| 1 | /* | 
|---|
| 2 | * Copyright 2012 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 | #include "src/pathops/SkIntersections.h" | 
|---|
| 8 | #include "src/pathops/SkPathOpsCubic.h" | 
|---|
| 9 | #include "src/pathops/SkPathOpsCurve.h" | 
|---|
| 10 | #include "src/pathops/SkPathOpsLine.h" | 
|---|
| 11 |  | 
|---|
| 12 | /* | 
|---|
| 13 | Find the interection of a line and cubic by solving for valid t values. | 
|---|
| 14 |  | 
|---|
| 15 | Analogous to line-quadratic intersection, solve line-cubic intersection by | 
|---|
| 16 | representing the cubic as: | 
|---|
| 17 | x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 | 
|---|
| 18 | y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 | 
|---|
| 19 | and the line as: | 
|---|
| 20 | y = i*x + j  (if the line is more horizontal) | 
|---|
| 21 | or: | 
|---|
| 22 | x = i*y + j  (if the line is more vertical) | 
|---|
| 23 |  | 
|---|
| 24 | Then using Mathematica, solve for the values of t where the cubic intersects the | 
|---|
| 25 | line: | 
|---|
| 26 |  | 
|---|
| 27 | (in) Resultant[ | 
|---|
| 28 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, | 
|---|
| 29 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] | 
|---|
| 30 | (out) -e     +   j     + | 
|---|
| 31 | 3 e t   - 3 f t   - | 
|---|
| 32 | 3 e t^2 + 6 f t^2 - 3 g t^2 + | 
|---|
| 33 | e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + | 
|---|
| 34 | i ( a     - | 
|---|
| 35 | 3 a t + 3 b t + | 
|---|
| 36 | 3 a t^2 - 6 b t^2 + 3 c t^2 - | 
|---|
| 37 | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) | 
|---|
| 38 |  | 
|---|
| 39 | if i goes to infinity, we can rewrite the line in terms of x. Mathematica: | 
|---|
| 40 |  | 
|---|
| 41 | (in) Resultant[ | 
|---|
| 42 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, | 
|---|
| 43 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y] | 
|---|
| 44 | (out)  a     -   j     - | 
|---|
| 45 | 3 a t   + 3 b t   + | 
|---|
| 46 | 3 a t^2 - 6 b t^2 + 3 c t^2 - | 
|---|
| 47 | a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - | 
|---|
| 48 | i ( e     - | 
|---|
| 49 | 3 e t   + 3 f t   + | 
|---|
| 50 | 3 e t^2 - 6 f t^2 + 3 g t^2 - | 
|---|
| 51 | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) | 
|---|
| 52 |  | 
|---|
| 53 | Solving this with Mathematica produces an expression with hundreds of terms; | 
|---|
| 54 | instead, use Numeric Solutions recipe to solve the cubic. | 
|---|
| 55 |  | 
|---|
| 56 | The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0 | 
|---|
| 57 | A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     ) | 
|---|
| 58 | B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     ) | 
|---|
| 59 | C = 3*(-(-e +   f          ) + i*(-a +   b          )     ) | 
|---|
| 60 | D =   (-( e                ) + i*( a                ) + j ) | 
|---|
| 61 |  | 
|---|
| 62 | The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0 | 
|---|
| 63 | A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     ) | 
|---|
| 64 | B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     ) | 
|---|
| 65 | C = 3*( (-a +   b          ) - i*(-e +   f          )     ) | 
|---|
| 66 | D =   ( ( a                ) - i*( e                ) - j ) | 
|---|
| 67 |  | 
|---|
| 68 | For horizontal lines: | 
|---|
| 69 | (in) Resultant[ | 
|---|
| 70 | a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, | 
|---|
| 71 | e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] | 
|---|
| 72 | (out)  e     -   j     - | 
|---|
| 73 | 3 e t   + 3 f t   + | 
|---|
| 74 | 3 e t^2 - 6 f t^2 + 3 g t^2 - | 
|---|
| 75 | e t^3 + 3 f t^3 - 3 g t^3 + h t^3 | 
|---|
| 76 | */ | 
|---|
| 77 |  | 
|---|
| 78 | class LineCubicIntersections { | 
|---|
| 79 | public: | 
|---|
| 80 | enum PinTPoint { | 
|---|
| 81 | kPointUninitialized, | 
|---|
| 82 | kPointInitialized | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) | 
|---|
| 86 | : fCubic(c) | 
|---|
| 87 | , fLine(l) | 
|---|
