1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/codec/SkJpegCodec.h" |
9 | |
10 | #include "include/codec/SkCodec.h" |
11 | #include "include/core/SkStream.h" |
12 | #include "include/core/SkTypes.h" |
13 | #include "include/private/SkColorData.h" |
14 | #include "include/private/SkTemplates.h" |
15 | #include "include/private/SkTo.h" |
16 | #include "src/codec/SkCodecPriv.h" |
17 | #include "src/codec/SkJpegDecoderMgr.h" |
18 | #include "src/codec/SkParseEncodedOrigin.h" |
19 | #include "src/pdf/SkJpegInfo.h" |
20 | |
21 | // stdio is needed for libjpeg-turbo |
22 | #include <stdio.h> |
23 | #include "src/codec/SkJpegUtility.h" |
24 | |
25 | // This warning triggers false postives way too often in here. |
26 | #if defined(__GNUC__) && !defined(__clang__) |
27 | #pragma GCC diagnostic ignored "-Wclobbered" |
28 | #endif |
29 | |
30 | extern "C" { |
31 | #include "jerror.h" |
32 | #include "jpeglib.h" |
33 | } |
34 | |
35 | bool SkJpegCodec::IsJpeg(const void* buffer, size_t bytesRead) { |
36 | constexpr uint8_t jpegSig[] = { 0xFF, 0xD8, 0xFF }; |
37 | return bytesRead >= 3 && !memcmp(buffer, jpegSig, sizeof(jpegSig)); |
38 | } |
39 | |
40 | const uint32_t = 14; |
41 | const uint32_t kExifMarker = JPEG_APP0 + 1; |
42 | |
43 | static bool is_orientation_marker(jpeg_marker_struct* marker, SkEncodedOrigin* orientation) { |
44 | if (kExifMarker != marker->marker || marker->data_length < kExifHeaderSize) { |
45 | return false; |
46 | } |
47 | |
48 | constexpr uint8_t kExifSig[] { 'E', 'x', 'i', 'f', '\0' }; |
49 | if (memcmp(marker->data, kExifSig, sizeof(kExifSig))) { |
50 | return false; |
51 | } |
52 | |
53 | // Account for 'E', 'x', 'i', 'f', '\0', '<fill byte>'. |
54 | constexpr size_t kOffset = 6; |
55 | return SkParseEncodedOrigin(marker->data + kOffset, marker->data_length - kOffset, |
56 | orientation); |
57 | } |
58 | |
59 | static SkEncodedOrigin get_exif_orientation(jpeg_decompress_struct* dinfo) { |
60 | SkEncodedOrigin orientation; |
61 | for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { |
62 | if (is_orientation_marker(marker, &orientation)) { |
63 | return orientation; |
64 | } |
65 | } |
66 | |
67 | return kDefault_SkEncodedOrigin; |
68 | } |
69 | |
70 | static bool is_icc_marker(jpeg_marker_struct* marker) { |
71 | if (kICCMarker != marker->marker || marker->data_length < kICCMarkerHeaderSize) { |
72 | return false; |
73 | } |
74 | |
75 | return !memcmp(marker->data, kICCSig, sizeof(kICCSig)); |
76 | } |
77 | |
78 | /* |
79 | * ICC profiles may be stored using a sequence of multiple markers. We obtain the ICC profile |
80 | * in two steps: |
81 | * (1) Discover all ICC profile markers and verify that they are numbered properly. |
82 | * (2) Copy the data from each marker into a contiguous ICC profile. |
83 | */ |
84 | static std::unique_ptr<SkEncodedInfo::ICCProfile> read_color_profile(jpeg_decompress_struct* dinfo) |
85 | { |
86 | // Note that 256 will be enough storage space since each markerIndex is stored in 8-bits. |
87 | jpeg_marker_struct* markerSequence[256]; |
88 | memset(markerSequence, 0, sizeof(markerSequence)); |
89 | uint8_t numMarkers = 0; |
90 | size_t totalBytes = 0; |
91 | |
92 | // Discover any ICC markers and verify that they are numbered properly. |
93 | for (jpeg_marker_struct* marker = dinfo->marker_list; marker; marker = marker->next) { |
94 | if (is_icc_marker(marker)) { |
95 | // Verify that numMarkers is valid and consistent. |
96 | if (0 == numMarkers) { |
97 | numMarkers = marker->data[13]; |
98 | if (0 == numMarkers) { |
99 | SkCodecPrintf("ICC Profile Error: numMarkers must be greater than zero.\n" ); |
100 | return nullptr; |
101 | } |
102 | } else if (numMarkers != marker->data[13]) { |
103 | SkCodecPrintf("ICC Profile Error: numMarkers must be consistent.\n" ); |
104 | return nullptr; |
105 | } |
106 | |
107 | // Verify that the markerIndex is valid and unique. Note that zero is not |
108 | // a valid index. |
109 | uint8_t markerIndex = marker->data[12]; |
110 | if (markerIndex == 0 || markerIndex > numMarkers) { |
111 | SkCodecPrintf("ICC Profile Error: markerIndex is invalid.\n" ); |
112 | return nullptr; |
113 | } |
114 | if (markerSequence[markerIndex]) { |
115 | SkCodecPrintf("ICC Profile Error: Duplicate value of markerIndex.\n" ); |
116 | return nullptr; |
117 | } |
118 | markerSequence[markerIndex] = marker; |
119 | SkASSERT(marker->data_length >= kICCMarkerHeaderSize); |
120 | totalBytes += marker->data_length - kICCMarkerHeaderSize; |
121 | } |
122 | } |
123 | |
124 | if (0 == totalBytes) { |
125 | // No non-empty ICC profile markers were found. |
126 | return nullptr; |
127 | } |
128 | |
129 | // Combine the ICC marker data into a contiguous profile. |
130 | sk_sp<SkData> iccData = SkData::MakeUninitialized(totalBytes); |
131 | void* dst = iccData->writable_data(); |
