1 | /* |
2 | * Copyright 2012 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkIntersections.h" |
8 | #include "src/pathops/SkLineParameters.h" |
9 | #include "src/pathops/SkPathOpsCubic.h" |
10 | #include "src/pathops/SkPathOpsCurve.h" |
11 | #include "src/pathops/SkPathOpsQuad.h" |
12 | #include "src/pathops/SkPathOpsRect.h" |
13 | |
14 | // from blackpawn.com/texts/pointinpoly |
15 | static bool pointInTriangle(const SkDPoint fPts[3], const SkDPoint& test) { |
16 | SkDVector v0 = fPts[2] - fPts[0]; |
17 | SkDVector v1 = fPts[1] - fPts[0]; |
18 | SkDVector v2 = test - fPts[0]; |
19 | double dot00 = v0.dot(v0); |
20 | double dot01 = v0.dot(v1); |
21 | double dot02 = v0.dot(v2); |
22 | double dot11 = v1.dot(v1); |
23 | double dot12 = v1.dot(v2); |
24 | // Compute barycentric coordinates |
25 | double denom = dot00 * dot11 - dot01 * dot01; |
26 | double u = dot11 * dot02 - dot01 * dot12; |
27 | double v = dot00 * dot12 - dot01 * dot02; |
28 | // Check if point is in triangle |
29 | if (denom >= 0) { |
30 | return u >= 0 && v >= 0 && u + v < denom; |
31 | } |
32 | return u <= 0 && v <= 0 && u + v > denom; |
33 | } |
34 | |
35 | static bool matchesEnd(const SkDPoint fPts[3], const SkDPoint& test) { |
36 | return fPts[0] == test || fPts[2] == test; |
37 | } |
38 | |
39 | /* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */ |
40 | // Do a quick reject by rotating all points relative to a line formed by |
41 | // a pair of one quad's points. If the 2nd quad's points |
42 | // are on the line or on the opposite side from the 1st quad's 'odd man', the |
43 | // curves at most intersect at the endpoints. |
44 | /* if returning true, check contains true if quad's hull collapsed, making the cubic linear |
45 | if returning false, check contains true if the the quad pair have only the end point in common |
46 | */ |
47 | bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const { |
48 | bool linear = true; |
49 | for (int oddMan = 0; oddMan < kPointCount; ++oddMan) { |
50 | const SkDPoint* endPt[2]; |
51 | this->otherPts(oddMan, endPt); |
52 | double origX = endPt[0]->fX; |
53 | double origY = endPt[0]->fY; |
54 | double adj = endPt[1]->fX - origX; |
55 | double opp = endPt[1]->fY - origY; |
56 | double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp; |
57 | if (approximately_zero(sign)) { |
58 | continue; |
59 | } |
60 | linear = false; |
61 | bool foundOutlier = false; |
62 | for (int n = 0; n < kPointCount; ++n) { |
63 | double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
64 | if (test * sign > 0 && !precisely_zero(test)) { |
65 | foundOutlier = true; |
66 | break; |
67 | } |
68 | } |
69 | if (!foundOutlier) { |
70 | return false; |
71 | } |
72 | } |
73 | if (linear && !matchesEnd(fPts, q2.fPts[0]) && !matchesEnd(fPts, q2.fPts[2])) { |
74 | // if the end point of the opposite quad is inside the hull that is nearly a line, |
75 | // then representing the quad as a line may cause the intersection to be missed. |
76 | // Check to see if the endpoint is in the triangle. |
77 | if (pointInTriangle(fPts, q2.fPts[0]) || pointInTriangle(fPts, q2.fPts[2])) { |
78 | linear = false; |
79 | } |
80 | } |
81 | *isLinear = linear; |
82 | return true; |
83 | } |
84 | |
85 | bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
86 | return conic.hullIntersects(*this, isLinear); |
87 | } |
88 | |
89 | bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
90 | return cubic.hullIntersects(*this, isLinear); |
91 | } |
92 | |
93 | /* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan) |
