1 | // Copyright (c) 2018 Google LLC |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "upgrade_memory_model.h" |
16 | |
17 | #include <utility> |
18 | |
19 | #include "source/opt/ir_builder.h" |
20 | #include "source/opt/ir_context.h" |
21 | #include "source/spirv_constant.h" |
22 | #include "source/util/make_unique.h" |
23 | |
24 | namespace spvtools { |
25 | namespace opt { |
26 | |
27 | Pass::Status UpgradeMemoryModel::Process() { |
28 | // TODO: This pass needs changes to support cooperative matrices. |
29 | if (context()->get_feature_mgr()->HasCapability( |
30 | SpvCapabilityCooperativeMatrixNV)) { |
31 | return Pass::Status::SuccessWithoutChange; |
32 | } |
33 | |
34 | // Only update Logical GLSL450 to Logical VulkanKHR. |
35 | Instruction* memory_model = get_module()->GetMemoryModel(); |
36 | if (memory_model->GetSingleWordInOperand(0u) != SpvAddressingModelLogical || |
37 | memory_model->GetSingleWordInOperand(1u) != SpvMemoryModelGLSL450) { |
38 | return Pass::Status::SuccessWithoutChange; |
39 | } |
40 | |
41 | UpgradeMemoryModelInstruction(); |
42 | UpgradeInstructions(); |
43 | CleanupDecorations(); |
44 | UpgradeBarriers(); |
45 | UpgradeMemoryScope(); |
46 | |
47 | return Pass::Status::SuccessWithChange; |
48 | } |
49 | |
50 | void UpgradeMemoryModel::UpgradeMemoryModelInstruction() { |
51 | // Overall changes necessary: |
52 | // 1. Add the OpExtension. |
53 | // 2. Add the OpCapability. |
54 | // 3. Modify the memory model. |
55 | Instruction* memory_model = get_module()->GetMemoryModel(); |
56 | context()->AddCapability(MakeUnique<Instruction>( |
57 | context(), SpvOpCapability, 0, 0, |
58 | std::initializer_list<Operand>{ |
59 | {SPV_OPERAND_TYPE_CAPABILITY, {SpvCapabilityVulkanMemoryModelKHR}}})); |
60 | const std::string extension = "SPV_KHR_vulkan_memory_model" ; |
61 | std::vector<uint32_t> words(extension.size() / 4 + 1, 0); |
62 | char* dst = reinterpret_cast<char*>(words.data()); |
63 | strncpy(dst, extension.c_str(), extension.size()); |
64 | context()->AddExtension( |
65 | MakeUnique<Instruction>(context(), SpvOpExtension, 0, 0, |
66 | std::initializer_list<Operand>{ |
67 | {SPV_OPERAND_TYPE_LITERAL_STRING, words}})); |
68 | memory_model->SetInOperand(1u, {SpvMemoryModelVulkanKHR}); |
69 | } |
70 | |
71 | void UpgradeMemoryModel::UpgradeInstructions() { |
72 | // Coherent and Volatile decorations are deprecated. Remove them and replace |
73 | // with flags on the memory/image operations. The decorations can occur on |
74 | // OpVariable, OpFunctionParameter (of pointer type) and OpStructType (member |
75 | // decoration). Trace from the decoration target(s) to the final memory/image |
76 | // instructions. Additionally, Workgroup storage class variables and function |
77 | // parameters are implicitly coherent in GLSL450. |
78 | |
79 | // Upgrade modf and frexp first since they generate new stores. |
80 | // In SPIR-V 1.4 or later, normalize OpCopyMemory* access operands. |
81 | for (auto& func : *get_module()) { |
82 | func.ForEachInst([this](Instruction* inst) { |
83 | if (inst->opcode() == SpvOpExtInst) { |
84 | auto ext_inst = inst->GetSingleWordInOperand(1u); |
85 | if (ext_inst == GLSLstd450Modf || ext_inst == GLSLstd450Frexp) { |
86 | auto import = |
87 | get_def_use_mgr()->GetDef(inst->GetSingleWordInOperand(0u)); |
88 | if (reinterpret_cast<char*>(import->GetInOperand(0u).words.data()) == |
89 | std::string("GLSL.std.450" )) { |
90 | UpgradeExtInst(inst); |
91 | } |
92 | } |
93 | } else if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { |
94 | if (inst->opcode() == SpvOpCopyMemory || |
95 | inst->opcode() == SpvOpCopyMemorySized) { |
96 | uint32_t start_operand = inst->opcode() == SpvOpCopyMemory ? 2u : 3u; |
97 | if (inst->NumInOperands() > start_operand) { |
98 | auto num_access_words = MemoryAccessNumWords( |
99 | inst->GetSingleWordInOperand(start_operand)); |
