| 1 | /* |
| 2 | ** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $ |
| 3 | ** Code generator for Lua |
| 4 | ** See Copyright Notice in lua.h |
| 5 | */ |
| 6 | |
| 7 | #define lcode_c |
| 8 | #define LUA_CORE |
| 9 | |
| 10 | #include "lprefix.h" |
| 11 | |
| 12 | |
| 13 | #include <math.h> |
| 14 | #include <stdlib.h> |
| 15 | |
| 16 | #include "lua.h" |
| 17 | |
| 18 | #include "lcode.h" |
| 19 | #include "ldebug.h" |
| 20 | #include "ldo.h" |
| 21 | #include "lgc.h" |
| 22 | #include "llex.h" |
| 23 | #include "lmem.h" |
| 24 | #include "lobject.h" |
| 25 | #include "lopcodes.h" |
| 26 | #include "lparser.h" |
| 27 | #include "lstring.h" |
| 28 | #include "ltable.h" |
| 29 | #include "lvm.h" |
| 30 | |
| 31 | |
| 32 | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ |
| 33 | #define MAXREGS 255 |
| 34 | |
| 35 | |
| 36 | #define hasjumps(e) ((e)->t != (e)->f) |
| 37 | |
| 38 | |
| 39 | /* |
| 40 | ** If expression is a numeric constant, fills 'v' with its value |
| 41 | ** and returns 1. Otherwise, returns 0. |
| 42 | */ |
| 43 | static int tonumeral(const expdesc *e, TValue *v) { |
| 44 | if (hasjumps(e)) |
| 45 | return 0; /* not a numeral */ |
| 46 | switch (e->k) { |
| 47 | case VKINT: |
| 48 | if (v) setivalue(v, e->u.ival); |
| 49 | return 1; |
| 50 | case VKFLT: |
| 51 | if (v) setfltvalue(v, e->u.nval); |
| 52 | return 1; |
| 53 | default: return 0; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | |
| 58 | /* |
| 59 | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous |
| 60 | ** instruction is also OP_LOADNIL and ranges are compatible, adjust |
| 61 | ** range of previous instruction instead of emitting a new one. (For |
| 62 | ** instance, 'local a; local b' will generate a single opcode.) |
| 63 | */ |
| 64 | void luaK_nil (FuncState *fs, int from, int n) { |
| 65 | Instruction *previous; |
| 66 | int l = from + n - 1; /* last register to set nil */ |
| 67 | if (fs->pc > fs->lasttarget) { /* no jumps to current position? */ |
| 68 | previous = &fs->f->code[fs->pc-1]; |
| 69 | if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ |
| 70 | int pfrom = GETARG_A(*previous); /* get previous range */ |
| 71 | int pl = pfrom + GETARG_B(*previous); |
| 72 | if ((pfrom <= from && from <= pl + 1) || |
| 73 | (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ |
| 74 | if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ |
| 75 | if (pl > l) l = pl; /* l = max(l, pl) */ |
| 76 | SETARG_A(*previous, from); |
| 77 | SETARG_B(*previous, l - from); |
| 78 | return; |
| 79 | } |
| 80 | } /* else go through */ |
| 81 | } |
| 82 | luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ |
| 83 | } |
| 84 | |
| 85 | |
| 86 | /* |
| 87 | ** Gets the destination address of a jump instruction. Used to traverse |
| 88 | ** a list of jumps. |
| 89 | */ |
| 90 | static int getjump (FuncState *fs, int pc) { |
| 91 | int offset = GETARG_sBx(fs->f->code[pc]); |
| 92 | if (offset == NO_JUMP) /* point to itself represents end of list */ |
| 93 | return NO_JUMP; /* end of list */ |
| 94 | else |
| 95 | return (pc+1)+offset; /* turn offset into absolute position */ |
| 96 | } |
| 97 | |
| 98 | |
| 99 | /* |
| 100 | ** Fix jump instruction at position 'pc' to jump to 'dest'. |
| 101 | ** (Jump addresses are relative in Lua) |
| 102 | */ |
| 103 | static void fixjump (FuncState *fs, int pc, int dest) { |
| 104 | Instruction *jmp = &fs->f->code[pc]; |
| 105 | int offset = dest - (pc + 1); |
| 106 | lua_assert(dest != NO_JUMP); |
| 107 | if (abs(offset) > MAXARG_sBx) |
