| 1 | /**************************************************************************** | 
|---|
| 2 | ** | 
|---|
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. | 
|---|
| 4 | ** Contact: https://www.qt.io/licensing/ | 
|---|
| 5 | ** | 
|---|
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. | 
|---|
| 7 | ** | 
|---|
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ | 
|---|
| 9 | ** Commercial License Usage | 
|---|
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in | 
|---|
| 11 | ** accordance with the commercial license agreement provided with the | 
|---|
| 12 | ** Software or, alternatively, in accordance with the terms contained in | 
|---|
| 13 | ** a written agreement between you and The Qt Company. For licensing terms | 
|---|
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further | 
|---|
| 15 | ** information use the contact form at https://www.qt.io/contact-us. | 
|---|
| 16 | ** | 
|---|
| 17 | ** GNU Lesser General Public License Usage | 
|---|
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser | 
|---|
| 19 | ** General Public License version 3 as published by the Free Software | 
|---|
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the | 
|---|
| 21 | ** packaging of this file. Please review the following information to | 
|---|
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements | 
|---|
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. | 
|---|
| 24 | ** | 
|---|
| 25 | ** GNU General Public License Usage | 
|---|
| 26 | ** Alternatively, this file may be used under the terms of the GNU | 
|---|
| 27 | ** General Public License version 2.0 or (at your option) the GNU General | 
|---|
| 28 | ** Public license version 3 or any later version approved by the KDE Free | 
|---|
| 29 | ** Qt Foundation. The licenses are as published by the Free Software | 
|---|
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 | 
|---|
| 31 | ** included in the packaging of this file. Please review the following | 
|---|
| 32 | ** information to ensure the GNU General Public License requirements will | 
|---|
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and | 
|---|
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. | 
|---|
| 35 | ** | 
|---|
| 36 | ** $QT_END_LICENSE$ | 
|---|
| 37 | ** | 
|---|
| 38 | ****************************************************************************/ | 
|---|
| 39 |  | 
|---|
| 40 | #include "qquaternion.h" | 
|---|
| 41 | #include <QtCore/qdatastream.h> | 
|---|
| 42 | #include <QtCore/qmath.h> | 
|---|
| 43 | #include <QtCore/qvariant.h> | 
|---|
| 44 | #include <QtCore/qdebug.h> | 
|---|
| 45 |  | 
|---|
| 46 | #include <cmath> | 
|---|
| 47 |  | 
|---|
| 48 | QT_BEGIN_NAMESPACE | 
|---|
| 49 |  | 
|---|
| 50 | #ifndef QT_NO_QUATERNION | 
|---|
| 51 |  | 
|---|
| 52 | /*! | 
|---|
| 53 | \class QQuaternion | 
|---|
| 54 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. | 
|---|
| 55 | \since 4.6 | 
|---|
| 56 | \ingroup painting-3D | 
|---|
| 57 | \inmodule QtGui | 
|---|
| 58 |  | 
|---|
| 59 | Quaternions are used to represent rotations in 3D space, and | 
|---|
| 60 | consist of a 3D rotation axis specified by the x, y, and z | 
|---|
| 61 | coordinates, and a scalar representing the rotation angle. | 
|---|
| 62 | */ | 
|---|
| 63 |  | 
|---|
| 64 | /*! | 
|---|
| 65 | \fn QQuaternion::QQuaternion() | 
|---|
| 66 |  | 
|---|
| 67 | Constructs an identity quaternion (1, 0, 0, 0), i.e. with the vector (0, 0, 0) | 
|---|
| 68 | and scalar 1. | 
|---|
| 69 | */ | 
|---|
| 70 |  | 
|---|
| 71 | /*! | 
|---|
| 72 | \fn QQuaternion::QQuaternion(Qt::Initialization) | 
|---|
| 73 | \since 5.5 | 
|---|
| 74 | \internal | 
|---|
| 75 |  | 
|---|
| 76 | Constructs a quaternion without initializing the contents. | 
|---|
| 77 | */ | 
|---|
| 78 |  | 
|---|
| 79 | /*! | 
|---|
| 80 | \fn QQuaternion::QQuaternion(float scalar, float xpos, float ypos, float zpos) | 
|---|
| 81 |  | 
|---|
| 82 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) | 
|---|
| 83 | and \a scalar. | 
|---|
| 84 | */ | 
|---|
| 85 |  | 
|---|
| 86 | #ifndef QT_NO_VECTOR3D | 
|---|
| 87 |  | 
|---|
| 88 | /*! | 
|---|
| 89 | \fn QQuaternion::QQuaternion(float scalar, const QVector3D& vector) | 
|---|
| 90 |  | 
|---|
| 91 | Constructs a quaternion vector from the specified \a vector and | 
|---|
| 92 | \a scalar. | 
|---|
| 93 |  | 
|---|
| 94 | \sa vector(), scalar() | 
|---|
| 95 | */ | 
|---|
| 96 |  | 
|---|
| 97 | /*! | 
|---|
| 98 | \fn QVector3D QQuaternion::vector() const | 
|---|
| 99 |  | 
|---|
| 100 | Returns the vector component of this quaternion. | 
|---|
| 101 |  | 
|---|
| 102 | \sa setVector(), scalar() | 
|---|
| 103 | */ | 
|---|
| 104 |  | 
|---|
| 105 | /*! | 
|---|
| 106 | \fn void QQuaternion::setVector(const QVector3D& vector) | 
|---|
| 107 |  | 
|---|
| 108 | Sets the vector component of this quaternion to \a vector. | 
|---|
| 109 |  | 
|---|
| 110 | \sa vector(), setScalar() | 
|---|
| 111 | */ | 
|---|
| 112 |  | 
|---|
| 113 | #endif | 
|---|
| 114 |  | 
|---|
| 115 | /*! | 
|---|
| 116 | \fn void QQuaternion::setVector(float x, float y, float z) | 
|---|
| 117 |  | 
|---|
| 118 | Sets the vector component of this quaternion to (\a x, \a y, \a z). | 
|---|
| 119 |  | 
|---|
| 120 | \sa vector(), setScalar() | 
|---|
