | QRgb QImage::color(int i) const |
| 1504 | { |
| 1505 | Q_ASSERT(i < colorCount()); |
| 1506 | return d ? d->colortable.at(i) : QRgb(uint(-1)); |
| 1507 | } |
| 1508 | |
| 1509 | /*! |
| 1510 | \fn void QImage::setColor(int index, QRgb colorValue) |
| 1511 | |
| 1512 | Sets the color at the given \a index in the color table, to the |
| 1513 | given to \a colorValue. The color value is an ARGB quadruplet. |
| 1514 | |
| 1515 | If \a index is outside the current size of the color table, it is |
| 1516 | expanded with setColorCount(). |
| 1517 | |
| 1518 | \sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel |
| 1519 | Manipulation} |
| 1520 | */ |
| 1521 | void QImage::setColor(int i, QRgb c) |
| 1522 | { |
| 1523 | if (!d) |
| 1524 | return; |
| 1525 | if (i < 0 || d->depth > 8 || i >= 1<<d->depth) { |
| 1526 | qWarning("QImage::setColor: Index out of bound %d" , i); |
| 1527 | return; |
| 1528 | } |
| 1529 | detach(); |
| 1530 | |
| 1531 | // In case detach() run out of memory |
| 1532 | if (!d) |
| 1533 | return; |
| 1534 | |
| 1535 | if (i >= d->colortable.size()) |
| 1536 | setColorCount(i+1); |
| 1537 | d->colortable[i] = c; |
| 1538 | d->has_alpha_clut |= (qAlpha(c) != 255); |
| 1539 | } |
| 1540 | |
| 1541 | /*! |
| 1542 | Returns a pointer to the pixel data at the scanline with index \a |
| 1543 | i. The first scanline is at index 0. |
| 1544 | |
| 1545 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
| 1546 | it follows the native alignment of 64-bit integers (64-bit for most |
| 1547 | platforms, but notably 32-bit on i386). |
| 1548 | |
| 1549 | For example, to remove the green component of each pixel in an image: |
| 1550 | |
| 1551 | \snippet code/src_gui_image_qimage.cpp scanLine |
| 1552 | |
| 1553 | \warning If you are accessing 32-bpp image data, cast the returned |
| 1554 | pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to |
| 1555 | read/write the pixel value. You cannot use the \c{uchar*} pointer |
| 1556 | directly, because the pixel format depends on the byte order on |
| 1557 | the underlying platform. Use qRed(), qGreen(), qBlue(), and |
| 1558 | qAlpha() to access the pixels. |
| 1559 | |
| 1560 | \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel |
| 1561 | Manipulation}, constScanLine() |
| 1562 | */ |
| 1563 | uchar *QImage::scanLine(int i) |
| 1564 | { |
| 1565 | if (!d) |
| 1566 | return nullptr; |
| 1567 | |
| 1568 | detach(); |
| 1569 | |
| 1570 | // In case detach() ran out of memory |
| 1571 | if (!d) |
| 1572 | return nullptr; |
| 1573 | |
| 1574 | return d->data + i * d->bytes_per_line; |
| 1575 | } |
| 1576 | |
| 1577 | /*! |
| 1578 | \overload |
| 1579 | */ |
| 1580 | const uchar *QImage::scanLine(int i) const |
| 1581 | { |
| 1582 | if (!d) |
| 1583 | return nullptr; |
| 1584 | |
| 1585 | Q_ASSERT(i >= 0 && i < height()); |
| 1586 | return d->data + i * d->bytes_per_line; |
| 1587 | } |
| 1588 | |
| 1589 | |
| 1590 | /*! |
| 1591 | Returns a pointer to the pixel data at the scanline with index \a |
| 1592 | i. The first scanline is at index 0. |
| 1593 | |
| 1594 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
| 1595 | it follows the native alignment of 64-bit integers (64-bit for most |
| 1596 | platforms, but notably 32-bit on i386). |
| 1597 | |
| 1598 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
| 1599 | sharing}, but this function does \e not perform a deep copy of the |
| 1600 | shared pixel data, because the returned data is const. |
| 1601 | |
| 1602 | \sa scanLine(), constBits() |
| 1603 | \since 4.7 |
| 1604 | */ |
| 1605 | const uchar *QImage::constScanLine(int i) const |
| 1606 | { |
| 1607 | if (!d) |
| 1608 | return nullptr; |
| 1609 | |
| 1610 | Q_ASSERT(i >= 0 && i < height()); |
| 1611 | return d->data + i * d->bytes_per_line; |
| 1612 | } |
| 1613 | |
| 1614 | /*! |
| 1615 | Returns a pointer to the first pixel data. This is equivalent to |
| 1616 | scanLine(0). |
| 1617 | |
| 1618 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
| 1619 | sharing}. This function performs a deep copy of the shared pixel |
| 1620 | data, thus ensuring that this QImage is the only one using the |
| 1621 | current return value. |
| 1622 | |
| 1623 | \sa scanLine(), sizeInBytes(), constBits() |
| 1624 | */ |
| 1625 | uchar *QImage::bits() |
| 1626 | { |
| 1627 | if (!d) |
| 1628 | return nullptr; |
| 1629 | detach(); |
| 1630 | |
| 1631 | // In case detach ran out of memory... |
| 1632 | if (!d) |
| 1633 | return nullptr; |
| 1634 | |
| 1635 | return d->data; |
| 1636 | } |
| 1637 | |
| 1638 | /*! |
| 1639 | \overload |
| 1640 | |
| 1641 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
| 1642 | sharing}, but this function does \e not perform a deep copy of the |
| 1643 | shared pixel data, because the returned data is const. |
| 1644 | */ |
| 1645 | const uchar *QImage::bits() const |
| 1646 | { |
| 1647 | return d ? d->data : nullptr; |
| 1648 | } |
| 1649 | |
| 1650 | |
| 1651 | /*! |
| 1652 | Returns a pointer to the first pixel data. |
| 1653 | |
| 1654 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
| 1655 | sharing}, but this function does \e not perform a deep copy of the |
| 1656 | shared pixel data, because the returned data is const. |
| 1657 | |
| 1658 | \sa bits(), constScanLine() |
| 1659 | \since 4.7 |
| 1660 | */ |
| 1661 | const uchar *QImage::constBits() const |
| 1662 | { |
| 1663 | return d ? d->data : nullptr; |
| 1664 | } |
| 1665 | |
| 1666 | /*! |
| 1667 | \fn void QImage::fill(uint pixelValue) |
| 1668 | |
| 1669 | Fills the entire image with the given \a pixelValue. |
| 1670 | |
| 1671 | If the depth of this image is 1, only the lowest bit is used. If |
| 1672 | you say fill(0), fill(2), etc., the image is filled with 0s. If |
| 1673 | you say fill(1), fill(3), etc., the image is filled with 1s. If |
| 1674 | the depth is 8, the lowest 8 bits are used and if the depth is 16 |
| 1675 | the lowest 16 bits are used. |
| 1676 | |
| 1677 | Note: QImage::pixel() returns the color of the pixel at the given |
| 1678 | coordinates while QColor::pixel() returns the pixel value of the |
| 1679 | underlying window system (essentially an index value), so normally |
| 1680 | you will want to use QImage::pixel() to use a color from an |
| 1681 | existing image or QColor::rgb() to use a specific color. |
| 1682 | |
| 1683 | \sa depth(), {QImage#Image Transformations}{Image Transformations} |
| 1684 | */ |
| 1685 | |
| 1686 | void QImage::fill(uint pixel) |
| 1687 | { |
| 1688 | if (!d) |
| 1689 | return; |
| 1690 | |
| 1691 | detach(); |
| 1692 | |
| 1693 | // In case detach() ran out of memory |
| 1694 | if (!d) |
| 1695 | return; |
| 1696 | |
| 1697 | if (d->depth == 1 || d->depth == 8) { |
| 1698 | int w = d->width; |
| 1699 | if (d->depth == 1) { |
| 1700 | if (pixel & 1) |
| 1701 | pixel = 0xffffffff; |
| 1702 | else |
| 1703 | pixel = 0; |
| 1704 | w = (w + 7) / 8; |
| 1705 | } else { |
| 1706 | pixel &= 0xff; |
| 1707 | } |
| 1708 | qt_rectfill<quint8>(d->data, pixel, 0, 0, |
| 1709 | w, d->height, d->bytes_per_line); |
| 1710 | return; |
| 1711 | } else if (d->depth == 16) { |
| 1712 | qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel, |
| 1713 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1714 | return; |
| 1715 | } else if (d->depth == 24) { |
| 1716 | qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel, |
| 1717 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1718 | return; |
| 1719 | } else if (d->depth == 64) { |
| 1720 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), QRgba64::fromArgb32(pixel), |
| 1721 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1722 | return; |
| 1723 | } |
| 1724 | |
| 1725 | if (d->format == Format_RGB32) |
| 1726 | pixel |= 0xff000000; |
| 1727 | if (d->format == Format_RGBX8888) |
| 1728 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 1729 | pixel |= 0xff000000; |
| 1730 | #else |
| 1731 | pixel |= 0x000000ff; |
| 1732 | #endif |
| 1733 | if (d->format == Format_BGR30 || d->format == Format_RGB30) |
| 1734 | pixel |= 0xc0000000; |
| 1735 | |
| 1736 | qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel, |
| 1737 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1738 | } |
| 1739 | |
| 1740 | |
| 1741 | /*! |
| 1742 | \fn void QImage::fill(Qt::GlobalColor color) |
| 1743 | \overload |
| 1744 | \since 4.8 |
| 1745 | |
| 1746 | Fills the image with the given \a color, described as a standard global |
| 1747 | color. |
| 1748 | */ |
| 1749 | |
| 1750 | void QImage::fill(Qt::GlobalColor color) |
| 1751 | { |
| 1752 | fill(QColor(color)); |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | |
| 1757 | /*! |
| 1758 | \fn void QImage::fill(const QColor &color) |
| 1759 | |
| 1760 | \overload |
| 1761 | |
| 1762 | Fills the entire image with the given \a color. |
| 1763 | |
| 1764 | If the depth of the image is 1, the image will be filled with 1 if |
| 1765 | \a color equals Qt::color1; it will otherwise be filled with 0. |
| 1766 | |
| 1767 | If the depth of the image is 8, the image will be filled with the |
| 1768 | index corresponding the \a color in the color table if present; it |
| 1769 | will otherwise be filled with 0. |
| 1770 | |
| 1771 | \since 4.8 |
| 1772 | */ |
| 1773 | |
| 1774 | void QImage::fill(const QColor &color) |
| 1775 | { |
| 1776 | if (!d) |
| 1777 | return; |
| 1778 | detach(); |
| 1779 | |
| 1780 | // In case we run out of memory |
| 1781 | if (!d) |
| 1782 | return; |
| 1783 | |
| 1784 | switch (d->format) { |
| 1785 | case QImage::Format_RGB32: |
| 1786 | case QImage::Format_ARGB32: |
| 1787 | fill(color.rgba()); |
| 1788 | break; |
| 1789 | case QImage::Format_ARGB32_Premultiplied: |
| 1790 | fill(qPremultiply(color.rgba())); |
| 1791 | break; |
| 1792 | case QImage::Format_RGBX8888: |
| 1793 | fill(ARGB2RGBA(color.rgba() | 0xff000000)); |
| 1794 | break; |
| 1795 | case QImage::Format_RGBA8888: |
| 1796 | fill(ARGB2RGBA(color.rgba())); |
| 1797 | break; |
| 1798 | case QImage::Format_RGBA8888_Premultiplied: |
| 1799 | fill(ARGB2RGBA(qPremultiply(color.rgba()))); |
| 1800 | break; |
| 1801 | case QImage::Format_BGR30: |
| 1802 | case QImage::Format_A2BGR30_Premultiplied: |
| 1803 | fill(qConvertRgb64ToRgb30<PixelOrderBGR>(color.rgba64())); |
| 1804 | break; |
| 1805 | case QImage::Format_RGB30: |
| 1806 | case QImage::Format_A2RGB30_Premultiplied: |
| 1807 | fill(qConvertRgb64ToRgb30<PixelOrderRGB>(color.rgba64())); |
| 1808 | break; |
| 1809 | case QImage::Format_RGB16: |
| 1810 | fill((uint) qConvertRgb32To16(color.rgba())); |
| 1811 | break; |
| 1812 | case QImage::Format_Indexed8: { |
| 1813 | uint pixel = 0; |
| 1814 | for (int i=0; i<d->colortable.size(); ++i) { |
| 1815 | if (color.rgba() == d->colortable.at(i)) { |
| 1816 | pixel = i; |
| 1817 | break; |
| 1818 | } |
| 1819 | } |
| 1820 | fill(pixel); |
| 1821 | break; |
| 1822 | } |
| 1823 | case QImage::Format_Mono: |
| 1824 | case QImage::Format_MonoLSB: |
| 1825 | if (color == Qt::color1) |
| 1826 | fill((uint) 1); |
| 1827 | else |
| 1828 | fill((uint) 0); |
| 1829 | break; |
| 1830 | case QImage::Format_RGBX64: { |
| 1831 | QRgba64 c = color.rgba64(); |
| 1832 | c.setAlpha(65535); |
| 1833 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), c, |
| 1834 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1835 | break; |
| 1836 | |
| 1837 | } |
| 1838 | case QImage::Format_RGBA64: |
| 1839 | case QImage::Format_RGBA64_Premultiplied: |
| 1840 | qt_rectfill<quint64>(reinterpret_cast<quint64*>(d->data), color.rgba64(), |
| 1841 | 0, 0, d->width, d->height, d->bytes_per_line); |
| 1842 | break; |
| 1843 | default: { |
| 1844 | QPainter p(this); |
| 1845 | p.setCompositionMode(QPainter::CompositionMode_Source); |
| 1846 | p.fillRect(rect(), color); |
| 1847 | }} |
| 1848 | } |
| 1849 | |
| 1850 | |
| 1851 | |
| 1852 | /*! |
| 1853 | Inverts all pixel values in the image. |
| 1854 | |
| 1855 | The given invert \a mode only have a meaning when the image's |
| 1856 | depth is 32. The default \a mode is InvertRgb, which leaves the |
| 1857 | alpha channel unchanged. If the \a mode is InvertRgba, the alpha |
| 1858 | bits are also inverted. |
| 1859 | |
| 1860 | Inverting an 8-bit image means to replace all pixels using color |
| 1861 | index \e i with a pixel using color index 255 minus \e i. The same |
| 1862 | is the case for a 1-bit image. Note that the color table is \e not |
| 1863 | changed. |
| 1864 | |
| 1865 | If the image has a premultiplied alpha channel, the image is first |
| 1866 | converted to an unpremultiplied image format to be inverted and |
| 1867 | then converted back. |
| 1868 | |
| 1869 | \sa {QImage#Image Transformations}{Image Transformations} |
| 1870 | */ |
| 1871 | |
| 1872 | void QImage::invertPixels(InvertMode mode) |
| 1873 | { |
| 1874 | if (!d) |
| 1875 | return; |
| 1876 | |
| 1877 | detach(); |
| 1878 | |
| 1879 | // In case detach() ran out of memory |
| 1880 | if (!d) |
| 1881 | return; |
| 1882 | |
| 1883 | QImage::Format originalFormat = d->format; |
| 1884 | // Inverting premultiplied pixels would produce invalid image data. |
| 1885 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) { |
| 1886 | if (depth() > 32) { |
| 1887 | if (!d->convertInPlace(QImage::Format_RGBA64, { })) |
| 1888 | *this = convertToFormat(QImage::Format_RGBA64); |
| 1889 | } else { |
| 1890 | if (!d->convertInPlace(QImage::Format_ARGB32, { })) |
| 1891 | *this = convertToFormat(QImage::Format_ARGB32); |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | if (depth() < 32) { |
| 1896 | // This assumes no alpha-channel as the only formats with non-premultipled alpha are 32bit. |
| 1897 | qsizetype bpl = (qsizetype(d->width) * d->depth + 7) / 8; |
| 1898 | int pad = d->bytes_per_line - bpl; |
| 1899 | uchar *sl = d->data; |
| 1900 | for (int y=0; y<d->height; ++y) { |
| 1901 | for (qsizetype x=0; x<bpl; ++x) |
| 1902 | *sl++ ^= 0xff; |
| 1903 | sl += pad; |
| 1904 | } |
| 1905 | } |
| 1906 | else if (depth() == 64) { |
| 1907 | quint16 *p = (quint16*)d->data; |
| 1908 | quint16 *end = (quint16*)(d->data + d->nbytes); |
| 1909 | quint16 xorbits = 0xffff; |
| 1910 | while (p < end) { |
| 1911 | *p++ ^= xorbits; |
| 1912 | *p++ ^= xorbits; |
| 1913 | *p++ ^= xorbits; |
| 1914 | if (mode == InvertRgba) |
| 1915 | *p++ ^= xorbits; |
| 1916 | else |
| 1917 | p++; |
| 1918 | } |
| 1919 | } else { |
| 1920 | quint32 *p = (quint32*)d->data; |
| 1921 | quint32 *end = (quint32*)(d->data + d->nbytes); |
| 1922 | quint32 xorbits = 0xffffffff; |
| 1923 | switch (d->format) { |
| 1924 | case QImage::Format_RGBA8888: |
| 1925 | if (mode == InvertRgba) |
| 1926 | break; |
| 1927 | Q_FALLTHROUGH(); |
| 1928 | case QImage::Format_RGBX8888: |
| 1929 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
| 1930 | xorbits = 0xffffff00; |
| 1931 | break; |
| 1932 | #else |
| 1933 | xorbits = 0x00ffffff; |
| 1934 | break; |
| 1935 | #endif |
| 1936 | case QImage::Format_ARGB32: |
| 1937 | if (mode == InvertRgba) |
| 1938 | break; |
| 1939 | Q_FALLTHROUGH(); |
| 1940 | case QImage::Format_RGB32: |
| 1941 | xorbits = 0x00ffffff; |
| 1942 | break; |
| 1943 | case QImage::Format_BGR30: |
| 1944 | case QImage::Format_RGB30: |
| 1945 | xorbits = 0x3fffffff; |
| 1946 | break; |
| 1947 | default: |
| 1948 | Q_UNREACHABLE(); |
| 1949 | xorbits = 0; |
| 1950 | break; |
| 1951 | } |
| 1952 | while (p < end) |
| 1953 | *p++ ^= xorbits; |
| 1954 | } |
| 1955 | |
| 1956 | if (originalFormat != d->format) { |
| 1957 | if (!d->convertInPlace(originalFormat, { })) |
| 1958 | *this = convertToFormat(originalFormat); |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | // Windows defines these |
| 1963 | #if defined(write) |
| 1964 | # undef write |
| 1965 | #endif |
| 1966 | #if defined(close) |
| 1967 | # undef close |
| 1968 | #endif |
| 1969 | #if defined(read) |
| 1970 | # undef read |
| 1971 | #endif |
| 1972 | |
| 1973 | /*! |
| 1974 | \since 4.6 |
| 1975 | Resizes the color table to contain \a colorCount entries. |
| 1976 | |
| 1977 | If the color table is expanded, all the extra colors will be set to |
| 1978 | transparent (i.e qRgba(0, 0, 0, 0)). |
| 1979 | |
| 1980 | When the image is used, the color table must be large enough to |
| 1981 | have entries for all the pixel/index values present in the image, |
| 1982 | otherwise the results are undefined. |
| 1983 | |
| 1984 | \sa colorCount(), colorTable(), setColor(), {QImage#Image |
| 1985 | Transformations}{Image Transformations} |
| 1986 | */ |
| 1987 | |
| 1988 | void QImage::setColorCount(int colorCount) |
| 1989 | { |
| 1990 | if (!d) { |
| 1991 | qWarning("QImage::setColorCount: null image" ); |
| 1992 | return; |
| 1993 | } |
| 1994 | |
| 1995 | detach(); |
| 1996 | |
| 1997 | // In case detach() ran out of memory |
| 1998 | if (!d) |
| 1999 | return; |
| 2000 | |
| 2001 | if (colorCount == d->colortable.size()) |
| 2002 | return; |
| 2003 | if (colorCount <= 0) { // use no color table |
| 2004 | d->colortable.clear(); |
| 2005 | return; |
| 2006 | } |
| 2007 | int nc = d->colortable.size(); |
| 2008 | d->colortable.resize(colorCount); |
| 2009 | for (int i = nc; i < colorCount; ++i) |
| 2010 | d->colortable[i] = 0; |
| 2011 | } |
| 2012 | |
| 2013 | /*! |
| 2014 | Returns the format of the image. |
| 2015 | |
| 2016 | \sa {QImage#Image Formats}{Image Formats} |
| 2017 | */ |
| 2018 | QImage::Format QImage::format() const |
| 2019 | { |
| 2020 | return d ? d->format : Format_Invalid; |
| 2021 | } |
| 2022 | |
| 2023 | /*! |
| 2024 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const & |
| 2025 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) && |
