1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qpathclipper_p.h" |
41 | |
42 | #include <private/qbezier_p.h> |
43 | #include <private/qdatabuffer_p.h> |
44 | #include <private/qnumeric_p.h> |
45 | #include <qmath.h> |
46 | #include <algorithm> |
47 | |
48 | /** |
49 | The algorithm is as follows: |
50 | |
51 | 1. Find all intersections between the two paths (including self-intersections), |
52 | and build a winged edge structure of non-intersecting parts. |
53 | 2. While there are more unhandled edges: |
54 | 3. Pick a y-coordinate from an unhandled edge. |
55 | 4. Intersect the horizontal line at y-coordinate with all edges. |
56 | 5. Traverse intersections left to right deciding whether each subpath should be added or not. |
57 | 6. If the subpath should be added, traverse the winged-edge structure and add the edges to |
58 | a separate winged edge structure. |
59 | 7. Mark all edges in subpaths crossing the horizontal line as handled. |
60 | 8. (Optional) Simplify the resulting winged edge structure by merging shared edges. |
61 | 9. Convert the resulting winged edge structure to a painter path. |
62 | */ |
63 | |
64 | #include <qdebug.h> |
65 | |
66 | QT_BEGIN_NAMESPACE |
67 | |
68 | static inline bool fuzzyIsNull(qreal d) |
69 | { |
70 | if (sizeof(qreal) == sizeof(double)) |
71 | return qAbs(d) <= 1e-12; |
72 | else |
73 | return qAbs(d) <= 1e-5f; |
74 | } |
75 | |
76 | static inline bool comparePoints(const QPointF &a, const QPointF &b) |
77 | { |
78 | return fuzzyIsNull(a.x() - b.x()) |
79 | && fuzzyIsNull(a.y() - b.y()); |
80 | } |
81 | |
82 | //#define QDEBUG_CLIPPER |
83 | static qreal dot(const QPointF &a, const QPointF &b) |
84 | { |
85 | return a.x() * b.x() + a.y() * b.y(); |
86 | } |
87 | |
88 | static void normalize(double &x, double &y) |
89 | { |
90 | double reciprocal = 1 / qSqrt(x * x + y * y); |
91 | x *= reciprocal; |
92 | y *= reciprocal; |
93 | } |
94 | |
95 | struct QIntersection |
96 | { |
97 | qreal alphaA; |
98 | qreal alphaB; |
99 | |
100 | QPointF pos; |
101 | }; |
102 | |
103 | class QIntersectionFinder |
104 | { |
105 | public: |
106 | void produceIntersections(QPathSegments &segments); |
107 | bool hasIntersections(const QPathSegments &a, const QPathSegments &b) const; |
108 | |
109 | private: |
110 | bool linesIntersect(const QLineF &a, const QLineF &b) const; |
111 | }; |
112 | |
113 | bool QIntersectionFinder::linesIntersect(const QLineF &a, const QLineF &b) const |
114 | { |
115 | const QPointF p1 = a.p1(); |
116 | const QPointF p2 = a.p2(); |
117 | |
118 | const QPointF q1 = b.p1(); |
119 | const QPointF q2 = b.p2(); |
120 | |
121 | if (comparePoints(p1, p2) || comparePoints(q1, q2)) |
122 | return false; |
123 | |
124 | const bool p1_equals_q1 = comparePoints(p1, q1); |
125 | const bool p2_equals_q2 = comparePoints(p2, q2); |
126 | |
127 | if (p1_equals_q1 && p2_equals_q2) |
128 | return true; |
129 | |
130 | const bool p1_equals_q2 = comparePoints(p1, q2); |
131 | const bool p2_equals_q1 = comparePoints(p2, q1); |
132 | |
133 | if (p1_equals_q2 && p2_equals_q1) |
134 | return true; |
135 | |
136 | const QPointF pDelta = p2 - p1; |
137 | const QPointF qDelta = q2 - q1; |
138 | |
139 | const qreal par = pDelta.x() * qDelta.y() - pDelta.y() * qDelta.x(); |
140 | |
141 | if (qFuzzyIsNull(par)) { |
142 | const QPointF normal(-pDelta.y(), pDelta.x()); |
143 | |
144 | // coinciding? |
145 | if (qFuzzyIsNull(dot(normal, q1 - p1))) { |
146 | const qreal dp = dot(pDelta, pDelta); |
147 | |
148 | const qreal tq1 = dot(pDelta, q1 - p1); |
149 | const qreal tq2 = dot(pDelta, q2 - p1); |
150 | |
151 | if ((tq1 > 0 && tq1 < dp) || (tq2 > 0 && tq2 < dp)) |
152 | return true; |
153 | |
154 | const qreal dq = dot(qDelta, qDelta); |
155 | |
156 | const qreal tp1 = dot(qDelta, p1 - q1); |
157 | const qreal tp2 = dot(qDelta, p2 - q1); |
158 | |
159 | if ((tp1 > 0 && tp1 < dq) || (tp2 > 0 && tp2 < dq)) |
160 | return true; |
161 | } |
162 | |
163 | return false; |
164 | } |
165 | |
166 | const qreal invPar = 1 / par; |
167 | |
168 | const qreal tp = (qDelta.y() * (q1.x() - p1.x()) - |
169 | qDelta.x() * (q1.y() - p1.y())) * invPar; |
170 | |
171 | if (tp < 0 || tp > 1) |
172 | return false; |
173 | |
174 | const qreal tq = (pDelta.y() * (q1.x() - p1.x()) - |
175 | pDelta.x() * (q1.y() - p1.y())) * invPar; |
176 | |
177 | return tq >= 0 && tq <= 1; |
178 | } |
179 | |
180 | bool QIntersectionFinder::hasIntersections(const QPathSegments &a, const QPathSegments &b) const |
181 | { |
182 | if (a.segments() == 0 || b.segments() == 0) |
183 | return false; |
184 | |
185 | const QRectF &rb0 = b.elementBounds(0); |
186 | |
187 | qreal minX = rb0.left(); |
188 | qreal minY = rb0.top(); |
189 | qreal maxX = rb0.right(); |
190 | qreal maxY = rb0.bottom(); |
191 | |
192 | for (int i = 1; i < b.segments(); ++i) { |
193 | const QRectF &r = b.elementBounds(i); |
194 | minX = qMin(minX, r.left()); |
195 | minY = qMin(minY, r.top()); |
196 | maxX = qMax(maxX, r.right()); |
197 | maxY = qMax(maxY, r.bottom()); |
198 | } |
199 | |
200 | QRectF rb(minX, minY, maxX - minX, maxY - minY); |
201 | |
202 | for (int i = 0; i < a.segments(); ++i) { |
203 | const QRectF &r1 = a.elementBounds(i); |
204 | |
205 | if (r1.left() > rb.right() || rb.left() > r1.right()) |
206 | continue; |
207 | if (r1.top() > rb.bottom() || rb.top() > r1.bottom()) |
208 | continue; |
209 | |
210 | for (int j = 0; j < b.segments(); ++j) { |
211 | const QRectF &r2 = b.elementBounds(j); |
212 | |
213 | if (r1.left() > r2.right() || r2.left() > r1.right()) |
214 | continue; |
215 | if (r1.top() > r2.bottom() || r2.top() > r1.bottom()) |
216 | continue; |
217 | |
218 | if (linesIntersect(a.lineAt(i), b.lineAt(j))) |
219 | return true; |
220 | } |
221 | } |
222 | |
223 | return false; |
224 | } |
225 | |
226 | namespace { |
227 | struct TreeNode |
228 | { |
229 | qreal splitLeft; |
230 | qreal splitRight; |
231 | bool leaf; |
232 | |
233 | int lowestLeftIndex; |
234 | int lowestRightIndex; |
235 | |
236 | union { |
237 | struct { |
238 | int first; |
239 | int last; |
240 | } interval; |
241 | struct { |
242 | int left; |
243 | int right; |
244 | } children; |
245 | } index; |
246 | }; |
247 | |
248 | struct RectF |
249 | { |
250 | qreal x1; |
251 | qreal y1; |
252 | qreal x2; |
253 | qreal y2; |
254 | }; |
255 | |
256 | class SegmentTree |
257 | { |
258 | public: |
259 | SegmentTree(QPathSegments &segments); |
260 | |
261 | void produceIntersections(int segment); |
262 | |
263 | private: |
264 | TreeNode buildTree(int first, int last, int depth, const RectF &bounds); |
265 | |
266 | void produceIntersectionsLeaf(const TreeNode &node, int segment); |
267 | void produceIntersections(const TreeNode &node, int segment, const RectF &segmentBounds, const RectF &nodeBounds, int axis); |
268 | void intersectLines(const QLineF &a, const QLineF &b, QDataBuffer<QIntersection> &intersections); |
269 | |
270 | QPathSegments &m_segments; |
271 | QList<int> m_index; |
272 | |
273 | RectF m_bounds; |
274 | |
275 | QList<TreeNode> m_tree; |
276 | QDataBuffer<QIntersection> m_intersections; |
277 | }; |
278 | |
279 | SegmentTree::SegmentTree(QPathSegments &segments) |
280 | : m_segments(segments), |
281 | m_intersections(0) |
282 | { |
283 | m_bounds.x1 = qt_inf(); |
284 | m_bounds.y1 = qt_inf(); |
285 | m_bounds.x2 = -qt_inf(); |
286 | m_bounds.y2 = -qt_inf(); |
287 | |
288 | m_index.resize(m_segments.segments()); |
289 | |
290 | for (int i = 0; i < m_index.size(); ++i) { |
291 | m_index[i] = i; |
292 | |
293 | const QRectF &segmentBounds = m_segments.elementBounds(i); |
294 | |
295 | if (segmentBounds.left() < m_bounds.x1) |
296 | m_bounds.x1 = segmentBounds.left(); |
297 | if (segmentBounds.top() < m_bounds.y1) |
298 | m_bounds.y1 = segmentBounds.top(); |
299 | if (segmentBounds.right() > m_bounds.x2) |
300 | m_bounds.x2 = segmentBounds.right(); |
301 | if (segmentBounds.bottom() > m_bounds.y2) |
302 | m_bounds.y2 = segmentBounds.bottom(); |
303 | } |
304 | |
305 | m_tree.resize(1); |
306 | |
307 | TreeNode root = buildTree(0, m_index.size(), 0, m_bounds); |
