| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkRegion.h" |
| 9 | |
| 10 | #include "include/private/SkMacros.h" |
| 11 | #include "include/private/SkTemplates.h" |
| 12 | #include "include/private/SkTo.h" |
| 13 | #include "src/core/SkRegionPriv.h" |
| 14 | #include "src/core/SkSafeMath.h" |
| 15 | |
| 16 | #include <utility> |
| 17 | |
| 18 | /* Region Layout |
| 19 | * |
| 20 | * TOP |
| 21 | * |
| 22 | * [ Bottom, X-Intervals, [Left, Right]..., X-Sentinel ] |
| 23 | * ... |
| 24 | * |
| 25 | * Y-Sentinel |
| 26 | */ |
| 27 | |
| 28 | ///////////////////////////////////////////////////////////////////////////////////////////////// |
| 29 | |
| 30 | #define SkRegion_gEmptyRunHeadPtr ((SkRegionPriv::RunHead*)-1) |
| 31 | #define SkRegion_gRectRunHeadPtr nullptr |
| 32 | |
| 33 | constexpr int kRunArrayStackCount = 256; |
| 34 | |
| 35 | // This is a simple data structure which is like a SkSTArray<N,T,true>, except that: |
| 36 | // - It does not initialize memory. |
| 37 | // - It does not distinguish between reserved space and initialized space. |
| 38 | // - resizeToAtLeast() instead of resize() |
| 39 | // - Uses sk_realloc_throw() |
| 40 | // - Can never be made smaller. |
| 41 | // Measurement: for the `region_union_16` benchmark, this is 6% faster. |
| 42 | class RunArray { |
| 43 | public: |
| 44 | RunArray() { fPtr = fStack; } |
| 45 | #ifdef SK_DEBUG |
| 46 | int count() const { return fCount; } |
| 47 | #endif |
| 48 | SkRegionPriv::RunType& operator[](int i) { |
| 49 | SkASSERT((unsigned)i < (unsigned)fCount); |
| 50 | return fPtr[i]; |
| 51 | } |
| 52 | /** Resize the array to a size greater-than-or-equal-to count. */ |
| 53 | void resizeToAtLeast(int count) { |
| 54 | if (count > fCount) { |
| 55 | // leave at least 50% extra space for future growth. |
| 56 | count += count >> 1; |
| 57 | fMalloc.realloc(count); |
| 58 | if (fPtr == fStack) { |
| 59 | memcpy(fMalloc.get(), fStack, fCount * sizeof(SkRegionPriv::RunType)); |
| 60 | } |
| 61 | fPtr = fMalloc.get(); |
| 62 | fCount = count; |
| 63 | } |
| 64 | } |
| 65 | private: |
| 66 | SkRegionPriv::RunType fStack[kRunArrayStackCount]; |
| 67 | SkAutoTMalloc<SkRegionPriv::RunType> fMalloc; |
| 68 | int fCount = kRunArrayStackCount; |
| 69 | SkRegionPriv::RunType* fPtr; // non-owning pointer |
| 70 | }; |
| 71 | |
| 72 | /* Pass in the beginning with the intervals. |
| 73 | * We back up 1 to read the interval-count. |
| 74 | * Return the beginning of the next scanline (i.e. the next Y-value) |
| 75 | */ |
| 76 | static SkRegionPriv::RunType* skip_intervals(const SkRegionPriv::RunType runs[]) { |
| 77 | int intervals = runs[-1]; |
| 78 | #ifdef SK_DEBUG |
| 79 | if (intervals > 0) { |
| 80 | SkASSERT(runs[0] < runs[1]); |
| 81 | SkASSERT(runs[1] < SkRegion_kRunTypeSentinel); |
| 82 | } else { |
| 83 | SkASSERT(0 == intervals); |
| 84 | SkASSERT(SkRegion_kRunTypeSentinel == runs[0]); |
| 85 | } |
| 86 | #endif |
| 87 | runs += intervals * 2 + 1; |
| 88 | return const_cast<SkRegionPriv::RunType*>(runs); |
| 89 | } |
| 90 | |
| 91 | bool SkRegion::RunsAreARect(const SkRegion::RunType runs[], int count, |
| 92 | SkIRect* bounds) { |
| 93 | assert_sentinel(runs[0], false); // top |
| 94 | SkASSERT(count >= kRectRegionRuns); |
| 95 | |
| 96 | if (count == kRectRegionRuns) { |
| 97 | assert_sentinel(runs[1], false); // bottom |
| 98 | SkASSERT(1 == runs[2]); |
| 99 | assert_sentinel(runs[3], false); // left |
| 100 | assert_sentinel(runs[4], false); // right |
| 101 | assert_sentinel(runs[5], true); |
| 102 | assert_sentinel(runs[6], true); |
| 103 | |
| 104 | SkASSERT(runs[0] < runs[1]); // valid height |
| 105 | SkASSERT(runs[3] < runs[4]); // valid width |
| 106 | |
| 107 | bounds->setLTRB(runs[3], runs[0], runs[4], runs[1]); |
| 108 | return true; |
| 109 | } |
| 110 | return false; |
| 111 | } |
| 112 | |
| 113 | ////////////////////////////////////////////////////////////////////////// |
| 114 | |
| 115 | SkRegion::SkRegion() { |
| 116 | fBounds.setEmpty(); |
| 117 | fRunHead = SkRegion_gEmptyRunHeadPtr; |
| 118 | } |
| 119 | |
| 120 | SkRegion::SkRegion(const SkRegion& src) { |
| 121 | fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead) |
| 122 | this->setRegion(src); |
| 123 | } |
| 124 | |
| 125 | SkRegion::SkRegion(const SkIRect& rect) { |
| 126 | fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead) |
| 127 | this->setRect(rect); |
| 128 | } |
| 129 | |
| 130 | SkRegion::~SkRegion() { |
| 131 | this->freeRuns(); |
| 132 | } |
| 133 | |
| 134 | void SkRegion::freeRuns() { |
| 135 | if (this->isComplex()) { |
| 136 | SkASSERT(fRunHead->fRefCnt >= 1); |
| 137 | if (--fRunHead->fRefCnt == 0) { |
| 138 | sk_free(fRunHead); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | void SkRegion::allocateRuns(int count, int ySpanCount, int intervalCount) { |
| 144 | fRunHead = RunHead::Alloc(count, ySpanCount, intervalCount); |
| 145 | } |
| 146 | |
| 147 | void SkRegion::allocateRuns(int count) { |
| 148 | fRunHead = RunHead::Alloc(count); |
| 149 | } |
| 150 | |
| 151 | void SkRegion::allocateRuns(const RunHead& head) { |
| 152 | fRunHead = RunHead::Alloc(head.fRunCount, |
| 153 | head.getYSpanCount(), |
| 154 | head.getIntervalCount()); |
| 155 | } |
| 156 | |
| 157 | SkRegion& SkRegion::operator=(const SkRegion& src) { |
| 158 | (void)this->setRegion(src); |
| 159 | return *this; |
| 160 | } |
| 161 | |
| 162 | void SkRegion::swap(SkRegion& other) { |
| 163 | using std::swap; |
| 164 | swap(fBounds, other.fBounds); |
| 165 | swap(fRunHead, other.fRunHead); |
| 166 | } |
| 167 | |
| 168 | int SkRegion::computeRegionComplexity() const { |
| 169 | if (this->isEmpty()) { |
| 170 | return 0; |
| 171 | } else if (this->isRect()) { |
| 172 | return 1; |
| 173 | } |
| 174 | return fRunHead->getIntervalCount(); |
| 175 | } |
| 176 | |
| 177 | bool SkRegion::setEmpty() { |
| 178 | this->freeRuns(); |
| 179 | fBounds.setEmpty(); |
| 180 | fRunHead = SkRegion_gEmptyRunHeadPtr; |
| 181 | return false; |
| 182 | } |
| 183 | |
| 184 | bool SkRegion::setRect(const SkIRect& r) { |
| 185 | if (r.isEmpty() || |
| 186 | SkRegion_kRunTypeSentinel == r.right() || |
| 187 | SkRegion_kRunTypeSentinel == r.bottom()) { |
| 188 | return this->setEmpty(); |
| 189 | } |
| 190 | this->freeRuns(); |
| 191 | fBounds = r; |
| 192 | fRunHead = SkRegion_gRectRunHeadPtr; |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | bool SkRegion::setRegion(const SkRegion& src) { |
| 197 | if (this != &src) { |
| 198 | this->freeRuns(); |
| 199 | |
| 200 | fBounds = src.fBounds; |
| 201 | fRunHead = src.fRunHead; |
| 202 | if (this->isComplex()) { |
| 203 | fRunHead->fRefCnt++; |
| 204 | } |
| 205 | } |
| 206 | return fRunHead != SkRegion_gEmptyRunHeadPtr; |
| 207 | } |
| 208 | |
