1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #ifndef SkPathOpsTypes_DEFINED |
8 | #define SkPathOpsTypes_DEFINED |
9 | |
10 | #include <float.h> // for FLT_EPSILON |
11 | |
12 | #include "include/core/SkPath.h" |
13 | #include "include/core/SkScalar.h" |
14 | #include "include/pathops/SkPathOps.h" |
15 | #include "include/private/SkFloatingPoint.h" |
16 | #include "include/private/SkSafe_math.h" |
17 | #include "src/pathops/SkPathOpsDebug.h" |
18 | |
19 | enum SkPathOpsMask { |
20 | kWinding_PathOpsMask = -1, |
21 | kNo_PathOpsMask = 0, |
22 | kEvenOdd_PathOpsMask = 1 |
23 | }; |
24 | |
25 | class SkArenaAlloc; |
26 | class SkOpCoincidence; |
27 | class SkOpContour; |
28 | class SkOpContourHead; |
29 | class SkIntersections; |
30 | class SkIntersectionHelper; |
31 | |
32 | enum class SkOpPhase : char { |
33 | kNoChange, |
34 | kIntersecting, |
35 | kWalking, |
36 | kFixWinding, |
37 | }; |
38 | |
39 | class SkOpGlobalState { |
40 | public: |
41 | SkOpGlobalState(SkOpContourHead* head, |
42 | SkArenaAlloc* allocator SkDEBUGPARAMS(bool debugSkipAssert) |
43 | SkDEBUGPARAMS(const char* testName)); |
44 | |
45 | enum { |
46 | kMaxWindingTries = 10 |
47 | }; |
48 | |
49 | bool allocatedOpSpan() const { |
50 | return fAllocatedOpSpan; |
51 | } |
52 | |
53 | SkArenaAlloc* allocator() { |
54 | return fAllocator; |
55 | } |
56 | |
57 | void bumpNested() { |
58 | ++fNested; |
59 | } |
60 | |
61 | void clearNested() { |
62 | fNested = 0; |
63 | } |
64 | |
65 | SkOpCoincidence* coincidence() { |
66 | return fCoincidence; |
67 | } |
68 | |
69 | SkOpContourHead* contourHead() { |
70 | return fContourHead; |
71 | } |
72 | |
73 | #ifdef SK_DEBUG |
74 | const class SkOpAngle* debugAngle(int id) const; |
75 | const SkOpCoincidence* debugCoincidence() const; |
76 | SkOpContour* debugContour(int id) const; |
77 | const class SkOpPtT* debugPtT(int id) const; |
78 | #endif |
79 | |
80 | static bool DebugRunFail(); |
81 | |
82 | #ifdef SK_DEBUG |
83 | const class SkOpSegment* debugSegment(int id) const; |
84 | bool debugSkipAssert() const { return fDebugSkipAssert; } |
85 | const class SkOpSpanBase* debugSpan(int id) const; |
86 | const char* debugTestName() const { return fDebugTestName; } |
87 | #endif |
88 | |
89 | #if DEBUG_T_SECT_LOOP_COUNT |
90 | void debugAddLoopCount(SkIntersections* , const SkIntersectionHelper& , |
91 | const SkIntersectionHelper& ); |
92 | void debugDoYourWorst(SkOpGlobalState* ); |
93 | void debugLoopReport(); |
94 | void debugResetLoopCounts(); |
95 | #endif |
96 | |
97 | #if DEBUG_COINCIDENCE |
98 | void debugSetCheckHealth(bool check) { fDebugCheckHealth = check; } |
99 | bool debugCheckHealth() const { return fDebugCheckHealth; } |
100 | #endif |
101 | |
102 | #if DEBUG_VALIDATE || DEBUG_COIN |
103 | void debugSetPhase(const char* funcName DEBUG_COIN_DECLARE_PARAMS()) const; |
104 | #endif |
105 | |
106 | #if DEBUG_COIN |
107 | void debugAddToCoinChangedDict(); |
108 | void debugAddToGlobalCoinDicts(); |
109 | SkPathOpsDebug::CoinDict* debugCoinChangedDict() { return &fCoinChangedDict; } |
110 | const SkPathOpsDebug::CoinDictEntry& debugCoinDictEntry() const { return fCoinDictEntry; } |
111 | |
112 | static void DumpCoinDict(); |
113 | #endif |
114 | |
115 | |
116 | int nested() const { |
117 | return fNested; |
118 | } |
119 | |
120 | #ifdef SK_DEBUG |
121 | int nextAngleID() { |
122 | return ++fAngleID; |
123 | } |
