1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #ifndef SkPathOpsPoint_DEFINED |
8 | #define SkPathOpsPoint_DEFINED |
9 | |
10 | #include "include/core/SkPoint.h" |
11 | #include "src/pathops/SkPathOpsTypes.h" |
12 | |
13 | inline bool AlmostEqualUlps(const SkPoint& pt1, const SkPoint& pt2) { |
14 | return AlmostEqualUlps(pt1.fX, pt2.fX) && AlmostEqualUlps(pt1.fY, pt2.fY); |
15 | } |
16 | |
17 | struct SkDVector { |
18 | double fX; |
19 | double fY; |
20 | |
21 | SkDVector& set(const SkVector& pt) { |
22 | fX = pt.fX; |
23 | fY = pt.fY; |
24 | return *this; |
25 | } |
26 | |
27 | // only used by testing |
28 | void operator+=(const SkDVector& v) { |
29 | fX += v.fX; |
30 | fY += v.fY; |
31 | } |
32 | |
33 | // only called by nearestT, which is currently only used by testing |
34 | void operator-=(const SkDVector& v) { |
35 | fX -= v.fX; |
36 | fY -= v.fY; |
37 | } |
38 | |
39 | // only used by testing |
40 | void operator/=(const double s) { |
41 | fX /= s; |
42 | fY /= s; |
43 | } |
44 | |
45 | // only used by testing |
46 | void operator*=(const double s) { |
47 | fX *= s; |
48 | fY *= s; |
49 | } |
50 | |
51 | SkVector asSkVector() const { |
52 | SkVector v = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)}; |
53 | return v; |
54 | } |
55 | |
56 | // only used by testing |
57 | double cross(const SkDVector& a) const { |
58 | return fX * a.fY - fY * a.fX; |
59 | } |
60 | |
61 | // similar to cross, this bastardization considers nearly coincident to be zero |
62 | // uses ulps epsilon == 16 |
63 | double crossCheck(const SkDVector& a) const { |
64 | double xy = fX * a.fY; |
65 | double yx = fY * a.fX; |
66 | return AlmostEqualUlps(xy, yx) ? 0 : xy - yx; |
67 | } |
68 | |
69 | // allow tinier numbers |
70 | double crossNoNormalCheck(const SkDVector& a) const { |
71 | double xy = fX * a.fY; |
72 | double yx = fY * a.fX; |
73 | return AlmostEqualUlpsNoNormalCheck(xy, yx) ? 0 : xy - yx; |
74 | } |
75 | |
76 | double dot(const SkDVector& a) const { |
77 | return fX * a.fX + fY * a.fY; |
78 | } |
79 | |
80 | double length() const { |
81 | return sqrt(lengthSquared()); |
82 | } |
83 | |
84 | double lengthSquared() const { |
85 | return fX * fX + fY * fY; |
86 | } |
87 | |
88 | SkDVector& normalize() { |
89 | double inverseLength = sk_ieee_double_divide(1, this->length()); |
90 | fX *= inverseLength; |
91 | fY *= inverseLength; |
92 | return *this; |
93 | } |
94 | |
95 | bool isFinite() const { |
96 | return std::isfinite(fX) && std::isfinite(fY); |
97 | } |
98 | }; |
99 | |
100 | struct SkDPoint { |
101 | double fX; |
102 | double fY; |
103 | |
104 | void set(const SkPoint& pt) { |
105 | fX = pt.fX; |
106 | fY = pt.fY; |
107 | } |
108 | |
109 | friend SkDVector operator-(const SkDPoint& a, const SkDPoint& b) { |
110 | return { a.fX - b.fX, a.fY - b.fY }; |
111 | } |
112 | |
113 | friend bool operator==(const SkDPoint& a, const SkDPoint& b) { |
114 | return a.fX == b.fX && a.fY == b.fY; |
115 | } |
116 | |
117 | friend bool operator!=(const SkDPoint& a, const SkDPoint& b) { |
118 | return a.fX != b.fX || a.fY != b.fY; |
119 | } |
120 | |
121 | void operator=(const SkPoint& pt) { |
122 | fX = pt.fX; |
123 | fY = pt.fY; |
124 | } |
125 | |
126 | // only used by testing |
127 | void operator+=(const SkDVector& v) { |
128 | fX += v.fX; |
129 | fY += v.fY; |
130 | } |
131 | |
132 | // only used by testing |
133 | void operator-=(const SkDVector& v) { |
134 | fX -= v.fX; |
135 | fY -= v.fY; |
136 | } |
137 | |
138 | // only used by testing |
139 | SkDPoint operator+(const SkDVector& v) { |
140 | SkDPoint result = *this; |
141 | result += v; |
142 | return result; |
143 | } |
144 | |
145 | // only used by testing |
146 | SkDPoint operator-(const SkDVector& v) { |
147 | SkDPoint result = *this; |
148 | result -= v; |
149 | return result; |
150 | } |
151 | |
152 | // note: this can not be implemented with |
153 | // return approximately_equal(a.fY, fY) && approximately_equal(a.fX, fX); |
154 | // because that will not take the magnitude of the values into account |
155 | bool approximatelyDEqual(const SkDPoint& a) const { |
156 | if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) { |
157 | return true; |
158 | } |
159 | if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) { |
160 | return false; |
161 | } |
162 | double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ? |
163 | double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY); |
164 | double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY); |
165 | largest = std::max(largest, -tiniest); |
