1 | // Copyright (c) 2018 Google LLC. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "source/opt/scalar_analysis.h" |
16 | |
17 | #include <algorithm> |
18 | #include <functional> |
19 | #include <string> |
20 | #include <utility> |
21 | |
22 | #include "source/opt/ir_context.h" |
23 | |
24 | // Transforms a given scalar operation instruction into a DAG representation. |
25 | // |
26 | // 1. Take an instruction and traverse its operands until we reach a |
27 | // constant node or an instruction which we do not know how to compute the |
28 | // value, such as a load. |
29 | // |
30 | // 2. Create a new node for each instruction traversed and build the nodes for |
31 | // the in operands of that instruction as well. |
32 | // |
33 | // 3. Add the operand nodes as children of the first and hash the node. Use the |
34 | // hash to see if the node is already in the cache. We ensure the children are |
35 | // always in sorted order so that two nodes with the same children but inserted |
36 | // in a different order have the same hash and so that the overloaded operator== |
37 | // will return true. If the node is already in the cache return the cached |
38 | // version instead. |
39 | // |
40 | // 4. The created DAG can then be simplified by |
41 | // ScalarAnalysis::SimplifyExpression, implemented in |
42 | // scalar_analysis_simplification.cpp. See that file for further information on |
43 | // the simplification process. |
44 | // |
45 | |
46 | namespace spvtools { |
47 | namespace opt { |
48 | |
49 | uint32_t SENode::NumberOfNodes = 0; |
50 | |
51 | ScalarEvolutionAnalysis::ScalarEvolutionAnalysis(IRContext* context) |
52 | : context_(context), pretend_equal_{} { |
53 | // Create and cached the CantComputeNode. |
54 | cached_cant_compute_ = |
55 | GetCachedOrAdd(std::unique_ptr<SECantCompute>(new SECantCompute(this))); |
56 | } |
57 | |
58 | SENode* ScalarEvolutionAnalysis::CreateNegation(SENode* operand) { |
59 | // If operand is can't compute then the whole graph is can't compute. |
60 | if (operand->IsCantCompute()) return CreateCantComputeNode(); |
61 | |
62 | if (operand->GetType() == SENode::Constant) { |
63 | return CreateConstant(-operand->AsSEConstantNode()->FoldToSingleValue()); |
64 | } |
65 | std::unique_ptr<SENode> negation_node{new SENegative(this)}; |
66 | negation_node->AddChild(operand); |
67 | return GetCachedOrAdd(std::move(negation_node)); |
68 | } |
69 | |
70 | SENode* ScalarEvolutionAnalysis::CreateConstant(int64_t integer) { |
71 | return GetCachedOrAdd( |
72 | std::unique_ptr<SENode>(new SEConstantNode(this, integer))); |
73 | } |
74 | |
75 | SENode* ScalarEvolutionAnalysis::CreateRecurrentExpression( |
76 | const Loop* loop, SENode* offset, SENode* coefficient) { |
77 | assert(loop && "Recurrent add expressions must have a valid loop." ); |
78 | |
79 | // If operands are can't compute then the whole graph is can't compute. |
80 | if (offset->IsCantCompute() || coefficient->IsCantCompute()) |
81 | return CreateCantComputeNode(); |
82 | |
83 | const Loop* loop_to_use = nullptr; |
84 | if (pretend_equal_[loop]) { |
85 | loop_to_use = pretend_equal_[loop]; |
86 | } else { |
87 | loop_to_use = loop; |
88 | } |
89 | |
90 | std::unique_ptr<SERecurrentNode> phi_node{ |
91 | new SERecurrentNode(this, loop_to_use)}; |
92 | phi_node->AddOffset(offset); |
93 | phi_node->AddCoefficient(coefficient); |
94 | |
95 | return GetCachedOrAdd(std::move(phi_node)); |
96 | } |
97 | |
98 | SENode* ScalarEvolutionAnalysis::AnalyzeMultiplyOp( |
99 | const Instruction* multiply) { |
100 | assert(multiply->opcode() == SpvOp::SpvOpIMul && |
101 | "Multiply node did not come from a multiply instruction" ); |
102 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
103 | |
104 | SENode* op1 = |
105 | AnalyzeInstruction(def_use->GetDef(multiply->GetSingleWordInOperand(0))); |
106 | SENode* op2 = |
107 | AnalyzeInstruction(def_use->GetDef(multiply->GetSingleWordInOperand(1))); |
108 | |
109 | return CreateMultiplyNode(op1, op2); |
110 | } |
111 | |
112 | SENode* ScalarEvolutionAnalysis::CreateMultiplyNode(SENode* operand_1, |
113 | SENode* operand_2) { |
114 | // If operands are can't compute then the whole graph is can't compute. |
115 | if (operand_1->IsCantCompute() || operand_2->IsCantCompute()) |
116 | return CreateCantComputeNode(); |
117 | |
118 | if (operand_1->GetType() == SENode::Constant && |
119 | operand_2->GetType() == SENode::Constant) { |
120 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() * |
121 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
