1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkPathOpsLine.h" |
8 | |
9 | SkDPoint SkDLine::ptAtT(double t) const { |
10 | if (0 == t) { |
11 | return fPts[0]; |
12 | } |
13 | if (1 == t) { |
14 | return fPts[1]; |
15 | } |
16 | double one_t = 1 - t; |
17 | SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY }; |
18 | return result; |
19 | } |
20 | |
21 | double SkDLine::exactPoint(const SkDPoint& xy) const { |
22 | if (xy == fPts[0]) { // do cheapest test first |
23 | return 0; |
24 | } |
25 | if (xy == fPts[1]) { |
26 | return 1; |
27 | } |
28 | return -1; |
29 | } |
30 | |
31 | double SkDLine::nearPoint(const SkDPoint& xy, bool* unequal) const { |
32 | if (!AlmostBetweenUlps(fPts[0].fX, xy.fX, fPts[1].fX) |
33 | || !AlmostBetweenUlps(fPts[0].fY, xy.fY, fPts[1].fY)) { |
34 | return -1; |
35 | } |
36 | // project a perpendicular ray from the point to the line; find the T on the line |
37 | SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line |
38 | double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay |
39 | SkDVector ab0 = xy - fPts[0]; |
40 | double numer = len.fX * ab0.fX + ab0.fY * len.fY; |
41 | if (!between(0, numer, denom)) { |
42 | return -1; |
43 | } |
44 | if (!denom) { |
45 | return 0; |
46 | } |
47 | double t = numer / denom; |
48 | SkDPoint realPt = ptAtT(t); |
49 | double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? |
50 | // find the ordinal in the original line with the largest unsigned exponent |
51 | double tiniest = std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); |
52 | double largest = std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); |
53 | largest = std::max(largest, -tiniest); |
54 | if (!AlmostEqualUlps_Pin(largest, largest + dist)) { // is the dist within ULPS tolerance? |
55 | return -1; |
56 | } |
57 | if (unequal) { |
58 | *unequal = (float) largest != (float) (largest + dist); |
59 | } |
60 | t = SkPinT(t); // a looser pin breaks skpwww_lptemp_com_3 |
61 | SkASSERT(between(0, t, 1)); |
62 | return t; |
63 | } |
64 | |
65 | bool SkDLine::nearRay(const SkDPoint& xy) const { |
66 | // project a perpendicular ray from the point to the line; find the T on the line |
67 | SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line |
68 | double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay |
69 | SkDVector ab0 = xy - fPts[0]; |
70 | double numer = len.fX * ab0.fX + ab0.fY * len.fY; |
71 | double t = numer / denom; |
72 | SkDPoint realPt = ptAtT(t); |
73 | double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? |
74 | // find the ordinal in the original line with the largest unsigned exponent |
75 | double tiniest = std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); |
76 | double largest = std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); |
77 | largest = std::max(largest, -tiniest); |
78 | return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance? |
79 | } |
80 | |
81 | double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, double y) { |
82 | if (xy.fY == y) { |
83 | if (xy.fX == left) { |
84 | return 0; |
85 | } |
86 | if (xy.fX == right) { |
87 | return 1; |
88 | } |
89 | } |
90 | return -1; |
91 | } |
92 | |
93 | double SkDLine::NearPointH(const SkDPoint& xy, double left, double right, double y) { |
94 | if (!AlmostBequalUlps(xy.fY, y)) { |
95 | return -1; |
96 | } |
97 | if (!AlmostBetweenUlps(left, xy.fX, right)) { |
98 | return -1; |
99 | } |
100 | double t = (xy.fX - left) / (right - left); |
101 | t = SkPinT(t); |
102 | SkASSERT(between(0, t, 1)); |
103 | double realPtX = (1 - t) * left + t * right; |
104 | SkDVector distU = {xy.fY - y, xy.fX - realPtX}; |
105 | double distSq = distU.fX * distU.fX + distU.fY * distU.fY; |
106 | double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? |
107 | double tiniest = std::min(std::min(y, left), right); |
108 | double largest = std::max(std::max(y, left), right); |
109 | largest = std::max(largest, -tiniest); |
110 | if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? |
111 | return -1; |
112 | } |
113 | return t; |
114 | } |
115 | |
116 | double SkDLine::ExactPointV(const SkDPoint& xy, double top, double bottom, double x) { |
117 | if (xy.fX == x) { |
118 | if (xy.fY == top) { |
119 | return 0; |
120 | } |
121 | if (xy.fY == bottom) { |
122 | return 1; |
123 | } |
124 | } |
125 | return -1; |
126 | } |
127 | |
128 | double SkDLine::NearPointV(const SkDPoint& xy, double top, double bottom, double x) { |
129 | if (!AlmostBequalUlps(xy.fX, x)) { |
130 | return -1; |
131 | } |
132 | if (!AlmostBetweenUlps(top, xy.fY, bottom)) { |
133 | return -1; |
134 | } |
135 | double t = (xy.fY - top) / (bottom - top); |
136 | t = SkPinT(t); |
137 | SkASSERT(between(0, t, 1)); |
138 | double realPtY = (1 - t) * top + t * bottom; |
139 | SkDVector distU = {xy.fX - x, xy.fY - realPtY}; |
140 | double distSq = distU.fX * distU.fX + distU.fY * distU.fY; |
141 | double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? |
142 | double tiniest = std::min(std::min(x, top), bottom); |
143 | double largest = std::max(std::max(x, top), bottom); |
144 | largest = std::max(largest, -tiniest); |
145 | if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? |
146 | return -1; |
147 | } |
148 | return t; |
149 | } |
150 | |