124 | |
125 | int nextCoinID() { |
126 | return ++fCoinID; |
127 | } |
128 | |
129 | int nextContourID() { |
130 | return ++fContourID; |
131 | } |
132 | |
133 | int nextPtTID() { |
134 | return ++fPtTID; |
135 | } |
136 | |
137 | int nextSegmentID() { |
138 | return ++fSegmentID; |
139 | } |
140 | |
141 | int nextSpanID() { |
142 | return ++fSpanID; |
143 | } |
144 | #endif |
145 | |
146 | SkOpPhase phase() const { |
147 | return fPhase; |
148 | } |
149 | |
150 | void resetAllocatedOpSpan() { |
151 | fAllocatedOpSpan = false; |
152 | } |
153 | |
154 | void setAllocatedOpSpan() { |
155 | fAllocatedOpSpan = true; |
156 | } |
157 | |
158 | void setCoincidence(SkOpCoincidence* coincidence) { |
159 | fCoincidence = coincidence; |
160 | } |
161 | |
162 | void setContourHead(SkOpContourHead* contourHead) { |
163 | fContourHead = contourHead; |
164 | } |
165 | |
166 | void setPhase(SkOpPhase phase) { |
167 | if (SkOpPhase::kNoChange == phase) { |
168 | return; |
169 | } |
170 | SkASSERT(fPhase != phase); |
171 | fPhase = phase; |
172 | } |
173 | |
174 | // called in very rare cases where angles are sorted incorrectly -- signfies op will fail |
175 | void setWindingFailed() { |
176 | fWindingFailed = true; |
177 | } |
178 | |
179 | bool windingFailed() const { |
180 | return fWindingFailed; |
181 | } |
182 | |
183 | private: |
184 | SkArenaAlloc* fAllocator; |
185 | SkOpCoincidence* fCoincidence; |
186 | SkOpContourHead* fContourHead; |
187 | int fNested; |
188 | bool fAllocatedOpSpan; |
189 | bool fWindingFailed; |
190 | SkOpPhase fPhase; |
191 | #ifdef SK_DEBUG |
192 | const char* fDebugTestName; |
193 | void* fDebugReporter; |
194 | int fAngleID; |
195 | int fCoinID; |
196 | int fContourID; |
197 | int fPtTID; |
198 | int fSegmentID; |
199 | int fSpanID; |
200 | bool fDebugSkipAssert; |
201 | #endif |
202 | #if DEBUG_T_SECT_LOOP_COUNT |
203 | int fDebugLoopCount[3]; |
204 | SkPath::Verb fDebugWorstVerb[6]; |
205 | SkPoint fDebugWorstPts[24]; |
206 | float fDebugWorstWeight[6]; |
207 | #endif |
208 | #if DEBUG_COIN |
209 | SkPathOpsDebug::CoinDict fCoinChangedDict; |
210 | SkPathOpsDebug::CoinDict fCoinVisitedDict; |
211 | SkPathOpsDebug::CoinDictEntry fCoinDictEntry; |
212 | const char* fPreviousFuncName; |
213 | #endif |
214 | #if DEBUG_COINCIDENCE |
215 | bool fDebugCheckHealth; |
216 | #endif |
217 | }; |
218 | |
219 | #ifdef SK_DEBUG |
220 | #if DEBUG_COINCIDENCE |
221 | #define SkOPASSERT(cond) SkASSERT((this->globalState() && \ |
222 | (this->globalState()->debugCheckHealth() || \ |
223 | this->globalState()->debugSkipAssert())) || (cond)) |
224 | #else |
225 | #define SkOPASSERT(cond) SkASSERT((this->globalState() && \ |
226 | this->globalState()->debugSkipAssert()) || (cond)) |
227 | #endif |
228 | #define SkOPOBJASSERT(obj, cond) SkASSERT((obj->globalState() && \ |
229 | obj->globalState()->debugSkipAssert()) || (cond)) |
230 | #else |
231 | #define SkOPASSERT(cond) |
232 | #define SkOPOBJASSERT(obj, cond) |
233 | #endif |
234 | |
235 | // Use Almost Equal when comparing coordinates. Use epsilon to compare T values. |
236 | bool AlmostEqualUlps(float a, float b); |
237 | inline bool AlmostEqualUlps(double a, double b) { |
238 | return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
239 | } |
240 | |
241 | bool AlmostEqualUlpsNoNormalCheck(float a, float b); |
242 | inline bool AlmostEqualUlpsNoNormalCheck(double a, double b) { |