122 | } |
123 | |
124 | std::unique_ptr<SENode> multiply_node{new SEMultiplyNode(this)}; |
125 | |
126 | multiply_node->AddChild(operand_1); |
127 | multiply_node->AddChild(operand_2); |
128 | |
129 | return GetCachedOrAdd(std::move(multiply_node)); |
130 | } |
131 | |
132 | SENode* ScalarEvolutionAnalysis::CreateSubtraction(SENode* operand_1, |
133 | SENode* operand_2) { |
134 | // Fold if both operands are constant. |
135 | if (operand_1->GetType() == SENode::Constant && |
136 | operand_2->GetType() == SENode::Constant) { |
137 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() - |
138 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
139 | } |
140 | |
141 | return CreateAddNode(operand_1, CreateNegation(operand_2)); |
142 | } |
143 | |
144 | SENode* ScalarEvolutionAnalysis::CreateAddNode(SENode* operand_1, |
145 | SENode* operand_2) { |
146 | // Fold if both operands are constant and the |simplify| flag is true. |
147 | if (operand_1->GetType() == SENode::Constant && |
148 | operand_2->GetType() == SENode::Constant) { |
149 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() + |
150 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
151 | } |
152 | |
153 | // If operands are can't compute then the whole graph is can't compute. |
154 | if (operand_1->IsCantCompute() || operand_2->IsCantCompute()) |
155 | return CreateCantComputeNode(); |
156 | |
157 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
158 | |
159 | add_node->AddChild(operand_1); |
160 | add_node->AddChild(operand_2); |
161 | |
162 | return GetCachedOrAdd(std::move(add_node)); |
163 | } |
164 | |
165 | SENode* ScalarEvolutionAnalysis::AnalyzeInstruction(const Instruction* inst) { |
166 | auto itr = recurrent_node_map_.find(inst); |
167 | if (itr != recurrent_node_map_.end()) return itr->second; |
168 | |
169 | SENode* output = nullptr; |
170 | switch (inst->opcode()) { |
171 | case SpvOp::SpvOpPhi: { |
172 | output = AnalyzePhiInstruction(inst); |
173 | break; |
174 | } |
175 | case SpvOp::SpvOpConstant: |
176 | case SpvOp::SpvOpConstantNull: { |
177 | output = AnalyzeConstant(inst); |
178 | break; |
179 | } |
180 | case SpvOp::SpvOpISub: |
181 | case SpvOp::SpvOpIAdd: { |
182 | output = AnalyzeAddOp(inst); |
183 | break; |
184 | } |
185 | case SpvOp::SpvOpIMul: { |
186 | output = AnalyzeMultiplyOp(inst); |
187 | break; |
188 | } |
189 | default: { |
190 | output = CreateValueUnknownNode(inst); |
191 | break; |
192 | } |
193 | } |
194 | |
195 | return output; |
196 | } |
197 | |
198 | SENode* ScalarEvolutionAnalysis::AnalyzeConstant(const Instruction* inst) { |
199 | if (inst->opcode() == SpvOp::SpvOpConstantNull) return CreateConstant(0); |
200 | |
201 | assert(inst->opcode() == SpvOp::SpvOpConstant); |
202 | assert(inst->NumInOperands() == 1); |
203 | int64_t value = 0; |
204 | |
205 | // Look up the instruction in the constant manager. |
206 | const analysis::Constant* constant = |
207 | context_->get_constant_mgr()->FindDeclaredConstant(inst->result_id()); |
208 | |
209 | if (!constant) return CreateCantComputeNode(); |
210 | |
211 | const analysis::IntConstant* int_constant = constant->AsIntConstant(); |
212 | |
213 | // Exit out if it is a 64 bit integer. |
214 | if (!int_constant || int_constant->words().size() != 1) |
215 | return CreateCantComputeNode(); |
216 | |
217 | if (int_constant->type()->AsInteger()->IsSigned()) { |
218 | value = int_constant->GetS32BitValue(); |
219 | } else { |
220 | value = int_constant->GetU32BitValue(); |
221 | } |
222 | |
223 | return CreateConstant(value); |
224 | } |
225 | |
226 | // Handles both addition and subtraction. If the |sub| flag is set then the |
227 | // addition will be op1+(-op2) otherwise op1+op2. |
228 | SENode* ScalarEvolutionAnalysis::AnalyzeAddOp(const Instruction* inst) { |
229 | assert((inst->opcode() == SpvOp::SpvOpIAdd || |
230 | inst->opcode() == SpvOp::SpvOpISub) && |
231 | "Add node must be created from a OpIAdd or OpISub instruction" ); |
232 | |
233 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
234 | |
235 | SENode* op1 = |
236 | AnalyzeInstruction(def_use->GetDef(inst->GetSingleWordInOperand(0))); |
237 | |
238 | SENode* op2 = |
239 | AnalyzeInstruction(def_use->GetDef(inst->GetSingleWordInOperand(1))); |
240 | |
241 | // To handle subtraction we wrap the second operand in a unary negation node. |
242 | if (inst->opcode() == SpvOp::SpvOpISub) { |
243 | op2 = CreateNegation(op2); |
244 | } |
245 | |
246 | return CreateAddNode(op1, op2); |
247 | } |
248 | |
249 | SENode* ScalarEvolutionAnalysis::AnalyzePhiInstruction(const Instruction* phi) { |
