1 | // Copyright (c) 2018 Google LLC. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | // This file implements the SSA rewriting algorithm proposed in |
16 | // |
17 | // Simple and Efficient Construction of Static Single Assignment Form. |
18 | // Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013) |
19 | // In: Jhala R., De Bosschere K. (eds) |
20 | // Compiler Construction. CC 2013. |
21 | // Lecture Notes in Computer Science, vol 7791. |
22 | // Springer, Berlin, Heidelberg |
23 | // |
24 | // https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6 |
25 | // |
26 | // In contrast to common eager algorithms based on dominance and dominance |
27 | // frontier information, this algorithm works backwards from load operations. |
28 | // |
29 | // When a target variable is loaded, it queries the variable's reaching |
30 | // definition. If the reaching definition is unknown at the current location, |
31 | // it searches backwards in the CFG, inserting Phi instructions at join points |
32 | // in the CFG along the way until it finds the desired store instruction. |
33 | // |
34 | // The algorithm avoids repeated lookups using memoization. |
35 | // |
36 | // For reducible CFGs, which are a superset of the structured CFGs in SPIRV, |
37 | // this algorithm is proven to produce minimal SSA. That is, it inserts the |
38 | // minimal number of Phi instructions required to ensure the SSA property, but |
39 | // some Phi instructions may be dead |
40 | // (https://en.wikipedia.org/wiki/Static_single_assignment_form). |
41 | |
42 | #include "source/opt/ssa_rewrite_pass.h" |
43 | |
44 | #include <memory> |
45 | #include <sstream> |
46 | |
47 | #include "source/opcode.h" |
48 | #include "source/opt/cfg.h" |
49 | #include "source/opt/mem_pass.h" |
50 | #include "source/util/make_unique.h" |
51 | |
52 | // Debug logging (0: Off, 1-N: Verbosity level). Replace this with the |
53 | // implementation done for |
54 | // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351 |
55 | // #define SSA_REWRITE_DEBUGGING_LEVEL 3 |
56 | |
57 | #ifdef SSA_REWRITE_DEBUGGING_LEVEL |
58 | #include <ostream> |
59 | #else |
60 | #define SSA_REWRITE_DEBUGGING_LEVEL 0 |
61 | #endif |
62 | |
63 | namespace spvtools { |
64 | namespace opt { |
65 | |
66 | namespace { |
67 | const uint32_t kStoreValIdInIdx = 1; |
68 | const uint32_t kVariableInitIdInIdx = 1; |
69 | } // namespace |
70 | |
71 | std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const { |
72 | std::ostringstream str; |
73 | str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id() |
74 | << "](" ; |
75 | if (phi_args_.size() > 0) { |
76 | uint32_t arg_ix = 0; |
77 | for (uint32_t pred_label : cfg->preds(bb_->id())) { |
78 | uint32_t arg_id = phi_args_[arg_ix++]; |
79 | str << "[%" << arg_id << ", bb(%" << pred_label << ")] " ; |
80 | } |
81 | } |
82 | str << ")" ; |
83 | if (copy_of_ != 0) { |
84 | str << " [COPY OF " << copy_of_ << "]" ; |
85 | } |
86 | str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]" ); |
87 | |
88 | return str.str(); |
89 | } |
90 | |
91 | SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id, |
92 | BasicBlock* bb) { |
93 | // TODO(1841): Handle id overflow. |
94 | uint32_t phi_result_id = pass_->context()->TakeNextId(); |
95 | auto result = phi_candidates_.emplace( |
96 | phi_result_id, PhiCandidate(var_id, phi_result_id, bb)); |
97 | PhiCandidate& phi_candidate = result.first->second; |
98 | return phi_candidate; |
99 | } |
100 | |
101 | void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove, |
102 | uint32_t repl_id) { |
103 | for (uint32_t user_id : phi_to_remove.users()) { |
104 | PhiCandidate* user_phi = GetPhiCandidate(user_id); |
105 | BasicBlock* bb = pass_->context()->get_instr_block(user_id); |
106 | if (user_phi) { |
107 | // If the user is a Phi candidate, replace all arguments that refer to |
108 | // |phi_to_remove.result_id()| with |repl_id|. |
109 | for (uint32_t& arg : user_phi->phi_args()) { |