243 | return AlmostEqualUlpsNoNormalCheck(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
244 | } |
245 | |
246 | bool AlmostEqualUlps_Pin(float a, float b); |
247 | inline bool AlmostEqualUlps_Pin(double a, double b) { |
248 | return AlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
249 | } |
250 | |
251 | // Use Almost Dequal when comparing should not special case denormalized values. |
252 | bool AlmostDequalUlps(float a, float b); |
253 | bool AlmostDequalUlps(double a, double b); |
254 | |
255 | bool NotAlmostEqualUlps(float a, float b); |
256 | inline bool NotAlmostEqualUlps(double a, double b) { |
257 | return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
258 | } |
259 | |
260 | bool NotAlmostEqualUlps_Pin(float a, float b); |
261 | inline bool NotAlmostEqualUlps_Pin(double a, double b) { |
262 | return NotAlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
263 | } |
264 | |
265 | bool NotAlmostDequalUlps(float a, float b); |
266 | inline bool NotAlmostDequalUlps(double a, double b) { |
267 | return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
268 | } |
269 | |
270 | // Use Almost Bequal when comparing coordinates in conjunction with between. |
271 | bool AlmostBequalUlps(float a, float b); |
272 | inline bool AlmostBequalUlps(double a, double b) { |
273 | return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
274 | } |
275 | |
276 | bool AlmostPequalUlps(float a, float b); |
277 | inline bool AlmostPequalUlps(double a, double b) { |
278 | return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
279 | } |
280 | |
281 | bool RoughlyEqualUlps(float a, float b); |
282 | inline bool RoughlyEqualUlps(double a, double b) { |
283 | return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
284 | } |
285 | |
286 | bool AlmostLessUlps(float a, float b); |
287 | inline bool AlmostLessUlps(double a, double b) { |
288 | return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
289 | } |
290 | |
291 | bool AlmostLessOrEqualUlps(float a, float b); |
292 | inline bool AlmostLessOrEqualUlps(double a, double b) { |
293 | return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
294 | } |
295 | |
296 | bool AlmostBetweenUlps(float a, float b, float c); |
297 | inline bool AlmostBetweenUlps(double a, double b, double c) { |
298 | return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c)); |
299 | } |
300 | |
301 | int UlpsDistance(float a, float b); |
302 | inline int UlpsDistance(double a, double b) { |
303 | return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
304 | } |
305 | |
306 | // FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23) |
307 | // DBL_EPSILON == 2.22045e-16 |
308 | const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON; |
309 | const double FLT_EPSILON_HALF = FLT_EPSILON / 2; |
310 | const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2; |
311 | const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16; |
312 | const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON; |
313 | // Use a compile-time constant for FLT_EPSILON_SQRT to avoid initializers. |
314 | // A 17 digit constant guarantees exact results. |
315 | const double FLT_EPSILON_SQRT = 0.00034526697709225118; // sqrt(FLT_EPSILON); |
316 | const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON; |
317 | const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error |