132 | for (uint32_t i = 1; i <= numMarkers; i++) { |
133 | jpeg_marker_struct* marker = markerSequence[i]; |
134 | if (!marker) { |
135 | SkCodecPrintf("ICC Profile Error: Missing marker %d of %d.\n" , i, numMarkers); |
136 | return nullptr; |
137 | } |
138 | |
139 | void* src = SkTAddOffset<void>(marker->data, kICCMarkerHeaderSize); |
140 | size_t bytes = marker->data_length - kICCMarkerHeaderSize; |
141 | memcpy(dst, src, bytes); |
142 | dst = SkTAddOffset<void>(dst, bytes); |
143 | } |
144 | |
145 | return SkEncodedInfo::ICCProfile::Make(std::move(iccData)); |
146 | } |
147 | |
148 | SkCodec::Result SkJpegCodec::(SkStream* stream, SkCodec** codecOut, |
149 | JpegDecoderMgr** decoderMgrOut, |
150 | std::unique_ptr<SkEncodedInfo::ICCProfile> defaultColorProfile) { |
151 | |
152 | // Create a JpegDecoderMgr to own all of the decompress information |
153 | std::unique_ptr<JpegDecoderMgr> decoderMgr(new JpegDecoderMgr(stream)); |
154 | |
155 | // libjpeg errors will be caught and reported here |
156 | skjpeg_error_mgr::AutoPushJmpBuf jmp(decoderMgr->errorMgr()); |
157 | if (setjmp(jmp)) { |
158 | return decoderMgr->returnFailure("ReadHeader" , kInvalidInput); |
159 | } |
160 | |
161 | // Initialize the decompress info and the source manager |
162 | decoderMgr->init(); |
163 | auto* dinfo = decoderMgr->dinfo(); |
164 | |
165 | // Instruct jpeg library to save the markers that we care about. Since |
166 | // the orientation and color profile will not change, we can skip this |
167 | // step on rewinds. |
168 | if (codecOut) { |
169 | jpeg_save_markers(dinfo, kExifMarker, 0xFFFF); |
170 | jpeg_save_markers(dinfo, kICCMarker, 0xFFFF); |
171 | } |
172 | |
173 | // Read the jpeg header |
174 | switch (jpeg_read_header(dinfo, true)) { |
175 | case JPEG_HEADER_OK: |
176 | break; |
177 | case JPEG_SUSPENDED: |
178 | return decoderMgr->returnFailure("ReadHeader" , kIncompleteInput); |
179 | default: |
180 | return decoderMgr->returnFailure("ReadHeader" , kInvalidInput); |
181 | } |
182 | |
183 | if (codecOut) { |
184 | // Get the encoded color type |
185 | SkEncodedInfo::Color color; |
186 | if (!decoderMgr->getEncodedColor(&color)) { |
187 | return kInvalidInput; |
188 | } |
189 | |
190 | SkEncodedOrigin orientation = get_exif_orientation(dinfo); |
191 | auto profile = read_color_profile(dinfo); |
192 | if (profile) { |
193 | auto type = profile->profile()->data_color_space; |
194 | switch (decoderMgr->dinfo()->jpeg_color_space) { |
195 | case JCS_CMYK: |
196 | case JCS_YCCK: |
197 | if (type != skcms_Signature_CMYK) { |
198 | profile = nullptr; |
199 | } |
200 | break; |
201 | case JCS_GRAYSCALE: |
202 | if (type != skcms_Signature_Gray && |
203 | type != skcms_Signature_RGB) |
204 | { |
205 | profile = nullptr; |
206 | } |
207 | break; |
208 | default: |
209 | if (type != skcms_Signature_RGB) { |
210 | profile = nullptr; |
211 | } |
212 | break; |
213 | } |
214 | } |
215 | if (!profile) { |
216 | profile = std::move(defaultColorProfile); |
217 | } |
218 | |
219 | SkEncodedInfo info = SkEncodedInfo::Make(dinfo->image_width, dinfo->image_height, |
220 | color, SkEncodedInfo::kOpaque_Alpha, 8, |
221 | std::move(profile)); |
222 | |
223 | SkJpegCodec* codec = new SkJpegCodec(std::move(info), std::unique_ptr<SkStream>(stream), |
224 | decoderMgr.release(), orientation); |
225 | *codecOut = codec; |
226 | } else { |
227 | SkASSERT(nullptr != decoderMgrOut); |
228 | *decoderMgrOut = decoderMgr.release(); |
229 | } |
230 | return kSuccess; |
231 | } |
232 | |
233 | std::unique_ptr<SkCodec> SkJpegCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
234 | Result* result) { |
235 | return SkJpegCodec::MakeFromStream(std::move(stream), result, nullptr); |
236 | } |
237 | |
238 | std::unique_ptr<SkCodec> SkJpegCodec::MakeFromStream(std::unique_ptr<SkStream> stream, |
239 | Result* result, std::unique_ptr<SkEncodedInfo::ICCProfile> defaultColorProfile) { |
240 | SkCodec* codec = nullptr; |
241 | *result = ReadHeader(stream.get(), &codec, nullptr, std::move(defaultColorProfile)); |
242 | if (kSuccess == *result) { |
243 | // Codec has taken ownership of the stream, we do not need to delete it |
244 | SkASSERT(codec); |
245 | stream.release(); |
246 | return std::unique_ptr<SkCodec>(codec); |
247 | } |
248 | return nullptr; |
249 | } |
250 | |
251 | SkJpegCodec::SkJpegCodec(SkEncodedInfo&& info, std::unique_ptr<SkStream> stream, |
252 | JpegDecoderMgr* decoderMgr, SkEncodedOrigin origin) |
253 | : INHERITED(std::move(info), skcms_PixelFormat_RGBA_8888, std::move(stream), origin) |
254 | , fDecoderMgr(decoderMgr) |
255 | , fReadyState(decoderMgr->dinfo()->global_state) |
256 | , fSwizzleSrcRow(nullptr) |
257 | , fColorXformSrcRow(nullptr) |
258 | , fSwizzlerSubset(SkIRect::MakeEmpty()) |
259 | {} |
260 | |
261 | /* |
262 | * Return the row bytes of a particular image type and width |