| 2026 | |
| 2027 | Returns a copy of the image in the given \a format. |
| 2028 | |
| 2029 | The specified image conversion \a flags control how the image data |
| 2030 | is handled during the conversion process. |
| 2031 | |
| 2032 | \sa convertTo(), {Image Formats} |
| 2033 | */ |
| 2034 | |
| 2035 | /*! |
| 2036 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) const & |
| 2037 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) && |
| 2038 | \since 6.0 |
| 2039 | |
| 2040 | Returns a copy of the image in the given \a format. |
| 2041 | |
| 2042 | The specified image conversion \a flags control how the image data |
| 2043 | is handled during the conversion process. |
| 2044 | |
| 2045 | \sa convertTo(), {Image Formats} |
| 2046 | */ |
| 2047 | |
| 2048 | /*! |
| 2049 | \internal |
| 2050 | */ |
| 2051 | QImage QImage::convertToFormat_helper(Format format, Qt::ImageConversionFlags flags) const |
| 2052 | { |
| 2053 | if (!d || d->format == format) |
| 2054 | return *this; |
| 2055 | |
| 2056 | if (format == Format_Invalid || d->format == Format_Invalid) |
| 2057 | return QImage(); |
| 2058 | |
| 2059 | const QPixelLayout *destLayout = &qPixelLayouts[format]; |
| 2060 | Image_Converter converter = qimage_converter_map[d->format][format]; |
| 2061 | if (!converter && format > QImage::Format_Indexed8 && d->format > QImage::Format_Indexed8) { |
| 2062 | if (qt_highColorPrecision(d->format, !destLayout->hasAlphaChannel) |
| 2063 | && qt_highColorPrecision(format, !hasAlphaChannel())) { |
| 2064 | converter = convert_generic_over_rgb64; |
| 2065 | } else |
| 2066 | converter = convert_generic; |
| 2067 | } |
| 2068 | if (converter) { |
| 2069 | QImage image(d->width, d->height, format); |
| 2070 | |
| 2071 | QIMAGE_SANITYCHECK_MEMORY(image); |
| 2072 | |
| 2073 | image.d->offset = offset(); |
| 2074 | copyMetadata(image.d, d); |
| 2075 | |
| 2076 | converter(image.d, d, flags); |
| 2077 | return image; |
| 2078 | } |
| 2079 | |
| 2080 | // Convert indexed formats over ARGB32 or RGB32 to the final format. |
| 2081 | Q_ASSERT(format != QImage::Format_ARGB32 && format != QImage::Format_RGB32); |
| 2082 | Q_ASSERT(d->format != QImage::Format_ARGB32 && d->format != QImage::Format_RGB32); |
| 2083 | |
| 2084 | if (!hasAlphaChannel()) |
| 2085 | return convertToFormat(Format_RGB32, flags).convertToFormat(format, flags); |
| 2086 | |
| 2087 | return convertToFormat(Format_ARGB32, flags).convertToFormat(format, flags); |
| 2088 | } |
| 2089 | |
| 2090 | /*! |
| 2091 | \internal |
| 2092 | */ |
| 2093 | bool QImage::convertToFormat_inplace(Format format, Qt::ImageConversionFlags flags) |
| 2094 | { |
| 2095 | return d && d->convertInPlace(format, flags); |
| 2096 | } |
| 2097 | |
| 2098 | static inline int pixel_distance(QRgb p1, QRgb p2) { |
| 2099 | int r1 = qRed(p1); |
| 2100 | int g1 = qGreen(p1); |
| 2101 | int b1 = qBlue(p1); |
| 2102 | int a1 = qAlpha(p1); |
| 2103 | |
| 2104 | int r2 = qRed(p2); |
| 2105 | int g2 = qGreen(p2); |
| 2106 | int b2 = qBlue(p2); |
| 2107 | int a2 = qAlpha(p2); |
| 2108 | |
| 2109 | return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2); |
| 2110 | } |
| 2111 | |
| 2112 | static inline int closestMatch(QRgb pixel, const QList<QRgb> &clut) { |
| 2113 | int idx = 0; |
| 2114 | int current_distance = INT_MAX; |
| 2115 | for (int i=0; i<clut.size(); ++i) { |
| 2116 | int dist = pixel_distance(pixel, clut.at(i)); |
| 2117 | if (dist < current_distance) { |
| 2118 | current_distance = dist; |
| 2119 | idx = i; |
| 2120 | } |
| 2121 | } |
| 2122 | return idx; |
| 2123 | } |
| 2124 | |
| 2125 | static QImage convertWithPalette(const QImage &src, QImage::Format format, |
| 2126 | const QList<QRgb> &clut) { |
| 2127 | QImage dest(src.size(), format); |
| 2128 | dest.setColorTable(clut); |
| 2129 | |
| 2130 | QImageData::get(dest)->text = QImageData::get(src)->text; |
| 2131 | |
| 2132 | int h = src.height(); |
| 2133 | int w = src.width(); |
| 2134 | |
| 2135 | QHash<QRgb, int> cache; |
| 2136 | |
| 2137 | if (format == QImage::Format_Indexed8) { |
| 2138 | for (int y=0; y<h; ++y) { |
| 2139 | const QRgb *src_pixels = (const QRgb *) src.scanLine(y); |
| 2140 | uchar *dest_pixels = (uchar *) dest.scanLine(y); |
| 2141 | for (int x=0; x<w; ++x) { |
| 2142 | int src_pixel = src_pixels[x]; |
| 2143 | int value = cache.value(src_pixel, -1); |
| 2144 | if (value == -1) { |
| 2145 | value = closestMatch(src_pixel, clut); |
| 2146 | cache.insert(src_pixel, value); |
| 2147 | } |
| 2148 | dest_pixels[x] = (uchar) value; |
| 2149 | } |
| 2150 | } |
| 2151 | } else { |
| 2152 | QList<QRgb> table = clut; |
| 2153 | table.resize(2); |
| 2154 | for (int y=0; y<h; ++y) { |
| 2155 | const QRgb *src_pixels = (const QRgb *) src.scanLine(y); |
| 2156 | for (int x=0; x<w; ++x) { |
| 2157 | int src_pixel = src_pixels[x]; |
| 2158 | int value = cache.value(src_pixel, -1); |
| 2159 | if (value == -1) { |
| 2160 | value = closestMatch(src_pixel, table); |
| 2161 | cache.insert(src_pixel, value); |
| 2162 | } |
| 2163 | dest.setPixel(x, y, value); |
| 2164 | } |
| 2165 | } |
| 2166 | } |
| 2167 | |
| 2168 | return dest; |
| 2169 | } |
| 2170 | |
| 2171 | /*! |
| 2172 | \overload |
| 2173 | |
| 2174 | Returns a copy of the image converted to the given \a format, |
| 2175 | using the specified \a colorTable. |
| 2176 | |
| 2177 | Conversion from RGB formats to indexed formats is a slow operation |
| 2178 | and will use a straightforward nearest color approach, with no |
| 2179 | dithering. |
| 2180 | */ |
| 2181 | QImage QImage::convertToFormat(Format format, const QList<QRgb> &colorTable, Qt::ImageConversionFlags flags) const |
| 2182 | { |
| 2183 | if (!d || d->format == format) |
| 2184 | return *this; |
| 2185 | |
| 2186 | if (format == QImage::Format_Invalid) |
| 2187 | return QImage(); |
| 2188 | if (format <= QImage::Format_Indexed8) |
| 2189 | return convertWithPalette(convertToFormat(QImage::Format_ARGB32, flags), format, colorTable); |
| 2190 | |
| 2191 | return convertToFormat(format, flags); |
| 2192 | } |
| 2193 | |
| 2194 | /*! |
| 2195 | \since 5.9 |
| 2196 | |
| 2197 | Changes the format of the image to \a format without changing the |
| 2198 | data. Only works between formats of the same depth. |
| 2199 | |
| 2200 | Returns \c true if successful. |
| 2201 | |
| 2202 | This function can be used to change images with alpha-channels to |
| 2203 | their corresponding opaque formats if the data is known to be opaque-only, |
| 2204 | or to change the format of a given image buffer before overwriting |
| 2205 | it with new data. |
| 2206 | |
| 2207 | \warning The function does not check if the image data is valid in the |
| 2208 | new format and will still return \c true if the depths are compatible. |
| 2209 | Operations on an image with invalid data are undefined. |
| 2210 | |
| 2211 | \warning If the image is not detached, this will cause the data to be |
| 2212 | copied. |
| 2213 | |
| 2214 | \sa hasAlphaChannel(), convertToFormat() |
| 2215 | */ |
| 2216 | |
| 2217 | bool QImage::reinterpretAsFormat(Format format) |
| 2218 | { |
| 2219 | if (!d) |
| 2220 | return false; |
| 2221 | if (d->format == format) |
| 2222 | return true; |
| 2223 | if (qt_depthForFormat(format) != qt_depthForFormat(d->format)) |
| 2224 | return false; |
| 2225 | if (!isDetached()) { // Detach only if shared, not for read-only data. |
| 2226 | QImageData *oldD = d; |
| 2227 | detach(); |
| 2228 | // In case detach() ran out of memory |
| 2229 | if (!d) { |
| 2230 | d = oldD; |
| 2231 | return false; |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | d->format = format; |
| 2236 | return true; |
| 2237 | } |
| 2238 | |
| 2239 | /*! |
| 2240 | \since 5.13 |
| 2241 | |
| 2242 | Detach and convert the image to the given \a format in place. |
| 2243 | |
| 2244 | The specified image conversion \a flags control how the image data |
| 2245 | is handled during the conversion process. |
| 2246 | |
| 2247 | \sa convertedTo() |
| 2248 | */ |
| 2249 | |
| 2250 | void QImage::convertTo(Format format, Qt::ImageConversionFlags flags) |
| 2251 | { |
| 2252 | if (!d || format == QImage::Format_Invalid) |
| 2253 | return; |
| 2254 | |
| 2255 | detach(); |
| 2256 | if (convertToFormat_inplace(format, flags)) |
| 2257 | return; |
| 2258 | |
| 2259 | *this = convertToFormat_helper(format, flags); |
| 2260 | } |
| 2261 | |
| 2262 | /*! |
| 2263 | \fn bool QImage::valid(const QPoint &pos) const |
| 2264 | |
| 2265 | Returns \c true if \a pos is a valid coordinate pair within the |
| 2266 | image; otherwise returns \c false. |
| 2267 | |
| 2268 | \sa rect(), QRect::contains() |
| 2269 | */ |
| 2270 | |
| 2271 | /*! |
| 2272 | \overload |
| 2273 | |
| 2274 | Returns \c true if QPoint(\a x, \a y) is a valid coordinate pair |
| 2275 | within the image; otherwise returns \c false. |
| 2276 | */ |
| 2277 | bool QImage::valid(int x, int y) const |
| 2278 | { |
| 2279 | return d |
| 2280 | && x >= 0 && x < d->width |
| 2281 | && y >= 0 && y < d->height; |
| 2282 | } |
| 2283 | |
| 2284 | /*! |
| 2285 | \fn int QImage::pixelIndex(const QPoint &position) const |
| 2286 | |
| 2287 | Returns the pixel index at the given \a position. |
| 2288 | |
| 2289 | If \a position is not valid, or if the image is not a paletted |
| 2290 | image (depth() > 8), the results are undefined. |
| 2291 | |
| 2292 | \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
| 2293 | */ |
| 2294 | |
| 2295 | /*! |
| 2296 | \overload |
| 2297 | |
| 2298 | Returns the pixel index at (\a x, \a y). |
| 2299 | */ |
| 2300 | int QImage::pixelIndex(int x, int y) const |
| 2301 | { |
| 2302 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
| 2303 | qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range" , x, y); |
| 2304 | return -12345; |
| 2305 | } |
| 2306 | const uchar * s = scanLine(y); |
| 2307 | switch(d->format) { |
| 2308 | case Format_Mono: |
| 2309 | return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; |
| 2310 | case Format_MonoLSB: |
| 2311 | return (*(s + (x >> 3)) >> (x & 7)) & 1; |
| 2312 | case Format_Indexed8: |
| 2313 | return (int)s[x]; |
| 2314 | default: |
| 2315 | qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)" , d->depth); |
| 2316 | } |
| 2317 | return 0; |
| 2318 | } |
| 2319 | |
| 2320 | |
| 2321 | /*! |
| 2322 | \fn QRgb QImage::pixel(const QPoint &position) const |
| 2323 | |
| 2324 | Returns the color of the pixel at the given \a position. |
| 2325 | |
| 2326 | If the \a position is not valid, the results are undefined. |
| 2327 | |
| 2328 | \warning This function is expensive when used for massive pixel |
| 2329 | manipulations. Use constBits() or constScanLine() when many |
| 2330 | pixels needs to be read. |
| 2331 | |
| 2332 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
| 2333 | Manipulation} |
| 2334 | */ |
| 2335 | |
| 2336 | /*! |
| 2337 | \overload |
| 2338 | |
| 2339 | Returns the color of the pixel at coordinates (\a x, \a y). |
| 2340 | */ |
| 2341 | QRgb QImage::pixel(int x, int y) const |
| 2342 | { |
| 2343 | if (!d || x < 0 || x >= d->width || y < 0 || y >= d->height) { |
| 2344 | qWarning("QImage::pixel: coordinate (%d,%d) out of range" , x, y); |
| 2345 | return 12345; |
| 2346 | } |
| 2347 | |
| 2348 | const uchar *s = d->data + y * d->bytes_per_line; |
| 2349 | |
| 2350 | int index = -1; |
| 2351 | switch (d->format) { |
| 2352 | case Format_Mono: |
| 2353 | index = (*(s + (x >> 3)) >> (~x & 7)) & 1; |
| 2354 | break; |
| 2355 | case Format_MonoLSB: |
| 2356 | index = (*(s + (x >> 3)) >> (x & 7)) & 1; |
| 2357 | break; |
| 2358 | case Format_Indexed8: |
| 2359 | index = s[x]; |
| 2360 | break; |
| 2361 | default: |
| 2362 | break; |
| 2363 | } |
| 2364 | if (index >= 0) { // Indexed format |
| 2365 | if (index >= d->colortable.size()) { |
| 2366 | qWarning("QImage::pixel: color table index %d out of range." , index); |
| 2367 | return 0; |
| 2368 | } |
| 2369 | return d->colortable.at(index); |
| 2370 | } |
| 2371 | |
| 2372 | switch (d->format) { |
| 2373 | case Format_RGB32: |
| 2374 | return 0xff000000 | reinterpret_cast<const QRgb *>(s)[x]; |
| 2375 | case Format_ARGB32: // Keep old behaviour. |
| 2376 | case Format_ARGB32_Premultiplied: |
| 2377 | return reinterpret_cast<const QRgb *>(s)[x]; |
| 2378 | case Format_RGBX8888: |
| 2379 | case Format_RGBA8888: // Match ARGB32 behavior. |
| 2380 | case Format_RGBA8888_Premultiplied: |
| 2381 | return RGBA2ARGB(reinterpret_cast<const quint32 *>(s)[x]); |
| 2382 | case Format_BGR30: |
| 2383 | case Format_A2BGR30_Premultiplied: |
| 2384 | return qConvertA2rgb30ToArgb32<PixelOrderBGR>(reinterpret_cast<const quint32 *>(s)[x]); |
| 2385 | case Format_RGB30: |
| 2386 | case Format_A2RGB30_Premultiplied: |
| 2387 | return qConvertA2rgb30ToArgb32<PixelOrderRGB>(reinterpret_cast<const quint32 *>(s)[x]); |
| 2388 | case Format_RGB16: |
| 2389 | return qConvertRgb16To32(reinterpret_cast<const quint16 *>(s)[x]); |
| 2390 | case Format_RGBX64: |
| 2391 | case Format_RGBA64: // Match ARGB32 behavior. |
| 2392 | case Format_RGBA64_Premultiplied: |
| 2393 | return reinterpret_cast<const QRgba64 *>(s)[x].toArgb32(); |
| 2394 | default: |
| 2395 | break; |
| 2396 | } |
| 2397 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
| 2398 | uint result; |
| 2399 | return *layout->fetchToARGB32PM(&result, s, x, 1, nullptr, nullptr); |
| 2400 | } |
| 2401 | |
| 2402 | /*! |
| 2403 | \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) |
| 2404 | |
| 2405 | Sets the pixel index or color at the given \a position to \a |
| 2406 | index_or_rgb. |
| 2407 | |
| 2408 | If the image's format is either monochrome or paletted, the given \a |
| 2409 | index_or_rgb value must be an index in the image's color table, |
| 2410 | otherwise the parameter must be a QRgb value. |
| 2411 | |
| 2412 | If \a position is not a valid coordinate pair in the image, or if |
| 2413 | \a index_or_rgb >= colorCount() in the case of monochrome and |
| 2414 | paletted images, the result is undefined. |
| 2415 | |
| 2416 | \warning This function is expensive due to the call of the internal |
| 2417 | \c{detach()} function called within; if performance is a concern, we |
| 2418 | recommend the use of scanLine() or bits() to access pixel data directly. |
| 2419 | |
| 2420 | \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
| 2421 | */ |
| 2422 | |
| 2423 | /*! |
| 2424 | \overload |
| 2425 | |
| 2426 | Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. |
| 2427 | */ |
| 2428 | void QImage::setPixel(int x, int y, uint index_or_rgb) |
| 2429 | { |
| 2430 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
| 2431 | qWarning("QImage::setPixel: coordinate (%d,%d) out of range" , x, y); |
| 2432 | return; |
| 2433 | } |
| 2434 | // detach is called from within scanLine |
| 2435 | uchar * s = scanLine(y); |
| 2436 | switch(d->format) { |
| 2437 | case Format_Mono: |
| 2438 | case Format_MonoLSB: |
| 2439 | if (index_or_rgb > 1) { |
| 2440 | qWarning("QImage::setPixel: Index %d out of range" , index_or_rgb); |
| 2441 | } else if (format() == Format_MonoLSB) { |
| 2442 | if (index_or_rgb==0) |
| 2443 | *(s + (x >> 3)) &= ~(1 << (x & 7)); |
| 2444 | else |
| 2445 | *(s + (x >> 3)) |= (1 << (x & 7)); |
| 2446 | } else { |
| 2447 | if (index_or_rgb==0) |
| 2448 | *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); |
| 2449 | else |
| 2450 | *(s + (x >> 3)) |= (1 << (7-(x & 7))); |
| 2451 | } |
| 2452 | return; |
| 2453 | case Format_Indexed8: |
| 2454 | if (index_or_rgb >= (uint)d->colortable.size()) { |
| 2455 | qWarning("QImage::setPixel: Index %d out of range" , index_or_rgb); |
| 2456 | return; |
| 2457 | } |
| 2458 | s[x] = index_or_rgb; |
| 2459 | return; |
| 2460 | case Format_RGB32: |
| 2461 | //make sure alpha is 255, we depend on it in qdrawhelper for cases |
| 2462 | // when image is set as a texture pattern on a qbrush |
| 2463 | ((uint *)s)[x] = 0xff000000 | index_or_rgb; |
| 2464 | return; |
| 2465 | case Format_ARGB32: |
| 2466 | case Format_ARGB32_Premultiplied: |
| 2467 | ((uint *)s)[x] = index_or_rgb; |
| 2468 | return; |
| 2469 | case Format_RGB16: |
| 2470 | ((quint16 *)s)[x] = qConvertRgb32To16(qUnpremultiply(index_or_rgb)); |
| 2471 | return; |
| 2472 | case Format_RGBX8888: |
| 2473 | ((uint *)s)[x] = ARGB2RGBA(0xff000000 | index_or_rgb); |
| 2474 | return; |
| 2475 | case Format_RGBA8888: |
| 2476 | case Format_RGBA8888_Premultiplied: |
| 2477 | ((uint *)s)[x] = ARGB2RGBA(index_or_rgb); |
| 2478 | return; |
| 2479 | case Format_BGR30: |
| 2480 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderBGR>(index_or_rgb); |
| 2481 | return; |
| 2482 | case Format_A2BGR30_Premultiplied: |
| 2483 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderBGR>(index_or_rgb); |
| 2484 | return; |
| 2485 | case Format_RGB30: |
| 2486 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderRGB>(index_or_rgb); |
| 2487 | return; |
| 2488 | case Format_A2RGB30_Premultiplied: |
| 2489 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderRGB>(index_or_rgb); |
| 2490 | return; |
| 2491 | case Format_Invalid: |
| 2492 | case NImageFormats: |
| 2493 | Q_ASSERT(false); |
| 2494 | return; |
| 2495 | default: |
| 2496 | break; |
| 2497 | } |
| 2498 | |
| 2499 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
| 2500 | layout->storeFromARGB32PM(s, &index_or_rgb, x, 1, nullptr, nullptr); |
| 2501 | } |
| 2502 | |
| 2503 | /*! |
| 2504 | \fn QColor QImage::pixelColor(const QPoint &position) const |
| 2505 | \since 5.6 |
| 2506 | |
| 2507 | Returns the color of the pixel at the given \a position as a QColor. |
| 2508 | |
| 2509 | If the \a position is not valid, an invalid QColor is returned. |