166 | return AlmostDequalUlps(largest, largest + dist); // is the dist within ULPS tolerance? |
167 | } |
168 | |
169 | bool approximatelyDEqual(const SkPoint& a) const { |
170 | SkDPoint dA; |
171 | dA.set(a); |
172 | return approximatelyDEqual(dA); |
173 | } |
174 | |
175 | bool approximatelyEqual(const SkDPoint& a) const { |
176 | if (approximately_equal(fX, a.fX) && approximately_equal(fY, a.fY)) { |
177 | return true; |
178 | } |
179 | if (!RoughlyEqualUlps(fX, a.fX) || !RoughlyEqualUlps(fY, a.fY)) { |
180 | return false; |
181 | } |
182 | double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ? |
183 | double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY); |
184 | double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY); |
185 | largest = std::max(largest, -tiniest); |
186 | return AlmostPequalUlps(largest, largest + dist); // is the dist within ULPS tolerance? |
187 | } |
188 | |
189 | bool approximatelyEqual(const SkPoint& a) const { |
190 | SkDPoint dA; |
191 | dA.set(a); |
192 | return approximatelyEqual(dA); |
193 | } |
194 | |
195 | static bool ApproximatelyEqual(const SkPoint& a, const SkPoint& b) { |
196 | if (approximately_equal(a.fX, b.fX) && approximately_equal(a.fY, b.fY)) { |
197 | return true; |
198 | } |
199 | if (!RoughlyEqualUlps(a.fX, b.fX) || !RoughlyEqualUlps(a.fY, b.fY)) { |
200 | return false; |
201 | } |
202 | SkDPoint dA, dB; |
203 | dA.set(a); |
204 | dB.set(b); |
205 | double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ? |
206 | float tiniest = std::min(std::min(std::min(a.fX, b.fX), a.fY), b.fY); |
207 | float largest = std::max(std::max(std::max(a.fX, b.fX), a.fY), b.fY); |
208 | largest = std::max(largest, -tiniest); |
209 | return AlmostDequalUlps((double) largest, largest + dist); // is dist within ULPS tolerance? |
210 | } |
211 | |
212 | // only used by testing |
213 | bool approximatelyZero() const { |
214 | return approximately_zero(fX) && approximately_zero(fY); |
215 | } |
216 | |
217 | SkPoint asSkPoint() const { |
218 | SkPoint pt = {SkDoubleToScalar(fX), SkDoubleToScalar(fY)}; |
219 | return pt; |
220 | } |
221 | |
222 | double distance(const SkDPoint& a) const { |
223 | SkDVector temp = *this - a; |
224 | return temp.length(); |
225 | } |
226 | |
227 | double distanceSquared(const SkDPoint& a) const { |
228 | SkDVector temp = *this - a; |
229 | return temp.lengthSquared(); |
230 | } |
231 | |
232 | static SkDPoint Mid(const SkDPoint& a, const SkDPoint& b) { |
233 | SkDPoint result; |
234 | result.fX = (a.fX + b.fX) / 2; |
235 | result.fY = (a.fY + b.fY) / 2; |
236 | return result; |
237 | } |
238 | |
239 | bool roughlyEqual(const SkDPoint& a) const { |
240 | if (roughly_equal(fX, a.fX) && roughly_equal(fY, a.fY)) { |
241 | return true; |
242 | } |
243 | double dist = distance(a); // OPTIMIZATION: can we compare against distSq instead ? |
244 | double tiniest = std::min(std::min(std::min(fX, a.fX), fY), a.fY); |
245 | double largest = std::max(std::max(std::max(fX, a.fX), fY), a.fY); |
246 | largest = std::max(largest, -tiniest); |
247 | return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance? |
248 | } |
249 | |
250 | static bool RoughlyEqual(const SkPoint& a, const SkPoint& b) { |
251 | if (!RoughlyEqualUlps(a.fX, b.fX) && !RoughlyEqualUlps(a.fY, b.fY)) { |
252 | return false; |
253 | } |
254 | SkDPoint dA, dB; |
255 | dA.set(a); |
256 | dB.set(b); |
257 | double dist = dA.distance(dB); // OPTIMIZATION: can we compare against distSq instead ? |
258 | float tiniest = std::min(std::min(std::min(a.fX, b.fX), a.fY), b.fY); |
259 | float largest = std::max(std::max(std::max(a.fX, b.fX), a.fY), b.fY); |
260 | largest = std::max(largest, -tiniest); |
261 | return RoughlyEqualUlps((double) largest, largest + dist); // is dist within ULPS tolerance? |
262 | } |
263 | |
264 | // very light weight check, should only be used for inequality check |
265 | static bool WayRoughlyEqual(const SkPoint& a, const SkPoint& b) { |
266 | float largestNumber = std::max(SkTAbs(a.fX), std::max(SkTAbs(a.fY), |
267 | std::max(SkTAbs(b.fX), SkTAbs(b.fY)))); |
268 | SkVector diffs = a - b; |
269 | float largestDiff = std::max(diffs.fX, diffs.fY); |
270 | return roughly_zero_when_compared_to(largestDiff, largestNumber); |
271 | } |
272 | |
273 | // utilities callable by the user from the debugger when the implementation code is linked in |
274 | void dump() const; |
275 | static void Dump(const SkPoint& pt); |
276 | static void DumpHex(const SkPoint& pt); |
277 | }; |
278 | |
279 | #endif |
280 | |