100 | if ((num_access_words + start_operand) == inst->NumInOperands()) { |
101 | // There is a single memory access operand. Duplicate it to have a |
102 | // separate operand for both source and target. |
103 | for (uint32_t i = 0; i < num_access_words; ++i) { |
104 | auto operand = inst->GetInOperand(start_operand + i); |
105 | inst->AddOperand(std::move(operand)); |
106 | } |
107 | } |
108 | } else { |
109 | // Add two memory access operands. |
110 | inst->AddOperand( |
111 | {SPV_OPERAND_TYPE_MEMORY_ACCESS, {SpvMemoryAccessMaskNone}}); |
112 | inst->AddOperand( |
113 | {SPV_OPERAND_TYPE_MEMORY_ACCESS, {SpvMemoryAccessMaskNone}}); |
114 | } |
115 | } |
116 | } |
117 | }); |
118 | } |
119 | |
120 | UpgradeMemoryAndImages(); |
121 | UpgradeAtomics(); |
122 | } |
123 | |
124 | void UpgradeMemoryModel::UpgradeMemoryAndImages() { |
125 | for (auto& func : *get_module()) { |
126 | func.ForEachInst([this](Instruction* inst) { |
127 | bool is_coherent = false; |
128 | bool is_volatile = false; |
129 | bool src_coherent = false; |
130 | bool src_volatile = false; |
131 | bool dst_coherent = false; |
132 | bool dst_volatile = false; |
133 | uint32_t start_operand = 0u; |
134 | SpvScope scope = SpvScopeQueueFamilyKHR; |
135 | SpvScope src_scope = SpvScopeQueueFamilyKHR; |
136 | SpvScope dst_scope = SpvScopeQueueFamilyKHR; |
137 | switch (inst->opcode()) { |
138 | case SpvOpLoad: |
139 | case SpvOpStore: |
140 | std::tie(is_coherent, is_volatile, scope) = |
141 | GetInstructionAttributes(inst->GetSingleWordInOperand(0u)); |
142 | break; |
143 | case SpvOpImageRead: |
144 | case SpvOpImageSparseRead: |
145 | case SpvOpImageWrite: |
146 | std::tie(is_coherent, is_volatile, scope) = |
147 | GetInstructionAttributes(inst->GetSingleWordInOperand(0u)); |
148 | break; |
149 | case SpvOpCopyMemory: |
150 | case SpvOpCopyMemorySized: |
151 | std::tie(dst_coherent, dst_volatile, dst_scope) = |
152 | GetInstructionAttributes(inst->GetSingleWordInOperand(0u)); |
153 | std::tie(src_coherent, src_volatile, src_scope) = |
154 | GetInstructionAttributes(inst->GetSingleWordInOperand(1u)); |
155 | break; |
156 | default: |
157 | break; |
158 | } |
159 | |
160 | switch (inst->opcode()) { |
161 | case SpvOpLoad: |
162 | UpgradeFlags(inst, 1u, is_coherent, is_volatile, kVisibility, |
163 | kMemory); |
164 | break; |
165 | case SpvOpStore: |
166 | UpgradeFlags(inst, 2u, is_coherent, is_volatile, kAvailability, |
167 | kMemory); |
168 | break; |
169 | case SpvOpCopyMemory: |
170 | case SpvOpCopyMemorySized: |
171 | start_operand = inst->opcode() == SpvOpCopyMemory ? 2u : 3u; |
172 | if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { |
173 | // There are guaranteed to be two memory access operands at this |
174 | // point so treat source and target separately. |
175 | uint32_t num_access_words = MemoryAccessNumWords( |
176 | inst->GetSingleWordInOperand(start_operand)); |
177 | UpgradeFlags(inst, start_operand, dst_coherent, dst_volatile, |
178 | kAvailability, kMemory); |
179 | UpgradeFlags(inst, start_operand + num_access_words, src_coherent, |
180 | src_volatile, kVisibility, kMemory); |
181 | } else { |
182 | UpgradeFlags(inst, start_operand, dst_coherent, dst_volatile, |
183 | kAvailability, kMemory); |
184 | UpgradeFlags(inst, start_operand, src_coherent, src_volatile, |
185 | kVisibility, kMemory); |
186 | } |
187 | break; |
188 | case SpvOpImageRead: |
189 | case SpvOpImageSparseRead: |
190 | UpgradeFlags(inst, 2u, is_coherent, is_volatile, kVisibility, kImage); |
191 | break; |
192 | case SpvOpImageWrite: |
193 | UpgradeFlags(inst, 3u, is_coherent, is_volatile, kAvailability, |
194 | kImage); |
195 | break; |
196 | default: |
197 | break; |
198 | } |
199 | |
200 | // |is_coherent| is never used for the same instructions as |
201 | // |src_coherent| and |dst_coherent|. |
202 | if (is_coherent) { |
203 | inst->AddOperand( |
204 | {SPV_OPERAND_TYPE_SCOPE_ID, {GetScopeConstant(scope)}}); |