| 108 | luaX_syntaxerror(fs->ls, "control structure too long" ); |
| 109 | SETARG_sBx(*jmp, offset); |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /* |
| 114 | ** Concatenate jump-list 'l2' into jump-list 'l1' |
| 115 | */ |
| 116 | void luaK_concat (FuncState *fs, int *l1, int l2) { |
| 117 | if (l2 == NO_JUMP) return; /* nothing to concatenate? */ |
| 118 | else if (*l1 == NO_JUMP) /* no original list? */ |
| 119 | *l1 = l2; /* 'l1' points to 'l2' */ |
| 120 | else { |
| 121 | int list = *l1; |
| 122 | int next; |
| 123 | while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ |
| 124 | list = next; |
| 125 | fixjump(fs, list, l2); /* last element links to 'l2' */ |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | |
| 130 | /* |
| 131 | ** Create a jump instruction and return its position, so its destination |
| 132 | ** can be fixed later (with 'fixjump'). If there are jumps to |
| 133 | ** this position (kept in 'jpc'), link them all together so that |
| 134 | ** 'patchlistaux' will fix all them directly to the final destination. |
| 135 | */ |
| 136 | int luaK_jump (FuncState *fs) { |
| 137 | int jpc = fs->jpc; /* save list of jumps to here */ |
| 138 | int j; |
| 139 | fs->jpc = NO_JUMP; /* no more jumps to here */ |
| 140 | j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP); |
| 141 | luaK_concat(fs, &j, jpc); /* keep them on hold */ |
| 142 | return j; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | /* |
| 147 | ** Code a 'return' instruction |
| 148 | */ |
| 149 | void luaK_ret (FuncState *fs, int first, int nret) { |
| 150 | luaK_codeABC(fs, OP_RETURN, first, nret+1, 0); |
| 151 | } |
| 152 | |
| 153 | |
| 154 | /* |
| 155 | ** Code a "conditional jump", that is, a test or comparison opcode |
| 156 | ** followed by a jump. Return jump position. |
| 157 | */ |
| 158 | static int condjump (FuncState *fs, OpCode op, int A, int B, int C) { |
| 159 | luaK_codeABC(fs, op, A, B, C); |
| 160 | return luaK_jump(fs); |
| 161 | } |
| 162 | |
| 163 | |
| 164 | /* |
| 165 | ** returns current 'pc' and marks it as a jump target (to avoid wrong |
| 166 | ** optimizations with consecutive instructions not in the same basic block). |
| 167 | */ |
| 168 | int luaK_getlabel (FuncState *fs) { |
| 169 | fs->lasttarget = fs->pc; |
| 170 | return fs->pc; |
| 171 | } |
| 172 | |
| 173 | |
| 174 | /* |
| 175 | ** Returns the position of the instruction "controlling" a given |
| 176 | ** jump (that is, its condition), or the jump itself if it is |
| 177 | ** unconditional. |
| 178 | */ |
| 179 | static Instruction *getjumpcontrol (FuncState *fs, int pc) { |
| 180 | Instruction *pi = &fs->f->code[pc]; |
| 181 | if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) |
| 182 | return pi-1; |
| 183 | else |
| 184 | return pi; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | /* |
| 189 | ** Patch destination register for a TESTSET instruction. |
| 190 | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). |
| 191 | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination |
| 192 | ** register. Otherwise, change instruction to a simple 'TEST' (produces |
| 193 | ** no register value) |
| 194 | */ |
| 195 | static int patchtestreg (FuncState *fs, int node, int reg) { |
| 196 | Instruction *i = getjumpcontrol(fs, node); |
| 197 | if (GET_OPCODE(*i) != OP_TESTSET) |
| 198 | return 0; /* cannot patch other instructions */ |
| 199 | if (reg != NO_REG && reg != GETARG_B(*i)) |
| 200 | SETARG_A(*i, reg); |
| 201 | else { |
| 202 | /* no register to put value or register already has the value; |