| 209 | bool SkRegion::op(const SkIRect& rect, const SkRegion& rgn, Op op) { |
| 210 | SkRegion tmp(rect); |
| 211 | |
| 212 | return this->op(tmp, rgn, op); |
| 213 | } |
| 214 | |
| 215 | bool SkRegion::op(const SkRegion& rgn, const SkIRect& rect, Op op) { |
| 216 | SkRegion tmp(rect); |
| 217 | |
| 218 | return this->op(rgn, tmp, op); |
| 219 | } |
| 220 | |
| 221 | /////////////////////////////////////////////////////////////////////////////// |
| 222 | |
| 223 | #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| 224 | #include <stdio.h> |
| 225 | char* SkRegion::toString() { |
| 226 | Iterator iter(*this); |
| 227 | int count = 0; |
| 228 | while (!iter.done()) { |
| 229 | count++; |
| 230 | iter.next(); |
| 231 | } |
| 232 | // 4 ints, up to 10 digits each plus sign, 3 commas, '(', ')', SkRegion() and '\0' |
| 233 | const int max = (count*((11*4)+5))+11+1; |
| 234 | char* result = (char*)sk_malloc_throw(max); |
| 235 | if (result == nullptr) { |
| 236 | return nullptr; |
| 237 | } |
| 238 | count = snprintf(result, max, "SkRegion(" ); |
| 239 | iter.reset(*this); |
| 240 | while (!iter.done()) { |
| 241 | const SkIRect& r = iter.rect(); |
| 242 | count += snprintf(result+count, max - count, |
| 243 | "(%d,%d,%d,%d)" , r.fLeft, r.fTop, r.fRight, r.fBottom); |
| 244 | iter.next(); |
| 245 | } |
| 246 | count += snprintf(result+count, max - count, ")" ); |
| 247 | return result; |
| 248 | } |
| 249 | #endif |
| 250 | |
| 251 | /////////////////////////////////////////////////////////////////////////////// |
| 252 | |
| 253 | int SkRegion::count_runtype_values(int* itop, int* ibot) const { |
| 254 | int maxT; |
| 255 | |
| 256 | if (this->isRect()) { |
| 257 | maxT = 2; |
| 258 | } else { |
| 259 | SkASSERT(this->isComplex()); |
| 260 | maxT = fRunHead->getIntervalCount() * 2; |
| 261 | } |
| 262 | *itop = fBounds.fTop; |
| 263 | *ibot = fBounds.fBottom; |
| 264 | return maxT; |
| 265 | } |
| 266 | |
| 267 | static bool isRunCountEmpty(int count) { |
| 268 | return count <= 2; |
| 269 | } |
| 270 | |
| 271 | bool SkRegion::setRuns(RunType runs[], int count) { |
| 272 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 273 | SkASSERT(count > 0); |
| 274 | |
| 275 | if (isRunCountEmpty(count)) { |
| 276 | // SkDEBUGF("setRuns: empty\n"); |
| 277 | assert_sentinel(runs[count-1], true); |
| 278 | return this->setEmpty(); |
| 279 | } |
| 280 | |
| 281 | // trim off any empty spans from the top and bottom |
| 282 | // weird I should need this, perhaps op() could be smarter... |
| 283 | if (count > kRectRegionRuns) { |
| 284 | RunType* stop = runs + count; |
| 285 | assert_sentinel(runs[0], false); // top |
| 286 | assert_sentinel(runs[1], false); // bottom |
| 287 | // runs[2] is uncomputed intervalCount |
| 288 | |
| 289 | if (runs[3] == SkRegion_kRunTypeSentinel) { // should be first left... |
| 290 | runs += 3; // skip empty initial span |
| 291 | runs[0] = runs[-2]; // set new top to prev bottom |
| 292 | assert_sentinel(runs[1], false); // bot: a sentinal would mean two in a row |
| 293 | assert_sentinel(runs[2], false); // intervalcount |
| 294 | assert_sentinel(runs[3], false); // left |
| 295 | assert_sentinel(runs[4], false); // right |
| 296 | } |
| 297 | |
| 298 | assert_sentinel(stop[-1], true); |
| 299 | assert_sentinel(stop[-2], true); |
| 300 | |
| 301 | // now check for a trailing empty span |
| 302 | if (stop[-5] == SkRegion_kRunTypeSentinel) { // eek, stop[-4] was a bottom with no x-runs |
| 303 | stop[-4] = SkRegion_kRunTypeSentinel; // kill empty last span |
| 304 | stop -= 3; |
| 305 | assert_sentinel(stop[-1], true); // last y-sentinel |
| 306 | assert_sentinel(stop[-2], true); // last x-sentinel |
| 307 | assert_sentinel(stop[-3], false); // last right |
| 308 | assert_sentinel(stop[-4], false); // last left |
| 309 | assert_sentinel(stop[-5], false); // last interval-count |
| 310 | assert_sentinel(stop[-6], false); // last bottom |
| 311 | } |
| 312 | count = (int)(stop - runs); |
| 313 | } |
| 314 | |
| 315 | SkASSERT(count >= kRectRegionRuns); |
| 316 | |
| 317 | if (SkRegion::RunsAreARect(runs, count, &fBounds)) { |
| 318 | return this->setRect(fBounds); |
| 319 | } |
| 320 | |
| 321 | // if we get here, we need to become a complex region |
| 322 | |
| 323 | if (!this->isComplex() || fRunHead->fRunCount != count) { |
| 324 | this->freeRuns(); |
| 325 | this->allocateRuns(count); |
| 326 | SkASSERT(this->isComplex()); |
| 327 | } |
| 328 | |
| 329 | // must call this before we can write directly into runs() |
| 330 | // in case we are sharing the buffer with another region (copy on write) |
| 331 | fRunHead = fRunHead->ensureWritable(); |
| 332 | memcpy(fRunHead->writable_runs(), runs, count * sizeof(RunType)); |
| 333 | fRunHead->computeRunBounds(&fBounds); |
| 334 | |
| 335 | // Our computed bounds might be too large, so we have to check here. |
| 336 | if (fBounds.isEmpty()) { |
| 337 | return this->setEmpty(); |
| 338 | } |
| 339 | |
| 340 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 341 | |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | void SkRegion::BuildRectRuns(const SkIRect& bounds, |
| 346 | RunType runs[kRectRegionRuns]) { |
| 347 | runs[0] = bounds.fTop; |
| 348 | runs[1] = bounds.fBottom; |
| 349 | runs[2] = 1; // 1 interval for this scanline |
| 350 | runs[3] = bounds.fLeft; |
| 351 | runs[4] = bounds.fRight; |
| 352 | runs[5] = SkRegion_kRunTypeSentinel; |
| 353 | runs[6] = SkRegion_kRunTypeSentinel; |
| 354 | } |
| 355 | |
| 356 | bool SkRegion::contains(int32_t x, int32_t y) const { |
| 357 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 358 | |
| 359 | if (!fBounds.contains(x, y)) { |
| 360 | return false; |
| 361 | } |
| 362 | if (this->isRect()) { |
| 363 | return true; |
| 364 | } |
| 365 | SkASSERT(this->isComplex()); |
| 366 | |
| 367 | const RunType* runs = fRunHead->findScanline(y); |
| 368 | |
| 369 | // Skip the Bottom and IntervalCount |
| 370 | runs += 2; |
| 371 | |
| 372 | // Just walk this scanline, checking each interval. The X-sentinel will |
| 373 | // appear as a left-inteval (runs[0]) and should abort the search. |
| 374 | // |
| 375 | // We could do a bsearch, using interval-count (runs[1]), but need to time |
| 376 | // when that would be worthwhile. |
| 377 | // |
| 378 | for (;;) { |
| 379 | if (x < runs[0]) { |
| 380 | break; |
| 381 | } |
| 382 | if (x < runs[1]) { |
| 383 | return true; |
| 384 | } |
| 385 | runs += 2; |
| 386 | } |
| 387 | return false; |
| 388 | } |
| 389 | |
| 390 | static SkRegionPriv::RunType scanline_bottom(const SkRegionPriv::RunType runs[]) { |
| 391 | return runs[0]; |
| 392 | } |
| 393 | |
| 394 | static const SkRegionPriv::RunType* scanline_next(const SkRegionPriv::RunType runs[]) { |