| 121 | */ | 
|---|
| 122 |  | 
|---|
| 123 | #ifndef QT_NO_VECTOR4D | 
|---|
| 124 |  | 
|---|
| 125 | /*! | 
|---|
| 126 | \fn QQuaternion::QQuaternion(const QVector4D& vector) | 
|---|
| 127 |  | 
|---|
| 128 | Constructs a quaternion from the components of \a vector. | 
|---|
| 129 | */ | 
|---|
| 130 |  | 
|---|
| 131 | /*! | 
|---|
| 132 | \fn QVector4D QQuaternion::toVector4D() const | 
|---|
| 133 |  | 
|---|
| 134 | Returns this quaternion as a 4D vector. | 
|---|
| 135 | */ | 
|---|
| 136 |  | 
|---|
| 137 | #endif | 
|---|
| 138 |  | 
|---|
| 139 | /*! | 
|---|
| 140 | \fn bool QQuaternion::isNull() const | 
|---|
| 141 |  | 
|---|
| 142 | Returns \c true if the x, y, z, and scalar components of this | 
|---|
| 143 | quaternion are set to 0.0; otherwise returns \c false. | 
|---|
| 144 | */ | 
|---|
| 145 |  | 
|---|
| 146 | /*! | 
|---|
| 147 | \fn bool QQuaternion::isIdentity() const | 
|---|
| 148 |  | 
|---|
| 149 | Returns \c true if the x, y, and z components of this | 
|---|
| 150 | quaternion are set to 0.0, and the scalar component is set | 
|---|
| 151 | to 1.0; otherwise returns \c false. | 
|---|
| 152 | */ | 
|---|
| 153 |  | 
|---|
| 154 | /*! | 
|---|
| 155 | \fn float QQuaternion::x() const | 
|---|
| 156 |  | 
|---|
| 157 | Returns the x coordinate of this quaternion's vector. | 
|---|
| 158 |  | 
|---|
| 159 | \sa setX(), y(), z(), scalar() | 
|---|
| 160 | */ | 
|---|
| 161 |  | 
|---|
| 162 | /*! | 
|---|
| 163 | \fn float QQuaternion::y() const | 
|---|
| 164 |  | 
|---|
| 165 | Returns the y coordinate of this quaternion's vector. | 
|---|
| 166 |  | 
|---|
| 167 | \sa setY(), x(), z(), scalar() | 
|---|
| 168 | */ | 
|---|
| 169 |  | 
|---|
| 170 | /*! | 
|---|
| 171 | \fn float QQuaternion::z() const | 
|---|
| 172 |  | 
|---|
| 173 | Returns the z coordinate of this quaternion's vector. | 
|---|
| 174 |  | 
|---|
| 175 | \sa setZ(), x(), y(), scalar() | 
|---|
| 176 | */ | 
|---|
| 177 |  | 
|---|
| 178 | /*! | 
|---|
| 179 | \fn float QQuaternion::scalar() const | 
|---|
| 180 |  | 
|---|
| 181 | Returns the scalar component of this quaternion. | 
|---|
| 182 |  | 
|---|
| 183 | \sa setScalar(), x(), y(), z() | 
|---|
| 184 | */ | 
|---|
| 185 |  | 
|---|
| 186 | /*! | 
|---|
| 187 | \fn void QQuaternion::setX(float x) | 
|---|
| 188 |  | 
|---|
| 189 | Sets the x coordinate of this quaternion's vector to the given | 
|---|
| 190 | \a x coordinate. | 
|---|
| 191 |  | 
|---|
| 192 | \sa x(), setY(), setZ(), setScalar() | 
|---|
| 193 | */ | 
|---|
| 194 |  | 
|---|
| 195 | /*! | 
|---|
| 196 | \fn void QQuaternion::setY(float y) | 
|---|
| 197 |  | 
|---|
| 198 | Sets the y coordinate of this quaternion's vector to the given | 
|---|
| 199 | \a y coordinate. | 
|---|
| 200 |  | 
|---|
| 201 | \sa y(), setX(), setZ(), setScalar() | 
|---|
| 202 | */ | 
|---|
| 203 |  | 
|---|
| 204 | /*! | 
|---|
| 205 | \fn void QQuaternion::setZ(float z) | 
|---|
| 206 |  | 
|---|
| 207 | Sets the z coordinate of this quaternion's vector to the given | 
|---|
| 208 | \a z coordinate. | 
|---|
| 209 |  | 
|---|
| 210 | \sa z(), setX(), setY(), setScalar() | 
|---|
| 211 | */ | 
|---|
| 212 |  | 
|---|
| 213 | /*! | 
|---|
| 214 | \fn void QQuaternion::setScalar(float scalar) | 
|---|
| 215 |  | 
|---|
| 216 | Sets the scalar component of this quaternion to \a scalar. | 
|---|
| 217 |  | 
|---|
| 218 | \sa scalar(), setX(), setY(), setZ() | 
|---|
| 219 | */ | 
|---|
| 220 |  | 
|---|
| 221 | /*! | 
|---|
| 222 | \fn float QQuaternion::dotProduct(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 223 | \since 5.5 | 
|---|
| 224 |  | 
|---|
| 225 | Returns the dot product of \a q1 and \a q2. | 
|---|
| 226 |  | 
|---|
| 227 | \sa length() | 
|---|
| 228 | */ | 
|---|
| 229 |  | 
|---|
| 230 | /*! | 
|---|
| 231 | Returns the length of the quaternion.  This is also called the "norm". | 
|---|
| 232 |  | 
|---|
| 233 | \sa lengthSquared(), normalized(), dotProduct() | 
|---|
| 234 | */ | 
|---|
| 235 | float QQuaternion::length() const | 
|---|
| 236 | { | 
|---|
| 237 | return std::sqrt(xp * xp + yp * yp + zp * zp + wp * wp); | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|
| 240 | /*! | 
|---|
| 241 | Returns the squared length of the quaternion. | 
|---|
| 242 |  | 
|---|
| 243 | \sa length(), dotProduct() | 
|---|
| 244 | */ | 
|---|
| 245 | float QQuaternion::lengthSquared() const | 
|---|
| 246 | { | 
|---|
| 247 | return xp * xp + yp * yp + zp * zp + wp * wp; | 
|---|
| 248 | } | 
|---|
| 249 |  | 
|---|
| 250 | /*! | 
|---|
| 251 | Returns the normalized unit form of this quaternion. | 
|---|
| 252 |  | 
|---|
| 253 | If this quaternion is null, then a null quaternion is returned. | 
|---|
| 254 | If the length of the quaternion is very close to 1, then the quaternion | 
|---|
| 255 | will be returned as-is.  Otherwise the normalized form of the | 
|---|
| 256 | quaternion of length 1 will be returned. | 
|---|
| 257 |  | 
|---|
| 258 | \sa normalize(), length(), dotProduct() | 
|---|
| 259 | */ | 
|---|
| 260 | QQuaternion QQuaternion::normalized() const | 
|---|
| 261 | { | 
|---|
| 262 | // Need some extra precision if the length is very small. | 
|---|
| 263 | double len = double(xp) * double(xp) + | 
|---|
| 264 | double(yp) * double(yp) + | 
|---|
| 265 | double(zp) * double(zp) + | 
