1 | /* |
2 | * Copyright 2020 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkM44_DEFINED |
9 | #define SkM44_DEFINED |
10 | |
11 | #include "include/core/SkMatrix.h" |
12 | #include "include/core/SkScalar.h" |
13 | |
14 | struct SkV2 { |
15 | float x, y; |
16 | |
17 | bool operator==(const SkV2 v) const { return x == v.x && y == v.y; } |
18 | bool operator!=(const SkV2 v) const { return !(*this == v); } |
19 | |
20 | static SkScalar Dot(SkV2 a, SkV2 b) { return a.x * b.x + a.y * b.y; } |
21 | static SkScalar Cross(SkV2 a, SkV2 b) { return a.x * b.y - a.y * b.x; } |
22 | static SkV2 Normalize(SkV2 v) { return v * (1.0f / v.length()); } |
23 | |
24 | SkV2 operator-() const { return {-x, -y}; } |
25 | SkV2 operator+(SkV2 v) const { return {x+v.x, y+v.y}; } |
26 | SkV2 operator-(SkV2 v) const { return {x-v.x, y-v.y}; } |
27 | |
28 | SkV2 operator*(SkV2 v) const { return {x*v.x, y*v.y}; } |
29 | friend SkV2 operator*(SkV2 v, SkScalar s) { return {v.x*s, v.y*s}; } |
30 | friend SkV2 operator*(SkScalar s, SkV2 v) { return {v.x*s, v.y*s}; } |
31 | |
32 | void operator+=(SkV2 v) { *this = *this + v; } |
33 | void operator-=(SkV2 v) { *this = *this - v; } |
34 | void operator*=(SkV2 v) { *this = *this * v; } |
35 | void operator*=(SkScalar s) { *this = *this * s; } |
36 | |
37 | SkScalar lengthSquared() const { return Dot(*this, *this); } |
38 | SkScalar length() const { return SkScalarSqrt(this->lengthSquared()); } |
39 | |
40 | SkScalar dot(SkV2 v) const { return Dot(*this, v); } |
41 | SkScalar cross(SkV2 v) const { return Cross(*this, v); } |
42 | SkV2 normalize() const { return Normalize(*this); } |
43 | |
44 | const float* ptr() const { return &x; } |
45 | float* ptr() { return &x; } |
46 | }; |
47 | |
48 | struct SkV3 { |
49 | float x, y, z; |
50 | |
51 | bool operator==(const SkV3& v) const { |
52 | return x == v.x && y == v.y && z == v.z; |
53 | } |
54 | bool operator!=(const SkV3& v) const { return !(*this == v); } |
55 | |
56 | static SkScalar Dot(const SkV3& a, const SkV3& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } |
57 | static SkV3 Cross(const SkV3& a, const SkV3& b) { |
58 | return { a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x }; |
59 | } |
60 | static SkV3 Normalize(const SkV3& v) { return v * (1.0f / v.length()); } |
61 | |
62 | SkV3 operator-() const { return {-x, -y, -z}; } |
63 | SkV3 operator+(const SkV3& v) const { return { x + v.x, y + v.y, z + v.z }; } |
64 | SkV3 operator-(const SkV3& v) const { return { x - v.x, y - v.y, z - v.z }; } |
65 | |
66 | SkV3 operator*(const SkV3& v) const { |
67 | return { x*v.x, y*v.y, z*v.z }; |
68 | } |
69 | friend SkV3 operator*(const SkV3& v, SkScalar s) { |
70 | return { v.x*s, v.y*s, v.z*s }; |
71 | } |
72 | friend SkV3 operator*(SkScalar s, const SkV3& v) { return v*s; } |
73 | |
74 | void operator+=(SkV3 v) { *this = *this + v; } |
75 | void operator-=(SkV3 v) { *this = *this - v; } |
76 | void operator*=(SkV3 v) { *this = *this * v; } |
77 | void operator*=(SkScalar s) { *this = *this * s; } |
78 | |
79 | SkScalar lengthSquared() const { return Dot(*this, *this); } |
80 | SkScalar length() const { return SkScalarSqrt(Dot(*this, *this)); } |
81 | |
82 | SkScalar dot(const SkV3& v) const { return Dot(*this, v); } |
83 | SkV3 cross(const SkV3& v) const { return Cross(*this, v); } |
84 | SkV3 normalize() const { return Normalize(*this); } |
85 | |
86 | const float* ptr() const { return &x; } |
87 | float* ptr() { return &x; } |
88 | }; |
89 | |
90 | struct SkV4 { |
91 | float x, y, z, w; |
92 | |
93 | bool operator==(const SkV4& v) const { |
94 | return x == v.x && y == v.y && z == v.z && w == v.w; |
95 | } |
96 | bool operator!=(const SkV4& v) const { return !(*this == v); } |
97 | |
98 | SkV4 operator-() const { return {-x, -y, -z, -w}; } |
99 | SkV4 operator+(const SkV4& v) const { return { x + v.x, y + v.y, z + v.z, w + v.w }; } |
100 | SkV4 operator-(const SkV4& v) const { return { x - v.x, y - v.y, z - v.z, w - v.w }; } |
101 | |
102 | SkV4 operator*(const SkV4& v) const { |
103 | return { x*v.x, y*v.y, z*v.z, w*v.w }; |
104 | } |
105 | friend SkV4 operator*(const SkV4& v, SkScalar s) { |
106 | return { v.x*s, v.y*s, v.z*s, v.w*s }; |
107 | } |
108 | friend SkV4 operator*(SkScalar s, const SkV4& v) { return v*s; } |
109 | |
110 | const float* ptr() const { return &x; } |
111 | float* ptr() { return &x; } |
112 | }; |
113 | |
114 | /** |
115 | * 4x4 matrix used by SkCanvas and other parts of Skia. |
116 | * |
117 | * Skia assumes a right-handed coordinate system: |
118 | * +X goes to the right |
119 | * +Y goes down |
120 | * +Z goes into the screen (away from the viewer) |
121 | */ |
122 | class SkM44 { |
123 | public: |
124 | SkM44(const SkM44& src) = default; |
125 | SkM44& operator=(const SkM44& src) = default; |
126 | |
127 | constexpr SkM44() |
128 | : fMat{1, 0, 0, 0, |
129 | 0, 1, 0, 0, |
130 | 0, 0, 1, 0, |
131 | 0, 0, 0, 1} |
132 | {} |
133 | |
134 | SkM44(const SkM44& a, const SkM44& b) { |
135 | this->setConcat(a, b); |
136 | } |
137 | |
138 | enum Uninitialized_Constructor { |
139 | kUninitialized_Constructor |
140 | }; |
141 | SkM44(Uninitialized_Constructor) {} |
142 | |
143 | enum NaN_Constructor { |
144 | kNaN_Constructor |
145 | }; |
146 | SkM44(NaN_Constructor) |
147 | : fMat{SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
148 | SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
149 | SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
150 | SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN} |
151 | {} |
152 | |
153 | /** |
154 | * Parameters are treated as row-major. |
155 | */ |
156 | SkM44(SkScalar m0, SkScalar m4, SkScalar m8, SkScalar m12, |
157 | SkScalar m1, SkScalar m5, SkScalar m9, SkScalar m13, |
158 | SkScalar m2, SkScalar m6, SkScalar m10, SkScalar m14, |
159 | SkScalar m3, SkScalar m7, SkScalar m11, SkScalar m15) |
160 | { |
161 | fMat[0] = m0; fMat[4] = m4; fMat[8] = m8; fMat[12] = m12; |
162 | fMat[1] = m1; fMat[5] = m5; fMat[9] = m9; fMat[13] = m13; |
163 | fMat[2] = m2; fMat[6] = m6; fMat[10] = m10; fMat[14] = m14; |
164 | fMat[3] = m3; fMat[7] = m7; fMat[11] = m11; fMat[15] = m15; |
165 | } |
166 | |
167 | static SkM44 Rows(const SkV4& r0, const SkV4& r1, const SkV4& r2, const SkV4& r3) { |
168 | SkM44 m(kUninitialized_Constructor); |
169 | m.setRow(0, r0); |
170 | m.setRow(1, r1); |
171 | m.setRow(2, r2); |
172 | m.setRow(3, r3); |
173 | return m; |
174 | } |
175 | static SkM44 Cols(const SkV4& c0, const SkV4& c1, const SkV4& c2, const SkV4& c3) { |
176 | SkM44 m(kUninitialized_Constructor); |
177 | m.setCol(0, c0); |
178 | m.setCol(1, c1); |
179 | m.setCol(2, c2); |
180 | m.setCol(3, c3); |
