1 | // Copyright (c) 2018 Google LLC |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "source/opt/folding_rules.h" |
16 | |
17 | #include <limits> |
18 | #include <memory> |
19 | #include <utility> |
20 | |
21 | #include "ir_builder.h" |
22 | #include "source/latest_version_glsl_std_450_header.h" |
23 | #include "source/opt/ir_context.h" |
24 | |
25 | namespace spvtools { |
26 | namespace opt { |
27 | namespace { |
28 | |
29 | const uint32_t = 0; |
30 | const uint32_t kInsertObjectIdInIdx = 0; |
31 | const uint32_t kInsertCompositeIdInIdx = 1; |
32 | const uint32_t kExtInstSetIdInIdx = 0; |
33 | const uint32_t kExtInstInstructionInIdx = 1; |
34 | const uint32_t kFMixXIdInIdx = 2; |
35 | const uint32_t kFMixYIdInIdx = 3; |
36 | const uint32_t kFMixAIdInIdx = 4; |
37 | const uint32_t kStoreObjectInIdx = 1; |
38 | |
39 | // Some image instructions may contain an "image operands" argument. |
40 | // Returns the operand index for the "image operands". |
41 | // Returns -1 if the instruction does not have image operands. |
42 | int32_t ImageOperandsMaskInOperandIndex(Instruction* inst) { |
43 | const auto opcode = inst->opcode(); |
44 | switch (opcode) { |
45 | case SpvOpImageSampleImplicitLod: |
46 | case SpvOpImageSampleExplicitLod: |
47 | case SpvOpImageSampleProjImplicitLod: |
48 | case SpvOpImageSampleProjExplicitLod: |
49 | case SpvOpImageFetch: |
50 | case SpvOpImageRead: |
51 | case SpvOpImageSparseSampleImplicitLod: |
52 | case SpvOpImageSparseSampleExplicitLod: |
53 | case SpvOpImageSparseSampleProjImplicitLod: |
54 | case SpvOpImageSparseSampleProjExplicitLod: |
55 | case SpvOpImageSparseFetch: |
56 | case SpvOpImageSparseRead: |
57 | return inst->NumOperands() > 4 ? 2 : -1; |
58 | case SpvOpImageSampleDrefImplicitLod: |
59 | case SpvOpImageSampleDrefExplicitLod: |
60 | case SpvOpImageSampleProjDrefImplicitLod: |
61 | case SpvOpImageSampleProjDrefExplicitLod: |
62 | case SpvOpImageGather: |
63 | case SpvOpImageDrefGather: |
64 | case SpvOpImageSparseSampleDrefImplicitLod: |
65 | case SpvOpImageSparseSampleDrefExplicitLod: |
66 | case SpvOpImageSparseSampleProjDrefImplicitLod: |
67 | case SpvOpImageSparseSampleProjDrefExplicitLod: |
68 | case SpvOpImageSparseGather: |
69 | case SpvOpImageSparseDrefGather: |
70 | return inst->NumOperands() > 5 ? 3 : -1; |
71 | case SpvOpImageWrite: |
72 | return inst->NumOperands() > 3 ? 3 : -1; |
73 | default: |
74 | return -1; |
75 | } |
76 | } |
77 | |
78 | // Returns the element width of |type|. |
79 | uint32_t ElementWidth(const analysis::Type* type) { |
80 | if (const analysis::Vector* vec_type = type->AsVector()) { |
81 | return ElementWidth(vec_type->element_type()); |
82 | } else if (const analysis::Float* float_type = type->AsFloat()) { |
83 | return float_type->width(); |
84 | } else { |
85 | assert(type->AsInteger()); |
86 | return type->AsInteger()->width(); |
87 | } |
88 | } |
89 | |
90 | // Returns true if |type| is Float or a vector of Float. |
91 | bool HasFloatingPoint(const analysis::Type* type) { |
92 | if (type->AsFloat()) { |
93 | return true; |
94 | } else if (const analysis::Vector* vec_type = type->AsVector()) { |
95 | return vec_type->element_type()->AsFloat() != nullptr; |
96 | } |
97 | |
98 | return false; |
99 | } |
100 | |
101 | // Returns false if |val| is NaN, infinite or subnormal. |
102 | template <typename T> |
103 | bool IsValidResult(T val) { |
104 | int classified = std::fpclassify(val); |
105 | switch (classified) { |
106 | case FP_NAN: |
107 | case FP_INFINITE: |
108 | case FP_SUBNORMAL: |
109 | return false; |
110 | default: |
111 | return true; |
112 | } |
113 | } |
114 | |
115 | const analysis::Constant* ConstInput( |
116 | const std::vector<const analysis::Constant*>& constants) { |
117 | return constants[0] ? constants[0] : constants[1]; |
118 | } |
119 | |
120 | Instruction* NonConstInput(IRContext* context, const analysis::Constant* c, |
121 | Instruction* inst) { |
122 | uint32_t in_op = c ? 1u : 0u; |
123 | return context->get_def_use_mgr()->GetDef( |
124 | inst->GetSingleWordInOperand(in_op)); |
125 | } |
126 | |
127 | // Returns the negation of |c|. |c| must be a 32 or 64 bit floating point |
128 | // constant. |
129 | uint32_t NegateFloatingPointConstant(analysis::ConstantManager* const_mgr, |
130 | const analysis::Constant* c) { |
131 | assert(c); |
132 | assert(c->type()->AsFloat()); |
133 | uint32_t width = c->type()->AsFloat()->width(); |
134 | assert(width == 32 || width == 64); |
135 | std::vector<uint32_t> words; |
136 | if (width == 64) { |
137 | utils::FloatProxy<double> result(c->GetDouble() * -1.0); |
138 | words = result.GetWords(); |
139 | } else { |
140 | utils::FloatProxy<float> result(c->GetFloat() * -1.0f); |
141 | words = result.GetWords(); |
142 | } |
143 | |
144 | const analysis::Constant* negated_const = |
145 | const_mgr->GetConstant(c->type(), std::move(words)); |
146 | return const_mgr->GetDefiningInstruction(negated_const)->result_id(); |
147 | } |
148 | |
149 | std::vector<uint32_t> (uint64_t val) { |
150 | std::vector<uint32_t> words; |
151 | words.push_back(static_cast<uint32_t>(val)); |
152 | words.push_back(static_cast<uint32_t>(val >> 32)); |
153 | return words; |
154 | } |
155 | |
156 | // Negates the integer constant |c|. Returns the id of the defining instruction. |
157 | uint32_t NegateIntegerConstant(analysis::ConstantManager* const_mgr, |
158 | const analysis::Constant* c) { |
159 | assert(c); |
160 | assert(c->type()->AsInteger()); |
161 | uint32_t width = c->type()->AsInteger()->width(); |
162 | assert(width == 32 || width == 64); |
163 | std::vector<uint32_t> words; |
164 | if (width == 64) { |
165 | uint64_t uval = static_cast<uint64_t>(0 - c->GetU64()); |
166 | words = ExtractInts(uval); |
167 | } else { |
168 | words.push_back(static_cast<uint32_t>(0 - c->GetU32())); |
169 | } |
170 | |
171 | const analysis::Constant* negated_const = |
172 | const_mgr->GetConstant(c->type(), std::move(words)); |
173 | return const_mgr->GetDefiningInstruction(negated_const)->result_id(); |
174 | } |
175 | |
176 | // Negates the vector constant |c|. Returns the id of the defining instruction. |
177 | uint32_t NegateVectorConstant(analysis::ConstantManager* const_mgr, |
178 | const analysis::Constant* c) { |
179 | assert(const_mgr && c); |
180 | assert(c->type()->AsVector()); |
181 | if (c->AsNullConstant()) { |
182 | // 0.0 vs -0.0 shouldn't matter. |
183 | return const_mgr->GetDefiningInstruction(c)->result_id(); |
184 | } else { |
185 | const analysis::Type* component_type = |
186 | c->AsVectorConstant()->component_type(); |
187 | std::vector<uint32_t> words; |
188 | for (auto& comp : c->AsVectorConstant()->GetComponents()) { |
189 | if (component_type->AsFloat()) { |
190 | words.push_back(NegateFloatingPointConstant(const_mgr, comp)); |
191 | } else { |
192 | assert(component_type->AsInteger()); |
193 | words.push_back(NegateIntegerConstant(const_mgr, comp)); |
194 | } |
195 | } |
196 | |
197 | const analysis::Constant* negated_const = |
198 | const_mgr->GetConstant(c->type(), std::move(words)); |
199 | return const_mgr->GetDefiningInstruction(negated_const)->result_id(); |
200 | } |
201 | } |
202 | |
203 | // Negates |c|. Returns the id of the defining instruction. |
204 | uint32_t NegateConstant(analysis::ConstantManager* const_mgr, |
205 | const analysis::Constant* c) { |
206 | if (c->type()->AsVector()) { |
207 | return NegateVectorConstant(const_mgr, c); |
208 | } else if (c->type()->AsFloat()) { |
209 | return NegateFloatingPointConstant(const_mgr, c); |
210 | } else { |
211 | assert(c->type()->AsInteger()); |
212 | return NegateIntegerConstant(const_mgr, c); |
213 | } |
214 | } |
215 | |
216 | // Takes the reciprocal of |c|. |c|'s type must be Float or a vector of Float. |
217 | // Returns 0 if the reciprocal is NaN, infinite or subnormal. |
218 | uint32_t Reciprocal(analysis::ConstantManager* const_mgr, |
219 | const analysis::Constant* c) { |
220 | assert(const_mgr && c); |
221 | assert(c->type()->AsFloat()); |
222 | |
223 | uint32_t width = c->type()->AsFloat()->width(); |
224 | assert(width == 32 || width == 64); |
225 | std::vector<uint32_t> words; |
226 | if (width == 64) { |
227 | spvtools::utils::FloatProxy<double> result(1.0 / c->GetDouble()); |
228 | if (!IsValidResult(result.getAsFloat())) return 0; |
229 | words = result.GetWords(); |
230 | } else { |
231 | spvtools::utils::FloatProxy<float> result(1.0f / c->GetFloat()); |
232 | if (!IsValidResult(result.getAsFloat())) return 0; |
233 | words = result.GetWords(); |
234 | } |
235 | |
236 | const analysis::Constant* negated_const = |
237 | const_mgr->GetConstant(c->type(), std::move(words)); |
238 | return const_mgr->GetDefiningInstruction(negated_const)->result_id(); |
239 | } |
240 | |
241 | // Replaces fdiv where second operand is constant with fmul. |
242 | FoldingRule ReciprocalFDiv() { |
243 | return [](IRContext* context, Instruction* inst, |
244 | const std::vector<const analysis::Constant*>& constants) { |
245 | assert(inst->opcode() == SpvOpFDiv); |
246 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
247 | const analysis::Type* type = |
248 | context->get_type_mgr()->GetType(inst->type_id()); |
249 | if (!inst->IsFloatingPointFoldingAllowed()) return false; |
250 | |
251 | uint32_t width = ElementWidth(type); |
252 | if (width != 32 && width != 64) return false; |
253 | |
254 | if (constants[1] != nullptr) { |
255 | uint32_t id = 0; |
256 | if (const analysis::VectorConstant* vector_const = |
257 | constants[1]->AsVectorConstant()) { |
258 | std::vector<uint32_t> neg_ids; |
259 | for (auto& comp : vector_const->GetComponents()) { |
260 | id = Reciprocal(const_mgr, comp); |
261 | if (id == 0) return false; |
262 | neg_ids.push_back(id); |
263 | } |
264 | const analysis::Constant* negated_const = |
265 | const_mgr->GetConstant(constants[1]->type(), std::move(neg_ids)); |
266 | id = const_mgr->GetDefiningInstruction(negated_const)->result_id(); |
267 | } else if (constants[1]->AsFloatConstant()) { |
268 | id = Reciprocal(const_mgr, constants[1]); |
269 | if (id == 0) return false; |
270 | } else { |
271 | // Don't fold a null constant. |
272 | return false; |
273 | } |
274 | inst->SetOpcode(SpvOpFMul); |
275 | inst->SetInOperands( |
276 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0u)}}, |
277 | {SPV_OPERAND_TYPE_ID, {id}}}); |
278 | return true; |
279 | } |
280 | |
281 | return false; |
282 | }; |
283 | } |
284 | |
285 | // Elides consecutive negate instructions. |
286 | FoldingRule MergeNegateArithmetic() { |
287 | return [](IRContext* context, Instruction* inst, |
288 | const std::vector<const analysis::Constant*>& constants) { |
289 | assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate); |
290 | (void)constants; |
291 | const analysis::Type* type = |
292 | context->get_type_mgr()->GetType(inst->type_id()); |
293 | if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed()) |
294 | return false; |
295 | |
296 | Instruction* op_inst = |
297 | context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u)); |
298 | if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed()) |
299 | return false; |
300 | |
301 | if (op_inst->opcode() == inst->opcode()) { |
302 | // Elide negates. |
303 | inst->SetOpcode(SpvOpCopyObject); |
304 | inst->SetInOperands( |
305 | {{SPV_OPERAND_TYPE_ID, {op_inst->GetSingleWordInOperand(0u)}}}); |
306 | return true; |
307 | } |
308 | |
309 | return false; |
310 | }; |
311 | } |
312 | |
313 | // Merges negate into a mul or div operation if that operation contains a |
314 | // constant operand. |
315 | // Cases: |
316 | // -(x * 2) = x * -2 |
317 | // -(2 * x) = x * -2 |
318 | // -(x / 2) = x / -2 |
319 | // -(2 / x) = -2 / x |
320 | FoldingRule MergeNegateMulDivArithmetic() { |
321 | return [](IRContext* context, Instruction* inst, |
322 | const std::vector<const analysis::Constant*>& constants) { |
323 | assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate); |
324 | (void)constants; |
325 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
326 | const analysis::Type* type = |
327 | context->get_type_mgr()->GetType(inst->type_id()); |
328 | if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed()) |
329 | return false; |
330 | |
331 | Instruction* op_inst = |
332 | context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u)); |
333 | if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed()) |
334 | return false; |
335 | |
336 | uint32_t width = ElementWidth(type); |
337 | if (width != 32 && width != 64) return false; |
338 | |
339 | SpvOp opcode = op_inst->opcode(); |
340 | if (opcode == SpvOpFMul || opcode == SpvOpFDiv || opcode == SpvOpIMul || |
341 | opcode == SpvOpSDiv || opcode == SpvOpUDiv) { |