308 | m_tree[0] = root; |
309 | } |
310 | |
311 | static inline qreal coordinate(const QPointF &pos, int axis) |
312 | { |
313 | return axis == 0 ? pos.x() : pos.y(); |
314 | } |
315 | |
316 | TreeNode SegmentTree::buildTree(int first, int last, int depth, const RectF &bounds) |
317 | { |
318 | if (depth >= 24 || (last - first) <= 10) { |
319 | TreeNode node = {}; |
320 | node.leaf = true; |
321 | node.index.interval.first = first; |
322 | node.index.interval.last = last; |
323 | |
324 | return node; |
325 | } |
326 | |
327 | int splitAxis = (depth & 1); |
328 | |
329 | TreeNode node; |
330 | node.leaf = false; |
331 | |
332 | qreal split = 0.5f * ((&bounds.x1)[splitAxis] + (&bounds.x2)[splitAxis]); |
333 | |
334 | node.splitLeft = (&bounds.x1)[splitAxis]; |
335 | node.splitRight = (&bounds.x2)[splitAxis]; |
336 | |
337 | node.lowestLeftIndex = INT_MAX; |
338 | node.lowestRightIndex = INT_MAX; |
339 | |
340 | const int treeSize = m_tree.size(); |
341 | |
342 | node.index.children.left = treeSize; |
343 | node.index.children.right = treeSize + 1; |
344 | |
345 | m_tree.resize(treeSize + 2); |
346 | |
347 | int l = first; |
348 | int r = last - 1; |
349 | |
350 | // partition into left and right sets |
351 | while (l <= r) { |
352 | const int index = m_index.at(l); |
353 | const QRectF &segmentBounds = m_segments.elementBounds(index); |
354 | |
355 | qreal lowCoordinate = coordinate(segmentBounds.topLeft(), splitAxis); |
356 | |
357 | if (coordinate(segmentBounds.center(), splitAxis) < split) { |
358 | qreal highCoordinate = coordinate(segmentBounds.bottomRight(), splitAxis); |
359 | if (highCoordinate > node.splitLeft) |
360 | node.splitLeft = highCoordinate; |
361 | if (index < node.lowestLeftIndex) |
362 | node.lowestLeftIndex = index; |
363 | ++l; |
364 | } else { |
365 | if (lowCoordinate < node.splitRight) |
366 | node.splitRight = lowCoordinate; |
367 | if (index < node.lowestRightIndex) |
368 | node.lowestRightIndex = index; |
369 | qSwap(m_index[l], m_index[r]); |
370 | --r; |
371 | } |
372 | } |
373 | |
374 | RectF lbounds = bounds; |
375 | (&lbounds.x2)[splitAxis] = node.splitLeft; |
376 | |
377 | RectF rbounds = bounds; |
378 | (&rbounds.x1)[splitAxis] = node.splitRight; |
379 | |
380 | TreeNode left = buildTree(first, l, depth + 1, lbounds); |
381 | m_tree[node.index.children.left] = left; |
382 | |
383 | TreeNode right = buildTree(l, last, depth + 1, rbounds); |
384 | m_tree[node.index.children.right] = right; |
385 | |
386 | return node; |
387 | } |
388 | |
389 | void SegmentTree::intersectLines(const QLineF &a, const QLineF &b, QDataBuffer<QIntersection> &intersections) |
390 | { |
391 | const QPointF p1 = a.p1(); |
392 | const QPointF p2 = a.p2(); |
393 | |
394 | const QPointF q1 = b.p1(); |
395 | const QPointF q2 = b.p2(); |
396 | |
397 | if (comparePoints(p1, p2) || comparePoints(q1, q2)) |
398 | return; |
399 | |
400 | const bool p1_equals_q1 = comparePoints(p1, q1); |
401 | const bool p2_equals_q2 = comparePoints(p2, q2); |
402 | |
403 | if (p1_equals_q1 && p2_equals_q2) |
404 | return; |
405 | |
406 | const bool p1_equals_q2 = comparePoints(p1, q2); |
407 | const bool p2_equals_q1 = comparePoints(p2, q1); |
408 | |
409 | if (p1_equals_q2 && p2_equals_q1) |
410 | return; |
411 | |
412 | const QPointF pDelta = p2 - p1; |
413 | const QPointF qDelta = q2 - q1; |
414 | |
415 | const qreal par = pDelta.x() * qDelta.y() - pDelta.y() * qDelta.x(); |
416 | |
417 | if (qFuzzyIsNull(par)) { |
418 | const QPointF normal(-pDelta.y(), pDelta.x()); |
419 | |
420 | // coinciding? |
421 | if (qFuzzyIsNull(dot(normal, q1 - p1))) { |
422 | const qreal invDp = 1 / dot(pDelta, pDelta); |
423 | |
424 | const qreal tq1 = dot(pDelta, q1 - p1) * invDp; |
425 | const qreal tq2 = dot(pDelta, q2 - p1) * invDp; |
426 | |
427 | if (tq1 > 0 && tq1 < 1) { |
428 | QIntersection intersection; |
429 | intersection.alphaA = tq1; |
430 | intersection.alphaB = 0; |
431 | intersection.pos = q1; |
432 | intersections.add(intersection); |
433 | } |
434 | |
435 | if (tq2 > 0 && tq2 < 1) { |
436 | QIntersection intersection; |
437 | intersection.alphaA = tq2; |
438 | intersection.alphaB = 1; |
439 | intersection.pos = q2; |
440 | intersections.add(intersection); |
441 | } |
442 | |
443 | const qreal invDq = 1 / dot(qDelta, qDelta); |
444 | |
445 | const qreal tp1 = dot(qDelta, p1 - q1) * invDq; |
446 | const qreal tp2 = dot(qDelta, p2 - q1) * invDq; |
447 | |
448 | if (tp1 > 0 && tp1 < 1) { |
449 | QIntersection intersection; |
450 | intersection.alphaA = 0; |
451 | intersection.alphaB = tp1; |
452 | intersection.pos = p1; |
453 | intersections.add(intersection); |
454 | } |
455 | |
456 | if (tp2 > 0 && tp2 < 1) { |
457 | QIntersection intersection; |
458 | intersection.alphaA = 1; |
459 | intersection.alphaB = tp2; |
460 | intersection.pos = p2; |
461 | intersections.add(intersection); |
462 | } |
463 | } |
464 | |
465 | return; |
466 | } |
467 | |
468 | // if the lines are not parallel and share a common end point, then they |
469 | // don't intersect |
470 | if (p1_equals_q1 || p1_equals_q2 || p2_equals_q1 || p2_equals_q2) |
471 | return; |
472 | |
473 | |
474 | const qreal tp = (qDelta.y() * (q1.x() - p1.x()) - |
475 | qDelta.x() * (q1.y() - p1.y())) / par; |
476 | const qreal tq = (pDelta.y() * (q1.x() - p1.x()) - |
477 | pDelta.x() * (q1.y() - p1.y())) / par; |
478 | |
479 | if (tp<0 || tp>1 || tq<0 || tq>1) |
480 | return; |
481 | |
482 | const bool p_zero = qFuzzyIsNull(tp); |
483 | const bool p_one = qFuzzyIsNull(tp - 1); |
484 | |
485 | const bool q_zero = qFuzzyIsNull(tq); |
486 | const bool q_one = qFuzzyIsNull(tq - 1); |
487 | |
488 | if ((q_zero || q_one) && (p_zero || p_one)) |
489 | return; |
490 | |
491 | QPointF pt; |
492 | if (p_zero) { |
493 | pt = p1; |
494 | } else if (p_one) { |
495 | pt = p2; |
496 | } else if (q_zero) { |
497 | pt = q1; |
498 | } else if (q_one) { |
499 | pt = q2; |
500 | } else { |
501 | pt = q1 + (q2 - q1) * tq; |
502 | } |
503 | |
504 | QIntersection intersection; |
505 | intersection.alphaA = tp; |
506 | intersection.alphaB = tq; |
507 | intersection.pos = pt; |
508 | intersections.add(intersection); |
509 | } |
510 | |
511 | void SegmentTree::produceIntersections(int segment) |
512 | { |
513 | const QRectF &segmentBounds = m_segments.elementBounds(segment); |
514 | |
515 | RectF sbounds; |
516 | sbounds.x1 = segmentBounds.left(); |
517 | sbounds.y1 = segmentBounds.top(); |
518 | sbounds.x2 = segmentBounds.right(); |
519 | sbounds.y2 = segmentBounds.bottom(); |
520 | |
521 | produceIntersections(m_tree.at(0), segment, sbounds, m_bounds, 0); |
522 | } |
523 | |
524 | void SegmentTree::produceIntersectionsLeaf(const TreeNode &node, int segment) |
525 | { |
526 | const QRectF &r1 = m_segments.elementBounds(segment); |
527 | const QLineF lineA = m_segments.lineAt(segment); |
528 | |
529 | for (int i = node.index.interval.first; i < node.index.interval.last; ++i) { |
530 | const int other = m_index.at(i); |
531 | if (other >= segment) |
532 | continue; |
533 | |
534 | const QRectF &r2 = m_segments.elementBounds(other); |
535 | |
536 | if (r1.left() > r2.right() || r2.left() > r1.right()) |
537 | continue; |
538 | if (r1.top() > r2.bottom() || r2.top() > r1.bottom()) |
539 | continue; |
540 | |
541 | m_intersections.reset(); |
542 | |
543 | const QLineF lineB = m_segments.lineAt(other); |
544 | |
545 | intersectLines(lineA, lineB, m_intersections); |
546 | |
547 | for (int k = 0; k < m_intersections.size(); ++k) { |
548 | QPathSegments::Intersection i_isect, j_isect; |
549 | i_isect.t = m_intersections.at(k).alphaA; |
550 | j_isect.t = m_intersections.at(k).alphaB; |
551 | |
552 | i_isect.vertex = j_isect.vertex = m_segments.addPoint(m_intersections.at(k).pos); |
553 | |
554 | i_isect.next = 0; |
555 | j_isect.next = 0; |
556 | |
557 | m_segments.addIntersection(segment, i_isect); |
558 | m_segments.addIntersection(other, j_isect); |
559 | } |
560 | } |
561 | } |
562 | |
563 | void SegmentTree::produceIntersections(const TreeNode &node, int segment, const RectF &segmentBounds, const RectF &nodeBounds, int axis) |