205 | } |
206 | if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) { |
207 | // There are two memory access operands. The first is for the target and |
208 | // the second is for the source. |
209 | if (dst_coherent || src_coherent) { |
210 | start_operand = inst->opcode() == SpvOpCopyMemory ? 2u : 3u; |
211 | std::vector<Operand> new_operands; |
212 | uint32_t num_access_words = |
213 | MemoryAccessNumWords(inst->GetSingleWordInOperand(start_operand)); |
214 | // The flags were already updated so subtract if we're adding a |
215 | // scope. |
216 | if (dst_coherent) --num_access_words; |
217 | for (uint32_t i = 0; i < start_operand + num_access_words; ++i) { |
218 | new_operands.push_back(inst->GetInOperand(i)); |
219 | } |
220 | // Add the target scope if necessary. |
221 | if (dst_coherent) { |
222 | new_operands.push_back( |
223 | {SPV_OPERAND_TYPE_SCOPE_ID, {GetScopeConstant(dst_scope)}}); |
224 | } |
225 | // Copy the remaining current operands. |
226 | for (uint32_t i = start_operand + num_access_words; |
227 | i < inst->NumInOperands(); ++i) { |
228 | new_operands.push_back(inst->GetInOperand(i)); |
229 | } |
230 | // Add the source scope if necessary. |
231 | if (src_coherent) { |
232 | new_operands.push_back( |
233 | {SPV_OPERAND_TYPE_SCOPE_ID, {GetScopeConstant(src_scope)}}); |
234 | } |
235 | inst->SetInOperands(std::move(new_operands)); |
236 | } |
237 | } else { |
238 | // According to SPV_KHR_vulkan_memory_model, if both available and |
239 | // visible flags are used the first scope operand is for availability |
240 | // (writes) and the second is for visibility (reads). |
241 | if (dst_coherent) { |
242 | inst->AddOperand( |
243 | {SPV_OPERAND_TYPE_SCOPE_ID, {GetScopeConstant(dst_scope)}}); |
244 | } |
245 | if (src_coherent) { |
246 | inst->AddOperand( |
247 | {SPV_OPERAND_TYPE_SCOPE_ID, {GetScopeConstant(src_scope)}}); |
248 | } |
249 | } |
250 | }); |
251 | } |
252 | } |
253 | |
254 | void UpgradeMemoryModel::UpgradeAtomics() { |
255 | for (auto& func : *get_module()) { |
256 | func.ForEachInst([this](Instruction* inst) { |
257 | if (spvOpcodeIsAtomicOp(inst->opcode())) { |
258 | bool unused_coherent = false; |
259 | bool is_volatile = false; |
260 | SpvScope unused_scope = SpvScopeQueueFamilyKHR; |
261 | std::tie(unused_coherent, is_volatile, unused_scope) = |
262 | GetInstructionAttributes(inst->GetSingleWordInOperand(0)); |
263 | |
264 | UpgradeSemantics(inst, 2u, is_volatile); |
265 | if (inst->opcode() == SpvOpAtomicCompareExchange || |
266 | inst->opcode() == SpvOpAtomicCompareExchangeWeak) { |
267 | UpgradeSemantics(inst, 3u, is_volatile); |
268 | } |
269 | } |
270 | }); |
271 | } |
272 | } |
273 | |
274 | void UpgradeMemoryModel::UpgradeSemantics(Instruction* inst, |
275 | uint32_t in_operand, |
276 | bool is_volatile) { |
277 | if (!is_volatile) return; |
278 | |
279 | uint32_t semantics_id = inst->GetSingleWordInOperand(in_operand); |
280 | const analysis::Constant* constant = |
281 | context()->get_constant_mgr()->FindDeclaredConstant(semantics_id); |
282 | const analysis::Integer* type = constant->type()->AsInteger(); |
283 | assert(type && type->width() == 32); |
284 | uint32_t value = 0; |
285 | if (type->IsSigned()) { |
286 | value = static_cast<uint32_t>(constant->GetS32()); |
287 | } else { |
288 | value = constant->GetU32(); |
289 | } |
290 | |
291 | value |= SpvMemorySemanticsVolatileMask; |
292 | auto new_constant = context()->get_constant_mgr()->GetConstant(type, {value}); |
293 | auto new_semantics = |
294 | context()->get_constant_mgr()->GetDefiningInstruction(new_constant); |
295 | inst->SetInOperand(in_operand, {new_semantics->result_id()}); |
296 | } |
297 | |
298 | std::tuple<bool, bool, SpvScope> UpgradeMemoryModel::GetInstructionAttributes( |
299 | uint32_t id) { |
300 | // |id| is a pointer used in a memory/image instruction. Need to determine if |
301 | // that pointer points to volatile or coherent memory. Workgroup storage |
302 | // class is implicitly coherent and cannot be decorated with volatile, so |
303 | // short circuit that case. |
304 | Instruction* inst = context()->get_def_use_mgr()->GetDef(id); |
305 | analysis::Type* type = context()->get_type_mgr()->GetType(inst->type_id()); |
306 | if (type->AsPointer() && |
307 | type->AsPointer()->storage_class() == SpvStorageClassWorkgroup) { |
308 | return std::make_tuple(true, false, SpvScopeWorkgroup); |
309 | } |
310 | |
311 | bool is_coherent = false; |
312 | bool is_volatile = false; |
313 | std::unordered_set<uint32_t> visited; |
314 | std::tie(is_coherent, is_volatile) = |
315 | TraceInstruction(context()->get_def_use_mgr()->GetDef(id), |
316 | std::vector<uint32_t>(), &visited); |
317 | |
318 | return std::make_tuple(is_coherent, is_volatile, SpvScopeQueueFamilyKHR); |
319 | } |
320 | |
321 | std::pair<bool, bool> UpgradeMemoryModel::TraceInstruction( |
322 | Instruction* inst, std::vector<uint32_t> indices, |
323 | std::unordered_set<uint32_t>* visited) { |
324 | auto iter = cache_.find(std::make_pair(inst->result_id(), indices)); |
325 | if (iter != cache_.end()) { |
326 | return iter->second; |
327 | } |
328 | |
329 | if (!visited->insert(inst->result_id()).second) { |
330 | return std::make_pair(false, false); |
331 | } |
332 | |
333 | // Initialize the cache before |indices| is (potentially) modified. |
334 | auto& cached_result = cache_[std::make_pair(inst->result_id(), indices)]; |
335 | cached_result.first = false; |
336 | cached_result.second = false; |
337 | |
338 | bool is_coherent = false; |
339 | bool is_volatile = false; |
340 | switch (inst->opcode()) { |
341 | case SpvOpVariable: |
342 | case SpvOpFunctionParameter: |
343 | is_coherent |= HasDecoration(inst, 0, SpvDecorationCoherent); |
344 | is_volatile |= HasDecoration(inst, 0, SpvDecorationVolatile); |
345 | if (!is_coherent || !is_volatile) { |
346 | bool type_coherent = false; |
347 | bool type_volatile = false; |
348 | std::tie(type_coherent, type_volatile) = |
349 | CheckType(inst->type_id(), indices); |
350 | is_coherent |= type_coherent; |
351 | is_volatile |= type_volatile; |
352 | } |
353 | break; |
354 | case SpvOpAccessChain: |
355 | case SpvOpInBoundsAccessChain: |
356 | // Store indices in reverse order. |
357 | for (uint32_t i = inst->NumInOperands() - 1; i > 0; --i) { |
358 | indices.push_back(inst->GetSingleWordInOperand(i)); |
359 | } |
360 | break; |
361 | case SpvOpPtrAccessChain: |
362 | // Store indices in reverse order. Skip the |Element| operand. |
363 | for (uint32_t i = inst->NumInOperands() - 1; i > 1; --i) { |
364 | indices.push_back(inst->GetSingleWordInOperand(i)); |
365 | } |
366 | break; |
367 | default: |
368 | break; |
369 | } |
370 | |
371 | // No point searching further. |
372 | if (is_coherent && is_volatile) { |
373 | cached_result.first = true; |
374 | cached_result.second = true; |
375 | return std::make_pair(true, true); |
376 | } |
377 | |
378 | // Variables and function parameters are sources. Continue searching until we |
379 | // reach them. |
380 | if (inst->opcode() != SpvOpVariable && |
381 | inst->opcode() != SpvOpFunctionParameter) { |
382 | inst->ForEachInId([this, &is_coherent, &is_volatile, &indices, |
383 | &visited](const uint32_t* id_ptr) { |
384 | Instruction* op_inst = context()->get_def_use_mgr()->GetDef(*id_ptr); |
385 | const analysis::Type* type = |
386 | context()->get_type_mgr()->GetType(op_inst->type_id()); |
387 | if (type && |
388 | (type->AsPointer() || type->AsImage() || type->AsSampledImage())) { |
389 | bool operand_coherent = false; |
390 | bool operand_volatile = false; |
391 | std::tie(operand_coherent, operand_volatile) = |
392 | TraceInstruction(op_inst, indices, visited); |
393 | is_coherent |= operand_coherent; |
394 | is_volatile |= operand_volatile; |