263 | */ |
264 | static size_t get_row_bytes(const j_decompress_ptr dinfo) { |
265 | const size_t colorBytes = (dinfo->out_color_space == JCS_RGB565) ? 2 : |
266 | dinfo->out_color_components; |
267 | return dinfo->output_width * colorBytes; |
268 | |
269 | } |
270 | |
271 | /* |
272 | * Calculate output dimensions based on the provided factors. |
273 | * |
274 | * Not to be used on the actual jpeg_decompress_struct used for decoding, since it will |
275 | * incorrectly modify num_components. |
276 | */ |
277 | void calc_output_dimensions(jpeg_decompress_struct* dinfo, unsigned int num, unsigned int denom) { |
278 | dinfo->num_components = 0; |
279 | dinfo->scale_num = num; |
280 | dinfo->scale_denom = denom; |
281 | jpeg_calc_output_dimensions(dinfo); |
282 | } |
283 | |
284 | /* |
285 | * Return a valid set of output dimensions for this decoder, given an input scale |
286 | */ |
287 | SkISize SkJpegCodec::onGetScaledDimensions(float desiredScale) const { |
288 | // libjpeg-turbo supports scaling by 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1, so we will |
289 | // support these as well |
290 | unsigned int num; |
291 | unsigned int denom = 8; |
292 | if (desiredScale >= 0.9375) { |
293 | num = 8; |
294 | } else if (desiredScale >= 0.8125) { |
295 | num = 7; |
296 | } else if (desiredScale >= 0.6875f) { |
297 | num = 6; |
298 | } else if (desiredScale >= 0.5625f) { |
299 | num = 5; |
300 | } else if (desiredScale >= 0.4375f) { |
301 | num = 4; |
302 | } else if (desiredScale >= 0.3125f) { |
303 | num = 3; |
304 | } else if (desiredScale >= 0.1875f) { |
305 | num = 2; |
306 | } else { |
307 | num = 1; |
308 | } |
309 | |
310 | // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions |
311 | jpeg_decompress_struct dinfo; |
312 | sk_bzero(&dinfo, sizeof(dinfo)); |
313 | dinfo.image_width = this->dimensions().width(); |
314 | dinfo.image_height = this->dimensions().height(); |
315 | dinfo.global_state = fReadyState; |
316 | calc_output_dimensions(&dinfo, num, denom); |
317 | |
318 | // Return the calculated output dimensions for the given scale |
319 | return SkISize::Make(dinfo.output_width, dinfo.output_height); |
320 | } |
321 | |
322 | bool SkJpegCodec::onRewind() { |
323 | JpegDecoderMgr* decoderMgr = nullptr; |
324 | if (kSuccess != ReadHeader(this->stream(), nullptr, &decoderMgr, nullptr)) { |
325 | return fDecoderMgr->returnFalse("onRewind" ); |
326 | } |
327 | SkASSERT(nullptr != decoderMgr); |
328 | fDecoderMgr.reset(decoderMgr); |
329 | |
330 | fSwizzler.reset(nullptr); |
331 | fSwizzleSrcRow = nullptr; |
332 | fColorXformSrcRow = nullptr; |
333 | fStorage.reset(); |
334 | |
335 | return true; |
336 | } |
337 | |
338 | bool SkJpegCodec::conversionSupported(const SkImageInfo& dstInfo, bool srcIsOpaque, |
339 | bool needsColorXform) { |
340 | SkASSERT(srcIsOpaque); |
341 | |
342 | if (kUnknown_SkAlphaType == dstInfo.alphaType()) { |
343 | return false; |
344 | } |
345 | |
346 | if (kOpaque_SkAlphaType != dstInfo.alphaType()) { |
347 | SkCodecPrintf("Warning: an opaque image should be decoded as opaque " |
348 | "- it is being decoded as non-opaque, which will draw slower\n" ); |
349 | } |
350 | |
351 | J_COLOR_SPACE encodedColorType = fDecoderMgr->dinfo()->jpeg_color_space; |
352 | |
353 | // Check for valid color types and set the output color space |
354 | switch (dstInfo.colorType()) { |
355 | case kRGBA_8888_SkColorType: |
356 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
357 | break; |
358 | case kBGRA_8888_SkColorType: |
359 | if (needsColorXform) { |
360 | // Always using RGBA as the input format for color xforms makes the |
361 | // implementation a little simpler. |
362 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
363 | } else { |
364 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_BGRA; |
365 | } |
366 | break; |
367 | case kRGB_565_SkColorType: |
368 | if (needsColorXform) { |
369 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
370 | } else { |
371 | fDecoderMgr->dinfo()->dither_mode = JDITHER_NONE; |
372 | fDecoderMgr->dinfo()->out_color_space = JCS_RGB565; |
373 | } |
374 | break; |
375 | case kGray_8_SkColorType: |
376 | if (JCS_GRAYSCALE != encodedColorType) { |
377 | return false; |
378 | } |
379 | |
380 | if (needsColorXform) { |
381 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
382 | } else { |
383 | fDecoderMgr->dinfo()->out_color_space = JCS_GRAYSCALE; |
384 | } |
385 | break; |
386 | case kRGBA_F16_SkColorType: |
387 | SkASSERT(needsColorXform); |
388 | fDecoderMgr->dinfo()->out_color_space = JCS_EXT_RGBA; |
389 | break; |
390 | default: |
391 | return false; |
392 | } |
393 | |
394 | // Check if we will decode to CMYK. libjpeg-turbo does not convert CMYK to RGBA, so |
395 | // we must do it ourselves. |
396 | if (JCS_CMYK == encodedColorType || JCS_YCCK == encodedColorType) { |