|---|
| 266 | double(wp) * double(wp); | 
|---|
| 267 | if (qFuzzyIsNull(len - 1.0f)) | 
|---|
| 268 | return *this; | 
|---|
| 269 | else if (!qFuzzyIsNull(len)) | 
|---|
| 270 | return *this / std::sqrt(len); | 
|---|
| 271 | else | 
|---|
| 272 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | /*! | 
|---|
| 276 | Normalizes the current quaternion in place.  Nothing happens if this | 
|---|
| 277 | is a null quaternion or the length of the quaternion is very close to 1. | 
|---|
| 278 |  | 
|---|
| 279 | \sa length(), normalized() | 
|---|
| 280 | */ | 
|---|
| 281 | void QQuaternion::normalize() | 
|---|
| 282 | { | 
|---|
| 283 | // Need some extra precision if the length is very small. | 
|---|
| 284 | double len = double(xp) * double(xp) + | 
|---|
| 285 | double(yp) * double(yp) + | 
|---|
| 286 | double(zp) * double(zp) + | 
|---|
| 287 | double(wp) * double(wp); | 
|---|
| 288 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) | 
|---|
| 289 | return; | 
|---|
| 290 |  | 
|---|
| 291 | len = std::sqrt(len); | 
|---|
| 292 |  | 
|---|
| 293 | xp /= len; | 
|---|
| 294 | yp /= len; | 
|---|
| 295 | zp /= len; | 
|---|
| 296 | wp /= len; | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | /*! | 
|---|
| 300 | \fn QQuaternion QQuaternion::inverted() const | 
|---|
| 301 | \since 5.5 | 
|---|
| 302 |  | 
|---|
| 303 | Returns the inverse of this quaternion. | 
|---|
| 304 | If this quaternion is null, then a null quaternion is returned. | 
|---|
| 305 |  | 
|---|
| 306 | \sa isNull(), length() | 
|---|
| 307 | */ | 
|---|
| 308 |  | 
|---|
| 309 | /*! | 
|---|
| 310 | \fn QQuaternion QQuaternion::conjugated() const | 
|---|
| 311 | \since 5.5 | 
|---|
| 312 |  | 
|---|
| 313 | Returns the conjugate of this quaternion, which is | 
|---|
| 314 | (-x, -y, -z, scalar). | 
|---|
| 315 | */ | 
|---|
| 316 |  | 
|---|
| 317 | /*! | 
|---|
| 318 | Rotates \a vector with this quaternion to produce a new vector | 
|---|
| 319 | in 3D space.  The following code: | 
|---|
| 320 |  | 
|---|
| 321 | \snippet code/src_gui_math3d_qquaternion.cpp 0 | 
|---|
| 322 |  | 
|---|
| 323 | is equivalent to the following: | 
|---|
| 324 |  | 
|---|
| 325 | \snippet code/src_gui_math3d_qquaternion.cpp 1 | 
|---|
| 326 | */ | 
|---|
| 327 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const | 
|---|
| 328 | { | 
|---|
| 329 | return (*this * QQuaternion(0, vector) * conjugated()).vector(); | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | /*! | 
|---|
| 333 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) | 
|---|
| 334 |  | 
|---|
| 335 | Adds the given \a quaternion to this quaternion and returns a reference to | 
|---|
| 336 | this quaternion. | 
|---|
| 337 |  | 
|---|
| 338 | \sa operator-=() | 
|---|
| 339 | */ | 
|---|
| 340 |  | 
|---|
| 341 | /*! | 
|---|
| 342 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) | 
|---|
| 343 |  | 
|---|
| 344 | Subtracts the given \a quaternion from this quaternion and returns a | 
|---|
| 345 | reference to this quaternion. | 
|---|
| 346 |  | 
|---|
| 347 | \sa operator+=() | 
|---|
| 348 | */ | 
|---|
| 349 |  | 
|---|
| 350 | /*! | 
|---|
| 351 | \fn QQuaternion &QQuaternion::operator*=(float factor) | 
|---|
| 352 |  | 
|---|
| 353 | Multiplies this quaternion's components by the given \a factor, and | 
|---|
| 354 | returns a reference to this quaternion. | 
|---|
| 355 |  | 
|---|
| 356 | \sa operator/=() | 
|---|
| 357 | */ | 
|---|
| 358 |  | 
|---|
| 359 | /*! | 
|---|
| 360 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) | 
|---|
| 361 |  | 
|---|
| 362 | Multiplies this quaternion by \a quaternion and returns a reference | 
|---|
| 363 | to this quaternion. | 
|---|
| 364 | */ | 
|---|
| 365 |  | 
|---|
| 366 | /*! | 
|---|
| 367 | \fn QQuaternion &QQuaternion::operator/=(float divisor) | 
|---|
| 368 |  | 
|---|
| 369 | Divides this quaternion's components by the given \a divisor, and | 
|---|
| 370 | returns a reference to this quaternion. | 
|---|
| 371 |  | 
|---|
| 372 | \sa operator*=() | 
|---|
| 373 | */ | 
|---|
| 374 |  | 
|---|
| 375 | #ifndef QT_NO_VECTOR3D | 
|---|
| 376 |  | 
|---|
| 377 | /*! | 
|---|
| 378 | \fn void QQuaternion::getAxisAndAngle(QVector3D *axis, float *angle) const | 
|---|
| 379 | \since 5.5 | 
|---|
| 380 | \overload | 
|---|
| 381 |  | 
|---|
| 382 | Extracts a 3D axis \a axis and a rotating angle \a angle (in degrees) | 
|---|
| 383 | that corresponds to this quaternion. | 
|---|
| 384 |  | 
|---|
| 385 | \sa fromAxisAndAngle() | 
|---|
| 386 | */ | 
|---|
| 387 |  | 
|---|
| 388 | /*! | 
|---|
| 389 | Creates a normalized quaternion that corresponds to rotating through | 
|---|
| 390 | \a angle degrees about the specified 3D \a axis. | 
|---|
| 391 |  | 
|---|
| 392 | \sa getAxisAndAngle() | 
|---|
| 393 | */ | 
|---|
| 394 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, float angle) | 
|---|
| 395 | { | 
|---|
| 396 | // Algorithm from: | 
|---|
| 397 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 | 
|---|
| 398 | // We normalize the result just in case the values are close | 
|---|
| 399 | // to zero, as suggested in the above FAQ. | 
|---|
| 400 | float a = qDegreesToRadians(angle / 2.0f); | 
|---|
| 401 | float s = std::sin(a); | 
|---|
| 402 | float c = std::cos(a); | 
|---|
