1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #include <algorithm> |
22 | #include <cfloat> |
23 | #include <cmath> |
24 | |
25 | #include "search.h" |
26 | #include "timeman.h" |
27 | #include "uci.h" |
28 | |
29 | TimeManagement Time; // Our global time management object |
30 | |
31 | namespace { |
32 | |
33 | enum TimeType { OptimumTime, MaxTime }; |
34 | |
35 | constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead |
36 | constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio |
37 | constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio |
38 | |
39 | |
40 | // move_importance() is a skew-logistic function based on naive statistical |
41 | // analysis of "how many games are still undecided after n half-moves". Game |
42 | // is considered "undecided" as long as neither side has >275cp advantage. |
43 | // Data was extracted from the CCRL game database with some simple filtering criteria. |
44 | |
45 | double move_importance(int ply) { |
46 | |
47 | constexpr double XScale = 6.85; |
48 | constexpr double XShift = 64.5; |
49 | constexpr double Skew = 0.171; |
50 | |
51 | return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero |
52 | } |
53 | |
54 | template<TimeType T> |
55 | TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { |
56 | |
57 | constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); |
58 | constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); |
59 | |
60 | double moveImportance = (move_importance(ply) * slowMover) / 100.0; |
61 | double otherMovesImportance = 0.0; |
62 | |
63 | for (int i = 1; i < movesToGo; ++i) |
64 | otherMovesImportance += move_importance(ply + 2 * i); |
65 | |
66 | double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); |
67 | double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); |
68 | |
69 | return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast |
70 | } |
71 | |
72 | } // namespace |
73 | |
74 | |
75 | /// init() is called at the beginning of the search and calculates the allowed |
76 | /// thinking time out of the time control and current game ply. We support four |
77 | /// different kinds of time controls, passed in 'limits': |
78 | /// |
79 | /// inc == 0 && movestogo == 0 means: x basetime [sudden death!] |
80 | /// inc == 0 && movestogo != 0 means: x moves in y minutes |
81 | /// inc > 0 && movestogo == 0 means: x basetime + z increment |
82 | /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment |
83 | |
84 | void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { |
85 | |
86 | TimePoint minThinkingTime = Options["Minimum Thinking Time" ]; |
87 | TimePoint moveOverhead = Options["Move Overhead" ]; |
88 | TimePoint slowMover = Options["Slow Mover" ]; |
89 | TimePoint npmsec = Options["nodestime" ]; |
90 | TimePoint hypMyTime; |
91 | |
92 | // If we have to play in 'nodes as time' mode, then convert from time |
93 | // to nodes, and use resulting values in time management formulas. |
94 | // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) |
95 | // must be much lower than the real engine speed. |
96 | if (npmsec) |
97 | { |
98 | if (!availableNodes) // Only once at game start |
99 | availableNodes = npmsec * limits.time[us]; // Time is in msec |
100 | |
101 | // Convert from milliseconds to nodes |
102 | limits.time[us] = TimePoint(availableNodes); |
103 | limits.inc[us] *= npmsec; |
104 | limits.npmsec = npmsec; |
105 | } |
106 | |
107 | startTime = limits.startTime; |
108 | optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); |
109 | |
110 | const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; |
111 | |
112 | // We calculate optimum time usage for different hypothetical "moves to go" values |
113 | // and choose the minimum of calculated search time values. Usually the greatest |
114 | // hypMTG gives the minimum values. |
115 | for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) |
116 | { |
117 | // Calculate thinking time for hypothetical "moves to go"-value |
118 | hypMyTime = limits.time[us] |
119 | + limits.inc[us] * (hypMTG - 1) |
120 | - moveOverhead * (2 + std::min(hypMTG, 40)); |
121 | |
122 | hypMyTime = std::max(hypMyTime, TimePoint(0)); |
123 | |
124 | TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover); |
125 | TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover); |
126 | |
127 | optimumTime = std::min(t1, optimumTime); |
128 | maximumTime = std::min(t2, maximumTime); |
129 | } |
130 | |
131 | if (Options["Ponder" ]) |
132 | optimumTime += optimumTime / 4; |
133 | } |
134 | |