564 | { |
565 | if (node.leaf) { |
566 | produceIntersectionsLeaf(node, segment); |
567 | return; |
568 | } |
569 | |
570 | RectF lbounds = nodeBounds; |
571 | (&lbounds.x2)[axis] = node.splitLeft; |
572 | |
573 | RectF rbounds = nodeBounds; |
574 | (&rbounds.x1)[axis] = node.splitRight; |
575 | |
576 | if (segment > node.lowestLeftIndex && (&segmentBounds.x1)[axis] <= node.splitLeft) |
577 | produceIntersections(m_tree.at(node.index.children.left), segment, segmentBounds, lbounds, !axis); |
578 | |
579 | if (segment > node.lowestRightIndex && (&segmentBounds.x2)[axis] >= node.splitRight) |
580 | produceIntersections(m_tree.at(node.index.children.right), segment, segmentBounds, rbounds, !axis); |
581 | } |
582 | |
583 | } |
584 | |
585 | void QIntersectionFinder::produceIntersections(QPathSegments &segments) |
586 | { |
587 | SegmentTree tree(segments); |
588 | |
589 | for (int i = 0; i < segments.segments(); ++i) |
590 | tree.produceIntersections(i); |
591 | } |
592 | |
593 | class QKdPointTree |
594 | { |
595 | public: |
596 | enum Traversal { |
597 | TraverseBoth, |
598 | TraverseLeft, |
599 | TraverseRight, |
600 | TraverseNone |
601 | }; |
602 | |
603 | struct Node { |
604 | int point; |
605 | int id; |
606 | |
607 | Node *left; |
608 | Node *right; |
609 | }; |
610 | |
611 | QKdPointTree(const QPathSegments &segments) |
612 | : m_segments(&segments) |
613 | , m_nodes(m_segments->points()) |
614 | , m_id(0) |
615 | { |
616 | m_nodes.resize(m_segments->points()); |
617 | |
618 | for (int i = 0; i < m_nodes.size(); ++i) { |
619 | m_nodes.at(i).point = i; |
620 | m_nodes.at(i).id = -1; |
621 | } |
622 | |
623 | m_rootNode = build(0, m_nodes.size()); |
624 | } |
625 | |
626 | int build(int begin, int end, int depth = 0); |
627 | |
628 | Node *rootNode() |
629 | { |
630 | return &m_nodes.at(m_rootNode); |
631 | } |
632 | |
633 | inline int nextId() |
634 | { |
635 | return m_id++; |
636 | } |
637 | |
638 | private: |
639 | const QPathSegments *m_segments; |
640 | QDataBuffer<Node> m_nodes; |
641 | |
642 | int m_rootNode; |
643 | int m_id; |
644 | }; |
645 | |
646 | template <typename T> |
647 | void qTraverseKdPointTree(QKdPointTree::Node &node, T &t, int depth = 0) |
648 | { |
649 | QKdPointTree::Traversal status = t(node, depth); |
650 | |
651 | const bool traverseRight = (status == QKdPointTree::TraverseBoth || status == QKdPointTree::TraverseRight); |
652 | const bool traverseLeft = (status == QKdPointTree::TraverseBoth || status == QKdPointTree::TraverseLeft); |
653 | |
654 | if (traverseLeft && node.left) |
655 | QT_PREPEND_NAMESPACE(qTraverseKdPointTree<T>)(*node.left, t, depth + 1); |
656 | |
657 | if (traverseRight && node.right) |
658 | QT_PREPEND_NAMESPACE(qTraverseKdPointTree<T>)(*node.right, t, depth + 1); |
659 | } |
660 | |
661 | static inline qreal component(const QPointF &point, unsigned int i) |
662 | { |
663 | Q_ASSERT(i < 2); |
664 | const qreal components[] = { point.x(), point.y() }; |
665 | return components[i]; |
666 | } |
667 | |
668 | int QKdPointTree::build(int begin, int end, int depth) |
669 | { |
670 | Q_ASSERT(end > begin); |
671 | |
672 | const qreal pivot = component(m_segments->pointAt(m_nodes.at(begin).point), depth & 1); |
673 | |
674 | int first = begin + 1; |
675 | int last = end - 1; |
676 | |
677 | while (first <= last) { |
678 | const qreal value = component(m_segments->pointAt(m_nodes.at(first).point), depth & 1); |
679 | |
680 | if (value < pivot) |
681 | ++first; |
682 | else { |
683 | qSwap(m_nodes.at(first), m_nodes.at(last)); |
684 | --last; |
685 | } |
686 | } |
687 | |
688 | qSwap(m_nodes.at(last), m_nodes.at(begin)); |
689 | |
690 | if (last > begin) |
691 | m_nodes.at(last).left = &m_nodes.at(build(begin, last, depth + 1)); |
692 | else |
693 | m_nodes.at(last).left = nullptr; |
694 | |
695 | if (last + 1 < end) |
696 | m_nodes.at(last).right = &m_nodes.at(build(last + 1, end, depth + 1)); |
697 | else |
698 | m_nodes.at(last).right = nullptr; |
699 | |
700 | return last; |
701 | } |
702 | |
703 | class QKdPointFinder |
704 | { |
705 | public: |
706 | QKdPointFinder(int point, const QPathSegments &segments, QKdPointTree &tree) |
707 | : m_result(-1) |
708 | , m_segments(&segments) |
709 | , m_tree(&tree) |
710 | { |
711 | pointComponents[0] = segments.pointAt(point).x(); |
712 | pointComponents[1] = segments.pointAt(point).y(); |
713 | } |
714 | |
715 | inline QKdPointTree::Traversal operator()(QKdPointTree::Node &node, int depth) |
716 | { |
717 | if (m_result != -1) |
718 | return QKdPointTree::TraverseNone; |
719 | |
720 | const QPointF &nodePoint = m_segments->pointAt(node.point); |
721 | |
722 | const qreal pivotComponents[] = { nodePoint.x(), nodePoint.y() }; |
723 | |
724 | const qreal pivot = pivotComponents[depth & 1]; |
725 | const qreal value = pointComponents[depth & 1]; |
726 | |
727 | if (fuzzyIsNull(pivot - value)) { |
728 | const qreal pivot2 = pivotComponents[(depth + 1) & 1]; |
729 | const qreal value2 = pointComponents[(depth + 1) & 1]; |
730 | |
731 | if (fuzzyIsNull(pivot2 - value2)) { |
732 | if (node.id < 0) |
733 | node.id = m_tree->nextId(); |
734 | |
735 | m_result = node.id; |
736 | return QKdPointTree::TraverseNone; |
737 | } else |
738 | return QKdPointTree::TraverseBoth; |
739 | } else if (value < pivot) { |
740 | return QKdPointTree::TraverseLeft; |
741 | } else { |
742 | return QKdPointTree::TraverseRight; |
743 | } |
744 | } |
745 | |
746 | int result() const |
747 | { |
748 | return m_result; |
749 | } |
750 | |
751 | private: |
752 | qreal pointComponents[2]; |
753 | int m_result; |
754 | const QPathSegments *m_segments; |
755 | QKdPointTree *m_tree; |
756 | }; |
757 | |
758 | // merge all points that are within qFuzzyCompare range of each other |
759 | void QPathSegments::mergePoints() |
760 | { |
761 | QKdPointTree tree(*this); |
762 | |
763 | if (tree.rootNode()) { |
764 | QDataBuffer<QPointF> mergedPoints(points()); |
765 | QDataBuffer<int> pointIndices(points()); |
766 | |
767 | for (int i = 0; i < points(); ++i) { |
768 | QKdPointFinder finder(i, *this, tree); |
769 | QT_PREPEND_NAMESPACE(qTraverseKdPointTree<QKdPointFinder>)(*tree.rootNode(), finder); |
770 | |
771 | Q_ASSERT(finder.result() != -1); |
772 | |
773 | if (finder.result() >= mergedPoints.size()) |
774 | mergedPoints << m_points.at(i); |
775 | |
776 | pointIndices << finder.result(); |
777 | } |
778 | |
779 | for (int i = 0; i < m_segments.size(); ++i) { |
780 | m_segments.at(i).va = pointIndices.at(m_segments.at(i).va); |
781 | m_segments.at(i).vb = pointIndices.at(m_segments.at(i).vb); |
782 | } |
783 | |
784 | for (int i = 0; i < m_intersections.size(); ++i) |
785 | m_intersections.at(i).vertex = pointIndices.at(m_intersections.at(i).vertex); |
786 | |
787 | m_points.swap(mergedPoints); |
788 | } |
789 | } |
790 | |
791 | void QWingedEdge::intersectAndAdd() |
792 | { |
793 | QIntersectionFinder finder; |
794 | finder.produceIntersections(m_segments); |
795 | |
796 | m_segments.mergePoints(); |
797 | |
798 | for (int i = 0; i < m_segments.points(); ++i) |
799 | addVertex(m_segments.pointAt(i)); |
800 | |
801 | QDataBuffer<QPathSegments::Intersection> intersections(m_segments.segments()); |
802 | for (int i = 0; i < m_segments.segments(); ++i) { |
803 | intersections.reset(); |
804 | |
805 | int pathId = m_segments.pathId(i); |
806 | |
807 | const QPathSegments::Intersection *isect = m_segments.intersectionAt(i); |
808 | while (isect) { |
809 | intersections << *isect; |
810 | |
811 | if (isect->next) { |
812 | isect += isect->next; |
813 | } else { |
814 | isect = nullptr; |
815 | } |
816 | } |
817 | |
818 | std::sort(intersections.data(), intersections.data() + intersections.size()); |
819 | |
820 | int first = m_segments.segmentAt(i).va; |
821 | int second = m_segments.segmentAt(i).vb; |
822 | |
823 | int last = first; |
824 | for (int j = 0; j < intersections.size(); ++j) { |
825 | const QPathSegments::Intersection &isect = intersections.at(j); |
826 | |
827 | QPathEdge *ep = edge(addEdge(last, isect.vertex)); |