395 | } |
396 | }); |
397 | } |
398 | |
399 | cached_result.first = is_coherent; |
400 | cached_result.second = is_volatile; |
401 | return std::make_pair(is_coherent, is_volatile); |
402 | } |
403 | |
404 | std::pair<bool, bool> UpgradeMemoryModel::CheckType( |
405 | uint32_t type_id, const std::vector<uint32_t>& indices) { |
406 | bool is_coherent = false; |
407 | bool is_volatile = false; |
408 | Instruction* type_inst = context()->get_def_use_mgr()->GetDef(type_id); |
409 | assert(type_inst->opcode() == SpvOpTypePointer); |
410 | Instruction* element_inst = context()->get_def_use_mgr()->GetDef( |
411 | type_inst->GetSingleWordInOperand(1u)); |
412 | for (int i = (int)indices.size() - 1; i >= 0; --i) { |
413 | if (is_coherent && is_volatile) break; |
414 | |
415 | if (element_inst->opcode() == SpvOpTypePointer) { |
416 | element_inst = context()->get_def_use_mgr()->GetDef( |
417 | element_inst->GetSingleWordInOperand(1u)); |
418 | } else if (element_inst->opcode() == SpvOpTypeStruct) { |
419 | uint32_t index = indices.at(i); |
420 | Instruction* index_inst = context()->get_def_use_mgr()->GetDef(index); |
421 | assert(index_inst->opcode() == SpvOpConstant); |
422 | uint64_t value = GetIndexValue(index_inst); |
423 | is_coherent |= HasDecoration(element_inst, static_cast<uint32_t>(value), |
424 | SpvDecorationCoherent); |
425 | is_volatile |= HasDecoration(element_inst, static_cast<uint32_t>(value), |
426 | SpvDecorationVolatile); |
427 | element_inst = context()->get_def_use_mgr()->GetDef( |
428 | element_inst->GetSingleWordInOperand(static_cast<uint32_t>(value))); |
429 | } else { |
430 | assert(spvOpcodeIsComposite(element_inst->opcode())); |
431 | element_inst = context()->get_def_use_mgr()->GetDef( |
432 | element_inst->GetSingleWordInOperand(0u)); |
433 | } |
434 | } |
435 | |
436 | if (!is_coherent || !is_volatile) { |
437 | bool remaining_coherent = false; |
438 | bool remaining_volatile = false; |
439 | std::tie(remaining_coherent, remaining_volatile) = |
440 | CheckAllTypes(element_inst); |
441 | is_coherent |= remaining_coherent; |
442 | is_volatile |= remaining_volatile; |
443 | } |
444 | |
445 | return std::make_pair(is_coherent, is_volatile); |
446 | } |
447 | |
448 | std::pair<bool, bool> UpgradeMemoryModel::CheckAllTypes( |
449 | const Instruction* inst) { |
450 | std::unordered_set<const Instruction*> visited; |
451 | std::vector<const Instruction*> stack; |
452 | stack.push_back(inst); |
453 | |
454 | bool is_coherent = false; |
455 | bool is_volatile = false; |
456 | while (!stack.empty()) { |
457 | const Instruction* def = stack.back(); |
458 | stack.pop_back(); |
459 | |
460 | if (!visited.insert(def).second) continue; |
461 | |
462 | if (def->opcode() == SpvOpTypeStruct) { |
463 | // Any member decorated with coherent and/or volatile is enough to have |
464 | // the related operation be flagged as coherent and/or volatile. |
465 | is_coherent |= HasDecoration(def, std::numeric_limits<uint32_t>::max(), |
466 | SpvDecorationCoherent); |
467 | is_volatile |= HasDecoration(def, std::numeric_limits<uint32_t>::max(), |
468 | SpvDecorationVolatile); |
469 | if (is_coherent && is_volatile) |
470 | return std::make_pair(is_coherent, is_volatile); |
471 | |
472 | // Check the subtypes. |
473 | for (uint32_t i = 0; i < def->NumInOperands(); ++i) { |
474 | stack.push_back(context()->get_def_use_mgr()->GetDef( |
475 | def->GetSingleWordInOperand(i))); |
476 | } |
477 | } else if (spvOpcodeIsComposite(def->opcode())) { |
478 | stack.push_back(context()->get_def_use_mgr()->GetDef( |
479 | def->GetSingleWordInOperand(0u))); |
480 | } else if (def->opcode() == SpvOpTypePointer) { |
481 | stack.push_back(context()->get_def_use_mgr()->GetDef( |
482 | def->GetSingleWordInOperand(1u))); |
483 | } |
484 | } |
485 | |
486 | return std::make_pair(is_coherent, is_volatile); |
487 | } |
488 | |