| 395 | // skip [B N [L R]... S] |
| 396 | return runs + 2 + runs[1] * 2 + 1; |
| 397 | } |
| 398 | |
| 399 | static bool scanline_contains(const SkRegionPriv::RunType runs[], |
| 400 | SkRegionPriv::RunType L, SkRegionPriv::RunType R) { |
| 401 | runs += 2; // skip Bottom and IntervalCount |
| 402 | for (;;) { |
| 403 | if (L < runs[0]) { |
| 404 | break; |
| 405 | } |
| 406 | if (R <= runs[1]) { |
| 407 | return true; |
| 408 | } |
| 409 | runs += 2; |
| 410 | } |
| 411 | return false; |
| 412 | } |
| 413 | |
| 414 | bool SkRegion::contains(const SkIRect& r) const { |
| 415 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 416 | |
| 417 | if (!fBounds.contains(r)) { |
| 418 | return false; |
| 419 | } |
| 420 | if (this->isRect()) { |
| 421 | return true; |
| 422 | } |
| 423 | SkASSERT(this->isComplex()); |
| 424 | |
| 425 | const RunType* scanline = fRunHead->findScanline(r.fTop); |
| 426 | for (;;) { |
| 427 | if (!scanline_contains(scanline, r.fLeft, r.fRight)) { |
| 428 | return false; |
| 429 | } |
| 430 | if (r.fBottom <= scanline_bottom(scanline)) { |
| 431 | break; |
| 432 | } |
| 433 | scanline = scanline_next(scanline); |
| 434 | } |
| 435 | return true; |
| 436 | } |
| 437 | |
| 438 | bool SkRegion::contains(const SkRegion& rgn) const { |
| 439 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 440 | SkDEBUGCODE(SkRegionPriv::Validate(rgn)); |
| 441 | |
| 442 | if (this->isEmpty() || rgn.isEmpty() || !fBounds.contains(rgn.fBounds)) { |
| 443 | return false; |
| 444 | } |
| 445 | if (this->isRect()) { |
| 446 | return true; |
| 447 | } |
| 448 | if (rgn.isRect()) { |
| 449 | return this->contains(rgn.getBounds()); |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * A contains B is equivalent to |
| 454 | * B - A == 0 |
| 455 | */ |
| 456 | return !Oper(rgn, *this, kDifference_Op, nullptr); |
| 457 | } |
| 458 | |
| 459 | const SkRegion::RunType* SkRegion::getRuns(RunType tmpStorage[], |
| 460 | int* intervals) const { |
| 461 | SkASSERT(tmpStorage && intervals); |
| 462 | const RunType* runs = tmpStorage; |
| 463 | |
| 464 | if (this->isEmpty()) { |
| 465 | tmpStorage[0] = SkRegion_kRunTypeSentinel; |
| 466 | *intervals = 0; |
| 467 | } else if (this->isRect()) { |
| 468 | BuildRectRuns(fBounds, tmpStorage); |
| 469 | *intervals = 1; |
| 470 | } else { |
| 471 | runs = fRunHead->readonly_runs(); |
| 472 | *intervals = fRunHead->getIntervalCount(); |
| 473 | } |
| 474 | return runs; |
| 475 | } |
| 476 | |
| 477 | /////////////////////////////////////////////////////////////////////////////// |
| 478 | |
| 479 | static bool scanline_intersects(const SkRegionPriv::RunType runs[], |
| 480 | SkRegionPriv::RunType L, SkRegionPriv::RunType R) { |
| 481 | runs += 2; // skip Bottom and IntervalCount |
| 482 | for (;;) { |
| 483 | if (R <= runs[0]) { |
| 484 | break; |
| 485 | } |
| 486 | if (L < runs[1]) { |
| 487 | return true; |
| 488 | } |
| 489 | runs += 2; |
| 490 | } |
| 491 | return false; |
| 492 | } |
| 493 | |
| 494 | bool SkRegion::intersects(const SkIRect& r) const { |
| 495 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 496 | |
| 497 | if (this->isEmpty() || r.isEmpty()) { |
| 498 | return false; |
| 499 | } |
| 500 | |
| 501 | SkIRect sect; |
| 502 | if (!sect.intersect(fBounds, r)) { |
| 503 | return false; |
| 504 | } |
| 505 | if (this->isRect()) { |
| 506 | return true; |
| 507 | } |
| 508 | SkASSERT(this->isComplex()); |
| 509 | |
| 510 | const RunType* scanline = fRunHead->findScanline(sect.fTop); |
| 511 | for (;;) { |
| 512 | if (scanline_intersects(scanline, sect.fLeft, sect.fRight)) { |
| 513 | return true; |
| 514 | } |
| 515 | if (sect.fBottom <= scanline_bottom(scanline)) { |
| 516 | break; |
| 517 | } |
| 518 | scanline = scanline_next(scanline); |
| 519 | } |
| 520 | return false; |
| 521 | } |
| 522 | |
| 523 | bool SkRegion::intersects(const SkRegion& rgn) const { |
| 524 | if (this->isEmpty() || rgn.isEmpty()) { |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | if (!SkIRect::Intersects(fBounds, rgn.fBounds)) { |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | bool weAreARect = this->isRect(); |
| 533 | bool theyAreARect = rgn.isRect(); |
| 534 | |
| 535 | if (weAreARect && theyAreARect) { |
| 536 | return true; |
| 537 | } |
| 538 | if (weAreARect) { |
| 539 | return rgn.intersects(this->getBounds()); |
| 540 | } |
| 541 | if (theyAreARect) { |
| 542 | return this->intersects(rgn.getBounds()); |
| 543 | } |
| 544 | |
| 545 | // both of us are complex |
| 546 | return Oper(*this, rgn, kIntersect_Op, nullptr); |
| 547 | } |
| 548 | |
| 549 | /////////////////////////////////////////////////////////////////////////////// |
| 550 | |
| 551 | bool SkRegion::operator==(const SkRegion& b) const { |
| 552 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 553 | SkDEBUGCODE(SkRegionPriv::Validate(b)); |
| 554 | |
| 555 | if (this == &b) { |
| 556 | return true; |
| 557 | } |
| 558 | if (fBounds != b.fBounds) { |
| 559 | return false; |
| 560 | } |
| 561 | |
| 562 | const SkRegion::RunHead* ah = fRunHead; |
| 563 | const SkRegion::RunHead* bh = b.fRunHead; |
| 564 | |
| 565 | // this catches empties and rects being equal |
| 566 | if (ah == bh) { |
| 567 | return true; |
| 568 | } |
| 569 | // now we insist that both are complex (but different ptrs) |
| 570 | if (!this->isComplex() || !b.isComplex()) { |
| 571 | return false; |
| 572 | } |
| 573 | return ah->fRunCount == bh->fRunCount && |
| 574 | !memcmp(ah->readonly_runs(), bh->readonly_runs(), |
| 575 | ah->fRunCount * sizeof(SkRegion::RunType)); |
| 576 | } |
| 577 | |
| 578 | // Return a (new) offset such that when applied (+=) to min and max, we don't overflow/underflow |
| 579 | static int32_t pin_offset_s32(int32_t min, int32_t max, int32_t offset) { |
| 580 | SkASSERT(min <= max); |
| 581 | const int32_t lo = -SK_MaxS32-1, |
| 582 | hi = +SK_MaxS32; |
| 583 | if ((int64_t)min + offset < lo) { offset = lo - min; } |
| 584 | if ((int64_t)max + offset > hi) { offset = hi - max; } |
| 585 | return offset; |
| 586 | } |
| 587 | |
| 588 | void SkRegion::translate(int dx, int dy, SkRegion* dst) const { |
| 589 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 590 | |
| 591 | if (nullptr == dst) { |
| 592 | return; |
| 593 | } |
| 594 | if (this->isEmpty()) { |
| 595 | dst->setEmpty(); |
| 596 | return; |
| 597 | } |
| 598 | // pin dx and dy so we don't overflow our existing bounds |
| 599 | dx = pin_offset_s32(fBounds.fLeft, fBounds.fRight, dx); |
| 600 | dy = pin_offset_s32(fBounds.fTop, fBounds.fBottom, dy); |
| 601 | |
| 602 | if (this->isRect()) { |
| 603 | dst->setRect(fBounds.makeOffset(dx, dy)); |
| 604 | } else { |
| 605 | if (this == dst) { |
| 606 | dst->fRunHead = dst->fRunHead->ensureWritable(); |
