| 1 | /* | 
|---|
| 2 | * Copyright 2012 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 | #include "src/pathops/SkPathOpsCubic.h" | 
|---|
| 8 |  | 
|---|
| 9 | static bool rotate(const SkDCubic& cubic, int zero, int index, SkDCubic& rotPath) { | 
|---|
| 10 | double dy = cubic[index].fY - cubic[zero].fY; | 
|---|
| 11 | double dx = cubic[index].fX - cubic[zero].fX; | 
|---|
| 12 | if (approximately_zero(dy)) { | 
|---|
| 13 | if (approximately_zero(dx)) { | 
|---|
| 14 | return false; | 
|---|
| 15 | } | 
|---|
| 16 | rotPath = cubic; | 
|---|
| 17 | if (dy) { | 
|---|
| 18 | rotPath[index].fY = cubic[zero].fY; | 
|---|
| 19 | int mask = other_two(index, zero); | 
|---|
| 20 | int side1 = index ^ mask; | 
|---|
| 21 | int side2 = zero ^ mask; | 
|---|
| 22 | if (approximately_equal(cubic[side1].fY, cubic[zero].fY)) { | 
|---|
| 23 | rotPath[side1].fY = cubic[zero].fY; | 
|---|
| 24 | } | 
|---|
| 25 | if (approximately_equal(cubic[side2].fY, cubic[zero].fY)) { | 
|---|
| 26 | rotPath[side2].fY = cubic[zero].fY; | 
|---|
| 27 | } | 
|---|
| 28 | } | 
|---|
| 29 | return true; | 
|---|
| 30 | } | 
|---|
| 31 | for (int index = 0; index < 4; ++index) { | 
|---|
| 32 | rotPath[index].fX = cubic[index].fX * dx + cubic[index].fY * dy; | 
|---|
| 33 | rotPath[index].fY = cubic[index].fY * dx - cubic[index].fX * dy; | 
|---|
| 34 | } | 
|---|
| 35 | return true; | 
|---|
| 36 | } | 
|---|
| 37 |  | 
|---|
| 38 |  | 
|---|
| 39 | // Returns 0 if negative, 1 if zero, 2 if positive | 
|---|
| 40 | static int side(double x) { | 
|---|
| 41 | return (x > 0) + (x >= 0); | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | /* Given a cubic, find the convex hull described by the end and control points. | 
|---|
| 45 | The hull may have 3 or 4 points. Cubics that degenerate into a point or line | 
|---|
| 46 | are not considered. | 
|---|
| 47 |  | 
|---|
| 48 | The hull is computed by assuming that three points, if unique and non-linear, | 
|---|
| 49 | form a triangle. The fourth point may replace one of the first three, may be | 
|---|
| 50 | discarded if in the triangle or on an edge, or may be inserted between any of | 
|---|
| 51 | the three to form a convex quadralateral. | 
|---|
| 52 |  | 
|---|
| 53 | The indices returned in order describe the convex hull. | 
|---|
| 54 | */ | 
|---|
| 55 | int SkDCubic::convexHull(char order[4]) const { | 
|---|
| 56 | size_t index; | 
|---|
| 57 | // find top point | 
|---|
| 58 | size_t yMin = 0; | 
|---|
| 59 | for (index = 1; index < 4; ++index) { | 
|---|
| 60 | if (fPts[yMin].fY > fPts[index].fY || (fPts[yMin].fY == fPts[index].fY | 
|---|
| 61 | && fPts[yMin].fX > fPts[index].fX)) { | 
|---|
| 62 | yMin = index; | 
|---|
| 63 | } | 
|---|
| 64 | } | 
|---|
| 65 | order[0] = yMin; | 
|---|
| 66 | int midX = -1; | 
|---|
| 67 | int backupYMin = -1; | 
|---|
| 68 | for (int pass = 0; pass < 2; ++pass) { | 
|---|
| 69 | for (index = 0; index < 4; ++index) { | 
|---|
| 70 | if (index == yMin) { | 
|---|
| 71 | continue; | 
|---|
| 72 | } | 
|---|
| 73 | // rotate line from (yMin, index) to axis | 
|---|
| 74 | // see if remaining two points are both above or below | 
|---|
| 75 | // use this to find mid | 
|---|
| 76 | int mask = other_two(yMin, index); | 
|---|