| 88 | , fIntersections(i) | 
|---|
| 89 | , fAllowNear(true) { | 
|---|
| 90 | i->setMax(4); | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | void allowNear(bool allow) { | 
|---|
| 94 | fAllowNear = allow; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | void checkCoincident() { | 
|---|
| 98 | int last = fIntersections->used() - 1; | 
|---|
| 99 | for (int index = 0; index < last; ) { | 
|---|
| 100 | double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; | 
|---|
| 101 | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); | 
|---|
| 102 | double t = fLine.nearPoint(cubicMidPt, nullptr); | 
|---|
| 103 | if (t < 0) { | 
|---|
| 104 | ++index; | 
|---|
| 105 | continue; | 
|---|
| 106 | } | 
|---|
| 107 | if (fIntersections->isCoincident(index)) { | 
|---|
| 108 | fIntersections->removeOne(index); | 
|---|
| 109 | --last; | 
|---|
| 110 | } else if (fIntersections->isCoincident(index + 1)) { | 
|---|
| 111 | fIntersections->removeOne(index + 1); | 
|---|
| 112 | --last; | 
|---|
| 113 | } else { | 
|---|
| 114 | fIntersections->setCoincident(index++); | 
|---|
| 115 | } | 
|---|
| 116 | fIntersections->setCoincident(index); | 
|---|
| 117 | } | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | // see parallel routine in line quadratic intersections | 
|---|
| 121 | int intersectRay(double roots[3]) { | 
|---|
| 122 | double adj = fLine[1].fX - fLine[0].fX; | 
|---|
| 123 | double opp = fLine[1].fY - fLine[0].fY; | 
|---|
| 124 | SkDCubic c; | 
|---|
| 125 | SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState()); | 
|---|
| 126 | for (int n = 0; n < 4; ++n) { | 
|---|
| 127 | c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; | 
|---|
| 128 | } | 
|---|
| 129 | double A, B, C, D; | 
|---|
| 130 | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); | 
|---|
| 131 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|---|
| 132 | for (int index = 0; index < count; ++index) { | 
|---|
| 133 | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|---|
| 134 | if (!approximately_zero(calcPt.fX)) { | 
|---|
| 135 | for (int n = 0; n < 4; ++n) { | 
|---|
| 136 | c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp | 
|---|
| 137 | + (fCubic[n].fX - fLine[0].fX) * adj; | 
|---|
| 138 | } | 
|---|
| 139 | double extremeTs[6]; | 
|---|
| 140 | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); | 
|---|
| 141 | count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); | 
|---|
| 142 | break; | 
|---|
| 143 | } | 
|---|
| 144 | } | 
|---|
| 145 | return count; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | int intersect() { | 
|---|
| 149 | addExactEndPoints(); | 
|---|
| 150 | if (fAllowNear) { | 
|---|
| 151 | addNearEndPoints(); | 
|---|
| 152 | } | 
|---|
| 153 | double rootVals[3]; | 
|---|
| 154 | int roots = intersectRay(rootVals); | 
|---|
| 155 | for (int index = 0; index < roots; ++index) { | 
|---|
| 156 | double cubicT = rootVals[index]; | 
|---|
| 157 | double lineT = findLineT(cubicT); | 
|---|
| 158 | SkDPoint pt; | 
|---|
| 159 | if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) { | 
|---|
| 160 | fIntersections->insert(cubicT, lineT, pt); | 
|---|
| 161 | } | 
|---|
| 162 | } | 
|---|
| 163 | checkCoincident(); | 
|---|
| 164 | return fIntersections->used(); | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 | static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { | 
|---|
| 168 | double A, B, C, D; | 
|---|
| 169 | SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D); | 
|---|
| 170 | D -= axisIntercept; | 
|---|
| 171 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|---|
| 172 | for (int index = 0; index < count; ++index) { | 
|---|
| 173 | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|---|
| 174 | if (!approximately_equal(calcPt.fY, axisIntercept)) { | 
|---|
| 175 | double extremeTs[6]; | 
|---|
| 176 | int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs); | 
|---|
| 177 | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); | 