181 | return m; |
182 | } |
183 | |
184 | static SkM44 RowMajor(const SkScalar r[16]) { |
185 | return SkM44(r[ 0], r[ 1], r[ 2], r[ 3], |
186 | r[ 4], r[ 5], r[ 6], r[ 7], |
187 | r[ 8], r[ 9], r[10], r[11], |
188 | r[12], r[13], r[14], r[15]); |
189 | } |
190 | static SkM44 ColMajor(const SkScalar c[16]) { |
191 | return SkM44(c[0], c[4], c[ 8], c[12], |
192 | c[1], c[5], c[ 9], c[13], |
193 | c[2], c[6], c[10], c[14], |
194 | c[3], c[7], c[11], c[15]); |
195 | } |
196 | |
197 | static SkM44 Translate(SkScalar x, SkScalar y, SkScalar z = 0) { |
198 | return SkM44(1, 0, 0, x, |
199 | 0, 1, 0, y, |
200 | 0, 0, 1, z, |
201 | 0, 0, 0, 1); |
202 | } |
203 | |
204 | static SkM44 Scale(SkScalar x, SkScalar y, SkScalar z = 1) { |
205 | return SkM44(x, 0, 0, 0, |
206 | 0, y, 0, 0, |
207 | 0, 0, z, 0, |
208 | 0, 0, 0, 1); |
209 | } |
210 | |
211 | static SkM44 Rotate(SkV3 axis, SkScalar radians) { |
212 | SkM44 m(kUninitialized_Constructor); |
213 | m.setRotate(axis, radians); |
214 | return m; |
215 | } |
216 | |
217 | bool operator==(const SkM44& other) const; |
218 | bool operator!=(const SkM44& other) const { |
219 | return !(other == *this); |
220 | } |
221 | |
222 | void getColMajor(SkScalar v[]) const { |
223 | memcpy(v, fMat, sizeof(fMat)); |
224 | } |
225 | void getRowMajor(SkScalar v[]) const; |
226 | |
227 | SkScalar rc(int r, int c) const { |
228 | SkASSERT(r >= 0 && r <= 3); |
229 | SkASSERT(c >= 0 && c <= 3); |
230 | return fMat[c*4 + r]; |
231 | } |
232 | void setRC(int r, int c, SkScalar value) { |
233 | SkASSERT(r >= 0 && r <= 3); |
234 | SkASSERT(c >= 0 && c <= 3); |
235 | fMat[c*4 + r] = value; |
236 | } |
237 | |
238 | SkV4 row(int i) const { |
239 | SkASSERT(i >= 0 && i <= 3); |
240 | return {fMat[i + 0], fMat[i + 4], fMat[i + 8], fMat[i + 12]}; |
241 | } |
242 | SkV4 col(int i) const { |
243 | SkASSERT(i >= 0 && i <= 3); |
244 | return {fMat[i*4 + 0], fMat[i*4 + 1], fMat[i*4 + 2], fMat[i*4 + 3]}; |
245 | } |
246 | |
247 | void setRow(int i, const SkV4& v) { |
248 | SkASSERT(i >= 0 && i <= 3); |
249 | fMat[i + 0] = v.x; |
250 | fMat[i + 4] = v.y; |
251 | fMat[i + 8] = v.z; |
252 | fMat[i + 12] = v.w; |
253 | } |
254 | void setCol(int i, const SkV4& v) { |
255 | SkASSERT(i >= 0 && i <= 3); |
256 | memcpy(&fMat[i*4], v.ptr(), sizeof(v)); |
257 | } |
258 | |
259 | SkM44& setIdentity() { |
260 | *this = { 1, 0, 0, 0, |
261 | 0, 1, 0, 0, |
262 | 0, 0, 1, 0, |
263 | 0, 0, 0, 1 }; |
264 | return *this; |
265 | } |
266 | |
267 | SkM44& setTranslate(SkScalar x, SkScalar y, SkScalar z = 0) { |
268 | *this = { 1, 0, 0, x, |
269 | 0, 1, 0, y, |
270 | 0, 0, 1, z, |
271 | 0, 0, 0, 1 }; |
272 | return *this; |
273 | } |
274 | |
275 | SkM44& setScale(SkScalar x, SkScalar y, SkScalar z = 1) { |
276 | *this = { x, 0, 0, 0, |
277 | 0, y, 0, 0, |
278 | 0, 0, z, 0, |
279 | 0, 0, 0, 1 }; |
280 | return *this; |
281 | } |
282 | |
283 | /** |
284 | * Set this matrix to rotate about the specified unit-length axis vector, |
285 | * by an angle specified by its sin() and cos(). |
286 | * |
287 | * This does not attempt to verify that axis.length() == 1 or that the sin,cos values |
288 | * are correct. |
289 | */ |
290 | SkM44& setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle); |
291 | |
292 | /** |
293 | * Set this matrix to rotate about the specified unit-length axis vector, |
