1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qtriangulatingstroker_p.h" |
41 | #include <qmath.h> |
42 | |
43 | QT_BEGIN_NAMESPACE |
44 | |
45 | #define CURVE_FLATNESS Q_PI / 8 |
46 | |
47 | |
48 | |
49 | |
50 | void QTriangulatingStroker::endCapOrJoinClosed(const qreal *start, const qreal *cur, |
51 | bool implicitClose, bool endsAtStart) |
52 | { |
53 | if (endsAtStart) { |
54 | join(start + 2); |
55 | } else if (implicitClose) { |
56 | join(start); |
57 | lineTo(start); |
58 | join(start+2); |
59 | } else { |
60 | endCap(cur); |
61 | } |
62 | int count = m_vertices.size(); |
63 | |
64 | // Copy the (x, y) values because QDataBuffer::add(const float& t) |
65 | // may resize the buffer, which will leave t pointing at the |
66 | // previous buffer's memory region if we don't copy first. |
67 | float x = m_vertices.at(count-2); |
68 | float y = m_vertices.at(count-1); |
69 | m_vertices.add(x); |
70 | m_vertices.add(y); |
71 | } |
72 | |
73 | static inline void skipDuplicatePoints(const qreal **pts, const qreal *endPts) |
74 | { |
75 | while ((*pts + 2) < endPts && float((*pts)[0]) == float((*pts)[2]) |
76 | && float((*pts)[1]) == float((*pts)[3])) |
77 | { |
78 | *pts += 2; |
79 | } |
80 | } |
81 | |
82 | void QTriangulatingStroker::process(const QVectorPath &path, const QPen &pen, const QRectF &, QPainter::RenderHints hints) |
83 | { |
84 | const qreal *pts = path.points(); |
85 | const QPainterPath::ElementType *types = path.elements(); |
86 | int count = path.elementCount(); |
87 | m_vertices.reset(); |
88 | if (count < 2) |
89 | return; |
90 | |
91 | float realWidth = qpen_widthf(pen); |
92 | if (realWidth == 0) |
93 | realWidth = 1; |
94 | |
95 | m_width = realWidth / 2; |
96 | |
97 | bool cosmetic = qt_pen_is_cosmetic(pen, hints); |
98 | if (cosmetic) { |
99 | m_width = m_width * m_inv_scale; |
100 | } |
101 | |
102 | m_join_style = qpen_joinStyle(pen); |
103 | m_cap_style = qpen_capStyle(pen); |
104 | m_miter_limit = pen.miterLimit() * qpen_widthf(pen); |
105 | |
106 | // The curvyness is based on the notion that I originally wanted |
107 | // roughly one line segment pr 4 pixels. This may seem little, but |
108 | // because we sample at constantly incrementing B(t) E [0<t<1], we |
109 | // will get longer segments where the curvature is small and smaller |
110 | // segments when the curvature is high. |
111 | // |
112 | // To get a rough idea of the length of each curve, I pretend that |
113 | // the curve is a 90 degree arc, whose radius is |
114 | // qMax(curveBounds.width, curveBounds.height). Based on this |
115 | // logic we can estimate the length of the outline edges based on |
116 | // the radius + a pen width and adjusting for scale factors |
117 | // depending on if the pen is cosmetic or not. |
118 | // |
119 | // The curvyness value of PI/14 was based on, |
120 | // arcLength = 2*PI*r/4 = PI*r/2 and splitting length into somewhere |
121 | // between 3 and 8 where 5 seemed to be give pretty good results |
122 | // hence: Q_PI/14. Lower divisors will give more detail at the |
123 | // direct cost of performance. |
124 | |
125 | // simplfy pens that are thin in device size (2px wide or less) |
126 | if (realWidth < 2.5 && (cosmetic || m_inv_scale == 1)) { |
127 | if (m_cap_style == Qt::RoundCap) |
128 | m_cap_style = Qt::SquareCap; |
129 | if (m_join_style == Qt::RoundJoin) |
130 | m_join_style = Qt::MiterJoin; |
131 | m_curvyness_add = 0.5; |
132 | m_curvyness_mul = CURVE_FLATNESS / m_inv_scale; |