| 607 | } else { |
| 608 | SkRegion tmp; |
| 609 | tmp.allocateRuns(*fRunHead); |
| 610 | SkASSERT(tmp.isComplex()); |
| 611 | tmp.fBounds = fBounds; |
| 612 | dst->swap(tmp); |
| 613 | } |
| 614 | |
| 615 | dst->fBounds.offset(dx, dy); |
| 616 | |
| 617 | const RunType* sruns = fRunHead->readonly_runs(); |
| 618 | RunType* druns = dst->fRunHead->writable_runs(); |
| 619 | |
| 620 | *druns++ = (SkRegion::RunType)(*sruns++ + dy); // top |
| 621 | for (;;) { |
| 622 | int bottom = *sruns++; |
| 623 | if (bottom == SkRegion_kRunTypeSentinel) { |
| 624 | break; |
| 625 | } |
| 626 | *druns++ = (SkRegion::RunType)(bottom + dy); // bottom; |
| 627 | *druns++ = *sruns++; // copy intervalCount; |
| 628 | for (;;) { |
| 629 | int x = *sruns++; |
| 630 | if (x == SkRegion_kRunTypeSentinel) { |
| 631 | break; |
| 632 | } |
| 633 | *druns++ = (SkRegion::RunType)(x + dx); |
| 634 | *druns++ = (SkRegion::RunType)(*sruns++ + dx); |
| 635 | } |
| 636 | *druns++ = SkRegion_kRunTypeSentinel; // x sentinel |
| 637 | } |
| 638 | *druns++ = SkRegion_kRunTypeSentinel; // y sentinel |
| 639 | |
| 640 | SkASSERT(sruns - fRunHead->readonly_runs() == fRunHead->fRunCount); |
| 641 | SkASSERT(druns - dst->fRunHead->readonly_runs() == dst->fRunHead->fRunCount); |
| 642 | } |
| 643 | |
| 644 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 645 | } |
| 646 | |
| 647 | /////////////////////////////////////////////////////////////////////////////// |
| 648 | |
| 649 | bool SkRegion::setRects(const SkIRect rects[], int count) { |
| 650 | if (0 == count) { |
| 651 | this->setEmpty(); |
| 652 | } else { |
| 653 | this->setRect(rects[0]); |
| 654 | for (int i = 1; i < count; i++) { |
| 655 | this->op(rects[i], kUnion_Op); |
| 656 | } |
| 657 | } |
| 658 | return !this->isEmpty(); |
| 659 | } |
| 660 | |
| 661 | /////////////////////////////////////////////////////////////////////////////// |
| 662 | |
| 663 | #if defined _WIN32 // disable warning : local variable used without having been initialized |
| 664 | #pragma warning ( push ) |
| 665 | #pragma warning ( disable : 4701 ) |
| 666 | #endif |
| 667 | |
| 668 | #ifdef SK_DEBUG |
| 669 | static void assert_valid_pair(int left, int rite) |
| 670 | { |
| 671 | SkASSERT(left == SkRegion_kRunTypeSentinel || left < rite); |
| 672 | } |
| 673 | #else |
| 674 | #define assert_valid_pair(left, rite) |
| 675 | #endif |
| 676 | |
| 677 | struct spanRec { |
| 678 | const SkRegionPriv::RunType* fA_runs; |
| 679 | const SkRegionPriv::RunType* fB_runs; |
| 680 | int fA_left, fA_rite, fB_left, fB_rite; |
| 681 | int fLeft, fRite, fInside; |
| 682 | |
| 683 | void init(const SkRegionPriv::RunType a_runs[], |
| 684 | const SkRegionPriv::RunType b_runs[]) { |
| 685 | fA_left = *a_runs++; |
| 686 | fA_rite = *a_runs++; |
| 687 | fB_left = *b_runs++; |
| 688 | fB_rite = *b_runs++; |
| 689 | |
| 690 | fA_runs = a_runs; |
| 691 | fB_runs = b_runs; |
| 692 | } |
| 693 | |
| 694 | bool done() const { |
| 695 | SkASSERT(fA_left <= SkRegion_kRunTypeSentinel); |
| 696 | SkASSERT(fB_left <= SkRegion_kRunTypeSentinel); |
| 697 | return fA_left == SkRegion_kRunTypeSentinel && |
| 698 | fB_left == SkRegion_kRunTypeSentinel; |
| 699 | } |
| 700 | |
| 701 | void next() { |
| 702 | assert_valid_pair(fA_left, fA_rite); |
| 703 | assert_valid_pair(fB_left, fB_rite); |
| 704 | |
| 705 | int inside, left, rite SK_INIT_TO_AVOID_WARNING; |
| 706 | bool a_flush = false; |
| 707 | bool b_flush = false; |
| 708 | |
| 709 | int a_left = fA_left; |
| 710 | int a_rite = fA_rite; |
| 711 | int b_left = fB_left; |
| 712 | int b_rite = fB_rite; |
| 713 | |
| 714 | if (a_left < b_left) { |
| 715 | inside = 1; |
| 716 | left = a_left; |
| 717 | if (a_rite <= b_left) { // [...] <...> |
| 718 | rite = a_rite; |
| 719 | a_flush = true; |
| 720 | } else { // [...<..]...> or [...<...>...] |
| 721 | rite = a_left = b_left; |
| 722 | } |
| 723 | } else if (b_left < a_left) { |
| 724 | inside = 2; |
| 725 | left = b_left; |
| 726 | if (b_rite <= a_left) { // [...] <...> |
| 727 | rite = b_rite; |
| 728 | b_flush = true; |
| 729 | } else { // [...<..]...> or [...<...>...] |
| 730 | rite = b_left = a_left; |
| 731 | } |
| 732 | } else { // a_left == b_left |
| 733 | inside = 3; |
| 734 | left = a_left; // or b_left |
| 735 | if (a_rite <= b_rite) { |
| 736 | rite = b_left = a_rite; |
| 737 | a_flush = true; |
| 738 | } |
| 739 | if (b_rite <= a_rite) { |
| 740 | rite = a_left = b_rite; |
| 741 | b_flush = true; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | if (a_flush) { |
| 746 | a_left = *fA_runs++; |
| 747 | a_rite = *fA_runs++; |
| 748 | } |
| 749 | if (b_flush) { |
| 750 | b_left = *fB_runs++; |
| 751 | b_rite = *fB_runs++; |
| 752 | } |
| 753 | |
| 754 | SkASSERT(left <= rite); |
| 755 | |
| 756 | // now update our state |
| 757 | fA_left = a_left; |
| 758 | fA_rite = a_rite; |
| 759 | fB_left = b_left; |
| 760 | fB_rite = b_rite; |
| 761 | |
| 762 | fLeft = left; |
| 763 | fRite = rite; |
| 764 | fInside = inside; |
| 765 | } |
| 766 | }; |
| 767 | |
| 768 | static int distance_to_sentinel(const SkRegionPriv::RunType* runs) { |
| 769 | const SkRegionPriv::RunType* ptr = runs; |
| 770 | while (*ptr != SkRegion_kRunTypeSentinel) { ptr += 2; } |
| 771 | return ptr - runs; |
| 772 | } |
| 773 | |
| 774 | static int operate_on_span(const SkRegionPriv::RunType a_runs[], |
| 775 | const SkRegionPriv::RunType b_runs[], |
| 776 | RunArray* array, int dstOffset, |
| 777 | int min, int max) { |
| 778 | // This is a worst-case for this span plus two for TWO terminating sentinels. |
| 779 | array->resizeToAtLeast( |
| 780 | dstOffset + distance_to_sentinel(a_runs) + distance_to_sentinel(b_runs) + 2); |
| 781 | SkRegionPriv::RunType* dst = &(*array)[dstOffset]; // get pointer AFTER resizing. |
| 782 | |
| 783 | spanRec rec; |
| 784 | bool firstInterval = true; |
| 785 | |
| 786 | rec.init(a_runs, b_runs); |
| 787 | |
| 788 | while (!rec.done()) { |
| 789 | rec.next(); |
| 790 | |
| 791 | int left = rec.fLeft; |
| 792 | int rite = rec.fRite; |
| 793 | |
| 794 | // add left,rite to our dst buffer (checking for coincidence |
| 795 | if ((unsigned)(rec.fInside - min) <= (unsigned)(max - min) && |
| 796 | left < rite) { // skip if equal |
| 797 | if (firstInterval || *(dst - 1) < left) { |
| 798 | *dst++ = (SkRegionPriv::RunType)(left); |
| 799 | *dst++ = (SkRegionPriv::RunType)(rite); |
| 800 | firstInterval = false; |
| 801 | } else { |
| 802 | // update the right edge |
| 803 | *(dst - 1) = (SkRegionPriv::RunType)(rite); |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | SkASSERT(dst < &(*array)[array->count() - 1]); |
| 808 | *dst++ = SkRegion_kRunTypeSentinel; |
| 809 | return dst - &(*array)[0]; |
| 810 | } |
| 811 | |