250 | // The phi should only have two incoming value pairs. |
251 | if (phi->NumInOperands() != 4) { |
252 | return CreateCantComputeNode(); |
253 | } |
254 | |
255 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
256 | |
257 | // Get the basic block this instruction belongs to. |
258 | BasicBlock* basic_block = |
259 | context_->get_instr_block(const_cast<Instruction*>(phi)); |
260 | |
261 | // And then the function that the basic blocks belongs to. |
262 | Function* function = basic_block->GetParent(); |
263 | |
264 | // Use the function to get the loop descriptor. |
265 | LoopDescriptor* loop_descriptor = context_->GetLoopDescriptor(function); |
266 | |
267 | // We only handle phis in loops at the moment. |
268 | if (!loop_descriptor) return CreateCantComputeNode(); |
269 | |
270 | // Get the innermost loop which this block belongs to. |
271 | Loop* loop = (*loop_descriptor)[basic_block->id()]; |
272 | |
273 | // If the loop doesn't exist or doesn't have a preheader or latch block, exit |
274 | // out. |
275 | if (!loop || !loop->GetLatchBlock() || !loop->GetPreHeaderBlock() || |
276 | loop->GetHeaderBlock() != basic_block) |
277 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
278 | |
279 | const Loop* loop_to_use = nullptr; |
280 | if (pretend_equal_[loop]) { |
281 | loop_to_use = pretend_equal_[loop]; |
282 | } else { |
283 | loop_to_use = loop; |
284 | } |
285 | std::unique_ptr<SERecurrentNode> phi_node{ |
286 | new SERecurrentNode(this, loop_to_use)}; |
287 | |
288 | // We add the node to this map to allow it to be returned before the node is |
289 | // fully built. This is needed as the subsequent call to AnalyzeInstruction |
290 | // could lead back to this |phi| instruction so we return the pointer |
291 | // immediately in AnalyzeInstruction to break the recursion. |
292 | recurrent_node_map_[phi] = phi_node.get(); |
293 | |
294 | // Traverse the operands of the instruction an create new nodes for each one. |
295 | for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { |
296 | uint32_t value_id = phi->GetSingleWordInOperand(i); |
297 | uint32_t incoming_label_id = phi->GetSingleWordInOperand(i + 1); |
298 | |
299 | Instruction* value_inst = def_use->GetDef(value_id); |
300 | SENode* value_node = AnalyzeInstruction(value_inst); |
301 | |
302 | // If any operand is CantCompute then the whole graph is CantCompute. |
303 | if (value_node->IsCantCompute()) |
304 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
305 | |
306 | // If the value is coming from the preheader block then the value is the |
307 | // initial value of the phi. |
308 | if (incoming_label_id == loop->GetPreHeaderBlock()->id()) { |
309 | phi_node->AddOffset(value_node); |
310 | } else if (incoming_label_id == loop->GetLatchBlock()->id()) { |
311 | // Assumed to be in the form of step + phi. |
312 | if (value_node->GetType() != SENode::Add) |
313 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
314 | |
315 | SENode* step_node = nullptr; |
316 | SENode* phi_operand = nullptr; |
317 | SENode* operand_1 = value_node->GetChild(0); |
318 | SENode* operand_2 = value_node->GetChild(1); |
319 | |
320 | // Find which node is the step term. |
321 | if (!operand_1->AsSERecurrentNode()) |
322 | step_node = operand_1; |
323 | else if (!operand_2->AsSERecurrentNode()) |
324 | step_node = operand_2; |
325 | |
326 | // Find which node is the recurrent expression. |
327 | if (operand_1->AsSERecurrentNode()) |
328 | phi_operand = operand_1; |
329 | else if (operand_2->AsSERecurrentNode()) |
330 | phi_operand = operand_2; |
331 | |
332 | // If it is not in the form step + phi exit out. |
333 | if (!(step_node && phi_operand)) |
334 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
335 | |
336 | // If the phi operand is not the same phi node exit out. |
337 | if (phi_operand != phi_node.get()) |
338 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
339 | |
340 | if (!IsLoopInvariant(loop, step_node)) |
341 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
342 | |
343 | phi_node->AddCoefficient(step_node); |
344 | } |
345 | } |
346 | |
347 | // Once the node is fully built we update the map with the version from the |
348 | // cache (if it has already been added to the cache). |
349 | return recurrent_node_map_[phi] = GetCachedOrAdd(std::move(phi_node)); |
350 | } |
351 | |
352 | SENode* ScalarEvolutionAnalysis::CreateValueUnknownNode( |
353 | const Instruction* inst) { |
354 | std::unique_ptr<SEValueUnknown> load_node{ |
355 | new SEValueUnknown(this, inst->result_id())}; |
