1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkPoint3.h" |
9 | |
10 | // Returns the square of the Euclidian distance to (x,y,z). |
11 | static inline float get_length_squared(float x, float y, float z) { |
12 | return x * x + y * y + z * z; |
13 | } |
14 | |
15 | // Calculates the square of the Euclidian distance to (x,y,z) and stores it in |
16 | // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
17 | // |
18 | // This logic is encapsulated in a helper method to make it explicit that we |
19 | // always perform this check in the same manner, to avoid inconsistencies |
20 | // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
21 | static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) { |
22 | *lengthSquared = get_length_squared(x, y, z); |
23 | return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
24 | } |
25 | |
26 | SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) { |
27 | float magSq = get_length_squared(x, y, z); |
28 | if (SkScalarIsFinite(magSq)) { |
29 | return sk_float_sqrt(magSq); |
30 | } else { |
31 | double xx = x; |
32 | double yy = y; |
33 | double zz = z; |
34 | return (float)sqrt(xx * xx + yy * yy + zz * zz); |
35 | } |
36 | } |
37 | |
38 | /* |
39 | * We have to worry about 2 tricky conditions: |
40 | * 1. underflow of magSq (compared against nearlyzero^2) |
41 | * 2. overflow of magSq (compared w/ isfinite) |
42 | * |
43 | * If we underflow, we return false. If we overflow, we compute again using |
44 | * doubles, which is much slower (3x in a desktop test) but will not overflow. |
45 | */ |
46 | bool SkPoint3::normalize() { |
47 | float magSq; |
48 | if (is_length_nearly_zero(fX, fY, fZ, &magSq)) { |
49 | this->set(0, 0, 0); |
50 | return false; |
51 | } |
52 | // sqrtf does not provide enough precision; since sqrt takes a double, |
53 | // there's no additional penalty to storing invScale in a double |
54 | double invScale; |
55 | if (sk_float_isfinite(magSq)) { |
56 | invScale = magSq; |
57 | } else { |
58 | // our magSq step overflowed to infinity, so use doubles instead. |
59 | // much slower, but needed when x, y or z is very large, otherwise we |
60 | // divide by inf. and return (0,0,0) vector. |
61 | double xx = fX; |
62 | double yy = fY; |
63 | double zz = fZ; |
64 | invScale = xx * xx + yy * yy + zz * zz; |
65 | } |
66 | // using a float instead of a double for scale loses too much precision |
67 | double scale = 1 / sqrt(invScale); |
68 | fX *= scale; |
69 | fY *= scale; |
70 | fZ *= scale; |
71 | if (!sk_float_isfinite(fX) || !sk_float_isfinite(fY) || !sk_float_isfinite(fZ)) { |
72 | this->set(0, 0, 0); |
73 | return false; |
74 | } |
75 | return true; |
76 | } |
77 | |