342 | std::vector<const analysis::Constant*> op_constants = |
343 | const_mgr->GetOperandConstants(op_inst); |
344 | // Merge negate into mul or div if one operand is constant. |
345 | if (op_constants[0] || op_constants[1]) { |
346 | bool zero_is_variable = op_constants[0] == nullptr; |
347 | const analysis::Constant* c = ConstInput(op_constants); |
348 | uint32_t neg_id = NegateConstant(const_mgr, c); |
349 | uint32_t non_const_id = zero_is_variable |
350 | ? op_inst->GetSingleWordInOperand(0u) |
351 | : op_inst->GetSingleWordInOperand(1u); |
352 | // Change this instruction to a mul/div. |
353 | inst->SetOpcode(op_inst->opcode()); |
354 | if (opcode == SpvOpFDiv || opcode == SpvOpUDiv || opcode == SpvOpSDiv) { |
355 | uint32_t op0 = zero_is_variable ? non_const_id : neg_id; |
356 | uint32_t op1 = zero_is_variable ? neg_id : non_const_id; |
357 | inst->SetInOperands( |
358 | {{SPV_OPERAND_TYPE_ID, {op0}}, {SPV_OPERAND_TYPE_ID, {op1}}}); |
359 | } else { |
360 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}}, |
361 | {SPV_OPERAND_TYPE_ID, {neg_id}}}); |
362 | } |
363 | return true; |
364 | } |
365 | } |
366 | |
367 | return false; |
368 | }; |
369 | } |
370 | |
371 | // Merges negate into a add or sub operation if that operation contains a |
372 | // constant operand. |
373 | // Cases: |
374 | // -(x + 2) = -2 - x |
375 | // -(2 + x) = -2 - x |
376 | // -(x - 2) = 2 - x |
377 | // -(2 - x) = x - 2 |
378 | FoldingRule MergeNegateAddSubArithmetic() { |
379 | return [](IRContext* context, Instruction* inst, |
380 | const std::vector<const analysis::Constant*>& constants) { |
381 | assert(inst->opcode() == SpvOpFNegate || inst->opcode() == SpvOpSNegate); |
382 | (void)constants; |
383 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
384 | const analysis::Type* type = |
385 | context->get_type_mgr()->GetType(inst->type_id()); |
386 | if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed()) |
387 | return false; |
388 | |
389 | Instruction* op_inst = |
390 | context->get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u)); |
391 | if (HasFloatingPoint(type) && !op_inst->IsFloatingPointFoldingAllowed()) |
392 | return false; |
393 | |
394 | uint32_t width = ElementWidth(type); |
395 | if (width != 32 && width != 64) return false; |
396 | |
397 | if (op_inst->opcode() == SpvOpFAdd || op_inst->opcode() == SpvOpFSub || |
398 | op_inst->opcode() == SpvOpIAdd || op_inst->opcode() == SpvOpISub) { |
399 | std::vector<const analysis::Constant*> op_constants = |
400 | const_mgr->GetOperandConstants(op_inst); |
401 | if (op_constants[0] || op_constants[1]) { |
402 | bool zero_is_variable = op_constants[0] == nullptr; |
403 | bool is_add = (op_inst->opcode() == SpvOpFAdd) || |
404 | (op_inst->opcode() == SpvOpIAdd); |
405 | bool swap_operands = !is_add || zero_is_variable; |
406 | bool negate_const = is_add; |
407 | const analysis::Constant* c = ConstInput(op_constants); |
408 | uint32_t const_id = 0; |
409 | if (negate_const) { |
410 | const_id = NegateConstant(const_mgr, c); |
411 | } else { |
412 | const_id = zero_is_variable ? op_inst->GetSingleWordInOperand(1u) |
413 | : op_inst->GetSingleWordInOperand(0u); |
414 | } |
415 | |
416 | // Swap operands if necessary and make the instruction a subtraction. |
417 | uint32_t op0 = |
418 | zero_is_variable ? op_inst->GetSingleWordInOperand(0u) : const_id; |
419 | uint32_t op1 = |
420 | zero_is_variable ? const_id : op_inst->GetSingleWordInOperand(1u); |
421 | if (swap_operands) std::swap(op0, op1); |
422 | inst->SetOpcode(HasFloatingPoint(type) ? SpvOpFSub : SpvOpISub); |
423 | inst->SetInOperands( |
424 | {{SPV_OPERAND_TYPE_ID, {op0}}, {SPV_OPERAND_TYPE_ID, {op1}}}); |
425 | return true; |
426 | } |
427 | } |
428 | |
429 | return false; |
430 | }; |
431 | } |
432 | |
433 | // Returns true if |c| has a zero element. |
434 | bool HasZero(const analysis::Constant* c) { |
435 | if (c->AsNullConstant()) { |
436 | return true; |
437 | } |
438 | if (const analysis::VectorConstant* vec_const = c->AsVectorConstant()) { |
439 | for (auto& comp : vec_const->GetComponents()) |
440 | if (HasZero(comp)) return true; |
441 | } else { |
442 | assert(c->AsScalarConstant()); |
443 | return c->AsScalarConstant()->IsZero(); |
444 | } |
445 | |
446 | return false; |
447 | } |
448 | |
449 | // Performs |input1| |opcode| |input2| and returns the merged constant result |
450 | // id. Returns 0 if the result is not a valid value. The input types must be |
451 | // Float. |
452 | uint32_t PerformFloatingPointOperation(analysis::ConstantManager* const_mgr, |
453 | SpvOp opcode, |
454 | const analysis::Constant* input1, |
455 | const analysis::Constant* input2) { |
456 | const analysis::Type* type = input1->type(); |
457 | assert(type->AsFloat()); |
458 | uint32_t width = type->AsFloat()->width(); |
459 | assert(width == 32 || width == 64); |
460 | std::vector<uint32_t> words; |
461 | #define FOLD_OP(op) \ |
462 | if (width == 64) { \ |
463 | utils::FloatProxy<double> val = \ |
464 | input1->GetDouble() op input2->GetDouble(); \ |
465 | double dval = val.getAsFloat(); \ |
466 | if (!IsValidResult(dval)) return 0; \ |
467 | words = val.GetWords(); \ |
468 | } else { \ |
469 | utils::FloatProxy<float> val = input1->GetFloat() op input2->GetFloat(); \ |
470 | float fval = val.getAsFloat(); \ |
471 | if (!IsValidResult(fval)) return 0; \ |
472 | words = val.GetWords(); \ |
473 | } |
474 | switch (opcode) { |
475 | case SpvOpFMul: |
476 | FOLD_OP(*); |
477 | break; |
478 | case SpvOpFDiv: |
479 | if (HasZero(input2)) return 0; |
480 | FOLD_OP(/); |
481 | break; |
482 | case SpvOpFAdd: |
483 | FOLD_OP(+); |
484 | break; |
485 | case SpvOpFSub: |
486 | FOLD_OP(-); |
487 | break; |
488 | default: |
489 | assert(false && "Unexpected operation" ); |
490 | break; |
491 | } |
492 | #undef FOLD_OP |
493 | const analysis::Constant* merged_const = const_mgr->GetConstant(type, words); |
494 | return const_mgr->GetDefiningInstruction(merged_const)->result_id(); |
495 | } |
496 | |
497 | // Performs |input1| |opcode| |input2| and returns the merged constant result |
498 | // id. Returns 0 if the result is not a valid value. The input types must be |
499 | // Integers. |
500 | uint32_t PerformIntegerOperation(analysis::ConstantManager* const_mgr, |
501 | SpvOp opcode, const analysis::Constant* input1, |
502 | const analysis::Constant* input2) { |
503 | assert(input1->type()->AsInteger()); |
504 | const analysis::Integer* type = input1->type()->AsInteger(); |
505 | uint32_t width = type->AsInteger()->width(); |
506 | assert(width == 32 || width == 64); |
507 | std::vector<uint32_t> words; |
508 | #define FOLD_OP(op) \ |
509 | if (width == 64) { \ |
510 | if (type->IsSigned()) { \ |
511 | int64_t val = input1->GetS64() op input2->GetS64(); \ |
512 | words = ExtractInts(static_cast<uint64_t>(val)); \ |
513 | } else { \ |
514 | uint64_t val = input1->GetU64() op input2->GetU64(); \ |
515 | words = ExtractInts(val); \ |
516 | } \ |
517 | } else { \ |
518 | if (type->IsSigned()) { \ |
519 | int32_t val = input1->GetS32() op input2->GetS32(); \ |
520 | words.push_back(static_cast<uint32_t>(val)); \ |
521 | } else { \ |
522 | uint32_t val = input1->GetU32() op input2->GetU32(); \ |
523 | words.push_back(val); \ |
524 | } \ |
525 | } |
526 | switch (opcode) { |
527 | case SpvOpIMul: |
528 | FOLD_OP(*); |
529 | break; |
530 | case SpvOpSDiv: |
531 | case SpvOpUDiv: |
532 | assert(false && "Should not merge integer division" ); |
533 | break; |
534 | case SpvOpIAdd: |
535 | FOLD_OP(+); |
536 | break; |
537 | case SpvOpISub: |
538 | FOLD_OP(-); |
539 | break; |
540 | default: |
541 | assert(false && "Unexpected operation" ); |
542 | break; |
543 | } |
544 | #undef FOLD_OP |
545 | const analysis::Constant* merged_const = const_mgr->GetConstant(type, words); |
546 | return const_mgr->GetDefiningInstruction(merged_const)->result_id(); |
547 | } |
548 | |
549 | // Performs |input1| |opcode| |input2| and returns the merged constant result |
550 | // id. Returns 0 if the result is not a valid value. The input types must be |
551 | // Integers, Floats or Vectors of such. |
552 | uint32_t PerformOperation(analysis::ConstantManager* const_mgr, SpvOp opcode, |
553 | const analysis::Constant* input1, |
554 | const analysis::Constant* input2) { |
555 | assert(input1 && input2); |
556 | const analysis::Type* type = input1->type(); |
557 | std::vector<uint32_t> words; |
558 | if (const analysis::Vector* vector_type = type->AsVector()) { |
559 | const analysis::Type* ele_type = vector_type->element_type(); |
560 | for (uint32_t i = 0; i != vector_type->element_count(); ++i) { |
561 | uint32_t id = 0; |
562 | |
563 | const analysis::Constant* input1_comp = nullptr; |
564 | if (const analysis::VectorConstant* input1_vector = |
565 | input1->AsVectorConstant()) { |
566 | input1_comp = input1_vector->GetComponents()[i]; |
567 | } else { |
568 | assert(input1->AsNullConstant()); |
569 | input1_comp = const_mgr->GetConstant(ele_type, {}); |
570 | } |
571 | |
572 | const analysis::Constant* input2_comp = nullptr; |
573 | if (const analysis::VectorConstant* input2_vector = |
574 | input2->AsVectorConstant()) { |
575 | input2_comp = input2_vector->GetComponents()[i]; |
576 | } else { |
577 | assert(input2->AsNullConstant()); |
578 | input2_comp = const_mgr->GetConstant(ele_type, {}); |
579 | } |
580 | |
581 | if (ele_type->AsFloat()) { |
582 | id = PerformFloatingPointOperation(const_mgr, opcode, input1_comp, |
583 | input2_comp); |
584 | } else { |
585 | assert(ele_type->AsInteger()); |
586 | id = PerformIntegerOperation(const_mgr, opcode, input1_comp, |
587 | input2_comp); |
588 | } |
589 | if (id == 0) return 0; |
590 | words.push_back(id); |
591 | } |
592 | const analysis::Constant* merged_const = |
593 | const_mgr->GetConstant(type, words); |
594 | return const_mgr->GetDefiningInstruction(merged_const)->result_id(); |
595 | } else if (type->AsFloat()) { |
596 | return PerformFloatingPointOperation(const_mgr, opcode, input1, input2); |
597 | } else { |
598 | assert(type->AsInteger()); |
599 | return PerformIntegerOperation(const_mgr, opcode, input1, input2); |
600 | } |
601 | } |
602 | |
603 | // Merges consecutive multiplies where each contains one constant operand. |
604 | // Cases: |
605 | // 2 * (x * 2) = x * 4 |
606 | // 2 * (2 * x) = x * 4 |
607 | // (x * 2) * 2 = x * 4 |
608 | // (2 * x) * 2 = x * 4 |
609 | FoldingRule MergeMulMulArithmetic() { |
610 | return [](IRContext* context, Instruction* inst, |
611 | const std::vector<const analysis::Constant*>& constants) { |
612 | assert(inst->opcode() == SpvOpFMul || inst->opcode() == SpvOpIMul); |
613 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
614 | const analysis::Type* type = |
615 | context->get_type_mgr()->GetType(inst->type_id()); |
616 | if (HasFloatingPoint(type) && !inst->IsFloatingPointFoldingAllowed()) |
617 | return false; |
618 | |
619 | uint32_t width = ElementWidth(type); |
620 | if (width != 32 && width != 64) return false; |
621 | |
622 | // Determine the constant input and the variable input in |inst|. |
623 | const analysis::Constant* const_input1 = ConstInput(constants); |
624 | if (!const_input1) return false; |
625 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
626 | if (HasFloatingPoint(type) && !other_inst->IsFloatingPointFoldingAllowed()) |
627 | return false; |
628 | |
629 | if (other_inst->opcode() == inst->opcode()) { |
630 | std::vector<const analysis::Constant*> other_constants = |
631 | const_mgr->GetOperandConstants(other_inst); |
632 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
633 | if (!const_input2) return false; |
634 | |
635 | bool other_first_is_variable = other_constants[0] == nullptr; |
636 | uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(), |
637 | const_input1, const_input2); |
638 | if (merged_id == 0) return false; |
639 | |
640 | uint32_t non_const_id = other_first_is_variable |
641 | ? other_inst->GetSingleWordInOperand(0u) |
642 | : other_inst->GetSingleWordInOperand(1u); |
643 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}}, |
644 | {SPV_OPERAND_TYPE_ID, {merged_id}}}); |
645 | return true; |
646 | } |
647 | |
648 | return false; |
649 | }; |
650 | } |
651 | |
652 | // Merges divides into subsequent multiplies if each instruction contains one |
653 | // constant operand. Does not support integer operations. |
654 | // Cases: |
655 | // 2 * (x / 2) = x * 1 |
656 | // 2 * (2 / x) = 4 / x |
657 | // (x / 2) * 2 = x * 1 |
658 | // (2 / x) * 2 = 4 / x |
659 | // (y / x) * x = y |
660 | // x * (y / x) = y |
661 | FoldingRule MergeMulDivArithmetic() { |
662 | return [](IRContext* context, Instruction* inst, |
663 | const std::vector<const analysis::Constant*>& constants) { |