| 403 | QVector3D ax = axis.normalized(); | 
|---|
| 404 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | #endif | 
|---|
| 408 |  | 
|---|
| 409 | /*! | 
|---|
| 410 | \since 5.5 | 
|---|
| 411 |  | 
|---|
| 412 | Extracts a 3D axis (\a x, \a y, \a z) and a rotating angle \a angle (in degrees) | 
|---|
| 413 | that corresponds to this quaternion. | 
|---|
| 414 |  | 
|---|
| 415 | \sa fromAxisAndAngle() | 
|---|
| 416 | */ | 
|---|
| 417 | void QQuaternion::getAxisAndAngle(float *x, float *y, float *z, float *angle) const | 
|---|
| 418 | { | 
|---|
| 419 | Q_ASSERT(x && y && z && angle); | 
|---|
| 420 |  | 
|---|
| 421 | // The quaternion representing the rotation is | 
|---|
| 422 | //   q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) | 
|---|
| 423 |  | 
|---|
| 424 | float length = xp * xp + yp * yp + zp * zp; | 
|---|
| 425 | if (!qFuzzyIsNull(length)) { | 
|---|
| 426 | *x = xp; | 
|---|
| 427 | *y = yp; | 
|---|
| 428 | *z = zp; | 
|---|
| 429 | if (!qFuzzyIsNull(length - 1.0f)) { | 
|---|
| 430 | length = std::sqrt(length); | 
|---|
| 431 | *x /= length; | 
|---|
| 432 | *y /= length; | 
|---|
| 433 | *z /= length; | 
|---|
| 434 | } | 
|---|
| 435 | *angle = 2.0f * std::acos(wp); | 
|---|
| 436 | } else { | 
|---|
| 437 | // angle is 0 (mod 2*pi), so any axis will fit | 
|---|
| 438 | *x = *y = *z = *angle = 0.0f; | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | *angle = qRadiansToDegrees(*angle); | 
|---|
| 442 | } | 
|---|
| 443 |  | 
|---|
| 444 | /*! | 
|---|
| 445 | Creates a normalized quaternion that corresponds to rotating through | 
|---|
| 446 | \a angle degrees about the 3D axis (\a x, \a y, \a z). | 
|---|
| 447 |  | 
|---|
| 448 | \sa getAxisAndAngle() | 
|---|
| 449 | */ | 
|---|
| 450 | QQuaternion QQuaternion::fromAxisAndAngle | 
|---|
| 451 | (float x, float y, float z, float angle) | 
|---|
| 452 | { | 
|---|
| 453 | float length = std::sqrt(x * x + y * y + z * z); | 
|---|
| 454 | if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) { | 
|---|
| 455 | x /= length; | 
|---|
| 456 | y /= length; | 
|---|
| 457 | z /= length; | 
|---|
| 458 | } | 
|---|
| 459 | float a = qDegreesToRadians(angle / 2.0f); | 
|---|
| 460 | float s = std::sin(a); | 
|---|
| 461 | float c = std::cos(a); | 
|---|
| 462 | return QQuaternion(c, x * s, y * s, z * s).normalized(); | 
|---|
| 463 | } | 
|---|
| 464 |  | 
|---|
| 465 | #ifndef QT_NO_VECTOR3D | 
|---|
| 466 |  | 
|---|
| 467 | /*! | 
|---|
| 468 | \fn QVector3D QQuaternion::toEulerAngles() const | 
|---|
| 469 | \since 5.5 | 
|---|
| 470 | \overload | 
|---|
| 471 |  | 
|---|
| 472 | Calculates roll, pitch, and yaw Euler angles (in degrees) | 
|---|
| 473 | that corresponds to this quaternion. | 
|---|
| 474 |  | 
|---|
| 475 | \sa fromEulerAngles() | 
|---|
| 476 | */ | 
|---|
| 477 |  | 
|---|
| 478 | /*! | 
|---|
| 479 | \fn QQuaternion QQuaternion::fromEulerAngles(const QVector3D &eulerAngles) | 
|---|
| 480 | \since 5.5 | 
|---|
| 481 | \overload | 
|---|
| 482 |  | 
|---|
| 483 | Creates a quaternion that corresponds to a rotation of \a eulerAngles: | 
|---|
| 484 | eulerAngles.z() degrees around the z axis, eulerAngles.x() degrees around the x axis, | 
|---|
| 485 | and eulerAngles.y() degrees around the y axis (in that order). | 
|---|
| 486 |  | 
|---|
| 487 | \sa toEulerAngles() | 
|---|
| 488 | */ | 
|---|
| 489 |  | 
|---|
| 490 | #endif // QT_NO_VECTOR3D | 
|---|
| 491 |  | 
|---|
| 492 | /*! | 
|---|
| 493 | \since 5.5 | 
|---|
| 494 |  | 
|---|
| 495 | Calculates \a roll, \a pitch, and \a yaw Euler angles (in degrees) | 
|---|
| 496 | that corresponds to this quaternion. | 
|---|
| 497 |  | 
|---|
| 498 | \sa fromEulerAngles() | 
|---|
| 499 | */ | 
|---|
| 500 | void QQuaternion::getEulerAngles(float *pitch, float *yaw, float *roll) const | 
|---|
| 501 | { | 
|---|
| 502 | Q_ASSERT(pitch && yaw && roll); | 
|---|
| 503 |  | 
|---|
| 504 | // Algorithm from: | 
|---|
| 505 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q37 | 
|---|
| 506 |  | 
|---|
| 507 | float xx = xp * xp; | 
|---|
| 508 | float xy = xp * yp; | 
|---|
| 509 | float xz = xp * zp; | 
|---|
| 510 | float xw = xp * wp; | 
|---|
| 511 | float yy = yp * yp; | 
|---|
| 512 | float yz = yp * zp; | 
|---|
| 513 | float yw = yp * wp; | 
|---|
| 514 | float zz = zp * zp; | 
|---|
| 515 | float zw = zp * wp; | 
|---|
| 516 |  | 
|---|
| 517 | const float lengthSquared = xx + yy + zz + wp * wp; | 
|---|
| 518 | if (!qFuzzyIsNull(lengthSquared - 1.0f) && !qFuzzyIsNull(lengthSquared)) { | 
|---|
| 519 | xx /= lengthSquared; | 
|---|
| 520 | xy /= lengthSquared; // same as (xp / length) * (yp / length) | 
|---|
| 521 | xz /= lengthSquared; | 
|---|
| 522 | xw /= lengthSquared; | 
|---|
| 523 | yy /= lengthSquared; | 
|---|
| 524 | yz /= lengthSquared; | 
|---|
| 525 | yw /= lengthSquared; | 
|---|
| 526 | zz /= lengthSquared; | 
|---|
| 527 | zw /= lengthSquared; | 
|---|
| 528 | } | 
|---|
| 529 |  | 
|---|
| 530 | *pitch = std::asin(-2.0f * (yz - xw)); | 
|---|
| 531 | if (*pitch < M_PI_2) { | 
|---|
| 532 | if (*pitch > -M_PI_2) { | 
|---|
| 533 | *yaw = std::atan2(2.0f * (xz + yw), 1.0f - 2.0f * (xx + yy)); | 
|---|
| 534 | *roll = std::atan2(2.0f * (xy + zw), 1.0f - 2.0f * (xx + zz)); | 
|---|
| 535 | } else { | 
|---|
| 536 | // not a unique solution | 
