1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkIntersections.h" |
8 | #include "src/pathops/SkPathOpsCubic.h" |
9 | #include "src/pathops/SkPathOpsCurve.h" |
10 | #include "src/pathops/SkPathOpsLine.h" |
11 | |
12 | /* |
13 | Find the interection of a line and cubic by solving for valid t values. |
14 | |
15 | Analogous to line-quadratic intersection, solve line-cubic intersection by |
16 | representing the cubic as: |
17 | x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 |
18 | y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 |
19 | and the line as: |
20 | y = i*x + j (if the line is more horizontal) |
21 | or: |
22 | x = i*y + j (if the line is more vertical) |
23 | |
24 | Then using Mathematica, solve for the values of t where the cubic intersects the |
25 | line: |
26 | |
27 | (in) Resultant[ |
28 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, |
29 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] |
30 | (out) -e + j + |
31 | 3 e t - 3 f t - |
32 | 3 e t^2 + 6 f t^2 - 3 g t^2 + |
33 | e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + |
34 | i ( a - |
35 | 3 a t + 3 b t + |
36 | 3 a t^2 - 6 b t^2 + 3 c t^2 - |
37 | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) |
38 | |
39 | if i goes to infinity, we can rewrite the line in terms of x. Mathematica: |
40 | |
41 | (in) Resultant[ |
42 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, |
43 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
44 | (out) a - j - |
45 | 3 a t + 3 b t + |
46 | 3 a t^2 - 6 b t^2 + 3 c t^2 - |
47 | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - |
48 | i ( e - |
49 | 3 e t + 3 f t + |
50 | 3 e t^2 - 6 f t^2 + 3 g t^2 - |
51 | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) |
52 | |
53 | Solving this with Mathematica produces an expression with hundreds of terms; |
54 | instead, use Numeric Solutions recipe to solve the cubic. |
55 | |
56 | The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
57 | A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) |
58 | B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) |
59 | C = 3*(-(-e + f ) + i*(-a + b ) ) |
60 | D = (-( e ) + i*( a ) + j ) |
61 | |
62 | The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
63 | A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) |
64 | B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) |
65 | C = 3*( (-a + b ) - i*(-e + f ) ) |
66 | D = ( ( a ) - i*( e ) - j ) |
67 | |
68 | For horizontal lines: |
69 | (in) Resultant[ |
70 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, |
71 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
72 | (out) e - j - |
73 | 3 e t + 3 f t + |
74 | 3 e t^2 - 6 f t^2 + 3 g t^2 - |
75 | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 |
76 | */ |
77 | |
78 | class LineCubicIntersections { |
79 | public: |
80 | enum PinTPoint { |
81 | kPointUninitialized, |
82 | kPointInitialized |
83 | }; |
84 | |
85 | LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) |
86 | : fCubic(c) |
87 | , fLine(l) |
88 | , fIntersections(i) |
89 | , fAllowNear(true) { |
90 | i->setMax(4); |
91 | } |
92 | |
93 | void allowNear(bool allow) { |
94 | fAllowNear = allow; |
95 | } |
96 | |
97 | void checkCoincident() { |
98 | int last = fIntersections->used() - 1; |
99 | for (int index = 0; index < last; ) { |
100 | double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; |
101 | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); |
102 | double t = fLine.nearPoint(cubicMidPt, nullptr); |
103 | if (t < 0) { |
104 | ++index; |
105 | continue; |
106 | } |
107 | if (fIntersections->isCoincident(index)) { |
108 | fIntersections->removeOne(index); |
109 | --last; |
110 | } else if (fIntersections->isCoincident(index + 1)) { |
111 | fIntersections->removeOne(index + 1); |
112 | --last; |
113 | } else { |
114 | fIntersections->setCoincident(index++); |
115 | } |
116 | fIntersections->setCoincident(index); |
117 | } |
118 | } |
119 | |