664 | assert(inst->opcode() == SpvOpFMul); |
665 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
666 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
667 | |
668 | const analysis::Type* type = |
669 | context->get_type_mgr()->GetType(inst->type_id()); |
670 | if (!inst->IsFloatingPointFoldingAllowed()) return false; |
671 | |
672 | uint32_t width = ElementWidth(type); |
673 | if (width != 32 && width != 64) return false; |
674 | |
675 | for (uint32_t i = 0; i < 2; i++) { |
676 | uint32_t op_id = inst->GetSingleWordInOperand(i); |
677 | Instruction* op_inst = def_use_mgr->GetDef(op_id); |
678 | if (op_inst->opcode() == SpvOpFDiv) { |
679 | if (op_inst->GetSingleWordInOperand(1) == |
680 | inst->GetSingleWordInOperand(1 - i)) { |
681 | inst->SetOpcode(SpvOpCopyObject); |
682 | inst->SetInOperands( |
683 | {{SPV_OPERAND_TYPE_ID, {op_inst->GetSingleWordInOperand(0)}}}); |
684 | return true; |
685 | } |
686 | } |
687 | } |
688 | |
689 | const analysis::Constant* const_input1 = ConstInput(constants); |
690 | if (!const_input1) return false; |
691 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
692 | if (!other_inst->IsFloatingPointFoldingAllowed()) return false; |
693 | |
694 | if (other_inst->opcode() == SpvOpFDiv) { |
695 | std::vector<const analysis::Constant*> other_constants = |
696 | const_mgr->GetOperandConstants(other_inst); |
697 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
698 | if (!const_input2 || HasZero(const_input2)) return false; |
699 | |
700 | bool other_first_is_variable = other_constants[0] == nullptr; |
701 | // If the variable value is the second operand of the divide, multiply |
702 | // the constants together. Otherwise divide the constants. |
703 | uint32_t merged_id = PerformOperation( |
704 | const_mgr, |
705 | other_first_is_variable ? other_inst->opcode() : inst->opcode(), |
706 | const_input1, const_input2); |
707 | if (merged_id == 0) return false; |
708 | |
709 | uint32_t non_const_id = other_first_is_variable |
710 | ? other_inst->GetSingleWordInOperand(0u) |
711 | : other_inst->GetSingleWordInOperand(1u); |
712 | |
713 | // If the variable value is on the second operand of the div, then this |
714 | // operation is a div. Otherwise it should be a multiply. |
715 | inst->SetOpcode(other_first_is_variable ? inst->opcode() |
716 | : other_inst->opcode()); |
717 | if (other_first_is_variable) { |
718 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {non_const_id}}, |
719 | {SPV_OPERAND_TYPE_ID, {merged_id}}}); |
720 | } else { |
721 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {merged_id}}, |
722 | {SPV_OPERAND_TYPE_ID, {non_const_id}}}); |
723 | } |
724 | return true; |
725 | } |
726 | |
727 | return false; |
728 | }; |
729 | } |
730 | |
731 | // Merges multiply of constant and negation. |
732 | // Cases: |
733 | // (-x) * 2 = x * -2 |
734 | // 2 * (-x) = x * -2 |
735 | FoldingRule MergeMulNegateArithmetic() { |
736 | return [](IRContext* context, Instruction* inst, |
737 | const std::vector<const analysis::Constant*>& constants) { |
738 | assert(inst->opcode() == SpvOpFMul || inst->opcode() == SpvOpIMul); |
739 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
740 | const analysis::Type* type = |
741 | context->get_type_mgr()->GetType(inst->type_id()); |
742 | bool uses_float = HasFloatingPoint(type); |
743 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
744 | |
745 | uint32_t width = ElementWidth(type); |
746 | if (width != 32 && width != 64) return false; |
747 | |
748 | const analysis::Constant* const_input1 = ConstInput(constants); |
749 | if (!const_input1) return false; |
750 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
751 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
752 | return false; |
753 | |
754 | if (other_inst->opcode() == SpvOpFNegate || |
755 | other_inst->opcode() == SpvOpSNegate) { |
756 | uint32_t neg_id = NegateConstant(const_mgr, const_input1); |
757 | |
758 | inst->SetInOperands( |
759 | {{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}, |
760 | {SPV_OPERAND_TYPE_ID, {neg_id}}}); |
761 | return true; |
762 | } |
763 | |
764 | return false; |
765 | }; |
766 | } |
767 | |
768 | // Merges consecutive divides if each instruction contains one constant operand. |
769 | // Does not support integer division. |
770 | // Cases: |
771 | // 2 / (x / 2) = 4 / x |
772 | // 4 / (2 / x) = 2 * x |
773 | // (4 / x) / 2 = 2 / x |
774 | // (x / 2) / 2 = x / 4 |
775 | FoldingRule MergeDivDivArithmetic() { |
776 | return [](IRContext* context, Instruction* inst, |
777 | const std::vector<const analysis::Constant*>& constants) { |
778 | assert(inst->opcode() == SpvOpFDiv); |
779 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
780 | const analysis::Type* type = |
781 | context->get_type_mgr()->GetType(inst->type_id()); |
782 | if (!inst->IsFloatingPointFoldingAllowed()) return false; |
783 | |
784 | uint32_t width = ElementWidth(type); |
785 | if (width != 32 && width != 64) return false; |
786 | |
787 | const analysis::Constant* const_input1 = ConstInput(constants); |
788 | if (!const_input1 || HasZero(const_input1)) return false; |
789 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
790 | if (!other_inst->IsFloatingPointFoldingAllowed()) return false; |
791 | |
792 | bool first_is_variable = constants[0] == nullptr; |
793 | if (other_inst->opcode() == inst->opcode()) { |
794 | std::vector<const analysis::Constant*> other_constants = |
795 | const_mgr->GetOperandConstants(other_inst); |
796 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
797 | if (!const_input2 || HasZero(const_input2)) return false; |
798 | |
799 | bool other_first_is_variable = other_constants[0] == nullptr; |
800 | |
801 | SpvOp merge_op = inst->opcode(); |
802 | if (other_first_is_variable) { |
803 | // Constants magnify. |
804 | merge_op = SpvOpFMul; |
805 | } |
806 | |
807 | // This is an x / (*) case. Swap the inputs. Doesn't harm multiply |
808 | // because it is commutative. |
809 | if (first_is_variable) std::swap(const_input1, const_input2); |
810 | uint32_t merged_id = |
811 | PerformOperation(const_mgr, merge_op, const_input1, const_input2); |
812 | if (merged_id == 0) return false; |
813 | |
814 | uint32_t non_const_id = other_first_is_variable |
815 | ? other_inst->GetSingleWordInOperand(0u) |
816 | : other_inst->GetSingleWordInOperand(1u); |
817 | |
818 | SpvOp op = inst->opcode(); |
819 | if (!first_is_variable && !other_first_is_variable) { |
820 | // Effectively div of 1/x, so change to multiply. |
821 | op = SpvOpFMul; |
822 | } |
823 | |
824 | uint32_t op1 = merged_id; |
825 | uint32_t op2 = non_const_id; |
826 | if (first_is_variable && other_first_is_variable) std::swap(op1, op2); |
827 | inst->SetOpcode(op); |
828 | inst->SetInOperands( |
829 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
830 | return true; |
831 | } |
832 | |
833 | return false; |
834 | }; |
835 | } |
836 | |
837 | // Fold multiplies succeeded by divides where each instruction contains a |
838 | // constant operand. Does not support integer divide. |
839 | // Cases: |
840 | // 4 / (x * 2) = 2 / x |
841 | // 4 / (2 * x) = 2 / x |
842 | // (x * 4) / 2 = x * 2 |
843 | // (4 * x) / 2 = x * 2 |
844 | // (x * y) / x = y |
845 | // (y * x) / x = y |
846 | FoldingRule MergeDivMulArithmetic() { |
847 | return [](IRContext* context, Instruction* inst, |
848 | const std::vector<const analysis::Constant*>& constants) { |
849 | assert(inst->opcode() == SpvOpFDiv); |
850 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
851 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
852 | |
853 | const analysis::Type* type = |
854 | context->get_type_mgr()->GetType(inst->type_id()); |
855 | if (!inst->IsFloatingPointFoldingAllowed()) return false; |
856 | |
857 | uint32_t width = ElementWidth(type); |
858 | if (width != 32 && width != 64) return false; |
859 | |
860 | uint32_t op_id = inst->GetSingleWordInOperand(0); |
861 | Instruction* op_inst = def_use_mgr->GetDef(op_id); |
862 | |
863 | if (op_inst->opcode() == SpvOpFMul) { |
864 | for (uint32_t i = 0; i < 2; i++) { |
865 | if (op_inst->GetSingleWordInOperand(i) == |
866 | inst->GetSingleWordInOperand(1)) { |
867 | inst->SetOpcode(SpvOpCopyObject); |
868 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, |
869 | {op_inst->GetSingleWordInOperand(1 - i)}}}); |
870 | return true; |
871 | } |
872 | } |
873 | } |
874 | |
875 | const analysis::Constant* const_input1 = ConstInput(constants); |
876 | if (!const_input1 || HasZero(const_input1)) return false; |
877 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
878 | if (!other_inst->IsFloatingPointFoldingAllowed()) return false; |
879 | |
880 | bool first_is_variable = constants[0] == nullptr; |
881 | if (other_inst->opcode() == SpvOpFMul) { |
882 | std::vector<const analysis::Constant*> other_constants = |
883 | const_mgr->GetOperandConstants(other_inst); |
884 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
885 | if (!const_input2) return false; |
886 | |
887 | bool other_first_is_variable = other_constants[0] == nullptr; |
888 | |
889 | // This is an x / (*) case. Swap the inputs. |
890 | if (first_is_variable) std::swap(const_input1, const_input2); |
891 | uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(), |
892 | const_input1, const_input2); |
893 | if (merged_id == 0) return false; |
894 | |
895 | uint32_t non_const_id = other_first_is_variable |
896 | ? other_inst->GetSingleWordInOperand(0u) |
897 | : other_inst->GetSingleWordInOperand(1u); |
898 | |
899 | uint32_t op1 = merged_id; |
900 | uint32_t op2 = non_const_id; |
901 | if (first_is_variable) std::swap(op1, op2); |
902 | |
903 | // Convert to multiply |
904 | if (first_is_variable) inst->SetOpcode(other_inst->opcode()); |
905 | inst->SetInOperands( |
906 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
907 | return true; |
908 | } |
909 | |
910 | return false; |
911 | }; |
912 | } |
913 | |
914 | // Fold divides of a constant and a negation. |
915 | // Cases: |
916 | // (-x) / 2 = x / -2 |
917 | // 2 / (-x) = 2 / -x |
918 | FoldingRule MergeDivNegateArithmetic() { |
919 | return [](IRContext* context, Instruction* inst, |
920 | const std::vector<const analysis::Constant*>& constants) { |
921 | assert(inst->opcode() == SpvOpFDiv || inst->opcode() == SpvOpSDiv || |
922 | inst->opcode() == SpvOpUDiv); |
923 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
924 | const analysis::Type* type = |
925 | context->get_type_mgr()->GetType(inst->type_id()); |
926 | bool uses_float = HasFloatingPoint(type); |
927 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
928 | |
929 | uint32_t width = ElementWidth(type); |
930 | if (width != 32 && width != 64) return false; |
931 | |
932 | const analysis::Constant* const_input1 = ConstInput(constants); |
933 | if (!const_input1) return false; |
934 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
935 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
936 | return false; |
937 | |
938 | bool first_is_variable = constants[0] == nullptr; |
939 | if (other_inst->opcode() == SpvOpFNegate || |
940 | other_inst->opcode() == SpvOpSNegate) { |
941 | uint32_t neg_id = NegateConstant(const_mgr, const_input1); |
942 | |
943 | if (first_is_variable) { |
944 | inst->SetInOperands( |
945 | {{SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}, |
946 | {SPV_OPERAND_TYPE_ID, {neg_id}}}); |
947 | } else { |
948 | inst->SetInOperands( |
949 | {{SPV_OPERAND_TYPE_ID, {neg_id}}, |
950 | {SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}}); |
951 | } |
952 | return true; |
953 | } |
954 | |
955 | return false; |
956 | }; |
957 | } |
958 | |
959 | // Folds addition of a constant and a negation. |
960 | // Cases: |
961 | // (-x) + 2 = 2 - x |
962 | // 2 + (-x) = 2 - x |
963 | FoldingRule MergeAddNegateArithmetic() { |
964 | return [](IRContext* context, Instruction* inst, |
965 | const std::vector<const analysis::Constant*>& constants) { |
966 | assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd); |
967 | const analysis::Type* type = |
968 | context->get_type_mgr()->GetType(inst->type_id()); |
969 | bool uses_float = HasFloatingPoint(type); |
970 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
971 | |
972 | const analysis::Constant* const_input1 = ConstInput(constants); |
973 | if (!const_input1) return false; |
974 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
975 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
976 | return false; |
977 | |
978 | if (other_inst->opcode() == SpvOpSNegate || |
979 | other_inst->opcode() == SpvOpFNegate) { |
980 | inst->SetOpcode(HasFloatingPoint(type) ? SpvOpFSub : SpvOpISub); |
981 | uint32_t const_id = constants[0] ? inst->GetSingleWordInOperand(0u) |