133 | m_roundness = 1; |
134 | } else if (cosmetic) { |
135 | m_curvyness_add = realWidth / 2; |
136 | m_curvyness_mul = float(CURVE_FLATNESS); |
137 | m_roundness = qMax<int>(4, realWidth * CURVE_FLATNESS); |
138 | } else { |
139 | m_curvyness_add = m_width; |
140 | m_curvyness_mul = CURVE_FLATNESS / m_inv_scale; |
141 | m_roundness = qMax<int>(4, realWidth * m_curvyness_mul); |
142 | } |
143 | |
144 | // Over this level of segmentation, there doesn't seem to be any |
145 | // benefit, even for huge penWidth |
146 | if (m_roundness > 24) |
147 | m_roundness = 24; |
148 | |
149 | m_sin_theta = qFastSin(Q_PI / m_roundness); |
150 | m_cos_theta = qFastCos(Q_PI / m_roundness); |
151 | |
152 | const qreal *endPts = pts + (count<<1); |
153 | const qreal *startPts = nullptr; |
154 | |
155 | Qt::PenCapStyle cap = m_cap_style; |
156 | |
157 | if (!types) { |
158 | skipDuplicatePoints(&pts, endPts); |
159 | if ((pts + 2) == endPts) |
160 | return; |
161 | |
162 | startPts = pts; |
163 | |
164 | bool endsAtStart = float(startPts[0]) == float(endPts[-2]) |
165 | && float(startPts[1]) == float(endPts[-1]); |
166 | |
167 | if (endsAtStart || path.hasImplicitClose()) |
168 | m_cap_style = Qt::FlatCap; |
169 | moveTo(pts); |
170 | m_cap_style = cap; |
171 | pts += 2; |
172 | skipDuplicatePoints(&pts, endPts); |
173 | lineTo(pts); |
174 | pts += 2; |
175 | skipDuplicatePoints(&pts, endPts); |
176 | while (pts < endPts) { |
177 | join(pts); |
178 | lineTo(pts); |
179 | pts += 2; |
180 | skipDuplicatePoints(&pts, endPts); |
181 | } |
182 | endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart); |
183 | |
184 | } else { |
185 | bool endsAtStart = false; |
186 | QPainterPath::ElementType previousType = QPainterPath::MoveToElement; |
187 | const qreal *previousPts = pts; |
188 | while (pts < endPts) { |
189 | switch (*types) { |
190 | case QPainterPath::MoveToElement: { |
191 | int end = (endPts - pts) / 2; |
192 | int nextMoveElement = 1; |
193 | bool hasValidLineSegments = false; |
194 | while (nextMoveElement < end && types[nextMoveElement] != QPainterPath::MoveToElement) { |
195 | if (!hasValidLineSegments) { |
196 | hasValidLineSegments = |
197 | float(pts[0]) != float(pts[nextMoveElement * 2]) || |
198 | float(pts[1]) != float(pts[nextMoveElement * 2 + 1]); |
199 | } |
200 | ++nextMoveElement; |
201 | } |
202 | |
203 | /** |
204 | * 'LineToElement' may be skipped if it doesn't move the center point |
205 | * of the line. We should make sure that we don't end up with a lost |
206 | * 'MoveToElement' in the vertex buffer, not connected to anything. Since |
207 | * the buffer uses degenerate triangles trick to split the primitives, |
208 | * this spurious MoveToElement will create artifacts when rendering. |
209 | */ |
210 | if (!hasValidLineSegments) { |
211 | pts += 2 * nextMoveElement; |
212 | types += nextMoveElement; |
213 | continue; |
214 | } |
215 | |
216 | if (previousType != QPainterPath::MoveToElement) |
217 | endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart); |
218 | |
219 | startPts = pts; |
220 | skipDuplicatePoints(&startPts, endPts); // Skip duplicates to find correct normal. |
221 | if (startPts + 2 >= endPts) |
222 | return; // Nothing to see here... |
223 | |
224 | endsAtStart = float(startPts[0]) == float(pts[nextMoveElement * 2 - 2]) |
225 | && float(startPts[1]) == float(pts[nextMoveElement * 2 - 1]); |
226 | if (endsAtStart || path.hasImplicitClose()) |