828 | |
829 | if (ep) { |
830 | const int dir = m_segments.pointAt(last).y() < m_segments.pointAt(isect.vertex).y() ? 1 : -1; |
831 | if (pathId == 0) |
832 | ep->windingA += dir; |
833 | else |
834 | ep->windingB += dir; |
835 | } |
836 | |
837 | last = isect.vertex; |
838 | } |
839 | |
840 | QPathEdge *ep = edge(addEdge(last, second)); |
841 | |
842 | if (ep) { |
843 | const int dir = m_segments.pointAt(last).y() < m_segments.pointAt(second).y() ? 1 : -1; |
844 | if (pathId == 0) |
845 | ep->windingA += dir; |
846 | else |
847 | ep->windingB += dir; |
848 | } |
849 | } |
850 | } |
851 | |
852 | QWingedEdge::QWingedEdge() : |
853 | m_edges(0), |
854 | m_vertices(0), |
855 | m_segments(0) |
856 | { |
857 | } |
858 | |
859 | QWingedEdge::QWingedEdge(const QPainterPath &subject, const QPainterPath &clip) : |
860 | m_edges(subject.elementCount()), |
861 | m_vertices(subject.elementCount()), |
862 | m_segments(subject.elementCount()) |
863 | { |
864 | m_segments.setPath(subject); |
865 | m_segments.addPath(clip); |
866 | |
867 | intersectAndAdd(); |
868 | } |
869 | |
870 | QWingedEdge::TraversalStatus QWingedEdge::next(const QWingedEdge::TraversalStatus &status) const |
871 | { |
872 | const QPathEdge *sp = edge(status.edge); |
873 | Q_ASSERT(sp); |
874 | |
875 | TraversalStatus result; |
876 | result.edge = sp->next(status.traversal, status.direction); |
877 | result.traversal = status.traversal; |
878 | result.direction = status.direction; |
879 | |
880 | const QPathEdge *rp = edge(result.edge); |
881 | Q_ASSERT(rp); |
882 | |
883 | if (sp->vertex(status.direction) == rp->vertex(status.direction)) |
884 | result.flip(); |
885 | |
886 | return result; |
887 | } |
888 | |
889 | static bool isLine(const QBezier &bezier) |
890 | { |
891 | const bool equal_1_2 = comparePoints(bezier.pt1(), bezier.pt2()); |
892 | const bool equal_2_3 = comparePoints(bezier.pt2(), bezier.pt3()); |
893 | const bool equal_3_4 = comparePoints(bezier.pt3(), bezier.pt4()); |
894 | |
895 | // point? |
896 | if (equal_1_2 && equal_2_3 && equal_3_4) |
897 | return true; |
898 | |
899 | if (comparePoints(bezier.pt1(), bezier.pt4())) |
900 | return equal_1_2 || equal_3_4; |
901 | |
902 | return (equal_1_2 && equal_3_4) || (equal_1_2 && equal_2_3) || (equal_2_3 && equal_3_4); |
903 | } |
904 | |
905 | void QPathSegments::setPath(const QPainterPath &path) |
906 | { |
907 | m_points.reset(); |
908 | m_intersections.reset(); |
909 | m_segments.reset(); |
910 | |
911 | m_pathId = 0; |
912 | |
913 | addPath(path); |
914 | } |
915 | |
916 | void QPathSegments::addPath(const QPainterPath &path) |
917 | { |
918 | int firstSegment = m_segments.size(); |
919 | |
920 | bool hasMoveTo = false; |
921 | int lastMoveTo = 0; |
922 | int last = 0; |
923 | for (int i = 0; i < path.elementCount(); ++i) { |
924 | int current = m_points.size(); |
925 | |
926 | QPointF currentPoint; |
927 | if (path.elementAt(i).type == QPainterPath::CurveToElement) |
928 | currentPoint = path.elementAt(i+2); |
929 | else |
930 | currentPoint = path.elementAt(i); |
931 | |
932 | if (i > 0 && comparePoints(m_points.at(lastMoveTo), currentPoint)) |
933 | current = lastMoveTo; |
934 | else |
935 | m_points << currentPoint; |
936 | |
937 | switch (path.elementAt(i).type) { |
938 | case QPainterPath::MoveToElement: |
939 | if (hasMoveTo && last != lastMoveTo && !comparePoints(m_points.at(last), m_points.at(lastMoveTo))) |
940 | m_segments << Segment(m_pathId, last, lastMoveTo); |
941 | hasMoveTo = true; |
942 | last = lastMoveTo = current; |
943 | break; |
944 | case QPainterPath::LineToElement: |
945 | m_segments << Segment(m_pathId, last, current); |
946 | last = current; |
947 | break; |
948 | case QPainterPath::CurveToElement: |
949 | { |
950 | QBezier bezier = QBezier::fromPoints(m_points.at(last), path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2)); |
951 | if (isLine(bezier)) { |
952 | m_segments << Segment(m_pathId, last, current); |
953 | } else { |
954 | QRectF bounds = bezier.bounds(); |
955 | |
956 | // threshold based on similar algorithm as in qtriangulatingstroker.cpp |
957 | int threshold = qMin<float>(64, qMax(bounds.width(), bounds.height()) * (2 * qreal(3.14) / 6)); |
958 | |
959 | if (threshold < 3) threshold = 3; |
960 | qreal one_over_threshold_minus_1 = qreal(1) / (threshold - 1); |
961 | |
962 | for (int t = 1; t < threshold - 1; ++t) { |
963 | currentPoint = bezier.pointAt(t * one_over_threshold_minus_1); |
964 | |
965 | int index = m_points.size(); |
966 | m_segments << Segment(m_pathId, last, index); |
967 | last = index; |
968 | |
969 | m_points << currentPoint; |
970 | } |
971 | |
972 | m_segments << Segment(m_pathId, last, current); |
973 | } |
974 | } |
975 | last = current; |
976 | i += 2; |
977 | break; |
978 | default: |
979 | Q_ASSERT(false); |
980 | break; |
981 | } |
982 | } |
983 | |
984 | if (hasMoveTo && last != lastMoveTo && !comparePoints(m_points.at(last), m_points.at(lastMoveTo))) |
985 | m_segments << Segment(m_pathId, last, lastMoveTo); |
986 | |
987 | for (int i = firstSegment; i < m_segments.size(); ++i) { |
988 | const QLineF line = lineAt(i); |
989 | |
990 | qreal x1 = line.p1().x(); |
991 | qreal y1 = line.p1().y(); |
992 | qreal x2 = line.p2().x(); |
993 | qreal y2 = line.p2().y(); |
994 | |
995 | if (x2 < x1) |
996 | qSwap(x1, x2); |
997 | if (y2 < y1) |
998 | qSwap(y1, y2); |
999 | |
1000 | m_segments.at(i).bounds = QRectF(x1, y1, x2 - x1, y2 - y1); |
1001 | } |
1002 | |
1003 | ++m_pathId; |
1004 | } |
1005 | |
1006 | qreal QWingedEdge::delta(int vertex, int a, int b) const |
1007 | { |
1008 | const QPathEdge *ap = edge(a); |
1009 | const QPathEdge *bp = edge(b); |
1010 | |
1011 | double a_angle = ap->angle; |
1012 | double b_angle = bp->angle; |
1013 | |
1014 | if (vertex == ap->second) |
1015 | a_angle = ap->invAngle; |
1016 | |
1017 | if (vertex == bp->second) |
1018 | b_angle = bp->invAngle; |
1019 | |
1020 | double result = b_angle - a_angle; |
1021 | |
1022 | if (result >= 128.) |
1023 | return result - 128.; |
1024 | else if (result < 0) |
1025 | return result + 128.; |
1026 | else |
1027 | return result; |
1028 | } |
1029 | |
1030 | QWingedEdge::TraversalStatus QWingedEdge::findInsertStatus(int vi, int ei) const |
1031 | { |
1032 | const QPathVertex *vp = vertex(vi); |
1033 | |
1034 | Q_ASSERT(vp); |
1035 | Q_ASSERT(ei >= 0); |
1036 | Q_ASSERT(vp->edge >= 0); |
1037 | |
1038 | int position = vp->edge; |
1039 | qreal d = 128.; |
1040 | |
1041 | TraversalStatus status; |
1042 | status.direction = edge(vp->edge)->directionTo(vi); |
1043 | status.traversal = QPathEdge::RightTraversal; |
1044 | status.edge = vp->edge; |
1045 | |
1046 | #ifdef QDEBUG_CLIPPER |
1047 | const QPathEdge *ep = edge(ei); |
1048 | qDebug() << "Finding insert status for edge" << ei << "at vertex" << QPointF(*vp) << ", angles: " << ep->angle << ep->invAngle; |
1049 | #endif |
1050 | |
1051 | do { |
1052 | status = next(status); |
1053 | status.flip(); |
1054 | |
1055 | Q_ASSERT(edge(status.edge)->vertex(status.direction) == vi); |
1056 | qreal d2 = delta(vi, ei, status.edge); |
1057 | |
1058 | #ifdef QDEBUG_CLIPPER |
1059 | const QPathEdge *op = edge(status.edge); |
1060 | qDebug() << "Delta to edge" << status.edge << d2 << ", angles: " << op->angle << op->invAngle; |
1061 | #endif |
1062 | |
1063 | if (d2 < d) { |
1064 | position = status.edge; |
1065 | d = d2; |
1066 | } |
1067 | } while (status.edge != vp->edge); |
1068 | |
1069 | status.traversal = QPathEdge::LeftTraversal; |
1070 | status.direction = QPathEdge::Forward; |
1071 | status.edge = position; |
1072 | |
1073 | if (edge(status.edge)->vertex(status.direction) != vi) |
1074 | status.flip(); |
1075 | |
1076 | #ifdef QDEBUG_CLIPPER |
1077 | qDebug() << "Inserting edge" << ei << "to" << (status.traversal == QPathEdge::LeftTraversal ? "left" : "right" ) << "of edge" << status.edge; |
1078 | #endif |
1079 | |
1080 | Q_ASSERT(edge(status.edge)->vertex(status.direction) == vi); |
1081 | |
1082 | return status; |
1083 | } |
1084 | |
1085 | void QWingedEdge::removeEdge(int ei) |