982 | : inst->GetSingleWordInOperand(1u); |
983 | inst->SetInOperands( |
984 | {{SPV_OPERAND_TYPE_ID, {const_id}}, |
985 | {SPV_OPERAND_TYPE_ID, {other_inst->GetSingleWordInOperand(0u)}}}); |
986 | return true; |
987 | } |
988 | return false; |
989 | }; |
990 | } |
991 | |
992 | // Folds subtraction of a constant and a negation. |
993 | // Cases: |
994 | // (-x) - 2 = -2 - x |
995 | // 2 - (-x) = x + 2 |
996 | FoldingRule MergeSubNegateArithmetic() { |
997 | return [](IRContext* context, Instruction* inst, |
998 | const std::vector<const analysis::Constant*>& constants) { |
999 | assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub); |
1000 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1001 | const analysis::Type* type = |
1002 | context->get_type_mgr()->GetType(inst->type_id()); |
1003 | bool uses_float = HasFloatingPoint(type); |
1004 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1005 | |
1006 | uint32_t width = ElementWidth(type); |
1007 | if (width != 32 && width != 64) return false; |
1008 | |
1009 | const analysis::Constant* const_input1 = ConstInput(constants); |
1010 | if (!const_input1) return false; |
1011 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
1012 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
1013 | return false; |
1014 | |
1015 | if (other_inst->opcode() == SpvOpSNegate || |
1016 | other_inst->opcode() == SpvOpFNegate) { |
1017 | uint32_t op1 = 0; |
1018 | uint32_t op2 = 0; |
1019 | SpvOp opcode = inst->opcode(); |
1020 | if (constants[0] != nullptr) { |
1021 | op1 = other_inst->GetSingleWordInOperand(0u); |
1022 | op2 = inst->GetSingleWordInOperand(0u); |
1023 | opcode = HasFloatingPoint(type) ? SpvOpFAdd : SpvOpIAdd; |
1024 | } else { |
1025 | op1 = NegateConstant(const_mgr, const_input1); |
1026 | op2 = other_inst->GetSingleWordInOperand(0u); |
1027 | } |
1028 | |
1029 | inst->SetOpcode(opcode); |
1030 | inst->SetInOperands( |
1031 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
1032 | return true; |
1033 | } |
1034 | return false; |
1035 | }; |
1036 | } |
1037 | |
1038 | // Folds addition of an addition where each operation has a constant operand. |
1039 | // Cases: |
1040 | // (x + 2) + 2 = x + 4 |
1041 | // (2 + x) + 2 = x + 4 |
1042 | // 2 + (x + 2) = x + 4 |
1043 | // 2 + (2 + x) = x + 4 |
1044 | FoldingRule MergeAddAddArithmetic() { |
1045 | return [](IRContext* context, Instruction* inst, |
1046 | const std::vector<const analysis::Constant*>& constants) { |
1047 | assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd); |
1048 | const analysis::Type* type = |
1049 | context->get_type_mgr()->GetType(inst->type_id()); |
1050 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1051 | bool uses_float = HasFloatingPoint(type); |
1052 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1053 | |
1054 | uint32_t width = ElementWidth(type); |
1055 | if (width != 32 && width != 64) return false; |
1056 | |
1057 | const analysis::Constant* const_input1 = ConstInput(constants); |
1058 | if (!const_input1) return false; |
1059 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
1060 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
1061 | return false; |
1062 | |
1063 | if (other_inst->opcode() == SpvOpFAdd || |
1064 | other_inst->opcode() == SpvOpIAdd) { |
1065 | std::vector<const analysis::Constant*> other_constants = |
1066 | const_mgr->GetOperandConstants(other_inst); |
1067 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
1068 | if (!const_input2) return false; |
1069 | |
1070 | Instruction* non_const_input = |
1071 | NonConstInput(context, other_constants[0], other_inst); |
1072 | uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(), |
1073 | const_input1, const_input2); |
1074 | if (merged_id == 0) return false; |
1075 | |
1076 | inst->SetInOperands( |
1077 | {{SPV_OPERAND_TYPE_ID, {non_const_input->result_id()}}, |
1078 | {SPV_OPERAND_TYPE_ID, {merged_id}}}); |
1079 | return true; |
1080 | } |
1081 | return false; |
1082 | }; |
1083 | } |
1084 | |
1085 | // Folds addition of a subtraction where each operation has a constant operand. |
1086 | // Cases: |
1087 | // (x - 2) + 2 = x + 0 |
1088 | // (2 - x) + 2 = 4 - x |
1089 | // 2 + (x - 2) = x + 0 |
1090 | // 2 + (2 - x) = 4 - x |
1091 | FoldingRule MergeAddSubArithmetic() { |
1092 | return [](IRContext* context, Instruction* inst, |
1093 | const std::vector<const analysis::Constant*>& constants) { |
1094 | assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd); |
1095 | const analysis::Type* type = |
1096 | context->get_type_mgr()->GetType(inst->type_id()); |
1097 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1098 | bool uses_float = HasFloatingPoint(type); |
1099 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1100 | |
1101 | uint32_t width = ElementWidth(type); |
1102 | if (width != 32 && width != 64) return false; |
1103 | |
1104 | const analysis::Constant* const_input1 = ConstInput(constants); |
1105 | if (!const_input1) return false; |
1106 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
1107 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
1108 | return false; |
1109 | |
1110 | if (other_inst->opcode() == SpvOpFSub || |
1111 | other_inst->opcode() == SpvOpISub) { |
1112 | std::vector<const analysis::Constant*> other_constants = |
1113 | const_mgr->GetOperandConstants(other_inst); |
1114 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
1115 | if (!const_input2) return false; |
1116 | |
1117 | bool first_is_variable = other_constants[0] == nullptr; |
1118 | SpvOp op = inst->opcode(); |
1119 | uint32_t op1 = 0; |
1120 | uint32_t op2 = 0; |
1121 | if (first_is_variable) { |
1122 | // Subtract constants. Non-constant operand is first. |
1123 | op1 = other_inst->GetSingleWordInOperand(0u); |
1124 | op2 = PerformOperation(const_mgr, other_inst->opcode(), const_input1, |
1125 | const_input2); |
1126 | } else { |
1127 | // Add constants. Constant operand is first. Change the opcode. |
1128 | op1 = PerformOperation(const_mgr, inst->opcode(), const_input1, |
1129 | const_input2); |
1130 | op2 = other_inst->GetSingleWordInOperand(1u); |
1131 | op = other_inst->opcode(); |
1132 | } |
1133 | if (op1 == 0 || op2 == 0) return false; |
1134 | |
1135 | inst->SetOpcode(op); |
1136 | inst->SetInOperands( |
1137 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
1138 | return true; |
1139 | } |
1140 | return false; |
1141 | }; |
1142 | } |
1143 | |
1144 | // Folds subtraction of an addition where each operand has a constant operand. |
1145 | // Cases: |
1146 | // (x + 2) - 2 = x + 0 |
1147 | // (2 + x) - 2 = x + 0 |
1148 | // 2 - (x + 2) = 0 - x |
1149 | // 2 - (2 + x) = 0 - x |
1150 | FoldingRule MergeSubAddArithmetic() { |
1151 | return [](IRContext* context, Instruction* inst, |
1152 | const std::vector<const analysis::Constant*>& constants) { |
1153 | assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub); |
1154 | const analysis::Type* type = |
1155 | context->get_type_mgr()->GetType(inst->type_id()); |
1156 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1157 | bool uses_float = HasFloatingPoint(type); |
1158 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1159 | |
1160 | uint32_t width = ElementWidth(type); |
1161 | if (width != 32 && width != 64) return false; |
1162 | |
1163 | const analysis::Constant* const_input1 = ConstInput(constants); |
1164 | if (!const_input1) return false; |
1165 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
1166 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
1167 | return false; |
1168 | |
1169 | if (other_inst->opcode() == SpvOpFAdd || |
1170 | other_inst->opcode() == SpvOpIAdd) { |
1171 | std::vector<const analysis::Constant*> other_constants = |
1172 | const_mgr->GetOperandConstants(other_inst); |
1173 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
1174 | if (!const_input2) return false; |
1175 | |
1176 | Instruction* non_const_input = |
1177 | NonConstInput(context, other_constants[0], other_inst); |
1178 | |
1179 | // If the first operand of the sub is not a constant, swap the constants |
1180 | // so the subtraction has the correct operands. |
1181 | if (constants[0] == nullptr) std::swap(const_input1, const_input2); |
1182 | // Subtract the constants. |
1183 | uint32_t merged_id = PerformOperation(const_mgr, inst->opcode(), |
1184 | const_input1, const_input2); |
1185 | SpvOp op = inst->opcode(); |
1186 | uint32_t op1 = 0; |
1187 | uint32_t op2 = 0; |
1188 | if (constants[0] == nullptr) { |
1189 | // Non-constant operand is first. Change the opcode. |
1190 | op1 = non_const_input->result_id(); |
1191 | op2 = merged_id; |
1192 | op = other_inst->opcode(); |
1193 | } else { |
1194 | // Constant operand is first. |
1195 | op1 = merged_id; |
1196 | op2 = non_const_input->result_id(); |
1197 | } |
1198 | if (op1 == 0 || op2 == 0) return false; |
1199 | |
1200 | inst->SetOpcode(op); |
1201 | inst->SetInOperands( |
1202 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
1203 | return true; |
1204 | } |
1205 | return false; |
1206 | }; |
1207 | } |
1208 | |
1209 | // Folds subtraction of a subtraction where each operand has a constant operand. |
1210 | // Cases: |
1211 | // (x - 2) - 2 = x - 4 |
1212 | // (2 - x) - 2 = 0 - x |
1213 | // 2 - (x - 2) = 4 - x |
1214 | // 2 - (2 - x) = x + 0 |
1215 | FoldingRule MergeSubSubArithmetic() { |
1216 | return [](IRContext* context, Instruction* inst, |
1217 | const std::vector<const analysis::Constant*>& constants) { |
1218 | assert(inst->opcode() == SpvOpFSub || inst->opcode() == SpvOpISub); |
1219 | const analysis::Type* type = |
1220 | context->get_type_mgr()->GetType(inst->type_id()); |
1221 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1222 | bool uses_float = HasFloatingPoint(type); |
1223 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1224 | |
1225 | uint32_t width = ElementWidth(type); |
1226 | if (width != 32 && width != 64) return false; |
1227 | |
1228 | const analysis::Constant* const_input1 = ConstInput(constants); |
1229 | if (!const_input1) return false; |
1230 | Instruction* other_inst = NonConstInput(context, constants[0], inst); |
1231 | if (uses_float && !other_inst->IsFloatingPointFoldingAllowed()) |
1232 | return false; |
1233 | |
1234 | if (other_inst->opcode() == SpvOpFSub || |
1235 | other_inst->opcode() == SpvOpISub) { |
1236 | std::vector<const analysis::Constant*> other_constants = |
1237 | const_mgr->GetOperandConstants(other_inst); |
1238 | const analysis::Constant* const_input2 = ConstInput(other_constants); |
1239 | if (!const_input2) return false; |
1240 | |
1241 | Instruction* non_const_input = |
1242 | NonConstInput(context, other_constants[0], other_inst); |
1243 | |
1244 | // Merge the constants. |
1245 | uint32_t merged_id = 0; |
1246 | SpvOp merge_op = inst->opcode(); |
1247 | if (other_constants[0] == nullptr) { |
1248 | merge_op = uses_float ? SpvOpFAdd : SpvOpIAdd; |
1249 | } else if (constants[0] == nullptr) { |
1250 | std::swap(const_input1, const_input2); |
1251 | } |
1252 | merged_id = |
1253 | PerformOperation(const_mgr, merge_op, const_input1, const_input2); |
1254 | if (merged_id == 0) return false; |
1255 | |
1256 | SpvOp op = inst->opcode(); |
1257 | if (constants[0] != nullptr && other_constants[0] != nullptr) { |
1258 | // Change the operation. |
1259 | op = uses_float ? SpvOpFAdd : SpvOpIAdd; |
1260 | } |
1261 | |
1262 | uint32_t op1 = 0; |
1263 | uint32_t op2 = 0; |
1264 | if ((constants[0] == nullptr) ^ (other_constants[0] == nullptr)) { |
1265 | op1 = merged_id; |
1266 | op2 = non_const_input->result_id(); |
1267 | } else { |
1268 | op1 = non_const_input->result_id(); |
1269 | op2 = merged_id; |
1270 | } |
1271 | |
1272 | inst->SetOpcode(op); |
1273 | inst->SetInOperands( |
1274 | {{SPV_OPERAND_TYPE_ID, {op1}}, {SPV_OPERAND_TYPE_ID, {op2}}}); |
1275 | return true; |
1276 | } |
1277 | return false; |
1278 | }; |
1279 | } |
1280 | |
1281 | // Helper function for MergeGenericAddSubArithmetic. If |addend| and |
1282 | // subtrahend of |sub| is the same, merge to copy of minuend of |sub|. |
1283 | bool MergeGenericAddendSub(uint32_t addend, uint32_t sub, Instruction* inst) { |
1284 | IRContext* context = inst->context(); |
1285 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1286 | Instruction* sub_inst = def_use_mgr->GetDef(sub); |
1287 | if (sub_inst->opcode() != SpvOpFSub && sub_inst->opcode() != SpvOpISub) |
1288 | return false; |
1289 | if (sub_inst->opcode() == SpvOpFSub && |
1290 | !sub_inst->IsFloatingPointFoldingAllowed()) |
1291 | return false; |
1292 | if (addend != sub_inst->GetSingleWordInOperand(1)) return false; |
1293 | inst->SetOpcode(SpvOpCopyObject); |
1294 | inst->SetInOperands( |