120 | // see parallel routine in line quadratic intersections |
121 | int intersectRay(double roots[3]) { |
122 | double adj = fLine[1].fX - fLine[0].fX; |
123 | double opp = fLine[1].fY - fLine[0].fY; |
124 | SkDCubic c; |
125 | SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState()); |
126 | for (int n = 0; n < 4; ++n) { |
127 | c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; |
128 | } |
129 | double A, B, C, D; |
130 | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); |
131 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
132 | for (int index = 0; index < count; ++index) { |
133 | SkDPoint calcPt = c.ptAtT(roots[index]); |
134 | if (!approximately_zero(calcPt.fX)) { |
135 | for (int n = 0; n < 4; ++n) { |
136 | c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp |
137 | + (fCubic[n].fX - fLine[0].fX) * adj; |
138 | } |
139 | double extremeTs[6]; |
140 | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); |
141 | count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); |
142 | break; |
143 | } |
144 | } |
145 | return count; |
146 | } |
147 | |
148 | int intersect() { |
149 | addExactEndPoints(); |
150 | if (fAllowNear) { |
151 | addNearEndPoints(); |
152 | } |
153 | double rootVals[3]; |
154 | int roots = intersectRay(rootVals); |
155 | for (int index = 0; index < roots; ++index) { |
156 | double cubicT = rootVals[index]; |
157 | double lineT = findLineT(cubicT); |
158 | SkDPoint pt; |
159 | if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) { |
160 | fIntersections->insert(cubicT, lineT, pt); |
161 | } |
162 | } |
163 | checkCoincident(); |
164 | return fIntersections->used(); |
165 | } |
166 | |
167 | static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { |
168 | double A, B, C, D; |
169 | SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D); |
170 | D -= axisIntercept; |
171 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
172 | for (int index = 0; index < count; ++index) { |
173 | SkDPoint calcPt = c.ptAtT(roots[index]); |
174 | if (!approximately_equal(calcPt.fY, axisIntercept)) { |
175 | double extremeTs[6]; |
176 | int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs); |
177 | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); |
178 | break; |
179 | } |
180 | } |
181 | return count; |
182 | } |
183 | |
184 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
185 | addExactHorizontalEndPoints(left, right, axisIntercept); |
186 | if (fAllowNear) { |
187 | addNearHorizontalEndPoints(left, right, axisIntercept); |
188 | } |
189 | double roots[3]; |
190 | int count = HorizontalIntersect(fCubic, axisIntercept, roots); |
191 | for (int index = 0; index < count; ++index) { |
192 | double cubicT = roots[index]; |
193 | SkDPoint pt = { fCubic.ptAtT(cubicT).fX, axisIntercept }; |
194 | double lineT = (pt.fX - left) / (right - left); |
195 | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { |
196 | fIntersections->insert(cubicT, lineT, pt); |
197 | } |
198 | } |
199 | if (flipped) { |
200 | fIntersections->flip(); |
201 | } |
202 | checkCoincident(); |
203 | return fIntersections->used(); |
204 | } |
205 | |
206 | bool uniqueAnswer(double cubicT, const SkDPoint& pt) { |
207 | for (int inner = 0; inner < fIntersections->used(); ++inner) { |
208 | if (fIntersections->pt(inner) != pt) { |
209 | continue; |
210 | } |
211 | double existingCubicT = (*fIntersections)[0][inner]; |
212 | if (cubicT == existingCubicT) { |
213 | return false; |
214 | } |
215 | // check if midway on cubic is also same point. If so, discard this |
216 | double cubicMidT = (existingCubicT + cubicT) / 2; |
217 | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); |
218 | if (cubicMidPt.approximatelyEqual(pt)) { |
219 | return false; |
220 | } |
221 | } |
222 | #if ONE_OFF_DEBUG |
223 | SkDPoint cPt = fCubic.ptAtT(cubicT); |
224 | SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n" , __FUNCTION__, pt.fX, pt.fY, |
225 | cPt.fX, cPt.fY); |