| 2510 | |
| 2511 | \warning This function is expensive when used for massive pixel |
| 2512 | manipulations. Use constBits() or constScanLine() when many |
| 2513 | pixels needs to be read. |
| 2514 | |
| 2515 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
| 2516 | Manipulation} |
| 2517 | */ |
| 2518 | |
| 2519 | /*! |
| 2520 | \overload |
| 2521 | \since 5.6 |
| 2522 | |
| 2523 | Returns the color of the pixel at coordinates (\a x, \a y) as a QColor. |
| 2524 | */ |
| 2525 | QColor QImage::pixelColor(int x, int y) const |
| 2526 | { |
| 2527 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
| 2528 | qWarning("QImage::pixelColor: coordinate (%d,%d) out of range" , x, y); |
| 2529 | return QColor(); |
| 2530 | } |
| 2531 | |
| 2532 | QRgba64 c; |
| 2533 | const uchar * s = constScanLine(y); |
| 2534 | switch (d->format) { |
| 2535 | case Format_BGR30: |
| 2536 | case Format_A2BGR30_Premultiplied: |
| 2537 | c = qConvertA2rgb30ToRgb64<PixelOrderBGR>(reinterpret_cast<const quint32 *>(s)[x]); |
| 2538 | break; |
| 2539 | case Format_RGB30: |
| 2540 | case Format_A2RGB30_Premultiplied: |
| 2541 | c = qConvertA2rgb30ToRgb64<PixelOrderRGB>(reinterpret_cast<const quint32 *>(s)[x]); |
| 2542 | break; |
| 2543 | case Format_RGBX64: |
| 2544 | case Format_RGBA64: |
| 2545 | case Format_RGBA64_Premultiplied: |
| 2546 | c = reinterpret_cast<const QRgba64 *>(s)[x]; |
| 2547 | break; |
| 2548 | case Format_Grayscale16: { |
| 2549 | quint16 v = reinterpret_cast<const quint16 *>(s)[x]; |
| 2550 | return QColor(qRgba64(v, v, v, 0xffff)); |
| 2551 | } |
| 2552 | default: |
| 2553 | c = QRgba64::fromArgb32(pixel(x, y)); |
| 2554 | break; |
| 2555 | } |
| 2556 | // QColor is always unpremultiplied |
| 2557 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) |
| 2558 | c = c.unpremultiplied(); |
| 2559 | return QColor(c); |
| 2560 | } |
| 2561 | |
| 2562 | /*! |
| 2563 | \fn void QImage::setPixelColor(const QPoint &position, const QColor &color) |
| 2564 | \since 5.6 |
| 2565 | |
| 2566 | Sets the color at the given \a position to \a color. |
| 2567 | |
| 2568 | If \a position is not a valid coordinate pair in the image, or |
| 2569 | the image's format is either monochrome or paletted, the result is undefined. |
| 2570 | |
| 2571 | \warning This function is expensive due to the call of the internal |
| 2572 | \c{detach()} function called within; if performance is a concern, we |
| 2573 | recommend the use of scanLine() or bits() to access pixel data directly. |
| 2574 | |
| 2575 | \sa pixel(), bits(), scanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
| 2576 | */ |
| 2577 | |
| 2578 | /*! |
| 2579 | \overload |
| 2580 | \since 5.6 |
| 2581 | |
| 2582 | Sets the pixel color at (\a x, \a y) to \a color. |
| 2583 | */ |
| 2584 | void QImage::setPixelColor(int x, int y, const QColor &color) |
| 2585 | { |
| 2586 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
| 2587 | qWarning("QImage::setPixelColor: coordinate (%d,%d) out of range" , x, y); |
| 2588 | return; |
| 2589 | } |
| 2590 | |
| 2591 | if (!color.isValid()) { |
| 2592 | qWarning("QImage::setPixelColor: color is invalid" ); |
| 2593 | return; |
| 2594 | } |
| 2595 | |
| 2596 | // QColor is always unpremultiplied |
| 2597 | QRgba64 c = color.rgba64(); |
| 2598 | if (!hasAlphaChannel()) |
| 2599 | c.setAlpha(65535); |
| 2600 | else if (qPixelLayouts[d->format].premultiplied) |
| 2601 | c = c.premultiplied(); |
| 2602 | // detach is called from within scanLine |
| 2603 | uchar * s = scanLine(y); |
| 2604 | switch (d->format) { |
| 2605 | case Format_Mono: |
| 2606 | case Format_MonoLSB: |
| 2607 | case Format_Indexed8: |
| 2608 | qWarning("QImage::setPixelColor: called on monochrome or indexed format" ); |
| 2609 | return; |
| 2610 | case Format_BGR30: |
| 2611 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c) | 0xc0000000; |
| 2612 | return; |
| 2613 | case Format_A2BGR30_Premultiplied: |
| 2614 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c); |
| 2615 | return; |
| 2616 | case Format_RGB30: |
| 2617 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c) | 0xc0000000; |
| 2618 | return; |
| 2619 | case Format_A2RGB30_Premultiplied: |
| 2620 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c); |
| 2621 | return; |
| 2622 | case Format_RGBX64: |
| 2623 | ((QRgba64 *)s)[x] = color.rgba64(); |
| 2624 | ((QRgba64 *)s)[x].setAlpha(65535); |
| 2625 | return; |
| 2626 | case Format_RGBA64: |
| 2627 | case Format_RGBA64_Premultiplied: |
| 2628 | ((QRgba64 *)s)[x] = color.rgba64(); |
| 2629 | return; |
| 2630 | default: |
| 2631 | setPixel(x, y, c.toArgb32()); |
| 2632 | return; |
| 2633 | } |
| 2634 | } |
| 2635 | |
| 2636 | /*! |
| 2637 | Returns \c true if all the colors in the image are shades of gray |
| 2638 | (i.e. their red, green and blue components are equal); otherwise |
| 2639 | false. |
| 2640 | |
| 2641 | Note that this function is slow for images without color table. |
| 2642 | |
| 2643 | \sa isGrayscale() |
| 2644 | */ |
| 2645 | bool QImage::allGray() const |
| 2646 | { |
| 2647 | if (!d) |
| 2648 | return true; |
| 2649 | |
| 2650 | switch (d->format) { |
| 2651 | case Format_Mono: |
| 2652 | case Format_MonoLSB: |
| 2653 | case Format_Indexed8: |
| 2654 | for (int i = 0; i < d->colortable.size(); ++i) { |
| 2655 | if (!qIsGray(d->colortable.at(i))) |
| 2656 | return false; |
| 2657 | } |
| 2658 | return true; |
| 2659 | case Format_Alpha8: |
| 2660 | return false; |
| 2661 | case Format_Grayscale8: |
| 2662 | case Format_Grayscale16: |
| 2663 | return true; |
| 2664 | case Format_RGB32: |
| 2665 | case Format_ARGB32: |
| 2666 | case Format_ARGB32_Premultiplied: |
| 2667 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 2668 | case Format_RGBX8888: |
| 2669 | case Format_RGBA8888: |
| 2670 | case Format_RGBA8888_Premultiplied: |
| 2671 | #endif |
| 2672 | for (int j = 0; j < d->height; ++j) { |
| 2673 | const QRgb *b = (const QRgb *)constScanLine(j); |
| 2674 | for (int i = 0; i < d->width; ++i) { |
| 2675 | if (!qIsGray(b[i])) |
| 2676 | return false; |
| 2677 | } |
| 2678 | } |
| 2679 | return true; |
| 2680 | case Format_RGB16: |
| 2681 | for (int j = 0; j < d->height; ++j) { |
| 2682 | const quint16 *b = (const quint16 *)constScanLine(j); |
| 2683 | for (int i = 0; i < d->width; ++i) { |
| 2684 | if (!qIsGray(qConvertRgb16To32(b[i]))) |
| 2685 | return false; |
| 2686 | } |
| 2687 | } |
| 2688 | return true; |
| 2689 | default: |
| 2690 | break; |
| 2691 | } |
| 2692 | |
| 2693 | uint buffer[BufferSize]; |
| 2694 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
| 2695 | const auto fetch = layout->fetchToARGB32PM; |
| 2696 | for (int j = 0; j < d->height; ++j) { |
| 2697 | const uchar *b = constScanLine(j); |
| 2698 | int x = 0; |
| 2699 | while (x < d->width) { |
| 2700 | int l = qMin(d->width - x, BufferSize); |
| 2701 | const uint *ptr = fetch(buffer, b, x, l, nullptr, nullptr); |
| 2702 | for (int i = 0; i < l; ++i) { |
| 2703 | if (!qIsGray(ptr[i])) |
| 2704 | return false; |
| 2705 | } |
| 2706 | x += l; |
| 2707 | } |
| 2708 | } |
| 2709 | return true; |
| 2710 | } |
| 2711 | |
| 2712 | /*! |
| 2713 | For 32-bit images, this function is equivalent to allGray(). |
| 2714 | |
| 2715 | For color indexed images, this function returns \c true if |
| 2716 | color(i) is QRgb(i, i, i) for all indexes of the color table; |
| 2717 | otherwise returns \c false. |
| 2718 | |
| 2719 | \sa allGray(), {QImage#Image Formats}{Image Formats} |
| 2720 | */ |
| 2721 | bool QImage::isGrayscale() const |
| 2722 | { |
| 2723 | if (!d) |
| 2724 | return false; |
| 2725 | |
| 2726 | if (d->format == QImage::Format_Alpha8) |
| 2727 | return false; |
| 2728 | |
| 2729 | if (d->format == QImage::Format_Grayscale8 || d->format == QImage::Format_Grayscale16) |
| 2730 | return true; |
| 2731 | |
| 2732 | switch (depth()) { |
| 2733 | case 32: |
| 2734 | case 24: |
| 2735 | case 16: |
| 2736 | return allGray(); |
| 2737 | case 8: { |
| 2738 | Q_ASSERT(d->format == QImage::Format_Indexed8); |
| 2739 | for (int i = 0; i < colorCount(); i++) |
| 2740 | if (d->colortable.at(i) != qRgb(i,i,i)) |
| 2741 | return false; |
| 2742 | return true; |
| 2743 | } |
| 2744 | } |
| 2745 | return false; |
| 2746 | } |
| 2747 | |
| 2748 | /*! |
| 2749 | \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, |
| 2750 | Qt::TransformationMode transformMode) const |
| 2751 | \overload |
| 2752 | |
| 2753 | Returns a copy of the image scaled to a rectangle with the given |
| 2754 | \a width and \a height according to the given \a aspectRatioMode |
| 2755 | and \a transformMode. |
| 2756 | |
| 2757 | If either the \a width or the \a height is zero or negative, this |
| 2758 | function returns a null image. |
| 2759 | */ |
| 2760 | |
| 2761 | /*! |
| 2762 | \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, |
| 2763 | Qt::TransformationMode transformMode) const |
| 2764 | |
| 2765 | Returns a copy of the image scaled to a rectangle defined by the |
| 2766 | given \a size according to the given \a aspectRatioMode and \a |
| 2767 | transformMode. |
| 2768 | |
| 2769 | \image qimage-scaling.png |
| 2770 | |
| 2771 | \list |
| 2772 | \li If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image |
| 2773 | is scaled to \a size. |
| 2774 | \li If \a aspectRatioMode is Qt::KeepAspectRatio, the image is |
| 2775 | scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. |
| 2776 | \li If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, |
| 2777 | the image is scaled to a rectangle as small as possible |
| 2778 | outside \a size, preserving the aspect ratio. |
| 2779 | \endlist |
| 2780 | |
| 2781 | If the given \a size is empty, this function returns a null image. |
| 2782 | |
| 2783 | \sa isNull(), {QImage#Image Transformations}{Image |
| 2784 | Transformations} |
| 2785 | */ |
| 2786 | QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const |
| 2787 | { |
| 2788 | if (!d) { |
| 2789 | qWarning("QImage::scaled: Image is a null image" ); |
| 2790 | return QImage(); |
| 2791 | } |
| 2792 | if (s.isEmpty()) |
| 2793 | return QImage(); |
| 2794 | |
| 2795 | QSize newSize = size(); |
| 2796 | newSize.scale(s, aspectMode); |
| 2797 | newSize.rwidth() = qMax(newSize.width(), 1); |
| 2798 | newSize.rheight() = qMax(newSize.height(), 1); |
| 2799 | if (newSize == size()) |
| 2800 | return *this; |
| 2801 | |
| 2802 | Q_TRACE_SCOPE(QImage_scaled, s, aspectMode, mode); |
| 2803 | |
| 2804 | QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height()); |
| 2805 | QImage img = transformed(wm, mode); |
| 2806 | return img; |
| 2807 | } |
| 2808 | |
| 2809 | /*! |
| 2810 | \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const |
| 2811 | |
| 2812 | Returns a scaled copy of the image. The returned image is scaled |
| 2813 | to the given \a width using the specified transformation \a |
| 2814 | mode. |
| 2815 | |
| 2816 | This function automatically calculates the height of the image so |
| 2817 | that its aspect ratio is preserved. |
| 2818 | |
| 2819 | If the given \a width is 0 or negative, a null image is returned. |
| 2820 | |
| 2821 | \sa {QImage#Image Transformations}{Image Transformations} |
| 2822 | */ |
| 2823 | QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const |
| 2824 | { |
| 2825 | if (!d) { |
| 2826 | qWarning("QImage::scaleWidth: Image is a null image" ); |
| 2827 | return QImage(); |
| 2828 | } |
| 2829 | if (w <= 0) |
| 2830 | return QImage(); |
| 2831 | |
| 2832 | Q_TRACE_SCOPE(QImage_scaledToWidth, w, mode); |
| 2833 | |
| 2834 | qreal factor = (qreal) w / width(); |
| 2835 | QTransform wm = QTransform::fromScale(factor, factor); |
| 2836 | return transformed(wm, mode); |
| 2837 | } |
| 2838 | |
| 2839 | /*! |
| 2840 | \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const |
| 2841 | |
| 2842 | Returns a scaled copy of the image. The returned image is scaled |
| 2843 | to the given \a height using the specified transformation \a |
| 2844 | mode. |
| 2845 | |
| 2846 | This function automatically calculates the width of the image so that |
| 2847 | the ratio of the image is preserved. |
| 2848 | |
| 2849 | If the given \a height is 0 or negative, a null image is returned. |
| 2850 | |
| 2851 | \sa {QImage#Image Transformations}{Image Transformations} |
| 2852 | */ |
| 2853 | QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const |
| 2854 | { |
| 2855 | if (!d) { |
| 2856 | qWarning("QImage::scaleHeight: Image is a null image" ); |
| 2857 | return QImage(); |
| 2858 | } |
| 2859 | if (h <= 0) |
| 2860 | return QImage(); |
| 2861 | |
| 2862 | Q_TRACE_SCOPE(QImage_scaledToHeight, h, mode); |
| 2863 | |
| 2864 | qreal factor = (qreal) h / height(); |
| 2865 | QTransform wm = QTransform::fromScale(factor, factor); |
| 2866 | return transformed(wm, mode); |
| 2867 | } |
| 2868 | |
| 2869 | /*! |
| 2870 | Builds and returns a 1-bpp mask from the alpha buffer in this |
| 2871 | image. Returns a null image if the image's format is |
| 2872 | QImage::Format_RGB32. |
| 2873 | |
| 2874 | The \a flags argument is a bitwise-OR of the |
| 2875 | Qt::ImageConversionFlags, and controls the conversion |
| 2876 | process. Passing 0 for flags sets all the default options. |
| 2877 | |
| 2878 | The returned image has little-endian bit order (i.e. the image's |
| 2879 | format is QImage::Format_MonoLSB), which you can convert to |
| 2880 | big-endian (QImage::Format_Mono) using the convertToFormat() |
| 2881 | function. |
| 2882 | |
| 2883 | \sa createHeuristicMask(), {QImage#Image Transformations}{Image |
| 2884 | Transformations} |
| 2885 | */ |
| 2886 | QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const |
| 2887 | { |
| 2888 | if (!d || d->format == QImage::Format_RGB32) |
| 2889 | return QImage(); |
| 2890 | |
| 2891 | if (d->depth == 1) { |
| 2892 | // A monochrome pixmap, with alpha channels on those two colors. |
| 2893 | // Pretty unlikely, so use less efficient solution. |
| 2894 | return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags); |
| 2895 | } |
| 2896 | |
| 2897 | QImage mask(d->width, d->height, Format_MonoLSB); |
| 2898 | if (!mask.isNull()) { |
| 2899 | dither_to_Mono(mask.d, d, flags, true); |
| 2900 | copyPhysicalMetadata(mask.d, d); |
| 2901 | } |
| 2902 | return mask; |
| 2903 | } |
| 2904 | |
| 2905 | #ifndef QT_NO_IMAGE_HEURISTIC_MASK |
| 2906 | /*! |
| 2907 | Creates and returns a 1-bpp heuristic mask for this image. |
| 2908 | |
| 2909 | The function works by selecting a color from one of the corners, |
| 2910 | then chipping away pixels of that color starting at all the edges. |
| 2911 | The four corners vote for which color is to be masked away. In |
| 2912 | case of a draw (this generally means that this function is not |
| 2913 | applicable to the image), the result is arbitrary. |
| 2914 | |
| 2915 | The returned image has little-endian bit order (i.e. the image's |
| 2916 | format is QImage::Format_MonoLSB), which you can convert to |
| 2917 | big-endian (QImage::Format_Mono) using the convertToFormat() |
| 2918 | function. |
| 2919 | |
| 2920 | If \a clipTight is true (the default) the mask is just large |
| 2921 | enough to cover the pixels; otherwise, the mask is larger than the |
| 2922 | data pixels. |
| 2923 | |
| 2924 | Note that this function disregards the alpha buffer. |
| 2925 | |
| 2926 | \sa createAlphaMask(), {QImage#Image Transformations}{Image |
| 2927 | Transformations} |
| 2928 | */ |
| 2929 | |
| 2930 | QImage QImage::createHeuristicMask(bool clipTight) const |
| 2931 | { |
| 2932 | if (!d) |
| 2933 | return QImage(); |
| 2934 | |
| 2935 | if (d->depth != 32) { |
| 2936 | QImage img32 = convertToFormat(Format_RGB32); |
| 2937 | return img32.createHeuristicMask(clipTight); |
| 2938 | } |
| 2939 | |
| 2940 | #define PIX(x,y) (*((const QRgb*)scanLine(y)+x) & 0x00ffffff) |
| 2941 | |
| 2942 | int w = width(); |
| 2943 | int h = height(); |
| 2944 | QImage m(w, h, Format_MonoLSB); |
| 2945 | QIMAGE_SANITYCHECK_MEMORY(m); |
| 2946 | m.setColorCount(2); |
| 2947 | m.setColor(0, QColor(Qt::color0).rgba()); |
| 2948 | m.setColor(1, QColor(Qt::color1).rgba()); |
| 2949 | m.fill(0xff); |
| 2950 | |
| 2951 | QRgb background = PIX(0,0); |
| 2952 | if (background != PIX(w-1,0) && |
| 2953 | background != PIX(0,h-1) && |
| 2954 | background != PIX(w-1,h-1)) { |
| 2955 | background = PIX(w-1,0); |
| 2956 | if (background != PIX(w-1,h-1) && |
| 2957 | background != PIX(0,h-1) && |
| 2958 | PIX(0,h-1) == PIX(w-1,h-1)) { |
| 2959 | background = PIX(w-1,h-1); |
| 2960 | } |
| 2961 | } |
| 2962 | |
| 2963 | int x,y; |
| 2964 | bool done = false; |
| 2965 | uchar *ypp, *ypc, *ypn; |
| 2966 | while(!done) { |
| 2967 | done = true; |
| 2968 | ypn = m.scanLine(0); |
| 2969 | ypc = nullptr; |
| 2970 | for (y = 0; y < h; y++) { |
| 2971 | ypp = ypc; |
| 2972 | ypc = ypn; |
| 2973 | ypn = (y == h-1) ? nullptr : m.scanLine(y+1); |
| 2974 | const QRgb *p = (const QRgb *)scanLine(y); |
| 2975 | for (x = 0; x < w; x++) { |
| 2976 | // slowness here - it's possible to do six of these tests |
| 2977 | // together in one go. oh well. |
| 2978 | if ((x == 0 || y == 0 || x == w-1 || y == h-1 || |
| 2979 | !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || |
| 2980 | !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || |
| 2981 | !(*(ypp + (x >> 3)) & (1 << (x & 7))) || |
| 2982 | !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && |
| 2983 | ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && |
| 2984 | ((*p & 0x00ffffff) == background)) { |
| 2985 | done = false; |
| 2986 | *(ypc + (x >> 3)) &= ~(1 << (x & 7)); |