|---|
| 178 | break; | 
|---|
| 179 | } | 
|---|
| 180 | } | 
|---|
| 181 | return count; | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { | 
|---|
| 185 | addExactHorizontalEndPoints(left, right, axisIntercept); | 
|---|
| 186 | if (fAllowNear) { | 
|---|
| 187 | addNearHorizontalEndPoints(left, right, axisIntercept); | 
|---|
| 188 | } | 
|---|
| 189 | double roots[3]; | 
|---|
| 190 | int count = HorizontalIntersect(fCubic, axisIntercept, roots); | 
|---|
| 191 | for (int index = 0; index < count; ++index) { | 
|---|
| 192 | double cubicT = roots[index]; | 
|---|
| 193 | SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept }; | 
|---|
| 194 | double lineT = (pt.fX - left) / (right - left); | 
|---|
| 195 | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { | 
|---|
| 196 | fIntersections->insert(cubicT, lineT, pt); | 
|---|
| 197 | } | 
|---|
| 198 | } | 
|---|
| 199 | if (flipped) { | 
|---|
| 200 | fIntersections->flip(); | 
|---|
| 201 | } | 
|---|
| 202 | checkCoincident(); | 
|---|
| 203 | return fIntersections->used(); | 
|---|
| 204 | } | 
|---|
| 205 |  | 
|---|
| 206 | bool uniqueAnswer(double cubicT, const SkDPoint& pt) { | 
|---|
| 207 | for (int inner = 0; inner < fIntersections->used(); ++inner) { | 
|---|
| 208 | if (fIntersections->pt(inner) != pt) { | 
|---|
| 209 | continue; | 
|---|
| 210 | } | 
|---|
| 211 | double existingCubicT = (*fIntersections)[0][inner]; | 
|---|
| 212 | if (cubicT == existingCubicT) { | 
|---|
| 213 | return false; | 
|---|
| 214 | } | 
|---|
| 215 | // check if midway on cubic is also same point. If so, discard this | 
|---|
| 216 | double cubicMidT = (existingCubicT + cubicT) / 2; | 
|---|
| 217 | SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); | 
|---|
| 218 | if (cubicMidPt.approximatelyEqual(pt)) { | 
|---|
| 219 | return false; | 
|---|
| 220 | } | 
|---|
| 221 | } | 
|---|
| 222 | #if ONE_OFF_DEBUG | 
|---|
| 223 | SkDPoint cPt = fCubic.ptAtT(cubicT); | 
|---|
| 224 | SkDebugf( "%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, | 
|---|
| 225 | cPt.fX, cPt.fY); | 
|---|
| 226 | #endif | 
|---|
| 227 | return true; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { | 
|---|
| 231 | double A, B, C, D; | 
|---|
| 232 | SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); | 
|---|
| 233 | D -= axisIntercept; | 
|---|
| 234 | int count = SkDCubic::RootsValidT(A, B, C, D, roots); | 
|---|
| 235 | for (int index = 0; index < count; ++index) { | 
|---|
| 236 | SkDPoint calcPt = c.ptAtT(roots[index]); | 
|---|
| 237 | if (!approximately_equal(calcPt.fX, axisIntercept)) { | 
|---|
| 238 | double extremeTs[6]; | 
|---|
| 239 | int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); | 
|---|
| 240 | count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots); | 
|---|
| 241 | break; | 
|---|
| 242 | } | 
|---|
| 243 | } | 
|---|
| 244 | return count; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { | 
|---|
| 248 | addExactVerticalEndPoints(top, bottom, axisIntercept); | 
|---|
| 249 | if (fAllowNear) { | 
|---|
| 250 | addNearVerticalEndPoints(top, bottom, axisIntercept); | 
|---|
| 251 | } | 
|---|
| 252 | double roots[3]; | 
|---|
| 253 | int count = VerticalIntersect(fCubic, axisIntercept, roots); | 
|---|
| 254 | for (int index = 0; index < count; ++index) { | 
|---|
| 255 | double cubicT = roots[index]; | 
|---|
| 256 | SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY }; | 
|---|
| 257 | double lineT = (pt.fY - top) / (bottom - top); | 
|---|
| 258 | if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { | 
|---|
| 259 | fIntersections->insert(cubicT, lineT, pt); | 
|---|
| 260 | } | 
|---|
| 261 | } | 
|---|
| 262 | if (flipped) { | 
|---|
| 263 | fIntersections->flip(); | 
|---|
| 264 | } | 
|---|
| 265 | checkCoincident(); | 
|---|
| 266 | return fIntersections->used(); | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | protected: | 
|---|
| 270 |  | 
|---|