|---|
| 537 | *roll = 0.0f; | 
|---|
| 538 | *yaw = -std::atan2(-2.0f * (xy - zw), 1.0f - 2.0f * (yy + zz)); | 
|---|
| 539 | } | 
|---|
| 540 | } else { | 
|---|
| 541 | // not a unique solution | 
|---|
| 542 | *roll = 0.0f; | 
|---|
| 543 | *yaw = std::atan2(-2.0f * (xy - zw), 1.0f - 2.0f * (yy + zz)); | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | *pitch = qRadiansToDegrees(*pitch); | 
|---|
| 547 | *yaw = qRadiansToDegrees(*yaw); | 
|---|
| 548 | *roll = qRadiansToDegrees(*roll); | 
|---|
| 549 | } | 
|---|
| 550 |  | 
|---|
| 551 | /*! | 
|---|
| 552 | \since 5.5 | 
|---|
| 553 |  | 
|---|
| 554 | Creates a quaternion that corresponds to a rotation of | 
|---|
| 555 | \a roll degrees around the z axis, \a pitch degrees around the x axis, | 
|---|
| 556 | and \a yaw degrees around the y axis (in that order). | 
|---|
| 557 |  | 
|---|
| 558 | \sa getEulerAngles() | 
|---|
| 559 | */ | 
|---|
| 560 | QQuaternion QQuaternion::fromEulerAngles(float pitch, float yaw, float roll) | 
|---|
| 561 | { | 
|---|
| 562 | // Algorithm from: | 
|---|
| 563 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60 | 
|---|
| 564 |  | 
|---|
| 565 | pitch = qDegreesToRadians(pitch); | 
|---|
| 566 | yaw = qDegreesToRadians(yaw); | 
|---|
| 567 | roll = qDegreesToRadians(roll); | 
|---|
| 568 |  | 
|---|
| 569 | pitch *= 0.5f; | 
|---|
| 570 | yaw *= 0.5f; | 
|---|
| 571 | roll *= 0.5f; | 
|---|
| 572 |  | 
|---|
| 573 | const float c1 = std::cos(yaw); | 
|---|
| 574 | const float s1 = std::sin(yaw); | 
|---|
| 575 | const float c2 = std::cos(roll); | 
|---|
| 576 | const float s2 = std::sin(roll); | 
|---|
| 577 | const float c3 = std::cos(pitch); | 
|---|
| 578 | const float s3 = std::sin(pitch); | 
|---|
| 579 | const float c1c2 = c1 * c2; | 
|---|
| 580 | const float s1s2 = s1 * s2; | 
|---|
| 581 |  | 
|---|
| 582 | const float w = c1c2 * c3 + s1s2 * s3; | 
|---|
| 583 | const float x = c1c2 * s3 + s1s2 * c3; | 
|---|
| 584 | const float y = s1 * c2 * c3 - c1 * s2 * s3; | 
|---|
| 585 | const float z = c1 * s2 * c3 - s1 * c2 * s3; | 
|---|
| 586 |  | 
|---|
| 587 | return QQuaternion(w, x, y, z); | 
|---|
| 588 | } | 
|---|
| 589 |  | 
|---|
| 590 | /*! | 
|---|
| 591 | \since 5.5 | 
|---|
| 592 |  | 
|---|
| 593 | Creates a rotation matrix that corresponds to this quaternion. | 
|---|
| 594 |  | 
|---|
| 595 | \note If this quaternion is not normalized, | 
|---|
| 596 | the resulting rotation matrix will contain scaling information. | 
|---|
| 597 |  | 
|---|
| 598 | \sa fromRotationMatrix(), getAxes() | 
|---|
| 599 | */ | 
|---|
| 600 | QMatrix3x3 QQuaternion::toRotationMatrix() const | 
|---|
| 601 | { | 
|---|
| 602 | // Algorithm from: | 
|---|
| 603 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54 | 
|---|
| 604 |  | 
|---|
| 605 | QMatrix3x3 rot3x3(Qt::Uninitialized); | 
|---|
| 606 |  | 
|---|
| 607 | const float f2x = xp + xp; | 
|---|
| 608 | const float f2y = yp + yp; | 
|---|
| 609 | const float f2z = zp + zp; | 
|---|
| 610 | const float f2xw = f2x * wp; | 
|---|
| 611 | const float f2yw = f2y * wp; | 
|---|
| 612 | const float f2zw = f2z * wp; | 
|---|
| 613 | const float f2xx = f2x * xp; | 
|---|
| 614 | const float f2xy = f2x * yp; | 
|---|
| 615 | const float f2xz = f2x * zp; | 
|---|
| 616 | const float f2yy = f2y * yp; | 
|---|
| 617 | const float f2yz = f2y * zp; | 
|---|
| 618 | const float f2zz = f2z * zp; | 
|---|
| 619 |  | 
|---|
| 620 | rot3x3(0, 0) = 1.0f - (f2yy + f2zz); | 
|---|
| 621 | rot3x3(0, 1) =         f2xy - f2zw; | 
|---|
| 622 | rot3x3(0, 2) =         f2xz + f2yw; | 
|---|
| 623 | rot3x3(1, 0) =         f2xy + f2zw; | 
|---|
| 624 | rot3x3(1, 1) = 1.0f - (f2xx + f2zz); | 
|---|
| 625 | rot3x3(1, 2) =         f2yz - f2xw; | 
|---|
| 626 | rot3x3(2, 0) =         f2xz - f2yw; | 
|---|
| 627 | rot3x3(2, 1) =         f2yz + f2xw; | 
|---|
| 628 | rot3x3(2, 2) = 1.0f - (f2xx + f2yy); | 
|---|
| 629 |  | 
|---|
| 630 | return rot3x3; | 
|---|
| 631 | } | 
|---|
| 632 |  | 
|---|
| 633 | /*! | 
|---|
| 634 | \since 5.5 | 
|---|
| 635 |  | 
|---|
| 636 | Creates a quaternion that corresponds to a rotation matrix \a rot3x3. | 
|---|
| 637 |  | 
|---|
| 638 | \note If a given rotation matrix is not normalized, | 
|---|
| 639 | the resulting quaternion will contain scaling information. | 
|---|
| 640 |  | 
|---|
| 641 | \sa toRotationMatrix(), fromAxes() | 
|---|
| 642 | */ | 
|---|
| 643 | QQuaternion QQuaternion::fromRotationMatrix(const QMatrix3x3 &rot3x3) | 
|---|
| 644 | { | 
|---|
| 645 | // Algorithm from: | 
|---|
| 646 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55 | 
|---|
| 647 |  | 
|---|
| 648 | float scalar; | 
|---|
| 649 | float axis[3]; | 
|---|
| 650 |  | 
|---|
| 651 | const float trace = rot3x3(0, 0) + rot3x3(1, 1) + rot3x3(2, 2); | 
|---|
| 652 | if (trace > 0.00000001f) { | 
|---|
| 653 | const float s = 2.0f * std::sqrt(trace + 1.0f); | 
|---|
| 654 | scalar = 0.25f * s; | 
|---|
| 655 | axis[0] = (rot3x3(2, 1) - rot3x3(1, 2)) / s; | 
|---|
| 656 | axis[1] = (rot3x3(0, 2) - rot3x3(2, 0)) / s; | 
|---|
| 657 | axis[2] = (rot3x3(1, 0) - rot3x3(0, 1)) / s; | 
|---|
| 658 | } else { | 
|---|
| 659 | static int s_next[3] = { 1, 2, 0 }; | 
|---|
| 660 | int i = 0; | 
|---|
| 661 | if (rot3x3(1, 1) > rot3x3(0, 0)) | 
|---|
| 662 | i = 1; | 
|---|