| 2987 | } |
| 2988 | p++; |
| 2989 | } |
| 2990 | } |
| 2991 | } |
| 2992 | |
| 2993 | if (!clipTight) { |
| 2994 | ypn = m.scanLine(0); |
| 2995 | ypc = nullptr; |
| 2996 | for (y = 0; y < h; y++) { |
| 2997 | ypp = ypc; |
| 2998 | ypc = ypn; |
| 2999 | ypn = (y == h-1) ? nullptr : m.scanLine(y+1); |
| 3000 | const QRgb *p = (const QRgb *)scanLine(y); |
| 3001 | for (x = 0; x < w; x++) { |
| 3002 | if ((*p & 0x00ffffff) != background) { |
| 3003 | if (x > 0) |
| 3004 | *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); |
| 3005 | if (x < w-1) |
| 3006 | *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); |
| 3007 | if (y > 0) |
| 3008 | *(ypp + (x >> 3)) |= (1 << (x & 7)); |
| 3009 | if (y < h-1) |
| 3010 | *(ypn + (x >> 3)) |= (1 << (x & 7)); |
| 3011 | } |
| 3012 | p++; |
| 3013 | } |
| 3014 | } |
| 3015 | } |
| 3016 | |
| 3017 | #undef PIX |
| 3018 | |
| 3019 | copyPhysicalMetadata(m.d, d); |
| 3020 | return m; |
| 3021 | } |
| 3022 | #endif //QT_NO_IMAGE_HEURISTIC_MASK |
| 3023 | |
| 3024 | /*! |
| 3025 | Creates and returns a mask for this image based on the given \a |
| 3026 | color value. If the \a mode is MaskInColor (the default value), |
| 3027 | all pixels matching \a color will be opaque pixels in the mask. If |
| 3028 | \a mode is MaskOutColor, all pixels matching the given color will |
| 3029 | be transparent. |
| 3030 | |
| 3031 | \sa createAlphaMask(), createHeuristicMask() |
| 3032 | */ |
| 3033 | |
| 3034 | QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const |
| 3035 | { |
| 3036 | if (!d) |
| 3037 | return QImage(); |
| 3038 | QImage maskImage(size(), QImage::Format_MonoLSB); |
| 3039 | QIMAGE_SANITYCHECK_MEMORY(maskImage); |
| 3040 | maskImage.fill(0); |
| 3041 | uchar *s = maskImage.bits(); |
| 3042 | |
| 3043 | if (depth() == 32) { |
| 3044 | for (int h = 0; h < d->height; h++) { |
| 3045 | const uint *sl = (const uint *) scanLine(h); |
| 3046 | for (int w = 0; w < d->width; w++) { |
| 3047 | if (sl[w] == color) |
| 3048 | *(s + (w >> 3)) |= (1 << (w & 7)); |
| 3049 | } |
| 3050 | s += maskImage.bytesPerLine(); |
| 3051 | } |
| 3052 | } else { |
| 3053 | for (int h = 0; h < d->height; h++) { |
| 3054 | for (int w = 0; w < d->width; w++) { |
| 3055 | if ((uint) pixel(w, h) == color) |
| 3056 | *(s + (w >> 3)) |= (1 << (w & 7)); |
| 3057 | } |
| 3058 | s += maskImage.bytesPerLine(); |
| 3059 | } |
| 3060 | } |
| 3061 | if (mode == Qt::MaskOutColor) |
| 3062 | maskImage.invertPixels(); |
| 3063 | |
| 3064 | copyPhysicalMetadata(maskImage.d, d); |
| 3065 | return maskImage; |
| 3066 | } |
| 3067 | |
| 3068 | /*! |
| 3069 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) const & |
| 3070 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) && |
| 3071 | |
| 3072 | Returns a mirror of the image, mirrored in the horizontal and/or |
| 3073 | the vertical direction depending on whether \a horizontal and \a |
| 3074 | vertical are set to true or false. |
| 3075 | |
| 3076 | Note that the original image is not changed. |
| 3077 | |
| 3078 | \sa mirror(), {QImage#Image Transformations}{Image Transformations} |
| 3079 | */ |
| 3080 | |
| 3081 | /*! |
| 3082 | \fn void QImage::mirror(bool horizontal = false, bool vertical = true) |
| 3083 | \since 6.0 |
| 3084 | |
| 3085 | Mirrors of the image in the horizontal and/or the vertical direction depending |
| 3086 | on whether \a horizontal and \a vertical are set to true or false. |
| 3087 | |
| 3088 | \sa mirrored(), {QImage#Image Transformations}{Image Transformations} |
| 3089 | */ |
| 3090 | |
| 3091 | template<class T> inline void do_mirror_data(QImageData *dst, QImageData *src, |
| 3092 | int dstX0, int dstY0, |
| 3093 | int dstXIncr, int dstYIncr, |
| 3094 | int w, int h) |
| 3095 | { |
| 3096 | if (dst == src) { |
| 3097 | // When mirroring in-place, stop in the middle for one of the directions, since we |
| 3098 | // are swapping the bytes instead of merely copying. |
| 3099 | const int srcXEnd = (dstX0 && !dstY0) ? w / 2 : w; |
| 3100 | const int srcYEnd = dstY0 ? h / 2 : h; |
| 3101 | for (int srcY = 0, dstY = dstY0; srcY < srcYEnd; ++srcY, dstY += dstYIncr) { |
| 3102 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
| 3103 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
| 3104 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd; ++srcX, dstX += dstXIncr) |
| 3105 | std::swap(srcPtr[srcX], dstPtr[dstX]); |
| 3106 | } |
| 3107 | // If mirroring both ways, the middle line needs to be mirrored horizontally only. |
| 3108 | if (dstX0 && dstY0 && (h & 1)) { |
| 3109 | int srcY = h / 2; |
| 3110 | int srcXEnd2 = w / 2; |
| 3111 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
| 3112 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd2; ++srcX, dstX += dstXIncr) |
| 3113 | std::swap(srcPtr[srcX], srcPtr[dstX]); |
| 3114 | } |
| 3115 | } else { |
| 3116 | for (int srcY = 0, dstY = dstY0; srcY < h; ++srcY, dstY += dstYIncr) { |
| 3117 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
| 3118 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
| 3119 | for (int srcX = 0, dstX = dstX0; srcX < w; ++srcX, dstX += dstXIncr) |
| 3120 | dstPtr[dstX] = srcPtr[srcX]; |
| 3121 | } |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | inline void do_flip(QImageData *dst, QImageData *src, int w, int h, int depth) |
| 3126 | { |
| 3127 | const int data_bytes_per_line = w * (depth / 8); |
| 3128 | if (dst == src) { |
| 3129 | uint *srcPtr = reinterpret_cast<uint *>(src->data); |
| 3130 | uint *dstPtr = reinterpret_cast<uint *>(dst->data + (h - 1) * dst->bytes_per_line); |
| 3131 | h = h / 2; |
| 3132 | const int uint_per_line = (data_bytes_per_line + 3) >> 2; // bytes per line must be a multiple of 4 |
| 3133 | for (int y = 0; y < h; ++y) { |
| 3134 | // This is auto-vectorized, no need for SSE2 or NEON versions: |
| 3135 | for (int x = 0; x < uint_per_line; x++) { |
| 3136 | const uint d = dstPtr[x]; |
| 3137 | const uint s = srcPtr[x]; |
| 3138 | dstPtr[x] = s; |
| 3139 | srcPtr[x] = d; |
| 3140 | } |
| 3141 | srcPtr += src->bytes_per_line >> 2; |
| 3142 | dstPtr -= dst->bytes_per_line >> 2; |
| 3143 | } |
| 3144 | |
| 3145 | } else { |
| 3146 | const uchar *srcPtr = src->data; |
| 3147 | uchar *dstPtr = dst->data + (h - 1) * dst->bytes_per_line; |
| 3148 | for (int y = 0; y < h; ++y) { |
| 3149 | memcpy(dstPtr, srcPtr, data_bytes_per_line); |
| 3150 | srcPtr += src->bytes_per_line; |
| 3151 | dstPtr -= dst->bytes_per_line; |
| 3152 | } |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | inline void do_mirror(QImageData *dst, QImageData *src, bool horizontal, bool vertical) |
| 3157 | { |
| 3158 | Q_ASSERT(src->width == dst->width && src->height == dst->height && src->depth == dst->depth); |
| 3159 | int w = src->width; |
| 3160 | int h = src->height; |
| 3161 | int depth = src->depth; |
| 3162 | |
| 3163 | if (src->depth == 1) { |
| 3164 | w = (w + 7) / 8; // byte aligned width |
| 3165 | depth = 8; |
| 3166 | } |
| 3167 | |
| 3168 | if (vertical && !horizontal) { |
| 3169 | // This one is simple and common, so do it a little more optimized |
| 3170 | do_flip(dst, src, w, h, depth); |
| 3171 | return; |
| 3172 | } |
| 3173 | |
| 3174 | int dstX0 = 0, dstXIncr = 1; |
| 3175 | int dstY0 = 0, dstYIncr = 1; |
| 3176 | if (horizontal) { |
| 3177 | // 0 -> w-1, 1 -> w-2, 2 -> w-3, ... |
| 3178 | dstX0 = w - 1; |
| 3179 | dstXIncr = -1; |
| 3180 | } |
| 3181 | if (vertical) { |
| 3182 | // 0 -> h-1, 1 -> h-2, 2 -> h-3, ... |
| 3183 | dstY0 = h - 1; |
| 3184 | dstYIncr = -1; |
| 3185 | } |
| 3186 | |
| 3187 | switch (depth) { |
| 3188 | case 64: |
| 3189 | do_mirror_data<quint64>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
| 3190 | break; |
| 3191 | case 32: |
| 3192 | do_mirror_data<quint32>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
| 3193 | break; |
| 3194 | case 24: |
| 3195 | do_mirror_data<quint24>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
| 3196 | break; |
| 3197 | case 16: |
| 3198 | do_mirror_data<quint16>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
| 3199 | break; |
| 3200 | case 8: |
| 3201 | do_mirror_data<quint8>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
| 3202 | break; |
| 3203 | default: |
| 3204 | Q_ASSERT(false); |
| 3205 | break; |
| 3206 | } |
| 3207 | |
| 3208 | // The bytes are now all in the correct place. In addition, the bits in the individual |
| 3209 | // bytes have to be flipped too when horizontally mirroring a 1 bit-per-pixel image. |
| 3210 | if (horizontal && dst->depth == 1) { |
| 3211 | Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); |
| 3212 | const int shift = 8 - (dst->width % 8); |
| 3213 | const uchar *bitflip = qt_get_bitflip_array(); |
| 3214 | for (int y = 0; y < h; ++y) { |
| 3215 | uchar *begin = dst->data + y * dst->bytes_per_line; |
| 3216 | uchar *end = begin + dst->bytes_per_line; |
| 3217 | for (uchar *p = begin; p < end; ++p) { |
| 3218 | *p = bitflip[*p]; |
| 3219 | // When the data is non-byte aligned, an extra bit shift (of the number of |
| 3220 | // unused bits at the end) is needed for the entire scanline. |
| 3221 | if (shift != 8 && p != begin) { |
| 3222 | if (dst->format == QImage::Format_Mono) { |
| 3223 | for (int i = 0; i < shift; ++i) { |
| 3224 | p[-1] <<= 1; |
| 3225 | p[-1] |= (*p & (128 >> i)) >> (7 - i); |
| 3226 | } |
| 3227 | } else { |
| 3228 | for (int i = 0; i < shift; ++i) { |
| 3229 | p[-1] >>= 1; |
| 3230 | p[-1] |= (*p & (1 << i)) << (7 - i); |
| 3231 | } |
| 3232 | } |
| 3233 | } |
| 3234 | } |
| 3235 | if (shift != 8) { |
| 3236 | if (dst->format == QImage::Format_Mono) |
| 3237 | end[-1] <<= shift; |
| 3238 | else |
| 3239 | end[-1] >>= shift; |
| 3240 | } |
| 3241 | } |
| 3242 | } |
| 3243 | } |
| 3244 | |
| 3245 | /*! |
| 3246 | \internal |
| 3247 | */ |
| 3248 | QImage QImage::mirrored_helper(bool horizontal, bool vertical) const |
| 3249 | { |
| 3250 | if (!d) |
| 3251 | return QImage(); |
| 3252 | |
| 3253 | if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
| 3254 | return *this; |
| 3255 | |
| 3256 | // Create result image, copy colormap |
| 3257 | QImage result(d->width, d->height, d->format); |
| 3258 | QIMAGE_SANITYCHECK_MEMORY(result); |
| 3259 | |
| 3260 | // check if we ran out of of memory.. |
| 3261 | if (!result.d) |
| 3262 | return QImage(); |
| 3263 | |
| 3264 | result.d->colortable = d->colortable; |
| 3265 | result.d->has_alpha_clut = d->has_alpha_clut; |
| 3266 | copyMetadata(result.d, d); |
| 3267 | |
| 3268 | do_mirror(result.d, d, horizontal, vertical); |
| 3269 | |
| 3270 | return result; |
| 3271 | } |
| 3272 | |
| 3273 | /*! |
| 3274 | \internal |
| 3275 | */ |
| 3276 | void QImage::mirrored_inplace(bool horizontal, bool vertical) |
| 3277 | { |
| 3278 | if (!d || (d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
| 3279 | return; |
| 3280 | |
| 3281 | detach(); |
| 3282 | if (!d) |
| 3283 | return; |
| 3284 | if (!d->own_data) |
| 3285 | *this = copy(); |
| 3286 | |
| 3287 | do_mirror(d, d, horizontal, vertical); |
| 3288 | } |
| 3289 | |
| 3290 | /*! |
| 3291 | \fn QImage QImage::rgbSwapped() const & |
| 3292 | \fn QImage QImage::rgbSwapped() && |
| 3293 | |
| 3294 | Returns a QImage in which the values of the red and blue |
| 3295 | components of all pixels have been swapped, effectively converting |
| 3296 | an RGB image to an BGR image. |
| 3297 | |
| 3298 | The original QImage is not changed. |
| 3299 | |
| 3300 | \sa rgbSwap(), {QImage#Image Transformations}{Image Transformations} |
| 3301 | */ |
| 3302 | |
| 3303 | /*! |
| 3304 | \fn void QImage::rgbSwap() |
| 3305 | \since 6.0 |
| 3306 | |
| 3307 | Swaps the values of the red and blue components of all pixels, effectively converting |
| 3308 | an RGB image to an BGR image. |
| 3309 | |
| 3310 | \sa rgbSwapped(), {QImage#Image Transformations}{Image Transformations} |
| 3311 | */ |
| 3312 | |
| 3313 | static inline void rgbSwapped_generic(int width, int height, const QImage *src, QImage *dst, const QPixelLayout* layout) |
| 3314 | { |
| 3315 | const RbSwapFunc func = layout->rbSwap; |
| 3316 | if (!func) { |
| 3317 | qWarning("Trying to rb-swap an image format where it doesn't make sense" ); |
| 3318 | if (src != dst) |
| 3319 | *dst = *src; |
| 3320 | return; |
| 3321 | } |
| 3322 | |
| 3323 | for (int i = 0; i < height; ++i) { |
| 3324 | uchar *q = dst->scanLine(i); |
| 3325 | const uchar *p = src->constScanLine(i); |
| 3326 | func(q, p, width); |
| 3327 | } |
| 3328 | } |
| 3329 | |
| 3330 | /*! |
| 3331 | \internal |
| 3332 | */ |
| 3333 | QImage QImage::rgbSwapped_helper() const |
| 3334 | { |
| 3335 | if (isNull()) |
| 3336 | return *this; |
| 3337 | |
| 3338 | Q_TRACE_SCOPE(QImage_rgbSwapped_helper); |
| 3339 | |
| 3340 | QImage res; |
| 3341 | |
| 3342 | switch (d->format) { |
| 3343 | case Format_Invalid: |
| 3344 | case NImageFormats: |
| 3345 | Q_ASSERT(false); |
| 3346 | break; |
| 3347 | case Format_Alpha8: |
| 3348 | case Format_Grayscale8: |
| 3349 | case Format_Grayscale16: |
| 3350 | return *this; |
| 3351 | case Format_Mono: |
| 3352 | case Format_MonoLSB: |
| 3353 | case Format_Indexed8: |
| 3354 | res = copy(); |
| 3355 | for (int i = 0; i < res.d->colortable.size(); i++) { |
| 3356 | QRgb c = res.d->colortable.at(i); |
| 3357 | res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
| 3358 | } |
| 3359 | break; |
| 3360 | case Format_RGBX8888: |
| 3361 | case Format_RGBA8888: |
| 3362 | case Format_RGBA8888_Premultiplied: |
| 3363 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
| 3364 | res = QImage(d->width, d->height, d->format); |
| 3365 | QIMAGE_SANITYCHECK_MEMORY(res); |
| 3366 | for (int i = 0; i < d->height; i++) { |
| 3367 | uint *q = (uint*)res.scanLine(i); |
| 3368 | const uint *p = (const uint*)constScanLine(i); |
| 3369 | const uint *end = p + d->width; |
| 3370 | while (p < end) { |
| 3371 | uint c = *p; |
| 3372 | *q = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
| 3373 | p++; |
| 3374 | q++; |
| 3375 | } |
| 3376 | } |
| 3377 | break; |
| 3378 | #else |
| 3379 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
| 3380 | Q_FALLTHROUGH(); |
| 3381 | #endif |
| 3382 | case Format_RGB32: |
| 3383 | case Format_ARGB32: |
| 3384 | case Format_ARGB32_Premultiplied: |
| 3385 | res = QImage(d->width, d->height, d->format); |
| 3386 | QIMAGE_SANITYCHECK_MEMORY(res); |
| 3387 | for (int i = 0; i < d->height; i++) { |
| 3388 | uint *q = (uint*)res.scanLine(i); |
| 3389 | const uint *p = (const uint*)constScanLine(i); |
| 3390 | const uint *end = p + d->width; |
| 3391 | while (p < end) { |
| 3392 | uint c = *p; |
| 3393 | *q = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
| 3394 | p++; |
| 3395 | q++; |
| 3396 | } |
| 3397 | } |
| 3398 | break; |
| 3399 | case Format_RGB16: |
| 3400 | res = QImage(d->width, d->height, d->format); |
| 3401 | QIMAGE_SANITYCHECK_MEMORY(res); |
| 3402 | for (int i = 0; i < d->height; i++) { |
| 3403 | ushort *q = (ushort*)res.scanLine(i); |
| 3404 | const ushort *p = (const ushort*)constScanLine(i); |
| 3405 | const ushort *end = p + d->width; |
| 3406 | while (p < end) { |
| 3407 | ushort c = *p; |
| 3408 | *q = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
| 3409 | p++; |
| 3410 | q++; |
| 3411 | } |
| 3412 | } |
| 3413 | break; |
| 3414 | case Format_RGBX64: |
| 3415 | case Format_RGBA64: |
| 3416 | case Format_RGBA64_Premultiplied: |
| 3417 | res = QImage(d->width, d->height, d->format); |
| 3418 | QIMAGE_SANITYCHECK_MEMORY(res); |
| 3419 | for (int i = 0; i < d->height; i++) { |
| 3420 | QRgba64 *q = reinterpret_cast<QRgba64 *>(res.scanLine(i)); |
| 3421 | const QRgba64 *p = reinterpret_cast<const QRgba64 *>(constScanLine(i)); |
| 3422 | const QRgba64 *end = p + d->width; |
| 3423 | while (p < end) { |
| 3424 | QRgba64 c = *p; |
| 3425 | *q = QRgba64::fromRgba64(c.blue(), c.green(), c.red(), c.alpha()); |
| 3426 | p++; |
| 3427 | q++; |
| 3428 | } |
| 3429 | } |
| 3430 | break; |
| 3431 | default: |
| 3432 | res = QImage(d->width, d->height, d->format); |
| 3433 | rgbSwapped_generic(d->width, d->height, this, &res, &qPixelLayouts[d->format]); |
| 3434 | break; |
| 3435 | } |
| 3436 | copyMetadata(res.d, d); |
| 3437 | return res; |
| 3438 | } |
| 3439 | |
| 3440 | /*! |
| 3441 | \internal |
| 3442 | */ |
| 3443 | void QImage::rgbSwapped_inplace() |
| 3444 | { |
| 3445 | if (isNull()) |
| 3446 | return; |
| 3447 | |
| 3448 | detach(); |
| 3449 | if (!d) |
| 3450 | return; |
| 3451 | if (!d->own_data) |
| 3452 | *this = copy(); |
| 3453 | |
| 3454 | switch (d->format) { |
| 3455 | case Format_Invalid: |
| 3456 | case NImageFormats: |
| 3457 | Q_ASSERT(false); |
| 3458 | break; |
| 3459 | case Format_Alpha8: |
| 3460 | case Format_Grayscale8: |
| 3461 | case Format_Grayscale16: |
| 3462 | return; |
| 3463 | case Format_Mono: |
| 3464 | case Format_MonoLSB: |
| 3465 | case Format_Indexed8: |
| 3466 | for (int i = 0; i < d->colortable.size(); i++) { |
| 3467 | QRgb c = d->colortable.at(i); |
| 3468 | d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
| 3469 | } |
| 3470 | break; |
| 3471 | case Format_RGBX8888: |
| 3472 | case Format_RGBA8888: |
| 3473 | case Format_RGBA8888_Premultiplied: |
| 3474 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
| 3475 | for (int i = 0; i < d->height; i++) { |
| 3476 | uint *p = (uint*)scanLine(i); |
| 3477 | uint *end = p + d->width; |
| 3478 | while (p < end) { |
| 3479 | uint c = *p; |
| 3480 | *p = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
| 3481 | p++; |
| 3482 | } |
| 3483 | } |
| 3484 | break; |
| 3485 | #else |
| 3486 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
| 3487 | Q_FALLTHROUGH(); |