226 | #endif |
227 | return true; |
228 | } |
229 | |
230 | static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { |
231 | double A, B, C, D; |
232 | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); |
233 | D -= axisIntercept; |
234 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
235 | for (int index = 0; index < count; ++index) { |
236 | SkDPoint calcPt = c.ptAtT(roots[index]); |
237 | if (!approximately_equal(calcPt.fX, axisIntercept)) { |
238 | double extremeTs[6]; |
239 | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); |
240 | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots); |
241 | break; |
242 | } |
243 | } |
244 | return count; |
245 | } |
246 | |
247 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
248 | addExactVerticalEndPoints(top, bottom, axisIntercept); |
249 | if (fAllowNear) { |
250 | addNearVerticalEndPoints(top, bottom, axisIntercept); |
251 | } |
252 | double roots[3]; |
253 | int count = VerticalIntersect(fCubic, axisIntercept, roots); |
254 | for (int index = 0; index < count; ++index) { |
255 | double cubicT = roots[index]; |
256 | SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY }; |
257 | double lineT = (pt.fY - top) / (bottom - top); |
258 | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { |
259 | fIntersections->insert(cubicT, lineT, pt); |
260 | } |
261 | } |
262 | if (flipped) { |
263 | fIntersections->flip(); |
264 | } |
265 | checkCoincident(); |
266 | return fIntersections->used(); |
267 | } |
268 | |
269 | protected: |
270 | |
271 | void addExactEndPoints() { |
272 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
273 | double lineT = fLine.exactPoint(fCubic[cIndex]); |
274 | if (lineT < 0) { |
275 | continue; |
276 | } |
277 | double cubicT = (double) (cIndex >> 1); |
278 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
279 | } |
280 | } |
281 | |
282 | /* Note that this does not look for endpoints of the line that are near the cubic. |
283 | These points are found later when check ends looks for missing points */ |
284 | void addNearEndPoints() { |
285 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
286 | double cubicT = (double) (cIndex >> 1); |
287 | if (fIntersections->hasT(cubicT)) { |
288 | continue; |
289 | } |
290 | double lineT = fLine.nearPoint(fCubic[cIndex], nullptr); |
291 | if (lineT < 0) { |
292 | continue; |
293 | } |
294 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
295 | } |
296 | this->addLineNearEndPoints(); |
297 | } |
298 | |
299 | void addLineNearEndPoints() { |
300 | for (int lIndex = 0; lIndex < 2; ++lIndex) { |
301 | double lineT = (double) lIndex; |
302 | if (fIntersections->hasOppT(lineT)) { |
303 | continue; |
304 | } |
305 | double cubicT = ((SkDCurve*) &fCubic)->nearPoint(SkPath::kCubic_Verb, |
306 | fLine[lIndex], fLine[!lIndex]); |
307 | if (cubicT < 0) { |
308 | continue; |
309 | } |
310 | fIntersections->insert(cubicT, lineT, fLine[lIndex]); |
311 | } |
312 | } |
313 | |
314 | void addExactHorizontalEndPoints(double left, double right, double y) { |
315 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
316 | double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); |
317 | if (lineT < 0) { |
318 | continue; |
319 | } |
320 | double cubicT = (double) (cIndex >> 1); |
321 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
322 | } |
323 | } |
324 | |
325 | void addNearHorizontalEndPoints(double left, double right, double y) { |
326 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
327 | double cubicT = (double) (cIndex >> 1); |
328 | if (fIntersections->hasT(cubicT)) { |
329 | continue; |
330 | } |
331 | double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); |
332 | if (lineT < 0) { |
333 | continue; |
334 | } |
335 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
336 | } |
337 | this->addLineNearEndPoints(); |
338 | } |
339 | |
340 | void addExactVerticalEndPoints(double top, double bottom, double x) { |