356 | return GetCachedOrAdd(std::move(load_node)); |
357 | } |
358 | |
359 | SENode* ScalarEvolutionAnalysis::CreateCantComputeNode() { |
360 | return cached_cant_compute_; |
361 | } |
362 | |
363 | // Add the created node into the cache of nodes. If it already exists return it. |
364 | SENode* ScalarEvolutionAnalysis::GetCachedOrAdd( |
365 | std::unique_ptr<SENode> prospective_node) { |
366 | auto itr = node_cache_.find(prospective_node); |
367 | if (itr != node_cache_.end()) { |
368 | return (*itr).get(); |
369 | } |
370 | |
371 | SENode* raw_ptr_to_node = prospective_node.get(); |
372 | node_cache_.insert(std::move(prospective_node)); |
373 | return raw_ptr_to_node; |
374 | } |
375 | |
376 | bool ScalarEvolutionAnalysis::IsLoopInvariant(const Loop* loop, |
377 | const SENode* node) const { |
378 | for (auto itr = node->graph_cbegin(); itr != node->graph_cend(); ++itr) { |
379 | if (const SERecurrentNode* rec = itr->AsSERecurrentNode()) { |
380 | const BasicBlock* = rec->GetLoop()->GetHeaderBlock(); |
381 | |
382 | // If the loop which the recurrent expression belongs to is either |loop |
383 | // or a nested loop inside |loop| then we assume it is variant. |
384 | if (loop->IsInsideLoop(header)) { |
385 | return false; |
386 | } |
387 | } else if (const SEValueUnknown* unknown = itr->AsSEValueUnknown()) { |
388 | // If the instruction is inside the loop we conservatively assume it is |
389 | // loop variant. |
390 | if (loop->IsInsideLoop(unknown->ResultId())) return false; |
391 | } |
392 | } |
393 | |
394 | return true; |
395 | } |
396 | |
397 | SENode* ScalarEvolutionAnalysis::GetCoefficientFromRecurrentTerm( |
398 | SENode* node, const Loop* loop) { |
399 | // Traverse the DAG to find the recurrent expression belonging to |loop|. |
400 | for (auto itr = node->graph_begin(); itr != node->graph_end(); ++itr) { |
401 | SERecurrentNode* rec = itr->AsSERecurrentNode(); |
402 | if (rec && rec->GetLoop() == loop) { |
403 | return rec->GetCoefficient(); |
404 | } |
405 | } |
406 | return CreateConstant(0); |
407 | } |
408 | |
409 | SENode* ScalarEvolutionAnalysis::UpdateChildNode(SENode* parent, |
410 | SENode* old_child, |
411 | SENode* new_child) { |
412 | // Only handles add. |
413 | if (parent->GetType() != SENode::Add) return parent; |
414 | |
415 | std::vector<SENode*> new_children; |
416 | for (SENode* child : *parent) { |
417 | if (child == old_child) { |
418 | new_children.push_back(new_child); |
419 | } else { |
420 | new_children.push_back(child); |
421 | } |
422 | } |
423 | |
424 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
425 | for (SENode* child : new_children) { |
426 | add_node->AddChild(child); |
427 | } |
428 | |
429 | return SimplifyExpression(GetCachedOrAdd(std::move(add_node))); |
430 | } |
431 | |
432 | // Rebuild the |node| eliminating, if it exists, the recurrent term which |
433 | // belongs to the |loop|. |
434 | SENode* ScalarEvolutionAnalysis::BuildGraphWithoutRecurrentTerm( |
435 | SENode* node, const Loop* loop) { |
436 | // If the node is already a recurrent expression belonging to loop then just |
437 | // return the offset. |
438 | SERecurrentNode* recurrent = node->AsSERecurrentNode(); |
439 | if (recurrent) { |
440 | if (recurrent->GetLoop() == loop) { |
441 | return recurrent->GetOffset(); |
442 | } else { |
443 | return node; |
444 | } |
445 | } |
446 | |
447 | std::vector<SENode*> new_children; |
448 | // Otherwise find the recurrent node in the children of this node. |
449 | for (auto itr : *node) { |
450 | recurrent = itr->AsSERecurrentNode(); |
451 | if (recurrent && recurrent->GetLoop() == loop) { |
452 | new_children.push_back(recurrent->GetOffset()); |
453 | } else { |
454 | new_children.push_back(itr); |
455 | } |
456 | } |
457 | |
458 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
459 | for (SENode* child : new_children) { |
460 | add_node->AddChild(child); |
461 | } |
462 | |
463 | return SimplifyExpression(GetCachedOrAdd(std::move(add_node))); |
464 | } |
465 | |
466 | // Return the recurrent term belonging to |loop| if it appears in the graph |
467 | // starting at |node| or null if it doesn't. |
468 | SERecurrentNode* ScalarEvolutionAnalysis::GetRecurrentTerm(SENode* node, |
469 | const Loop* loop) { |
470 | for (auto itr = node->graph_begin(); itr != node->graph_end(); ++itr) { |
471 | SERecurrentNode* rec = itr->AsSERecurrentNode(); |
472 | if (rec && rec->GetLoop() == loop) { |
473 | return rec; |
474 | } |
475 | } |
476 | return nullptr; |
477 | } |
478 | std::string SENode::AsString() const { |