| 3488 | #endif |
| 3489 | case Format_RGB32: |
| 3490 | case Format_ARGB32: |
| 3491 | case Format_ARGB32_Premultiplied: |
| 3492 | for (int i = 0; i < d->height; i++) { |
| 3493 | uint *p = (uint*)scanLine(i); |
| 3494 | uint *end = p + d->width; |
| 3495 | while (p < end) { |
| 3496 | uint c = *p; |
| 3497 | *p = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
| 3498 | p++; |
| 3499 | } |
| 3500 | } |
| 3501 | break; |
| 3502 | case Format_RGB16: |
| 3503 | for (int i = 0; i < d->height; i++) { |
| 3504 | ushort *p = (ushort*)scanLine(i); |
| 3505 | ushort *end = p + d->width; |
| 3506 | while (p < end) { |
| 3507 | ushort c = *p; |
| 3508 | *p = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
| 3509 | p++; |
| 3510 | } |
| 3511 | } |
| 3512 | break; |
| 3513 | case Format_BGR30: |
| 3514 | case Format_A2BGR30_Premultiplied: |
| 3515 | case Format_RGB30: |
| 3516 | case Format_A2RGB30_Premultiplied: |
| 3517 | for (int i = 0; i < d->height; i++) { |
| 3518 | uint *p = (uint*)scanLine(i); |
| 3519 | uint *end = p + d->width; |
| 3520 | while (p < end) { |
| 3521 | *p = qRgbSwapRgb30(*p); |
| 3522 | p++; |
| 3523 | } |
| 3524 | } |
| 3525 | break; |
| 3526 | case Format_RGBX64: |
| 3527 | case Format_RGBA64: |
| 3528 | case Format_RGBA64_Premultiplied: |
| 3529 | for (int i = 0; i < d->height; i++) { |
| 3530 | QRgba64 *p = reinterpret_cast<QRgba64 *>(scanLine(i)); |
| 3531 | QRgba64 *end = p + d->width; |
| 3532 | while (p < end) { |
| 3533 | QRgba64 c = *p; |
| 3534 | *p = QRgba64::fromRgba64(c.blue(), c.green(), c.red(), c.alpha()); |
| 3535 | p++; |
| 3536 | } |
| 3537 | } |
| 3538 | break; |
| 3539 | default: |
| 3540 | rgbSwapped_generic(d->width, d->height, this, this, &qPixelLayouts[d->format]); |
| 3541 | break; |
| 3542 | } |
| 3543 | } |
| 3544 | |
| 3545 | /*! |
| 3546 | Loads an image from the file with the given \a fileName. Returns \c true if |
| 3547 | the image was successfully loaded; otherwise invalidates the image |
| 3548 | and returns \c false. |
| 3549 | |
| 3550 | The loader attempts to read the image using the specified \a format, e.g., |
| 3551 | PNG or JPG. If \a format is not specified (which is the default), it is |
| 3552 | auto-detected based on the file's suffix and header. For details, see |
| 3553 | QImageReader::setAutoDetectImageFormat(). |
| 3554 | |
| 3555 | The file name can either refer to an actual file on disk or to one |
| 3556 | of the application's embedded resources. See the |
| 3557 | \l{resources.html}{Resource System} overview for details on how to |
| 3558 | embed images and other resource files in the application's |
| 3559 | executable. |
| 3560 | |
| 3561 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
| 3562 | */ |
| 3563 | |
| 3564 | bool QImage::load(const QString &fileName, const char* format) |
| 3565 | { |
| 3566 | *this = QImageReader(fileName, format).read(); |
| 3567 | return !isNull(); |
| 3568 | } |
| 3569 | |
| 3570 | /*! |
| 3571 | \overload |
| 3572 | |
| 3573 | This function reads a QImage from the given \a device. This can, |
| 3574 | for example, be used to load an image directly into a QByteArray. |
| 3575 | */ |
| 3576 | |
| 3577 | bool QImage::load(QIODevice* device, const char* format) |
| 3578 | { |
| 3579 | *this = QImageReader(device, format).read(); |
| 3580 | return !isNull(); |
| 3581 | } |
| 3582 | |
| 3583 | /*! |
| 3584 | \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) |
| 3585 | |
| 3586 | Loads an image from the first \a len bytes of the given binary \a |
| 3587 | data. Returns \c true if the image was successfully loaded; otherwise |
| 3588 | invalidates the image and returns \c false. |
| 3589 | |
| 3590 | The loader attempts to read the image using the specified \a format, e.g., |
| 3591 | PNG or JPG. If \a format is not specified (which is the default), the |
| 3592 | loader probes the file for a header to guess the file format. |
| 3593 | |
| 3594 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
| 3595 | */ |
| 3596 | |
| 3597 | bool QImage::loadFromData(const uchar *data, int len, const char *format) |
| 3598 | { |
| 3599 | *this = fromData(data, len, format); |
| 3600 | return !isNull(); |
| 3601 | } |
| 3602 | |
| 3603 | /*! |
| 3604 | \fn bool QImage::loadFromData(const QByteArray &data, const char *format) |
| 3605 | |
| 3606 | \overload |
| 3607 | |
| 3608 | Loads an image from the given QByteArray \a data. |
| 3609 | */ |
| 3610 | |
| 3611 | /*! |
| 3612 | \fn QImage QImage::fromData(const uchar *data, int size, const char *format) |
| 3613 | |
| 3614 | Constructs a QImage from the first \a size bytes of the given |
| 3615 | binary \a data. The loader attempts to read the image using the |
| 3616 | specified \a format. If \a format is not specified (which is the default), |
| 3617 | the loader probes the data for a header to guess the file format. |
| 3618 | |
| 3619 | If \a format is specified, it must be one of the values returned by |
| 3620 | QImageReader::supportedImageFormats(). |
| 3621 | |
| 3622 | If the loading of the image fails, the image returned will be a null image. |
| 3623 | |
| 3624 | \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
| 3625 | */ |
| 3626 | |
| 3627 | QImage QImage::fromData(const uchar *data, int size, const char *format) |
| 3628 | { |
| 3629 | QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size); |
| 3630 | QBuffer b; |
| 3631 | b.setData(a); |
| 3632 | b.open(QIODevice::ReadOnly); |
| 3633 | return QImageReader(&b, format).read(); |
| 3634 | } |
| 3635 | |
| 3636 | /*! |
| 3637 | \fn QImage QImage::fromData(const QByteArray &data, const char *format) |
| 3638 | |
| 3639 | \overload |
| 3640 | |
| 3641 | Loads an image from the given QByteArray \a data. |
| 3642 | */ |
| 3643 | |
| 3644 | /*! |
| 3645 | Saves the image to the file with the given \a fileName, using the |
| 3646 | given image file \a format and \a quality factor. If \a format is |
| 3647 | \nullptr, QImage will attempt to guess the format by looking at |
| 3648 | \a fileName's suffix. |
| 3649 | |
| 3650 | The \a quality factor must be in the range 0 to 100 or -1. Specify |
| 3651 | 0 to obtain small compressed files, 100 for large uncompressed |
| 3652 | files, and -1 (the default) to use the default settings. |
| 3653 | |
| 3654 | Returns \c true if the image was successfully saved; otherwise |
| 3655 | returns \c false. |
| 3656 | |
| 3657 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing |
| 3658 | Image Files} |
| 3659 | */ |
| 3660 | bool QImage::save(const QString &fileName, const char *format, int quality) const |
| 3661 | { |
| 3662 | if (isNull()) |
| 3663 | return false; |
| 3664 | QImageWriter writer(fileName, format); |
| 3665 | return d->doImageIO(this, &writer, quality); |
| 3666 | } |
| 3667 | |
| 3668 | /*! |
| 3669 | \overload |
| 3670 | |
| 3671 | This function writes a QImage to the given \a device. |
| 3672 | |
| 3673 | This can, for example, be used to save an image directly into a |
| 3674 | QByteArray: |
| 3675 | |
| 3676 | \snippet image/image.cpp 0 |
| 3677 | */ |
| 3678 | |
| 3679 | bool QImage::save(QIODevice* device, const char* format, int quality) const |
| 3680 | { |
| 3681 | if (isNull()) |
| 3682 | return false; // nothing to save |
| 3683 | QImageWriter writer(device, format); |
| 3684 | return d->doImageIO(this, &writer, quality); |
| 3685 | } |
| 3686 | |
| 3687 | /* \internal |
| 3688 | */ |
| 3689 | |
| 3690 | bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const |
| 3691 | { |
| 3692 | if (quality > 100 || quality < -1) |
| 3693 | qWarning("QPixmap::save: Quality out of range [-1, 100]" ); |
| 3694 | if (quality >= 0) |
| 3695 | writer->setQuality(qMin(quality,100)); |
| 3696 | return writer->write(*image); |
| 3697 | } |
| 3698 | |
| 3699 | /***************************************************************************** |
| 3700 | QImage stream functions |
| 3701 | *****************************************************************************/ |
| 3702 | #if !defined(QT_NO_DATASTREAM) |
| 3703 | /*! |
| 3704 | \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) |
| 3705 | \relates QImage |
| 3706 | |
| 3707 | Writes the given \a image to the given \a stream as a PNG image, |
| 3708 | or as a BMP image if the stream's version is 1. Note that writing |
| 3709 | the stream to a file will not produce a valid image file. |
| 3710 | |
| 3711 | \sa QImage::save(), {Serializing Qt Data Types} |
| 3712 | */ |
| 3713 | |
| 3714 | QDataStream &operator<<(QDataStream &s, const QImage &image) |
| 3715 | { |
| 3716 | if (s.version() >= 5) { |
| 3717 | if (image.isNull()) { |
| 3718 | s << (qint32) 0; // null image marker |
| 3719 | return s; |
| 3720 | } else { |
| 3721 | s << (qint32) 1; |
| 3722 | // continue ... |
| 3723 | } |
| 3724 | } |
| 3725 | QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png" ); |
| 3726 | writer.write(image); |
| 3727 | return s; |
| 3728 | } |
| 3729 | |
| 3730 | /*! |
| 3731 | \fn QDataStream &operator>>(QDataStream &stream, QImage &image) |
| 3732 | \relates QImage |
| 3733 | |
| 3734 | Reads an image from the given \a stream and stores it in the given |
| 3735 | \a image. |
| 3736 | |
| 3737 | \sa QImage::load(), {Serializing Qt Data Types} |
| 3738 | */ |
| 3739 | |
| 3740 | QDataStream &operator>>(QDataStream &s, QImage &image) |
| 3741 | { |
| 3742 | if (s.version() >= 5) { |
| 3743 | qint32 nullMarker; |
| 3744 | s >> nullMarker; |
| 3745 | if (!nullMarker) { |
| 3746 | image = QImage(); // null image |
| 3747 | return s; |
| 3748 | } |
| 3749 | } |
| 3750 | image = QImageReader(s.device(), s.version() == 1 ? "bmp" : "png" ).read(); |
| 3751 | if (image.isNull() && s.version() >= 5) |
| 3752 | s.setStatus(QDataStream::ReadPastEnd); |
| 3753 | return s; |
| 3754 | } |
| 3755 | #endif // QT_NO_DATASTREAM |
| 3756 | |
| 3757 | |
| 3758 | |
| 3759 | /*! |
| 3760 | \fn bool QImage::operator==(const QImage & image) const |
| 3761 | |
| 3762 | Returns \c true if this image and the given \a image have the same |
| 3763 | contents; otherwise returns \c false. |
| 3764 | |
| 3765 | The comparison can be slow, unless there is some obvious |
| 3766 | difference (e.g. different size or format), in which case the |
| 3767 | function will return quickly. |
| 3768 | |
| 3769 | \sa operator=() |
| 3770 | */ |
| 3771 | |
| 3772 | bool QImage::operator==(const QImage & i) const |
| 3773 | { |
| 3774 | // same object, or shared? |
| 3775 | if (i.d == d) |
| 3776 | return true; |
| 3777 | if (!i.d || !d) |
| 3778 | return false; |
| 3779 | |
| 3780 | // obviously different stuff? |
| 3781 | if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format) |
| 3782 | return false; |
| 3783 | |
| 3784 | if (d->format != Format_RGB32) { |
| 3785 | if (d->format >= Format_ARGB32) { // all bits defined |
| 3786 | const int n = d->width * d->depth / 8; |
| 3787 | if (n == d->bytes_per_line && n == i.d->bytes_per_line) { |
| 3788 | if (memcmp(bits(), i.bits(), d->nbytes)) |
| 3789 | return false; |
| 3790 | } else { |
| 3791 | for (int y = 0; y < d->height; ++y) { |
| 3792 | if (memcmp(scanLine(y), i.scanLine(y), n)) |
| 3793 | return false; |
| 3794 | } |
| 3795 | } |
| 3796 | } else { |
| 3797 | const int w = width(); |
| 3798 | const int h = height(); |
| 3799 | const QList<QRgb> &colortable = d->colortable; |
| 3800 | const QList<QRgb> &icolortable = i.d->colortable; |
| 3801 | for (int y=0; y<h; ++y) { |
| 3802 | for (int x=0; x<w; ++x) { |
| 3803 | if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)]) |
| 3804 | return false; |
| 3805 | } |
| 3806 | } |
| 3807 | } |
| 3808 | } else { |
| 3809 | //alpha channel undefined, so we must mask it out |
| 3810 | for(int l = 0; l < d->height; l++) { |
| 3811 | int w = d->width; |
| 3812 | const uint *p1 = reinterpret_cast<const uint*>(scanLine(l)); |
| 3813 | const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l)); |
| 3814 | while (w--) { |
| 3815 | if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) |
| 3816 | return false; |
| 3817 | } |
| 3818 | } |
| 3819 | } |
| 3820 | return true; |
| 3821 | } |
| 3822 | |
| 3823 | |
| 3824 | /*! |
| 3825 | \fn bool QImage::operator!=(const QImage & image) const |
| 3826 | |
| 3827 | Returns \c true if this image and the given \a image have different |
| 3828 | contents; otherwise returns \c false. |
| 3829 | |
| 3830 | The comparison can be slow, unless there is some obvious |
| 3831 | difference, such as different widths, in which case the function |
| 3832 | will return quickly. |
| 3833 | |
| 3834 | \sa operator=() |
| 3835 | */ |
| 3836 | |
| 3837 | bool QImage::operator!=(const QImage & i) const |
| 3838 | { |
| 3839 | return !(*this == i); |
| 3840 | } |
| 3841 | |
| 3842 | |
| 3843 | |
| 3844 | |
| 3845 | /*! |
| 3846 | Returns the number of pixels that fit horizontally in a physical |
| 3847 | meter. Together with dotsPerMeterY(), this number defines the |
| 3848 | intended scale and aspect ratio of the image. |
| 3849 | |
| 3850 | \sa setDotsPerMeterX(), {QImage#Image Information}{Image |
| 3851 | Information} |
| 3852 | */ |
| 3853 | int QImage::dotsPerMeterX() const |
| 3854 | { |
| 3855 | return d ? qRound(d->dpmx) : 0; |
| 3856 | } |
| 3857 | |
| 3858 | /*! |
| 3859 | Returns the number of pixels that fit vertically in a physical |
| 3860 | meter. Together with dotsPerMeterX(), this number defines the |
| 3861 | intended scale and aspect ratio of the image. |
| 3862 | |
| 3863 | \sa setDotsPerMeterY(), {QImage#Image Information}{Image |
| 3864 | Information} |
| 3865 | */ |
| 3866 | int QImage::dotsPerMeterY() const |
| 3867 | { |
| 3868 | return d ? qRound(d->dpmy) : 0; |
| 3869 | } |
| 3870 | |
| 3871 | /*! |
| 3872 | Sets the number of pixels that fit horizontally in a physical |
| 3873 | meter, to \a x. |
| 3874 | |
| 3875 | Together with dotsPerMeterY(), this number defines the intended |
| 3876 | scale and aspect ratio of the image, and determines the scale |
| 3877 | at which QPainter will draw graphics on the image. It does not |
| 3878 | change the scale or aspect ratio of the image when it is rendered |
| 3879 | on other paint devices. |
| 3880 | |
| 3881 | \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} |
| 3882 | */ |
| 3883 | void QImage::setDotsPerMeterX(int x) |
| 3884 | { |
| 3885 | if (!d || !x) |
| 3886 | return; |
| 3887 | detach(); |
| 3888 | |
| 3889 | if (d) |
| 3890 | d->dpmx = x; |
| 3891 | } |
| 3892 | |
| 3893 | /*! |
| 3894 | Sets the number of pixels that fit vertically in a physical meter, |
| 3895 | to \a y. |
| 3896 | |
| 3897 | Together with dotsPerMeterX(), this number defines the intended |
| 3898 | scale and aspect ratio of the image, and determines the scale |
| 3899 | at which QPainter will draw graphics on the image. It does not |
| 3900 | change the scale or aspect ratio of the image when it is rendered |
| 3901 | on other paint devices. |
| 3902 | |
| 3903 | \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} |
| 3904 | */ |
| 3905 | void QImage::setDotsPerMeterY(int y) |
| 3906 | { |
| 3907 | if (!d || !y) |
| 3908 | return; |
| 3909 | detach(); |
| 3910 | |
| 3911 | if (d) |
| 3912 | d->dpmy = y; |
| 3913 | } |
| 3914 | |
| 3915 | /*! |
| 3916 | \fn QPoint QImage::offset() const |
| 3917 | |
| 3918 | Returns the number of pixels by which the image is intended to be |
| 3919 | offset by when positioning relative to other images. |
| 3920 | |
| 3921 | \sa setOffset(), {QImage#Image Information}{Image Information} |
| 3922 | */ |
| 3923 | QPoint QImage::offset() const |
| 3924 | { |
| 3925 | return d ? d->offset : QPoint(); |
| 3926 | } |
| 3927 | |
| 3928 | |
| 3929 | /*! |
| 3930 | \fn void QImage::setOffset(const QPoint& offset) |
| 3931 | |
| 3932 | Sets the number of pixels by which the image is intended to be |
| 3933 | offset by when positioning relative to other images, to \a offset. |
| 3934 | |
| 3935 | \sa offset(), {QImage#Image Information}{Image Information} |
| 3936 | */ |
| 3937 | void QImage::setOffset(const QPoint& p) |
| 3938 | { |
| 3939 | if (!d) |
| 3940 | return; |
| 3941 | detach(); |
| 3942 | |
| 3943 | if (d) |
| 3944 | d->offset = p; |
| 3945 | } |
| 3946 | |
| 3947 | /*! |
| 3948 | Returns the text keys for this image. |
| 3949 | |
| 3950 | You can use these keys with text() to list the image text for a |
| 3951 | certain key. |
| 3952 | |
| 3953 | \sa text() |
| 3954 | */ |
| 3955 | QStringList QImage::textKeys() const |
| 3956 | { |
| 3957 | return d ? QStringList(d->text.keys()) : QStringList(); |
| 3958 | } |
| 3959 | |
| 3960 | /*! |
| 3961 | Returns the image text associated with the given \a key. If the |
| 3962 | specified \a key is an empty string, the whole image text is |
| 3963 | returned, with each key-text pair separated by a newline. |
| 3964 | |
| 3965 | \sa setText(), textKeys() |
| 3966 | */ |
| 3967 | QString QImage::text(const QString &key) const |
| 3968 | { |
| 3969 | if (!d) |
| 3970 | return QString(); |
| 3971 | |
| 3972 | if (!key.isEmpty()) |
| 3973 | return d->text.value(key); |
| 3974 | |
| 3975 | QString tmp; |
| 3976 | for (auto it = d->text.begin(), end = d->text.end(); it != end; ++it) |
| 3977 | tmp += it.key() + QLatin1String(": " ) + it.value().simplified() + QLatin1String("\n\n" ); |
| 3978 | if (!tmp.isEmpty()) |
| 3979 | tmp.chop(2); // remove final \n\n |
| 3980 | return tmp; |
| 3981 | } |
| 3982 | |
| 3983 | /*! |
| 3984 | \fn void QImage::setText(const QString &key, const QString &text) |
| 3985 | |
| 3986 | Sets the image text to the given \a text and associate it with the |
| 3987 | given \a key. |
| 3988 | |
| 3989 | If you just want to store a single text block (i.e., a "comment" |