94 | oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m |
95 | 0 1 1 1 0 1 |
96 | 2 2 2 0 2 |
97 | 1 1 0 -1 -1 0 |
98 | 2 3 2 0 2 |
99 | 2 1 3 1 0 1 |
100 | 2 0 -2 -1 0 |
101 | */ |
102 | void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const { |
103 | for (int opp = 1; opp < kPointCount; ++opp) { |
104 | int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan |
105 | end &= ~(end >> 2); // if the value went negative, set it to zero |
106 | endPt[opp - 1] = &fPts[end]; |
107 | } |
108 | } |
109 | |
110 | int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { |
111 | int foundRoots = 0; |
112 | for (int index = 0; index < realRoots; ++index) { |
113 | double tValue = s[index]; |
114 | if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { |
115 | if (approximately_less_than_zero(tValue)) { |
116 | tValue = 0; |
117 | } else if (approximately_greater_than_one(tValue)) { |
118 | tValue = 1; |
119 | } |
120 | for (int idx2 = 0; idx2 < foundRoots; ++idx2) { |
121 | if (approximately_equal(t[idx2], tValue)) { |
122 | goto nextRoot; |
123 | } |
124 | } |
125 | t[foundRoots++] = tValue; |
126 | } |
127 | nextRoot: |
128 | {} |
129 | } |
130 | return foundRoots; |
131 | } |
132 | |
133 | // note: caller expects multiple results to be sorted smaller first |
134 | // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting |
135 | // analysis of the quadratic equation, suggesting why the following looks at |
136 | // the sign of B -- and further suggesting that the greatest loss of precision |
137 | // is in b squared less two a c |
138 | int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { |
139 | double s[2]; |
140 | int realRoots = RootsReal(A, B, C, s); |
141 | int foundRoots = AddValidTs(s, realRoots, t); |
142 | return foundRoots; |
143 | } |
144 | |
145 | static int handle_zero(const double B, const double C, double s[2]) { |
146 | if (approximately_zero(B)) { |
147 | s[0] = 0; |
148 | return C == 0; |
149 | } |
150 | s[0] = -C / B; |
151 | return 1; |
152 | } |
153 | |
154 | /* |
155 | Numeric Solutions (5.6) suggests to solve the quadratic by computing |
156 | Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) |
157 | and using the roots |
158 | t1 = Q / A |
159 | t2 = C / Q |
160 | */ |
161 | // this does not discard real roots <= 0 or >= 1 |
162 | int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { |
163 | if (!A) { |
164 | return handle_zero(B, C, s); |
165 | } |
166 | const double p = B / (2 * A); |
167 | const double q = C / A; |
168 | if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { |
169 | return handle_zero(B, C, s); |
170 | } |
171 | /* normal form: x^2 + px + q = 0 */ |
172 | const double p2 = p * p; |
173 | if (!AlmostDequalUlps(p2, q) && p2 < q) { |
174 | return 0; |
175 | } |
176 | double sqrt_D = 0; |
177 | if (p2 > q) { |
178 | sqrt_D = sqrt(p2 - q); |
179 | } |
180 | s[0] = sqrt_D - p; |
181 | s[1] = -sqrt_D - p; |
182 | return 1 + !AlmostDequalUlps(s[0], s[1]); |
183 | } |
184 | |
185 | bool SkDQuad::isLinear(int startIndex, int endIndex) const { |
186 | SkLineParameters lineParameters; |
187 | lineParameters.quadEndPoints(*this, startIndex, endIndex); |
188 | // FIXME: maybe it's possible to avoid this and compare non-normalized |
189 | lineParameters.normalize(); |
190 | double distance = lineParameters.controlPtDistance(*this); |
191 | double tiniest = std::min(std::min(std::min(std::min(std::min(fPts[0].fX, fPts[0].fY), |
192 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