479 | switch (GetType()) { |
480 | case Constant: |
481 | return "Constant" ; |
482 | case RecurrentAddExpr: |
483 | return "RecurrentAddExpr" ; |
484 | case Add: |
485 | return "Add" ; |
486 | case Negative: |
487 | return "Negative" ; |
488 | case Multiply: |
489 | return "Multiply" ; |
490 | case ValueUnknown: |
491 | return "Value Unknown" ; |
492 | case CanNotCompute: |
493 | return "Can not compute" ; |
494 | } |
495 | return "NULL" ; |
496 | } |
497 | |
498 | bool SENode::operator==(const SENode& other) const { |
499 | if (GetType() != other.GetType()) return false; |
500 | |
501 | if (other.GetChildren().size() != children_.size()) return false; |
502 | |
503 | const SERecurrentNode* this_as_recurrent = AsSERecurrentNode(); |
504 | |
505 | // Check the children are the same, for SERecurrentNodes we need to check the |
506 | // offset and coefficient manually as the child vector is sorted by ids so the |
507 | // offset/coefficient information is lost. |
508 | if (!this_as_recurrent) { |
509 | for (size_t index = 0; index < children_.size(); ++index) { |
510 | if (other.GetChildren()[index] != children_[index]) return false; |
511 | } |
512 | } else { |
513 | const SERecurrentNode* other_as_recurrent = other.AsSERecurrentNode(); |
514 | |
515 | // We've already checked the types are the same, this should not fail if |
516 | // this->AsSERecurrentNode() succeeded. |
517 | assert(other_as_recurrent); |
518 | |
519 | if (this_as_recurrent->GetCoefficient() != |
520 | other_as_recurrent->GetCoefficient()) |
521 | return false; |
522 | |
523 | if (this_as_recurrent->GetOffset() != other_as_recurrent->GetOffset()) |
524 | return false; |
525 | |
526 | if (this_as_recurrent->GetLoop() != other_as_recurrent->GetLoop()) |
527 | return false; |
528 | } |
529 | |
530 | // If we're dealing with a value unknown node check both nodes were created by |
531 | // the same instruction. |
532 | if (GetType() == SENode::ValueUnknown) { |
533 | if (AsSEValueUnknown()->ResultId() != |
534 | other.AsSEValueUnknown()->ResultId()) { |
535 | return false; |
536 | } |
537 | } |
538 | |
539 | if (AsSEConstantNode()) { |
540 | if (AsSEConstantNode()->FoldToSingleValue() != |
541 | other.AsSEConstantNode()->FoldToSingleValue()) |
542 | return false; |
543 | } |
544 | |
545 | return true; |
546 | } |
547 | |
548 | bool SENode::operator!=(const SENode& other) const { return !(*this == other); } |
549 | |
550 | namespace { |
551 | // Helper functions to insert 32/64 bit values into the 32 bit hash string. This |
552 | // allows us to add pointers to the string by reinterpreting the pointers as |
553 | // uintptr_t. PushToString will deduce the type, call sizeof on it and use |
554 | // that size to call into the correct PushToStringImpl functor depending on |
555 | // whether it is 32 or 64 bit. |
556 | |
557 | template <typename T, size_t size_of_t> |
558 | struct PushToStringImpl; |
559 | |
560 | template <typename T> |
561 | struct PushToStringImpl<T, 8> { |
562 | void operator()(T id, std::u32string* str) { |
563 | str->push_back(static_cast<uint32_t>(id >> 32)); |
564 | str->push_back(static_cast<uint32_t>(id)); |
565 | } |
566 | }; |
567 | |
568 | template <typename T> |
569 | struct PushToStringImpl<T, 4> { |
570 | void operator()(T id, std::u32string* str) { |
571 | str->push_back(static_cast<uint32_t>(id)); |
572 | } |
573 | }; |
574 | |
575 | template <typename T> |
576 | static void PushToString(T id, std::u32string* str) { |
577 | PushToStringImpl<T, sizeof(T)>{}(id, str); |
578 | } |
579 | |
580 | } // namespace |
581 | |
582 | // Implements the hashing of SENodes. |
583 | size_t SENodeHash::operator()(const SENode* node) const { |
584 | // Concatinate the terms into a string which we can hash. |
585 | std::u32string hash_string{}; |
586 | |
587 | // Hashing the type as a string is safer than hashing the enum as the enum is |
588 | // very likely to collide with constants. |
589 | for (char ch : node->AsString()) { |
590 | hash_string.push_back(static_cast<char32_t>(ch)); |
591 | } |
592 | |
593 | // We just ignore the literal value unless it is a constant. |
594 | if (node->GetType() == SENode::Constant) |
595 | PushToString(node->AsSEConstantNode()->FoldToSingleValue(), &hash_string); |
596 | |
597 | const SERecurrentNode* recurrent = node->AsSERecurrentNode(); |
598 | |
599 | // If we're dealing with a recurrent expression hash the loop as well so that |
600 | // nested inductions like i=0,i++ and j=0,j++ correspond to different nodes. |
601 | if (recurrent) { |