| 3990 | or just a description), you can either pass an empty key, or use a |
| 3991 | generic key like "Description". |
| 3992 | |
| 3993 | The image text is embedded into the image data when you |
| 3994 | call save() or QImageWriter::write(). |
| 3995 | |
| 3996 | Not all image formats support embedded text. You can find out |
| 3997 | if a specific image or format supports embedding text |
| 3998 | by using QImageWriter::supportsOption(). We give an example: |
| 3999 | |
| 4000 | \snippet image/supportedformat.cpp 0 |
| 4001 | |
| 4002 | You can use QImageWriter::supportedImageFormats() to find out |
| 4003 | which image formats are available to you. |
| 4004 | |
| 4005 | \sa text(), textKeys() |
| 4006 | */ |
| 4007 | void QImage::setText(const QString &key, const QString &value) |
| 4008 | { |
| 4009 | if (!d) |
| 4010 | return; |
| 4011 | detach(); |
| 4012 | |
| 4013 | if (d) |
| 4014 | d->text.insert(key, value); |
| 4015 | } |
| 4016 | |
| 4017 | /*! |
| 4018 | \internal |
| 4019 | |
| 4020 | Used by QPainter to retrieve a paint engine for the image. |
| 4021 | */ |
| 4022 | QPaintEngine *QImage::paintEngine() const |
| 4023 | { |
| 4024 | if (!d) |
| 4025 | return nullptr; |
| 4026 | |
| 4027 | if (!d->paintEngine) { |
| 4028 | QPaintDevice *paintDevice = const_cast<QImage *>(this); |
| 4029 | QPlatformIntegration *platformIntegration = QGuiApplicationPrivate::platformIntegration(); |
| 4030 | if (platformIntegration) |
| 4031 | d->paintEngine = platformIntegration->createImagePaintEngine(paintDevice); |
| 4032 | if (!d->paintEngine) |
| 4033 | d->paintEngine = new QRasterPaintEngine(paintDevice); |
| 4034 | } |
| 4035 | |
| 4036 | return d->paintEngine; |
| 4037 | } |
| 4038 | |
| 4039 | |
| 4040 | /*! |
| 4041 | \internal |
| 4042 | |
| 4043 | Returns the size for the specified \a metric on the device. |
| 4044 | */ |
| 4045 | int QImage::metric(PaintDeviceMetric metric) const |
| 4046 | { |
| 4047 | if (!d) |
| 4048 | return 0; |
| 4049 | |
| 4050 | switch (metric) { |
| 4051 | case PdmWidth: |
| 4052 | return d->width; |
| 4053 | |
| 4054 | case PdmHeight: |
| 4055 | return d->height; |
| 4056 | |
| 4057 | case PdmWidthMM: |
| 4058 | return qRound(d->width * 1000 / d->dpmx); |
| 4059 | |
| 4060 | case PdmHeightMM: |
| 4061 | return qRound(d->height * 1000 / d->dpmy); |
| 4062 | |
| 4063 | case PdmNumColors: |
| 4064 | return d->colortable.size(); |
| 4065 | |
| 4066 | case PdmDepth: |
| 4067 | return d->depth; |
| 4068 | |
| 4069 | case PdmDpiX: |
| 4070 | return qRound(d->dpmx * 0.0254); |
| 4071 | break; |
| 4072 | |
| 4073 | case PdmDpiY: |
| 4074 | return qRound(d->dpmy * 0.0254); |
| 4075 | break; |
| 4076 | |
| 4077 | case PdmPhysicalDpiX: |
| 4078 | return qRound(d->dpmx * 0.0254); |
| 4079 | break; |
| 4080 | |
| 4081 | case PdmPhysicalDpiY: |
| 4082 | return qRound(d->dpmy * 0.0254); |
| 4083 | break; |
| 4084 | |
| 4085 | case PdmDevicePixelRatio: |
| 4086 | return d->devicePixelRatio; |
| 4087 | break; |
| 4088 | |
| 4089 | case PdmDevicePixelRatioScaled: |
| 4090 | return d->devicePixelRatio * QPaintDevice::devicePixelRatioFScale(); |
| 4091 | break; |
| 4092 | |
| 4093 | default: |
| 4094 | qWarning("QImage::metric(): Unhandled metric type %d" , metric); |
| 4095 | break; |
| 4096 | } |
| 4097 | return 0; |
| 4098 | } |
| 4099 | |
| 4100 | |
| 4101 | |
| 4102 | /***************************************************************************** |
| 4103 | QPixmap (and QImage) helper functions |
| 4104 | *****************************************************************************/ |
| 4105 | /* |
| 4106 | This internal function contains the common (i.e. platform independent) code |
| 4107 | to do a transformation of pixel data. It is used by QPixmap::transform() and by |
| 4108 | QImage::transform(). |
| 4109 | |
| 4110 | \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and |
| 4111 | \a xoffset is an offset to the matrix. |
| 4112 | |
| 4113 | \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a |
| 4114 | depth specifies the colordepth of the data. |
| 4115 | |
| 4116 | \a dptr is a pointer to the destination data, \a dbpl specifies the bits per |
| 4117 | line for the destination data, \a p_inc is the offset that we advance for |
| 4118 | every scanline and \a dHeight is the height of the destination image. |
| 4119 | |
| 4120 | \a sprt is the pointer to the source data, \a sbpl specifies the bits per |
| 4121 | line of the source data, \a sWidth and \a sHeight are the width and height of |
| 4122 | the source data. |
| 4123 | */ |
| 4124 | |
| 4125 | #undef IWX_MSB |
| 4126 | #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ |
| 4127 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
| 4128 | (1 << (7-((trigx>>12)&7)))) \ |
| 4129 | *dptr |= b; \ |
| 4130 | } \ |
| 4131 | trigx += m11; \ |
| 4132 | trigy += m12; |
| 4133 | // END OF MACRO |
| 4134 | #undef IWX_LSB |
| 4135 | #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ |
| 4136 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
| 4137 | (1 << ((trigx>>12)&7))) \ |
| 4138 | *dptr |= b; \ |
| 4139 | } \ |
| 4140 | trigx += m11; \ |
| 4141 | trigy += m12; |
| 4142 | // END OF MACRO |
| 4143 | #undef IWX_PIX |
| 4144 | #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ |
| 4145 | if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
| 4146 | (1 << (7-((trigx>>12)&7)))) == 0) \ |
| 4147 | *dptr &= ~b; \ |
| 4148 | } \ |
| 4149 | trigx += m11; \ |
| 4150 | trigy += m12; |
| 4151 | // END OF MACRO |
| 4152 | bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, |
| 4153 | uchar *dptr, qsizetype dbpl, int p_inc, int dHeight, |
| 4154 | const uchar *sptr, qsizetype sbpl, int sWidth, int sHeight) |
| 4155 | { |
| 4156 | int m11 = int(trueMat.m11()*4096.0); |
| 4157 | int m12 = int(trueMat.m12()*4096.0); |
| 4158 | int m21 = int(trueMat.m21()*4096.0); |
| 4159 | int m22 = int(trueMat.m22()*4096.0); |
| 4160 | int dx = qRound(trueMat.dx()*4096.0); |
| 4161 | int dy = qRound(trueMat.dy()*4096.0); |
| 4162 | |
| 4163 | int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; |
| 4164 | int m22ydy = dy + (m12 + m22) / 2; |
| 4165 | uint trigx; |
| 4166 | uint trigy; |
| 4167 | uint maxws = sWidth<<12; |
| 4168 | uint maxhs = sHeight<<12; |
| 4169 | |
| 4170 | for (int y=0; y<dHeight; y++) { // for each target scanline |
| 4171 | trigx = m21ydx; |
| 4172 | trigy = m22ydy; |
| 4173 | uchar *maxp = dptr + dbpl; |
| 4174 | if (depth != 1) { |
| 4175 | switch (depth) { |
| 4176 | case 8: // 8 bpp transform |
| 4177 | while (dptr < maxp) { |
| 4178 | if (trigx < maxws && trigy < maxhs) |
| 4179 | *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12)); |
| 4180 | trigx += m11; |
| 4181 | trigy += m12; |
| 4182 | dptr++; |
| 4183 | } |
| 4184 | break; |
| 4185 | |
| 4186 | case 16: // 16 bpp transform |
| 4187 | while (dptr < maxp) { |
| 4188 | if (trigx < maxws && trigy < maxhs) |
| 4189 | *((ushort*)dptr) = *((const ushort *)(sptr+sbpl*(trigy>>12) + |
| 4190 | ((trigx>>12)<<1))); |
| 4191 | trigx += m11; |
| 4192 | trigy += m12; |
| 4193 | dptr++; |
| 4194 | dptr++; |
| 4195 | } |
| 4196 | break; |
| 4197 | |
| 4198 | case 24: // 24 bpp transform |
| 4199 | while (dptr < maxp) { |
| 4200 | if (trigx < maxws && trigy < maxhs) { |
| 4201 | const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3); |
| 4202 | dptr[0] = p2[0]; |
| 4203 | dptr[1] = p2[1]; |
| 4204 | dptr[2] = p2[2]; |
| 4205 | } |
| 4206 | trigx += m11; |
| 4207 | trigy += m12; |
| 4208 | dptr += 3; |
| 4209 | } |
| 4210 | break; |
| 4211 | |
| 4212 | case 32: // 32 bpp transform |
| 4213 | while (dptr < maxp) { |
| 4214 | if (trigx < maxws && trigy < maxhs) |
| 4215 | *((uint*)dptr) = *((const uint *)(sptr+sbpl*(trigy>>12) + |
| 4216 | ((trigx>>12)<<2))); |
| 4217 | trigx += m11; |
| 4218 | trigy += m12; |
| 4219 | dptr += 4; |
| 4220 | } |
| 4221 | break; |
| 4222 | |
| 4223 | default: { |
| 4224 | return false; |
| 4225 | } |
| 4226 | } |
| 4227 | } else { |
| 4228 | switch (type) { |
| 4229 | case QT_XFORM_TYPE_MSBFIRST: |
| 4230 | while (dptr < maxp) { |
| 4231 | IWX_MSB(128); |
| 4232 | IWX_MSB(64); |
| 4233 | IWX_MSB(32); |
| 4234 | IWX_MSB(16); |
| 4235 | IWX_MSB(8); |
| 4236 | IWX_MSB(4); |
| 4237 | IWX_MSB(2); |
| 4238 | IWX_MSB(1); |
| 4239 | dptr++; |
| 4240 | } |
| 4241 | break; |
| 4242 | case QT_XFORM_TYPE_LSBFIRST: |
| 4243 | while (dptr < maxp) { |
| 4244 | IWX_LSB(1); |
| 4245 | IWX_LSB(2); |
| 4246 | IWX_LSB(4); |
| 4247 | IWX_LSB(8); |
| 4248 | IWX_LSB(16); |
| 4249 | IWX_LSB(32); |
| 4250 | IWX_LSB(64); |
| 4251 | IWX_LSB(128); |
| 4252 | dptr++; |
| 4253 | } |
| 4254 | break; |
| 4255 | } |
| 4256 | } |
| 4257 | m21ydx += m21; |
| 4258 | m22ydy += m22; |
| 4259 | dptr += p_inc; |
| 4260 | } |
| 4261 | return true; |
| 4262 | } |
| 4263 | #undef IWX_MSB |
| 4264 | #undef IWX_LSB |
| 4265 | #undef IWX_PIX |
| 4266 | |
| 4267 | /*! |
| 4268 | Returns a number that identifies the contents of this QImage |
| 4269 | object. Distinct QImage objects can only have the same key if they |
| 4270 | refer to the same contents. |
| 4271 | |
| 4272 | The key will change when the image is altered. |
| 4273 | */ |
| 4274 | qint64 QImage::cacheKey() const |
| 4275 | { |
| 4276 | if (!d) |
| 4277 | return 0; |
| 4278 | else |
| 4279 | return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no); |
| 4280 | } |
| 4281 | |
| 4282 | /*! |
| 4283 | \internal |
| 4284 | |
| 4285 | Returns \c true if the image is detached; otherwise returns \c false. |
| 4286 | |
| 4287 | \sa detach(), {Implicit Data Sharing} |
| 4288 | */ |
| 4289 | |
| 4290 | bool QImage::isDetached() const |
| 4291 | { |
| 4292 | return d && d->ref.loadRelaxed() == 1; |
| 4293 | } |
| 4294 | |
| 4295 | |
| 4296 | /*! |
| 4297 | Sets the alpha channel of this image to the given \a alphaChannel. |
| 4298 | |
| 4299 | If \a alphaChannel is an 8 bit alpha image, the alpha values are |
| 4300 | used directly. Otherwise, \a alphaChannel is converted to 8 bit |
| 4301 | grayscale and the intensity of the pixel values is used. |
| 4302 | |
| 4303 | If the image already has an alpha channel, the existing alpha channel |
| 4304 | is multiplied with the new one. If the image doesn't have an alpha |
| 4305 | channel it will be converted to a format that does. |
| 4306 | |
| 4307 | The operation is similar to painting \a alphaChannel as an alpha image |
| 4308 | over this image using \c QPainter::CompositionMode_DestinationIn. |
| 4309 | |
| 4310 | \sa hasAlphaChannel(), |
| 4311 | {QImage#Image Transformations}{Image Transformations}, |
| 4312 | {QImage#Image Formats}{Image Formats} |
| 4313 | */ |
| 4314 | |
| 4315 | void QImage::setAlphaChannel(const QImage &alphaChannel) |
| 4316 | { |
| 4317 | if (!d || alphaChannel.isNull()) |
| 4318 | return; |
| 4319 | |
| 4320 | if (d->paintEngine && d->paintEngine->isActive()) { |
| 4321 | qWarning("QImage::setAlphaChannel: " |
| 4322 | "Unable to set alpha channel while image is being painted on" ); |
| 4323 | return; |
| 4324 | } |
| 4325 | |
| 4326 | const Format alphaFormat = qt_alphaVersionForPainting(d->format); |
| 4327 | if (d->format == alphaFormat) |
| 4328 | detach(); |
| 4329 | else |
| 4330 | convertTo(alphaFormat); |
| 4331 | |
| 4332 | if (isNull()) |
| 4333 | return; |
| 4334 | |
| 4335 | QImage sourceImage; |
| 4336 | if (alphaChannel.format() == QImage::Format_Alpha8 || (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale())) |
| 4337 | sourceImage = alphaChannel; |
| 4338 | else |
| 4339 | sourceImage = alphaChannel.convertToFormat(QImage::Format_Grayscale8); |
| 4340 | if (!sourceImage.reinterpretAsFormat(QImage::Format_Alpha8)) |
| 4341 | return; |
| 4342 | |
| 4343 | QPainter painter(this); |
| 4344 | if (sourceImage.size() != size()) |
| 4345 | painter.setRenderHint(QPainter::SmoothPixmapTransform); |
| 4346 | painter.setCompositionMode(QPainter::CompositionMode_DestinationIn); |
| 4347 | painter.drawImage(rect(), sourceImage); |
| 4348 | } |
| 4349 | |
| 4350 | /*! |
| 4351 | Returns \c true if the image has a format that respects the alpha |
| 4352 | channel, otherwise returns \c false. |
| 4353 | |
| 4354 | \sa {QImage#Image Information}{Image Information} |
| 4355 | */ |
| 4356 | bool QImage::hasAlphaChannel() const |
| 4357 | { |
| 4358 | if (!d) |
| 4359 | return false; |
| 4360 | const QPixelFormat format = pixelFormat(); |
| 4361 | if (format.alphaUsage() == QPixelFormat::UsesAlpha) |
| 4362 | return true; |
| 4363 | if (format.colorModel() == QPixelFormat::Indexed) |
| 4364 | return d->has_alpha_clut; |
| 4365 | return false; |
| 4366 | } |
| 4367 | |
| 4368 | /*! |
| 4369 | \since 4.7 |
| 4370 | Returns the number of bit planes in the image. |
| 4371 | |
| 4372 | The number of bit planes is the number of bits of color and |
| 4373 | transparency information for each pixel. This is different from |
| 4374 | (i.e. smaller than) the depth when the image format contains |
| 4375 | unused bits. |
| 4376 | |
| 4377 | \sa depth(), format(), {QImage#Image Formats}{Image Formats} |
| 4378 | */ |
| 4379 | int QImage::bitPlaneCount() const |
| 4380 | { |
| 4381 | if (!d) |
| 4382 | return 0; |
| 4383 | int bpc = 0; |
| 4384 | switch (d->format) { |
| 4385 | case QImage::Format_Invalid: |
| 4386 | break; |
| 4387 | case QImage::Format_BGR30: |
| 4388 | case QImage::Format_RGB30: |
| 4389 | bpc = 30; |
| 4390 | break; |
| 4391 | case QImage::Format_RGB32: |
| 4392 | case QImage::Format_RGBX8888: |
| 4393 | bpc = 24; |
| 4394 | break; |
| 4395 | case QImage::Format_RGB666: |
| 4396 | bpc = 18; |
| 4397 | break; |
| 4398 | case QImage::Format_RGB555: |
| 4399 | bpc = 15; |
| 4400 | break; |
| 4401 | case QImage::Format_ARGB8555_Premultiplied: |
| 4402 | bpc = 23; |
| 4403 | break; |
| 4404 | case QImage::Format_RGB444: |
| 4405 | bpc = 12; |
| 4406 | break; |
| 4407 | case QImage::Format_RGBX64: |
| 4408 | bpc = 48; |
| 4409 | break; |
| 4410 | default: |
| 4411 | bpc = qt_depthForFormat(d->format); |
| 4412 | break; |
| 4413 | } |
| 4414 | return bpc; |
| 4415 | } |
| 4416 | |
| 4417 | /*! |
| 4418 | \internal |
| 4419 | Returns a smoothly scaled copy of the image. The returned image has a size |
| 4420 | of width \a w by height \a h pixels. |
| 4421 | |
| 4422 | The function operates internally on \c Format_RGB32, \c Format_ARGB32_Premultiplied, |
| 4423 | \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64, |
| 4424 | or \c Format_RGBA64_Premultiplied and will convert to those formats |
| 4425 | if necessary. To avoid unnecessary conversion the result is returned in the format |
| 4426 | internally used, and not in the original format. |
| 4427 | */ |
| 4428 | QImage QImage::smoothScaled(int w, int h) const { |
| 4429 | QImage src = *this; |
| 4430 | switch (src.format()) { |
| 4431 | case QImage::Format_RGB32: |
| 4432 | case QImage::Format_ARGB32_Premultiplied: |
| 4433 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 4434 | case QImage::Format_RGBX8888: |
| 4435 | #endif |
| 4436 | case QImage::Format_RGBA8888_Premultiplied: |
| 4437 | #if QT_CONFIG(raster_64bit) |
| 4438 | case QImage::Format_RGBX64: |
| 4439 | case QImage::Format_RGBA64_Premultiplied: |
| 4440 | break; |
| 4441 | case QImage::Format_RGBA64: |
| 4442 | src = src.convertToFormat(QImage::Format_RGBA64_Premultiplied); |
| 4443 | break; |
| 4444 | #endif |
| 4445 | default: |
| 4446 | if (src.hasAlphaChannel()) |
| 4447 | src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied); |
| 4448 | else |
| 4449 | src = src.convertToFormat(QImage::Format_RGB32); |
| 4450 | } |
| 4451 | src = qSmoothScaleImage(src, w, h); |
| 4452 | if (!src.isNull()) |
| 4453 | copyMetadata(src.d, d); |
| 4454 | return src; |
| 4455 | } |
| 4456 | |
| 4457 | static QImage rotated90(const QImage &image) |
| 4458 | { |
| 4459 | QImage out(image.height(), image.width(), image.format()); |
| 4460 | copyMetadata(&out, image); |
| 4461 | if (image.colorCount() > 0) |
| 4462 | out.setColorTable(image.colorTable()); |
| 4463 | int w = image.width(); |
| 4464 | int h = image.height(); |
| 4465 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][2]; |
| 4466 | if (memrotate) { |
| 4467 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
| 4468 | } else { |
| 4469 | for (int y=0; y<h; ++y) { |
| 4470 | if (image.colorCount()) |
| 4471 | for (int x=0; x<w; ++x) |
| 4472 | out.setPixel(h-y-1, x, image.pixelIndex(x, y)); |
| 4473 | else |
| 4474 | for (int x=0; x<w; ++x) |
| 4475 | out.setPixel(h-y-1, x, image.pixel(x, y)); |
| 4476 | } |
| 4477 | } |
| 4478 | return out; |
| 4479 | } |
| 4480 | |
| 4481 | static QImage rotated180(const QImage &image) |
| 4482 | { |
| 4483 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][1]; |
| 4484 | if (!memrotate) |
| 4485 | return image.mirrored(true, true); |
| 4486 | |
| 4487 | QImage out(image.width(), image.height(), image.format()); |
| 4488 | copyMetadata(&out, image); |
| 4489 | if (image.colorCount() > 0) |
| 4490 | out.setColorTable(image.colorTable()); |
| 4491 | int w = image.width(); |
| 4492 | int h = image.height(); |
| 4493 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
| 4494 | return out; |
| 4495 | } |
| 4496 | |
| 4497 | static QImage rotated270(const QImage &image) |
| 4498 | { |
| 4499 | QImage out(image.height(), image.width(), image.format()); |
| 4500 | copyMetadata(&out, image); |
| 4501 | if (image.colorCount() > 0) |
| 4502 | out.setColorTable(image.colorTable()); |
| 4503 | int w = image.width(); |
| 4504 | int h = image.height(); |
| 4505 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][0]; |
| 4506 | if (memrotate) { |