489 | uint64_t UpgradeMemoryModel::GetIndexValue(Instruction* index_inst) { |
490 | const analysis::Constant* index_constant = |
491 | context()->get_constant_mgr()->GetConstantFromInst(index_inst); |
492 | assert(index_constant->AsIntConstant()); |
493 | if (index_constant->type()->AsInteger()->IsSigned()) { |
494 | if (index_constant->type()->AsInteger()->width() == 32) { |
495 | return index_constant->GetS32(); |
496 | } else { |
497 | return index_constant->GetS64(); |
498 | } |
499 | } else { |
500 | if (index_constant->type()->AsInteger()->width() == 32) { |
501 | return index_constant->GetU32(); |
502 | } else { |
503 | return index_constant->GetU64(); |
504 | } |
505 | } |
506 | } |
507 | |
508 | bool UpgradeMemoryModel::HasDecoration(const Instruction* inst, uint32_t value, |
509 | SpvDecoration decoration) { |
510 | // If the iteration was terminated early then an appropriate decoration was |
511 | // found. |
512 | return !context()->get_decoration_mgr()->WhileEachDecoration( |
513 | inst->result_id(), decoration, [value](const Instruction& i) { |
514 | if (i.opcode() == SpvOpDecorate || i.opcode() == SpvOpDecorateId) { |
515 | return false; |
516 | } else if (i.opcode() == SpvOpMemberDecorate) { |
517 | if (value == i.GetSingleWordInOperand(1u) || |
518 | value == std::numeric_limits<uint32_t>::max()) |
519 | return false; |
520 | } |
521 | |
522 | return true; |
523 | }); |
524 | } |
525 | |
526 | void UpgradeMemoryModel::UpgradeFlags(Instruction* inst, uint32_t in_operand, |
527 | bool is_coherent, bool is_volatile, |
528 | OperationType operation_type, |
529 | InstructionType inst_type) { |
530 | if (!is_coherent && !is_volatile) return; |
531 | |
532 | uint32_t flags = 0; |
533 | if (inst->NumInOperands() > in_operand) { |
534 | flags |= inst->GetSingleWordInOperand(in_operand); |
535 | } |
536 | if (is_coherent) { |
537 | if (inst_type == kMemory) { |
538 | flags |= SpvMemoryAccessNonPrivatePointerKHRMask; |
539 | if (operation_type == kVisibility) { |
540 | flags |= SpvMemoryAccessMakePointerVisibleKHRMask; |
541 | } else { |
542 | flags |= SpvMemoryAccessMakePointerAvailableKHRMask; |
543 | } |
544 | } else { |
545 | flags |= SpvImageOperandsNonPrivateTexelKHRMask; |
546 | if (operation_type == kVisibility) { |
547 | flags |= SpvImageOperandsMakeTexelVisibleKHRMask; |
548 | } else { |
549 | flags |= SpvImageOperandsMakeTexelAvailableKHRMask; |
550 | } |
551 | } |
552 | } |
553 | |
554 | if (is_volatile) { |
555 | if (inst_type == kMemory) { |
556 | flags |= SpvMemoryAccessVolatileMask; |
557 | } else { |
558 | flags |= SpvImageOperandsVolatileTexelKHRMask; |
559 | } |
560 | } |
561 | |
562 | if (inst->NumInOperands() > in_operand) { |
563 | inst->SetInOperand(in_operand, {flags}); |
564 | } else if (inst_type == kMemory) { |
565 | inst->AddOperand({SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS, {flags}}); |
566 | } else { |
567 | inst->AddOperand({SPV_OPERAND_TYPE_OPTIONAL_IMAGE, {flags}}); |
568 | } |
569 | } |
570 | |
571 | uint32_t UpgradeMemoryModel::GetScopeConstant(SpvScope scope) { |
572 | analysis::Integer int_ty(32, false); |
573 | uint32_t int_id = context()->get_type_mgr()->GetTypeInstruction(&int_ty); |
574 | const analysis::Constant* constant = |
575 | context()->get_constant_mgr()->GetConstant( |
576 | context()->get_type_mgr()->GetType(int_id), |
577 | {static_cast<uint32_t>(scope)}); |
578 | return context() |
579 | ->get_constant_mgr() |
580 | ->GetDefiningInstruction(constant) |
581 | ->result_id(); |
582 | } |
583 | |
584 | void UpgradeMemoryModel::CleanupDecorations() { |
585 | // All of the volatile and coherent decorations have been dealt with, so now |
586 | // we can just remove them. |
587 | get_module()->ForEachInst([this](Instruction* inst) { |
588 | if (inst->result_id() != 0) { |
589 | context()->get_decoration_mgr()->RemoveDecorationsFrom( |
590 | inst->result_id(), [](const Instruction& dec) { |
