1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #include <algorithm> |
22 | #include <bitset> |
23 | |
24 | #include "bitboard.h" |
25 | #include "misc.h" |
26 | |
27 | uint8_t PopCnt16[1 << 16]; |
28 | uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; |
29 | |
30 | Bitboard SquareBB[SQUARE_NB]; |
31 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
32 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
33 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; |
34 | |
35 | Magic RookMagics[SQUARE_NB]; |
36 | Magic BishopMagics[SQUARE_NB]; |
37 | |
38 | namespace { |
39 | |
40 | Bitboard RookTable[0x19000]; // To store rook attacks |
41 | Bitboard BishopTable[0x1480]; // To store bishop attacks |
42 | |
43 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); |
44 | } |
45 | |
46 | |
47 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable |
48 | /// to be printed to standard output. Useful for debugging. |
49 | |
50 | const std::string Bitboards::pretty(Bitboard b) { |
51 | |
52 | std::string s = "+---+---+---+---+---+---+---+---+\n" ; |
53 | |
54 | for (Rank r = RANK_8; r >= RANK_1; --r) |
55 | { |
56 | for (File f = FILE_A; f <= FILE_H; ++f) |
57 | s += b & make_square(f, r) ? "| X " : "| " ; |
58 | |
59 | s += "|\n+---+---+---+---+---+---+---+---+\n" ; |
60 | } |
61 | |
62 | return s; |
63 | } |
64 | |
65 | |
66 | /// Bitboards::init() initializes various bitboard tables. It is called at |
67 | /// startup and relies on global objects to be already zero-initialized. |
68 | |
69 | void Bitboards::init() { |
70 | |
71 | for (unsigned i = 0; i < (1 << 16); ++i) |
72 | PopCnt16[i] = std::bitset<16>(i).count(); |
73 | |
74 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
75 | SquareBB[s] = (1ULL << s); |
76 | |
77 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
78 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
79 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); |
80 | |
81 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; |
82 | |
83 | for (Color c : { WHITE, BLACK }) |
84 | for (PieceType pt : { PAWN, KNIGHT, KING }) |
85 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
86 | for (int i = 0; steps[pt][i]; ++i) |
87 | { |
88 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); |
89 | |
90 | if (is_ok(to) && distance(s, to) < 3) |
91 | { |
92 | if (pt == PAWN) |
93 | PawnAttacks[c][s] |= to; |
94 | else |
95 | PseudoAttacks[pt][s] |= to; |
96 | } |
97 | } |
98 | |
99 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; |
100 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; |
101 | |
102 | init_magics(RookTable, RookMagics, RookDirections); |
103 | init_magics(BishopTable, BishopMagics, BishopDirections); |
104 | |
105 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
106 | { |
107 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); |
108 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); |
109 | |
110 | for (PieceType pt : { BISHOP, ROOK }) |
111 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
112 | if (PseudoAttacks[pt][s1] & s2) |
113 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; |
114 | } |
115 | } |
116 | |
117 | |
118 | namespace { |
119 | |
120 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { |
121 | |
122 | Bitboard attack = 0; |
123 | |
124 | for (int i = 0; i < 4; ++i) |
125 | for (Square s = sq + directions[i]; |
126 | is_ok(s) && distance(s, s - directions[i]) == 1; |
127 | s += directions[i]) |
128 | { |
129 | attack |= s; |
130 | |
131 | if (occupied & s) |
132 | break; |
133 | } |
134 | |
135 | return attack; |
136 | } |
137 | |
138 | |
139 | // init_magics() computes all rook and bishop attacks at startup. Magic |
140 | // bitboards are used to look up attacks of sliding pieces. As a reference see |
141 | // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so |
142 | // called "fancy" approach. |
143 | |
144 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { |
145 | |
146 | // Optimal PRNG seeds to pick the correct magics in the shortest time |
147 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, |
148 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; |
149 | |
150 | Bitboard occupancy[4096], reference[4096], edges, b; |
151 | int epoch[4096] = {}, cnt = 0, size = 0; |
152 | |
153 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
154 | { |
155 | // Board edges are not considered in the relevant occupancies |
156 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); |
157 | |
158 | // Given a square 's', the mask is the bitboard of sliding attacks from |
159 | // 's' computed on an empty board. The index must be big enough to contain |
160 | // all the attacks for each possible subset of the mask and so is 2 power |
161 | // the number of 1s of the mask. Hence we deduce the size of the shift to |
162 | // apply to the 64 or 32 bits word to get the index. |
163 | Magic& m = magics[s]; |
164 | m.mask = sliding_attack(directions, s, 0) & ~edges; |
165 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); |
166 | |
167 | // Set the offset for the attacks table of the square. We have individual |
168 | // table sizes for each square with "Fancy Magic Bitboards". |
169 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; |
170 | |
171 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and |
172 | // store the corresponding sliding attack bitboard in reference[]. |
173 | b = size = 0; |
174 | do { |
175 | occupancy[size] = b; |
176 | reference[size] = sliding_attack(directions, s, b); |
177 | |
178 | if (HasPext) |
179 | m.attacks[pext(b, m.mask)] = reference[size]; |
180 | |
181 | size++; |
182 | b = (b - m.mask) & m.mask; |
183 | } while (b); |
184 | |
185 | if (HasPext) |
186 | continue; |
187 | |
188 | PRNG rng(seeds[Is64Bit][rank_of(s)]); |
189 | |
190 | // Find a magic for square 's' picking up an (almost) random number |
191 | // until we find the one that passes the verification test. |
192 | for (int i = 0; i < size; ) |
193 | { |
194 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) |
195 | m.magic = rng.sparse_rand<Bitboard>(); |
196 | |
197 | // A good magic must map every possible occupancy to an index that |
198 | // looks up the correct sliding attack in the attacks[s] database. |
199 | // Note that we build up the database for square 's' as a side |
200 | // effect of verifying the magic. Keep track of the attempt count |
201 | // and save it in epoch[], little speed-up trick to avoid resetting |
202 | // m.attacks[] after every failed attempt. |
203 | for (++cnt, i = 0; i < size; ++i) |
204 | { |
205 | unsigned idx = m.index(occupancy[i]); |
206 | |
207 | if (epoch[idx] < cnt) |
208 | { |
209 | epoch[idx] = cnt; |
210 | m.attacks[idx] = reference[i]; |
211 | } |
212 | else if (m.attacks[idx] != reference[i]) |
213 | break; |
214 | } |
215 | } |
216 | } |
217 | } |
218 | } |
219 | |