227 | m_cap_style = Qt::FlatCap; |
228 | |
229 | moveTo(startPts); |
230 | m_cap_style = cap; |
231 | previousType = QPainterPath::MoveToElement; |
232 | previousPts = pts; |
233 | pts+=2; |
234 | ++types; |
235 | break; } |
236 | case QPainterPath::LineToElement: |
237 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) { |
238 | if (previousType != QPainterPath::MoveToElement) |
239 | join(pts); |
240 | lineTo(pts); |
241 | previousType = QPainterPath::LineToElement; |
242 | previousPts = pts; |
243 | } |
244 | pts+=2; |
245 | ++types; |
246 | break; |
247 | case QPainterPath::CurveToElement: |
248 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1]) |
249 | || float(pts[0]) != float(pts[2]) || float(pts[1]) != float(pts[3]) |
250 | || float(pts[2]) != float(pts[4]) || float(pts[3]) != float(pts[5])) |
251 | { |
252 | if (float(m_cx) != float(pts[0]) || float(m_cy) != float(pts[1])) { |
253 | if (previousType != QPainterPath::MoveToElement) |
254 | join(pts); |
255 | } |
256 | cubicTo(pts); |
257 | previousType = QPainterPath::CurveToElement; |
258 | previousPts = pts + 4; |
259 | } |
260 | pts+=6; |
261 | types+=3; |
262 | break; |
263 | default: |
264 | Q_ASSERT(false); |
265 | break; |
266 | } |
267 | } |
268 | |
269 | if (previousType != QPainterPath::MoveToElement) |
270 | endCapOrJoinClosed(startPts, previousPts, path.hasImplicitClose(), endsAtStart); |
271 | } |
272 | } |
273 | |
274 | void QTriangulatingStroker::moveTo(const qreal *pts) |
275 | { |
276 | m_cx = pts[0]; |
277 | m_cy = pts[1]; |
278 | |
279 | float x2 = pts[2]; |
280 | float y2 = pts[3]; |
281 | normalVector(m_cx, m_cy, x2, y2, &m_nvx, &m_nvy); |
282 | |
283 | |
284 | // To achieve jumps we insert zero-area tringles. This is done by |
285 | // adding two identical points in both the end of previous strip |
286 | // and beginning of next strip |
287 | bool invisibleJump = m_vertices.size(); |
288 | |
289 | switch (m_cap_style) { |
290 | case Qt::FlatCap: |
291 | if (invisibleJump) { |
292 | m_vertices.add(m_cx + m_nvx); |
293 | m_vertices.add(m_cy + m_nvy); |
294 | } |
295 | break; |
296 | case Qt::SquareCap: { |
297 | float sx = m_cx - m_nvy; |
298 | float sy = m_cy + m_nvx; |
299 | if (invisibleJump) { |
300 | m_vertices.add(sx + m_nvx); |
301 | m_vertices.add(sy + m_nvy); |
302 | } |
303 | emitLineSegment(sx, sy, m_nvx, m_nvy); |
304 | break; } |
305 | case Qt::RoundCap: { |
306 | QVarLengthArray<float> points; |
307 | arcPoints(m_cx, m_cy, m_cx + m_nvx, m_cy + m_nvy, m_cx - m_nvx, m_cy - m_nvy, points); |
308 | m_vertices.resize(m_vertices.size() + points.size() + 2 * int(invisibleJump)); |
309 | int count = m_vertices.size(); |
310 | int front = 0; |
311 | int end = points.size() / 2; |
312 | while (front != end) { |
313 | m_vertices.at(--count) = points[2 * end - 1]; |
314 | m_vertices.at(--count) = points[2 * end - 2]; |
315 | --end; |
316 | if (front == end) |
317 | break; |
318 | m_vertices.at(--count) = points[2 * front + 1]; |
319 | m_vertices.at(--count) = points[2 * front + 0]; |
320 | ++front; |
321 | } |
322 | |
323 | if (invisibleJump) { |
324 | m_vertices.at(count - 1) = m_vertices.at(count + 1); |
325 | m_vertices.at(count - 2) = m_vertices.at(count + 0); |
326 | } |
327 | break; } |
328 | default: break; // ssssh gcc... |
329 | } |
330 | emitLineSegment(m_cx, m_cy, m_nvx, m_nvy); |
331 | } |
332 | |
333 | void QTriangulatingStroker::cubicTo(const qreal *pts) |
334 | { |