| 812 | #if defined _WIN32 |
| 813 | #pragma warning ( pop ) |
| 814 | #endif |
| 815 | |
| 816 | static const struct { |
| 817 | uint8_t fMin; |
| 818 | uint8_t fMax; |
| 819 | } gOpMinMax[] = { |
| 820 | { 1, 1 }, // Difference |
| 821 | { 3, 3 }, // Intersection |
| 822 | { 1, 3 }, // Union |
| 823 | { 1, 2 } // XOR |
| 824 | }; |
| 825 | // need to ensure that the op enum lines up with our minmax array |
| 826 | static_assert(0 == SkRegion::kDifference_Op, "" ); |
| 827 | static_assert(1 == SkRegion::kIntersect_Op, "" ); |
| 828 | static_assert(2 == SkRegion::kUnion_Op, "" ); |
| 829 | static_assert(3 == SkRegion::kXOR_Op, "" ); |
| 830 | |
| 831 | class RgnOper { |
| 832 | public: |
| 833 | RgnOper(int top, RunArray* array, SkRegion::Op op) |
| 834 | : fMin(gOpMinMax[op].fMin) |
| 835 | , fMax(gOpMinMax[op].fMax) |
| 836 | , fArray(array) |
| 837 | , fTop((SkRegionPriv::RunType)top) // just a first guess, we might update this |
| 838 | { SkASSERT((unsigned)op <= 3); } |
| 839 | |
| 840 | void addSpan(int bottom, const SkRegionPriv::RunType a_runs[], |
| 841 | const SkRegionPriv::RunType b_runs[]) { |
| 842 | // skip X values and slots for the next Y+intervalCount |
| 843 | int start = fPrevDst + fPrevLen + 2; |
| 844 | // start points to beginning of dst interval |
| 845 | int stop = operate_on_span(a_runs, b_runs, fArray, start, fMin, fMax); |
| 846 | size_t len = SkToSizeT(stop - start); |
| 847 | SkASSERT(len >= 1 && (len & 1) == 1); |
| 848 | SkASSERT(SkRegion_kRunTypeSentinel == (*fArray)[stop - 1]); |
| 849 | |
| 850 | // Assert memcmp won't exceed fArray->count(). |
| 851 | SkASSERT(fArray->count() >= SkToInt(start + len - 1)); |
| 852 | if (fPrevLen == len && |
| 853 | (1 == len || !memcmp(&(*fArray)[fPrevDst], |
| 854 | &(*fArray)[start], |
| 855 | (len - 1) * sizeof(SkRegionPriv::RunType)))) { |
| 856 | // update Y value |
| 857 | (*fArray)[fPrevDst - 2] = (SkRegionPriv::RunType)bottom; |
| 858 | } else { // accept the new span |
| 859 | if (len == 1 && fPrevLen == 0) { |
| 860 | fTop = (SkRegionPriv::RunType)bottom; // just update our bottom |
| 861 | } else { |
| 862 | (*fArray)[start - 2] = (SkRegionPriv::RunType)bottom; |
| 863 | (*fArray)[start - 1] = SkToS32(len >> 1); |
| 864 | fPrevDst = start; |
| 865 | fPrevLen = len; |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | int flush() { |
| 871 | (*fArray)[fStartDst] = fTop; |
| 872 | // Previously reserved enough for TWO sentinals. |
| 873 | SkASSERT(fArray->count() > SkToInt(fPrevDst + fPrevLen)); |
| 874 | (*fArray)[fPrevDst + fPrevLen] = SkRegion_kRunTypeSentinel; |
| 875 | return (int)(fPrevDst - fStartDst + fPrevLen + 1); |
| 876 | } |
| 877 | |
| 878 | bool isEmpty() const { return 0 == fPrevLen; } |
| 879 | |
| 880 | uint8_t fMin, fMax; |
| 881 | |
| 882 | private: |
| 883 | RunArray* fArray; |
| 884 | int fStartDst = 0; |
| 885 | int fPrevDst = 1; |
| 886 | size_t fPrevLen = 0; // will never match a length from operate_on_span |
| 887 | SkRegionPriv::RunType fTop; |
| 888 | }; |
| 889 | |
| 890 | // want a unique value to signal that we exited due to quickExit |
| 891 | #define QUICK_EXIT_TRUE_COUNT (-1) |
| 892 | |
| 893 | static int operate(const SkRegionPriv::RunType a_runs[], |
| 894 | const SkRegionPriv::RunType b_runs[], |
| 895 | RunArray* dst, |
| 896 | SkRegion::Op op, |
| 897 | bool quickExit) { |
| 898 | const SkRegionPriv::RunType gEmptyScanline[] = { |
| 899 | 0, // dummy bottom value |
| 900 | 0, // zero intervals |
| 901 | SkRegion_kRunTypeSentinel, |
| 902 | // just need a 2nd value, since spanRec.init() reads 2 values, even |
| 903 | // though if the first value is the sentinel, it ignores the 2nd value. |
| 904 | // w/o the 2nd value here, we might read uninitialized memory. |
| 905 | // This happens when we are using gSentinel, which is pointing at |
| 906 | // our sentinel value. |
| 907 | 0 |
| 908 | }; |
| 909 | const SkRegionPriv::RunType* const gSentinel = &gEmptyScanline[2]; |
| 910 | |
| 911 | int a_top = *a_runs++; |
| 912 | int a_bot = *a_runs++; |
| 913 | int b_top = *b_runs++; |
| 914 | int b_bot = *b_runs++; |
| 915 | |
| 916 | a_runs += 1; // skip the intervalCount; |
| 917 | b_runs += 1; // skip the intervalCount; |
| 918 | |
| 919 | // Now a_runs and b_runs to their intervals (or sentinel) |
| 920 | |
| 921 | assert_sentinel(a_top, false); |
| 922 | assert_sentinel(a_bot, false); |
| 923 | assert_sentinel(b_top, false); |
| 924 | assert_sentinel(b_bot, false); |
| 925 | |
| 926 | RgnOper oper(std::min(a_top, b_top), dst, op); |
| 927 | |
| 928 | int prevBot = SkRegion_kRunTypeSentinel; // so we fail the first test |
| 929 | |
| 930 | while (a_bot < SkRegion_kRunTypeSentinel || |
| 931 | b_bot < SkRegion_kRunTypeSentinel) { |
| 932 | int top, bot SK_INIT_TO_AVOID_WARNING; |
| 933 | const SkRegionPriv::RunType* run0 = gSentinel; |
| 934 | const SkRegionPriv::RunType* run1 = gSentinel; |
| 935 | bool a_flush = false; |
| 936 | bool b_flush = false; |
| 937 | |
| 938 | if (a_top < b_top) { |
| 939 | top = a_top; |
| 940 | run0 = a_runs; |
| 941 | if (a_bot <= b_top) { // [...] <...> |
| 942 | bot = a_bot; |
| 943 | a_flush = true; |
| 944 | } else { // [...<..]...> or [...<...>...] |
| 945 | bot = a_top = b_top; |
| 946 | } |
| 947 | } else if (b_top < a_top) { |
| 948 | top = b_top; |
| 949 | run1 = b_runs; |
| 950 | if (b_bot <= a_top) { // [...] <...> |
| 951 | bot = b_bot; |
| 952 | b_flush = true; |
| 953 | } else { // [...<..]...> or [...<...>...] |
| 954 | bot = b_top = a_top; |
| 955 | } |
| 956 | } else { // a_top == b_top |
| 957 | top = a_top; // or b_top |
| 958 | run0 = a_runs; |
| 959 | run1 = b_runs; |
| 960 | if (a_bot <= b_bot) { |
| 961 | bot = b_top = a_bot; |
| 962 | a_flush = true; |
| 963 | } |
| 964 | if (b_bot <= a_bot) { |
| 965 | bot = a_top = b_bot; |
| 966 | b_flush = true; |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | if (top > prevBot) { |
| 971 | oper.addSpan(top, gSentinel, gSentinel); |
| 972 | } |
| 973 | oper.addSpan(bot, run0, run1); |
| 974 | |
| 975 | if (quickExit && !oper.isEmpty()) { |
| 976 | return QUICK_EXIT_TRUE_COUNT; |
| 977 | } |
| 978 | |
| 979 | if (a_flush) { |
| 980 | a_runs = skip_intervals(a_runs); |
| 981 | a_top = a_bot; |
| 982 | a_bot = *a_runs++; |
| 983 | a_runs += 1; // skip uninitialized intervalCount |
| 984 | if (a_bot == SkRegion_kRunTypeSentinel) { |
| 985 | a_top = a_bot; |
| 986 | } |
| 987 | } |
| 988 | if (b_flush) { |
| 989 | b_runs = skip_intervals(b_runs); |
| 990 | b_top = b_bot; |
| 991 | b_bot = *b_runs++; |
| 992 | b_runs += 1; // skip uninitialized intervalCount |
| 993 | if (b_bot == SkRegion_kRunTypeSentinel) { |
| 994 | b_top = b_bot; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | prevBot = bot; |
| 999 | } |