397 | fDecoderMgr->dinfo()->out_color_space = JCS_CMYK; |
398 | } |
399 | |
400 | return true; |
401 | } |
402 | |
403 | /* |
404 | * Checks if we can natively scale to the requested dimensions and natively scales the |
405 | * dimensions if possible |
406 | */ |
407 | bool SkJpegCodec::onDimensionsSupported(const SkISize& size) { |
408 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
409 | if (setjmp(jmp)) { |
410 | return fDecoderMgr->returnFalse("onDimensionsSupported" ); |
411 | } |
412 | |
413 | const unsigned int dstWidth = size.width(); |
414 | const unsigned int dstHeight = size.height(); |
415 | |
416 | // Set up a fake decompress struct in order to use libjpeg to calculate output dimensions |
417 | // FIXME: Why is this necessary? |
418 | jpeg_decompress_struct dinfo; |
419 | sk_bzero(&dinfo, sizeof(dinfo)); |
420 | dinfo.image_width = this->dimensions().width(); |
421 | dinfo.image_height = this->dimensions().height(); |
422 | dinfo.global_state = fReadyState; |
423 | |
424 | // libjpeg-turbo can scale to 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1/1 |
425 | unsigned int num = 8; |
426 | const unsigned int denom = 8; |
427 | calc_output_dimensions(&dinfo, num, denom); |
428 | while (dinfo.output_width != dstWidth || dinfo.output_height != dstHeight) { |
429 | |
430 | // Return a failure if we have tried all of the possible scales |
431 | if (1 == num || dstWidth > dinfo.output_width || dstHeight > dinfo.output_height) { |
432 | return false; |
433 | } |
434 | |
435 | // Try the next scale |
436 | num -= 1; |
437 | calc_output_dimensions(&dinfo, num, denom); |
438 | } |
439 | |
440 | fDecoderMgr->dinfo()->scale_num = num; |
441 | fDecoderMgr->dinfo()->scale_denom = denom; |
442 | return true; |
443 | } |
444 | |
445 | int SkJpegCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count, |
446 | const Options& opts) { |
447 | // Set the jump location for libjpeg-turbo errors |
448 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
449 | if (setjmp(jmp)) { |
450 | return 0; |
451 | } |
452 | |
453 | // When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case, |
454 | // we will always decode into fSwizzlerSrcRow before swizzling into the next buffer. |
455 | // We can never swizzle "in place" because the swizzler may perform sampling and/or |
456 | // subsetting. |
457 | // When fColorXformSrcRow is non-null, it means that we need to color xform and that |
458 | // we cannot color xform "in place" (many times we can, but not when the src and dst |
459 | // are different sizes). |
460 | // In this case, we will color xform from fColorXformSrcRow into the dst. |
461 | JSAMPLE* decodeDst = (JSAMPLE*) dst; |
462 | uint32_t* swizzleDst = (uint32_t*) dst; |
463 | size_t decodeDstRowBytes = rowBytes; |
464 | size_t swizzleDstRowBytes = rowBytes; |
465 | int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width(); |
466 | if (fSwizzleSrcRow && fColorXformSrcRow) { |
467 | decodeDst = (JSAMPLE*) fSwizzleSrcRow; |
468 | swizzleDst = fColorXformSrcRow; |
469 | decodeDstRowBytes = 0; |
470 | swizzleDstRowBytes = 0; |
471 | dstWidth = fSwizzler->swizzleWidth(); |
472 | } else if (fColorXformSrcRow) { |
473 | decodeDst = (JSAMPLE*) fColorXformSrcRow; |
474 | swizzleDst = fColorXformSrcRow; |
475 | decodeDstRowBytes = 0; |
476 | swizzleDstRowBytes = 0; |
477 | } else if (fSwizzleSrcRow) { |
478 | decodeDst = (JSAMPLE*) fSwizzleSrcRow; |
479 | decodeDstRowBytes = 0; |
480 | dstWidth = fSwizzler->swizzleWidth(); |
481 | } |
482 | |
483 | for (int y = 0; y < count; y++) { |
484 | uint32_t lines = jpeg_read_scanlines(fDecoderMgr->dinfo(), &decodeDst, 1); |
485 | if (0 == lines) { |
486 | return y; |
487 | } |
488 | |
489 | if (fSwizzler) { |
490 | fSwizzler->swizzle(swizzleDst, decodeDst); |
491 | } |
492 | |
493 | if (this->colorXform()) { |
494 | this->applyColorXform(dst, swizzleDst, dstWidth); |
495 | dst = SkTAddOffset<void>(dst, rowBytes); |
496 | } |
497 | |
498 | decodeDst = SkTAddOffset<JSAMPLE>(decodeDst, decodeDstRowBytes); |
499 | swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes); |
500 | } |
501 | |
502 | return count; |
503 | } |
504 | |
505 | /* |
506 | * This is a bit tricky. We only need the swizzler to do format conversion if the jpeg is |
507 | * encoded as CMYK. |
508 | * And even then we still may not need it. If the jpeg has a CMYK color profile and a color |
509 | * xform, the color xform will handle the CMYK->RGB conversion. |
510 | */ |
511 | static inline bool needs_swizzler_to_convert_from_cmyk(J_COLOR_SPACE jpegColorType, |
512 | const skcms_ICCProfile* srcProfile, |
513 | bool hasColorSpaceXform) { |
514 | if (JCS_CMYK != jpegColorType) { |
515 | return false; |
516 | } |
517 | |
518 | bool hasCMYKColorSpace = srcProfile && srcProfile->data_color_space == skcms_Signature_CMYK; |