335 | const QPointF *p = (const QPointF *) pts; |
336 | QBezier bezier = QBezier::fromPoints(*(p - 1), p[0], p[1], p[2]); |
337 | |
338 | QRectF bounds = bezier.bounds(); |
339 | float rad = qMax(bounds.width(), bounds.height()); |
340 | int threshold = qMin<float>(64, (rad + m_curvyness_add) * m_curvyness_mul); |
341 | if (threshold < 4) |
342 | threshold = 4; |
343 | qreal threshold_minus_1 = threshold - 1; |
344 | float vx = 0, vy = 0; |
345 | |
346 | float cx = m_cx, cy = m_cy; |
347 | float x, y; |
348 | |
349 | for (int i=1; i<threshold; ++i) { |
350 | qreal t = qreal(i) / threshold_minus_1; |
351 | QPointF p = bezier.pointAt(t); |
352 | x = p.x(); |
353 | y = p.y(); |
354 | |
355 | normalVector(cx, cy, x, y, &vx, &vy); |
356 | |
357 | emitLineSegment(x, y, vx, vy); |
358 | |
359 | cx = x; |
360 | cy = y; |
361 | } |
362 | |
363 | m_cx = cx; |
364 | m_cy = cy; |
365 | |
366 | m_nvx = vx; |
367 | m_nvy = vy; |
368 | } |
369 | |
370 | void QTriangulatingStroker::join(const qreal *pts) |
371 | { |
372 | // Creates a join to the next segment (m_cx, m_cy) -> (pts[0], pts[1]) |
373 | normalVector(m_cx, m_cy, pts[0], pts[1], &m_nvx, &m_nvy); |
374 | |
375 | switch (m_join_style) { |
376 | case Qt::BevelJoin: |
377 | break; |
378 | case Qt::SvgMiterJoin: |
379 | case Qt::MiterJoin: { |
380 | // Find out on which side the join should be. |
381 | int count = m_vertices.size(); |
382 | float prevNvx = m_vertices.at(count - 2) - m_cx; |
383 | float prevNvy = m_vertices.at(count - 1) - m_cy; |
384 | float xprod = prevNvx * m_nvy - prevNvy * m_nvx; |
385 | float px, py, qx, qy; |
386 | |
387 | // If the segments are parallel, use bevel join. |
388 | if (qFuzzyIsNull(xprod)) |
389 | break; |
390 | |
391 | // Find the corners of the previous and next segment to join. |
392 | if (xprod < 0) { |
393 | px = m_vertices.at(count - 2); |
394 | py = m_vertices.at(count - 1); |
395 | qx = m_cx - m_nvx; |
396 | qy = m_cy - m_nvy; |
397 | } else { |
398 | px = m_vertices.at(count - 4); |
399 | py = m_vertices.at(count - 3); |
400 | qx = m_cx + m_nvx; |
401 | qy = m_cy + m_nvy; |
402 | } |
403 | |
404 | // Find intersection point. |
405 | float pu = px * prevNvx + py * prevNvy; |
406 | float qv = qx * m_nvx + qy * m_nvy; |
407 | float ix = (m_nvy * pu - prevNvy * qv) / xprod; |
408 | float iy = (prevNvx * qv - m_nvx * pu) / xprod; |
409 | |
410 | // Check that the distance to the intersection point is less than the miter limit. |
411 | if ((ix - px) * (ix - px) + (iy - py) * (iy - py) <= m_miter_limit * m_miter_limit) { |
412 | m_vertices.add(ix); |
413 | m_vertices.add(iy); |
414 | m_vertices.add(ix); |
415 | m_vertices.add(iy); |
416 | } |
417 | // else |
418 | // Do a plain bevel join if the miter limit is exceeded or if |
419 | // the lines are parallel. This is not what the raster |
420 | // engine's stroker does, but it is both faster and similar to |
421 | // what some other graphics API's do. |
422 | |
423 | break; } |
424 | case Qt::RoundJoin: { |
425 | QVarLengthArray<float> points; |
426 | int count = m_vertices.size(); |
427 | float prevNvx = m_vertices.at(count - 2) - m_cx; |
428 | float prevNvy = m_vertices.at(count - 1) - m_cy; |
429 | if (m_nvx * prevNvy - m_nvy * prevNvx < 0) { |
430 | arcPoints(0, 0, m_nvx, m_nvy, -prevNvx, -prevNvy, points); |
431 | for (int i = points.size() / 2; i > 0; --i) |
432 | emitLineSegment(m_cx, m_cy, points[2 * i - 2], points[2 * i - 1]); |
433 | } else { |
434 | arcPoints(0, 0, -prevNvx, -prevNvy, m_nvx, m_nvy, points); |