602 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetLoop()), |
603 | &hash_string); |
604 | |
605 | // Recurrent expressions can't be hashed using the normal method as the |
606 | // order of coefficient and offset matters to the hash. |
607 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetCoefficient()), |
608 | &hash_string); |
609 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetOffset()), |
610 | &hash_string); |
611 | |
612 | return std::hash<std::u32string>{}(hash_string); |
613 | } |
614 | |
615 | // Hash the result id of the original instruction which created this node if |
616 | // it is a value unknown node. |
617 | if (node->GetType() == SENode::ValueUnknown) { |
618 | PushToString(node->AsSEValueUnknown()->ResultId(), &hash_string); |
619 | } |
620 | |
621 | // Hash the pointers of the child nodes, each SENode has a unique pointer |
622 | // associated with it. |
623 | const std::vector<SENode*>& children = node->GetChildren(); |
624 | for (const SENode* child : children) { |
625 | PushToString(reinterpret_cast<uintptr_t>(child), &hash_string); |
626 | } |
627 | |
628 | return std::hash<std::u32string>{}(hash_string); |
629 | } |
630 | |
631 | // This overload is the actual overload used by the node_cache_ set. |
632 | size_t SENodeHash::operator()(const std::unique_ptr<SENode>& node) const { |
633 | return this->operator()(node.get()); |
634 | } |
635 | |
636 | void SENode::DumpDot(std::ostream& out, bool recurse) const { |
637 | size_t unique_id = std::hash<const SENode*>{}(this); |
638 | out << unique_id << " [label=\"" << AsString() << " " ; |
639 | if (GetType() == SENode::Constant) { |
640 | out << "\nwith value: " << this->AsSEConstantNode()->FoldToSingleValue(); |
641 | } |
642 | out << "\"]\n" ; |
643 | for (const SENode* child : children_) { |
644 | size_t child_unique_id = std::hash<const SENode*>{}(child); |
645 | out << unique_id << " -> " << child_unique_id << " \n" ; |
646 | if (recurse) child->DumpDot(out, true); |
647 | } |
648 | } |
649 | |
650 | namespace { |
651 | class IsGreaterThanZero { |
652 | public: |
653 | explicit IsGreaterThanZero(IRContext* context) : context_(context) {} |
654 | |
655 | // Determine if the value of |node| is always strictly greater than zero if |
656 | // |or_equal_zero| is false or greater or equal to zero if |or_equal_zero| is |
657 | // true. It returns true is the evaluation was able to conclude something, in |
658 | // which case the result is stored in |result|. |
659 | // The algorithm work by going through all the nodes and determine the |
660 | // sign of each of them. |
661 | bool Eval(const SENode* node, bool or_equal_zero, bool* result) { |
662 | *result = false; |
663 | switch (Visit(node)) { |
664 | case Signedness::kPositiveOrNegative: { |
665 | return false; |
666 | } |
667 | case Signedness::kStrictlyNegative: { |
668 | *result = false; |
669 | break; |
670 | } |
671 | case Signedness::kNegative: { |
672 | if (!or_equal_zero) { |
673 | return false; |
674 | } |
675 | *result = false; |
676 | break; |
677 | } |
678 | case Signedness::kStrictlyPositive: { |
679 | *result = true; |
680 | break; |
681 | } |
682 | case Signedness::kPositive: { |
683 | if (!or_equal_zero) { |
684 | return false; |
685 | } |
686 | *result = true; |
687 | break; |
688 | } |
689 | } |
690 | return true; |
691 | } |
692 | |
693 | private: |
694 | enum class Signedness { |
695 | kPositiveOrNegative, // Yield a value positive or negative. |
696 | kStrictlyNegative, // Yield a value strictly less than 0. |
697 | kNegative, // Yield a value less or equal to 0. |
698 | kStrictlyPositive, // Yield a value strictly greater than 0. |
699 | kPositive // Yield a value greater or equal to 0. |
700 | }; |
701 | |
702 | // Combine the signedness according to arithmetic rules of a given operator. |
703 | using Combiner = std::function<Signedness(Signedness, Signedness)>; |
704 | |
705 | // Returns a functor to interpret the signedness of 2 expressions as if they |
706 | // were added. |
707 | Combiner GetAddCombiner() const { |
708 | return [](Signedness lhs, Signedness rhs) { |
709 | switch (lhs) { |
710 | case Signedness::kPositiveOrNegative: |
711 | break; |
712 | case Signedness::kStrictlyNegative: |
713 | if (rhs == Signedness::kStrictlyNegative || |
714 | rhs == Signedness::kNegative) |
715 | return lhs; |
716 | break; |
717 | case Signedness::kNegative: { |
718 | if (rhs == Signedness::kStrictlyNegative) |
719 | return Signedness::kStrictlyNegative; |
720 | if (rhs == Signedness::kNegative) return Signedness::kNegative; |