591 | switch (dec.opcode()) { |
592 | case SpvOpDecorate: |
593 | case SpvOpDecorateId: |
594 | if (dec.GetSingleWordInOperand(1u) == SpvDecorationCoherent || |
595 | dec.GetSingleWordInOperand(1u) == SpvDecorationVolatile) |
596 | return true; |
597 | break; |
598 | case SpvOpMemberDecorate: |
599 | if (dec.GetSingleWordInOperand(2u) == SpvDecorationCoherent || |
600 | dec.GetSingleWordInOperand(2u) == SpvDecorationVolatile) |
601 | return true; |
602 | break; |
603 | default: |
604 | break; |
605 | } |
606 | return false; |
607 | }); |
608 | } |
609 | }); |
610 | } |
611 | |
612 | void UpgradeMemoryModel::UpgradeBarriers() { |
613 | std::vector<Instruction*> barriers; |
614 | // Collects all the control barriers in |function|. Returns true if the |
615 | // function operates on the Output storage class. |
616 | ProcessFunction CollectBarriers = [this, &barriers](Function* function) { |
617 | bool operates_on_output = false; |
618 | for (auto& block : *function) { |
619 | block.ForEachInst([this, &barriers, |
620 | &operates_on_output](Instruction* inst) { |
621 | if (inst->opcode() == SpvOpControlBarrier) { |
622 | barriers.push_back(inst); |
623 | } else if (!operates_on_output) { |
624 | // This instruction operates on output storage class if it is a |
625 | // pointer to output type or any input operand is a pointer to output |
626 | // type. |
627 | analysis::Type* type = |
628 | context()->get_type_mgr()->GetType(inst->type_id()); |
629 | if (type && type->AsPointer() && |
630 | type->AsPointer()->storage_class() == SpvStorageClassOutput) { |
631 | operates_on_output = true; |
632 | return; |
633 | } |
634 | inst->ForEachInId([this, &operates_on_output](uint32_t* id_ptr) { |
635 | Instruction* op_inst = |
636 | context()->get_def_use_mgr()->GetDef(*id_ptr); |
637 | analysis::Type* op_type = |
638 | context()->get_type_mgr()->GetType(op_inst->type_id()); |
639 | if (op_type && op_type->AsPointer() && |
640 | op_type->AsPointer()->storage_class() == SpvStorageClassOutput) |
641 | operates_on_output = true; |
642 | }); |
643 | } |
644 | }); |
645 | } |
646 | return operates_on_output; |
647 | }; |
648 | |
649 | std::queue<uint32_t> roots; |
650 | for (auto& e : get_module()->entry_points()) |
651 | if (e.GetSingleWordInOperand(0u) == SpvExecutionModelTessellationControl) { |
652 | roots.push(e.GetSingleWordInOperand(1u)); |
653 | if (context()->ProcessCallTreeFromRoots(CollectBarriers, &roots)) { |
654 | for (auto barrier : barriers) { |
655 | // Add OutputMemoryKHR to the semantics of the barriers. |
656 | uint32_t semantics_id = barrier->GetSingleWordInOperand(2u); |
657 | Instruction* semantics_inst = |
658 | context()->get_def_use_mgr()->GetDef(semantics_id); |
659 | analysis::Type* semantics_type = |
660 | context()->get_type_mgr()->GetType(semantics_inst->type_id()); |
661 | uint64_t semantics_value = GetIndexValue(semantics_inst); |
662 | const analysis::Constant* constant = |
663 | context()->get_constant_mgr()->GetConstant( |
664 | semantics_type, {static_cast<uint32_t>(semantics_value) | |
665 | SpvMemorySemanticsOutputMemoryKHRMask}); |
666 | barrier->SetInOperand(2u, {context() |
667 | ->get_constant_mgr() |
668 | ->GetDefiningInstruction(constant) |
669 | ->result_id()}); |
670 | } |
671 | } |
672 | barriers.clear(); |
673 | } |
674 | } |
675 | |
676 | void UpgradeMemoryModel::UpgradeMemoryScope() { |
677 | get_module()->ForEachInst([this](Instruction* inst) { |
678 | // Don't need to handle all the operations that take a scope. |
679 | // * Group operations can only be subgroup |
680 | // * Non-uniform can only be workgroup or subgroup |
681 | // * Named barriers are not supported by Vulkan |
682 | // * Workgroup ops (e.g. async_copy) have at most workgroup scope. |
683 | if (spvOpcodeIsAtomicOp(inst->opcode())) { |
684 | if (IsDeviceScope(inst->GetSingleWordInOperand(1))) { |
685 | inst->SetInOperand(1, {GetScopeConstant(SpvScopeQueueFamilyKHR)}); |