| 4507 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
| 4508 | } else { |
| 4509 | for (int y=0; y<h; ++y) { |
| 4510 | if (image.colorCount()) |
| 4511 | for (int x=0; x<w; ++x) |
| 4512 | out.setPixel(y, w-x-1, image.pixelIndex(x, y)); |
| 4513 | else |
| 4514 | for (int x=0; x<w; ++x) |
| 4515 | out.setPixel(y, w-x-1, image.pixel(x, y)); |
| 4516 | } |
| 4517 | } |
| 4518 | return out; |
| 4519 | } |
| 4520 | |
| 4521 | /*! |
| 4522 | Returns a copy of the image that is transformed using the given |
| 4523 | transformation \a matrix and transformation \a mode. |
| 4524 | |
| 4525 | The returned image will normally have the same {Image Formats}{format} as |
| 4526 | the original image. However, a complex transformation may result in an |
| 4527 | image where not all pixels are covered by the transformed pixels of the |
| 4528 | original image. In such cases, those background pixels will be assigned a |
| 4529 | transparent color value, and the transformed image will be given a format |
| 4530 | with an alpha channel, even if the orginal image did not have that. |
| 4531 | |
| 4532 | The transformation \a matrix is internally adjusted to compensate |
| 4533 | for unwanted translation; i.e. the image produced is the smallest |
| 4534 | image that contains all the transformed points of the original |
| 4535 | image. Use the trueMatrix() function to retrieve the actual matrix |
| 4536 | used for transforming an image. |
| 4537 | |
| 4538 | Unlike the other overload, this function can be used to perform perspective |
| 4539 | transformations on images. |
| 4540 | |
| 4541 | \sa trueMatrix(), {QImage#Image Transformations}{Image |
| 4542 | Transformations} |
| 4543 | */ |
| 4544 | |
| 4545 | QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const |
| 4546 | { |
| 4547 | if (!d) |
| 4548 | return QImage(); |
| 4549 | |
| 4550 | Q_TRACE_SCOPE(QImage_transformed, matrix, mode); |
| 4551 | |
| 4552 | // source image data |
| 4553 | const int ws = width(); |
| 4554 | const int hs = height(); |
| 4555 | |
| 4556 | // target image data |
| 4557 | int wd; |
| 4558 | int hd; |
| 4559 | |
| 4560 | // compute size of target image |
| 4561 | QTransform mat = trueMatrix(matrix, ws, hs); |
| 4562 | bool complex_xform = false; |
| 4563 | bool scale_xform = false; |
| 4564 | bool nonpaintable_scale_xform = false; |
| 4565 | if (mat.type() <= QTransform::TxScale) { |
| 4566 | if (mat.type() == QTransform::TxNone) // identity matrix |
| 4567 | return *this; |
| 4568 | else if (mat.m11() == -1. && mat.m22() == -1.) |
| 4569 | return rotated180(*this); |
| 4570 | |
| 4571 | if (mode == Qt::FastTransformation) { |
| 4572 | hd = qRound(qAbs(mat.m22()) * hs); |
| 4573 | wd = qRound(qAbs(mat.m11()) * ws); |
| 4574 | } else { |
| 4575 | hd = int(qAbs(mat.m22()) * hs + 0.9999); |
| 4576 | wd = int(qAbs(mat.m11()) * ws + 0.9999); |
| 4577 | } |
| 4578 | scale_xform = true; |
| 4579 | // The paint-based scaling is only bilinear, and has problems |
| 4580 | // with scaling smoothly more than 2x down. |
| 4581 | if (hd * 2 < hs || wd * 2 < ws) |
| 4582 | nonpaintable_scale_xform = true; |
| 4583 | } else { |
| 4584 | if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) { |
| 4585 | if (mat.m12() == 1. && mat.m21() == -1.) |
| 4586 | return rotated90(*this); |
| 4587 | else if (mat.m12() == -1. && mat.m21() == 1.) |
| 4588 | return rotated270(*this); |
| 4589 | } |
| 4590 | |
| 4591 | QPolygonF a(QRectF(0, 0, ws, hs)); |
| 4592 | a = mat.map(a); |
| 4593 | QRect r = a.boundingRect().toAlignedRect(); |
| 4594 | wd = r.width(); |
| 4595 | hd = r.height(); |
| 4596 | complex_xform = true; |
| 4597 | } |
| 4598 | |
| 4599 | if (wd == 0 || hd == 0) |
| 4600 | return QImage(); |
| 4601 | |
| 4602 | if (scale_xform && mode == Qt::SmoothTransformation) { |
| 4603 | switch (format()) { |
| 4604 | case QImage::Format_RGB32: |
| 4605 | case QImage::Format_ARGB32_Premultiplied: |
| 4606 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 4607 | case QImage::Format_RGBX8888: |
| 4608 | #endif |
| 4609 | case QImage::Format_RGBA8888_Premultiplied: |
| 4610 | #if QT_CONFIG(raster_64bit) |
| 4611 | case QImage::Format_RGBX64: |
| 4612 | case QImage::Format_RGBA64_Premultiplied: |
| 4613 | #endif |
| 4614 | // Use smoothScaled for scaling when we can do so without conversion. |
| 4615 | if (mat.m11() > 0.0F && mat.m22() > 0.0F) |
| 4616 | return smoothScaled(wd, hd); |
| 4617 | break; |
| 4618 | default: |
| 4619 | break; |
| 4620 | } |
| 4621 | // Otherwise only use it when the scaling factor demands it, or the image is large enough to scale multi-threaded |
| 4622 | if (nonpaintable_scale_xform |
| 4623 | #if QT_CONFIG(thread) && !defined(Q_OS_WASM) |
| 4624 | || (ws * hs) >= (1<<20) |
| 4625 | #endif |
| 4626 | ) { |
| 4627 | if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip |
| 4628 | return smoothScaled(wd, hd).mirrored(true, true).convertToFormat(format()); |
| 4629 | } else if (mat.m11() < 0.0F) { // horizontal flip |
| 4630 | return smoothScaled(wd, hd).mirrored(true, false).convertToFormat(format()); |
| 4631 | } else if (mat.m22() < 0.0F) { // vertical flip |
| 4632 | return smoothScaled(wd, hd).mirrored(false, true).convertToFormat(format()); |
| 4633 | } else { // no flipping |
| 4634 | return smoothScaled(wd, hd).convertToFormat(format()); |
| 4635 | } |
| 4636 | } |
| 4637 | } |
| 4638 | |
| 4639 | int bpp = depth(); |
| 4640 | |
| 4641 | qsizetype sbpl = bytesPerLine(); |
| 4642 | const uchar *sptr = bits(); |
| 4643 | |
| 4644 | QImage::Format target_format = d->format; |
| 4645 | |
| 4646 | if (complex_xform || mode == Qt::SmoothTransformation) { |
| 4647 | if (d->format < QImage::Format_RGB32 || (!hasAlphaChannel() && complex_xform)) { |
| 4648 | target_format = qt_alphaVersion(d->format); |
| 4649 | } |
| 4650 | } |
| 4651 | |
| 4652 | QImage dImage(wd, hd, target_format); |
| 4653 | QIMAGE_SANITYCHECK_MEMORY(dImage); |
| 4654 | |
| 4655 | if (target_format == QImage::Format_MonoLSB |
| 4656 | || target_format == QImage::Format_Mono |
| 4657 | || target_format == QImage::Format_Indexed8) { |
| 4658 | dImage.d->colortable = d->colortable; |
| 4659 | dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform; |
| 4660 | } |
| 4661 | |
| 4662 | // initizialize the data |
| 4663 | if (target_format == QImage::Format_Indexed8) { |
| 4664 | if (dImage.d->colortable.size() < 256) { |
| 4665 | // colors are left in the color table, so pick that one as transparent |
| 4666 | dImage.d->colortable.append(0x0); |
| 4667 | memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.d->nbytes); |
| 4668 | } else { |
| 4669 | memset(dImage.bits(), 0, dImage.d->nbytes); |
| 4670 | } |
| 4671 | } else |
| 4672 | memset(dImage.bits(), 0x00, dImage.d->nbytes); |
| 4673 | |
| 4674 | if (target_format >= QImage::Format_RGB32) { |
| 4675 | // Prevent QPainter from applying devicePixelRatio corrections |
| 4676 | const QImage sImage = (devicePixelRatio() != 1) ? QImage(constBits(), width(), height(), format()) : *this; |
| 4677 | |
| 4678 | Q_ASSERT(sImage.devicePixelRatio() == 1); |
| 4679 | Q_ASSERT(sImage.devicePixelRatio() == dImage.devicePixelRatio()); |
| 4680 | |
| 4681 | QPainter p(&dImage); |
| 4682 | if (mode == Qt::SmoothTransformation) { |
| 4683 | p.setRenderHint(QPainter::Antialiasing); |
| 4684 | p.setRenderHint(QPainter::SmoothPixmapTransform); |
| 4685 | } |
| 4686 | p.setTransform(mat); |
| 4687 | p.drawImage(QPoint(0, 0), sImage); |
| 4688 | } else { |
| 4689 | bool invertible; |
| 4690 | mat = mat.inverted(&invertible); // invert matrix |
| 4691 | if (!invertible) // error, return null image |
| 4692 | return QImage(); |
| 4693 | |
| 4694 | // create target image (some of the code is from QImage::copy()) |
| 4695 | int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST; |
| 4696 | qsizetype dbpl = dImage.bytesPerLine(); |
| 4697 | qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs); |
| 4698 | } |
| 4699 | copyMetadata(dImage.d, d); |
| 4700 | |
| 4701 | return dImage; |
| 4702 | } |
| 4703 | |
| 4704 | /*! |
| 4705 | \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height) |
| 4706 | |
| 4707 | Returns the actual matrix used for transforming an image with the |
| 4708 | given \a width, \a height and \a matrix. |
| 4709 | |
| 4710 | When transforming an image using the transformed() function, the |
| 4711 | transformation matrix is internally adjusted to compensate for |
| 4712 | unwanted translation, i.e. transformed() returns the smallest |
| 4713 | image containing all transformed points of the original image. |
| 4714 | This function returns the modified matrix, which maps points |
| 4715 | correctly from the original image into the new image. |
| 4716 | |
| 4717 | Unlike the other overload, this function creates transformation |
| 4718 | matrices that can be used to perform perspective |
| 4719 | transformations on images. |
| 4720 | |
| 4721 | \sa transformed(), {QImage#Image Transformations}{Image |
| 4722 | Transformations} |
| 4723 | */ |
| 4724 | |
| 4725 | QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h) |
| 4726 | { |
| 4727 | const QRectF rect(0, 0, w, h); |
| 4728 | const QRect mapped = matrix.mapRect(rect).toAlignedRect(); |
| 4729 | const QPoint delta = mapped.topLeft(); |
| 4730 | return matrix * QTransform().translate(-delta.x(), -delta.y()); |
| 4731 | } |
| 4732 | |
| 4733 | /*! |
| 4734 | \since 5.14 |
| 4735 | |
| 4736 | Sets the image color space to \a colorSpace without performing any conversions on image data. |
| 4737 | |
| 4738 | \sa colorSpace() |
| 4739 | */ |
| 4740 | void QImage::setColorSpace(const QColorSpace &colorSpace) |
| 4741 | { |
| 4742 | if (!d) |
| 4743 | return; |
| 4744 | if (d->colorSpace == colorSpace) |
| 4745 | return; |
| 4746 | if (!isDetached()) // Detach only if shared, not for read-only data. |
| 4747 | detach(); |
| 4748 | d->colorSpace = colorSpace; |
| 4749 | } |
| 4750 | |
| 4751 | /*! |
| 4752 | \since 5.14 |
| 4753 | |
| 4754 | Converts the image to \a colorSpace. |
| 4755 | |
| 4756 | If the image has no valid color space, the method does nothing. |
| 4757 | |
| 4758 | \sa convertedToColorSpace(), setColorSpace() |
| 4759 | */ |
| 4760 | void QImage::convertToColorSpace(const QColorSpace &colorSpace) |
| 4761 | { |
| 4762 | if (!d) |
| 4763 | return; |
| 4764 | if (!d->colorSpace.isValid()) |
| 4765 | return; |
| 4766 | if (!colorSpace.isValid()) { |
| 4767 | qWarning() << "QImage::convertToColorSpace: Output colorspace is not valid" ; |
| 4768 | return; |
| 4769 | } |
| 4770 | detach(); |
| 4771 | applyColorTransform(d->colorSpace.transformationToColorSpace(colorSpace)); |
| 4772 | d->colorSpace = colorSpace; |
| 4773 | } |
| 4774 | |
| 4775 | /*! |
| 4776 | \since 5.14 |
| 4777 | |
| 4778 | Returns the image converted to \a colorSpace. |
| 4779 | |
| 4780 | If the image has no valid color space, a null QImage is returned. |
| 4781 | |
| 4782 | \sa convertToColorSpace() |
| 4783 | */ |
| 4784 | QImage QImage::convertedToColorSpace(const QColorSpace &colorSpace) const |
| 4785 | { |
| 4786 | if (!d || !d->colorSpace.isValid() || !colorSpace.isValid()) |
| 4787 | return QImage(); |
| 4788 | QImage image = copy(); |
| 4789 | image.convertToColorSpace(colorSpace); |
| 4790 | return image; |
| 4791 | } |
| 4792 | |
| 4793 | /*! |
| 4794 | \since 5.14 |
| 4795 | |
| 4796 | Returns the color space of the image if a color space is defined. |
| 4797 | */ |
| 4798 | QColorSpace QImage::colorSpace() const |
| 4799 | { |
| 4800 | if (!d) |
| 4801 | return QColorSpace(); |
| 4802 | return d->colorSpace; |
| 4803 | } |
| 4804 | |
| 4805 | /*! |
| 4806 | \since 5.14 |
| 4807 | |
| 4808 | Applies the color transformation \a transform to all pixels in the image. |
| 4809 | */ |
| 4810 | void QImage::applyColorTransform(const QColorTransform &transform) |
| 4811 | { |
| 4812 | QImage::Format oldFormat = format(); |
| 4813 | if (depth() > 32) { |
| 4814 | if (format() != QImage::Format_RGBX64 && format() != QImage::Format_RGBA64 |
| 4815 | && format() != QImage::Format_RGBA64_Premultiplied) |
| 4816 | *this = std::move(*this).convertToFormat(QImage::Format_RGBA64); |
| 4817 | } else if (format() != QImage::Format_ARGB32 && format() != QImage::Format_RGB32 |
| 4818 | && format() != QImage::Format_ARGB32_Premultiplied) { |
| 4819 | if (hasAlphaChannel()) |
| 4820 | *this = std::move(*this).convertToFormat(QImage::Format_ARGB32); |
| 4821 | else |
| 4822 | *this = std::move(*this).convertToFormat(QImage::Format_RGB32); |
| 4823 | } |
| 4824 | |
| 4825 | QColorTransformPrivate::TransformFlags flags = QColorTransformPrivate::Unpremultiplied; |
| 4826 | switch (format()) { |
| 4827 | case Format_ARGB32_Premultiplied: |
| 4828 | case Format_RGBA64_Premultiplied: |
| 4829 | flags = QColorTransformPrivate::Premultiplied; |
| 4830 | break; |
| 4831 | case Format_RGB32: |
| 4832 | case Format_RGBX64: |
| 4833 | flags = QColorTransformPrivate::InputOpaque; |
| 4834 | break; |
| 4835 | case Format_ARGB32: |
| 4836 | case Format_RGBA64: |
| 4837 | break; |
| 4838 | default: |
| 4839 | Q_UNREACHABLE(); |
| 4840 | } |
| 4841 | |
| 4842 | std::function<void(int,int)> transformSegment; |
| 4843 | |
| 4844 | if (depth() > 32) { |
| 4845 | transformSegment = [&](int yStart, int yEnd) { |
| 4846 | for (int y = yStart; y < yEnd; ++y) { |
| 4847 | QRgba64 *scanline = reinterpret_cast<QRgba64 *>(scanLine(y)); |
| 4848 | transform.d->apply(scanline, scanline, width(), flags); |
| 4849 | } |
| 4850 | }; |
| 4851 | } else { |
| 4852 | transformSegment = [&](int yStart, int yEnd) { |
| 4853 | for (int y = yStart; y < yEnd; ++y) { |
| 4854 | QRgb *scanline = reinterpret_cast<QRgb *>(scanLine(y)); |
| 4855 | transform.d->apply(scanline, scanline, width(), flags); |
| 4856 | } |
| 4857 | }; |
| 4858 | } |
| 4859 | |
| 4860 | #if QT_CONFIG(thread) && !defined(Q_OS_WASM) |
| 4861 | int segments = sizeInBytes() / (1<<16); |
| 4862 | segments = std::min(segments, height()); |
| 4863 | QThreadPool *threadPool = QThreadPool::globalInstance(); |
| 4864 | if (segments > 1 && !threadPool->contains(QThread::currentThread())) { |
| 4865 | QSemaphore semaphore; |
| 4866 | int y = 0; |
| 4867 | for (int i = 0; i < segments; ++i) { |
| 4868 | int yn = (height() - y) / (segments - i); |
| 4869 | threadPool->start([&, y, yn]() { |
| 4870 | transformSegment(y, y + yn); |
| 4871 | semaphore.release(1); |
| 4872 | }); |
| 4873 | y += yn; |
| 4874 | } |
| 4875 | semaphore.acquire(segments); |
| 4876 | } else |
| 4877 | #endif |
| 4878 | transformSegment(0, height()); |
| 4879 | |
| 4880 | if (oldFormat != format()) |
| 4881 | *this = std::move(*this).convertToFormat(oldFormat); |
| 4882 | } |
| 4883 | |
| 4884 | |
| 4885 | bool QImageData::convertInPlace(QImage::Format newFormat, Qt::ImageConversionFlags flags) |
| 4886 | { |
| 4887 | if (format == newFormat) |
| 4888 | return true; |
| 4889 | |
| 4890 | // No in-place conversion if we have to detach |
| 4891 | if (ref.loadRelaxed() > 1 || !own_data) |
| 4892 | return false; |
| 4893 | |
| 4894 | InPlace_Image_Converter converter = qimage_inplace_converter_map[format][newFormat]; |
| 4895 | if (converter) |
| 4896 | return converter(this, flags); |
| 4897 | if (format > QImage::Format_Indexed8 && newFormat > QImage::Format_Indexed8 && !qimage_converter_map[format][newFormat]) { |
| 4898 | // Convert inplace generic, but only if there are no direct converters, |
| 4899 | // any direct ones are probably better even if not inplace. |
| 4900 | if (qt_highColorPrecision(newFormat, !qPixelLayouts[newFormat].hasAlphaChannel) |
| 4901 | && qt_highColorPrecision(format, !qPixelLayouts[format].hasAlphaChannel)) { |
| 4902 | return convert_generic_inplace_over_rgb64(this, newFormat, flags); |
| 4903 | } |
| 4904 | return convert_generic_inplace(this, newFormat, flags); |
| 4905 | } |
| 4906 | return false; |
| 4907 | } |
| 4908 | |
| 4909 | /*! |
| 4910 | \typedef QImage::DataPtr |
| 4911 | \internal |
| 4912 | */ |
| 4913 | |
| 4914 | /*! |
| 4915 | \fn DataPtr & QImage::data_ptr() |
| 4916 | \internal |
| 4917 | */ |
| 4918 | |
| 4919 | #ifndef QT_NO_DEBUG_STREAM |
| 4920 | QDebug operator<<(QDebug dbg, const QImage &i) |
| 4921 | { |
| 4922 | QDebugStateSaver saver(dbg); |
| 4923 | dbg.nospace(); |
| 4924 | dbg.noquote(); |
| 4925 | dbg << "QImage(" ; |
| 4926 | if (i.isNull()) { |
| 4927 | dbg << "null" ; |
| 4928 | } else { |
| 4929 | dbg << i.size() << ",format=" << i.format() << ",depth=" << i.depth(); |
| 4930 | if (i.colorCount()) |
| 4931 | dbg << ",colorCount=" << i.colorCount(); |
| 4932 | const int bytesPerLine = i.bytesPerLine(); |
| 4933 | dbg << ",devicePixelRatio=" << i.devicePixelRatio() |
| 4934 | << ",bytesPerLine=" << bytesPerLine << ",sizeInBytes=" << i.sizeInBytes(); |
| 4935 | if (dbg.verbosity() > 2 && i.height() > 0) { |
| 4936 | const int outputLength = qMin(bytesPerLine, 24); |
| 4937 | dbg << ",line0=" |
| 4938 | << QByteArray(reinterpret_cast<const char *>(i.scanLine(0)), outputLength).toHex() |
| 4939 | << "..." ; |
| 4940 | } |
| 4941 | } |
| 4942 | dbg << ')'; |
| 4943 | return dbg; |
| 4944 | } |
| 4945 | #endif |
| 4946 | |
| 4947 | static constexpr QPixelFormat pixelformats[] = { |
| 4948 | //QImage::Format_Invalid: |
| 4949 | QPixelFormat(), |
| 4950 | //QImage::Format_Mono: |
| 4951 | QPixelFormat(QPixelFormat::Indexed, |
| 4952 | /*RED*/ 1, |
| 4953 | /*GREEN*/ 0, |
| 4954 | /*BLUE*/ 0, |
| 4955 | /*FOURTH*/ 0, |
| 4956 | /*FIFTH*/ 0, |
| 4957 | /*ALPHA*/ 0, |