| 1000 | return oper.flush(); |
| 1001 | } |
| 1002 | |
| 1003 | /////////////////////////////////////////////////////////////////////////////// |
| 1004 | |
| 1005 | /* Given count RunTypes in a complex region, return the worst case number of |
| 1006 | logical intervals that represents (i.e. number of rects that would be |
| 1007 | returned from the iterator). |
| 1008 | |
| 1009 | We could just return count/2, since there must be at least 2 values per |
| 1010 | interval, but we can first trim off the const overhead of the initial TOP |
| 1011 | value, plus the final BOTTOM + 2 sentinels. |
| 1012 | */ |
| 1013 | #if 0 // UNUSED |
| 1014 | static int count_to_intervals(int count) { |
| 1015 | SkASSERT(count >= 6); // a single rect is 6 values |
| 1016 | return (count - 4) >> 1; |
| 1017 | } |
| 1018 | #endif |
| 1019 | |
| 1020 | static bool setEmptyCheck(SkRegion* result) { |
| 1021 | return result ? result->setEmpty() : false; |
| 1022 | } |
| 1023 | |
| 1024 | static bool setRectCheck(SkRegion* result, const SkIRect& rect) { |
| 1025 | return result ? result->setRect(rect) : !rect.isEmpty(); |
| 1026 | } |
| 1027 | |
| 1028 | static bool setRegionCheck(SkRegion* result, const SkRegion& rgn) { |
| 1029 | return result ? result->setRegion(rgn) : !rgn.isEmpty(); |
| 1030 | } |
| 1031 | |
| 1032 | bool SkRegion::Oper(const SkRegion& rgnaOrig, const SkRegion& rgnbOrig, Op op, |
| 1033 | SkRegion* result) { |
| 1034 | SkASSERT((unsigned)op < kOpCount); |
| 1035 | |
| 1036 | if (kReplace_Op == op) { |
| 1037 | return setRegionCheck(result, rgnbOrig); |
| 1038 | } |
| 1039 | |
| 1040 | // swith to using pointers, so we can swap them as needed |
| 1041 | const SkRegion* rgna = &rgnaOrig; |
| 1042 | const SkRegion* rgnb = &rgnbOrig; |
| 1043 | // after this point, do not refer to rgnaOrig or rgnbOrig!!! |
| 1044 | |
| 1045 | // collaps difference and reverse-difference into just difference |
| 1046 | if (kReverseDifference_Op == op) { |
| 1047 | using std::swap; |
| 1048 | swap(rgna, rgnb); |
| 1049 | op = kDifference_Op; |
| 1050 | } |
| 1051 | |
| 1052 | SkIRect bounds; |
| 1053 | bool a_empty = rgna->isEmpty(); |
| 1054 | bool b_empty = rgnb->isEmpty(); |
| 1055 | bool a_rect = rgna->isRect(); |
| 1056 | bool b_rect = rgnb->isRect(); |
| 1057 | |
| 1058 | switch (op) { |
| 1059 | case kDifference_Op: |
| 1060 | if (a_empty) { |
| 1061 | return setEmptyCheck(result); |
| 1062 | } |
| 1063 | if (b_empty || !SkIRect::Intersects(rgna->fBounds, rgnb->fBounds)) { |
| 1064 | return setRegionCheck(result, *rgna); |
| 1065 | } |
| 1066 | if (b_rect && rgnb->fBounds.containsNoEmptyCheck(rgna->fBounds)) { |
| 1067 | return setEmptyCheck(result); |
| 1068 | } |
| 1069 | break; |
| 1070 | |
| 1071 | case kIntersect_Op: |
| 1072 | if ((a_empty | b_empty) |
| 1073 | || !bounds.intersect(rgna->fBounds, rgnb->fBounds)) { |
| 1074 | return setEmptyCheck(result); |
| 1075 | } |
| 1076 | if (a_rect & b_rect) { |
| 1077 | return setRectCheck(result, bounds); |
| 1078 | } |
| 1079 | if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { |
| 1080 | return setRegionCheck(result, *rgnb); |
| 1081 | } |
| 1082 | if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { |
| 1083 | return setRegionCheck(result, *rgna); |
| 1084 | } |
| 1085 | break; |
| 1086 | |
| 1087 | case kUnion_Op: |
| 1088 | if (a_empty) { |
| 1089 | return setRegionCheck(result, *rgnb); |
| 1090 | } |
| 1091 | if (b_empty) { |
| 1092 | return setRegionCheck(result, *rgna); |
| 1093 | } |
| 1094 | if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { |
| 1095 | return setRegionCheck(result, *rgna); |
| 1096 | } |
| 1097 | if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { |
| 1098 | return setRegionCheck(result, *rgnb); |
| 1099 | } |
| 1100 | break; |
| 1101 | |
| 1102 | case kXOR_Op: |
| 1103 | if (a_empty) { |
| 1104 | return setRegionCheck(result, *rgnb); |
| 1105 | } |
| 1106 | if (b_empty) { |
| 1107 | return setRegionCheck(result, *rgna); |
| 1108 | } |
| 1109 | break; |
| 1110 | default: |
| 1111 | SkDEBUGFAIL("unknown region op" ); |
| 1112 | return false; |
| 1113 | } |
| 1114 | |
| 1115 | RunType tmpA[kRectRegionRuns]; |
| 1116 | RunType tmpB[kRectRegionRuns]; |
| 1117 | |
| 1118 | int a_intervals, b_intervals; |
| 1119 | const RunType* a_runs = rgna->getRuns(tmpA, &a_intervals); |
| 1120 | const RunType* b_runs = rgnb->getRuns(tmpB, &b_intervals); |
| 1121 | |
| 1122 | RunArray array; |
| 1123 | int count = operate(a_runs, b_runs, &array, op, nullptr == result); |
| 1124 | SkASSERT(count <= array.count()); |
| 1125 | |
| 1126 | if (result) { |
| 1127 | SkASSERT(count >= 0); |
| 1128 | return result->setRuns(&array[0], count); |
| 1129 | } else { |
| 1130 | return (QUICK_EXIT_TRUE_COUNT == count) || !isRunCountEmpty(count); |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | bool SkRegion::op(const SkRegion& rgna, const SkRegion& rgnb, Op op) { |
| 1135 | SkDEBUGCODE(SkRegionPriv::Validate(*this)); |
| 1136 | return SkRegion::Oper(rgna, rgnb, op, this); |
| 1137 | } |
| 1138 | |
| 1139 | /////////////////////////////////////////////////////////////////////////////// |
| 1140 | |
| 1141 | #include "src/core/SkBuffer.h" |
| 1142 | |
| 1143 | size_t SkRegion::writeToMemory(void* storage) const { |
| 1144 | if (nullptr == storage) { |
| 1145 | size_t size = sizeof(int32_t); // -1 (empty), 0 (rect), runCount |
| 1146 | if (!this->isEmpty()) { |
| 1147 | size += sizeof(fBounds); |
| 1148 | if (this->isComplex()) { |
| 1149 | size += 2 * sizeof(int32_t); // ySpanCount + intervalCount |
| 1150 | size += fRunHead->fRunCount * sizeof(RunType); |
| 1151 | } |
| 1152 | } |
| 1153 | return size; |
| 1154 | } |
| 1155 | |
| 1156 | SkWBuffer buffer(storage); |
| 1157 | |
| 1158 | if (this->isEmpty()) { |
| 1159 | buffer.write32(-1); |
| 1160 | } else { |
| 1161 | bool isRect = this->isRect(); |
| 1162 | |
| 1163 | buffer.write32(isRect ? 0 : fRunHead->fRunCount); |
| 1164 | buffer.write(&fBounds, sizeof(fBounds)); |
| 1165 | |
| 1166 | if (!isRect) { |
| 1167 | buffer.write32(fRunHead->getYSpanCount()); |
| 1168 | buffer.write32(fRunHead->getIntervalCount()); |
| 1169 | buffer.write(fRunHead->readonly_runs(), |
| 1170 | fRunHead->fRunCount * sizeof(RunType)); |
| 1171 | } |
| 1172 | } |
| 1173 | return buffer.pos(); |
| 1174 | } |
| 1175 | |
| 1176 | static bool validate_run_count(int ySpanCount, int intervalCount, int runCount) { |
| 1177 | // return 2 + 3 * ySpanCount + 2 * intervalCount; |
| 1178 | if (ySpanCount < 1 || intervalCount < 2) { |
| 1179 | return false; |
| 1180 | } |
| 1181 | SkSafeMath safeMath; |
| 1182 | int sum = 2; |
| 1183 | sum = safeMath.addInt(sum, ySpanCount); |
| 1184 | sum = safeMath.addInt(sum, ySpanCount); |