318 | const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16; |
319 | const double ROUGH_EPSILON = FLT_EPSILON * 64; |
320 | const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256; |
321 | const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048; |
322 | const double BUMP_EPSILON = FLT_EPSILON * 4096; |
323 | |
324 | const SkScalar INVERSE_NUMBER_RANGE = FLT_EPSILON_ORDERABLE_ERR; |
325 | |
326 | inline bool zero_or_one(double x) { |
327 | return x == 0 || x == 1; |
328 | } |
329 | |
330 | inline bool approximately_zero(double x) { |
331 | return fabs(x) < FLT_EPSILON; |
332 | } |
333 | |
334 | inline bool precisely_zero(double x) { |
335 | return fabs(x) < DBL_EPSILON_ERR; |
336 | } |
337 | |
338 | inline bool precisely_subdivide_zero(double x) { |
339 | return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR; |
340 | } |
341 | |
342 | inline bool approximately_zero(float x) { |
343 | return fabs(x) < FLT_EPSILON; |
344 | } |
345 | |
346 | inline bool approximately_zero_cubed(double x) { |
347 | return fabs(x) < FLT_EPSILON_CUBED; |
348 | } |
349 | |
350 | inline bool approximately_zero_half(double x) { |
351 | return fabs(x) < FLT_EPSILON_HALF; |
352 | } |
353 | |
354 | inline bool approximately_zero_double(double x) { |
355 | return fabs(x) < FLT_EPSILON_DOUBLE; |
356 | } |
357 | |
358 | inline bool approximately_zero_orderable(double x) { |
359 | return fabs(x) < FLT_EPSILON_ORDERABLE_ERR; |
360 | } |
361 | |
362 | inline bool approximately_zero_squared(double x) { |
363 | return fabs(x) < FLT_EPSILON_SQUARED; |
364 | } |
365 | |
366 | inline bool approximately_zero_sqrt(double x) { |
367 | return fabs(x) < FLT_EPSILON_SQRT; |
368 | } |
369 | |
370 | inline bool roughly_zero(double x) { |
371 | return fabs(x) < ROUGH_EPSILON; |
372 | } |
373 | |
374 | inline bool approximately_zero_inverse(double x) { |
375 | return fabs(x) > FLT_EPSILON_INVERSE; |
376 | } |
377 | |
378 | inline bool approximately_zero_when_compared_to(double x, double y) { |
379 | return x == 0 || fabs(x) < fabs(y * FLT_EPSILON); |
380 | } |
381 | |
382 | inline bool precisely_zero_when_compared_to(double x, double y) { |
383 | return x == 0 || fabs(x) < fabs(y * DBL_EPSILON); |
384 | } |
385 | |
386 | inline bool roughly_zero_when_compared_to(double x, double y) { |
387 | return x == 0 || fabs(x) < fabs(y * ROUGH_EPSILON); |
388 | } |
389 | |
390 | // Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use |
391 | // AlmostEqualUlps instead. |
392 | inline bool approximately_equal(double x, double y) { |
393 | return approximately_zero(x - y); |
394 | } |
395 | |
396 | inline bool precisely_equal(double x, double y) { |
397 | return precisely_zero(x - y); |
398 | } |
399 | |
400 | inline bool precisely_subdivide_equal(double x, double y) { |
401 | return precisely_subdivide_zero(x - y); |
402 | } |
403 | |
404 | inline bool approximately_equal_half(double x, double y) { |
405 | return approximately_zero_half(x - y); |
406 | } |
407 | |
408 | inline bool approximately_equal_double(double x, double y) { |
409 | return approximately_zero_double(x - y); |
410 | } |
411 | |
412 | inline bool approximately_equal_orderable(double x, double y) { |
413 | return approximately_zero_orderable(x - y); |
414 | } |
415 | |
416 | inline bool approximately_equal_squared(double x, double y) { |
417 | return approximately_equal(x, y); |
418 | } |
419 | |