| 663 | if (rot3x3(2, 2) > rot3x3(i, i)) | 
|---|
| 664 | i = 2; | 
|---|
| 665 | int j = s_next[i]; | 
|---|
| 666 | int k = s_next[j]; | 
|---|
| 667 |  | 
|---|
| 668 | const float s = 2.0f * std::sqrt(rot3x3(i, i) - rot3x3(j, j) - rot3x3(k, k) + 1.0f); | 
|---|
| 669 | axis[i] = 0.25f * s; | 
|---|
| 670 | scalar = (rot3x3(k, j) - rot3x3(j, k)) / s; | 
|---|
| 671 | axis[j] = (rot3x3(j, i) + rot3x3(i, j)) / s; | 
|---|
| 672 | axis[k] = (rot3x3(k, i) + rot3x3(i, k)) / s; | 
|---|
| 673 | } | 
|---|
| 674 |  | 
|---|
| 675 | return QQuaternion(scalar, axis[0], axis[1], axis[2]); | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | #ifndef QT_NO_VECTOR3D | 
|---|
| 679 |  | 
|---|
| 680 | /*! | 
|---|
| 681 | \since 5.5 | 
|---|
| 682 |  | 
|---|
| 683 | Returns the 3 orthonormal axes (\a xAxis, \a yAxis, \a zAxis) defining the quaternion. | 
|---|
| 684 |  | 
|---|
| 685 | \sa fromAxes(), toRotationMatrix() | 
|---|
| 686 | */ | 
|---|
| 687 | void QQuaternion::getAxes(QVector3D *xAxis, QVector3D *yAxis, QVector3D *zAxis) const | 
|---|
| 688 | { | 
|---|
| 689 | Q_ASSERT(xAxis && yAxis && zAxis); | 
|---|
| 690 |  | 
|---|
| 691 | const QMatrix3x3 rot3x3(toRotationMatrix()); | 
|---|
| 692 |  | 
|---|
| 693 | *xAxis = QVector3D(rot3x3(0, 0), rot3x3(1, 0), rot3x3(2, 0)); | 
|---|
| 694 | *yAxis = QVector3D(rot3x3(0, 1), rot3x3(1, 1), rot3x3(2, 1)); | 
|---|
| 695 | *zAxis = QVector3D(rot3x3(0, 2), rot3x3(1, 2), rot3x3(2, 2)); | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | /*! | 
|---|
| 699 | \since 5.5 | 
|---|
| 700 |  | 
|---|
| 701 | Constructs the quaternion using 3 axes (\a xAxis, \a yAxis, \a zAxis). | 
|---|
| 702 |  | 
|---|
| 703 | \note The axes are assumed to be orthonormal. | 
|---|
| 704 |  | 
|---|
| 705 | \sa getAxes(), fromRotationMatrix() | 
|---|
| 706 | */ | 
|---|
| 707 | QQuaternion QQuaternion::fromAxes(const QVector3D &xAxis, const QVector3D &yAxis, const QVector3D &zAxis) | 
|---|
| 708 | { | 
|---|
| 709 | QMatrix3x3 rot3x3(Qt::Uninitialized); | 
|---|
| 710 | rot3x3(0, 0) = xAxis.x(); | 
|---|
| 711 | rot3x3(1, 0) = xAxis.y(); | 
|---|
| 712 | rot3x3(2, 0) = xAxis.z(); | 
|---|
| 713 | rot3x3(0, 1) = yAxis.x(); | 
|---|
| 714 | rot3x3(1, 1) = yAxis.y(); | 
|---|
| 715 | rot3x3(2, 1) = yAxis.z(); | 
|---|
| 716 | rot3x3(0, 2) = zAxis.x(); | 
|---|
| 717 | rot3x3(1, 2) = zAxis.y(); | 
|---|
| 718 | rot3x3(2, 2) = zAxis.z(); | 
|---|
| 719 |  | 
|---|
| 720 | return QQuaternion::fromRotationMatrix(rot3x3); | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|
| 723 | /*! | 
|---|
| 724 | \since 5.5 | 
|---|
| 725 |  | 
|---|
| 726 | Constructs the quaternion using specified forward direction \a direction | 
|---|
| 727 | and upward direction \a up. | 
|---|
| 728 | If the upward direction was not specified or the forward and upward | 
|---|
| 729 | vectors are collinear, a new orthonormal upward direction will be generated. | 
|---|
| 730 |  | 
|---|
| 731 | \sa fromAxes(), rotationTo() | 
|---|
| 732 | */ | 
|---|
| 733 | QQuaternion QQuaternion::fromDirection(const QVector3D &direction, const QVector3D &up) | 
|---|
| 734 | { | 
|---|
| 735 | if (qFuzzyIsNull(direction.x()) && qFuzzyIsNull(direction.y()) && qFuzzyIsNull(direction.z())) | 
|---|
| 736 | return QQuaternion(); | 
|---|
| 737 |  | 
|---|
| 738 | const QVector3D zAxis(direction.normalized()); | 
|---|
| 739 | QVector3D xAxis(QVector3D::crossProduct(up, zAxis)); | 
|---|
| 740 | if (qFuzzyIsNull(xAxis.lengthSquared())) { | 
|---|
| 741 | // collinear or invalid up vector; derive shortest arc to new direction | 
|---|
| 742 | return QQuaternion::rotationTo(QVector3D(0.0f, 0.0f, 1.0f), zAxis); | 
|---|
| 743 | } | 
|---|
| 744 |  | 
|---|
| 745 | xAxis.normalize(); | 
|---|
| 746 | const QVector3D yAxis(QVector3D::crossProduct(zAxis, xAxis)); | 
|---|
| 747 |  | 
|---|
| 748 | return QQuaternion::fromAxes(xAxis, yAxis, zAxis); | 
|---|
| 749 | } | 
|---|
| 750 |  | 
|---|
| 751 | /*! | 
|---|
| 752 | \since 5.5 | 
|---|
| 753 |  | 
|---|
| 754 | Returns the shortest arc quaternion to rotate from the direction described by the vector \a from | 
|---|
| 755 | to the direction described by the vector \a to. | 
|---|
| 756 |  | 
|---|
| 757 | \sa fromDirection() | 
|---|
| 758 | */ | 
|---|
| 759 | QQuaternion QQuaternion::rotationTo(const QVector3D &from, const QVector3D &to) | 
|---|
| 760 | { | 
|---|
| 761 | // Based on Stan Melax's article in Game Programming Gems | 
|---|
| 762 |  | 
|---|
| 763 | const QVector3D v0(from.normalized()); | 
|---|
| 764 | const QVector3D v1(to.normalized()); | 
|---|
| 765 |  | 
|---|
| 766 | float d = QVector3D::dotProduct(v0, v1) + 1.0f; | 
|---|
| 767 |  | 
|---|
| 768 | // if dest vector is close to the inverse of source vector, ANY axis of rotation is valid | 
|---|
| 769 | if (qFuzzyIsNull(d)) { | 
|---|
| 770 | QVector3D axis = QVector3D::crossProduct(QVector3D(1.0f, 0.0f, 0.0f), v0); | 
|---|
| 771 | if (qFuzzyIsNull(axis.lengthSquared())) | 
|---|
| 772 | axis = QVector3D::crossProduct(QVector3D(0.0f, 1.0f, 0.0f), v0); | 
|---|
| 773 | axis.normalize(); | 
|---|
| 774 |  | 
|---|
| 775 | // same as QQuaternion::fromAxisAndAngle(axis, 180.0f) | 
|---|
| 776 | return QQuaternion(0.0f, axis.x(), axis.y(), axis.z()); | 
|---|
| 777 | } | 
|---|
| 778 |  | 
|---|
| 779 | d = std::sqrt(2.0f * d); | 