435 | for (int i = 0; i < points.size() / 2; ++i) |
436 | emitLineSegment(m_cx, m_cy, points[2 * i + 0], points[2 * i + 1]); |
437 | } |
438 | break; } |
439 | default: break; // gcc warn-- |
440 | } |
441 | |
442 | emitLineSegment(m_cx, m_cy, m_nvx, m_nvy); |
443 | } |
444 | |
445 | void QTriangulatingStroker::endCap(const qreal *) |
446 | { |
447 | switch (m_cap_style) { |
448 | case Qt::FlatCap: |
449 | break; |
450 | case Qt::SquareCap: |
451 | emitLineSegment(m_cx + m_nvy, m_cy - m_nvx, m_nvx, m_nvy); |
452 | break; |
453 | case Qt::RoundCap: { |
454 | QVarLengthArray<float> points; |
455 | int count = m_vertices.size(); |
456 | arcPoints(m_cx, m_cy, m_vertices.at(count - 2), m_vertices.at(count - 1), m_vertices.at(count - 4), m_vertices.at(count - 3), points); |
457 | int front = 0; |
458 | int end = points.size() / 2; |
459 | while (front != end) { |
460 | m_vertices.add(points[2 * end - 2]); |
461 | m_vertices.add(points[2 * end - 1]); |
462 | --end; |
463 | if (front == end) |
464 | break; |
465 | m_vertices.add(points[2 * front + 0]); |
466 | m_vertices.add(points[2 * front + 1]); |
467 | ++front; |
468 | } |
469 | break; } |
470 | default: break; // to shut gcc up... |
471 | } |
472 | } |
473 | |
474 | void QTriangulatingStroker::arcPoints(float cx, float cy, float fromX, float fromY, float toX, float toY, QVarLengthArray<float> &points) |
475 | { |
476 | float dx1 = fromX - cx; |
477 | float dy1 = fromY - cy; |
478 | float dx2 = toX - cx; |
479 | float dy2 = toY - cy; |
480 | |
481 | // while more than 180 degrees left: |
482 | while (dx1 * dy2 - dx2 * dy1 < 0) { |
483 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |
484 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |
485 | dx1 = tmpx; |
486 | dy1 = tmpy; |
487 | points.append(cx + dx1); |
488 | points.append(cy + dy1); |
489 | } |
490 | |
491 | // while more than 90 degrees left: |
492 | while (dx1 * dx2 + dy1 * dy2 < 0) { |
493 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |
494 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |
495 | dx1 = tmpx; |
496 | dy1 = tmpy; |
497 | points.append(cx + dx1); |
498 | points.append(cy + dy1); |
499 | } |
500 | |
501 | // while more than 0 degrees left: |
502 | while (dx1 * dy2 - dx2 * dy1 > 0) { |
503 | float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta; |
504 | float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta; |
505 | dx1 = tmpx; |
506 | dy1 = tmpy; |
507 | points.append(cx + dx1); |
508 | points.append(cy + dy1); |
509 | } |
510 | |
511 | // remove last point which was rotated beyond [toX, toY]. |
512 | if (!points.isEmpty()) |
513 | points.resize(points.size() - 2); |
514 | } |
515 | |
516 | static void qdashprocessor_moveTo(qreal x, qreal y, void *data) |
517 | { |
518 | ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::MoveToElement, x, y); |
519 | } |
520 | |
521 | static void qdashprocessor_lineTo(qreal x, qreal y, void *data) |
522 | { |
523 | ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::LineToElement, x, y); |
524 | } |
525 | |
526 | static void qdashprocessor_cubicTo(qreal, qreal, qreal, qreal, qreal, qreal, void *) |
527 | { |
528 | Q_ASSERT(0); // The dasher should not produce curves... |
529 | } |
530 | |
531 | QDashedStrokeProcessor::QDashedStrokeProcessor() |
532 | : m_points(0), m_types(0), |
533 | m_dash_stroker(nullptr), m_inv_scale(1) |
534 | { |
535 | m_dash_stroker.setMoveToHook(qdashprocessor_moveTo); |