721 | break; |
722 | } |
723 | case Signedness::kStrictlyPositive: { |
724 | if (rhs == Signedness::kStrictlyPositive || |
725 | rhs == Signedness::kPositive) { |
726 | return Signedness::kStrictlyPositive; |
727 | } |
728 | break; |
729 | } |
730 | case Signedness::kPositive: { |
731 | if (rhs == Signedness::kStrictlyPositive) |
732 | return Signedness::kStrictlyPositive; |
733 | if (rhs == Signedness::kPositive) return Signedness::kPositive; |
734 | break; |
735 | } |
736 | } |
737 | return Signedness::kPositiveOrNegative; |
738 | }; |
739 | } |
740 | |
741 | // Returns a functor to interpret the signedness of 2 expressions as if they |
742 | // were multiplied. |
743 | Combiner GetMulCombiner() const { |
744 | return [](Signedness lhs, Signedness rhs) { |
745 | switch (lhs) { |
746 | case Signedness::kPositiveOrNegative: |
747 | break; |
748 | case Signedness::kStrictlyNegative: { |
749 | switch (rhs) { |
750 | case Signedness::kPositiveOrNegative: { |
751 | break; |
752 | } |
753 | case Signedness::kStrictlyNegative: { |
754 | return Signedness::kStrictlyPositive; |
755 | } |
756 | case Signedness::kNegative: { |
757 | return Signedness::kPositive; |
758 | } |
759 | case Signedness::kStrictlyPositive: { |
760 | return Signedness::kStrictlyNegative; |
761 | } |
762 | case Signedness::kPositive: { |
763 | return Signedness::kNegative; |
764 | } |
765 | } |
766 | break; |
767 | } |
768 | case Signedness::kNegative: { |
769 | switch (rhs) { |
770 | case Signedness::kPositiveOrNegative: { |
771 | break; |
772 | } |
773 | case Signedness::kStrictlyNegative: |
774 | case Signedness::kNegative: { |
775 | return Signedness::kPositive; |
776 | } |
777 | case Signedness::kStrictlyPositive: |
778 | case Signedness::kPositive: { |
779 | return Signedness::kNegative; |
780 | } |
781 | } |
782 | break; |
783 | } |
784 | case Signedness::kStrictlyPositive: { |
785 | return rhs; |
786 | } |
787 | case Signedness::kPositive: { |
788 | switch (rhs) { |
789 | case Signedness::kPositiveOrNegative: { |
790 | break; |
791 | } |
792 | case Signedness::kStrictlyNegative: |
793 | case Signedness::kNegative: { |
794 | return Signedness::kNegative; |
795 | } |
796 | case Signedness::kStrictlyPositive: |
797 | case Signedness::kPositive: { |
798 | return Signedness::kPositive; |
799 | } |
800 | } |
801 | break; |
802 | } |
803 | } |
804 | return Signedness::kPositiveOrNegative; |
805 | }; |
806 | } |
807 | |
808 | Signedness Visit(const SENode* node) { |
809 | switch (node->GetType()) { |
810 | case SENode::Constant: |
811 | return Visit(node->AsSEConstantNode()); |
812 | break; |
813 | case SENode::RecurrentAddExpr: |
814 | return Visit(node->AsSERecurrentNode()); |
815 | break; |
816 | case SENode::Negative: |
817 | return Visit(node->AsSENegative()); |
818 | break; |
819 | case SENode::CanNotCompute: |
820 | return Visit(node->AsSECantCompute()); |
821 | break; |
822 | case SENode::ValueUnknown: |
823 | return Visit(node->AsSEValueUnknown()); |
824 | break; |
825 | case SENode::Add: |
826 | return VisitExpr(node, GetAddCombiner()); |
827 | break; |
828 | case SENode::Multiply: |
829 | return VisitExpr(node, GetMulCombiner()); |
830 | break; |
831 | } |
832 | return Signedness::kPositiveOrNegative; |
833 | } |
834 | |
835 | // Returns the signedness of a constant |node|. |
836 | Signedness Visit(const SEConstantNode* node) { |
837 | if (0 == node->FoldToSingleValue()) return Signedness::kPositive; |
838 | if (0 < node->FoldToSingleValue()) return Signedness::kStrictlyPositive; |
839 | if (0 > node->FoldToSingleValue()) return Signedness::kStrictlyNegative; |
840 | return Signedness::kPositiveOrNegative; |
841 | } |
842 | |
843 | // Returns the signedness of an unknown |node| based on its type. |
844 | Signedness Visit(const SEValueUnknown* node) { |
845 | Instruction* insn = context_->get_def_use_mgr()->GetDef(node->ResultId()); |
846 | analysis::Type* type = context_->get_type_mgr()->GetType(insn->type_id()); |
847 | assert(type && "Can't retrieve a type for the instruction" ); |
848 | analysis::Integer* int_type = type->AsInteger(); |
849 | assert(type && "Can't retrieve an integer type for the instruction" ); |
850 | return int_type->IsSigned() ? Signedness::kPositiveOrNegative |
851 | : Signedness::kPositive; |
852 | } |
853 | |
854 | // Returns the signedness of a recurring expression. |
855 | Signedness Visit(const SERecurrentNode* node) { |
856 | Signedness coeff_sign = Visit(node->GetCoefficient()); |
857 | // SERecurrentNode represent an affine expression in the range [0, |