|---|
| 780 | const QVector3D axis(QVector3D::crossProduct(v0, v1) / d); | 
|---|
| 781 |  | 
|---|
| 782 | return QQuaternion(d * 0.5f, axis).normalized(); | 
|---|
| 783 | } | 
|---|
| 784 |  | 
|---|
| 785 | #endif // QT_NO_VECTOR3D | 
|---|
| 786 |  | 
|---|
| 787 | /*! | 
|---|
| 788 | \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 789 | \relates QQuaternion | 
|---|
| 790 |  | 
|---|
| 791 | Returns \c true if \a q1 is equal to \a q2; otherwise returns \c false. | 
|---|
| 792 | This operator uses an exact floating-point comparison. | 
|---|
| 793 | */ | 
|---|
| 794 |  | 
|---|
| 795 | /*! | 
|---|
| 796 | \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 797 | \relates QQuaternion | 
|---|
| 798 |  | 
|---|
| 799 | Returns \c true if \a q1 is not equal to \a q2; otherwise returns \c false. | 
|---|
| 800 | This operator uses an exact floating-point comparison. | 
|---|
| 801 | */ | 
|---|
| 802 |  | 
|---|
| 803 | /*! | 
|---|
| 804 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 805 | \relates QQuaternion | 
|---|
| 806 |  | 
|---|
| 807 | Returns a QQuaternion object that is the sum of the given quaternions, | 
|---|
| 808 | \a q1 and \a q2; each component is added separately. | 
|---|
| 809 |  | 
|---|
| 810 | \sa QQuaternion::operator+=() | 
|---|
| 811 | */ | 
|---|
| 812 |  | 
|---|
| 813 | /*! | 
|---|
| 814 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) | 
|---|
| 815 | \relates QQuaternion | 
|---|
| 816 |  | 
|---|
| 817 | Returns a QQuaternion object that is formed by subtracting | 
|---|
| 818 | \a q2 from \a q1; each component is subtracted separately. | 
|---|
| 819 |  | 
|---|
| 820 | \sa QQuaternion::operator-=() | 
|---|
| 821 | */ | 
|---|
| 822 |  | 
|---|
| 823 | /*! | 
|---|
| 824 | \fn const QQuaternion operator*(float factor, const QQuaternion &quaternion) | 
|---|
| 825 | \relates QQuaternion | 
|---|
| 826 |  | 
|---|
| 827 | Returns a copy of the given \a quaternion,  multiplied by the | 
|---|
| 828 | given \a factor. | 
|---|
| 829 |  | 
|---|
| 830 | \sa QQuaternion::operator*=() | 
|---|
| 831 | */ | 
|---|
| 832 |  | 
|---|
| 833 | /*! | 
|---|
| 834 | \fn const QQuaternion operator*(const QQuaternion &quaternion, float factor) | 
|---|
| 835 | \relates QQuaternion | 
|---|
| 836 |  | 
|---|
| 837 | Returns a copy of the given \a quaternion,  multiplied by the | 
|---|
| 838 | given \a factor. | 
|---|
| 839 |  | 
|---|
| 840 | \sa QQuaternion::operator*=() | 
|---|
| 841 | */ | 
|---|
| 842 |  | 
|---|
| 843 | /*! | 
|---|
| 844 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) | 
|---|
| 845 | \relates QQuaternion | 
|---|
| 846 |  | 
|---|
| 847 | Multiplies \a q1 and \a q2 using quaternion multiplication. | 
|---|
| 848 | The result corresponds to applying both of the rotations specified | 
|---|
| 849 | by \a q1 and \a q2. | 
|---|
| 850 |  | 
|---|
| 851 | \sa QQuaternion::operator*=() | 
|---|
| 852 | */ | 
|---|
| 853 |  | 
|---|
| 854 | /*! | 
|---|
| 855 | \fn const QQuaternion operator-(const QQuaternion &quaternion) | 
|---|
| 856 | \relates QQuaternion | 
|---|
| 857 | \overload | 
|---|
| 858 |  | 
|---|
| 859 | Returns a QQuaternion object that is formed by changing the sign of | 
|---|
| 860 | all three components of the given \a quaternion. | 
|---|
| 861 |  | 
|---|
| 862 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. | 
|---|
| 863 | */ | 
|---|
| 864 |  | 
|---|
| 865 | /*! | 
|---|
| 866 | \fn const QQuaternion operator/(const QQuaternion &quaternion, float divisor) | 
|---|
| 867 | \relates QQuaternion | 
|---|
| 868 |  | 
|---|
| 869 | Returns the QQuaternion object formed by dividing all components of | 
|---|
| 870 | the given \a quaternion by the given \a divisor. | 
|---|
| 871 |  | 
|---|
| 872 | \sa QQuaternion::operator/=() | 
|---|
| 873 | */ | 
|---|
| 874 |  | 
|---|
| 875 | #ifndef QT_NO_VECTOR3D | 
|---|
| 876 |  | 
|---|
| 877 | /*! | 
|---|
| 878 | \fn QVector3D operator*(const QQuaternion &quaternion, const QVector3D &vec) | 
|---|
| 879 | \since 5.5 | 
|---|
| 880 | \relates QQuaternion | 
|---|
| 881 |  | 
|---|
| 882 | Rotates a vector \a vec with a quaternion \a quaternion to produce a new vector in 3D space. | 
|---|
| 883 | */ | 
|---|
| 884 |  | 
|---|
| 885 | #endif | 
|---|
| 886 |  | 
|---|
| 887 | /*! | 
|---|
| 888 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) | 
|---|
| 889 | \relates QQuaternion | 
|---|
| 890 |  | 
|---|
| 891 | Returns \c true if \a q1 and \a q2 are equal, allowing for a small | 
|---|
| 892 | fuzziness factor for floating-point comparisons; false otherwise. | 
|---|
| 893 | */ | 
|---|
| 894 |  | 
|---|
| 895 | /*! | 
|---|
| 896 | Interpolates along the shortest spherical path between the | 
|---|
| 897 | rotational positions \a q1 and \a q2.  The value \a t should | 
|---|
| 898 | be between 0 and 1, indicating the spherical distance to travel | 
|---|
| 899 | between \a q1 and \a q2. | 
|---|
| 900 |  | 
|---|
| 901 | If \a t is less than or equal to 0, then \a q1 will be returned. | 
|---|
| 902 | If \a t is greater than or equal to 1, then \a q2 will be returned. | 
|---|
| 903 |  | 
|---|
| 904 | \sa nlerp() | 
|---|
| 905 | */ | 
|---|
| 906 | QQuaternion QQuaternion::slerp | 
|---|
| 907 | (const QQuaternion& q1, const QQuaternion& q2, float t) | 