110 | if (arg == phi_to_remove.result_id()) { |
111 | arg = repl_id; |
112 | } |
113 | } |
114 | } else if (bb->id() == user_id) { |
115 | // The phi candidate is the definition of the variable at basic block |
116 | // |bb|. We must change this to the replacement. |
117 | WriteVariable(phi_to_remove.var_id(), bb, repl_id); |
118 | } else { |
119 | // For regular loads, traverse the |load_replacement_| table looking for |
120 | // instances of |phi_to_remove|. |
121 | for (auto& it : load_replacement_) { |
122 | if (it.second == phi_to_remove.result_id()) { |
123 | it.second = repl_id; |
124 | } |
125 | } |
126 | } |
127 | } |
128 | } |
129 | |
130 | uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) { |
131 | uint32_t same_id = 0; |
132 | for (uint32_t arg_id : phi_candidate->phi_args()) { |
133 | if (arg_id == same_id || arg_id == phi_candidate->result_id()) { |
134 | // This is a self-reference operand or a reference to the same value ID. |
135 | continue; |
136 | } |
137 | if (same_id != 0) { |
138 | // This Phi candidate merges at least two values. Therefore, it is not |
139 | // trivial. |
140 | assert(phi_candidate->copy_of() == 0 && |
141 | "Phi candidate transitioning from copy to non-copy." ); |
142 | return phi_candidate->result_id(); |
143 | } |
144 | same_id = arg_id; |
145 | } |
146 | |
147 | // The previous logic has determined that this Phi candidate |phi_candidate| |
148 | // is trivial. It is essentially the copy operation phi_candidate->phi_result |
149 | // = Phi(same, same, same, ...). Since it is not necessary, we can re-route |
150 | // all the users of |phi_candidate->phi_result| to all its users, and remove |
151 | // |phi_candidate|. |
152 | |
153 | // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be |
154 | // generated. |
155 | phi_candidate->MarkCopyOf(same_id); |
156 | |
157 | assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments" ); |
158 | |
159 | // Since |phi_candidate| always produces |same_id|, replace all the users of |
160 | // |phi_candidate| with |same_id|. |
161 | ReplacePhiUsersWith(*phi_candidate, same_id); |
162 | |
163 | return same_id; |
164 | } |
165 | |
166 | uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) { |
167 | assert(phi_candidate->phi_args().size() == 0 && |
168 | "Phi candidate already has arguments" ); |
169 | |
170 | bool found_0_arg = false; |
171 | for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
172 | BasicBlock* pred_bb = pass_->cfg()->block(pred); |
173 | |
174 | // If |pred_bb| is not sealed, use %0 to indicate that |
175 | // |phi_candidate| needs to be completed after the whole CFG has |
176 | // been processed. |
177 | // |
178 | // Note that we cannot call GetReachingDef() in these cases |
179 | // because this would generate an empty Phi candidate in |
180 | // |pred_bb|. When |pred_bb| is later processed, a new definition |
181 | // for |phi_candidate->var_id_| will be lost because |
182 | // |phi_candidate| will still be reached by the empty Phi. |
183 | // |
184 | // Consider: |
185 | // |
186 | // BB %23: |
187 | // %38 = Phi[%i](%int_0[%1], %39[%25]) |
188 | // |
189 | // ... |
190 | // |
191 | // BB %25: [Starts unsealed] |
192 | // %39 = Phi[%i]() |
193 | // %34 = ... |
194 | // OpStore %i %34 -> Currdef(%i) at %25 is %34 |
195 | // OpBranch %23 |
196 | // |
197 | // When we first create the Phi in %38, we add an operandless Phi in |
198 | // %39 to hold the unknown reaching def for %i. |
199 | // |
200 | // But then, when we go to complete %39 at the end. The reaching def |
201 | // for %i in %25's predecessor is %38 itself. So we miss the fact |
202 | // that %25 has a def for %i that should be used. |
203 | // |
204 | // By making the argument %0, we make |phi_candidate| incomplete, |
205 | // which will cause it to be completed after the whole CFG has |
206 | // been scanned. |
207 | uint32_t arg_id = IsBlockSealed(pred_bb) |
208 | ? GetReachingDef(phi_candidate->var_id(), pred_bb) |
209 | : 0; |