1295 | {{SPV_OPERAND_TYPE_ID, {sub_inst->GetSingleWordInOperand(0)}}}); |
1296 | context->UpdateDefUse(inst); |
1297 | return true; |
1298 | } |
1299 | |
1300 | // Folds addition of a subtraction where the subtrahend is equal to the |
1301 | // other addend. Return a copy of the minuend. Accepts generic (const and |
1302 | // non-const) operands. |
1303 | // Cases: |
1304 | // (a - b) + b = a |
1305 | // b + (a - b) = a |
1306 | FoldingRule MergeGenericAddSubArithmetic() { |
1307 | return [](IRContext* context, Instruction* inst, |
1308 | const std::vector<const analysis::Constant*>&) { |
1309 | assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd); |
1310 | const analysis::Type* type = |
1311 | context->get_type_mgr()->GetType(inst->type_id()); |
1312 | bool uses_float = HasFloatingPoint(type); |
1313 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1314 | |
1315 | uint32_t width = ElementWidth(type); |
1316 | if (width != 32 && width != 64) return false; |
1317 | |
1318 | uint32_t add_op0 = inst->GetSingleWordInOperand(0); |
1319 | uint32_t add_op1 = inst->GetSingleWordInOperand(1); |
1320 | if (MergeGenericAddendSub(add_op0, add_op1, inst)) return true; |
1321 | return MergeGenericAddendSub(add_op1, add_op0, inst); |
1322 | }; |
1323 | } |
1324 | |
1325 | // Helper function for FactorAddMuls. If |factor0_0| is the same as |factor1_0|, |
1326 | // generate |factor0_0| * (|factor0_1| + |factor1_1|). |
1327 | bool FactorAddMulsOpnds(uint32_t factor0_0, uint32_t factor0_1, |
1328 | uint32_t factor1_0, uint32_t factor1_1, |
1329 | Instruction* inst) { |
1330 | IRContext* context = inst->context(); |
1331 | if (factor0_0 != factor1_0) return false; |
1332 | InstructionBuilder ir_builder( |
1333 | context, inst, |
1334 | IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); |
1335 | Instruction* new_add_inst = ir_builder.AddBinaryOp( |
1336 | inst->type_id(), inst->opcode(), factor0_1, factor1_1); |
1337 | inst->SetOpcode(inst->opcode() == SpvOpFAdd ? SpvOpFMul : SpvOpIMul); |
1338 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {factor0_0}}, |
1339 | {SPV_OPERAND_TYPE_ID, {new_add_inst->result_id()}}}); |
1340 | context->UpdateDefUse(inst); |
1341 | return true; |
1342 | } |
1343 | |
1344 | // Perform the following factoring identity, handling all operand order |
1345 | // combinations: (a * b) + (a * c) = a * (b + c) |
1346 | FoldingRule FactorAddMuls() { |
1347 | return [](IRContext* context, Instruction* inst, |
1348 | const std::vector<const analysis::Constant*>&) { |
1349 | assert(inst->opcode() == SpvOpFAdd || inst->opcode() == SpvOpIAdd); |
1350 | const analysis::Type* type = |
1351 | context->get_type_mgr()->GetType(inst->type_id()); |
1352 | bool uses_float = HasFloatingPoint(type); |
1353 | if (uses_float && !inst->IsFloatingPointFoldingAllowed()) return false; |
1354 | |
1355 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1356 | uint32_t add_op0 = inst->GetSingleWordInOperand(0); |
1357 | Instruction* add_op0_inst = def_use_mgr->GetDef(add_op0); |
1358 | if (add_op0_inst->opcode() != SpvOpFMul && |
1359 | add_op0_inst->opcode() != SpvOpIMul) |
1360 | return false; |
1361 | uint32_t add_op1 = inst->GetSingleWordInOperand(1); |
1362 | Instruction* add_op1_inst = def_use_mgr->GetDef(add_op1); |
1363 | if (add_op1_inst->opcode() != SpvOpFMul && |
1364 | add_op1_inst->opcode() != SpvOpIMul) |
1365 | return false; |
1366 | |
1367 | // Only perform this optimization if both of the muls only have one use. |
1368 | // Otherwise this is a deoptimization in size and performance. |
1369 | if (def_use_mgr->NumUses(add_op0_inst) > 1) return false; |
1370 | if (def_use_mgr->NumUses(add_op1_inst) > 1) return false; |
1371 | |
1372 | if (add_op0_inst->opcode() == SpvOpFMul && |
1373 | (!add_op0_inst->IsFloatingPointFoldingAllowed() || |
1374 | !add_op1_inst->IsFloatingPointFoldingAllowed())) |
1375 | return false; |
1376 | |
1377 | for (int i = 0; i < 2; i++) { |
1378 | for (int j = 0; j < 2; j++) { |
1379 | // Check if operand i in add_op0_inst matches operand j in add_op1_inst. |
1380 | if (FactorAddMulsOpnds(add_op0_inst->GetSingleWordInOperand(i), |
1381 | add_op0_inst->GetSingleWordInOperand(1 - i), |
1382 | add_op1_inst->GetSingleWordInOperand(j), |
1383 | add_op1_inst->GetSingleWordInOperand(1 - j), |
1384 | inst)) |
1385 | return true; |
1386 | } |
1387 | } |
1388 | return false; |
1389 | }; |
1390 | } |
1391 | |
1392 | FoldingRule IntMultipleBy1() { |
1393 | return [](IRContext*, Instruction* inst, |
1394 | const std::vector<const analysis::Constant*>& constants) { |
1395 | assert(inst->opcode() == SpvOpIMul && "Wrong opcode. Should be OpIMul." ); |
1396 | for (uint32_t i = 0; i < 2; i++) { |
1397 | if (constants[i] == nullptr) { |
1398 | continue; |
1399 | } |
1400 | const analysis::IntConstant* int_constant = constants[i]->AsIntConstant(); |
1401 | if (int_constant) { |
1402 | uint32_t width = ElementWidth(int_constant->type()); |
1403 | if (width != 32 && width != 64) return false; |
1404 | bool is_one = (width == 32) ? int_constant->GetU32BitValue() == 1u |
1405 | : int_constant->GetU64BitValue() == 1ull; |
1406 | if (is_one) { |
1407 | inst->SetOpcode(SpvOpCopyObject); |
1408 | inst->SetInOperands( |
1409 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1 - i)}}}); |
1410 | return true; |
1411 | } |
1412 | } |
1413 | } |
1414 | return false; |
1415 | }; |
1416 | } |
1417 | |
1418 | FoldingRule () { |
1419 | return [](IRContext* context, Instruction* inst, |
1420 | const std::vector<const analysis::Constant*>&) { |
1421 | // If the input to an OpCompositeExtract is an OpCompositeConstruct, |
1422 | // then we can simply use the appropriate element in the construction. |
1423 | assert(inst->opcode() == SpvOpCompositeExtract && |
1424 | "Wrong opcode. Should be OpCompositeExtract." ); |
1425 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1426 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
1427 | |
1428 | // If there are no index operands, then this rule cannot do anything. |
1429 | if (inst->NumInOperands() <= 1) { |
1430 | return false; |
1431 | } |
1432 | |
1433 | uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx); |
1434 | Instruction* cinst = def_use_mgr->GetDef(cid); |
1435 | |
1436 | if (cinst->opcode() != SpvOpCompositeConstruct) { |
1437 | return false; |
1438 | } |
1439 | |
1440 | std::vector<Operand> operands; |
1441 | analysis::Type* composite_type = type_mgr->GetType(cinst->type_id()); |
1442 | if (composite_type->AsVector() == nullptr) { |
1443 | // Get the element being extracted from the OpCompositeConstruct |
1444 | // Since it is not a vector, it is simple to extract the single element. |
1445 | uint32_t element_index = inst->GetSingleWordInOperand(1); |
1446 | uint32_t element_id = cinst->GetSingleWordInOperand(element_index); |
1447 | operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}}); |
1448 | |
1449 | // Add the remaining indices for extraction. |
1450 | for (uint32_t i = 2; i < inst->NumInOperands(); ++i) { |
1451 | operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, |
1452 | {inst->GetSingleWordInOperand(i)}}); |
1453 | } |
1454 | |
1455 | } else { |
1456 | // With vectors we have to handle the case where it is concatenating |
1457 | // vectors. |
1458 | assert(inst->NumInOperands() == 2 && |
1459 | "Expecting a vector of scalar values." ); |
1460 | |
1461 | uint32_t element_index = inst->GetSingleWordInOperand(1); |
1462 | for (uint32_t construct_index = 0; |
1463 | construct_index < cinst->NumInOperands(); ++construct_index) { |
1464 | uint32_t element_id = cinst->GetSingleWordInOperand(construct_index); |
1465 | Instruction* element_def = def_use_mgr->GetDef(element_id); |
1466 | analysis::Vector* element_type = |
1467 | type_mgr->GetType(element_def->type_id())->AsVector(); |
1468 | if (element_type) { |
1469 | uint32_t vector_size = element_type->element_count(); |
1470 | if (vector_size < element_index) { |
1471 | // The element we want comes after this vector. |
1472 | element_index -= vector_size; |
1473 | } else { |
1474 | // We want an element of this vector. |
1475 | operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}}); |
1476 | operands.push_back( |
1477 | {SPV_OPERAND_TYPE_LITERAL_INTEGER, {element_index}}); |
1478 | break; |
1479 | } |
1480 | } else { |
1481 | if (element_index == 0) { |
1482 | // This is a scalar, and we this is the element we are extracting. |
1483 | operands.push_back({SPV_OPERAND_TYPE_ID, {element_id}}); |
1484 | break; |
1485 | } else { |
1486 | // Skip over this scalar value. |
1487 | --element_index; |
1488 | } |
1489 | } |
1490 | } |
1491 | } |
1492 | |
1493 | // If there were no extra indices, then we have the final object. No need |
1494 | // to extract even more. |
1495 | if (operands.size() == 1) { |
1496 | inst->SetOpcode(SpvOpCopyObject); |
1497 | } |
1498 | |
1499 | inst->SetInOperands(std::move(operands)); |
1500 | return true; |
1501 | }; |
1502 | } |
1503 | |
1504 | // If the OpCompositeConstruct is simply putting back together elements that |
1505 | // where extracted from the same source, we can simply reuse the source. |
1506 | // |
1507 | // This is a common code pattern because of the way that scalar replacement |
1508 | // works. |
1509 | bool ( |
1510 | IRContext* context, Instruction* inst, |
1511 | const std::vector<const analysis::Constant*>&) { |
1512 | assert(inst->opcode() == SpvOpCompositeConstruct && |
1513 | "Wrong opcode. Should be OpCompositeConstruct." ); |
1514 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1515 | uint32_t original_id = 0; |
1516 | |
1517 | if (inst->NumInOperands() == 0) { |
1518 | // The struct being constructed has no members. |
1519 | return false; |
1520 | } |
1521 | |
1522 | // Check each element to make sure they are: |
1523 | // - extractions |
1524 | // - extracting the same position they are inserting |
1525 | // - all extract from the same id. |
1526 | for (uint32_t i = 0; i < inst->NumInOperands(); ++i) { |
1527 | const uint32_t element_id = inst->GetSingleWordInOperand(i); |
1528 | Instruction* element_inst = def_use_mgr->GetDef(element_id); |
1529 | |
1530 | if (element_inst->opcode() != SpvOpCompositeExtract) { |
1531 | return false; |
1532 | } |
1533 | |
1534 | if (element_inst->NumInOperands() != 2) { |
1535 | return false; |
1536 | } |
1537 | |
1538 | if (element_inst->GetSingleWordInOperand(1) != i) { |
1539 | return false; |
1540 | } |
1541 | |
1542 | if (i == 0) { |
1543 | original_id = |
1544 | element_inst->GetSingleWordInOperand(kExtractCompositeIdInIdx); |
1545 | } else if (original_id != |
1546 | element_inst->GetSingleWordInOperand(kExtractCompositeIdInIdx)) { |
1547 | return false; |
1548 | } |
1549 | } |
1550 | |
1551 | // The last check it to see that the object being extracted from is the |
1552 | // correct type. |
1553 | Instruction* original_inst = def_use_mgr->GetDef(original_id); |
1554 | if (original_inst->type_id() != inst->type_id()) { |
1555 | return false; |
1556 | } |
1557 | |
1558 | // Simplify by using the original object. |
1559 | inst->SetOpcode(SpvOpCopyObject); |
1560 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {original_id}}}); |
1561 | return true; |
1562 | } |
1563 | |
1564 | FoldingRule () { |
1565 | return [](IRContext* context, Instruction* inst, |
1566 | const std::vector<const analysis::Constant*>&) { |
1567 | assert(inst->opcode() == SpvOpCompositeExtract && |
1568 | "Wrong opcode. Should be OpCompositeExtract." ); |
1569 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1570 | uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx); |
1571 | Instruction* cinst = def_use_mgr->GetDef(cid); |
1572 | |
1573 | if (cinst->opcode() != SpvOpCompositeInsert) { |
1574 | return false; |
1575 | } |
1576 | |
1577 | // Find the first position where the list of insert and extract indicies |
1578 | // differ, if at all. |
1579 | uint32_t i; |
1580 | for (i = 1; i < inst->NumInOperands(); ++i) { |
1581 | if (i + 1 >= cinst->NumInOperands()) { |
1582 | break; |
1583 | } |
1584 | |
1585 | if (inst->GetSingleWordInOperand(i) != |
1586 | cinst->GetSingleWordInOperand(i + 1)) { |
1587 | break; |
1588 | } |
1589 | } |
1590 | |
1591 | // We are extracting the element that was inserted. |
1592 | if (i == inst->NumInOperands() && i + 1 == cinst->NumInOperands()) { |
1593 | inst->SetOpcode(SpvOpCopyObject); |
1594 | inst->SetInOperands( |
1595 | {{SPV_OPERAND_TYPE_ID, |
1596 | {cinst->GetSingleWordInOperand(kInsertObjectIdInIdx)}}}); |
1597 | return true; |
1598 | } |
1599 | |
1600 | // Extracting the value that was inserted along with values for the base |
1601 | // composite. Cannot do anything. |
1602 | if (i == inst->NumInOperands()) { |
1603 | return false; |