|---|
| 908 | { | 
|---|
| 909 | // Handle the easy cases first. | 
|---|
| 910 | if (t <= 0.0f) | 
|---|
| 911 | return q1; | 
|---|
| 912 | else if (t >= 1.0f) | 
|---|
| 913 | return q2; | 
|---|
| 914 |  | 
|---|
| 915 | // Determine the angle between the two quaternions. | 
|---|
| 916 | QQuaternion q2b(q2); | 
|---|
| 917 | float dot = QQuaternion::dotProduct(q1, q2); | 
|---|
| 918 | if (dot < 0.0f) { | 
|---|
| 919 | q2b = -q2b; | 
|---|
| 920 | dot = -dot; | 
|---|
| 921 | } | 
|---|
| 922 |  | 
|---|
| 923 | // Get the scale factors.  If they are too small, | 
|---|
| 924 | // then revert to simple linear interpolation. | 
|---|
| 925 | float factor1 = 1.0f - t; | 
|---|
| 926 | float factor2 = t; | 
|---|
| 927 | if ((1.0f - dot) > 0.0000001) { | 
|---|
| 928 | float angle = std::acos(dot); | 
|---|
| 929 | float sinOfAngle = std::sin(angle); | 
|---|
| 930 | if (sinOfAngle > 0.0000001) { | 
|---|
| 931 | factor1 = std::sin((1.0f - t) * angle) / sinOfAngle; | 
|---|
| 932 | factor2 = std::sin(t * angle) / sinOfAngle; | 
|---|
| 933 | } | 
|---|
| 934 | } | 
|---|
| 935 |  | 
|---|
| 936 | // Construct the result quaternion. | 
|---|
| 937 | return q1 * factor1 + q2b * factor2; | 
|---|
| 938 | } | 
|---|
| 939 |  | 
|---|
| 940 | /*! | 
|---|
| 941 | Interpolates along the shortest linear path between the rotational | 
|---|
| 942 | positions \a q1 and \a q2.  The value \a t should be between 0 and 1, | 
|---|
| 943 | indicating the distance to travel between \a q1 and \a q2. | 
|---|
| 944 | The result will be normalized(). | 
|---|
| 945 |  | 
|---|
| 946 | If \a t is less than or equal to 0, then \a q1 will be returned. | 
|---|
| 947 | If \a t is greater than or equal to 1, then \a q2 will be returned. | 
|---|
| 948 |  | 
|---|
| 949 | The nlerp() function is typically faster than slerp() and will | 
|---|
| 950 | give approximate results to spherical interpolation that are | 
|---|
| 951 | good enough for some applications. | 
|---|
| 952 |  | 
|---|
| 953 | \sa slerp() | 
|---|
| 954 | */ | 
|---|
| 955 | QQuaternion QQuaternion::nlerp | 
|---|
| 956 | (const QQuaternion& q1, const QQuaternion& q2, float t) | 
|---|
| 957 | { | 
|---|
| 958 | // Handle the easy cases first. | 
|---|
| 959 | if (t <= 0.0f) | 
|---|
| 960 | return q1; | 
|---|
| 961 | else if (t >= 1.0f) | 
|---|
| 962 | return q2; | 
|---|
| 963 |  | 
|---|
| 964 | // Determine the angle between the two quaternions. | 
|---|
| 965 | QQuaternion q2b(q2); | 
|---|
| 966 | float dot = QQuaternion::dotProduct(q1, q2); | 
|---|
| 967 | if (dot < 0.0f) | 
|---|
| 968 | q2b = -q2b; | 
|---|
| 969 |  | 
|---|
| 970 | // Perform the linear interpolation. | 
|---|
| 971 | return (q1 * (1.0f - t) + q2b * t).normalized(); | 
|---|
| 972 | } | 
|---|
| 973 |  | 
|---|
| 974 | /*! | 
|---|
| 975 | Returns the quaternion as a QVariant. | 
|---|
| 976 | */ | 
|---|
| 977 | QQuaternion::operator QVariant() const | 
|---|
| 978 | { | 
|---|
| 979 | return QVariant::fromValue(*this); | 
|---|
| 980 | } | 
|---|
| 981 |  | 
|---|
| 982 | #ifndef QT_NO_DEBUG_STREAM | 
|---|
| 983 |  | 
|---|
| 984 | QDebug operator<<(QDebug dbg, const QQuaternion &q) | 
|---|
| 985 | { | 
|---|
| 986 | QDebugStateSaver saver(dbg); | 
|---|
| 987 | dbg.nospace() << "QQuaternion(scalar:"<< q.scalar() | 
|---|
| 988 | << ", vector:("<< q.x() << ", " | 
|---|
| 989 | << q.y() << ", "<< q.z() << "))"; | 
|---|
| 990 | return dbg; | 
|---|
| 991 | } | 
|---|
| 992 |  | 
|---|
| 993 | #endif | 
|---|
| 994 |  | 
|---|
| 995 | #ifndef QT_NO_DATASTREAM | 
|---|
| 996 |  | 
|---|
| 997 | /*! | 
|---|
| 998 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | 
|---|
| 999 | \relates QQuaternion | 
|---|
| 1000 |  | 
|---|
| 1001 | Writes the given \a quaternion to the given \a stream and returns a | 
|---|
| 1002 | reference to the stream. | 
|---|
| 1003 |  | 
|---|
| 1004 | \sa {Serializing Qt Data Types} | 
|---|
| 1005 | */ | 
|---|
| 1006 |  | 
|---|
| 1007 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | 
|---|
| 1008 | { | 
|---|
| 1009 | stream << quaternion.scalar() << quaternion.x() | 
|---|
| 1010 | << quaternion.y() << quaternion.z(); | 
|---|
| 1011 | return stream; | 
|---|
| 1012 | } | 
|---|
| 1013 |  | 
|---|
| 1014 | /*! | 
|---|
| 1015 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | 
|---|
| 1016 | \relates QQuaternion | 
|---|
| 1017 |  | 
|---|
| 1018 | Reads a quaternion from the given \a stream into the given \a quaternion | 
|---|
| 1019 | and returns a reference to the stream. | 
|---|
| 1020 |  | 
|---|
| 1021 | \sa {Serializing Qt Data Types} | 
|---|
| 1022 | */ | 
|---|
| 1023 |  | 
|---|
| 1024 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | 
|---|
| 1025 | { | 
|---|
| 1026 | float scalar, x, y, z; | 
|---|
| 1027 | stream >> scalar; | 
|---|
| 1028 | stream >> x; | 
|---|
| 1029 | stream >> y; | 
|---|
| 1030 | stream >> z; | 
|---|
| 1031 | quaternion.setScalar(scalar); | 
|---|
| 1032 | quaternion.setX(x); | 
|---|
| 1033 | quaternion.setY(y); | 
|---|
| 1034 | quaternion.setZ(z); | 
|---|
| 1035 | return stream; | 
|---|
| 1036 | } | 
|---|
| 1037 |  | 
|---|
| 1038 | #endif // QT_NO_DATASTREAM | 
|---|
| 1039 |  | 
|---|
| 1040 | #endif | 
|---|
| 1041 |  | 
|---|
| 1042 | QT_END_NAMESPACE | 
|---|
| 1043 |  | 
|---|