686 | } |
687 | } else if (inst->opcode() == SpvOpControlBarrier) { |
688 | if (IsDeviceScope(inst->GetSingleWordInOperand(1))) { |
689 | inst->SetInOperand(1, {GetScopeConstant(SpvScopeQueueFamilyKHR)}); |
690 | } |
691 | } else if (inst->opcode() == SpvOpMemoryBarrier) { |
692 | if (IsDeviceScope(inst->GetSingleWordInOperand(0))) { |
693 | inst->SetInOperand(0, {GetScopeConstant(SpvScopeQueueFamilyKHR)}); |
694 | } |
695 | } |
696 | }); |
697 | } |
698 | |
699 | bool UpgradeMemoryModel::IsDeviceScope(uint32_t scope_id) { |
700 | const analysis::Constant* constant = |
701 | context()->get_constant_mgr()->FindDeclaredConstant(scope_id); |
702 | assert(constant && "Memory scope must be a constant" ); |
703 | |
704 | const analysis::Integer* type = constant->type()->AsInteger(); |
705 | assert(type); |
706 | assert(type->width() == 32 || type->width() == 64); |
707 | if (type->width() == 32) { |
708 | if (type->IsSigned()) |
709 | return static_cast<uint32_t>(constant->GetS32()) == SpvScopeDevice; |
710 | else |
711 | return static_cast<uint32_t>(constant->GetU32()) == SpvScopeDevice; |
712 | } else { |
713 | if (type->IsSigned()) |
714 | return static_cast<uint32_t>(constant->GetS64()) == SpvScopeDevice; |
715 | else |
716 | return static_cast<uint32_t>(constant->GetU64()) == SpvScopeDevice; |
717 | } |
718 | |
719 | assert(false); |
720 | return false; |
721 | } |
722 | |
723 | void UpgradeMemoryModel::UpgradeExtInst(Instruction* ext_inst) { |
724 | const bool is_modf = ext_inst->GetSingleWordInOperand(1u) == GLSLstd450Modf; |
725 | auto ptr_id = ext_inst->GetSingleWordInOperand(3u); |
726 | auto ptr_type_id = get_def_use_mgr()->GetDef(ptr_id)->type_id(); |
727 | auto pointee_type_id = |
728 | get_def_use_mgr()->GetDef(ptr_type_id)->GetSingleWordInOperand(1u); |
729 | auto element_type_id = ext_inst->type_id(); |
730 | std::vector<const analysis::Type*> element_types(2); |
731 | element_types[0] = context()->get_type_mgr()->GetType(element_type_id); |
732 | element_types[1] = context()->get_type_mgr()->GetType(pointee_type_id); |
733 | analysis::Struct struct_type(element_types); |
734 | uint32_t struct_id = |
735 | context()->get_type_mgr()->GetTypeInstruction(&struct_type); |
736 | // Change the operation |
737 | GLSLstd450 new_op = is_modf ? GLSLstd450ModfStruct : GLSLstd450FrexpStruct; |
738 | ext_inst->SetOperand(3u, {static_cast<uint32_t>(new_op)}); |
739 | // Remove the pointer argument |
740 | ext_inst->RemoveOperand(5u); |
741 | // Set the type id to the new struct. |
742 | ext_inst->SetResultType(struct_id); |
743 | |
744 | // The result is now a struct of the original result. The zero'th element is |
745 | // old result and should replace the old result. The one'th element needs to |
746 | // be stored via a new instruction. |
747 | auto where = ext_inst->NextNode(); |
748 | InstructionBuilder builder( |
749 | context(), where, |
750 | IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); |
751 | auto = |
752 | builder.AddCompositeExtract(element_type_id, ext_inst->result_id(), {0}); |
753 | context()->ReplaceAllUsesWith(ext_inst->result_id(), extract_0->result_id()); |
754 | // The extract's input was just changed to itself, so fix that. |
755 | extract_0->SetInOperand(0u, {ext_inst->result_id()}); |
756 | auto = |
757 | builder.AddCompositeExtract(pointee_type_id, ext_inst->result_id(), {1}); |
758 | builder.AddStore(ptr_id, extract_1->result_id()); |
759 | } |
760 | |
761 | uint32_t UpgradeMemoryModel::MemoryAccessNumWords(uint32_t mask) { |
762 | uint32_t result = 1; |
763 | if (mask & SpvMemoryAccessAlignedMask) ++result; |
764 | if (mask & SpvMemoryAccessMakePointerAvailableKHRMask) ++result; |
765 | if (mask & SpvMemoryAccessMakePointerVisibleKHRMask) ++result; |
766 | return result; |
767 | } |
768 | |
769 | } // namespace opt |
770 | } // namespace spvtools |
771 | |