210 | phi_candidate->phi_args().push_back(arg_id); |
211 | |
212 | if (arg_id == 0) { |
213 | found_0_arg = true; |
214 | } else { |
215 | // If this argument is another Phi candidate, add |phi_candidate| to the |
216 | // list of users for the defining Phi. |
217 | PhiCandidate* defining_phi = GetPhiCandidate(arg_id); |
218 | if (defining_phi && defining_phi != phi_candidate) { |
219 | defining_phi->AddUser(phi_candidate->result_id()); |
220 | } |
221 | } |
222 | } |
223 | |
224 | // If we could not fill-in all the arguments of this Phi, mark it incomplete |
225 | // so it gets completed after the whole CFG has been processed. |
226 | if (found_0_arg) { |
227 | phi_candidate->MarkIncomplete(); |
228 | incomplete_phis_.push(phi_candidate); |
229 | return phi_candidate->result_id(); |
230 | } |
231 | |
232 | // Try to remove |phi_candidate|, if it's trivial. |
233 | uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate); |
234 | if (repl_id == phi_candidate->result_id()) { |
235 | // |phi_candidate| is complete and not trivial. Add it to the |
236 | // list of Phi candidates to generate. |
237 | phi_candidate->MarkComplete(); |
238 | phis_to_generate_.push_back(phi_candidate); |
239 | } |
240 | |
241 | return repl_id; |
242 | } |
243 | |
244 | uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) { |
245 | // If |var_id| has a definition in |bb|, return it. |
246 | const auto& bb_it = defs_at_block_.find(bb); |
247 | if (bb_it != defs_at_block_.end()) { |
248 | const auto& current_defs = bb_it->second; |
249 | const auto& var_it = current_defs.find(var_id); |
250 | if (var_it != current_defs.end()) { |
251 | return var_it->second; |
252 | } |
253 | } |
254 | |
255 | // Otherwise, look up the value for |var_id| in |bb|'s predecessors. |
256 | uint32_t val_id = 0; |
257 | auto& predecessors = pass_->cfg()->preds(bb->id()); |
258 | if (predecessors.size() == 1) { |
259 | // If |bb| has exactly one predecessor, we look for |var_id|'s definition |
260 | // there. |
261 | val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0])); |
262 | } else if (predecessors.size() > 1) { |
263 | // If there is more than one predecessor, this is a join block which may |
264 | // require a Phi instruction. This will act as |var_id|'s current |
265 | // definition to break potential cycles. |
266 | PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb); |
267 | |
268 | // Set the value for |bb| to avoid an infinite recursion. |
269 | WriteVariable(var_id, bb, phi_candidate.result_id()); |
270 | val_id = AddPhiOperands(&phi_candidate); |
271 | } |
272 | |
273 | // If we could not find a store for this variable in the path from the root |
274 | // of the CFG, the variable is not defined, so we use undef. |
275 | if (val_id == 0) { |
276 | val_id = pass_->GetUndefVal(var_id); |
277 | if (val_id == 0) { |
278 | return 0; |
279 | } |
280 | } |
281 | |
282 | WriteVariable(var_id, bb, val_id); |
283 | |
284 | return val_id; |
285 | } |
286 | |
287 | void SSARewriter::SealBlock(BasicBlock* bb) { |
288 | auto result = sealed_blocks_.insert(bb); |
289 | (void)result; |
290 | assert(result.second == true && |
291 | "Tried to seal the same basic block more than once." ); |
292 | } |
293 | |
294 | void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) { |
295 | auto opcode = inst->opcode(); |
296 | assert((opcode == SpvOpStore || opcode == SpvOpVariable) && |
297 | "Expecting a store or a variable definition instruction." ); |
298 | |
299 | uint32_t var_id = 0; |
300 | uint32_t val_id = 0; |
301 | if (opcode == SpvOpStore) { |
302 | (void)pass_->GetPtr(inst, &var_id); |
303 | val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx); |
304 | } else if (inst->NumInOperands() >= 2) { |
305 | var_id = inst->result_id(); |
306 | val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx); |
307 | } |
308 | if (pass_->IsTargetVar(var_id)) { |
309 | WriteVariable(var_id, bb, val_id); |
310 | |
311 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