1086 | { |
1087 | QPathEdge *ep = edge(ei); |
1088 | |
1089 | TraversalStatus status; |
1090 | status.direction = QPathEdge::Forward; |
1091 | status.traversal = QPathEdge::RightTraversal; |
1092 | status.edge = ei; |
1093 | |
1094 | TraversalStatus forwardRight = next(status); |
1095 | forwardRight.flipDirection(); |
1096 | |
1097 | status.traversal = QPathEdge::LeftTraversal; |
1098 | TraversalStatus forwardLeft = next(status); |
1099 | forwardLeft.flipDirection(); |
1100 | |
1101 | status.direction = QPathEdge::Backward; |
1102 | TraversalStatus backwardLeft = next(status); |
1103 | backwardLeft.flipDirection(); |
1104 | |
1105 | status.traversal = QPathEdge::RightTraversal; |
1106 | TraversalStatus backwardRight = next(status); |
1107 | backwardRight.flipDirection(); |
1108 | |
1109 | edge(forwardRight.edge)->setNext(forwardRight.traversal, forwardRight.direction, forwardLeft.edge); |
1110 | edge(forwardLeft.edge)->setNext(forwardLeft.traversal, forwardLeft.direction, forwardRight.edge); |
1111 | |
1112 | edge(backwardRight.edge)->setNext(backwardRight.traversal, backwardRight.direction, backwardLeft.edge); |
1113 | edge(backwardLeft.edge)->setNext(backwardLeft.traversal, backwardLeft.direction, backwardRight.edge); |
1114 | |
1115 | ep->setNext(QPathEdge::Forward, ei); |
1116 | ep->setNext(QPathEdge::Backward, ei); |
1117 | |
1118 | QPathVertex *a = vertex(ep->first); |
1119 | QPathVertex *b = vertex(ep->second); |
1120 | |
1121 | a->edge = backwardRight.edge; |
1122 | b->edge = forwardRight.edge; |
1123 | } |
1124 | |
1125 | static int commonEdge(const QWingedEdge &list, int a, int b) |
1126 | { |
1127 | const QPathVertex *ap = list.vertex(a); |
1128 | Q_ASSERT(ap); |
1129 | |
1130 | const QPathVertex *bp = list.vertex(b); |
1131 | Q_ASSERT(bp); |
1132 | |
1133 | if (ap->edge < 0 || bp->edge < 0) |
1134 | return -1; |
1135 | |
1136 | QWingedEdge::TraversalStatus status; |
1137 | status.edge = ap->edge; |
1138 | status.direction = list.edge(status.edge)->directionTo(a); |
1139 | status.traversal = QPathEdge::RightTraversal; |
1140 | |
1141 | do { |
1142 | const QPathEdge *ep = list.edge(status.edge); |
1143 | |
1144 | if ((ep->first == a && ep->second == b) |
1145 | || (ep->first == b && ep->second == a)) |
1146 | return status.edge; |
1147 | |
1148 | status = list.next(status); |
1149 | status.flip(); |
1150 | } while (status.edge != ap->edge); |
1151 | |
1152 | return -1; |
1153 | } |
1154 | |
1155 | static double computeAngle(const QPointF &v) |
1156 | { |
1157 | #if 1 |
1158 | if (v.x() == 0) { |
1159 | return v.y() <= 0 ? 0 : 64.; |
1160 | } else if (v.y() == 0) { |
1161 | return v.x() <= 0 ? 32. : 96.; |
1162 | } |
1163 | |
1164 | double vx = v.x(); |
1165 | double vy = v.y(); |
1166 | normalize(vx, vy); |
1167 | if (vy < 0) { |
1168 | if (vx < 0) { // 0 - 32 |
1169 | return -32. * vx; |
1170 | } else { // 96 - 128 |
1171 | return 128. - 32. * vx; |
1172 | } |
1173 | } else { // 32 - 96 |
1174 | return 64. + 32. * vx; |
1175 | } |
1176 | #else |
1177 | // doesn't seem to be robust enough |
1178 | return qAtan2(v.x(), v.y()) + Q_PI; |
1179 | #endif |
1180 | } |
1181 | |
1182 | int QWingedEdge::addEdge(const QPointF &a, const QPointF &b) |
1183 | { |
1184 | int fi = insert(a); |
1185 | int si = insert(b); |
1186 | |
1187 | return addEdge(fi, si); |
1188 | } |
1189 | |
1190 | int QWingedEdge::addEdge(int fi, int si) |
1191 | { |
1192 | if (fi == si) |
1193 | return -1; |
1194 | |
1195 | int common = commonEdge(*this, fi, si); |
1196 | if (common >= 0) |
1197 | return common; |
1198 | |
1199 | m_edges << QPathEdge(fi, si); |
1200 | |
1201 | int ei = m_edges.size() - 1; |
1202 | |
1203 | QPathVertex *fp = vertex(fi); |
1204 | QPathVertex *sp = vertex(si); |
1205 | |
1206 | QPathEdge *ep = edge(ei); |
1207 | |
1208 | const QPointF tangent = QPointF(*sp) - QPointF(*fp); |
1209 | ep->angle = computeAngle(tangent); |
1210 | ep->invAngle = ep->angle + 64; |
1211 | if (ep->invAngle >= 128) |
1212 | ep->invAngle -= 128; |
1213 | |
1214 | QPathVertex *vertices[2] = { fp, sp }; |
1215 | QPathEdge::Direction dirs[2] = { QPathEdge::Backward, QPathEdge::Forward }; |
1216 | |
1217 | #ifdef QDEBUG_CLIPPER |
1218 | printf("** Adding edge %d / vertices: %.07f %.07f, %.07f %.07f\n" , ei, fp->x, fp->y, sp->x, sp->y); |
1219 | #endif |
1220 | |
1221 | for (int i = 0; i < 2; ++i) { |
1222 | QPathVertex *vp = vertices[i]; |
1223 | if (vp->edge < 0) { |
1224 | vp->edge = ei; |
1225 | ep->setNext(dirs[i], ei); |
1226 | } else { |
1227 | int vi = ep->vertex(dirs[i]); |
1228 | Q_ASSERT(vertex(vi) == vertices[i]); |
1229 | |
1230 | TraversalStatus os = findInsertStatus(vi, ei); |
1231 | QPathEdge *op = edge(os.edge); |
1232 | |
1233 | Q_ASSERT(vertex(op->vertex(os.direction)) == vertices[i]); |
1234 | |
1235 | TraversalStatus ns = next(os); |
1236 | ns.flipDirection(); |
1237 | QPathEdge *np = edge(ns.edge); |
1238 | |
1239 | op->setNext(os.traversal, os.direction, ei); |
1240 | np->setNext(ns.traversal, ns.direction, ei); |
1241 | |
1242 | int oe = os.edge; |
1243 | int ne = ns.edge; |
1244 | |
1245 | os = next(os); |
1246 | ns = next(ns); |
1247 | |
1248 | os.flipDirection(); |
1249 | ns.flipDirection(); |
1250 | |
1251 | Q_ASSERT(os.edge == ei); |
1252 | Q_ASSERT(ns.edge == ei); |
1253 | |
1254 | ep->setNext(os.traversal, os.direction, oe); |
1255 | ep->setNext(ns.traversal, ns.direction, ne); |
1256 | } |
1257 | } |
1258 | |
1259 | Q_ASSERT(ep->next(QPathEdge::RightTraversal, QPathEdge::Forward) >= 0); |
1260 | Q_ASSERT(ep->next(QPathEdge::RightTraversal, QPathEdge::Backward) >= 0); |
1261 | Q_ASSERT(ep->next(QPathEdge::LeftTraversal, QPathEdge::Forward) >= 0); |
1262 | Q_ASSERT(ep->next(QPathEdge::LeftTraversal, QPathEdge::Backward) >= 0); |
1263 | |
1264 | return ei; |
1265 | } |
1266 | |
1267 | int QWingedEdge::insert(const QPathVertex &vertex) |
1268 | { |
1269 | if (!m_vertices.isEmpty()) { |
1270 | const QPathVertex &last = m_vertices.last(); |
1271 | if (vertex.x == last.x && vertex.y == last.y) |
1272 | return m_vertices.size() - 1; |
1273 | |
1274 | for (int i = 0; i < m_vertices.size(); ++i) { |
1275 | const QPathVertex &v = m_vertices.at(i); |
1276 | if (qFuzzyCompare(v.x, vertex.x) && qFuzzyCompare(v.y, vertex.y)) { |
1277 | return i; |
1278 | } |
1279 | } |
1280 | } |
1281 | |
1282 | m_vertices << vertex; |
1283 | return m_vertices.size() - 1; |
1284 | } |
1285 | |
1286 | static void addLineTo(QPainterPath &path, const QPointF &point) |
1287 | { |
1288 | const int elementCount = path.elementCount(); |
1289 | if (elementCount >= 2) { |
1290 | const QPainterPath::Element &middle = path.elementAt(elementCount - 1); |
1291 | if (middle.type == QPainterPath::LineToElement) { |
1292 | const QPointF first = path.elementAt(elementCount - 2); |
1293 | const QPointF d1 = point - first; |
1294 | const QPointF d2 = middle - first; |
1295 | |
1296 | const QPointF p(-d1.y(), d1.x()); |
1297 | |
1298 | if (qFuzzyIsNull(dot(p, d2))) { |
1299 | path.setElementPositionAt(elementCount - 1, point.x(), point.y()); |
1300 | return; |
1301 | } |
1302 | } |
1303 | } |
1304 | |
1305 | path.lineTo(point); |
1306 | } |
1307 | |
1308 | static void add(QPainterPath &path, const QWingedEdge &list, int edge, QPathEdge::Traversal traversal) |
1309 | { |
1310 | QWingedEdge::TraversalStatus status; |
1311 | status.edge = edge; |
1312 | status.traversal = traversal; |
1313 | status.direction = QPathEdge::Forward; |
1314 | |
1315 | path.moveTo(*list.vertex(list.edge(edge)->first)); |
1316 | |
1317 | do { |
1318 | const QPathEdge *ep = list.edge(status.edge); |
1319 | |
1320 | addLineTo(path, *list.vertex(ep->vertex(status.direction))); |
1321 | |
1322 | if (status.traversal == QPathEdge::LeftTraversal) |
1323 | ep->flag &= ~16; |
1324 | else |
1325 | ep->flag &= ~32; |
1326 | |
1327 | status = list.next(status); |
1328 | } while (status.edge != edge); |
1329 | } |
1330 | |
1331 | void QWingedEdge::simplify() |
1332 | { |
1333 | for (int i = 0; i < edgeCount(); ++i) { |
1334 | const QPathEdge *ep = edge(i); |
1335 | |
