| 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Stockfish is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <algorithm> |
| 22 | #include <bitset> |
| 23 | |
| 24 | #include "bitboard.h" |
| 25 | #include "misc.h" |
| 26 | |
| 27 | uint8_t PopCnt16[1 << 16]; |
| 28 | uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; |
| 29 | |
| 30 | Bitboard SquareBB[SQUARE_NB]; |
| 31 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
| 32 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
| 33 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; |
| 34 | |
| 35 | Magic RookMagics[SQUARE_NB]; |
| 36 | Magic BishopMagics[SQUARE_NB]; |
| 37 | |
| 38 | namespace { |
| 39 | |
| 40 | Bitboard RookTable[0x19000]; // To store rook attacks |
| 41 | Bitboard BishopTable[0x1480]; // To store bishop attacks |
| 42 | |
| 43 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); |
| 44 | } |
| 45 | |
| 46 | |
| 47 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable |
| 48 | /// to be printed to standard output. Useful for debugging. |
| 49 | |
| 50 | const std::string Bitboards::pretty(Bitboard b) { |
| 51 | |
| 52 | std::string s = "+---+---+---+---+---+---+---+---+\n" ; |
| 53 | |
| 54 | for (Rank r = RANK_8; r >= RANK_1; --r) |
| 55 | { |
| 56 | for (File f = FILE_A; f <= FILE_H; ++f) |
| 57 | s += b & make_square(f, r) ? "| X " : "| " ; |
| 58 | |
| 59 | s += "|\n+---+---+---+---+---+---+---+---+\n" ; |
| 60 | } |
| 61 | |
| 62 | return s; |
| 63 | } |
| 64 | |
| 65 | |
| 66 | /// Bitboards::init() initializes various bitboard tables. It is called at |
| 67 | /// startup and relies on global objects to be already zero-initialized. |
| 68 | |
| 69 | void Bitboards::init() { |
| 70 | |
| 71 | for (unsigned i = 0; i < (1 << 16); ++i) |
| 72 | PopCnt16[i] = std::bitset<16>(i).count(); |
| 73 | |
| 74 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 75 | SquareBB[s] = (1ULL << s); |
| 76 | |
| 77 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
| 78 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
| 79 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); |
| 80 | |
| 81 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; |
| 82 | |
| 83 | for (Color c : { WHITE, BLACK }) |
| 84 | for (PieceType pt : { PAWN, KNIGHT, KING }) |
| 85 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 86 | for (int i = 0; steps[pt][i]; ++i) |
| 87 | { |
| 88 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); |
| 89 | |
| 90 | if (is_ok(to) && distance(s, to) < 3) |
| 91 | { |
| 92 | if (pt == PAWN) |
| 93 | PawnAttacks[c][s] |= to; |
| 94 | else |
| 95 | PseudoAttacks[pt][s] |= to; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; |
| 100 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; |
| 101 | |
| 102 | init_magics(RookTable, RookMagics, RookDirections); |
| 103 | init_magics(BishopTable, BishopMagics, BishopDirections); |
| 104 | |
| 105 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
| 106 | { |
| 107 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); |
| 108 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); |
| 109 | |
| 110 | for (PieceType pt : { BISHOP, ROOK }) |
| 111 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
| 112 | if (PseudoAttacks[pt][s1] & s2) |
| 113 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | |
| 118 | namespace { |
| 119 | |
| 120 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { |
| 121 | |
| 122 | Bitboard attack = 0; |
| 123 | |
| 124 | for (int i = 0; i < 4; ++i) |
| 125 | for (Square s = sq + directions[i]; |
| 126 | is_ok(s) && distance(s, s - directions[i]) == 1; |
| 127 | s += directions[i]) |
| 128 | { |
| 129 | attack |= s; |
| 130 | |
| 131 | if (occupied & s) |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | return attack; |
| 136 | } |
| 137 | |
| 138 | |
| 139 | // init_magics() computes all rook and bishop attacks at startup. Magic |
| 140 | // bitboards are used to look up attacks of sliding pieces. As a reference see |
| 141 | // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so |
| 142 | // called "fancy" approach. |
| 143 | |
| 144 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { |
| 145 | |
| 146 | // Optimal PRNG seeds to pick the correct magics in the shortest time |
| 147 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, |
| 148 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; |
| 149 | |
| 150 | Bitboard occupancy[4096], reference[4096], edges, b; |
| 151 | int epoch[4096] = {}, cnt = 0, size = 0; |
| 152 | |
| 153 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 154 | { |
| 155 | // Board edges are not considered in the relevant occupancies |
| 156 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); |
| 157 | |
| 158 | // Given a square 's', the mask is the bitboard of sliding attacks from |
| 159 | // 's' computed on an empty board. The index must be big enough to contain |
| 160 | // all the attacks for each possible subset of the mask and so is 2 power |
| 161 | // the number of 1s of the mask. Hence we deduce the size of the shift to |
| 162 | // apply to the 64 or 32 bits word to get the index. |
| 163 | Magic& m = magics[s]; |
| 164 | m.mask = sliding_attack(directions, s, 0) & ~edges; |
| 165 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); |
| 166 | |
| 167 | // Set the offset for the attacks table of the square. We have individual |
| 168 | // table sizes for each square with "Fancy Magic Bitboards". |
| 169 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; |
| 170 | |
| 171 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and |
| 172 | // store the corresponding sliding attack bitboard in reference[]. |
| 173 | b = size = 0; |
| 174 | do { |
| 175 | occupancy[size] = b; |
| 176 | reference[size] = sliding_attack(directions, s, b); |
| 177 | |
| 178 | if (HasPext) |
| 179 | m.attacks[pext(b, m.mask)] = reference[size]; |
| 180 | |
| 181 | size++; |
| 182 | b = (b - m.mask) & m.mask; |
| 183 | } while (b); |
| 184 | |
| 185 | if (HasPext) |
| 186 | continue; |
| 187 | |
| 188 | PRNG rng(seeds[Is64Bit][rank_of(s)]); |
| 189 | |
| 190 | // Find a magic for square 's' picking up an (almost) random number |
| 191 | // until we find the one that passes the verification test. |
| 192 | for (int i = 0; i < size; ) |
| 193 | { |
| 194 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) |
| 195 | m.magic = rng.sparse_rand<Bitboard>(); |
| 196 | |
| 197 | // A good magic must map every possible occupancy to an index that |
| 198 | // looks up the correct sliding attack in the attacks[s] database. |
| 199 | // Note that we build up the database for square 's' as a side |
| 200 | // effect of verifying the magic. Keep track of the attempt count |
| 201 | // and save it in epoch[], little speed-up trick to avoid resetting |
| 202 | // m.attacks[] after every failed attempt. |
| 203 | for (++cnt, i = 0; i < size; ++i) |
| 204 | { |
| 205 | unsigned idx = m.index(occupancy[i]); |
| 206 | |
| 207 | if (epoch[idx] < cnt) |
| 208 | { |
| 209 | epoch[idx] = cnt; |
| 210 | m.attacks[idx] = reference[i]; |
| 211 | } |
| 212 | else if (m.attacks[idx] != reference[i]) |
| 213 | break; |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | |