| 1 | /* | 
|---|
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | 
|---|
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | 
|---|
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | 
|---|
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
|---|
| 6 |  | 
|---|
| 7 | Stockfish is free software: you can redistribute it and/or modify | 
|---|
| 8 | it under the terms of the GNU General Public License as published by | 
|---|
| 9 | the Free Software Foundation, either version 3 of the License, or | 
|---|
| 10 | (at your option) any later version. | 
|---|
| 11 |  | 
|---|
| 12 | Stockfish is distributed in the hope that it will be useful, | 
|---|
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 15 | GNU General Public License for more details. | 
|---|
| 16 |  | 
|---|
| 17 | You should have received a copy of the GNU General Public License | 
|---|
| 18 | along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 | #include <algorithm> | 
|---|
| 22 | #include <bitset> | 
|---|
| 23 |  | 
|---|
| 24 | #include "bitboard.h" | 
|---|
| 25 | #include "misc.h" | 
|---|
| 26 |  | 
|---|
| 27 | uint8_t PopCnt16[1 << 16]; | 
|---|
| 28 | uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; | 
|---|
| 29 |  | 
|---|
| 30 | Bitboard SquareBB[SQUARE_NB]; | 
|---|
| 31 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; | 
|---|
| 32 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; | 
|---|
| 33 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; | 
|---|
| 34 |  | 
|---|
| 35 | Magic RookMagics[SQUARE_NB]; | 
|---|
| 36 | Magic BishopMagics[SQUARE_NB]; | 
|---|
| 37 |  | 
|---|
| 38 | namespace { | 
|---|
| 39 |  | 
|---|
| 40 | Bitboard RookTable[0x19000];  // To store rook attacks | 
|---|
| 41 | Bitboard BishopTable[0x1480]; // To store bishop attacks | 
|---|
| 42 |  | 
|---|
| 43 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 |  | 
|---|
| 47 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable | 
|---|
| 48 | /// to be printed to standard output. Useful for debugging. | 
|---|
| 49 |  | 
|---|
| 50 | const std::string Bitboards::pretty(Bitboard b) { | 
|---|
| 51 |  | 
|---|
| 52 | std::string s = "+---+---+---+---+---+---+---+---+\n"; | 
|---|
| 53 |  | 
|---|
| 54 | for (Rank r = RANK_8; r >= RANK_1; --r) | 
|---|
| 55 | { | 
|---|
| 56 | for (File f = FILE_A; f <= FILE_H; ++f) | 
|---|
| 57 | s += b & make_square(f, r) ? "| X ": "|   "; | 
|---|
| 58 |  | 
|---|
| 59 | s += "|\n+---+---+---+---+---+---+---+---+\n"; | 
|---|
| 60 | } | 
|---|
| 61 |  | 
|---|
| 62 | return s; | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 |  | 
|---|
| 66 | /// Bitboards::init() initializes various bitboard tables. It is called at | 
|---|
| 67 | /// startup and relies on global objects to be already zero-initialized. | 
|---|
| 68 |  | 
|---|
| 69 | void Bitboards::init() { | 
|---|
| 70 |  | 
|---|
| 71 | for (unsigned i = 0; i < (1 << 16); ++i) | 
|---|
| 72 | PopCnt16[i] = std::bitset<16>(i).count(); | 
|---|
| 73 |  | 
|---|
| 74 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
|---|
| 75 | SquareBB[s] = (1ULL << s); | 
|---|
| 76 |  | 
|---|
| 77 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) | 
|---|
| 78 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | 
|---|
| 79 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); | 
|---|
| 80 |  | 
|---|
| 81 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; | 
|---|
| 82 |  | 
|---|
| 83 | for (Color c : { WHITE, BLACK }) | 
|---|
| 84 | for (PieceType pt : { PAWN, KNIGHT, KING }) | 
|---|
| 85 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
|---|
| 86 | for (int i = 0; steps[pt][i]; ++i) | 
|---|
| 87 | { | 
|---|
| 88 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); | 
|---|
| 89 |  | 
|---|
| 90 | if (is_ok(to) && distance(s, to) < 3) | 
|---|
| 91 | { | 
|---|
| 92 | if (pt == PAWN) | 
|---|
| 93 | PawnAttacks[c][s] |= to; | 
|---|
| 94 | else | 
|---|
| 95 | PseudoAttacks[pt][s] |= to; | 
|---|
| 96 | } | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; | 
|---|
| 100 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; | 
|---|
| 101 |  | 
|---|
| 102 | init_magics(RookTable, RookMagics, RookDirections); | 
|---|
| 103 | init_magics(BishopTable, BishopMagics, BishopDirections); | 
|---|
| 104 |  | 
|---|
| 105 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) | 
|---|
| 106 | { | 
|---|
| 107 | PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); | 
|---|
| 108 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0); | 
|---|
| 109 |  | 
|---|
| 110 | for (PieceType pt : { BISHOP, ROOK }) | 
|---|
| 111 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | 
|---|
| 112 | if (PseudoAttacks[pt][s1] & s2) | 
|---|