| 1185 | sum = safeMath.addInt(sum, ySpanCount); |
| 1186 | sum = safeMath.addInt(sum, intervalCount); |
| 1187 | sum = safeMath.addInt(sum, intervalCount); |
| 1188 | return safeMath && sum == runCount; |
| 1189 | } |
| 1190 | |
| 1191 | // Validate that a memory sequence is a valid region. |
| 1192 | // Try to check all possible errors. |
| 1193 | // never read beyond &runs[runCount-1]. |
| 1194 | static bool validate_run(const int32_t* runs, |
| 1195 | int runCount, |
| 1196 | const SkIRect& givenBounds, |
| 1197 | int32_t ySpanCount, |
| 1198 | int32_t intervalCount) { |
| 1199 | // Region Layout: |
| 1200 | // Top ( Bottom Span_Interval_Count ( Left Right )* Sentinel )+ Sentinel |
| 1201 | if (!validate_run_count(SkToInt(ySpanCount), SkToInt(intervalCount), runCount)) { |
| 1202 | return false; |
| 1203 | } |
| 1204 | SkASSERT(runCount >= 7); // 7==SkRegion::kRectRegionRuns |
| 1205 | // quick sanity check: |
| 1206 | if (runs[runCount - 1] != SkRegion_kRunTypeSentinel || |
| 1207 | runs[runCount - 2] != SkRegion_kRunTypeSentinel) { |
| 1208 | return false; |
| 1209 | } |
| 1210 | const int32_t* const end = runs + runCount; |
| 1211 | SkIRect bounds = {0, 0, 0 ,0}; // calulated bounds |
| 1212 | SkIRect rect = {0, 0, 0, 0}; // current rect |
| 1213 | rect.fTop = *runs++; |
| 1214 | if (rect.fTop == SkRegion_kRunTypeSentinel) { |
| 1215 | return false; // no rect can contain SkRegion_kRunTypeSentinel |
| 1216 | } |
| 1217 | if (rect.fTop != givenBounds.fTop) { |
| 1218 | return false; // Must not begin with empty span that does not contribute to bounds. |
| 1219 | } |
| 1220 | do { |
| 1221 | --ySpanCount; |
| 1222 | if (ySpanCount < 0) { |
| 1223 | return false; // too many yspans |
| 1224 | } |
| 1225 | rect.fBottom = *runs++; |
| 1226 | if (rect.fBottom == SkRegion_kRunTypeSentinel) { |
| 1227 | return false; |
| 1228 | } |
| 1229 | if (rect.fBottom > givenBounds.fBottom) { |
| 1230 | return false; // Must not end with empty span that does not contribute to bounds. |
| 1231 | } |
| 1232 | if (rect.fBottom <= rect.fTop) { |
| 1233 | return false; // y-intervals must be ordered; rects must be non-empty. |
| 1234 | } |
| 1235 | |
| 1236 | int32_t xIntervals = *runs++; |
| 1237 | SkASSERT(runs < end); |
| 1238 | if (xIntervals < 0 || xIntervals > intervalCount || runs + 1 + 2 * xIntervals > end) { |
| 1239 | return false; |
| 1240 | } |
| 1241 | intervalCount -= xIntervals; |
| 1242 | bool firstInterval = true; |
| 1243 | int32_t lastRight = 0; // check that x-intervals are distinct and ordered. |
| 1244 | while (xIntervals-- > 0) { |
| 1245 | rect.fLeft = *runs++; |
| 1246 | rect.fRight = *runs++; |
| 1247 | if (rect.fLeft == SkRegion_kRunTypeSentinel || |
| 1248 | rect.fRight == SkRegion_kRunTypeSentinel || |
| 1249 | rect.fLeft >= rect.fRight || // check non-empty rect |
| 1250 | (!firstInterval && rect.fLeft <= lastRight)) { |
| 1251 | return false; |
| 1252 | } |
| 1253 | lastRight = rect.fRight; |
| 1254 | firstInterval = false; |
| 1255 | bounds.join(rect); |
| 1256 | } |
| 1257 | if (*runs++ != SkRegion_kRunTypeSentinel) { |
| 1258 | return false; // required check sentinal. |
| 1259 | } |
| 1260 | rect.fTop = rect.fBottom; |
| 1261 | SkASSERT(runs < end); |
| 1262 | } while (*runs != SkRegion_kRunTypeSentinel); |
| 1263 | ++runs; |
| 1264 | if (ySpanCount != 0 || intervalCount != 0 || givenBounds != bounds) { |
| 1265 | return false; |
| 1266 | } |
| 1267 | SkASSERT(runs == end); // if ySpanCount && intervalCount are right, must be correct length. |
| 1268 | return true; |
| 1269 | } |
| 1270 | size_t SkRegion::readFromMemory(const void* storage, size_t length) { |
| 1271 | SkRBuffer buffer(storage, length); |
| 1272 | SkRegion tmp; |
| 1273 | int32_t count; |
| 1274 | |
| 1275 | // Serialized Region Format: |
| 1276 | // Empty: |
| 1277 | // -1 |
| 1278 | // Simple Rect: |
| 1279 | // 0 LEFT TOP RIGHT BOTTOM |
| 1280 | // Complex Region: |
| 1281 | // COUNT LEFT TOP RIGHT BOTTOM Y_SPAN_COUNT TOTAL_INTERVAL_COUNT [RUNS....] |
| 1282 | if (!buffer.readS32(&count) || count < -1) { |
| 1283 | return 0; |
| 1284 | } |
| 1285 | if (count >= 0) { |
| 1286 | if (!buffer.read(&tmp.fBounds, sizeof(tmp.fBounds)) || tmp.fBounds.isEmpty()) { |
| 1287 | return 0; // Short buffer or bad bounds for non-empty region; report failure. |
| 1288 | } |
| 1289 | if (count == 0) { |
| 1290 | tmp.fRunHead = SkRegion_gRectRunHeadPtr; |
| 1291 | } else { |
| 1292 | int32_t ySpanCount, intervalCount; |
| 1293 | if (!buffer.readS32(&ySpanCount) || |
| 1294 | !buffer.readS32(&intervalCount) || |
| 1295 | buffer.available() < count * sizeof(int32_t)) { |
| 1296 | return 0; |
| 1297 | } |
| 1298 | if (!validate_run((const int32_t*)((const char*)storage + buffer.pos()), count, |
| 1299 | tmp.fBounds, ySpanCount, intervalCount)) { |
| 1300 | return 0; // invalid runs, don't even allocate |
| 1301 | } |
| 1302 | tmp.allocateRuns(count, ySpanCount, intervalCount); |
| 1303 | SkASSERT(tmp.isComplex()); |
| 1304 | SkAssertResult(buffer.read(tmp.fRunHead->writable_runs(), count * sizeof(int32_t))); |
| 1305 | } |
| 1306 | } |
| 1307 | SkASSERT(tmp.isValid()); |
| 1308 | SkASSERT(buffer.isValid()); |
| 1309 | this->swap(tmp); |
| 1310 | return buffer.pos(); |
| 1311 | } |
| 1312 | |
| 1313 | /////////////////////////////////////////////////////////////////////////////// |
| 1314 | |
| 1315 | bool SkRegion::isValid() const { |
| 1316 | if (this->isEmpty()) { |
| 1317 | return fBounds == SkIRect{0, 0, 0, 0}; |
| 1318 | } |
| 1319 | if (fBounds.isEmpty()) { |
| 1320 | return false; |
| 1321 | } |
| 1322 | if (this->isRect()) { |
| 1323 | return true; |
| 1324 | } |
| 1325 | return fRunHead && fRunHead->fRefCnt > 0 && |
| 1326 | validate_run(fRunHead->readonly_runs(), fRunHead->fRunCount, fBounds, |
| 1327 | fRunHead->getYSpanCount(), fRunHead->getIntervalCount()); |
| 1328 | } |
| 1329 | |
| 1330 | #ifdef SK_DEBUG |
| 1331 | void SkRegionPriv::Validate(const SkRegion& rgn) { SkASSERT(rgn.isValid()); } |
| 1332 | |
| 1333 | void SkRegion::dump() const { |
| 1334 | if (this->isEmpty()) { |
| 1335 | SkDebugf(" rgn: empty\n" ); |
| 1336 | } else { |
| 1337 | SkDebugf(" rgn: [%d %d %d %d]" , fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| 1338 | if (this->isComplex()) { |
| 1339 | const RunType* runs = fRunHead->readonly_runs(); |
| 1340 | for (int i = 0; i < fRunHead->fRunCount; i++) |
| 1341 | SkDebugf(" %d" , runs[i]); |
| 1342 | } |
| 1343 | SkDebugf("\n" ); |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | #endif |
| 1348 | |
| 1349 | /////////////////////////////////////////////////////////////////////////////// |
| 1350 | |
| 1351 | SkRegion::Iterator::Iterator(const SkRegion& rgn) { |
| 1352 | this->reset(rgn); |
| 1353 | } |
| 1354 | |