536 | m_dash_stroker.setLineToHook(qdashprocessor_lineTo); |
537 | m_dash_stroker.setCubicToHook(qdashprocessor_cubicTo); |
538 | } |
539 | |
540 | void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen, const QRectF &clip, QPainter::RenderHints hints) |
541 | { |
542 | |
543 | const qreal *pts = path.points(); |
544 | const QPainterPath::ElementType *types = path.elements(); |
545 | int count = path.elementCount(); |
546 | |
547 | bool cosmetic = qt_pen_is_cosmetic(pen, hints); |
548 | bool implicitClose = path.hasImplicitClose(); |
549 | |
550 | m_points.reset(); |
551 | m_types.reset(); |
552 | m_points.reserve(path.elementCount()); |
553 | m_types.reserve(path.elementCount()); |
554 | |
555 | qreal width = qpen_widthf(pen); |
556 | if (width == 0) |
557 | width = 1; |
558 | |
559 | m_dash_stroker.setDashPattern(pen.dashPattern()); |
560 | m_dash_stroker.setStrokeWidth(cosmetic ? width * m_inv_scale : width); |
561 | m_dash_stroker.setDashOffset(pen.dashOffset()); |
562 | m_dash_stroker.setMiterLimit(pen.miterLimit()); |
563 | m_dash_stroker.setClipRect(clip); |
564 | |
565 | float curvynessAdd, curvynessMul; |
566 | |
567 | // simplify pens that are thin in device size (2px wide or less) |
568 | if (width < 2.5 && (cosmetic || m_inv_scale == 1)) { |
569 | curvynessAdd = 0.5; |
570 | curvynessMul = CURVE_FLATNESS / m_inv_scale; |
571 | } else if (cosmetic) { |
572 | curvynessAdd= width / 2; |
573 | curvynessMul= float(CURVE_FLATNESS); |
574 | } else { |
575 | curvynessAdd = width * m_inv_scale; |
576 | curvynessMul = CURVE_FLATNESS / m_inv_scale; |
577 | } |
578 | |
579 | if (count < 2) |
580 | return; |
581 | |
582 | bool needsClose = false; |
583 | if (implicitClose) { |
584 | if (pts[0] != pts[count * 2 - 2] || pts[1] != pts[count * 2 - 1]) |
585 | needsClose = true; |
586 | } |
587 | |
588 | const qreal *firstPts = pts; |
589 | const qreal *endPts = pts + (count<<1); |
590 | m_dash_stroker.begin(this); |
591 | |
592 | if (!types) { |
593 | m_dash_stroker.moveTo(pts[0], pts[1]); |
594 | pts += 2; |
595 | while (pts < endPts) { |
596 | m_dash_stroker.lineTo(pts[0], pts[1]); |
597 | pts += 2; |
598 | } |
599 | } else { |
600 | while (pts < endPts) { |
601 | switch (*types) { |
602 | case QPainterPath::MoveToElement: |
603 | m_dash_stroker.moveTo(pts[0], pts[1]); |
604 | pts += 2; |
605 | ++types; |
606 | break; |
607 | case QPainterPath::LineToElement: |
608 | m_dash_stroker.lineTo(pts[0], pts[1]); |
609 | pts += 2; |
610 | ++types; |
611 | break; |
612 | case QPainterPath::CurveToElement: { |
613 | QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1), |
614 | *(((const QPointF *) pts)), |
615 | *(((const QPointF *) pts) + 1), |
616 | *(((const QPointF *) pts) + 2)); |
617 | QRectF bounds = b.bounds(); |
618 | float rad = qMax(bounds.width(), bounds.height()); |
619 | int threshold = qMin<float>(64, (rad + curvynessAdd) * curvynessMul); |
620 | if (threshold < 4) |
621 | threshold = 4; |
622 | |
623 | qreal threshold_minus_1 = threshold - 1; |
624 | for (int i=0; i<threshold; ++i) { |
625 | QPointF pt = b.pointAt(i / threshold_minus_1); |
626 | m_dash_stroker.lineTo(pt.x(), pt.y()); |
627 | } |
628 | pts += 6; |
629 | types += 3; |
630 | break; } |
631 | default: break; |
632 | } |
633 | } |
634 | } |
635 | if (needsClose) |
636 | m_dash_stroker.lineTo(firstPts[0], firstPts[1]); |
637 | |
638 | m_dash_stroker.end(); |
639 | } |
640 | |
641 | QT_END_NAMESPACE |
642 | |