| 271 | void addExactEndPoints() { | 
|---|
| 272 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 273 | double lineT = fLine.exactPoint(fCubic[cIndex]); | 
|---|
| 274 | if (lineT < 0) { | 
|---|
| 275 | continue; | 
|---|
| 276 | } | 
|---|
| 277 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 278 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 279 | } | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | /* Note that this does not look for endpoints of the line that are near the cubic. | 
|---|
| 283 | These points are found later when check ends looks for missing points */ | 
|---|
| 284 | void addNearEndPoints() { | 
|---|
| 285 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 286 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 287 | if (fIntersections->hasT(cubicT)) { | 
|---|
| 288 | continue; | 
|---|
| 289 | } | 
|---|
| 290 | double lineT = fLine.nearPoint(fCubic[cIndex], nullptr); | 
|---|
| 291 | if (lineT < 0) { | 
|---|
| 292 | continue; | 
|---|
| 293 | } | 
|---|
| 294 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 295 | } | 
|---|
| 296 | this->addLineNearEndPoints(); | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | void addLineNearEndPoints() { | 
|---|
| 300 | for (int lIndex = 0; lIndex < 2; ++lIndex) { | 
|---|
| 301 | double lineT = (double) lIndex; | 
|---|
| 302 | if (fIntersections->hasOppT(lineT)) { | 
|---|
| 303 | continue; | 
|---|
| 304 | } | 
|---|
| 305 | double cubicT = ((SkDCurve*) &fCubic)->nearPoint(SkPath::kCubic_Verb, | 
|---|
| 306 | fLine[lIndex], fLine[!lIndex]); | 
|---|
| 307 | if (cubicT < 0) { | 
|---|
| 308 | continue; | 
|---|
| 309 | } | 
|---|
| 310 | fIntersections->insert(cubicT, lineT, fLine[lIndex]); | 
|---|
| 311 | } | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | void addExactHorizontalEndPoints(double left, double right, double y) { | 
|---|
| 315 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 316 | double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); | 
|---|
| 317 | if (lineT < 0) { | 
|---|
| 318 | continue; | 
|---|
| 319 | } | 
|---|
| 320 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 321 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 322 | } | 
|---|
| 323 | } | 
|---|
| 324 |  | 
|---|
| 325 | void addNearHorizontalEndPoints(double left, double right, double y) { | 
|---|
| 326 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 327 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 328 | if (fIntersections->hasT(cubicT)) { | 
|---|
| 329 | continue; | 
|---|
| 330 | } | 
|---|
| 331 | double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); | 
|---|
| 332 | if (lineT < 0) { | 
|---|
| 333 | continue; | 
|---|
| 334 | } | 
|---|
| 335 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 336 | } | 
|---|
| 337 | this->addLineNearEndPoints(); | 
|---|
| 338 | } | 
|---|
| 339 |  | 
|---|
| 340 | void addExactVerticalEndPoints(double top, double bottom, double x) { | 
|---|
| 341 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 342 | double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); | 
|---|
| 343 | if (lineT < 0) { | 
|---|
| 344 | continue; | 
|---|
| 345 | } | 
|---|
| 346 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 347 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 348 | } | 
|---|
| 349 | } | 
|---|
| 350 |  | 
|---|
| 351 | void addNearVerticalEndPoints(double top, double bottom, double x) { | 
|---|
| 352 | for (int cIndex = 0; cIndex < 4; cIndex += 3) { | 
|---|
| 353 | double cubicT = (double) (cIndex >> 1); | 
|---|
| 354 | if (fIntersections->hasT(cubicT)) { | 
|---|
| 355 | continue; | 
|---|
| 356 | } | 
|---|
| 357 | double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); | 
|---|
| 358 | if (lineT < 0) { | 
|---|
| 359 | continue; | 
|---|
| 360 | } | 
|---|
| 361 | fIntersections->insert(cubicT, lineT, fCubic[cIndex]); | 
|---|
| 362 | } | 
|---|
| 363 | this->addLineNearEndPoints(); | 
|---|