| 203 | change instruction to simple test */ |
| 204 | *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i)); |
| 205 | } |
| 206 | return 1; |
| 207 | } |
| 208 | |
| 209 | |
| 210 | /* |
| 211 | ** Traverse a list of tests ensuring no one produces a value |
| 212 | */ |
| 213 | static void removevalues (FuncState *fs, int list) { |
| 214 | for (; list != NO_JUMP; list = getjump(fs, list)) |
| 215 | patchtestreg(fs, list, NO_REG); |
| 216 | } |
| 217 | |
| 218 | |
| 219 | /* |
| 220 | ** Traverse a list of tests, patching their destination address and |
| 221 | ** registers: tests producing values jump to 'vtarget' (and put their |
| 222 | ** values in 'reg'), other tests jump to 'dtarget'. |
| 223 | */ |
| 224 | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, |
| 225 | int dtarget) { |
| 226 | while (list != NO_JUMP) { |
| 227 | int next = getjump(fs, list); |
| 228 | if (patchtestreg(fs, list, reg)) |
| 229 | fixjump(fs, list, vtarget); |
| 230 | else |
| 231 | fixjump(fs, list, dtarget); /* jump to default target */ |
| 232 | list = next; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | |
| 237 | /* |
| 238 | ** Ensure all pending jumps to current position are fixed (jumping |
| 239 | ** to current position with no values) and reset list of pending |
| 240 | ** jumps |
| 241 | */ |
| 242 | static void dischargejpc (FuncState *fs) { |
| 243 | patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc); |
| 244 | fs->jpc = NO_JUMP; |
| 245 | } |
| 246 | |
| 247 | |
| 248 | /* |
| 249 | ** Add elements in 'list' to list of pending jumps to "here" |
| 250 | ** (current position) |
| 251 | */ |
| 252 | void luaK_patchtohere (FuncState *fs, int list) { |
| 253 | luaK_getlabel(fs); /* mark "here" as a jump target */ |
| 254 | luaK_concat(fs, &fs->jpc, list); |
| 255 | } |
| 256 | |
| 257 | |
| 258 | /* |
| 259 | ** Path all jumps in 'list' to jump to 'target'. |
| 260 | ** (The assert means that we cannot fix a jump to a forward address |
| 261 | ** because we only know addresses once code is generated.) |
| 262 | */ |
| 263 | void luaK_patchlist (FuncState *fs, int list, int target) { |
| 264 | if (target == fs->pc) /* 'target' is current position? */ |
| 265 | luaK_patchtohere(fs, list); /* add list to pending jumps */ |
| 266 | else { |
| 267 | lua_assert(target < fs->pc); |
| 268 | patchlistaux(fs, list, target, NO_REG, target); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | |
| 273 | /* |
| 274 | ** Path all jumps in 'list' to close upvalues up to given 'level' |
| 275 | ** (The assertion checks that jumps either were closing nothing |
| 276 | ** or were closing higher levels, from inner blocks.) |
| 277 | */ |
| 278 | void luaK_patchclose (FuncState *fs, int list, int level) { |
| 279 | level++; /* argument is +1 to reserve 0 as non-op */ |
| 280 | for (; list != NO_JUMP; list = getjump(fs, list)) { |
| 281 | lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP && |
| 282 | (GETARG_A(fs->f->code[list]) == 0 || |
| 283 | GETARG_A(fs->f->code[list]) >= level)); |
| 284 | SETARG_A(fs->f->code[list], level); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | |
| 289 | /* |
| 290 | ** Emit instruction 'i', checking for array sizes and saving also its |
| 291 | ** line information. Return 'i' position. |
| 292 | */ |
| 293 | static int luaK_code (FuncState *fs, Instruction i) { |
| 294 | Proto *f = fs->f; |
| 295 | dischargejpc(fs); /* 'pc' will change */ |
| 296 | /* put new instruction in code array */ |
| 297 | luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, |