193 | double largest = std::max(std::max(std::max(std::max(std::max(fPts[0].fX, fPts[0].fY), |
194 | fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY); |
195 | largest = std::max(largest, -tiniest); |
196 | return approximately_zero_when_compared_to(distance, largest); |
197 | } |
198 | |
199 | SkDVector SkDQuad::dxdyAtT(double t) const { |
200 | double a = t - 1; |
201 | double b = 1 - 2 * t; |
202 | double c = t; |
203 | SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
204 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
205 | if (result.fX == 0 && result.fY == 0) { |
206 | if (zero_or_one(t)) { |
207 | result = fPts[2] - fPts[0]; |
208 | } else { |
209 | // incomplete |
210 | SkDebugf("!q" ); |
211 | } |
212 | } |
213 | return result; |
214 | } |
215 | |
216 | // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? |
217 | SkDPoint SkDQuad::ptAtT(double t) const { |
218 | if (0 == t) { |
219 | return fPts[0]; |
220 | } |
221 | if (1 == t) { |
222 | return fPts[2]; |
223 | } |
224 | double one_t = 1 - t; |
225 | double a = one_t * one_t; |
226 | double b = 2 * one_t * t; |
227 | double c = t * t; |
228 | SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, |
229 | a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; |
230 | return result; |
231 | } |
232 | |
233 | static double interp_quad_coords(const double* src, double t) { |
234 | if (0 == t) { |
235 | return src[0]; |
236 | } |
237 | if (1 == t) { |
238 | return src[4]; |
239 | } |
240 | double ab = SkDInterp(src[0], src[2], t); |
241 | double bc = SkDInterp(src[2], src[4], t); |
242 | double abc = SkDInterp(ab, bc, t); |
243 | return abc; |
244 | } |
245 | |
246 | bool SkDQuad::monotonicInX() const { |
247 | return between(fPts[0].fX, fPts[1].fX, fPts[2].fX); |
248 | } |
249 | |
250 | bool SkDQuad::monotonicInY() const { |
251 | return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); |
252 | } |
253 | |
254 | /* |
255 | Given a quadratic q, t1, and t2, find a small quadratic segment. |
256 | |
257 | The new quadratic is defined by A, B, and C, where |
258 | A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 |
259 | C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 |
260 | |
261 | To find B, compute the point halfway between t1 and t2: |
262 | |
263 | q(at (t1 + t2)/2) == D |
264 | |
265 | Next, compute where D must be if we know the value of B: |
266 | |
267 | _12 = A/2 + B/2 |
268 | 12_ = B/2 + C/2 |
269 | 123 = A/4 + B/2 + C/4 |
270 | = D |
271 | |
272 | Group the known values on one side: |
273 | |
274 | B = D*2 - A/2 - C/2 |
275 | */ |
276 | |
277 | // OPTIMIZE? : special case t1 = 1 && t2 = 0 |
278 | SkDQuad SkDQuad::subDivide(double t1, double t2) const { |
279 | if (0 == t1 && 1 == t2) { |
280 | return *this; |
281 | } |
282 | SkDQuad dst; |
283 | double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); |
284 | double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); |
285 | double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); |
286 | double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); |
287 | double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); |
288 | double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); |
289 | /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2; |
290 | /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2; |
291 | return dst; |
292 | } |
293 | |
294 | void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { |
295 | if (fPts[endIndex].fX == fPts[1].fX) { |
296 | dstPt->fX = fPts[endIndex].fX; |
297 | } |
298 | if (fPts[endIndex].fY == fPts[1].fY) { |