| 364 | } | 
|---|
| 365 |  | 
|---|
| 366 | double findLineT(double t) { | 
|---|
| 367 | SkDPoint xy = fCubic.ptAtT(t); | 
|---|
| 368 | double dx = fLine[1].fX - fLine[0].fX; | 
|---|
| 369 | double dy = fLine[1].fY - fLine[0].fY; | 
|---|
| 370 | if (fabs(dx) > fabs(dy)) { | 
|---|
| 371 | return (xy.fX - fLine[0].fX) / dx; | 
|---|
| 372 | } | 
|---|
| 373 | return (xy.fY - fLine[0].fY) / dy; | 
|---|
| 374 | } | 
|---|
| 375 |  | 
|---|
| 376 | bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { | 
|---|
| 377 | if (!approximately_one_or_less(*lineT)) { | 
|---|
| 378 | return false; | 
|---|
| 379 | } | 
|---|
| 380 | if (!approximately_zero_or_more(*lineT)) { | 
|---|
| 381 | return false; | 
|---|
| 382 | } | 
|---|
| 383 | double cT = *cubicT = SkPinT(*cubicT); | 
|---|
| 384 | double lT = *lineT = SkPinT(*lineT); | 
|---|
| 385 | SkDPoint lPt = fLine.ptAtT(lT); | 
|---|
| 386 | SkDPoint cPt = fCubic.ptAtT(cT); | 
|---|
| 387 | if (!lPt.roughlyEqual(cPt)) { | 
|---|
| 388 | return false; | 
|---|
| 389 | } | 
|---|
| 390 | // FIXME: if points are roughly equal but not approximately equal, need to do | 
|---|
| 391 | // a binary search like quad/quad intersection to find more precise t values | 
|---|
| 392 | if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { | 
|---|
| 393 | *pt = lPt; | 
|---|
| 394 | } else if (ptSet == kPointUninitialized) { | 
|---|
| 395 | *pt = cPt; | 
|---|
| 396 | } | 
|---|
| 397 | SkPoint gridPt = pt->asSkPoint(); | 
|---|
| 398 | if (gridPt == fLine[0].asSkPoint()) { | 
|---|
| 399 | *lineT = 0; | 
|---|
| 400 | } else if (gridPt == fLine[1].asSkPoint()) { | 
|---|
| 401 | *lineT = 1; | 
|---|
| 402 | } | 
|---|
| 403 | if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { | 
|---|
| 404 | *cubicT = 0; | 
|---|
| 405 | } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { | 
|---|
| 406 | *cubicT = 1; | 
|---|
| 407 | } | 
|---|
| 408 | return true; | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | private: | 
|---|
| 412 | const SkDCubic& fCubic; | 
|---|
| 413 | const SkDLine& fLine; | 
|---|
| 414 | SkIntersections* fIntersections; | 
|---|
| 415 | bool fAllowNear; | 
|---|
| 416 | }; | 
|---|
| 417 |  | 
|---|
| 418 | int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, | 
|---|
| 419 | bool flipped) { | 
|---|
| 420 | SkDLine line = {{{ left, y }, { right, y }}}; | 
|---|
| 421 | LineCubicIntersections c(cubic, line, this); | 
|---|
| 422 | return c.horizontalIntersect(y, left, right, flipped); | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, | 
|---|
| 426 | bool flipped) { | 
|---|
| 427 | SkDLine line = {{{ x, top }, { x, bottom }}}; | 
|---|
| 428 | LineCubicIntersections c(cubic, line, this); | 
|---|
| 429 | return c.verticalIntersect(x, top, bottom, flipped); | 
|---|
| 430 | } | 
|---|
| 431 |  | 
|---|
| 432 | int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { | 
|---|
| 433 | LineCubicIntersections c(cubic, line, this); | 
|---|
| 434 | c.allowNear(fAllowNear); | 
|---|
| 435 | return c.intersect(); | 
|---|
| 436 | } | 
|---|
| 437 |  | 
|---|
| 438 | int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { | 
|---|
| 439 | LineCubicIntersections c(cubic, line, this); | 
|---|
| 440 | fUsed = c.intersectRay(fT[0]); | 
|---|
| 441 | for (int index = 0; index < fUsed; ++index) { | 
|---|
| 442 | fPt[index] = cubic.ptAtT(fT[0][index]); | 
|---|
| 443 | } | 
|---|
| 444 | return fUsed; | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 | // SkDCubic accessors to Intersection utilities | 
|---|
| 448 |  | 
|---|
| 449 | int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const { | 
|---|
| 450 | return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots); | 
|---|
| 451 | } | 
|---|
| 452 |  | 
|---|
| 453 | int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const { | 
|---|
| 454 | return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots); | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|