294 | * by an angle specified in radians. |
295 | * |
296 | * This does not attempt to verify that axis.length() == 1. |
297 | */ |
298 | SkM44& setRotateUnit(SkV3 axis, SkScalar radians) { |
299 | return this->setRotateUnitSinCos(axis, SkScalarSin(radians), SkScalarCos(radians)); |
300 | } |
301 | |
302 | /** |
303 | * Set this matrix to rotate about the specified axis vector, |
304 | * by an angle specified in radians. |
305 | * |
306 | * Note: axis is not assumed to be unit-length, so it will be normalized internally. |
307 | * If axis is already unit-length, call setRotateAboutUnitRadians() instead. |
308 | */ |
309 | SkM44& setRotate(SkV3 axis, SkScalar radians); |
310 | |
311 | SkM44& setConcat(const SkM44& a, const SkM44& b); |
312 | |
313 | friend SkM44 operator*(const SkM44& a, const SkM44& b) { |
314 | return SkM44(a, b); |
315 | } |
316 | |
317 | SkM44& preConcat(const SkM44& m) { |
318 | return this->setConcat(*this, m); |
319 | } |
320 | |
321 | /** If this is invertible, return that in inverse and return true. If it is |
322 | * not invertible, return false and leave the inverse parameter unchanged. |
323 | */ |
324 | bool SK_WARN_UNUSED_RESULT invert(SkM44* inverse) const; |
325 | |
326 | SkM44 transpose() const; |
327 | |
328 | void dump() const; |
329 | |
330 | //////////// |
331 | |
332 | SkV4 map(float x, float y, float z, float w) const; |
333 | SkV4 operator*(const SkV4& v) const { |
334 | return this->map(v.x, v.y, v.z, v.w); |
335 | } |
336 | SkV3 operator*(SkV3 v) const { |
337 | auto v4 = this->map(v.x, v.y, v.z, 0); |
338 | return {v4.x, v4.y, v4.z}; |
339 | } |
340 | |
341 | ////////////////////// Converting to/from SkMatrix |
342 | |
343 | /* When converting from SkM44 to SkMatrix, the third row and |
344 | * column is dropped. When converting from SkMatrix to SkM44 |
345 | * the third row and column remain as identity: |
346 | * [ a b c ] [ a b 0 c ] |
347 | * [ d e f ] -> [ d e 0 f ] |
348 | * [ g h i ] [ 0 0 1 0 ] |
349 | * [ g h 0 i ] |
350 | */ |
351 | SkMatrix asM33() const { |
352 | return SkMatrix::MakeAll(fMat[0], fMat[4], fMat[12], |
353 | fMat[1], fMat[5], fMat[13], |
354 | fMat[3], fMat[7], fMat[15]); |
355 | } |
356 | |
357 | SkM44(const SkMatrix& src) |
358 | : SkM44(src[SkMatrix::kMScaleX], src[SkMatrix::kMSkewX], 0, src[SkMatrix::kMTransX], |
359 | src[SkMatrix::kMSkewY], src[SkMatrix::kMScaleY], 0, src[SkMatrix::kMTransY], |
360 | 0, 0, 1, 0, |
361 | src[SkMatrix::kMPersp0], src[SkMatrix::kMPersp1], 0, src[SkMatrix::kMPersp2]) |
362 | {} |
363 | |
364 | SkM44& operator=(const SkMatrix& src) { |
365 | *this = SkM44(src); |
366 | return *this; |
367 | } |
368 | |
369 | SkM44& preTranslate(SkScalar x, SkScalar y); |
370 | SkM44& preScale(SkScalar x, SkScalar y); |
371 | SkM44& preConcat(const SkMatrix&); |
372 | |
373 | private: |
374 | /* Stored in column-major. |
375 | * Indices |
376 | * 0 4 8 12 1 0 0 trans_x |
377 | * 1 5 9 13 e.g. 0 1 0 trans_y |
378 | * 2 6 10 14 0 0 1 trans_z |
379 | * 3 7 11 15 0 0 0 1 |
380 | */ |
381 | SkScalar fMat[16]; |
382 | |
383 | double determinant() const; |
384 | |
385 | friend class SkMatrixPriv; |
386 | }; |
387 | |
388 | SkM44 Sk3LookAt(const SkV3& eye, const SkV3& center, const SkV3& up); |
389 | SkM44 Sk3Perspective(float near, float far, float angle); |
390 | |
391 | #endif |
392 | |