| 1 | /* |
| 2 | * Copyright 2009 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkGeometry.h" |
| 9 | #include "src/core/SkQuadClipper.h" |
| 10 | |
| 11 | #include <utility> |
| 12 | |
| 13 | SkQuadClipper::SkQuadClipper() { |
| 14 | fClip.setEmpty(); |
| 15 | } |
| 16 | |
| 17 | void SkQuadClipper::setClip(const SkIRect& clip) { |
| 18 | // conver to scalars, since that's where we'll see the points |
| 19 | fClip.set(clip); |
| 20 | } |
| 21 | |
| 22 | /////////////////////////////////////////////////////////////////////////////// |
| 23 | |
| 24 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, |
| 25 | SkScalar target, SkScalar* t) { |
| 26 | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 |
| 27 | * We solve for t, using quadratic equation, hence we have to rearrange |
| 28 | * our cooefficents to look like At^2 + Bt + C |
| 29 | */ |
| 30 | SkScalar A = c0 - c1 - c1 + c2; |
| 31 | SkScalar B = 2*(c1 - c0); |
| 32 | SkScalar C = c0 - target; |
| 33 | |
| 34 | SkScalar roots[2]; // we only expect one, but make room for 2 for safety |
| 35 | int count = SkFindUnitQuadRoots(A, B, C, roots); |
| 36 | if (count) { |
| 37 | *t = roots[0]; |
| 38 | return true; |
| 39 | } |
| 40 | return false; |
| 41 | } |
| 42 | |
| 43 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { |
| 44 | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); |
| 45 | } |
| 46 | |
| 47 | /////////////////////////////////////////////////////////////////////////////// |
| 48 | |
| 49 | /* If we somehow returned the fact that we had to flip the pts in Y, we could |
| 50 | communicate that to setQuadratic, and then avoid having to flip it back |
| 51 | here (only to have setQuadratic do the flip again) |
| 52 | */ |
| 53 | bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) { |
| 54 | bool reverse; |
| 55 | |
| 56 | // we need the data to be monotonically increasing in Y |
| 57 | if (srcPts[0].fY > srcPts[2].fY) { |
| 58 | dst[0] = srcPts[2]; |
| 59 | dst[1] = srcPts[1]; |
| 60 | dst[2] = srcPts[0]; |
| 61 | reverse = true; |
| 62 | } else { |
| 63 | memcpy(dst, srcPts, 3 * sizeof(SkPoint)); |
| 64 | reverse = false; |
| 65 | } |
| 66 | |
| 67 | // are we completely above or below |
| 68 | const SkScalar ctop = fClip.fTop; |
| 69 | const SkScalar cbot = fClip.fBottom; |
| 70 | if (dst[2].fY <= ctop || dst[0].fY >= cbot) { |
| 71 | return false; |
| 72 | } |
| 73 | |
| 74 | SkScalar t; |
| 75 | SkPoint tmp[5]; // for SkChopQuadAt |
| 76 | |
| 77 | // are we partially above |
| 78 | if (dst[0].fY < ctop) { |
| 79 | if (chopMonoQuadAtY(dst, ctop, &t)) { |
| 80 | // take the 2nd chopped quad |
| 81 | SkChopQuadAt(dst, tmp, t); |
| 82 | dst[0] = tmp[2]; |
| 83 | dst[1] = tmp[3]; |
| 84 | } else { |
| 85 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
| 86 | // so we just clamp against the top |
| 87 | for (int i = 0; i < 3; i++) { |
| 88 | if (dst[i].fY < ctop) { |
| 89 | dst[i].fY = ctop; |
| 90 | } |
| 91 | } |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | // are we partially below |
| 96 | if (dst[2].fY > cbot) { |
| 97 | if (chopMonoQuadAtY(dst, cbot, &t)) { |
| 98 | SkChopQuadAt(dst, tmp, t); |
| 99 | dst[1] = tmp[1]; |
| 100 | dst[2] = tmp[2]; |
| 101 | } else { |
| 102 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
| 103 | // so we just clamp against the bottom |
| 104 | for (int i = 0; i < 3; i++) { |
| 105 | if (dst[i].fY > cbot) { |
| 106 | dst[i].fY = cbot; |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | if (reverse) { |
| 113 | using std::swap; |
| 114 | swap(dst[0], dst[2]); |
| 115 | } |
| 116 | return true; |
| 117 | } |
| 118 | |