420 | inline bool approximately_greater(double x, double y) { |
421 | return x - FLT_EPSILON >= y; |
422 | } |
423 | |
424 | inline bool approximately_greater_double(double x, double y) { |
425 | return x - FLT_EPSILON_DOUBLE >= y; |
426 | } |
427 | |
428 | inline bool approximately_greater_orderable(double x, double y) { |
429 | return x - FLT_EPSILON_ORDERABLE_ERR >= y; |
430 | } |
431 | |
432 | inline bool approximately_greater_or_equal(double x, double y) { |
433 | return x + FLT_EPSILON > y; |
434 | } |
435 | |
436 | inline bool approximately_greater_or_equal_double(double x, double y) { |
437 | return x + FLT_EPSILON_DOUBLE > y; |
438 | } |
439 | |
440 | inline bool approximately_greater_or_equal_orderable(double x, double y) { |
441 | return x + FLT_EPSILON_ORDERABLE_ERR > y; |
442 | } |
443 | |
444 | inline bool approximately_lesser(double x, double y) { |
445 | return x + FLT_EPSILON <= y; |
446 | } |
447 | |
448 | inline bool approximately_lesser_double(double x, double y) { |
449 | return x + FLT_EPSILON_DOUBLE <= y; |
450 | } |
451 | |
452 | inline bool approximately_lesser_orderable(double x, double y) { |
453 | return x + FLT_EPSILON_ORDERABLE_ERR <= y; |
454 | } |
455 | |
456 | inline bool approximately_lesser_or_equal(double x, double y) { |
457 | return x - FLT_EPSILON < y; |
458 | } |
459 | |
460 | inline bool approximately_lesser_or_equal_double(double x, double y) { |
461 | return x - FLT_EPSILON_DOUBLE < y; |
462 | } |
463 | |
464 | inline bool approximately_lesser_or_equal_orderable(double x, double y) { |
465 | return x - FLT_EPSILON_ORDERABLE_ERR < y; |
466 | } |
467 | |
468 | inline bool approximately_greater_than_one(double x) { |
469 | return x > 1 - FLT_EPSILON; |
470 | } |
471 | |
472 | inline bool precisely_greater_than_one(double x) { |
473 | return x > 1 - DBL_EPSILON_ERR; |
474 | } |
475 | |
476 | inline bool approximately_less_than_zero(double x) { |
477 | return x < FLT_EPSILON; |
478 | } |
479 | |
480 | inline bool precisely_less_than_zero(double x) { |
481 | return x < DBL_EPSILON_ERR; |
482 | } |
483 | |
484 | inline bool approximately_negative(double x) { |
485 | return x < FLT_EPSILON; |
486 | } |
487 | |
488 | inline bool approximately_negative_orderable(double x) { |
489 | return x < FLT_EPSILON_ORDERABLE_ERR; |
490 | } |
491 | |
492 | inline bool precisely_negative(double x) { |
493 | return x < DBL_EPSILON_ERR; |
494 | } |
495 | |
496 | inline bool approximately_one_or_less(double x) { |
497 | return x < 1 + FLT_EPSILON; |
498 | } |
499 | |
500 | inline bool approximately_one_or_less_double(double x) { |
501 | return x < 1 + FLT_EPSILON_DOUBLE; |
502 | } |
503 | |
504 | inline bool approximately_positive(double x) { |
505 | return x > -FLT_EPSILON; |
506 | } |
507 | |
508 | inline bool approximately_positive_squared(double x) { |
509 | return x > -(FLT_EPSILON_SQUARED); |
510 | } |
511 | |
512 | inline bool approximately_zero_or_more(double x) { |
513 | return x > -FLT_EPSILON; |
514 | } |
515 | |
516 | inline bool approximately_zero_or_more_double(double x) { |
517 | return x > -FLT_EPSILON_DOUBLE; |
518 | } |
519 | |
520 | inline bool approximately_between_orderable(double a, double b, double c) { |
521 | return a <= c |
522 | ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c) |
523 | : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b); |
524 | } |
525 | |