| 4958 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 4959 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 4960 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 4961 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 4962 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 4963 | //QImage::Format_MonoLSB: |
| 4964 | QPixelFormat(QPixelFormat::Indexed, |
| 4965 | /*RED*/ 1, |
| 4966 | /*GREEN*/ 0, |
| 4967 | /*BLUE*/ 0, |
| 4968 | /*FOURTH*/ 0, |
| 4969 | /*FIFTH*/ 0, |
| 4970 | /*ALPHA*/ 0, |
| 4971 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 4972 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 4973 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 4974 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 4975 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 4976 | //QImage::Format_Indexed8: |
| 4977 | QPixelFormat(QPixelFormat::Indexed, |
| 4978 | /*RED*/ 8, |
| 4979 | /*GREEN*/ 0, |
| 4980 | /*BLUE*/ 0, |
| 4981 | /*FOURTH*/ 0, |
| 4982 | /*FIFTH*/ 0, |
| 4983 | /*ALPHA*/ 0, |
| 4984 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 4985 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 4986 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 4987 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 4988 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 4989 | //QImage::Format_RGB32: |
| 4990 | QPixelFormat(QPixelFormat::RGB, |
| 4991 | /*RED*/ 8, |
| 4992 | /*GREEN*/ 8, |
| 4993 | /*BLUE*/ 8, |
| 4994 | /*FOURTH*/ 0, |
| 4995 | /*FIFTH*/ 0, |
| 4996 | /*ALPHA*/ 8, |
| 4997 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 4998 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 4999 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5000 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5001 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5002 | //QImage::Format_ARGB32: |
| 5003 | QPixelFormat(QPixelFormat::RGB, |
| 5004 | /*RED*/ 8, |
| 5005 | /*GREEN*/ 8, |
| 5006 | /*BLUE*/ 8, |
| 5007 | /*FOURTH*/ 0, |
| 5008 | /*FIFTH*/ 0, |
| 5009 | /*ALPHA*/ 8, |
| 5010 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5011 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5012 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5013 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5014 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5015 | //QImage::Format_ARGB32_Premultiplied: |
| 5016 | QPixelFormat(QPixelFormat::RGB, |
| 5017 | /*RED*/ 8, |
| 5018 | /*GREEN*/ 8, |
| 5019 | /*BLUE*/ 8, |
| 5020 | /*FOURTH*/ 0, |
| 5021 | /*FIFTH*/ 0, |
| 5022 | /*ALPHA*/ 8, |
| 5023 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5024 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5025 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5026 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5027 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5028 | //QImage::Format_RGB16: |
| 5029 | QPixelFormat(QPixelFormat::RGB, |
| 5030 | /*RED*/ 5, |
| 5031 | /*GREEN*/ 6, |
| 5032 | /*BLUE*/ 5, |
| 5033 | /*FOURTH*/ 0, |
| 5034 | /*FIFTH*/ 0, |
| 5035 | /*ALPHA*/ 0, |
| 5036 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5037 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5038 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5039 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5040 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5041 | //QImage::Format_ARGB8565_Premultiplied: |
| 5042 | QPixelFormat(QPixelFormat::RGB, |
| 5043 | /*RED*/ 5, |
| 5044 | /*GREEN*/ 6, |
| 5045 | /*BLUE*/ 5, |
| 5046 | /*FOURTH*/ 0, |
| 5047 | /*FIFTH*/ 0, |
| 5048 | /*ALPHA*/ 8, |
| 5049 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5050 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5051 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5052 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5053 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5054 | //QImage::Format_RGB666: |
| 5055 | QPixelFormat(QPixelFormat::RGB, |
| 5056 | /*RED*/ 6, |
| 5057 | /*GREEN*/ 6, |
| 5058 | /*BLUE*/ 6, |
| 5059 | /*FOURTH*/ 0, |
| 5060 | /*FIFTH*/ 0, |
| 5061 | /*ALPHA*/ 0, |
| 5062 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5063 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5064 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5065 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5066 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5067 | //QImage::Format_ARGB6666_Premultiplied: |
| 5068 | QPixelFormat(QPixelFormat::RGB, |
| 5069 | /*RED*/ 6, |
| 5070 | /*GREEN*/ 6, |
| 5071 | /*BLUE*/ 6, |
| 5072 | /*FOURTH*/ 0, |
| 5073 | /*FIFTH*/ 0, |
| 5074 | /*ALPHA*/ 6, |
| 5075 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5076 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5077 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5078 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5079 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5080 | //QImage::Format_RGB555: |
| 5081 | QPixelFormat(QPixelFormat::RGB, |
| 5082 | /*RED*/ 5, |
| 5083 | /*GREEN*/ 5, |
| 5084 | /*BLUE*/ 5, |
| 5085 | /*FOURTH*/ 0, |
| 5086 | /*FIFTH*/ 0, |
| 5087 | /*ALPHA*/ 0, |
| 5088 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5089 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5090 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5091 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5092 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5093 | //QImage::Format_ARGB8555_Premultiplied: |
| 5094 | QPixelFormat(QPixelFormat::RGB, |
| 5095 | /*RED*/ 5, |
| 5096 | /*GREEN*/ 5, |
| 5097 | /*BLUE*/ 5, |
| 5098 | /*FOURTH*/ 0, |
| 5099 | /*FIFTH*/ 0, |
| 5100 | /*ALPHA*/ 8, |
| 5101 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5102 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5103 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5104 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5105 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5106 | //QImage::Format_RGB888: |
| 5107 | QPixelFormat(QPixelFormat::RGB, |
| 5108 | /*RED*/ 8, |
| 5109 | /*GREEN*/ 8, |
| 5110 | /*BLUE*/ 8, |
| 5111 | /*FOURTH*/ 0, |
| 5112 | /*FIFTH*/ 0, |
| 5113 | /*ALPHA*/ 0, |
| 5114 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5115 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5116 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5117 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5118 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5119 | //QImage::Format_RGB444: |
| 5120 | QPixelFormat(QPixelFormat::RGB, |
| 5121 | /*RED*/ 4, |
| 5122 | /*GREEN*/ 4, |
| 5123 | /*BLUE*/ 4, |
| 5124 | /*FOURTH*/ 0, |
| 5125 | /*FIFTH*/ 0, |
| 5126 | /*ALPHA*/ 0, |
| 5127 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5128 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5129 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5130 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5131 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5132 | //QImage::Format_ARGB4444_Premultiplied: |
| 5133 | QPixelFormat(QPixelFormat::RGB, |
| 5134 | /*RED*/ 4, |
| 5135 | /*GREEN*/ 4, |
| 5136 | /*BLUE*/ 4, |
| 5137 | /*FOURTH*/ 0, |
| 5138 | /*FIFTH*/ 0, |
| 5139 | /*ALPHA*/ 4, |
| 5140 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5141 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5142 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5143 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5144 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5145 | //QImage::Format_RGBX8888: |
| 5146 | QPixelFormat(QPixelFormat::RGB, |
| 5147 | /*RED*/ 8, |
| 5148 | /*GREEN*/ 8, |
| 5149 | /*BLUE*/ 8, |
| 5150 | /*FOURTH*/ 0, |
| 5151 | /*FIFTH*/ 0, |
| 5152 | /*ALPHA*/ 8, |
| 5153 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5154 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5155 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5156 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5157 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5158 | //QImage::Format_RGBA8888: |
| 5159 | QPixelFormat(QPixelFormat::RGB, |
| 5160 | /*RED*/ 8, |
| 5161 | /*GREEN*/ 8, |
| 5162 | /*BLUE*/ 8, |
| 5163 | /*FOURTH*/ 0, |
| 5164 | /*FIFTH*/ 0, |
| 5165 | /*ALPHA*/ 8, |
| 5166 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5167 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5168 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5169 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5170 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5171 | //QImage::Format_RGBA8888_Premultiplied: |
| 5172 | QPixelFormat(QPixelFormat::RGB, |
| 5173 | /*RED*/ 8, |
| 5174 | /*GREEN*/ 8, |
| 5175 | /*BLUE*/ 8, |
| 5176 | /*FOURTH*/ 0, |
| 5177 | /*FIFTH*/ 0, |
| 5178 | /*ALPHA*/ 8, |
| 5179 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5180 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5181 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5182 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5183 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5184 | //QImage::Format_BGR30: |
| 5185 | QPixelFormat(QPixelFormat::BGR, |
| 5186 | /*RED*/ 10, |
| 5187 | /*GREEN*/ 10, |
| 5188 | /*BLUE*/ 10, |
| 5189 | /*FOURTH*/ 0, |
| 5190 | /*FIFTH*/ 0, |
| 5191 | /*ALPHA*/ 2, |
| 5192 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5193 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5194 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5195 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5196 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5197 | //QImage::Format_A2BGR30_Premultiplied: |
| 5198 | QPixelFormat(QPixelFormat::BGR, |
| 5199 | /*RED*/ 10, |
| 5200 | /*GREEN*/ 10, |
| 5201 | /*BLUE*/ 10, |
| 5202 | /*FOURTH*/ 0, |
| 5203 | /*FIFTH*/ 0, |
| 5204 | /*ALPHA*/ 2, |
| 5205 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5206 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5207 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5208 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5209 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5210 | //QImage::Format_RGB30: |
| 5211 | QPixelFormat(QPixelFormat::RGB, |
| 5212 | /*RED*/ 10, |
| 5213 | /*GREEN*/ 10, |
| 5214 | /*BLUE*/ 10, |
| 5215 | /*FOURTH*/ 0, |
| 5216 | /*FIFTH*/ 0, |
| 5217 | /*ALPHA*/ 2, |
| 5218 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5219 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5220 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5221 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5222 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5223 | //QImage::Format_A2RGB30_Premultiplied: |
| 5224 | QPixelFormat(QPixelFormat::RGB, |
| 5225 | /*RED*/ 10, |
| 5226 | /*GREEN*/ 10, |
| 5227 | /*BLUE*/ 10, |
| 5228 | /*FOURTH*/ 0, |
| 5229 | /*FIFTH*/ 0, |
| 5230 | /*ALPHA*/ 2, |
| 5231 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5232 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5233 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5234 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
| 5235 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5236 | //QImage::Format_Alpha8: |
| 5237 | QPixelFormat(QPixelFormat::Alpha, |
| 5238 | /*First*/ 0, |
| 5239 | /*SECOND*/ 0, |
| 5240 | /*THIRD*/ 0, |
| 5241 | /*FOURTH*/ 0, |
| 5242 | /*FIFTH*/ 0, |
| 5243 | /*ALPHA*/ 8, |
| 5244 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5245 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5246 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5247 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5248 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5249 | //QImage::Format_Grayscale8: |
| 5250 | QPixelFormat(QPixelFormat::Grayscale, |
| 5251 | /*GRAY*/ 8, |
| 5252 | /*SECOND*/ 0, |
| 5253 | /*THIRD*/ 0, |
| 5254 | /*FOURTH*/ 0, |
| 5255 | /*FIFTH*/ 0, |
| 5256 | /*ALPHA*/ 0, |
| 5257 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5258 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5259 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5260 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5261 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5262 | //QImage::Format_RGBX64: |
| 5263 | QPixelFormat(QPixelFormat::RGB, |
| 5264 | /*RED*/ 16, |
| 5265 | /*GREEN*/ 16, |
| 5266 | /*BLUE*/ 16, |
| 5267 | /*FOURTH*/ 0, |
| 5268 | /*FIFTH*/ 0, |
| 5269 | /*ALPHA*/ 16, |
| 5270 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5271 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5272 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5273 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5274 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5275 | //QImage::Format_RGBA64: |
| 5276 | QPixelFormat(QPixelFormat::RGB, |
| 5277 | /*RED*/ 16, |
| 5278 | /*GREEN*/ 16, |
| 5279 | /*BLUE*/ 16, |
| 5280 | /*FOURTH*/ 0, |
| 5281 | /*FIFTH*/ 0, |
| 5282 | /*ALPHA*/ 16, |
| 5283 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5284 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5285 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5286 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5287 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5288 | //QImage::Format_RGBA64_Premultiplied: |
| 5289 | QPixelFormat(QPixelFormat::RGB, |
| 5290 | /*RED*/ 16, |
| 5291 | /*GREEN*/ 16, |
| 5292 | /*BLUE*/ 16, |
| 5293 | /*FOURTH*/ 0, |
| 5294 | /*FIFTH*/ 0, |
| 5295 | /*ALPHA*/ 16, |
| 5296 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
| 5297 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
| 5298 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
| 5299 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5300 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5301 | //QImage::Format_Grayscale16: |
| 5302 | QPixelFormat(QPixelFormat::Grayscale, |
| 5303 | /*GRAY*/ 16, |
| 5304 | /*SECOND*/ 0, |
| 5305 | /*THIRD*/ 0, |
| 5306 | /*FOURTH*/ 0, |
| 5307 | /*FIFTH*/ 0, |
| 5308 | /*ALPHA*/ 0, |
| 5309 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5310 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5311 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5312 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
| 5313 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5314 | //QImage::Format_BGR888: |
| 5315 | QPixelFormat(QPixelFormat::BGR, |
| 5316 | /*RED*/ 8, |
| 5317 | /*GREEN*/ 8, |
| 5318 | /*BLUE*/ 8, |
| 5319 | /*FOURTH*/ 0, |
| 5320 | /*FIFTH*/ 0, |
| 5321 | /*ALPHA*/ 0, |
| 5322 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
| 5323 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
| 5324 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
| 5325 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
| 5326 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
| 5327 | }; |
| 5328 | static_assert(sizeof(pixelformats) / sizeof(*pixelformats) == QImage::NImageFormats); |
| 5329 | |
| 5330 | /*! |
| 5331 | Returns the QImage::Format as a QPixelFormat |
| 5332 | */ |
| 5333 | QPixelFormat QImage::pixelFormat() const noexcept |
| 5334 | { |
| 5335 | return toPixelFormat(format()); |
| 5336 | } |
| 5337 | |
| 5338 | /*! |
| 5339 | Converts \a format into a QPixelFormat |
| 5340 | */ |
| 5341 | QPixelFormat QImage::toPixelFormat(QImage::Format format) noexcept |
| 5342 | { |
| 5343 | Q_ASSERT(static_cast<int>(format) < NImageFormats); |
| 5344 | return pixelformats[format]; |
| 5345 | } |
| 5346 | |
| 5347 | /*! |
| 5348 | Converts \a format into a QImage::Format |
| 5349 | */ |
| 5350 | QImage::Format QImage::toImageFormat(QPixelFormat format) noexcept |
| 5351 | { |
| 5352 | for (int i = 0; i < NImageFormats; i++) { |
| 5353 | if (format == pixelformats[i]) |
| 5354 | return Format(i); |
| 5355 | } |
| 5356 | return Format_Invalid; |
| 5357 | } |
| 5358 | |
| 5359 | Q_GUI_EXPORT void qt_imageTransform(QImage &src, QImageIOHandler::Transformations orient) |
| 5360 | { |
| 5361 | if (orient == QImageIOHandler::TransformationNone) |
| 5362 | return; |
| 5363 | if (orient == QImageIOHandler::TransformationRotate270) { |
| 5364 | src = rotated270(src); |
| 5365 | } else { |
| 5366 | src = std::move(src).mirrored(orient & QImageIOHandler::TransformationMirror, |
| 5367 | orient & QImageIOHandler::TransformationFlip); |
| 5368 | if (orient & QImageIOHandler::TransformationRotate90) |
| 5369 | src = rotated90(src); |
| 5370 | } |
| 5371 | } |
| 5372 | |
| 5373 | QMap<QString, QString> qt_getImageText(const QImage &image, const QString &description) |
| 5374 | { |
| 5375 | QMap<QString, QString> text = qt_getImageTextFromDescription(description); |
| 5376 | const auto textKeys = image.textKeys(); |
| 5377 | for (const QString &key : textKeys) { |
| 5378 | if (!key.isEmpty() && !text.contains(key)) |
| 5379 | text.insert(key, image.text(key)); |
| 5380 | } |
| 5381 | return text; |
| 5382 | } |
| 5383 | |
| 5384 | QMap<QString, QString> qt_getImageTextFromDescription(const QString &description) |
| 5385 | { |
| 5386 | QMap<QString, QString> text; |
| 5387 | const auto pairs = QStringView{description}.split(u"\n\n" ); |
| 5388 | for (const auto &pair : pairs) { |
| 5389 | int index = pair.indexOf(QLatin1Char(':')); |
| 5390 | if (index >= 0 && pair.indexOf(QLatin1Char(' ')) < index) { |
| 5391 | if (!pair.trimmed().isEmpty()) |
| 5392 | text.insert(QLatin1String("Description" ), pair.toString().simplified()); |
| 5393 | } else { |
| 5394 | const auto key = pair.left(index); |
| 5395 | if (!key.trimmed().isEmpty()) |
| 5396 | text.insert(key.toString(), pair.mid(index + 2).toString().simplified()); |
| 5397 | } |
| 5398 | } |
| 5399 | return text; |
| 5400 | } |
| 5401 | |
| 5402 | QT_END_NAMESPACE |
| 5403 | |