1604 | } |
1605 | |
1606 | // Extracting an element of the value that was inserted. Extract from |
1607 | // that value directly. |
1608 | if (i + 1 == cinst->NumInOperands()) { |
1609 | std::vector<Operand> operands; |
1610 | operands.push_back( |
1611 | {SPV_OPERAND_TYPE_ID, |
1612 | {cinst->GetSingleWordInOperand(kInsertObjectIdInIdx)}}); |
1613 | for (; i < inst->NumInOperands(); ++i) { |
1614 | operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, |
1615 | {inst->GetSingleWordInOperand(i)}}); |
1616 | } |
1617 | inst->SetInOperands(std::move(operands)); |
1618 | return true; |
1619 | } |
1620 | |
1621 | // Extracting a value that is disjoint from the element being inserted. |
1622 | // Rewrite the extract to use the composite input to the insert. |
1623 | std::vector<Operand> operands; |
1624 | operands.push_back( |
1625 | {SPV_OPERAND_TYPE_ID, |
1626 | {cinst->GetSingleWordInOperand(kInsertCompositeIdInIdx)}}); |
1627 | for (i = 1; i < inst->NumInOperands(); ++i) { |
1628 | operands.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, |
1629 | {inst->GetSingleWordInOperand(i)}}); |
1630 | } |
1631 | inst->SetInOperands(std::move(operands)); |
1632 | return true; |
1633 | }; |
1634 | } |
1635 | |
1636 | // When a VectorShuffle is feeding an Extract, we can extract from one of the |
1637 | // operands of the VectorShuffle. We just need to adjust the index in the |
1638 | // extract instruction. |
1639 | FoldingRule () { |
1640 | return [](IRContext* context, Instruction* inst, |
1641 | const std::vector<const analysis::Constant*>&) { |
1642 | assert(inst->opcode() == SpvOpCompositeExtract && |
1643 | "Wrong opcode. Should be OpCompositeExtract." ); |
1644 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1645 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
1646 | uint32_t cid = inst->GetSingleWordInOperand(kExtractCompositeIdInIdx); |
1647 | Instruction* cinst = def_use_mgr->GetDef(cid); |
1648 | |
1649 | if (cinst->opcode() != SpvOpVectorShuffle) { |
1650 | return false; |
1651 | } |
1652 | |
1653 | // Find the size of the first vector operand of the VectorShuffle |
1654 | Instruction* first_input = |
1655 | def_use_mgr->GetDef(cinst->GetSingleWordInOperand(0)); |
1656 | analysis::Type* first_input_type = |
1657 | type_mgr->GetType(first_input->type_id()); |
1658 | assert(first_input_type->AsVector() && |
1659 | "Input to vector shuffle should be vectors." ); |
1660 | uint32_t first_input_size = first_input_type->AsVector()->element_count(); |
1661 | |
1662 | // Get index of the element the vector shuffle is placing in the position |
1663 | // being extracted. |
1664 | uint32_t new_index = |
1665 | cinst->GetSingleWordInOperand(2 + inst->GetSingleWordInOperand(1)); |
1666 | |
1667 | // Extracting an undefined value so fold this extract into an undef. |
1668 | const uint32_t undef_literal_value = 0xffffffff; |
1669 | if (new_index == undef_literal_value) { |
1670 | inst->SetOpcode(SpvOpUndef); |
1671 | inst->SetInOperands({}); |
1672 | return true; |
1673 | } |
1674 | |
1675 | // Get the id of the of the vector the elemtent comes from, and update the |
1676 | // index if needed. |
1677 | uint32_t new_vector = 0; |
1678 | if (new_index < first_input_size) { |
1679 | new_vector = cinst->GetSingleWordInOperand(0); |
1680 | } else { |
1681 | new_vector = cinst->GetSingleWordInOperand(1); |
1682 | new_index -= first_input_size; |
1683 | } |
1684 | |
1685 | // Update the extract instruction. |
1686 | inst->SetInOperand(kExtractCompositeIdInIdx, {new_vector}); |
1687 | inst->SetInOperand(1, {new_index}); |
1688 | return true; |
1689 | }; |
1690 | } |
1691 | |
1692 | // When an FMix with is feeding an Extract that extracts an element whose |
1693 | // corresponding |a| in the FMix is 0 or 1, we can extract from one of the |
1694 | // operands of the FMix. |
1695 | FoldingRule () { |
1696 | return [](IRContext* context, Instruction* inst, |
1697 | const std::vector<const analysis::Constant*>&) { |
1698 | assert(inst->opcode() == SpvOpCompositeExtract && |
1699 | "Wrong opcode. Should be OpCompositeExtract." ); |
1700 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
1701 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
1702 | |
1703 | uint32_t composite_id = |
1704 | inst->GetSingleWordInOperand(kExtractCompositeIdInIdx); |
1705 | Instruction* composite_inst = def_use_mgr->GetDef(composite_id); |
1706 | |
1707 | if (composite_inst->opcode() != SpvOpExtInst) { |
1708 | return false; |
1709 | } |
1710 | |
1711 | uint32_t inst_set_id = |
1712 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450(); |
1713 | |
1714 | if (composite_inst->GetSingleWordInOperand(kExtInstSetIdInIdx) != |
1715 | inst_set_id || |
1716 | composite_inst->GetSingleWordInOperand(kExtInstInstructionInIdx) != |
1717 | GLSLstd450FMix) { |
1718 | return false; |
1719 | } |
1720 | |
1721 | // Get the |a| for the FMix instruction. |
1722 | uint32_t a_id = composite_inst->GetSingleWordInOperand(kFMixAIdInIdx); |
1723 | std::unique_ptr<Instruction> a(inst->Clone(context)); |
1724 | a->SetInOperand(kExtractCompositeIdInIdx, {a_id}); |
1725 | context->get_instruction_folder().FoldInstruction(a.get()); |
1726 | |
1727 | if (a->opcode() != SpvOpCopyObject) { |
1728 | return false; |
1729 | } |
1730 | |
1731 | const analysis::Constant* a_const = |
1732 | const_mgr->FindDeclaredConstant(a->GetSingleWordInOperand(0)); |
1733 | |
1734 | if (!a_const) { |
1735 | return false; |
1736 | } |
1737 | |
1738 | bool use_x = false; |
1739 | |
1740 | assert(a_const->type()->AsFloat()); |
1741 | double element_value = a_const->GetValueAsDouble(); |
1742 | if (element_value == 0.0) { |
1743 | use_x = true; |
1744 | } else if (element_value == 1.0) { |
1745 | use_x = false; |
1746 | } else { |
1747 | return false; |
1748 | } |
1749 | |
1750 | // Get the id of the of the vector the element comes from. |
1751 | uint32_t new_vector = 0; |
1752 | if (use_x) { |
1753 | new_vector = composite_inst->GetSingleWordInOperand(kFMixXIdInIdx); |
1754 | } else { |
1755 | new_vector = composite_inst->GetSingleWordInOperand(kFMixYIdInIdx); |
1756 | } |
1757 | |
1758 | // Update the extract instruction. |
1759 | inst->SetInOperand(kExtractCompositeIdInIdx, {new_vector}); |
1760 | return true; |
1761 | }; |
1762 | } |
1763 | |
1764 | FoldingRule RedundantPhi() { |
1765 | // An OpPhi instruction where all values are the same or the result of the phi |
1766 | // itself, can be replaced by the value itself. |
1767 | return [](IRContext*, Instruction* inst, |
1768 | const std::vector<const analysis::Constant*>&) { |
1769 | assert(inst->opcode() == SpvOpPhi && "Wrong opcode. Should be OpPhi." ); |
1770 | |
1771 | uint32_t incoming_value = 0; |
1772 | |
1773 | for (uint32_t i = 0; i < inst->NumInOperands(); i += 2) { |
1774 | uint32_t op_id = inst->GetSingleWordInOperand(i); |
1775 | if (op_id == inst->result_id()) { |
1776 | continue; |
1777 | } |
1778 | |
1779 | if (incoming_value == 0) { |
1780 | incoming_value = op_id; |
1781 | } else if (op_id != incoming_value) { |
1782 | // Found two possible value. Can't simplify. |
1783 | return false; |
1784 | } |
1785 | } |
1786 | |
1787 | if (incoming_value == 0) { |
1788 | // Code looks invalid. Don't do anything. |
1789 | return false; |
1790 | } |
1791 | |
1792 | // We have a single incoming value. Simplify using that value. |
1793 | inst->SetOpcode(SpvOpCopyObject); |
1794 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {incoming_value}}}); |
1795 | return true; |
1796 | }; |
1797 | } |
1798 | |
1799 | FoldingRule RedundantSelect() { |
1800 | // An OpSelect instruction where both values are the same or the condition is |
1801 | // constant can be replaced by one of the values |
1802 | return [](IRContext*, Instruction* inst, |
1803 | const std::vector<const analysis::Constant*>& constants) { |
1804 | assert(inst->opcode() == SpvOpSelect && |
1805 | "Wrong opcode. Should be OpSelect." ); |
1806 | assert(inst->NumInOperands() == 3); |
1807 | assert(constants.size() == 3); |
1808 | |
1809 | uint32_t true_id = inst->GetSingleWordInOperand(1); |
1810 | uint32_t false_id = inst->GetSingleWordInOperand(2); |
1811 | |
1812 | if (true_id == false_id) { |
1813 | // Both results are the same, condition doesn't matter |
1814 | inst->SetOpcode(SpvOpCopyObject); |
1815 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {true_id}}}); |
1816 | return true; |
1817 | } else if (constants[0]) { |
1818 | const analysis::Type* type = constants[0]->type(); |
1819 | if (type->AsBool()) { |
1820 | // Scalar constant value, select the corresponding value. |
1821 | inst->SetOpcode(SpvOpCopyObject); |
1822 | if (constants[0]->AsNullConstant() || |
1823 | !constants[0]->AsBoolConstant()->value()) { |
1824 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {false_id}}}); |
1825 | } else { |
1826 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {true_id}}}); |
1827 | } |
1828 | return true; |
1829 | } else { |
1830 | assert(type->AsVector()); |
1831 | if (constants[0]->AsNullConstant()) { |
1832 | // All values come from false id. |
1833 | inst->SetOpcode(SpvOpCopyObject); |
1834 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {false_id}}}); |
1835 | return true; |
1836 | } else { |
1837 | // Convert to a vector shuffle. |
1838 | std::vector<Operand> ops; |
1839 | ops.push_back({SPV_OPERAND_TYPE_ID, {true_id}}); |
1840 | ops.push_back({SPV_OPERAND_TYPE_ID, {false_id}}); |
1841 | const analysis::VectorConstant* vector_const = |
1842 | constants[0]->AsVectorConstant(); |
1843 | uint32_t size = |
1844 | static_cast<uint32_t>(vector_const->GetComponents().size()); |
1845 | for (uint32_t i = 0; i != size; ++i) { |
1846 | const analysis::Constant* component = |
1847 | vector_const->GetComponents()[i]; |
1848 | if (component->AsNullConstant() || |
1849 | !component->AsBoolConstant()->value()) { |
1850 | // Selecting from the false vector which is the second input |
1851 | // vector to the shuffle. Offset the index by |size|. |
1852 | ops.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {i + size}}); |
1853 | } else { |
1854 | // Selecting from true vector which is the first input vector to |
1855 | // the shuffle. |
1856 | ops.push_back({SPV_OPERAND_TYPE_LITERAL_INTEGER, {i}}); |
1857 | } |
1858 | } |
1859 | |
1860 | inst->SetOpcode(SpvOpVectorShuffle); |
1861 | inst->SetInOperands(std::move(ops)); |
1862 | return true; |
1863 | } |
1864 | } |
1865 | } |
1866 | |
1867 | return false; |
1868 | }; |
1869 | } |
1870 | |
1871 | enum class FloatConstantKind { Unknown, Zero, One }; |
1872 | |
1873 | FloatConstantKind getFloatConstantKind(const analysis::Constant* constant) { |
1874 | if (constant == nullptr) { |
1875 | return FloatConstantKind::Unknown; |
1876 | } |
1877 | |
1878 | assert(HasFloatingPoint(constant->type()) && "Unexpected constant type" ); |
1879 | |
1880 | if (constant->AsNullConstant()) { |
1881 | return FloatConstantKind::Zero; |
1882 | } else if (const analysis::VectorConstant* vc = |
1883 | constant->AsVectorConstant()) { |
1884 | const std::vector<const analysis::Constant*>& components = |
1885 | vc->GetComponents(); |
1886 | assert(!components.empty()); |
1887 | |
1888 | FloatConstantKind kind = getFloatConstantKind(components[0]); |
1889 | |
1890 | for (size_t i = 1; i < components.size(); ++i) { |
1891 | if (getFloatConstantKind(components[i]) != kind) { |
1892 | return FloatConstantKind::Unknown; |
1893 | } |
1894 | } |
1895 | |
1896 | return kind; |
1897 | } else if (const analysis::FloatConstant* fc = constant->AsFloatConstant()) { |
1898 | if (fc->IsZero()) return FloatConstantKind::Zero; |
1899 | |
1900 | uint32_t width = fc->type()->AsFloat()->width(); |
1901 | if (width != 32 && width != 64) return FloatConstantKind::Unknown; |
1902 | |
1903 | double value = (width == 64) ? fc->GetDoubleValue() : fc->GetFloatValue(); |
1904 | |
1905 | if (value == 0.0) { |
1906 | return FloatConstantKind::Zero; |
1907 | } else if (value == 1.0) { |
1908 | return FloatConstantKind::One; |
1909 | } else { |
1910 | return FloatConstantKind::Unknown; |
1911 | } |
1912 | } else { |
1913 | return FloatConstantKind::Unknown; |
1914 | } |
1915 | } |
1916 | |
1917 | FoldingRule RedundantFAdd() { |
1918 | return [](IRContext*, Instruction* inst, |
1919 | const std::vector<const analysis::Constant*>& constants) { |
1920 | assert(inst->opcode() == SpvOpFAdd && "Wrong opcode. Should be OpFAdd." ); |
1921 | assert(constants.size() == 2); |
1922 | |
1923 | if (!inst->IsFloatingPointFoldingAllowed()) { |
1924 | return false; |
1925 | } |
1926 | |
1927 | FloatConstantKind kind0 = getFloatConstantKind(constants[0]); |
1928 | FloatConstantKind kind1 = getFloatConstantKind(constants[1]); |
1929 | |