| 298 | MAX_INT, "opcodes" ); |
| 299 | f->code[fs->pc] = i; |
| 300 | /* save corresponding line information */ |
| 301 | luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int, |
| 302 | MAX_INT, "opcodes" ); |
| 303 | f->lineinfo[fs->pc] = fs->ls->lastline; |
| 304 | return fs->pc++; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | /* |
| 309 | ** Format and emit an 'iABC' instruction. (Assertions check consistency |
| 310 | ** of parameters versus opcode.) |
| 311 | */ |
| 312 | int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { |
| 313 | lua_assert(getOpMode(o) == iABC); |
| 314 | lua_assert(getBMode(o) != OpArgN || b == 0); |
| 315 | lua_assert(getCMode(o) != OpArgN || c == 0); |
| 316 | lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C); |
| 317 | return luaK_code(fs, CREATE_ABC(o, a, b, c)); |
| 318 | } |
| 319 | |
| 320 | |
| 321 | /* |
| 322 | ** Format and emit an 'iABx' instruction. |
| 323 | */ |
| 324 | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { |
| 325 | lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx); |
| 326 | lua_assert(getCMode(o) == OpArgN); |
| 327 | lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); |
| 328 | return luaK_code(fs, CREATE_ABx(o, a, bc)); |
| 329 | } |
| 330 | |
| 331 | |
| 332 | /* |
| 333 | ** Emit an "extra argument" instruction (format 'iAx') |
| 334 | */ |
| 335 | static int (FuncState *fs, int a) { |
| 336 | lua_assert(a <= MAXARG_Ax); |
| 337 | return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); |
| 338 | } |
| 339 | |
| 340 | |
| 341 | /* |
| 342 | ** Emit a "load constant" instruction, using either 'OP_LOADK' |
| 343 | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' |
| 344 | ** instruction with "extra argument". |
| 345 | */ |
| 346 | int luaK_codek (FuncState *fs, int reg, int k) { |
| 347 | if (k <= MAXARG_Bx) |
| 348 | return luaK_codeABx(fs, OP_LOADK, reg, k); |
| 349 | else { |
| 350 | int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); |
| 351 | codeextraarg(fs, k); |
| 352 | return p; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | |
| 357 | /* |
| 358 | ** Check register-stack level, keeping track of its maximum size |
| 359 | ** in field 'maxstacksize' |
| 360 | */ |
| 361 | void luaK_checkstack (FuncState *fs, int n) { |
| 362 | int newstack = fs->freereg + n; |
| 363 | if (newstack > fs->f->maxstacksize) { |
| 364 | if (newstack >= MAXREGS) |
| 365 | luaX_syntaxerror(fs->ls, |
| 366 | "function or expression needs too many registers" ); |
| 367 | fs->f->maxstacksize = cast_byte(newstack); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | |
| 372 | /* |
| 373 | ** Reserve 'n' registers in register stack |
| 374 | */ |
| 375 | void luaK_reserveregs (FuncState *fs, int n) { |
| 376 | luaK_checkstack(fs, n); |
| 377 | fs->freereg += n; |
| 378 | } |
| 379 | |
| 380 | |
| 381 | /* |
| 382 | ** Free register 'reg', if it is neither a constant index nor |
| 383 | ** a local variable. |
| 384 | ) |
| 385 | */ |
| 386 | static void freereg (FuncState *fs, int reg) { |
| 387 | if (!ISK(reg) && reg >= fs->nactvar) { |
| 388 | fs->freereg--; |
| 389 | lua_assert(reg == fs->freereg); |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | |
| 394 | /* |
| 395 | ** Free register used by expression 'e' (if any) |
| 396 | */ |
| 397 | static void freeexp (FuncState *fs, expdesc *e) { |
| 398 | if (e->k == VNONRELOC) |
| 399 | freereg(fs, e->u.info); |
| 400 | } |
| 401 | |
| 402 | |
| 403 | /* |
| 404 | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper |
| 405 | ** order. |
| 406 | */ |
| 407 | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { |
| 408 | int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; |
| 409 | int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; |
| 410 | if (r1 > r2) { |
| 411 | freereg(fs, r1); |
| 412 | freereg(fs, r2); |
| 413 | } |
| 414 | else { |
| 415 | freereg(fs, r2); |
| 416 | freereg(fs, r1); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | |
| 421 | /* |
| 422 | ** Add constant 'v' to prototype's list of constants (field 'k'). |
| 423 | ** Use scanner's table to cache position of constants in constant list |
| 424 | ** and try to reuse constants. Because some values should not be used |
| 425 | ** as keys (nil cannot be a key, integer keys can collapse with float |
| 426 | ** keys), the caller must provide a useful 'key' for indexing the cache. |
| 427 | */ |
| 428 | static int addk (FuncState *fs, TValue *key, TValue *v) { |
| 429 | lua_State *L = fs->ls->L; |
| 430 | Proto *f = fs->f; |
| 431 | TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */ |
| 432 | int k, oldsize; |
| 433 | if (ttisinteger(idx)) { /* is there an index there? */ |
| 434 | k = cast_int(ivalue(idx)); |
| 435 | /* correct value? (warning: must distinguish floats from integers!) */ |
| 436 | if (k < fs->nk && ttype(&f->k[k]) == ttype(v) && |
| 437 | luaV_rawequalobj(&f->k[k], v)) |
| 438 | return k; /* reuse index */ |
| 439 | } |
| 440 | /* constant not found; create a new entry */ |
| 441 | oldsize = f->sizek; |
| 442 | k = fs->nk; |
| 443 | /* numerical value does not need GC barrier; |
| 444 | table has no metatable, so it does not need to invalidate cache */ |
| 445 | setivalue(idx, k); |
| 446 | luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants" ); |
| 447 | while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); |
| 448 | setobj(L, &f->k[k], v); |
| 449 | fs->nk++; |
| 450 | luaC_barrier(L, f, v); |
| 451 | return k; |
| 452 | } |
| 453 | |
| 454 | |
| 455 | /* |
| 456 | ** Add a string to list of constants and return its index. |
| 457 | */ |
| 458 | int luaK_stringK (FuncState *fs, TString *s) { |
| 459 | TValue o; |
| 460 | setsvalue(fs->ls->L, &o, s); |
| 461 | return addk(fs, &o, &o); /* use string itself as key */ |
| 462 | } |
| 463 | |
| 464 | |
| 465 | /* |
| 466 | ** Add an integer to list of constants and return its index. |
| 467 | ** Integers use userdata as keys to avoid collision with floats with |
| 468 | ** same value; conversion to 'void*' is used only for hashing, so there |
| 469 | ** are no "precision" problems. |
| 470 | */ |
| 471 | int luaK_intK (FuncState *fs, lua_Integer n) { |
| 472 | TValue k, o; |
| 473 | setpvalue(&k, cast(void*, cast(size_t, n))); |
| 474 | setivalue(&o, n); |
| 475 | return addk(fs, &k, &o); |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | ** Add a float to list of constants and return its index. |
| 480 | */ |
| 481 | static int luaK_numberK (FuncState *fs, lua_Number r) { |
| 482 | TValue o; |
| 483 | setfltvalue(&o, r); |
| 484 | return addk(fs, &o, &o); /* use number itself as key */ |
| 485 | } |
| 486 | |
| 487 | |
| 488 | /* |
| 489 | ** Add a boolean to list of constants and return its index. |
| 490 | */ |
| 491 | static int boolK (FuncState *fs, int b) { |
| 492 | TValue o; |
| 493 | setbvalue(&o, b); |
| 494 | return addk(fs, &o, &o); /* use boolean itself as key */ |
| 495 | } |
| 496 | |
| 497 | |
| 498 | /* |
| 499 | ** Add nil to list of constants and return its index. |
| 500 | */ |