312 | std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': " |
313 | << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
314 | << "\n" ; |
315 | #endif |
316 | } |
317 | } |
318 | |
319 | bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) { |
320 | uint32_t var_id = 0; |
321 | (void)pass_->GetPtr(inst, &var_id); |
322 | if (pass_->IsTargetVar(var_id)) { |
323 | // Get the immediate reaching definition for |var_id|. |
324 | uint32_t val_id = GetReachingDef(var_id, bb); |
325 | if (val_id == 0) { |
326 | return false; |
327 | } |
328 | |
329 | // Schedule a replacement for the result of this load instruction with |
330 | // |val_id|. After all the rewriting decisions are made, every use of |
331 | // this load will be replaced with |val_id|. |
332 | const uint32_t load_id = inst->result_id(); |
333 | assert(load_replacement_.count(load_id) == 0); |
334 | load_replacement_[load_id] = val_id; |
335 | PhiCandidate* defining_phi = GetPhiCandidate(val_id); |
336 | if (defining_phi) { |
337 | defining_phi->AddUser(load_id); |
338 | } |
339 | |
340 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
341 | std::cerr << "\tFound load: " |
342 | << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
343 | << " (replacement for %" << load_id << " is %" << val_id << ")\n" ; |
344 | #endif |
345 | } |
346 | return true; |
347 | } |
348 | |
349 | void SSARewriter::PrintPhiCandidates() const { |
350 | std::cerr << "\nPhi candidates:\n" ; |
351 | for (const auto& phi_it : phi_candidates_) { |
352 | std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": " |
353 | << phi_it.second.PrettyPrint(pass_->cfg()) << "\n" ; |
354 | } |
355 | std::cerr << "\n" ; |
356 | } |
357 | |
358 | void SSARewriter::PrintReplacementTable() const { |
359 | std::cerr << "\nLoad replacement table\n" ; |
360 | for (const auto& it : load_replacement_) { |
361 | std::cerr << "\t%" << it.first << " -> %" << it.second << "\n" ; |
362 | } |
363 | std::cerr << "\n" ; |
364 | } |
365 | |
366 | bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) { |
367 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
368 | std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n" ; |
369 | std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
370 | << "\n" ; |
371 | #endif |
372 | |
373 | for (auto& inst : *bb) { |
374 | auto opcode = inst.opcode(); |
375 | if (opcode == SpvOpStore || opcode == SpvOpVariable) { |
376 | ProcessStore(&inst, bb); |
377 | } else if (inst.opcode() == SpvOpLoad) { |
378 | if (!ProcessLoad(&inst, bb)) { |
379 | return false; |
380 | } |
381 | } |
382 | } |
383 | |
384 | // Seal |bb|. This means that all the stores in it have been scanned and it's |
385 | // ready to feed them into its successors. |
386 | SealBlock(bb); |
387 | |
388 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
389 | PrintPhiCandidates(); |
390 | PrintReplacementTable(); |
391 | std::cerr << "\n\n" ; |
392 | #endif |
393 | return true; |
394 | } |
395 | |
396 | uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) { |
397 | uint32_t val_id = repl.second; |
398 | auto it = load_replacement_.find(val_id); |
399 | while (it != load_replacement_.end()) { |
400 | val_id = it->second; |
401 | it = load_replacement_.find(val_id); |
402 | } |
403 | return val_id; |
404 | } |
405 | |
406 | uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate, |
407 | uint32_t ix) { |
408 | assert(phi_candidate->IsReady() && |
409 | "Tried to get the final argument from an incomplete/trivial Phi" ); |
410 | |
411 | uint32_t arg_id = phi_candidate->phi_args()[ix]; |
412 | while (arg_id != 0) { |
413 | PhiCandidate* phi_user = GetPhiCandidate(arg_id); |
414 | if (phi_user == nullptr || phi_user->IsReady()) { |
415 | // If the argument is not a Phi or it's a Phi candidate ready to be |
416 | // emitted, return it. |
417 | return arg_id; |
418 | } |
419 | arg_id = phi_user->copy_of(); |
420 | } |
421 | |
422 | assert(false && |