1930 | if (kind0 == FloatConstantKind::Zero || kind1 == FloatConstantKind::Zero) { |
1931 | inst->SetOpcode(SpvOpCopyObject); |
1932 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, |
1933 | {inst->GetSingleWordInOperand( |
1934 | kind0 == FloatConstantKind::Zero ? 1 : 0)}}}); |
1935 | return true; |
1936 | } |
1937 | |
1938 | return false; |
1939 | }; |
1940 | } |
1941 | |
1942 | FoldingRule RedundantFSub() { |
1943 | return [](IRContext*, Instruction* inst, |
1944 | const std::vector<const analysis::Constant*>& constants) { |
1945 | assert(inst->opcode() == SpvOpFSub && "Wrong opcode. Should be OpFSub." ); |
1946 | assert(constants.size() == 2); |
1947 | |
1948 | if (!inst->IsFloatingPointFoldingAllowed()) { |
1949 | return false; |
1950 | } |
1951 | |
1952 | FloatConstantKind kind0 = getFloatConstantKind(constants[0]); |
1953 | FloatConstantKind kind1 = getFloatConstantKind(constants[1]); |
1954 | |
1955 | if (kind0 == FloatConstantKind::Zero) { |
1956 | inst->SetOpcode(SpvOpFNegate); |
1957 | inst->SetInOperands( |
1958 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1)}}}); |
1959 | return true; |
1960 | } |
1961 | |
1962 | if (kind1 == FloatConstantKind::Zero) { |
1963 | inst->SetOpcode(SpvOpCopyObject); |
1964 | inst->SetInOperands( |
1965 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}}); |
1966 | return true; |
1967 | } |
1968 | |
1969 | return false; |
1970 | }; |
1971 | } |
1972 | |
1973 | FoldingRule RedundantFMul() { |
1974 | return [](IRContext*, Instruction* inst, |
1975 | const std::vector<const analysis::Constant*>& constants) { |
1976 | assert(inst->opcode() == SpvOpFMul && "Wrong opcode. Should be OpFMul." ); |
1977 | assert(constants.size() == 2); |
1978 | |
1979 | if (!inst->IsFloatingPointFoldingAllowed()) { |
1980 | return false; |
1981 | } |
1982 | |
1983 | FloatConstantKind kind0 = getFloatConstantKind(constants[0]); |
1984 | FloatConstantKind kind1 = getFloatConstantKind(constants[1]); |
1985 | |
1986 | if (kind0 == FloatConstantKind::Zero || kind1 == FloatConstantKind::Zero) { |
1987 | inst->SetOpcode(SpvOpCopyObject); |
1988 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, |
1989 | {inst->GetSingleWordInOperand( |
1990 | kind0 == FloatConstantKind::Zero ? 0 : 1)}}}); |
1991 | return true; |
1992 | } |
1993 | |
1994 | if (kind0 == FloatConstantKind::One || kind1 == FloatConstantKind::One) { |
1995 | inst->SetOpcode(SpvOpCopyObject); |
1996 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, |
1997 | {inst->GetSingleWordInOperand( |
1998 | kind0 == FloatConstantKind::One ? 1 : 0)}}}); |
1999 | return true; |
2000 | } |
2001 | |
2002 | return false; |
2003 | }; |
2004 | } |
2005 | |
2006 | FoldingRule RedundantFDiv() { |
2007 | return [](IRContext*, Instruction* inst, |
2008 | const std::vector<const analysis::Constant*>& constants) { |
2009 | assert(inst->opcode() == SpvOpFDiv && "Wrong opcode. Should be OpFDiv." ); |
2010 | assert(constants.size() == 2); |
2011 | |
2012 | if (!inst->IsFloatingPointFoldingAllowed()) { |
2013 | return false; |
2014 | } |
2015 | |
2016 | FloatConstantKind kind0 = getFloatConstantKind(constants[0]); |
2017 | FloatConstantKind kind1 = getFloatConstantKind(constants[1]); |
2018 | |
2019 | if (kind0 == FloatConstantKind::Zero) { |
2020 | inst->SetOpcode(SpvOpCopyObject); |
2021 | inst->SetInOperands( |
2022 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}}); |
2023 | return true; |
2024 | } |
2025 | |
2026 | if (kind1 == FloatConstantKind::One) { |
2027 | inst->SetOpcode(SpvOpCopyObject); |
2028 | inst->SetInOperands( |
2029 | {{SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(0)}}}); |
2030 | return true; |
2031 | } |
2032 | |
2033 | return false; |
2034 | }; |
2035 | } |
2036 | |
2037 | FoldingRule RedundantFMix() { |
2038 | return [](IRContext* context, Instruction* inst, |
2039 | const std::vector<const analysis::Constant*>& constants) { |
2040 | assert(inst->opcode() == SpvOpExtInst && |
2041 | "Wrong opcode. Should be OpExtInst." ); |
2042 | |
2043 | if (!inst->IsFloatingPointFoldingAllowed()) { |
2044 | return false; |
2045 | } |
2046 | |
2047 | uint32_t instSetId = |
2048 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450(); |
2049 | |
2050 | if (inst->GetSingleWordInOperand(kExtInstSetIdInIdx) == instSetId && |
2051 | inst->GetSingleWordInOperand(kExtInstInstructionInIdx) == |
2052 | GLSLstd450FMix) { |
2053 | assert(constants.size() == 5); |
2054 | |
2055 | FloatConstantKind kind4 = getFloatConstantKind(constants[4]); |
2056 | |
2057 | if (kind4 == FloatConstantKind::Zero || kind4 == FloatConstantKind::One) { |
2058 | inst->SetOpcode(SpvOpCopyObject); |
2059 | inst->SetInOperands( |
2060 | {{SPV_OPERAND_TYPE_ID, |
2061 | {inst->GetSingleWordInOperand(kind4 == FloatConstantKind::Zero |
2062 | ? kFMixXIdInIdx |
2063 | : kFMixYIdInIdx)}}}); |
2064 | return true; |
2065 | } |
2066 | } |
2067 | |
2068 | return false; |
2069 | }; |
2070 | } |
2071 | |
2072 | // This rule handles addition of zero for integers. |
2073 | FoldingRule RedundantIAdd() { |
2074 | return [](IRContext* context, Instruction* inst, |
2075 | const std::vector<const analysis::Constant*>& constants) { |
2076 | assert(inst->opcode() == SpvOpIAdd && "Wrong opcode. Should be OpIAdd." ); |
2077 | |
2078 | uint32_t operand = std::numeric_limits<uint32_t>::max(); |
2079 | const analysis::Type* operand_type = nullptr; |
2080 | if (constants[0] && constants[0]->IsZero()) { |
2081 | operand = inst->GetSingleWordInOperand(1); |
2082 | operand_type = constants[0]->type(); |
2083 | } else if (constants[1] && constants[1]->IsZero()) { |
2084 | operand = inst->GetSingleWordInOperand(0); |
2085 | operand_type = constants[1]->type(); |
2086 | } |
2087 | |
2088 | if (operand != std::numeric_limits<uint32_t>::max()) { |
2089 | const analysis::Type* inst_type = |
2090 | context->get_type_mgr()->GetType(inst->type_id()); |
2091 | if (inst_type->IsSame(operand_type)) { |
2092 | inst->SetOpcode(SpvOpCopyObject); |
2093 | } else { |
2094 | inst->SetOpcode(SpvOpBitcast); |
2095 | } |
2096 | inst->SetInOperands({{SPV_OPERAND_TYPE_ID, {operand}}}); |
2097 | return true; |
2098 | } |
2099 | return false; |
2100 | }; |
2101 | } |
2102 | |
2103 | // This rule look for a dot with a constant vector containing a single 1 and |
2104 | // the rest 0s. This is the same as doing an extract. |
2105 | FoldingRule () { |
2106 | return [](IRContext* context, Instruction* inst, |
2107 | const std::vector<const analysis::Constant*>& constants) { |
2108 | assert(inst->opcode() == SpvOpDot && "Wrong opcode. Should be OpDot." ); |
2109 | |
2110 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
2111 | |
2112 | if (!inst->IsFloatingPointFoldingAllowed()) { |
2113 | return false; |
2114 | } |
2115 | |
2116 | for (int i = 0; i < 2; ++i) { |
2117 | if (!constants[i]) { |
2118 | continue; |
2119 | } |
2120 | |
2121 | const analysis::Vector* vector_type = constants[i]->type()->AsVector(); |
2122 | assert(vector_type && "Inputs to OpDot must be vectors." ); |
2123 | const analysis::Float* element_type = |
2124 | vector_type->element_type()->AsFloat(); |
2125 | assert(element_type && "Inputs to OpDot must be vectors of floats." ); |
2126 | uint32_t element_width = element_type->width(); |
2127 | if (element_width != 32 && element_width != 64) { |
2128 | return false; |
2129 | } |
2130 | |
2131 | std::vector<const analysis::Constant*> components; |
2132 | components = constants[i]->GetVectorComponents(const_mgr); |
2133 | |
2134 | const uint32_t kNotFound = std::numeric_limits<uint32_t>::max(); |
2135 | |
2136 | uint32_t component_with_one = kNotFound; |
2137 | bool all_others_zero = true; |
2138 | for (uint32_t j = 0; j < components.size(); ++j) { |
2139 | const analysis::Constant* element = components[j]; |
2140 | double value = |
2141 | (element_width == 32 ? element->GetFloat() : element->GetDouble()); |
2142 | if (value == 0.0) { |
2143 | continue; |
2144 | } else if (value == 1.0) { |
2145 | if (component_with_one == kNotFound) { |
2146 | component_with_one = j; |
2147 | } else { |
2148 | component_with_one = kNotFound; |
2149 | break; |
2150 | } |
2151 | } else { |
2152 | all_others_zero = false; |
2153 | break; |
2154 | } |
2155 | } |
2156 | |
2157 | if (!all_others_zero || component_with_one == kNotFound) { |
2158 | continue; |
2159 | } |
2160 | |
2161 | std::vector<Operand> operands; |
2162 | operands.push_back( |
2163 | {SPV_OPERAND_TYPE_ID, {inst->GetSingleWordInOperand(1u - i)}}); |
2164 | operands.push_back( |
2165 | {SPV_OPERAND_TYPE_LITERAL_INTEGER, {component_with_one}}); |
2166 | |
2167 | inst->SetOpcode(SpvOpCompositeExtract); |
2168 | inst->SetInOperands(std::move(operands)); |
2169 | return true; |
2170 | } |
2171 | return false; |
2172 | }; |
2173 | } |
2174 | |
2175 | // If we are storing an undef, then we can remove the store. |
2176 | // |
2177 | // TODO: We can do something similar for OpImageWrite, but checking for volatile |
2178 | // is complicated. Waiting to see if it is needed. |
2179 | FoldingRule StoringUndef() { |
2180 | return [](IRContext* context, Instruction* inst, |
2181 | const std::vector<const analysis::Constant*>&) { |
2182 | assert(inst->opcode() == SpvOpStore && "Wrong opcode. Should be OpStore." ); |
2183 | |
2184 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
2185 | |
2186 | // If this is a volatile store, the store cannot be removed. |
2187 | if (inst->NumInOperands() == 3) { |
2188 | if (inst->GetSingleWordInOperand(2) & SpvMemoryAccessVolatileMask) { |
2189 | return false; |
2190 | } |
2191 | } |
2192 | |
2193 | uint32_t object_id = inst->GetSingleWordInOperand(kStoreObjectInIdx); |
2194 | Instruction* object_inst = def_use_mgr->GetDef(object_id); |
2195 | if (object_inst->opcode() == SpvOpUndef) { |
2196 | inst->ToNop(); |
2197 | return true; |
2198 | } |
2199 | return false; |
2200 | }; |
2201 | } |
2202 | |
2203 | FoldingRule VectorShuffleFeedingShuffle() { |
2204 | return [](IRContext* context, Instruction* inst, |
2205 | const std::vector<const analysis::Constant*>&) { |
2206 | assert(inst->opcode() == SpvOpVectorShuffle && |
2207 | "Wrong opcode. Should be OpVectorShuffle." ); |
2208 | |
2209 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
2210 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
2211 | |
2212 | Instruction* feeding_shuffle_inst = |
2213 | def_use_mgr->GetDef(inst->GetSingleWordInOperand(0)); |
2214 | analysis::Vector* op0_type = |
2215 | type_mgr->GetType(feeding_shuffle_inst->type_id())->AsVector(); |
2216 | uint32_t op0_length = op0_type->element_count(); |
2217 | |
2218 | bool feeder_is_op0 = true; |
2219 | if (feeding_shuffle_inst->opcode() != SpvOpVectorShuffle) { |
2220 | feeding_shuffle_inst = |
2221 | def_use_mgr->GetDef(inst->GetSingleWordInOperand(1)); |
2222 | feeder_is_op0 = false; |
2223 | } |
2224 | |
2225 | if (feeding_shuffle_inst->opcode() != SpvOpVectorShuffle) { |
2226 | return false; |
2227 | } |
2228 | |
2229 | Instruction* feeder2 = |
2230 | def_use_mgr->GetDef(feeding_shuffle_inst->GetSingleWordInOperand(0)); |
2231 | analysis::Vector* feeder_op0_type = |
2232 | type_mgr->GetType(feeder2->type_id())->AsVector(); |
2233 | uint32_t feeder_op0_length = feeder_op0_type->element_count(); |
2234 | |
2235 | uint32_t new_feeder_id = 0; |
2236 | std::vector<Operand> new_operands; |
2237 | new_operands.resize( |
2238 | 2, {SPV_OPERAND_TYPE_ID, {0}}); // Place holders for vector operands. |
2239 | const uint32_t undef_literal = 0xffffffff; |
2240 | for (uint32_t op = 2; op < inst->NumInOperands(); ++op) { |
2241 | uint32_t component_index = inst->GetSingleWordInOperand(op); |
2242 | |
2243 | // Do not interpret the undefined value literal as coming from operand 1. |
2244 | if (component_index != undef_literal && |
2245 | feeder_is_op0 == (component_index < op0_length)) { |
2246 | // This component comes from the feeding_shuffle_inst. Update |
2247 | // |component_index| to be the index into the operand of the feeder. |
2248 | |
2249 | // Adjust component_index to get the index into the operands of the |
2250 | // feeding_shuffle_inst. |
2251 | if (component_index >= op0_length) { |
2252 | component_index -= op0_length; |
2253 | } |
2254 | component_index = |
2255 | feeding_shuffle_inst->GetSingleWordInOperand(component_index + 2); |
2256 | |
2257 | // Check if we are using a component from the first or second operand of |
2258 | // the feeding instruction. |
2259 | if (component_index < feeder_op0_length) { |
2260 | if (new_feeder_id == 0) { |
2261 | // First time through, save the id of the operand the element comes |
2262 | // from. |
2263 | new_feeder_id = feeding_shuffle_inst->GetSingleWordInOperand(0); |
2264 | } else if (new_feeder_id != |