519 | return !hasCMYKColorSpace || !hasColorSpaceXform; |
520 | } |
521 | |
522 | /* |
523 | * Performs the jpeg decode |
524 | */ |
525 | SkCodec::Result SkJpegCodec::onGetPixels(const SkImageInfo& dstInfo, |
526 | void* dst, size_t dstRowBytes, |
527 | const Options& options, |
528 | int* rowsDecoded) { |
529 | if (options.fSubset) { |
530 | // Subsets are not supported. |
531 | return kUnimplemented; |
532 | } |
533 | |
534 | // Get a pointer to the decompress info since we will use it quite frequently |
535 | jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
536 | |
537 | // Set the jump location for libjpeg errors |
538 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
539 | if (setjmp(jmp)) { |
540 | return fDecoderMgr->returnFailure("setjmp" , kInvalidInput); |
541 | } |
542 | |
543 | if (!jpeg_start_decompress(dinfo)) { |
544 | return fDecoderMgr->returnFailure("startDecompress" , kInvalidInput); |
545 | } |
546 | |
547 | // The recommended output buffer height should always be 1 in high quality modes. |
548 | // If it's not, we want to know because it means our strategy is not optimal. |
549 | SkASSERT(1 == dinfo->rec_outbuf_height); |
550 | |
551 | if (needs_swizzler_to_convert_from_cmyk(dinfo->out_color_space, |
552 | this->getEncodedInfo().profile(), this->colorXform())) { |
553 | this->initializeSwizzler(dstInfo, options, true); |
554 | } |
555 | |
556 | if (!this->allocateStorage(dstInfo)) { |
557 | return kInternalError; |
558 | } |
559 | |
560 | int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options); |
561 | if (rows < dstInfo.height()) { |
562 | *rowsDecoded = rows; |
563 | return fDecoderMgr->returnFailure("Incomplete image data" , kIncompleteInput); |
564 | } |
565 | |
566 | return kSuccess; |
567 | } |
568 | |
569 | bool SkJpegCodec::allocateStorage(const SkImageInfo& dstInfo) { |
570 | int dstWidth = dstInfo.width(); |
571 | |
572 | size_t swizzleBytes = 0; |
573 | if (fSwizzler) { |
574 | swizzleBytes = get_row_bytes(fDecoderMgr->dinfo()); |
575 | dstWidth = fSwizzler->swizzleWidth(); |
576 | SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes)); |
577 | } |
578 | |
579 | size_t xformBytes = 0; |
580 | |
581 | if (this->colorXform() && sizeof(uint32_t) != dstInfo.bytesPerPixel()) { |
582 | xformBytes = dstWidth * sizeof(uint32_t); |
583 | } |
584 | |
585 | size_t totalBytes = swizzleBytes + xformBytes; |
586 | if (totalBytes > 0) { |
587 | if (!fStorage.reset(totalBytes)) { |
588 | return false; |
589 | } |
590 | fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr; |
591 | fColorXformSrcRow = (xformBytes > 0) ? |
592 | SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr; |
593 | } |
594 | return true; |
595 | } |
596 | |
597 | void SkJpegCodec::initializeSwizzler(const SkImageInfo& dstInfo, const Options& options, |
598 | bool needsCMYKToRGB) { |
599 | Options swizzlerOptions = options; |
600 | if (options.fSubset) { |
601 | // Use fSwizzlerSubset if this is a subset decode. This is necessary in the case |
602 | // where libjpeg-turbo provides a subset and then we need to subset it further. |
603 | // Also, verify that fSwizzlerSubset is initialized and valid. |
604 | SkASSERT(!fSwizzlerSubset.isEmpty() && fSwizzlerSubset.x() <= options.fSubset->x() && |
605 | fSwizzlerSubset.width() == options.fSubset->width()); |
606 | swizzlerOptions.fSubset = &fSwizzlerSubset; |
607 | } |
608 | |
609 | SkImageInfo swizzlerDstInfo = dstInfo; |
610 | if (this->colorXform()) { |
611 | // The color xform will be expecting RGBA 8888 input. |
612 | swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType); |
613 | } |
614 | |
615 | if (needsCMYKToRGB) { |
616 | // The swizzler is used to convert to from CMYK. |
617 | // The swizzler does not use the width or height on SkEncodedInfo. |
618 | auto swizzlerInfo = SkEncodedInfo::Make(0, 0, SkEncodedInfo::kInvertedCMYK_Color, |
619 | SkEncodedInfo::kOpaque_Alpha, 8); |
620 | fSwizzler = SkSwizzler::Make(swizzlerInfo, nullptr, swizzlerDstInfo, swizzlerOptions); |
621 | } else { |
622 | int srcBPP = 0; |
623 | switch (fDecoderMgr->dinfo()->out_color_space) { |
624 | case JCS_EXT_RGBA: |
625 | case JCS_EXT_BGRA: |
626 | case JCS_CMYK: |
627 | srcBPP = 4; |
628 | break; |
629 | case JCS_RGB565: |
630 | srcBPP = 2; |
631 | break; |
632 | case JCS_GRAYSCALE: |
633 | srcBPP = 1; |
634 | break; |
635 | default: |
636 | SkASSERT(false); |
637 | break; |
638 | } |
639 | fSwizzler = SkSwizzler::MakeSimple(srcBPP, swizzlerDstInfo, swizzlerOptions); |
640 | } |
641 | SkASSERT(fSwizzler); |
642 | } |
643 | |
644 | SkSampler* SkJpegCodec::getSampler(bool createIfNecessary) { |
645 | if (!createIfNecessary || fSwizzler) { |
646 | SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow)); |
647 | return fSwizzler.get(); |
648 | } |
649 | |
650 | bool needsCMYKToRGB = needs_swizzler_to_convert_from_cmyk( |