341 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
342 | double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); |
343 | if (lineT < 0) { |
344 | continue; |
345 | } |
346 | double cubicT = (double) (cIndex >> 1); |
347 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
348 | } |
349 | } |
350 | |
351 | void addNearVerticalEndPoints(double top, double bottom, double x) { |
352 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
353 | double cubicT = (double) (cIndex >> 1); |
354 | if (fIntersections->hasT(cubicT)) { |
355 | continue; |
356 | } |
357 | double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); |
358 | if (lineT < 0) { |
359 | continue; |
360 | } |
361 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
362 | } |
363 | this->addLineNearEndPoints(); |
364 | } |
365 | |
366 | double findLineT(double t) { |
367 | SkDPoint xy = fCubic.ptAtT(t); |
368 | double dx = fLine[1].fX - fLine[0].fX; |
369 | double dy = fLine[1].fY - fLine[0].fY; |
370 | if (fabs(dx) > fabs(dy)) { |
371 | return (xy.fX - fLine[0].fX) / dx; |
372 | } |
373 | return (xy.fY - fLine[0].fY) / dy; |
374 | } |
375 | |
376 | bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
377 | if (!approximately_one_or_less(*lineT)) { |
378 | return false; |
379 | } |
380 | if (!approximately_zero_or_more(*lineT)) { |
381 | return false; |
382 | } |
383 | double cT = *cubicT = SkPinT(*cubicT); |
384 | double lT = *lineT = SkPinT(*lineT); |
385 | SkDPoint lPt = fLine.ptAtT(lT); |
386 | SkDPoint cPt = fCubic.ptAtT(cT); |
387 | if (!lPt.roughlyEqual(cPt)) { |
388 | return false; |
389 | } |
390 | // FIXME: if points are roughly equal but not approximately equal, need to do |
391 | // a binary search like quad/quad intersection to find more precise t values |
392 | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { |
393 | *pt = lPt; |
394 | } else if (ptSet == kPointUninitialized) { |
395 | *pt = cPt; |
396 | } |
397 | SkPoint gridPt = pt->asSkPoint(); |
398 | if (gridPt == fLine[0].asSkPoint()) { |
399 | *lineT = 0; |
400 | } else if (gridPt == fLine[1].asSkPoint()) { |
401 | *lineT = 1; |
402 | } |
403 | if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { |
404 | *cubicT = 0; |
405 | } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { |
406 | *cubicT = 1; |
407 | } |
408 | return true; |
409 | } |
410 | |
411 | private: |
412 | const SkDCubic& fCubic; |
413 | const SkDLine& fLine; |
414 | SkIntersections* fIntersections; |
415 | bool fAllowNear; |
416 | }; |
417 | |
418 | int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, |
419 | bool flipped) { |
420 | SkDLine line = {{{ left, y }, { right, y }}}; |
421 | LineCubicIntersections c(cubic, line, this); |
422 | return c.horizontalIntersect(y, left, right, flipped); |
423 | } |
424 | |
425 | int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, |
426 | bool flipped) { |
427 | SkDLine line = {{{ x, top }, { x, bottom }}}; |
428 | LineCubicIntersections c(cubic, line, this); |
429 | return c.verticalIntersect(x, top, bottom, flipped); |
430 | } |
431 | |
432 | int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { |
433 | LineCubicIntersections c(cubic, line, this); |
434 | c.allowNear(fAllowNear); |
435 | return c.intersect(); |
436 | } |
437 | |
438 | int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { |
439 | LineCubicIntersections c(cubic, line, this); |
440 | fUsed = c.intersectRay(fT[0]); |
441 | for (int index = 0; index < fUsed; ++index) { |
442 | fPt[index] = cubic.ptAtT(fT[0][index]); |
443 | } |
444 | return fUsed; |
445 | } |
446 | |
447 | // SkDCubic accessors to Intersection utilities |
448 | |
449 | int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const { |
450 | return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots); |
451 | } |
452 | |
453 | int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const { |
454 | return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots); |
455 | } |
456 | |