1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkPathOpsCubic.h" |
8 | |
9 | static bool rotate(const SkDCubic& cubic, int zero, int index, SkDCubic& rotPath) { |
10 | double dy = cubic[index].fY - cubic[zero].fY; |
11 | double dx = cubic[index].fX - cubic[zero].fX; |
12 | if (approximately_zero(dy)) { |
13 | if (approximately_zero(dx)) { |
14 | return false; |
15 | } |
16 | rotPath = cubic; |
17 | if (dy) { |
18 | rotPath[index].fY = cubic[zero].fY; |
19 | int mask = other_two(index, zero); |
20 | int side1 = index ^ mask; |
21 | int side2 = zero ^ mask; |
22 | if (approximately_equal(cubic[side1].fY, cubic[zero].fY)) { |
23 | rotPath[side1].fY = cubic[zero].fY; |
24 | } |
25 | if (approximately_equal(cubic[side2].fY, cubic[zero].fY)) { |
26 | rotPath[side2].fY = cubic[zero].fY; |
27 | } |
28 | } |
29 | return true; |
30 | } |
31 | for (int index = 0; index < 4; ++index) { |
32 | rotPath[index].fX = cubic[index].fX * dx + cubic[index].fY * dy; |
33 | rotPath[index].fY = cubic[index].fY * dx - cubic[index].fX * dy; |
34 | } |
35 | return true; |
36 | } |
37 | |
38 | |
39 | // Returns 0 if negative, 1 if zero, 2 if positive |
40 | static int side(double x) { |
41 | return (x > 0) + (x >= 0); |
42 | } |
43 | |
44 | /* Given a cubic, find the convex hull described by the end and control points. |
45 | The hull may have 3 or 4 points. Cubics that degenerate into a point or line |
46 | are not considered. |
47 | |
48 | The hull is computed by assuming that three points, if unique and non-linear, |
49 | form a triangle. The fourth point may replace one of the first three, may be |
50 | discarded if in the triangle or on an edge, or may be inserted between any of |
51 | the three to form a convex quadralateral. |
52 | |
53 | The indices returned in order describe the convex hull. |
54 | */ |
55 | int SkDCubic::convexHull(char order[4]) const { |
56 | size_t index; |
57 | // find top point |
58 | size_t yMin = 0; |
59 | for (index = 1; index < 4; ++index) { |
60 | if (fPts[yMin].fY > fPts[index].fY || (fPts[yMin].fY == fPts[index].fY |
61 | && fPts[yMin].fX > fPts[index].fX)) { |
62 | yMin = index; |
63 | } |
64 | } |
65 | order[0] = yMin; |
66 | int midX = -1; |
67 | int backupYMin = -1; |
68 | for (int pass = 0; pass < 2; ++pass) { |
69 | for (index = 0; index < 4; ++index) { |
70 | if (index == yMin) { |
71 | continue; |
72 | } |
73 | // rotate line from (yMin, index) to axis |
74 | // see if remaining two points are both above or below |
75 | // use this to find mid |
76 | int mask = other_two(yMin, index); |
77 | int side1 = yMin ^ mask; |
78 | int side2 = index ^ mask; |
79 | SkDCubic rotPath; |
80 | if (!rotate(*this, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[idx] |
81 | order[1] = side1; |
82 | order[2] = side2; |
83 | return 3; |
84 | } |
85 | int sides = side(rotPath[side1].fY - rotPath[yMin].fY); |
86 | sides ^= side(rotPath[side2].fY - rotPath[yMin].fY); |
87 | if (sides == 2) { // '2' means one remaining point <0, one >0 |
88 | if (midX >= 0) { |
89 | // one of the control points is equal to an end point |
90 | order[0] = 0; |
91 | order[1] = 3; |
92 | if (fPts[1] == fPts[0] || fPts[1] == fPts[3]) { |
93 | order[2] = 2; |
94 | return 3; |
95 | } |
96 | if (fPts[2] == fPts[0] || fPts[2] == fPts[3]) { |
97 | order[2] = 1; |
98 | return 3; |
99 | } |
100 | // one of the control points may be very nearly but not exactly equal -- |
101 | double dist1_0 = fPts[1].distanceSquared(fPts[0]); |
102 | double dist1_3 = fPts[1].distanceSquared(fPts[3]); |
103 | double dist2_0 = fPts[2].distanceSquared(fPts[0]); |
104 | double dist2_3 = fPts[2].distanceSquared(fPts[3]); |
105 | double smallest1distSq = std::min(dist1_0, dist1_3); |
106 | double smallest2distSq = std::min(dist2_0, dist2_3); |
107 | if (approximately_zero(std::min(smallest1distSq, smallest2distSq))) { |
108 | order[2] = smallest1distSq < smallest2distSq ? 2 : 1; |
109 | return 3; |
110 | } |
111 | } |
112 | midX = index; |
113 | } else if (sides == 0) { // '0' means both to one side or the other |
114 | backupYMin = index; |
115 | } |
116 | } |
117 | if (midX >= 0) { |
118 | break; |
119 | } |
120 | if (backupYMin < 0) { |
121 | break; |
122 | } |
123 | yMin = backupYMin; |
124 | backupYMin = -1; |
125 | } |
126 | if (midX < 0) { |
127 | midX = yMin ^ 3; // choose any other point |
128 | } |
129 | int mask = other_two(yMin, midX); |
130 | int least = yMin ^ mask; |
131 | int most = midX ^ mask; |
132 | order[0] = yMin; |
133 | order[1] = least; |
134 | |
135 | // see if mid value is on same side of line (least, most) as yMin |
136 | SkDCubic midPath; |
137 | if (!rotate(*this, least, most, midPath)) { // ! if cbc[least]==cbc[most] |
138 | order[2] = midX; |
139 | return 3; |
140 | } |
141 | int midSides = side(midPath[yMin].fY - midPath[least].fY); |
142 | midSides ^= side(midPath[midX].fY - midPath[least].fY); |
143 | if (midSides != 2) { // if mid point is not between |
144 | order[2] = most; |
145 | return 3; // result is a triangle |
146 | } |
147 | order[2] = midX; |
148 | order[3] = most; |
149 | return 4; // result is a quadralateral |
150 | } |
151 | |