651 | fDecoderMgr->dinfo()->out_color_space, this->getEncodedInfo().profile(), |
652 | this->colorXform()); |
653 | this->initializeSwizzler(this->dstInfo(), this->options(), needsCMYKToRGB); |
654 | if (!this->allocateStorage(this->dstInfo())) { |
655 | return nullptr; |
656 | } |
657 | return fSwizzler.get(); |
658 | } |
659 | |
660 | SkCodec::Result SkJpegCodec::onStartScanlineDecode(const SkImageInfo& dstInfo, |
661 | const Options& options) { |
662 | // Set the jump location for libjpeg errors |
663 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
664 | if (setjmp(jmp)) { |
665 | SkCodecPrintf("setjmp: Error from libjpeg\n" ); |
666 | return kInvalidInput; |
667 | } |
668 | |
669 | if (!jpeg_start_decompress(fDecoderMgr->dinfo())) { |
670 | SkCodecPrintf("start decompress failed\n" ); |
671 | return kInvalidInput; |
672 | } |
673 | |
674 | bool needsCMYKToRGB = needs_swizzler_to_convert_from_cmyk( |
675 | fDecoderMgr->dinfo()->out_color_space, this->getEncodedInfo().profile(), |
676 | this->colorXform()); |
677 | if (options.fSubset) { |
678 | uint32_t startX = options.fSubset->x(); |
679 | uint32_t width = options.fSubset->width(); |
680 | |
681 | // libjpeg-turbo may need to align startX to a multiple of the IDCT |
682 | // block size. If this is the case, it will decrease the value of |
683 | // startX to the appropriate alignment and also increase the value |
684 | // of width so that the right edge of the requested subset remains |
685 | // the same. |
686 | jpeg_crop_scanline(fDecoderMgr->dinfo(), &startX, &width); |
687 | |
688 | SkASSERT(startX <= (uint32_t) options.fSubset->x()); |
689 | SkASSERT(width >= (uint32_t) options.fSubset->width()); |
690 | SkASSERT(startX + width >= (uint32_t) options.fSubset->right()); |
691 | |
692 | // Instruct the swizzler (if it is necessary) to further subset the |
693 | // output provided by libjpeg-turbo. |
694 | // |
695 | // We set this here (rather than in the if statement below), so that |
696 | // if (1) we don't need a swizzler for the subset, and (2) we need a |
697 | // swizzler for CMYK, the swizzler will still use the proper subset |
698 | // dimensions. |
699 | // |
700 | // Note that the swizzler will ignore the y and height parameters of |
701 | // the subset. Since the scanline decoder (and the swizzler) handle |
702 | // one row at a time, only the subsetting in the x-dimension matters. |
703 | fSwizzlerSubset.setXYWH(options.fSubset->x() - startX, 0, |
704 | options.fSubset->width(), options.fSubset->height()); |
705 | |
706 | // We will need a swizzler if libjpeg-turbo cannot provide the exact |
707 | // subset that we request. |
708 | if (startX != (uint32_t) options.fSubset->x() || |
709 | width != (uint32_t) options.fSubset->width()) { |
710 | this->initializeSwizzler(dstInfo, options, needsCMYKToRGB); |
711 | } |
712 | } |
713 | |
714 | // Make sure we have a swizzler if we are converting from CMYK. |
715 | if (!fSwizzler && needsCMYKToRGB) { |
716 | this->initializeSwizzler(dstInfo, options, true); |
717 | } |
718 | |
719 | if (!this->allocateStorage(dstInfo)) { |
720 | return kInternalError; |
721 | } |
722 | |
723 | return kSuccess; |
724 | } |
725 | |
726 | int SkJpegCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) { |
727 | int rows = this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options()); |
728 | if (rows < count) { |
729 | // This allows us to skip calling jpeg_finish_decompress(). |
730 | fDecoderMgr->dinfo()->output_scanline = this->dstInfo().height(); |
731 | } |
732 | |
733 | return rows; |
734 | } |
735 | |
736 | bool SkJpegCodec::onSkipScanlines(int count) { |
737 | // Set the jump location for libjpeg errors |
738 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
739 | if (setjmp(jmp)) { |
740 | return fDecoderMgr->returnFalse("onSkipScanlines" ); |
741 | } |
742 | |
743 | return (uint32_t) count == jpeg_skip_scanlines(fDecoderMgr->dinfo(), count); |
744 | } |
745 | |
746 | static bool is_yuv_supported(jpeg_decompress_struct* dinfo) { |
747 | // Scaling is not supported in raw data mode. |
748 | SkASSERT(dinfo->scale_num == dinfo->scale_denom); |
749 | |
750 | // I can't imagine that this would ever change, but we do depend on it. |
751 | static_assert(8 == DCTSIZE, "DCTSIZE (defined in jpeg library) should always be 8." ); |
752 | |
753 | if (JCS_YCbCr != dinfo->jpeg_color_space) { |
754 | return false; |
755 | } |
756 | |
757 | SkASSERT(3 == dinfo->num_components); |
758 | SkASSERT(dinfo->comp_info); |
759 | |
760 | // It is possible to perform a YUV decode for any combination of |
761 | // horizontal and vertical sampling that is supported by |
762 | // libjpeg/libjpeg-turbo. However, we will start by supporting only the |
763 | // common cases (where U and V have samp_factors of one). |
764 | // |