| 113 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; | 
|---|
| 114 | } | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 |  | 
|---|
| 118 | namespace { | 
|---|
| 119 |  | 
|---|
| 120 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { | 
|---|
| 121 |  | 
|---|
| 122 | Bitboard attack = 0; | 
|---|
| 123 |  | 
|---|
| 124 | for (int i = 0; i < 4; ++i) | 
|---|
| 125 | for (Square s = sq + directions[i]; | 
|---|
| 126 | is_ok(s) && distance(s, s - directions[i]) == 1; | 
|---|
| 127 | s += directions[i]) | 
|---|
| 128 | { | 
|---|
| 129 | attack |= s; | 
|---|
| 130 |  | 
|---|
| 131 | if (occupied & s) | 
|---|
| 132 | break; | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | return attack; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 |  | 
|---|
| 139 | // init_magics() computes all rook and bishop attacks at startup. Magic | 
|---|
| 140 | // bitboards are used to look up attacks of sliding pieces. As a reference see | 
|---|
| 141 | // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so | 
|---|
| 142 | // called "fancy" approach. | 
|---|
| 143 |  | 
|---|
| 144 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { | 
|---|
| 145 |  | 
|---|
| 146 | // Optimal PRNG seeds to pick the correct magics in the shortest time | 
|---|
| 147 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 }, | 
|---|
| 148 | {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } }; | 
|---|
| 149 |  | 
|---|
| 150 | Bitboard occupancy[4096], reference[4096], edges, b; | 
|---|
| 151 | int epoch[4096] = {}, cnt = 0, size = 0; | 
|---|
| 152 |  | 
|---|
| 153 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
|---|
| 154 | { | 
|---|
| 155 | // Board edges are not considered in the relevant occupancies | 
|---|
| 156 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); | 
|---|
| 157 |  | 
|---|
| 158 | // Given a square 's', the mask is the bitboard of sliding attacks from | 
|---|
| 159 | // 's' computed on an empty board. The index must be big enough to contain | 
|---|
| 160 | // all the attacks for each possible subset of the mask and so is 2 power | 
|---|
| 161 | // the number of 1s of the mask. Hence we deduce the size of the shift to | 
|---|
| 162 | // apply to the 64 or 32 bits word to get the index. | 
|---|
| 163 | Magic& m = magics[s]; | 
|---|
| 164 | m.mask  = sliding_attack(directions, s, 0) & ~edges; | 
|---|
| 165 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); | 
|---|
| 166 |  | 
|---|
| 167 | // Set the offset for the attacks table of the square. We have individual | 
|---|
| 168 | // table sizes for each square with "Fancy Magic Bitboards". | 
|---|
| 169 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; | 
|---|
| 170 |  | 
|---|
| 171 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and | 
|---|
| 172 | // store the corresponding sliding attack bitboard in reference[]. | 
|---|
| 173 | b = size = 0; | 
|---|
| 174 | do { | 
|---|
| 175 | occupancy[size] = b; | 
|---|
| 176 | reference[size] = sliding_attack(directions, s, b); | 
|---|
| 177 |  | 
|---|
| 178 | if (HasPext) | 
|---|
| 179 | m.attacks[pext(b, m.mask)] = reference[size]; | 
|---|
| 180 |  | 
|---|
| 181 | size++; | 
|---|
| 182 | b = (b - m.mask) & m.mask; | 
|---|
| 183 | } while (b); | 
|---|
| 184 |  | 
|---|
| 185 | if (HasPext) | 
|---|
| 186 | continue; | 
|---|
| 187 |  | 
|---|
| 188 | PRNG rng(seeds[Is64Bit][rank_of(s)]); | 
|---|
| 189 |  | 
|---|
| 190 | // Find a magic for square 's' picking up an (almost) random number | 
|---|
| 191 | // until we find the one that passes the verification test. | 
|---|
| 192 | for (int i = 0; i < size; ) | 
|---|
| 193 | { | 
|---|
| 194 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) | 
|---|
| 195 | m.magic = rng.sparse_rand<Bitboard>(); | 
|---|
| 196 |  | 
|---|
| 197 | // A good magic must map every possible occupancy to an index that | 
|---|
| 198 | // looks up the correct sliding attack in the attacks[s] database. | 
|---|
| 199 | // Note that we build up the database for square 's' as a side | 
|---|
| 200 | // effect of verifying the magic. Keep track of the attempt count | 
|---|
| 201 | // and save it in epoch[], little speed-up trick to avoid resetting | 
|---|
| 202 | // m.attacks[] after every failed attempt. | 
|---|
| 203 | for (++cnt, i = 0; i < size; ++i) | 
|---|
| 204 | { | 
|---|
| 205 | unsigned idx = m.index(occupancy[i]); | 
|---|
| 206 |  | 
|---|
| 207 | if (epoch[idx] < cnt) | 
|---|
| 208 | { | 
|---|
| 209 | epoch[idx] = cnt; | 
|---|
| 210 | m.attacks[idx] = reference[i]; | 
|---|
| 211 | } | 
|---|
| 212 | else if (m.attacks[idx] != reference[i]) | 
|---|
| 213 | break; | 
|---|
| 214 | } | 
|---|
| 215 | } | 
|---|
| 216 | } | 
|---|
| 217 | } | 
|---|
| 218 | } | 
|---|
| 219 |  | 
|---|