1336 | // if both sides are part of the inside then we can collapse the edge |
1337 | int flag = 0x3 << 4; |
1338 | if ((ep->flag & flag) == flag) { |
1339 | removeEdge(i); |
1340 | |
1341 | ep->flag &= ~flag; |
1342 | } |
1343 | } |
1344 | } |
1345 | |
1346 | QPainterPath QWingedEdge::toPath() const |
1347 | { |
1348 | QPainterPath path; |
1349 | |
1350 | for (int i = 0; i < edgeCount(); ++i) { |
1351 | const QPathEdge *ep = edge(i); |
1352 | |
1353 | if (ep->flag & 16) { |
1354 | add(path, *this, i, QPathEdge::LeftTraversal); |
1355 | } |
1356 | |
1357 | if (ep->flag & 32) |
1358 | add(path, *this, i, QPathEdge::RightTraversal); |
1359 | } |
1360 | |
1361 | return path; |
1362 | } |
1363 | |
1364 | bool QPathClipper::intersect() |
1365 | { |
1366 | if (subjectPath == clipPath) |
1367 | return true; |
1368 | |
1369 | QRectF r1 = subjectPath.controlPointRect(); |
1370 | QRectF r2 = clipPath.controlPointRect(); |
1371 | if (qMax(r1.x(), r2.x()) > qMin(r1.x() + r1.width(), r2.x() + r2.width()) || |
1372 | qMax(r1.y(), r2.y()) > qMin(r1.y() + r1.height(), r2.y() + r2.height())) { |
1373 | // no way we could intersect |
1374 | return false; |
1375 | } |
1376 | |
1377 | bool subjectIsRect = pathToRect(subjectPath); |
1378 | bool clipIsRect = pathToRect(clipPath); |
1379 | |
1380 | if (subjectIsRect && clipIsRect) |
1381 | return true; |
1382 | else if (subjectIsRect) |
1383 | return clipPath.intersects(r1); |
1384 | else if (clipIsRect) |
1385 | return subjectPath.intersects(r2); |
1386 | |
1387 | QPathSegments a(subjectPath.elementCount()); |
1388 | a.setPath(subjectPath); |
1389 | QPathSegments b(clipPath.elementCount()); |
1390 | b.setPath(clipPath); |
1391 | |
1392 | QIntersectionFinder finder; |
1393 | if (finder.hasIntersections(a, b)) |
1394 | return true; |
1395 | |
1396 | for (int i = 0; i < clipPath.elementCount(); ++i) { |
1397 | if (clipPath.elementAt(i).type == QPainterPath::MoveToElement) { |
1398 | const QPointF point = clipPath.elementAt(i); |
1399 | if (r1.contains(point) && subjectPath.contains(point)) |
1400 | return true; |
1401 | } |
1402 | } |
1403 | |
1404 | for (int i = 0; i < subjectPath.elementCount(); ++i) { |
1405 | if (subjectPath.elementAt(i).type == QPainterPath::MoveToElement) { |
1406 | const QPointF point = subjectPath.elementAt(i); |
1407 | if (r2.contains(point) && clipPath.contains(point)) |
1408 | return true; |
1409 | } |
1410 | } |
1411 | |
1412 | return false; |
1413 | } |
1414 | |
1415 | bool QPathClipper::contains() |
1416 | { |
1417 | if (subjectPath == clipPath) |
1418 | return false; |
1419 | |
1420 | QRectF r1 = subjectPath.controlPointRect(); |
1421 | QRectF r2 = clipPath.controlPointRect(); |
1422 | if (qMax(r1.x(), r2.x()) > qMin(r1.x() + r1.width(), r2.x() + r2.width()) || |
1423 | qMax(r1.y(), r2.y()) > qMin(r1.y() + r1.height(), r2.y() + r2.height())) { |
1424 | // no intersection -> not contained |
1425 | return false; |
1426 | } |
1427 | |
1428 | bool clipIsRect = pathToRect(clipPath); |
1429 | if (clipIsRect) |
1430 | return subjectPath.contains(r2); |
1431 | |
1432 | QPathSegments a(subjectPath.elementCount()); |
1433 | a.setPath(subjectPath); |
1434 | QPathSegments b(clipPath.elementCount()); |
1435 | b.setPath(clipPath); |
1436 | |
1437 | QIntersectionFinder finder; |
1438 | if (finder.hasIntersections(a, b)) |
1439 | return false; |
1440 | |
1441 | for (int i = 0; i < clipPath.elementCount(); ++i) { |
1442 | if (clipPath.elementAt(i).type == QPainterPath::MoveToElement) { |
1443 | const QPointF point = clipPath.elementAt(i); |
1444 | if (!r1.contains(point) || !subjectPath.contains(point)) |
1445 | return false; |
1446 | } |
1447 | } |
1448 | |
1449 | return true; |
1450 | } |
1451 | |
1452 | QPathClipper::QPathClipper(const QPainterPath &subject, |
1453 | const QPainterPath &clip) |
1454 | : subjectPath(subject) |
1455 | , clipPath(clip) |
1456 | { |
1457 | aMask = subjectPath.fillRule() == Qt::WindingFill ? ~0x0 : 0x1; |
1458 | bMask = clipPath.fillRule() == Qt::WindingFill ? ~0x0 : 0x1; |
1459 | } |
1460 | |
1461 | static void clear(QWingedEdge& list, int edge, QPathEdge::Traversal traversal) |
1462 | { |
1463 | QWingedEdge::TraversalStatus status; |
1464 | status.edge = edge; |
1465 | status.traversal = traversal; |
1466 | status.direction = QPathEdge::Forward; |
1467 | |
1468 | do { |
1469 | if (status.traversal == QPathEdge::LeftTraversal) |
1470 | list.edge(status.edge)->flag |= 1; |
1471 | else |
1472 | list.edge(status.edge)->flag |= 2; |
1473 | |
1474 | status = list.next(status); |
1475 | } while (status.edge != edge); |
1476 | } |
1477 | |
1478 | template <typename InputIterator> |
1479 | InputIterator qFuzzyFind(InputIterator first, InputIterator last, qreal val) |
1480 | { |
1481 | while (first != last && !QT_PREPEND_NAMESPACE(qFuzzyCompare)(qreal(*first), qreal(val))) |
1482 | ++first; |
1483 | return first; |
1484 | } |
1485 | |
1486 | static bool fuzzyCompare(qreal a, qreal b) |
1487 | { |
1488 | return qFuzzyCompare(a, b); |
1489 | } |
1490 | |
1491 | bool QPathClipper::pathToRect(const QPainterPath &path, QRectF *rect) |
1492 | { |
1493 | if (path.elementCount() != 5) |
1494 | return false; |
1495 | |
1496 | const bool mightBeRect = path.elementAt(0).isMoveTo() |
1497 | && path.elementAt(1).isLineTo() |
1498 | && path.elementAt(2).isLineTo() |
1499 | && path.elementAt(3).isLineTo() |
1500 | && path.elementAt(4).isLineTo(); |
1501 | |
1502 | if (!mightBeRect) |
1503 | return false; |
1504 | |
1505 | const qreal x1 = path.elementAt(0).x; |
1506 | const qreal y1 = path.elementAt(0).y; |
1507 | |
1508 | const qreal x2 = path.elementAt(1).x; |
1509 | const qreal y2 = path.elementAt(2).y; |
1510 | |
1511 | if (path.elementAt(1).y != y1) |
1512 | return false; |
1513 | |
1514 | if (path.elementAt(2).x != x2) |
1515 | return false; |
1516 | |
1517 | if (path.elementAt(3).x != x1 || path.elementAt(3).y != y2) |
1518 | return false; |
1519 | |
1520 | if (path.elementAt(4).x != x1 || path.elementAt(4).y != y1) |
1521 | return false; |
1522 | |
1523 | if (rect) |
1524 | rect->setCoords(x1, y1, x2, y2); |
1525 | |
1526 | return true; |
1527 | } |
1528 | |
1529 | |
1530 | QPainterPath QPathClipper::clip(Operation operation) |
1531 | { |
1532 | op = operation; |
1533 | |
1534 | if (op != Simplify) { |
1535 | if (subjectPath == clipPath) |
1536 | return op == BoolSub ? QPainterPath() : subjectPath; |
1537 | |
1538 | bool subjectIsRect = pathToRect(subjectPath, nullptr); |
1539 | bool clipIsRect = pathToRect(clipPath, nullptr); |
1540 | |
1541 | const QRectF clipBounds = clipPath.boundingRect(); |
1542 | const QRectF subjectBounds = subjectPath.boundingRect(); |
1543 | |
1544 | if (!clipBounds.intersects(subjectBounds)) { |
1545 | switch (op) { |
1546 | case BoolSub: |
1547 | return subjectPath; |
1548 | case BoolAnd: |
1549 | return QPainterPath(); |
1550 | case BoolOr: { |
1551 | QPainterPath result = subjectPath; |
1552 | if (result.fillRule() == clipPath.fillRule()) { |
1553 | result.addPath(clipPath); |
1554 | } else if (result.fillRule() == Qt::WindingFill) { |
1555 | result = result.simplified(); |
1556 | result.addPath(clipPath); |
1557 | } else { |
1558 | result.addPath(clipPath.simplified()); |
1559 | } |
1560 | return result; |
1561 | } |
1562 | default: |
1563 | break; |
1564 | } |
1565 | } |
1566 | |
1567 | if (clipBounds.contains(subjectBounds)) { |
1568 | if (clipIsRect) { |
1569 | switch (op) { |
1570 | case BoolSub: |
1571 | return QPainterPath(); |
1572 | case BoolAnd: |
1573 | return subjectPath; |
1574 | case BoolOr: |
1575 | return clipPath; |
1576 | default: |
1577 | break; |
1578 | } |
1579 | } |
1580 | } else if (subjectBounds.contains(clipBounds)) { |
1581 | if (subjectIsRect) { |
1582 | switch (op) { |
1583 | case BoolSub: |
1584 | if (clipPath.fillRule() == Qt::OddEvenFill) { |
1585 | QPainterPath result = clipPath; |
1586 | result.addRect(subjectBounds); |
1587 | return result; |
1588 | } else { |
1589 | QPainterPath result = clipPath.simplified(); |
1590 | result.addRect(subjectBounds); |
1591 | return result; |
1592 | } |