| 1355 | bool SkRegion::Iterator::rewind() { |
| 1356 | if (fRgn) { |
| 1357 | this->reset(*fRgn); |
| 1358 | return true; |
| 1359 | } |
| 1360 | return false; |
| 1361 | } |
| 1362 | |
| 1363 | void SkRegion::Iterator::reset(const SkRegion& rgn) { |
| 1364 | fRgn = &rgn; |
| 1365 | if (rgn.isEmpty()) { |
| 1366 | fDone = true; |
| 1367 | } else { |
| 1368 | fDone = false; |
| 1369 | if (rgn.isRect()) { |
| 1370 | fRect = rgn.fBounds; |
| 1371 | fRuns = nullptr; |
| 1372 | } else { |
| 1373 | fRuns = rgn.fRunHead->readonly_runs(); |
| 1374 | fRect.setLTRB(fRuns[3], fRuns[0], fRuns[4], fRuns[1]); |
| 1375 | fRuns += 5; |
| 1376 | // Now fRuns points to the 2nd interval (or x-sentinel) |
| 1377 | } |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | void SkRegion::Iterator::next() { |
| 1382 | if (fDone) { |
| 1383 | return; |
| 1384 | } |
| 1385 | |
| 1386 | if (fRuns == nullptr) { // rect case |
| 1387 | fDone = true; |
| 1388 | return; |
| 1389 | } |
| 1390 | |
| 1391 | const RunType* runs = fRuns; |
| 1392 | |
| 1393 | if (runs[0] < SkRegion_kRunTypeSentinel) { // valid X value |
| 1394 | fRect.fLeft = runs[0]; |
| 1395 | fRect.fRight = runs[1]; |
| 1396 | runs += 2; |
| 1397 | } else { // we're at the end of a line |
| 1398 | runs += 1; |
| 1399 | if (runs[0] < SkRegion_kRunTypeSentinel) { // valid Y value |
| 1400 | int intervals = runs[1]; |
| 1401 | if (0 == intervals) { // empty line |
| 1402 | fRect.fTop = runs[0]; |
| 1403 | runs += 3; |
| 1404 | } else { |
| 1405 | fRect.fTop = fRect.fBottom; |
| 1406 | } |
| 1407 | |
| 1408 | fRect.fBottom = runs[0]; |
| 1409 | assert_sentinel(runs[2], false); |
| 1410 | assert_sentinel(runs[3], false); |
| 1411 | fRect.fLeft = runs[2]; |
| 1412 | fRect.fRight = runs[3]; |
| 1413 | runs += 4; |
| 1414 | } else { // end of rgn |
| 1415 | fDone = true; |
| 1416 | } |
| 1417 | } |
| 1418 | fRuns = runs; |
| 1419 | } |
| 1420 | |
| 1421 | SkRegion::Cliperator::Cliperator(const SkRegion& rgn, const SkIRect& clip) |
| 1422 | : fIter(rgn), fClip(clip), fDone(true) { |
| 1423 | const SkIRect& r = fIter.rect(); |
| 1424 | |
| 1425 | while (!fIter.done()) { |
| 1426 | if (r.fTop >= clip.fBottom) { |
| 1427 | break; |
| 1428 | } |
| 1429 | if (fRect.intersect(clip, r)) { |
| 1430 | fDone = false; |
| 1431 | break; |
| 1432 | } |
| 1433 | fIter.next(); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | void SkRegion::Cliperator::next() { |
| 1438 | if (fDone) { |
| 1439 | return; |
| 1440 | } |
| 1441 | |
| 1442 | const SkIRect& r = fIter.rect(); |
| 1443 | |
| 1444 | fDone = true; |
| 1445 | fIter.next(); |
| 1446 | while (!fIter.done()) { |
| 1447 | if (r.fTop >= fClip.fBottom) { |
| 1448 | break; |
| 1449 | } |
| 1450 | if (fRect.intersect(fClip, r)) { |
| 1451 | fDone = false; |
| 1452 | break; |
| 1453 | } |
| 1454 | fIter.next(); |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | /////////////////////////////////////////////////////////////////////////////// |
| 1459 | |
| 1460 | SkRegion::Spanerator::Spanerator(const SkRegion& rgn, int y, int left, |
| 1461 | int right) { |
| 1462 | SkDEBUGCODE(SkRegionPriv::Validate(rgn)); |
| 1463 | |
| 1464 | const SkIRect& r = rgn.getBounds(); |
| 1465 | |
| 1466 | fDone = true; |
| 1467 | if (!rgn.isEmpty() && y >= r.fTop && y < r.fBottom && |
| 1468 | right > r.fLeft && left < r.fRight) { |
| 1469 | if (rgn.isRect()) { |
| 1470 | if (left < r.fLeft) { |
| 1471 | left = r.fLeft; |
| 1472 | } |
| 1473 | if (right > r.fRight) { |
| 1474 | right = r.fRight; |
| 1475 | } |
| 1476 | fLeft = left; |
| 1477 | fRight = right; |
| 1478 | fRuns = nullptr; // means we're a rect, not a rgn |
| 1479 | fDone = false; |
| 1480 | } else { |
| 1481 | const SkRegion::RunType* runs = rgn.fRunHead->findScanline(y); |
| 1482 | runs += 2; // skip Bottom and IntervalCount |
| 1483 | for (;;) { |
| 1484 | // runs[0..1] is to the right of the span, so we're done |
| 1485 | if (runs[0] >= right) { |
| 1486 | break; |
| 1487 | } |
| 1488 | // runs[0..1] is to the left of the span, so continue |
| 1489 | if (runs[1] <= left) { |
| 1490 | runs += 2; |
| 1491 | continue; |
| 1492 | } |
| 1493 | // runs[0..1] intersects the span |
| 1494 | fRuns = runs; |
| 1495 | fLeft = left; |
| 1496 | fRight = right; |
| 1497 | fDone = false; |
| 1498 | break; |
| 1499 | } |
| 1500 | } |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | bool SkRegion::Spanerator::next(int* left, int* right) { |
| 1505 | if (fDone) { |
| 1506 | return false; |
| 1507 | } |
| 1508 | |
| 1509 | if (fRuns == nullptr) { // we're a rect |
| 1510 | fDone = true; // ok, now we're done |
| 1511 | if (left) { |
| 1512 | *left = fLeft; |
| 1513 | } |
| 1514 | if (right) { |
| 1515 | *right = fRight; |
| 1516 | } |
| 1517 | return true; // this interval is legal |
| 1518 | } |
| 1519 | |
| 1520 | const SkRegion::RunType* runs = fRuns; |
| 1521 | |
| 1522 | if (runs[0] >= fRight) { |
| 1523 | fDone = true; |
| 1524 | return false; |
| 1525 | } |
| 1526 | |
| 1527 | SkASSERT(runs[1] > fLeft); |
| 1528 | |
| 1529 | if (left) { |
| 1530 | *left = std::max(fLeft, runs[0]); |
| 1531 | } |
| 1532 | if (right) { |
| 1533 | *right = std::min(fRight, runs[1]); |
| 1534 | } |
| 1535 | fRuns = runs + 2; |
| 1536 | return true; |
| 1537 | } |
| 1538 | |
| 1539 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 1540 | |
| 1541 | static void visit_pairs(int pairCount, int y, const int32_t pairs[], |
| 1542 | const std::function<void(const SkIRect&)>& visitor) { |
| 1543 | for (int i = 0; i < pairCount; ++i) { |
| 1544 | visitor({ pairs[0], y, pairs[1], y + 1 }); |
| 1545 | pairs += 2; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | void SkRegionPriv::VisitSpans(const SkRegion& rgn, |
| 1550 | const std::function<void(const SkIRect&)>& visitor) { |
| 1551 | if (rgn.isEmpty()) { |
| 1552 | return; |
| 1553 | } |
| 1554 | if (rgn.isRect()) { |
| 1555 | visitor(rgn.getBounds()); |
| 1556 | } else { |
| 1557 | const int32_t* p = rgn.fRunHead->readonly_runs(); |
| 1558 | int32_t top = *p++; |
| 1559 | int32_t bot = *p++; |
| 1560 | do { |
| 1561 | int pairCount = *p++; |
| 1562 | if (pairCount == 1) { |
| 1563 | visitor({ p[0], top, p[1], bot }); |
| 1564 | p += 2; |
| 1565 | } else if (pairCount > 1) { |
| 1566 | // we have to loop repeated in Y, sending each interval in Y -> X order |
| 1567 | for (int y = top; y < bot; ++y) { |
| 1568 | visit_pairs(pairCount, y, p, visitor); |
| 1569 | } |
| 1570 | p += pairCount * 2; |
| 1571 | } |
| 1572 | assert_sentinel(*p, true); |
| 1573 | p += 1; // skip sentinel |
| 1574 | |
| 1575 | // read next bottom or sentinel |
| 1576 | top = bot; |
| 1577 | bot = *p++; |
| 1578 | } while (!SkRegionValueIsSentinel(bot)); |
| 1579 | } |
| 1580 | } |
| 1581 | |
| 1582 | |