1 | /* |
2 | * Copyright 2009 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkGeometry.h" |
9 | #include "src/core/SkQuadClipper.h" |
10 | |
11 | #include <utility> |
12 | |
13 | SkQuadClipper::SkQuadClipper() { |
14 | fClip.setEmpty(); |
15 | } |
16 | |
17 | void SkQuadClipper::setClip(const SkIRect& clip) { |
18 | // conver to scalars, since that's where we'll see the points |
19 | fClip.set(clip); |
20 | } |
21 | |
22 | /////////////////////////////////////////////////////////////////////////////// |
23 | |
24 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, |
25 | SkScalar target, SkScalar* t) { |
26 | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 |
27 | * We solve for t, using quadratic equation, hence we have to rearrange |
28 | * our cooefficents to look like At^2 + Bt + C |
29 | */ |
30 | SkScalar A = c0 - c1 - c1 + c2; |
31 | SkScalar B = 2*(c1 - c0); |
32 | SkScalar C = c0 - target; |
33 | |
34 | SkScalar roots[2]; // we only expect one, but make room for 2 for safety |
35 | int count = SkFindUnitQuadRoots(A, B, C, roots); |
36 | if (count) { |
37 | *t = roots[0]; |
38 | return true; |
39 | } |
40 | return false; |
41 | } |
42 | |
43 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { |
44 | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); |
45 | } |
46 | |
47 | /////////////////////////////////////////////////////////////////////////////// |
48 | |
49 | /* If we somehow returned the fact that we had to flip the pts in Y, we could |
50 | communicate that to setQuadratic, and then avoid having to flip it back |
51 | here (only to have setQuadratic do the flip again) |
52 | */ |
53 | bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) { |
54 | bool reverse; |
55 | |
56 | // we need the data to be monotonically increasing in Y |
57 | if (srcPts[0].fY > srcPts[2].fY) { |
58 | dst[0] = srcPts[2]; |
59 | dst[1] = srcPts[1]; |
60 | dst[2] = srcPts[0]; |
61 | reverse = true; |
62 | } else { |
63 | memcpy(dst, srcPts, 3 * sizeof(SkPoint)); |
64 | reverse = false; |
65 | } |
66 | |
67 | // are we completely above or below |
68 | const SkScalar ctop = fClip.fTop; |
69 | const SkScalar cbot = fClip.fBottom; |
70 | if (dst[2].fY <= ctop || dst[0].fY >= cbot) { |
71 | return false; |
72 | } |
73 | |
74 | SkScalar t; |
75 | SkPoint tmp[5]; // for SkChopQuadAt |
76 | |
77 | // are we partially above |
78 | if (dst[0].fY < ctop) { |
79 | if (chopMonoQuadAtY(dst, ctop, &t)) { |
80 | // take the 2nd chopped quad |
81 | SkChopQuadAt(dst, tmp, t); |
82 | dst[0] = tmp[2]; |
83 | dst[1] = tmp[3]; |
84 | } else { |
85 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
86 | // so we just clamp against the top |
87 | for (int i = 0; i < 3; i++) { |
88 | if (dst[i].fY < ctop) { |
89 | dst[i].fY = ctop; |
90 | } |
91 | } |
92 | } |
93 | } |
94 | |
95 | // are we partially below |
96 | if (dst[2].fY > cbot) { |
97 | if (chopMonoQuadAtY(dst, cbot, &t)) { |
98 | SkChopQuadAt(dst, tmp, t); |
99 | dst[1] = tmp[1]; |
100 | dst[2] = tmp[2]; |
101 | } else { |
102 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
103 | // so we just clamp against the bottom |
104 | for (int i = 0; i < 3; i++) { |
105 | if (dst[i].fY > cbot) { |
106 | dst[i].fY = cbot; |
107 | } |
108 | } |
109 | } |
110 | } |
111 | |
112 | if (reverse) { |
113 | using std::swap; |
114 | swap(dst[0], dst[2]); |
115 | } |
116 | return true; |
117 | } |
118 | |