423 | "No Phi candidates in the copy-of chain are ready to be generated" ); |
424 | |
425 | return 0; |
426 | } |
427 | |
428 | bool SSARewriter::ApplyReplacements() { |
429 | bool modified = false; |
430 | |
431 | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
432 | std::cerr << "\n\nApplying replacement decisions to IR\n\n" ; |
433 | PrintPhiCandidates(); |
434 | PrintReplacementTable(); |
435 | std::cerr << "\n\n" ; |
436 | #endif |
437 | |
438 | // Add Phi instructions from completed Phi candidates. |
439 | std::vector<Instruction*> generated_phis; |
440 | for (const PhiCandidate* phi_candidate : phis_to_generate_) { |
441 | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
442 | std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg()) |
443 | << "\n" ; |
444 | #endif |
445 | |
446 | assert(phi_candidate->is_complete() && |
447 | "Tried to instantiate a Phi instruction from an incomplete Phi " |
448 | "candidate" ); |
449 | |
450 | // Build the vector of operands for the new OpPhi instruction. |
451 | uint32_t type_id = pass_->GetPointeeTypeId( |
452 | pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id())); |
453 | std::vector<Operand> phi_operands; |
454 | uint32_t arg_ix = 0; |
455 | std::unordered_map<uint32_t, uint32_t> already_seen; |
456 | for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
457 | uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++); |
458 | if (already_seen.count(pred_label) == 0) { |
459 | phi_operands.push_back( |
460 | {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}}); |
461 | phi_operands.push_back( |
462 | {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}}); |
463 | already_seen[pred_label] = op_val_id; |
464 | } else { |
465 | // It is possible that there are two edges from the same parent block. |
466 | // Since the OpPhi can have only one entry for each parent, we have to |
467 | // make sure the two edges are consistent with each other. |
468 | assert(already_seen[pred_label] == op_val_id && |
469 | "Inconsistent value for duplicate edges." ); |
470 | } |
471 | } |
472 | |
473 | // Generate a new OpPhi instruction and insert it in its basic |
474 | // block. |
475 | std::unique_ptr<Instruction> phi_inst( |
476 | new Instruction(pass_->context(), SpvOpPhi, type_id, |
477 | phi_candidate->result_id(), phi_operands)); |
478 | generated_phis.push_back(phi_inst.get()); |
479 | pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst); |
480 | pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb()); |
481 | auto insert_it = phi_candidate->bb()->begin(); |
482 | insert_it.InsertBefore(std::move(phi_inst)); |
483 | pass_->context()->get_decoration_mgr()->CloneDecorations( |
484 | phi_candidate->var_id(), phi_candidate->result_id(), |
485 | {SpvDecorationRelaxedPrecision}); |
486 | |
487 | modified = true; |
488 | } |
489 | |
490 | // Scan uses for all inserted Phi instructions. Do this separately from the |
491 | // registration of the Phi instruction itself to avoid trying to analyze uses |
492 | // of Phi instructions that have not been registered yet. |
493 | for (Instruction* phi_inst : generated_phis) { |
494 | pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst); |
495 | } |
496 | |
497 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
498 | std::cerr << "\n\nReplacing the result of load instructions with the " |
499 | "corresponding SSA id\n\n" ; |
500 | #endif |
501 | |
502 | // Apply replacements from the load replacement table. |
503 | for (auto& repl : load_replacement_) { |
504 | uint32_t load_id = repl.first; |
505 | uint32_t val_id = GetReplacement(repl); |
506 | Instruction* load_inst = |
507 | pass_->context()->get_def_use_mgr()->GetDef(load_id); |
508 | |
509 | #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
510 | std::cerr << "\t" |
511 | << load_inst->PrettyPrint( |
512 | SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
513 | << " (%" << load_id << " -> %" << val_id << ")\n" ; |
514 | #endif |
515 | |