858 | // loop_bound], so the result cannot be strictly positive or negative. |
859 | switch (coeff_sign) { |
860 | default: |
861 | break; |
862 | case Signedness::kStrictlyNegative: |
863 | coeff_sign = Signedness::kNegative; |
864 | break; |
865 | case Signedness::kStrictlyPositive: |
866 | coeff_sign = Signedness::kPositive; |
867 | break; |
868 | } |
869 | return GetAddCombiner()(coeff_sign, Visit(node->GetOffset())); |
870 | } |
871 | |
872 | // Returns the signedness of a negation |node|. |
873 | Signedness Visit(const SENegative* node) { |
874 | switch (Visit(*node->begin())) { |
875 | case Signedness::kPositiveOrNegative: { |
876 | return Signedness::kPositiveOrNegative; |
877 | } |
878 | case Signedness::kStrictlyNegative: { |
879 | return Signedness::kStrictlyPositive; |
880 | } |
881 | case Signedness::kNegative: { |
882 | return Signedness::kPositive; |
883 | } |
884 | case Signedness::kStrictlyPositive: { |
885 | return Signedness::kStrictlyNegative; |
886 | } |
887 | case Signedness::kPositive: { |
888 | return Signedness::kNegative; |
889 | } |
890 | } |
891 | return Signedness::kPositiveOrNegative; |
892 | } |
893 | |
894 | Signedness Visit(const SECantCompute*) { |
895 | return Signedness::kPositiveOrNegative; |
896 | } |
897 | |
898 | // Returns the signedness of a binary expression by using the combiner |
899 | // |reduce|. |
900 | Signedness VisitExpr( |
901 | const SENode* node, |
902 | std::function<Signedness(Signedness, Signedness)> reduce) { |
903 | Signedness result = Visit(*node->begin()); |
904 | for (const SENode* operand : make_range(++node->begin(), node->end())) { |
905 | if (result == Signedness::kPositiveOrNegative) { |
906 | return Signedness::kPositiveOrNegative; |
907 | } |
908 | result = reduce(result, Visit(operand)); |
909 | } |
910 | return result; |
911 | } |
912 | |
913 | IRContext* context_; |
914 | }; |
915 | } // namespace |
916 | |
917 | bool ScalarEvolutionAnalysis::IsAlwaysGreaterThanZero(SENode* node, |
918 | bool* is_gt_zero) const { |
919 | return IsGreaterThanZero(context_).Eval(node, false, is_gt_zero); |
920 | } |
921 | |
922 | bool ScalarEvolutionAnalysis::IsAlwaysGreaterOrEqualToZero( |
923 | SENode* node, bool* is_ge_zero) const { |
924 | return IsGreaterThanZero(context_).Eval(node, true, is_ge_zero); |
925 | } |
926 | |
927 | namespace { |
928 | |
929 | // Remove |node| from the |mul| chain (of the form A * ... * |node| * ... * Z), |
930 | // if |node| is not in the chain, returns the original chain. |
931 | static SENode* RemoveOneNodeFromMultiplyChain(SEMultiplyNode* mul, |
932 | const SENode* node) { |
933 | SENode* lhs = mul->GetChildren()[0]; |
934 | SENode* rhs = mul->GetChildren()[1]; |
935 | if (lhs == node) { |
936 | return rhs; |
937 | } |
938 | if (rhs == node) { |
939 | return lhs; |
940 | } |
941 | if (lhs->AsSEMultiplyNode()) { |
942 | SENode* res = RemoveOneNodeFromMultiplyChain(lhs->AsSEMultiplyNode(), node); |
943 | if (res != lhs) |
944 | return mul->GetParentAnalysis()->CreateMultiplyNode(res, rhs); |
945 | } |
946 | if (rhs->AsSEMultiplyNode()) { |
947 | SENode* res = RemoveOneNodeFromMultiplyChain(rhs->AsSEMultiplyNode(), node); |
948 | if (res != rhs) |
949 | return mul->GetParentAnalysis()->CreateMultiplyNode(res, rhs); |
950 | } |
951 | |
952 | return mul; |
953 | } |
954 | } // namespace |
955 | |
956 | std::pair<SExpression, int64_t> SExpression::operator/( |
957 | SExpression rhs_wrapper) const { |
958 | SENode* lhs = node_; |
959 | SENode* rhs = rhs_wrapper.node_; |
960 | // Check for division by 0. |
961 | if (rhs->AsSEConstantNode() && |
962 | !rhs->AsSEConstantNode()->FoldToSingleValue()) { |
963 | return {scev_->CreateCantComputeNode(), 0}; |
964 | } |
965 | |
966 | // Trivial case. |
967 | if (lhs->AsSEConstantNode() && rhs->AsSEConstantNode()) { |
968 | int64_t lhs_value = lhs->AsSEConstantNode()->FoldToSingleValue(); |
969 | int64_t rhs_value = rhs->AsSEConstantNode()->FoldToSingleValue(); |
970 | return {scev_->CreateConstant(lhs_value / rhs_value), |
971 | lhs_value % rhs_value}; |
972 | } |
973 | |
974 | // look for a "c U / U" pattern. |
975 | if (lhs->AsSEMultiplyNode()) { |
976 | assert(lhs->GetChildren().size() == 2 && |
977 | "More than 2 operand for a multiply node." ); |
978 | SENode* res = RemoveOneNodeFromMultiplyChain(lhs->AsSEMultiplyNode(), rhs); |
979 | if (res != lhs) { |
980 | return {res, 0}; |
981 | } |
982 | } |
983 | |
984 | return {scev_->CreateCantComputeNode(), 0}; |
985 | } |
986 | |
987 | } // namespace opt |
988 | } // namespace spvtools |
989 | |