2265 | feeding_shuffle_inst->GetSingleWordInOperand(0)) { |
2266 | // We need both elements of the feeding_shuffle_inst, so we cannot |
2267 | // fold. |
2268 | return false; |
2269 | } |
2270 | } else { |
2271 | if (new_feeder_id == 0) { |
2272 | // First time through, save the id of the operand the element comes |
2273 | // from. |
2274 | new_feeder_id = feeding_shuffle_inst->GetSingleWordInOperand(1); |
2275 | } else if (new_feeder_id != |
2276 | feeding_shuffle_inst->GetSingleWordInOperand(1)) { |
2277 | // We need both elements of the feeding_shuffle_inst, so we cannot |
2278 | // fold. |
2279 | return false; |
2280 | } |
2281 | component_index -= feeder_op0_length; |
2282 | } |
2283 | |
2284 | if (!feeder_is_op0) { |
2285 | component_index += op0_length; |
2286 | } |
2287 | } |
2288 | new_operands.push_back( |
2289 | {SPV_OPERAND_TYPE_LITERAL_INTEGER, {component_index}}); |
2290 | } |
2291 | |
2292 | if (new_feeder_id == 0) { |
2293 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
2294 | const analysis::Type* type = |
2295 | type_mgr->GetType(feeding_shuffle_inst->type_id()); |
2296 | const analysis::Constant* null_const = const_mgr->GetConstant(type, {}); |
2297 | new_feeder_id = |
2298 | const_mgr->GetDefiningInstruction(null_const, 0)->result_id(); |
2299 | } |
2300 | |
2301 | if (feeder_is_op0) { |
2302 | // If the size of the first vector operand changed then the indices |
2303 | // referring to the second operand need to be adjusted. |
2304 | Instruction* new_feeder_inst = def_use_mgr->GetDef(new_feeder_id); |
2305 | analysis::Type* new_feeder_type = |
2306 | type_mgr->GetType(new_feeder_inst->type_id()); |
2307 | uint32_t new_op0_size = new_feeder_type->AsVector()->element_count(); |
2308 | int32_t adjustment = op0_length - new_op0_size; |
2309 | |
2310 | if (adjustment != 0) { |
2311 | for (uint32_t i = 2; i < new_operands.size(); i++) { |
2312 | if (inst->GetSingleWordInOperand(i) >= op0_length) { |
2313 | new_operands[i].words[0] -= adjustment; |
2314 | } |
2315 | } |
2316 | } |
2317 | |
2318 | new_operands[0].words[0] = new_feeder_id; |
2319 | new_operands[1] = inst->GetInOperand(1); |
2320 | } else { |
2321 | new_operands[1].words[0] = new_feeder_id; |
2322 | new_operands[0] = inst->GetInOperand(0); |
2323 | } |
2324 | |
2325 | inst->SetInOperands(std::move(new_operands)); |
2326 | return true; |
2327 | }; |
2328 | } |
2329 | |
2330 | // Removes duplicate ids from the interface list of an OpEntryPoint |
2331 | // instruction. |
2332 | FoldingRule RemoveRedundantOperands() { |
2333 | return [](IRContext*, Instruction* inst, |
2334 | const std::vector<const analysis::Constant*>&) { |
2335 | assert(inst->opcode() == SpvOpEntryPoint && |
2336 | "Wrong opcode. Should be OpEntryPoint." ); |
2337 | bool has_redundant_operand = false; |
2338 | std::unordered_set<uint32_t> seen_operands; |
2339 | std::vector<Operand> new_operands; |
2340 | |
2341 | new_operands.emplace_back(inst->GetOperand(0)); |
2342 | new_operands.emplace_back(inst->GetOperand(1)); |
2343 | new_operands.emplace_back(inst->GetOperand(2)); |
2344 | for (uint32_t i = 3; i < inst->NumOperands(); ++i) { |
2345 | if (seen_operands.insert(inst->GetSingleWordOperand(i)).second) { |
2346 | new_operands.emplace_back(inst->GetOperand(i)); |
2347 | } else { |
2348 | has_redundant_operand = true; |
2349 | } |
2350 | } |
2351 | |
2352 | if (!has_redundant_operand) { |
2353 | return false; |
2354 | } |
2355 | |
2356 | inst->SetInOperands(std::move(new_operands)); |
2357 | return true; |
2358 | }; |
2359 | } |
2360 | |
2361 | // If an image instruction's operand is a constant, updates the image operand |
2362 | // flag from Offset to ConstOffset. |
2363 | FoldingRule UpdateImageOperands() { |
2364 | return [](IRContext*, Instruction* inst, |
2365 | const std::vector<const analysis::Constant*>& constants) { |
2366 | const auto opcode = inst->opcode(); |
2367 | (void)opcode; |
2368 | assert((opcode == SpvOpImageSampleImplicitLod || |
2369 | opcode == SpvOpImageSampleExplicitLod || |
2370 | opcode == SpvOpImageSampleDrefImplicitLod || |
2371 | opcode == SpvOpImageSampleDrefExplicitLod || |
2372 | opcode == SpvOpImageSampleProjImplicitLod || |
2373 | opcode == SpvOpImageSampleProjExplicitLod || |
2374 | opcode == SpvOpImageSampleProjDrefImplicitLod || |
2375 | opcode == SpvOpImageSampleProjDrefExplicitLod || |
2376 | opcode == SpvOpImageFetch || opcode == SpvOpImageGather || |
2377 | opcode == SpvOpImageDrefGather || opcode == SpvOpImageRead || |
2378 | opcode == SpvOpImageWrite || |
2379 | opcode == SpvOpImageSparseSampleImplicitLod || |
2380 | opcode == SpvOpImageSparseSampleExplicitLod || |
2381 | opcode == SpvOpImageSparseSampleDrefImplicitLod || |
2382 | opcode == SpvOpImageSparseSampleDrefExplicitLod || |
2383 | opcode == SpvOpImageSparseSampleProjImplicitLod || |
2384 | opcode == SpvOpImageSparseSampleProjExplicitLod || |
2385 | opcode == SpvOpImageSparseSampleProjDrefImplicitLod || |
2386 | opcode == SpvOpImageSparseSampleProjDrefExplicitLod || |
2387 | opcode == SpvOpImageSparseFetch || |
2388 | opcode == SpvOpImageSparseGather || |
2389 | opcode == SpvOpImageSparseDrefGather || |
2390 | opcode == SpvOpImageSparseRead) && |
2391 | "Wrong opcode. Should be an image instruction." ); |
2392 | |
2393 | int32_t operand_index = ImageOperandsMaskInOperandIndex(inst); |
2394 | if (operand_index >= 0) { |
2395 | auto image_operands = inst->GetSingleWordInOperand(operand_index); |
2396 | if (image_operands & SpvImageOperandsOffsetMask) { |
2397 | uint32_t offset_operand_index = operand_index + 1; |
2398 | if (image_operands & SpvImageOperandsBiasMask) offset_operand_index++; |
2399 | if (image_operands & SpvImageOperandsLodMask) offset_operand_index++; |
2400 | if (image_operands & SpvImageOperandsGradMask) |
2401 | offset_operand_index += 2; |
2402 | assert(((image_operands & SpvImageOperandsConstOffsetMask) == 0) && |
2403 | "Offset and ConstOffset may not be used together" ); |
2404 | if (offset_operand_index < inst->NumOperands()) { |
2405 | if (constants[offset_operand_index]) { |
2406 | image_operands = image_operands | SpvImageOperandsConstOffsetMask; |
2407 | image_operands = image_operands & ~SpvImageOperandsOffsetMask; |
2408 | inst->SetInOperand(operand_index, {image_operands}); |
2409 | return true; |
2410 | } |
2411 | } |
2412 | } |
2413 | } |
2414 | |
2415 | return false; |
2416 | }; |
2417 | } |
2418 | |
2419 | } // namespace |
2420 | |
2421 | void FoldingRules::AddFoldingRules() { |
2422 | // Add all folding rules to the list for the opcodes to which they apply. |
2423 | // Note that the order in which rules are added to the list matters. If a rule |
2424 | // applies to the instruction, the rest of the rules will not be attempted. |
2425 | // Take that into consideration. |
2426 | rules_[SpvOpCompositeConstruct].push_back(CompositeExtractFeedingConstruct); |
2427 | |
2428 | rules_[SpvOpCompositeExtract].push_back(InsertFeedingExtract()); |
2429 | rules_[SpvOpCompositeExtract].push_back(CompositeConstructFeedingExtract()); |
2430 | rules_[SpvOpCompositeExtract].push_back(VectorShuffleFeedingExtract()); |
2431 | rules_[SpvOpCompositeExtract].push_back(FMixFeedingExtract()); |
2432 | |
2433 | rules_[SpvOpDot].push_back(DotProductDoingExtract()); |
2434 | |
2435 | rules_[SpvOpEntryPoint].push_back(RemoveRedundantOperands()); |
2436 | |
2437 | rules_[SpvOpFAdd].push_back(RedundantFAdd()); |
2438 | rules_[SpvOpFAdd].push_back(MergeAddNegateArithmetic()); |
2439 | rules_[SpvOpFAdd].push_back(MergeAddAddArithmetic()); |
2440 | rules_[SpvOpFAdd].push_back(MergeAddSubArithmetic()); |
2441 | rules_[SpvOpFAdd].push_back(MergeGenericAddSubArithmetic()); |
2442 | rules_[SpvOpFAdd].push_back(FactorAddMuls()); |
2443 | |
2444 | rules_[SpvOpFDiv].push_back(RedundantFDiv()); |
2445 | rules_[SpvOpFDiv].push_back(ReciprocalFDiv()); |
2446 | rules_[SpvOpFDiv].push_back(MergeDivDivArithmetic()); |
2447 | rules_[SpvOpFDiv].push_back(MergeDivMulArithmetic()); |
2448 | rules_[SpvOpFDiv].push_back(MergeDivNegateArithmetic()); |
2449 | |
2450 | rules_[SpvOpFMul].push_back(RedundantFMul()); |
2451 | rules_[SpvOpFMul].push_back(MergeMulMulArithmetic()); |
2452 | rules_[SpvOpFMul].push_back(MergeMulDivArithmetic()); |
2453 | rules_[SpvOpFMul].push_back(MergeMulNegateArithmetic()); |
2454 | |
2455 | rules_[SpvOpFNegate].push_back(MergeNegateArithmetic()); |
2456 | rules_[SpvOpFNegate].push_back(MergeNegateAddSubArithmetic()); |
2457 | rules_[SpvOpFNegate].push_back(MergeNegateMulDivArithmetic()); |
2458 | |
2459 | rules_[SpvOpFSub].push_back(RedundantFSub()); |
2460 | rules_[SpvOpFSub].push_back(MergeSubNegateArithmetic()); |
2461 | rules_[SpvOpFSub].push_back(MergeSubAddArithmetic()); |
2462 | rules_[SpvOpFSub].push_back(MergeSubSubArithmetic()); |
2463 | |
2464 | rules_[SpvOpIAdd].push_back(RedundantIAdd()); |
2465 | rules_[SpvOpIAdd].push_back(MergeAddNegateArithmetic()); |
2466 | rules_[SpvOpIAdd].push_back(MergeAddAddArithmetic()); |
2467 | rules_[SpvOpIAdd].push_back(MergeAddSubArithmetic()); |
2468 | rules_[SpvOpIAdd].push_back(MergeGenericAddSubArithmetic()); |
2469 | rules_[SpvOpIAdd].push_back(FactorAddMuls()); |
2470 | |
2471 | rules_[SpvOpIMul].push_back(IntMultipleBy1()); |
2472 | rules_[SpvOpIMul].push_back(MergeMulMulArithmetic()); |
2473 | rules_[SpvOpIMul].push_back(MergeMulNegateArithmetic()); |
2474 | |
2475 | rules_[SpvOpISub].push_back(MergeSubNegateArithmetic()); |
2476 | rules_[SpvOpISub].push_back(MergeSubAddArithmetic()); |
2477 | rules_[SpvOpISub].push_back(MergeSubSubArithmetic()); |
2478 | |
2479 | rules_[SpvOpPhi].push_back(RedundantPhi()); |
2480 | |
2481 | rules_[SpvOpSDiv].push_back(MergeDivNegateArithmetic()); |
2482 | |
2483 | rules_[SpvOpSNegate].push_back(MergeNegateArithmetic()); |
2484 | rules_[SpvOpSNegate].push_back(MergeNegateMulDivArithmetic()); |
2485 | rules_[SpvOpSNegate].push_back(MergeNegateAddSubArithmetic()); |
2486 | |
2487 | rules_[SpvOpSelect].push_back(RedundantSelect()); |
2488 | |
2489 | rules_[SpvOpStore].push_back(StoringUndef()); |
2490 | |
2491 | rules_[SpvOpUDiv].push_back(MergeDivNegateArithmetic()); |
2492 | |
2493 | rules_[SpvOpVectorShuffle].push_back(VectorShuffleFeedingShuffle()); |
2494 | |
2495 | rules_[SpvOpImageSampleImplicitLod].push_back(UpdateImageOperands()); |
2496 | rules_[SpvOpImageSampleExplicitLod].push_back(UpdateImageOperands()); |
2497 | rules_[SpvOpImageSampleDrefImplicitLod].push_back(UpdateImageOperands()); |
2498 | rules_[SpvOpImageSampleDrefExplicitLod].push_back(UpdateImageOperands()); |
2499 | rules_[SpvOpImageSampleProjImplicitLod].push_back(UpdateImageOperands()); |
2500 | rules_[SpvOpImageSampleProjExplicitLod].push_back(UpdateImageOperands()); |
2501 | rules_[SpvOpImageSampleProjDrefImplicitLod].push_back(UpdateImageOperands()); |
2502 | rules_[SpvOpImageSampleProjDrefExplicitLod].push_back(UpdateImageOperands()); |
2503 | rules_[SpvOpImageFetch].push_back(UpdateImageOperands()); |
2504 | rules_[SpvOpImageGather].push_back(UpdateImageOperands()); |
2505 | rules_[SpvOpImageDrefGather].push_back(UpdateImageOperands()); |
2506 | rules_[SpvOpImageRead].push_back(UpdateImageOperands()); |
2507 | rules_[SpvOpImageWrite].push_back(UpdateImageOperands()); |
2508 | rules_[SpvOpImageSparseSampleImplicitLod].push_back(UpdateImageOperands()); |
2509 | rules_[SpvOpImageSparseSampleExplicitLod].push_back(UpdateImageOperands()); |
2510 | rules_[SpvOpImageSparseSampleDrefImplicitLod].push_back( |
2511 | UpdateImageOperands()); |
2512 | rules_[SpvOpImageSparseSampleDrefExplicitLod].push_back( |
2513 | UpdateImageOperands()); |
2514 | rules_[SpvOpImageSparseSampleProjImplicitLod].push_back( |
2515 | UpdateImageOperands()); |
2516 | rules_[SpvOpImageSparseSampleProjExplicitLod].push_back( |
2517 | UpdateImageOperands()); |
2518 | rules_[SpvOpImageSparseSampleProjDrefImplicitLod].push_back( |
2519 | UpdateImageOperands()); |
2520 | rules_[SpvOpImageSparseSampleProjDrefExplicitLod].push_back( |
2521 | UpdateImageOperands()); |
2522 | rules_[SpvOpImageSparseFetch].push_back(UpdateImageOperands()); |
2523 | rules_[SpvOpImageSparseGather].push_back(UpdateImageOperands()); |
2524 | rules_[SpvOpImageSparseDrefGather].push_back(UpdateImageOperands()); |
2525 | rules_[SpvOpImageSparseRead].push_back(UpdateImageOperands()); |
2526 | |
2527 | FeatureManager* feature_manager = context_->get_feature_mgr(); |
2528 | // Add rules for GLSLstd450 |
2529 | uint32_t ext_inst_glslstd450_id = |
2530 | feature_manager->GetExtInstImportId_GLSLstd450(); |
2531 | if (ext_inst_glslstd450_id != 0) { |
2532 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMix}].push_back( |
2533 | RedundantFMix()); |
2534 | } |
2535 | } |
2536 | } // namespace opt |
2537 | } // namespace spvtools |
2538 | |