299 | dstPt->fY = fPts[endIndex].fY; |
300 | } |
301 | } |
302 | |
303 | SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { |
304 | SkASSERT(t1 != t2); |
305 | SkDPoint b; |
306 | SkDQuad sub = subDivide(t1, t2); |
307 | SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; |
308 | SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; |
309 | SkIntersections i; |
310 | i.intersectRay(b0, b1); |
311 | if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) { |
312 | b = i.pt(0); |
313 | } else { |
314 | SkASSERT(i.used() <= 2); |
315 | return SkDPoint::Mid(b0[1], b1[1]); |
316 | } |
317 | if (t1 == 0 || t2 == 0) { |
318 | align(0, &b); |
319 | } |
320 | if (t1 == 1 || t2 == 1) { |
321 | align(2, &b); |
322 | } |
323 | if (AlmostBequalUlps(b.fX, a.fX)) { |
324 | b.fX = a.fX; |
325 | } else if (AlmostBequalUlps(b.fX, c.fX)) { |
326 | b.fX = c.fX; |
327 | } |
328 | if (AlmostBequalUlps(b.fY, a.fY)) { |
329 | b.fY = a.fY; |
330 | } else if (AlmostBequalUlps(b.fY, c.fY)) { |
331 | b.fY = c.fY; |
332 | } |
333 | return b; |
334 | } |
335 | |
336 | /* classic one t subdivision */ |
337 | static void interp_quad_coords(const double* src, double* dst, double t) { |
338 | double ab = SkDInterp(src[0], src[2], t); |
339 | double bc = SkDInterp(src[2], src[4], t); |
340 | dst[0] = src[0]; |
341 | dst[2] = ab; |
342 | dst[4] = SkDInterp(ab, bc, t); |
343 | dst[6] = bc; |
344 | dst[8] = src[4]; |
345 | } |
346 | |
347 | SkDQuadPair SkDQuad::chopAt(double t) const |
348 | { |
349 | SkDQuadPair dst; |
350 | interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
351 | interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
352 | return dst; |
353 | } |
354 | |
355 | static int valid_unit_divide(double numer, double denom, double* ratio) |
356 | { |
357 | if (numer < 0) { |
358 | numer = -numer; |
359 | denom = -denom; |
360 | } |
361 | if (denom == 0 || numer == 0 || numer >= denom) { |
362 | return 0; |
363 | } |
364 | double r = numer / denom; |
365 | if (r == 0) { // catch underflow if numer <<<< denom |
366 | return 0; |
367 | } |
368 | *ratio = r; |
369 | return 1; |
370 | } |
371 | |
372 | /** Quad'(t) = At + B, where |
373 | A = 2(a - 2b + c) |
374 | B = 2(b - a) |
375 | Solve for t, only if it fits between 0 < t < 1 |
376 | */ |
377 | int SkDQuad::FindExtrema(const double src[], double tValue[1]) { |
378 | /* At + B == 0 |
379 | t = -B / A |
380 | */ |
381 | double a = src[0]; |
382 | double b = src[2]; |
383 | double c = src[4]; |
384 | return valid_unit_divide(a - b, a - b - b + c, tValue); |
385 | } |
386 | |
387 | /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) |
388 | * |
389 | * a = A - 2*B + C |
390 | * b = 2*B - 2*C |
391 | * c = C |
392 | */ |
393 | void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { |
394 | *a = quad[0]; // a = A |
395 | *b = 2 * quad[2]; // b = 2*B |
396 | *c = quad[4]; // c = C |
397 | *b -= *c; // b = 2*B - C |
398 | *a -= *b; // a = A - 2*B + C |
399 | *b -= *c; // b = 2*B - 2*C |
400 | } |
401 | |
402 | int SkTQuad::intersectRay(SkIntersections* i, const SkDLine& line) const { |
403 | return i->intersectRay(fQuad, line); |
404 | } |
405 | |
406 | bool SkTQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const { |
407 | return conic.hullIntersects(fQuad, isLinear); |
408 | } |
409 | |
410 | bool SkTQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
411 | return cubic.hullIntersects(fQuad, isLinear); |
412 | } |
413 | |
414 | void SkTQuad::setBounds(SkDRect* rect) const { |
415 | rect->setBounds(fQuad); |
416 | } |
417 | |