1593 | case BoolAnd: |
1594 | return clipPath; |
1595 | case BoolOr: |
1596 | return subjectPath; |
1597 | default: |
1598 | break; |
1599 | } |
1600 | } |
1601 | } |
1602 | |
1603 | if (op == BoolAnd) { |
1604 | if (subjectIsRect) |
1605 | return intersect(clipPath, subjectBounds); |
1606 | else if (clipIsRect) |
1607 | return intersect(subjectPath, clipBounds); |
1608 | } |
1609 | } |
1610 | |
1611 | QWingedEdge list(subjectPath, clipPath); |
1612 | |
1613 | doClip(list, ClipMode); |
1614 | |
1615 | QPainterPath path = list.toPath(); |
1616 | return path; |
1617 | } |
1618 | |
1619 | bool QPathClipper::doClip(QWingedEdge &list, ClipperMode mode) |
1620 | { |
1621 | QList<qreal> y_coords; |
1622 | y_coords.reserve(list.vertexCount()); |
1623 | for (int i = 0; i < list.vertexCount(); ++i) |
1624 | y_coords << list.vertex(i)->y; |
1625 | |
1626 | std::sort(y_coords.begin(), y_coords.end()); |
1627 | y_coords.erase(std::unique(y_coords.begin(), y_coords.end(), fuzzyCompare), y_coords.end()); |
1628 | |
1629 | #ifdef QDEBUG_CLIPPER |
1630 | printf("sorted y coords:\n" ); |
1631 | for (int i = 0; i < y_coords.size(); ++i) { |
1632 | printf("%.9f\n" , y_coords.at(i)); |
1633 | } |
1634 | #endif |
1635 | |
1636 | bool found; |
1637 | do { |
1638 | found = false; |
1639 | int index = 0; |
1640 | qreal maxHeight = 0; |
1641 | for (int i = 0; i < list.edgeCount(); ++i) { |
1642 | QPathEdge *edge = list.edge(i); |
1643 | |
1644 | // have both sides of this edge already been handled? |
1645 | if ((edge->flag & 0x3) == 0x3) |
1646 | continue; |
1647 | |
1648 | QPathVertex *a = list.vertex(edge->first); |
1649 | QPathVertex *b = list.vertex(edge->second); |
1650 | |
1651 | if (qFuzzyCompare(a->y, b->y)) |
1652 | continue; |
1653 | |
1654 | found = true; |
1655 | |
1656 | qreal height = qAbs(a->y - b->y); |
1657 | if (height > maxHeight) { |
1658 | index = i; |
1659 | maxHeight = height; |
1660 | } |
1661 | } |
1662 | |
1663 | if (found) { |
1664 | QPathEdge *edge = list.edge(index); |
1665 | |
1666 | QPathVertex *a = list.vertex(edge->first); |
1667 | QPathVertex *b = list.vertex(edge->second); |
1668 | |
1669 | // FIXME: this can be optimized by using binary search |
1670 | const int first = qFuzzyFind(y_coords.cbegin(), y_coords.cend(), qMin(a->y, b->y)) - y_coords.cbegin(); |
1671 | const int last = qFuzzyFind(y_coords.cbegin() + first, y_coords.cend(), qMax(a->y, b->y)) - y_coords.cbegin(); |
1672 | |
1673 | Q_ASSERT(first < y_coords.size() - 1); |
1674 | Q_ASSERT(last < y_coords.size()); |
1675 | |
1676 | qreal biggestGap = y_coords.at(first + 1) - y_coords.at(first); |
1677 | int bestIdx = first; |
1678 | for (int i = first + 1; i < last; ++i) { |
1679 | qreal gap = y_coords.at(i + 1) - y_coords.at(i); |
1680 | |
1681 | if (gap > biggestGap) { |
1682 | bestIdx = i; |
1683 | biggestGap = gap; |
1684 | } |
1685 | } |
1686 | const qreal bestY = 0.5 * (y_coords.at(bestIdx) + y_coords.at(bestIdx + 1)); |
1687 | |
1688 | #ifdef QDEBUG_CLIPPER |
1689 | printf("y: %.9f, gap: %.9f\n" , bestY, biggestGap); |
1690 | #endif |
1691 | |
1692 | if (handleCrossingEdges(list, bestY, mode) && mode == CheckMode) |
1693 | return true; |
1694 | |
1695 | edge->flag |= 0x3; |
1696 | } |
1697 | } while (found); |
1698 | |
1699 | if (mode == ClipMode) |
1700 | list.simplify(); |
1701 | |
1702 | return false; |
1703 | } |
1704 | |
1705 | static void traverse(QWingedEdge &list, int edge, QPathEdge::Traversal traversal) |
1706 | { |
1707 | QWingedEdge::TraversalStatus status; |
1708 | status.edge = edge; |
1709 | status.traversal = traversal; |
1710 | status.direction = QPathEdge::Forward; |
1711 | |
1712 | do { |
1713 | int flag = status.traversal == QPathEdge::LeftTraversal ? 1 : 2; |
1714 | |
1715 | QPathEdge *ep = list.edge(status.edge); |
1716 | |
1717 | ep->flag |= (flag | (flag << 4)); |
1718 | |
1719 | #ifdef QDEBUG_CLIPPER |
1720 | qDebug() << "traverse: adding edge " << status.edge << ", mask:" << (flag << 4) <<ep->flag; |
1721 | #endif |
1722 | |
1723 | status = list.next(status); |
1724 | } while (status.edge != edge); |
1725 | } |
1726 | |
1727 | struct QCrossingEdge |
1728 | { |
1729 | int edge; |
1730 | qreal x; |
1731 | |
1732 | bool operator<(const QCrossingEdge &edge) const |
1733 | { |
1734 | return x < edge.x; |
1735 | } |
1736 | }; |
1737 | Q_DECLARE_TYPEINFO(QCrossingEdge, Q_PRIMITIVE_TYPE); |
1738 | |
1739 | static bool bool_op(bool a, bool b, QPathClipper::Operation op) |
1740 | { |
1741 | switch (op) { |
1742 | case QPathClipper::BoolAnd: |
1743 | return a && b; |
1744 | case QPathClipper::BoolOr: |
1745 | case QPathClipper::Simplify: |
1746 | return a || b; |
1747 | case QPathClipper::BoolSub: |
1748 | return a && !b; |
1749 | default: |
1750 | Q_ASSERT(false); |
1751 | return false; |
1752 | } |
1753 | } |
1754 | |
1755 | bool QWingedEdge::isInside(qreal x, qreal y) const |
1756 | { |
1757 | int winding = 0; |
1758 | for (int i = 0; i < edgeCount(); ++i) { |
1759 | const QPathEdge *ep = edge(i); |
1760 | |
1761 | // left xor right |
1762 | int w = ((ep->flag >> 4) ^ (ep->flag >> 5)) & 1; |
1763 | |
1764 | if (!w) |
1765 | continue; |
1766 | |
1767 | QPointF a = *vertex(ep->first); |
1768 | QPointF b = *vertex(ep->second); |
1769 | |
1770 | if ((a.y() < y && b.y() > y) || (a.y() > y && b.y() < y)) { |
1771 | qreal intersectionX = a.x() + (b.x() - a.x()) * (y - a.y()) / (b.y() - a.y()); |
1772 | |
1773 | if (intersectionX > x) |
1774 | winding += w; |
1775 | } |
1776 | } |
1777 | |
1778 | return winding & 1; |
1779 | } |
1780 | |
1781 | static QList<QCrossingEdge> findCrossings(const QWingedEdge &list, qreal y) |
1782 | { |
1783 | QList<QCrossingEdge> crossings; |
1784 | for (int i = 0; i < list.edgeCount(); ++i) { |
1785 | const QPathEdge *edge = list.edge(i); |
1786 | QPointF a = *list.vertex(edge->first); |
1787 | QPointF b = *list.vertex(edge->second); |
1788 | |
1789 | if ((a.y() < y && b.y() > y) || (a.y() > y && b.y() < y)) { |
1790 | const qreal intersection = a.x() + (b.x() - a.x()) * (y - a.y()) / (b.y() - a.y()); |
1791 | const QCrossingEdge edge = { i, intersection }; |
1792 | crossings << edge; |
1793 | } |
1794 | } |
1795 | return crossings; |
1796 | } |
1797 | |
1798 | bool QPathClipper::handleCrossingEdges(QWingedEdge &list, qreal y, ClipperMode mode) |
1799 | { |
1800 | QList<QCrossingEdge> crossings = findCrossings(list, y); |
1801 | |
1802 | Q_ASSERT(!crossings.isEmpty()); |
1803 | std::sort(crossings.begin(), crossings.end()); |
1804 | |
1805 | int windingA = 0; |
1806 | int windingB = 0; |
1807 | |
1808 | int windingD = 0; |
1809 | |
1810 | #ifdef QDEBUG_CLIPPER |
1811 | qDebug() << "crossings:" << crossings.size(); |
1812 | #endif |
1813 | for (int i = 0; i < crossings.size() - 1; ++i) { |
1814 | int ei = crossings.at(i).edge; |
1815 | const QPathEdge *edge = list.edge(ei); |
1816 | |
1817 | windingA += edge->windingA; |
1818 | windingB += edge->windingB; |
1819 | |
1820 | const bool hasLeft = (edge->flag >> 4) & 1; |
1821 | const bool hasRight = (edge->flag >> 4) & 2; |
1822 | |
1823 | windingD += hasLeft ^ hasRight; |
1824 | |
1825 | const bool inA = (windingA & aMask) != 0; |
1826 | const bool inB = (windingB & bMask) != 0; |
1827 | const bool inD = (windingD & 0x1) != 0; |
1828 | |
1829 | const bool inside = bool_op(inA, inB, op); |
1830 | const bool add = inD ^ inside; |
1831 | |
1832 | #ifdef QDEBUG_CLIPPER |
1833 | printf("y %f, x %f, inA: %d, inB: %d, inD: %d, inside: %d, flag: %x, bezier: %p, edge: %d\n" , y, crossings.at(i).x, inA, inB, inD, inside, edge->flag, edge->bezier, ei); |
1834 | #endif |
1835 | |
1836 | if (add) { |
1837 | if (mode == CheckMode) |
1838 | return true; |
1839 | |
1840 | qreal y0 = list.vertex(edge->first)->y; |
1841 | qreal y1 = list.vertex(edge->second)->y; |
1842 | |
1843 | if (y0 < y1) { |
1844 | if (!(edge->flag & 1)) |
1845 | traverse(list, ei, QPathEdge::LeftTraversal); |
1846 | |
1847 | if (!(edge->flag & 2)) |
1848 | clear(list, ei, QPathEdge::RightTraversal); |
1849 | } else { |
1850 | if (!(edge->flag & 1)) |
1851 | clear(list, ei, QPathEdge::LeftTraversal); |