765 | // The definition of samp_factor is kind of the opposite of what SkCodec |
766 | // thinks of as a sampling factor. samp_factor is essentially a |
767 | // multiplier, and the larger the samp_factor is, the more samples that |
768 | // there will be. Ex: |
769 | // U_plane_width = image_width * (U_h_samp_factor / max_h_samp_factor) |
770 | // |
771 | // Supporting cases where the samp_factors for U or V were larger than |
772 | // that of Y would be an extremely difficult change, given that clients |
773 | // allocate memory as if the size of the Y plane is always the size of the |
774 | // image. However, this case is very, very rare. |
775 | if ((1 != dinfo->comp_info[1].h_samp_factor) || |
776 | (1 != dinfo->comp_info[1].v_samp_factor) || |
777 | (1 != dinfo->comp_info[2].h_samp_factor) || |
778 | (1 != dinfo->comp_info[2].v_samp_factor)) |
779 | { |
780 | return false; |
781 | } |
782 | |
783 | // Support all common cases of Y samp_factors. |
784 | // TODO (msarett): As mentioned above, it would be possible to support |
785 | // more combinations of samp_factors. The issues are: |
786 | // (1) Are there actually any images that are not covered |
787 | // by these cases? |
788 | // (2) How much complexity would be added to the |
789 | // implementation in order to support these rare |
790 | // cases? |
791 | int hSampY = dinfo->comp_info[0].h_samp_factor; |
792 | int vSampY = dinfo->comp_info[0].v_samp_factor; |
793 | return (1 == hSampY && 1 == vSampY) || |
794 | (2 == hSampY && 1 == vSampY) || |
795 | (2 == hSampY && 2 == vSampY) || |
796 | (1 == hSampY && 2 == vSampY) || |
797 | (4 == hSampY && 1 == vSampY) || |
798 | (4 == hSampY && 2 == vSampY); |
799 | } |
800 | |
801 | bool SkJpegCodec::onQueryYUV8(SkYUVASizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const { |
802 | jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
803 | if (!is_yuv_supported(dinfo)) { |
804 | return false; |
805 | } |
806 | |
807 | jpeg_component_info * comp_info = dinfo->comp_info; |
808 | for (int i = 0; i < 3; ++i) { |
809 | sizeInfo->fSizes[i].set(comp_info[i].downsampled_width, comp_info[i].downsampled_height); |
810 | sizeInfo->fWidthBytes[i] = comp_info[i].width_in_blocks * DCTSIZE; |
811 | } |
812 | |
813 | // JPEG never has an alpha channel |
814 | sizeInfo->fSizes[3].fHeight = sizeInfo->fSizes[3].fWidth = sizeInfo->fWidthBytes[3] = 0; |
815 | |
816 | sizeInfo->fOrigin = this->getOrigin(); |
817 | |
818 | if (colorSpace) { |
819 | *colorSpace = kJPEG_SkYUVColorSpace; |
820 | } |
821 | |
822 | return true; |
823 | } |
824 | |
825 | SkCodec::Result SkJpegCodec::onGetYUV8Planes(const SkYUVASizeInfo& sizeInfo, |
826 | void* planes[SkYUVASizeInfo::kMaxCount]) { |
827 | SkYUVASizeInfo defaultInfo; |
828 | |
829 | // This will check is_yuv_supported(), so we don't need to here. |
830 | bool supportsYUV = this->onQueryYUV8(&defaultInfo, nullptr); |
831 | if (!supportsYUV || |
832 | sizeInfo.fSizes[0] != defaultInfo.fSizes[0] || |
833 | sizeInfo.fSizes[1] != defaultInfo.fSizes[1] || |
834 | sizeInfo.fSizes[2] != defaultInfo.fSizes[2] || |
835 | sizeInfo.fWidthBytes[0] < defaultInfo.fWidthBytes[0] || |
836 | sizeInfo.fWidthBytes[1] < defaultInfo.fWidthBytes[1] || |
837 | sizeInfo.fWidthBytes[2] < defaultInfo.fWidthBytes[2]) { |
838 | return fDecoderMgr->returnFailure("onGetYUV8Planes" , kInvalidInput); |
839 | } |
840 | |
841 | // Set the jump location for libjpeg errors |
842 | skjpeg_error_mgr::AutoPushJmpBuf jmp(fDecoderMgr->errorMgr()); |
843 | if (setjmp(jmp)) { |
844 | return fDecoderMgr->returnFailure("setjmp" , kInvalidInput); |
845 | } |
846 | |
847 | // Get a pointer to the decompress info since we will use it quite frequently |
848 | jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
849 | |
850 | dinfo->raw_data_out = TRUE; |
851 | if (!jpeg_start_decompress(dinfo)) { |
852 | return fDecoderMgr->returnFailure("startDecompress" , kInvalidInput); |
853 | } |
854 | |
855 | // A previous implementation claims that the return value of is_yuv_supported() |
856 | // may change after calling jpeg_start_decompress(). It looks to me like this |
857 | // was caused by a bug in the old code, but we'll be safe and check here. |
858 | SkASSERT(is_yuv_supported(dinfo)); |
859 | |
860 | // Currently, we require that the Y plane dimensions match the image dimensions |
861 | // and that the U and V planes are the same dimensions. |
862 | SkASSERT(sizeInfo.fSizes[1] == sizeInfo.fSizes[2]); |
863 | SkASSERT((uint32_t) sizeInfo.fSizes[0].width() == dinfo->output_width && |
864 | (uint32_t) sizeInfo.fSizes[0].height() == dinfo->output_height); |
865 | |
866 | // Build a JSAMPIMAGE to handle output from libjpeg-turbo. A JSAMPIMAGE has |
867 | // a 2-D array of pixels for each of the components (Y, U, V) in the image. |
868 | // Cheat Sheet: |