516 | // Remove the load instruction and replace all the uses of this load's |
517 | // result with |val_id|. Kill any names or decorates using the load's |
518 | // result before replacing to prevent incorrect replacement in those |
519 | // instructions. |
520 | pass_->context()->KillNamesAndDecorates(load_id); |
521 | pass_->context()->ReplaceAllUsesWith(load_id, val_id); |
522 | pass_->context()->KillInst(load_inst); |
523 | modified = true; |
524 | } |
525 | |
526 | return modified; |
527 | } |
528 | |
529 | void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) { |
530 | assert(phi_candidate->phi_args().size() > 0 && |
531 | "Phi candidate should have arguments" ); |
532 | |
533 | uint32_t ix = 0; |
534 | for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
535 | BasicBlock* pred_bb = pass_->cfg()->block(pred); |
536 | uint32_t& arg_id = phi_candidate->phi_args()[ix++]; |
537 | if (arg_id == 0) { |
538 | // If |pred_bb| is still not sealed, it means it's unreachable. In this |
539 | // case, we just use Undef as an argument. |
540 | arg_id = IsBlockSealed(pred_bb) |
541 | ? GetReachingDef(phi_candidate->var_id(), pred_bb) |
542 | : pass_->GetUndefVal(phi_candidate->var_id()); |
543 | } |
544 | } |
545 | |
546 | // This candidate is now completed. |
547 | phi_candidate->MarkComplete(); |
548 | |
549 | // If |phi_candidate| is not trivial, add it to the list of Phis to generate. |
550 | if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) { |
551 | // If we could not remove |phi_candidate|, it means that it is complete |
552 | // and not trivial. Add it to the list of Phis to generate. |
553 | assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial." ); |
554 | phis_to_generate_.push_back(phi_candidate); |
555 | } |
556 | } |
557 | |
558 | void SSARewriter::FinalizePhiCandidates() { |
559 | #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
560 | std::cerr << "Finalizing Phi candidates:\n\n" ; |
561 | PrintPhiCandidates(); |
562 | std::cerr << "\n" ; |
563 | #endif |
564 | |
565 | // Now, complete the collected candidates. |
566 | while (incomplete_phis_.size() > 0) { |
567 | PhiCandidate* phi_candidate = incomplete_phis_.front(); |
568 | incomplete_phis_.pop(); |
569 | FinalizePhiCandidate(phi_candidate); |
570 | } |
571 | } |
572 | |
573 | Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) { |
574 | #if SSA_REWRITE_DEBUGGING_LEVEL > 0 |
575 | std::cerr << "Function before SSA rewrite:\n" |
576 | << fp->PrettyPrint(0) << "\n\n\n" ; |
577 | #endif |
578 | |
579 | // Collect variables that can be converted into SSA IDs. |
580 | pass_->CollectTargetVars(fp); |
581 | |
582 | // Generate all the SSA replacements and Phi candidates. This will |
583 | // generate incomplete and trivial Phis. |
584 | bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder( |
585 | fp->entry().get(), [this](BasicBlock* bb) { |
586 | if (!GenerateSSAReplacements(bb)) { |
587 | return false; |
588 | } |
589 | return true; |
590 | }); |
591 | |
592 | if (!succeeded) { |
593 | return Pass::Status::Failure; |
594 | } |
595 | |
596 | // Remove trivial Phis and add arguments to incomplete Phis. |
597 | FinalizePhiCandidates(); |
598 | |
599 | // Finally, apply all the replacements in the IR. |
600 | bool modified = ApplyReplacements(); |
601 | |
602 | #if SSA_REWRITE_DEBUGGING_LEVEL > 0 |
603 | std::cerr << "\n\n\nFunction after SSA rewrite:\n" |
604 | << fp->PrettyPrint(0) << "\n" ; |
605 | #endif |
606 | |
607 | return modified ? Pass::Status::SuccessWithChange |
608 | : Pass::Status::SuccessWithoutChange; |
609 | } |
610 | |
611 | Pass::Status SSARewritePass::Process() { |
612 | Status status = Status::SuccessWithoutChange; |
613 | for (auto& fn : *get_module()) { |
614 | status = |
615 | CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn)); |
616 | if (status == Status::Failure) { |
617 | break; |
618 | } |
619 | } |
620 | return status; |
621 | } |
622 | |
623 | } // namespace opt |
624 | } // namespace spvtools |
625 | |