| 77 | int side1 = yMin ^ mask; | 
|---|
| 78 | int side2 = index ^ mask; | 
|---|
| 79 | SkDCubic rotPath; | 
|---|
| 80 | if (!rotate(*this, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[idx] | 
|---|
| 81 | order[1] = side1; | 
|---|
| 82 | order[2] = side2; | 
|---|
| 83 | return 3; | 
|---|
| 84 | } | 
|---|
| 85 | int sides = side(rotPath[side1].fY - rotPath[yMin].fY); | 
|---|
| 86 | sides ^= side(rotPath[side2].fY - rotPath[yMin].fY); | 
|---|
| 87 | if (sides == 2) { // '2' means one remaining point <0, one >0 | 
|---|
| 88 | if (midX >= 0) { | 
|---|
| 89 | // one of the control points is equal to an end point | 
|---|
| 90 | order[0] = 0; | 
|---|
| 91 | order[1] = 3; | 
|---|
| 92 | if (fPts[1] == fPts[0] || fPts[1] == fPts[3]) { | 
|---|
| 93 | order[2] = 2; | 
|---|
| 94 | return 3; | 
|---|
| 95 | } | 
|---|
| 96 | if (fPts[2] == fPts[0] || fPts[2] == fPts[3]) { | 
|---|
| 97 | order[2] = 1; | 
|---|
| 98 | return 3; | 
|---|
| 99 | } | 
|---|
| 100 | // one of the control points may be very nearly but not exactly equal -- | 
|---|
| 101 | double dist1_0 = fPts[1].distanceSquared(fPts[0]); | 
|---|
| 102 | double dist1_3 = fPts[1].distanceSquared(fPts[3]); | 
|---|
| 103 | double dist2_0 = fPts[2].distanceSquared(fPts[0]); | 
|---|
| 104 | double dist2_3 = fPts[2].distanceSquared(fPts[3]); | 
|---|
| 105 | double smallest1distSq = std::min(dist1_0, dist1_3); | 
|---|
| 106 | double smallest2distSq = std::min(dist2_0, dist2_3); | 
|---|
| 107 | if (approximately_zero(std::min(smallest1distSq, smallest2distSq))) { | 
|---|
| 108 | order[2] = smallest1distSq < smallest2distSq ? 2 : 1; | 
|---|
| 109 | return 3; | 
|---|
| 110 | } | 
|---|
| 111 | } | 
|---|
| 112 | midX = index; | 
|---|
| 113 | } else if (sides == 0) { // '0' means both to one side or the other | 
|---|
| 114 | backupYMin = index; | 
|---|
| 115 | } | 
|---|
| 116 | } | 
|---|
| 117 | if (midX >= 0) { | 
|---|
| 118 | break; | 
|---|
| 119 | } | 
|---|
| 120 | if (backupYMin < 0) { | 
|---|
| 121 | break; | 
|---|
| 122 | } | 
|---|
| 123 | yMin = backupYMin; | 
|---|
| 124 | backupYMin = -1; | 
|---|
| 125 | } | 
|---|
| 126 | if (midX < 0) { | 
|---|
| 127 | midX = yMin ^ 3; // choose any other point | 
|---|
| 128 | } | 
|---|
| 129 | int mask = other_two(yMin, midX); | 
|---|
| 130 | int least = yMin ^ mask; | 
|---|
| 131 | int most = midX ^ mask; | 
|---|
| 132 | order[0] = yMin; | 
|---|
| 133 | order[1] = least; | 
|---|
| 134 |  | 
|---|
| 135 | // see if mid value is on same side of line (least, most) as yMin | 
|---|
| 136 | SkDCubic midPath; | 
|---|
| 137 | if (!rotate(*this, least, most, midPath)) { // ! if cbc[least]==cbc[most] | 
|---|
| 138 | order[2] = midX; | 
|---|
| 139 | return 3; | 
|---|
| 140 | } | 
|---|
| 141 | int midSides = side(midPath[yMin].fY - midPath[least].fY); | 
|---|
| 142 | midSides ^= side(midPath[midX].fY - midPath[least].fY); | 
|---|
| 143 | if (midSides != 2) {  // if mid point is not between | 
|---|
| 144 | order[2] = most; | 
|---|
| 145 | return 3; // result is a triangle | 
|---|
| 146 | } | 
|---|
| 147 | order[2] = midX; | 
|---|
| 148 | order[3] = most; | 
|---|
| 149 | return 4; // result is a quadralateral | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|