1852 | |
1853 | if (!(edge->flag & 2)) |
1854 | traverse(list, ei, QPathEdge::RightTraversal); |
1855 | } |
1856 | |
1857 | ++windingD; |
1858 | } else { |
1859 | if (!(edge->flag & 1)) |
1860 | clear(list, ei, QPathEdge::LeftTraversal); |
1861 | |
1862 | if (!(edge->flag & 2)) |
1863 | clear(list, ei, QPathEdge::RightTraversal); |
1864 | } |
1865 | } |
1866 | |
1867 | return false; |
1868 | } |
1869 | |
1870 | namespace { |
1871 | |
1872 | QList<QPainterPath> toSubpaths(const QPainterPath &path) |
1873 | { |
1874 | |
1875 | QList<QPainterPath> subpaths; |
1876 | if (path.isEmpty()) |
1877 | return subpaths; |
1878 | |
1879 | QPainterPath current; |
1880 | for (int i = 0; i < path.elementCount(); ++i) { |
1881 | const QPainterPath::Element &e = path.elementAt(i); |
1882 | switch (e.type) { |
1883 | case QPainterPath::MoveToElement: |
1884 | if (current.elementCount() > 1) |
1885 | subpaths += current; |
1886 | current = QPainterPath(); |
1887 | current.moveTo(e); |
1888 | break; |
1889 | case QPainterPath::LineToElement: |
1890 | current.lineTo(e); |
1891 | break; |
1892 | case QPainterPath::CurveToElement: { |
1893 | current.cubicTo(e, path.elementAt(i + 1), path.elementAt(i + 2)); |
1894 | i+=2; |
1895 | break; |
1896 | } |
1897 | case QPainterPath::CurveToDataElement: |
1898 | Q_ASSERT(!"toSubpaths(), bad element type" ); |
1899 | break; |
1900 | } |
1901 | } |
1902 | |
1903 | if (current.elementCount() > 1) |
1904 | subpaths << current; |
1905 | |
1906 | return subpaths; |
1907 | } |
1908 | |
1909 | enum Edge |
1910 | { |
1911 | Left, Top, Right, Bottom |
1912 | }; |
1913 | |
1914 | static bool isVertical(Edge edge) |
1915 | { |
1916 | return edge == Left || edge == Right; |
1917 | } |
1918 | |
1919 | template <Edge edge> |
1920 | bool compare(const QPointF &p, qreal t) |
1921 | { |
1922 | switch (edge) |
1923 | { |
1924 | case Left: |
1925 | return p.x() < t; |
1926 | case Right: |
1927 | return p.x() > t; |
1928 | case Top: |
1929 | return p.y() < t; |
1930 | default: |
1931 | return p.y() > t; |
1932 | } |
1933 | } |
1934 | |
1935 | template <Edge edge> |
1936 | QPointF intersectLine(const QPointF &a, const QPointF &b, qreal t) |
1937 | { |
1938 | QLineF line(a, b); |
1939 | switch (edge) { |
1940 | case Left: |
1941 | case Right: |
1942 | return line.pointAt((t - a.x()) / (b.x() - a.x())); |
1943 | default: |
1944 | return line.pointAt((t - a.y()) / (b.y() - a.y())); |
1945 | } |
1946 | } |
1947 | |
1948 | void addLine(QPainterPath &path, const QLineF &line) |
1949 | { |
1950 | if (path.elementCount() > 0) |
1951 | path.lineTo(line.p1()); |
1952 | else |
1953 | path.moveTo(line.p1()); |
1954 | |
1955 | path.lineTo(line.p2()); |
1956 | } |
1957 | |
1958 | template <Edge edge> |
1959 | void clipLine(const QPointF &a, const QPointF &b, qreal t, QPainterPath &result) |
1960 | { |
1961 | bool outA = compare<edge>(a, t); |
1962 | bool outB = compare<edge>(b, t); |
1963 | if (outA && outB) |
1964 | return; |
1965 | |
1966 | if (outA) |
1967 | addLine(result, QLineF(intersectLine<edge>(a, b, t), b)); |
1968 | else if(outB) |
1969 | addLine(result, QLineF(a, intersectLine<edge>(a, b, t))); |
1970 | else |
1971 | addLine(result, QLineF(a, b)); |
1972 | } |
1973 | |
1974 | void addBezier(QPainterPath &path, const QBezier &bezier) |
1975 | { |
1976 | if (path.elementCount() > 0) |
1977 | path.lineTo(bezier.pt1()); |
1978 | else |
1979 | path.moveTo(bezier.pt1()); |
1980 | |
1981 | path.cubicTo(bezier.pt2(), bezier.pt3(), bezier.pt4()); |
1982 | } |
1983 | |
1984 | template <Edge edge> |
1985 | void clipBezier(const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, qreal t, QPainterPath &result) |
1986 | { |
1987 | QBezier bezier = QBezier::fromPoints(a, b, c, d); |
1988 | |
1989 | bool outA = compare<edge>(a, t); |
1990 | bool outB = compare<edge>(b, t); |
1991 | bool outC = compare<edge>(c, t); |
1992 | bool outD = compare<edge>(d, t); |
1993 | |
1994 | int outCount = int(outA) + int(outB) + int(outC) + int(outD); |
1995 | |
1996 | if (outCount == 4) |
1997 | return; |
1998 | |
1999 | if (outCount == 0) { |
2000 | addBezier(result, bezier); |
2001 | return; |
2002 | } |
2003 | |
2004 | QTransform flip = isVertical(edge) ? QTransform(0, 1, 1, 0, 0, 0) : QTransform(); |
2005 | QBezier unflipped = bezier; |
2006 | QBezier flipped = bezier.mapBy(flip); |
2007 | |
2008 | qreal t0 = 0, t1 = 1; |
2009 | int stationary = flipped.stationaryYPoints(t0, t1); |
2010 | |
2011 | qreal segments[4]; |
2012 | QPointF points[4]; |
2013 | points[0] = unflipped.pt1(); |
2014 | segments[0] = 0; |
2015 | |
2016 | int segmentCount = 0; |
2017 | if (stationary > 0) { |
2018 | ++segmentCount; |
2019 | segments[segmentCount] = t0; |
2020 | points[segmentCount] = unflipped.pointAt(t0); |
2021 | } |
2022 | if (stationary > 1) { |
2023 | ++segmentCount; |
2024 | segments[segmentCount] = t1; |
2025 | points[segmentCount] = unflipped.pointAt(t1); |
2026 | } |
2027 | ++segmentCount; |
2028 | segments[segmentCount] = 1; |
2029 | points[segmentCount] = unflipped.pt4(); |
2030 | |
2031 | qreal lastIntersection = 0; |
2032 | for (int i = 0; i < segmentCount; ++i) { |
2033 | outA = compare<edge>(points[i], t); |
2034 | outB = compare<edge>(points[i+1], t); |
2035 | |
2036 | if (outA != outB) { |
2037 | qreal intersection = flipped.tForY(segments[i], segments[i+1], t); |
2038 | |
2039 | if (outB) |
2040 | addBezier(result, unflipped.getSubRange(lastIntersection, intersection)); |
2041 | |
2042 | lastIntersection = intersection; |
2043 | } |
2044 | } |
2045 | |
2046 | if (!outB) |
2047 | addBezier(result, unflipped.getSubRange(lastIntersection, 1)); |
2048 | } |
2049 | |
2050 | // clips a single subpath against a single edge |
2051 | template <Edge edge> |
2052 | QPainterPath clip(const QPainterPath &path, qreal t) |
2053 | { |
2054 | QPainterPath result; |
2055 | for (int i = 1; i < path.elementCount(); ++i) { |
2056 | const QPainterPath::Element &element = path.elementAt(i); |
2057 | Q_ASSERT(!element.isMoveTo()); |
2058 | if (element.isLineTo()) { |
2059 | clipLine<edge>(path.elementAt(i-1), path.elementAt(i), t, result); |
2060 | } else { |
2061 | clipBezier<edge>(path.elementAt(i-1), path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), t, result); |
2062 | i += 2; |
2063 | } |
2064 | } |
2065 | |
2066 | int last = path.elementCount() - 1; |
2067 | if (QPointF(path.elementAt(last)) != QPointF(path.elementAt(0))) |
2068 | clipLine<edge>(path.elementAt(last), path.elementAt(0), t, result); |
2069 | |
2070 | return result; |
2071 | } |
2072 | |
2073 | QPainterPath intersectPath(const QPainterPath &path, const QRectF &rect) |
2074 | { |
2075 | QList<QPainterPath> subpaths = toSubpaths(path); |
2076 | |
2077 | QPainterPath result; |
2078 | result.setFillRule(path.fillRule()); |
2079 | for (int i = 0; i < subpaths.size(); ++i) { |
2080 | QPainterPath subPath = subpaths.at(i); |
2081 | QRectF bounds = subPath.boundingRect(); |
2082 | if (bounds.intersects(rect)) { |
2083 | if (bounds.left() < rect.left()) |
2084 | subPath = clip<Left>(subPath, rect.left()); |
2085 | if (bounds.right() > rect.right()) |
2086 | subPath = clip<Right>(subPath, rect.right()); |
2087 | |
2088 | bounds = subPath.boundingRect(); |
2089 | |
2090 | if (bounds.top() < rect.top()) |
2091 | subPath = clip<Top>(subPath, rect.top()); |
2092 | if (bounds.bottom() > rect.bottom()) |
2093 | subPath = clip<Bottom>(subPath, rect.bottom()); |
2094 | |
2095 | if (subPath.elementCount() > 1) |
2096 | result.addPath(subPath); |
2097 | } |
2098 | } |
2099 | // The algorithm above might return one side of \a rect if there was no intersection, |
2100 | // so only return intersections that are not empty rectangles. |
2101 | if (result.boundingRect().isEmpty()) |
2102 | return QPainterPath(); |
2103 | else |
2104 | return result; |
2105 | } |
2106 | |
2107 | } |
2108 | |
2109 | QPainterPath QPathClipper::intersect(const QPainterPath &path, const QRectF &rect) |
2110 | { |
2111 | return intersectPath(path, rect); |
2112 | } |
2113 | |
2114 | QT_END_NAMESPACE |
2115 | |