526 | inline bool approximately_between(double a, double b, double c) { |
527 | return a <= c ? approximately_negative(a - b) && approximately_negative(b - c) |
528 | : approximately_negative(b - a) && approximately_negative(c - b); |
529 | } |
530 | |
531 | inline bool precisely_between(double a, double b, double c) { |
532 | return a <= c ? precisely_negative(a - b) && precisely_negative(b - c) |
533 | : precisely_negative(b - a) && precisely_negative(c - b); |
534 | } |
535 | |
536 | // returns true if (a <= b <= c) || (a >= b >= c) |
537 | inline bool between(double a, double b, double c) { |
538 | SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0) |
539 | || (precisely_zero(a) && precisely_zero(b) && precisely_zero(c))); |
540 | return (a - b) * (c - b) <= 0; |
541 | } |
542 | |
543 | inline bool roughly_equal(double x, double y) { |
544 | return fabs(x - y) < ROUGH_EPSILON; |
545 | } |
546 | |
547 | inline bool roughly_negative(double x) { |
548 | return x < ROUGH_EPSILON; |
549 | } |
550 | |
551 | inline bool roughly_between(double a, double b, double c) { |
552 | return a <= c ? roughly_negative(a - b) && roughly_negative(b - c) |
553 | : roughly_negative(b - a) && roughly_negative(c - b); |
554 | } |
555 | |
556 | inline bool more_roughly_equal(double x, double y) { |
557 | return fabs(x - y) < MORE_ROUGH_EPSILON; |
558 | } |
559 | |
560 | struct SkDPoint; |
561 | struct SkDVector; |
562 | struct SkDLine; |
563 | struct SkDQuad; |
564 | struct SkDConic; |
565 | struct SkDCubic; |
566 | struct SkDRect; |
567 | |
568 | inline SkPath::Verb SkPathOpsPointsToVerb(int points) { |
569 | int verb = (1 << points) >> 1; |
570 | #ifdef SK_DEBUG |
571 | switch (points) { |
572 | case 0: SkASSERT(SkPath::kMove_Verb == verb); break; |
573 | case 1: SkASSERT(SkPath::kLine_Verb == verb); break; |
574 | case 2: SkASSERT(SkPath::kQuad_Verb == verb); break; |
575 | case 3: SkASSERT(SkPath::kCubic_Verb == verb); break; |
576 | default: SkDEBUGFAIL("should not be here" ); |
577 | } |
578 | #endif |
579 | return (SkPath::Verb)verb; |
580 | } |
581 | |
582 | inline int SkPathOpsVerbToPoints(SkPath::Verb verb) { |
583 | int points = (int) verb - (((int) verb + 1) >> 2); |
584 | #ifdef SK_DEBUG |
585 | switch (verb) { |
586 | case SkPath::kLine_Verb: SkASSERT(1 == points); break; |
587 | case SkPath::kQuad_Verb: SkASSERT(2 == points); break; |
588 | case SkPath::kConic_Verb: SkASSERT(2 == points); break; |
589 | case SkPath::kCubic_Verb: SkASSERT(3 == points); break; |
590 | default: SkDEBUGFAIL("should not get here" ); |
591 | } |
592 | #endif |
593 | return points; |
594 | } |
595 | |
596 | inline double SkDInterp(double A, double B, double t) { |
597 | return A + (B - A) * t; |
598 | } |
599 | |
600 | double SkDCubeRoot(double x); |
601 | |
602 | /* Returns -1 if negative, 0 if zero, 1 if positive |
603 | */ |
604 | inline int SkDSign(double x) { |
605 | return (x > 0) - (x < 0); |
606 | } |
607 | |
608 | /* Returns 0 if negative, 1 if zero, 2 if positive |
609 | */ |
610 | inline int SKDSide(double x) { |
611 | return (x > 0) + (x >= 0); |
612 | } |
613 | |
614 | /* Returns 1 if negative, 2 if zero, 4 if positive |
615 | */ |
616 | inline int SkDSideBit(double x) { |
617 | return 1 << SKDSide(x); |
618 | } |
619 | |
620 | inline double SkPinT(double t) { |
621 | return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t; |
622 | } |
623 | |
624 | #endif |
625 | |