869 | // JSAMPIMAGE == JSAMPLEARRAY* == JSAMPROW** == JSAMPLE*** |
870 | JSAMPARRAY yuv[3]; |
871 | |
872 | // Set aside enough space for pointers to rows of Y, U, and V. |
873 | JSAMPROW rowptrs[2 * DCTSIZE + DCTSIZE + DCTSIZE]; |
874 | yuv[0] = &rowptrs[0]; // Y rows (DCTSIZE or 2 * DCTSIZE) |
875 | yuv[1] = &rowptrs[2 * DCTSIZE]; // U rows (DCTSIZE) |
876 | yuv[2] = &rowptrs[3 * DCTSIZE]; // V rows (DCTSIZE) |
877 | |
878 | // Initialize rowptrs. |
879 | int numYRowsPerBlock = DCTSIZE * dinfo->comp_info[0].v_samp_factor; |
880 | for (int i = 0; i < numYRowsPerBlock; i++) { |
881 | rowptrs[i] = SkTAddOffset<JSAMPLE>(planes[0], i * sizeInfo.fWidthBytes[0]); |
882 | } |
883 | for (int i = 0; i < DCTSIZE; i++) { |
884 | rowptrs[i + 2 * DCTSIZE] = |
885 | SkTAddOffset<JSAMPLE>(planes[1], i * sizeInfo.fWidthBytes[1]); |
886 | rowptrs[i + 3 * DCTSIZE] = |
887 | SkTAddOffset<JSAMPLE>(planes[2], i * sizeInfo.fWidthBytes[2]); |
888 | } |
889 | |
890 | // After each loop iteration, we will increment pointers to Y, U, and V. |
891 | size_t blockIncrementY = numYRowsPerBlock * sizeInfo.fWidthBytes[0]; |
892 | size_t blockIncrementU = DCTSIZE * sizeInfo.fWidthBytes[1]; |
893 | size_t blockIncrementV = DCTSIZE * sizeInfo.fWidthBytes[2]; |
894 | |
895 | uint32_t numRowsPerBlock = numYRowsPerBlock; |
896 | |
897 | // We intentionally round down here, as this first loop will only handle |
898 | // full block rows. As a special case at the end, we will handle any |
899 | // remaining rows that do not make up a full block. |
900 | const int numIters = dinfo->output_height / numRowsPerBlock; |
901 | for (int i = 0; i < numIters; i++) { |
902 | JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
903 | if (linesRead < numRowsPerBlock) { |
904 | // FIXME: Handle incomplete YUV decodes without signalling an error. |
905 | return kInvalidInput; |
906 | } |
907 | |
908 | // Update rowptrs. |
909 | for (int i = 0; i < numYRowsPerBlock; i++) { |
910 | rowptrs[i] += blockIncrementY; |
911 | } |
912 | for (int i = 0; i < DCTSIZE; i++) { |
913 | rowptrs[i + 2 * DCTSIZE] += blockIncrementU; |
914 | rowptrs[i + 3 * DCTSIZE] += blockIncrementV; |
915 | } |
916 | } |
917 | |
918 | uint32_t remainingRows = dinfo->output_height - dinfo->output_scanline; |
919 | SkASSERT(remainingRows == dinfo->output_height % numRowsPerBlock); |
920 | SkASSERT(dinfo->output_scanline == numIters * numRowsPerBlock); |
921 | if (remainingRows > 0) { |
922 | // libjpeg-turbo needs memory to be padded by the block sizes. We will fulfill |
923 | // this requirement using a dummy row buffer. |
924 | // FIXME: Should SkCodec have an extra memory buffer that can be shared among |
925 | // all of the implementations that use temporary/garbage memory? |
926 | SkAutoTMalloc<JSAMPLE> dummyRow(sizeInfo.fWidthBytes[0]); |
927 | for (int i = remainingRows; i < numYRowsPerBlock; i++) { |
928 | rowptrs[i] = dummyRow.get(); |
929 | } |
930 | int remainingUVRows = dinfo->comp_info[1].downsampled_height - DCTSIZE * numIters; |
931 | for (int i = remainingUVRows; i < DCTSIZE; i++) { |
932 | rowptrs[i + 2 * DCTSIZE] = dummyRow.get(); |
933 | rowptrs[i + 3 * DCTSIZE] = dummyRow.get(); |
934 | } |
935 | |
936 | JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
937 | if (linesRead < remainingRows) { |
938 | // FIXME: Handle incomplete YUV decodes without signalling an error. |
939 | return kInvalidInput; |
940 | } |
941 | } |
942 | |
943 | return kSuccess; |
944 | } |
945 | |
946 | // This function is declared in SkJpegInfo.h, used by SkPDF. |
947 | bool SkGetJpegInfo(const void* data, size_t len, |
948 | SkISize* size, |
949 | SkEncodedInfo::Color* colorType, |
950 | SkEncodedOrigin* orientation) { |
951 | if (!SkJpegCodec::IsJpeg(data, len)) { |
952 | return false; |
953 | } |
954 | |
955 | SkMemoryStream stream(data, len); |
956 | JpegDecoderMgr decoderMgr(&stream); |
957 | // libjpeg errors will be caught and reported here |
958 | skjpeg_error_mgr::AutoPushJmpBuf jmp(decoderMgr.errorMgr()); |
959 | if (setjmp(jmp)) { |
960 | return false; |
961 | } |
962 | decoderMgr.init(); |
963 | jpeg_decompress_struct* dinfo = decoderMgr.dinfo(); |
964 | jpeg_save_markers(dinfo, kExifMarker, 0xFFFF); |
965 | jpeg_save_markers(dinfo, kICCMarker, 0xFFFF); |
966 | if (JPEG_HEADER_OK != jpeg_read_header(dinfo, true)) { |
967 | return false; |
968 | } |
969 | SkEncodedInfo::Color encodedColorType; |
970 | if (!decoderMgr.getEncodedColor(&encodedColorType)) { |
971 | return false; // Unable to interpret the color channels as colors. |
972 | } |
973 | if (colorType) { |
974 | *colorType = encodedColorType; |
975 | } |
976 | if (orientation) { |
977 | *orientation = get_exif_orientation(dinfo); |
978 | } |
979 | if (size) { |
980 | *size = {SkToS32(dinfo->image_width), SkToS32(dinfo->image_height)}; |
981 | } |
982 | return true; |
983 | } |
984 | |