| 501 | static int nilK (FuncState *fs) { |
| 502 | TValue k, v; |
| 503 | setnilvalue(&v); |
| 504 | /* cannot use nil as key; instead use table itself to represent nil */ |
| 505 | sethvalue(fs->ls->L, &k, fs->ls->h); |
| 506 | return addk(fs, &k, &v); |
| 507 | } |
| 508 | |
| 509 | |
| 510 | /* |
| 511 | ** Fix an expression to return the number of results 'nresults'. |
| 512 | ** Either 'e' is a multi-ret expression (function call or vararg) |
| 513 | ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that). |
| 514 | */ |
| 515 | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { |
| 516 | if (e->k == VCALL) { /* expression is an open function call? */ |
| 517 | SETARG_C(getinstruction(fs, e), nresults + 1); |
| 518 | } |
| 519 | else if (e->k == VVARARG) { |
| 520 | Instruction *pc = &getinstruction(fs, e); |
| 521 | SETARG_B(*pc, nresults + 1); |
| 522 | SETARG_A(*pc, fs->freereg); |
| 523 | luaK_reserveregs(fs, 1); |
| 524 | } |
| 525 | else lua_assert(nresults == LUA_MULTRET); |
| 526 | } |
| 527 | |
| 528 | |
| 529 | /* |
| 530 | ** Fix an expression to return one result. |
| 531 | ** If expression is not a multi-ret expression (function call or |
| 532 | ** vararg), it already returns one result, so nothing needs to be done. |
| 533 | ** Function calls become VNONRELOC expressions (as its result comes |
| 534 | ** fixed in the base register of the call), while vararg expressions |
| 535 | ** become VRELOCABLE (as OP_VARARG puts its results where it wants). |
| 536 | ** (Calls are created returning one result, so that does not need |
| 537 | ** to be fixed.) |
| 538 | */ |
| 539 | void luaK_setoneret (FuncState *fs, expdesc *e) { |
| 540 | if (e->k == VCALL) { /* expression is an open function call? */ |
| 541 | /* already returns 1 value */ |
| 542 | lua_assert(GETARG_C(getinstruction(fs, e)) == 2); |
| 543 | e->k = VNONRELOC; /* result has fixed position */ |
| 544 | e->u.info = GETARG_A(getinstruction(fs, e)); |
| 545 | } |
| 546 | else if (e->k == VVARARG) { |
| 547 | SETARG_B(getinstruction(fs, e), 2); |
| 548 | e->k = VRELOCABLE; /* can relocate its simple result */ |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | |
| 553 | /* |
| 554 | ** Ensure that expression 'e' is not a variable. |
| 555 | */ |
| 556 | void luaK_dischargevars (FuncState *fs, expdesc *e) { |
| 557 | switch (e->k) { |
| 558 | case VLOCAL: { /* already in a register */ |
| 559 | e->k = VNONRELOC; /* becomes a non-relocatable value */ |
| 560 | break; |
| 561 | } |
| 562 | case VUPVAL: { /* move value to some (pending) register */ |
| 563 | e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); |
| 564 | e->k = VRELOCABLE; |
| 565 | break; |
| 566 | } |
| 567 | case VINDEXED: { |
| 568 | OpCode op; |
| 569 | freereg(fs, e->u.ind.idx); |
| 570 | if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */ |
| 571 | freereg(fs, e->u.ind.t); |
| 572 | op = OP_GETTABLE; |
| 573 | } |
| 574 | else { |
| 575 | lua_assert(e->u.ind.vt == VUPVAL); |
| 576 | op = OP_GETTABUP; /* 't' is in an upvalue */ |
| 577 | } |
| 578 | e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx); |
| 579 | e->k = VRELOCABLE; |
| 580 | break; |
| 581 | } |
| 582 | case VVARARG: case VCALL: { |
| 583 | luaK_setoneret(fs, e); |
| 584 | break; |
| 585 | } |
| 586 | default: break; /* there is one value available (somewhere) */ |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | |
| 591 | /* |
| 592 | ** Ensures expression value is in register 'reg' (and therefore |
| 593 | ** 'e' will become a non-relocatable expression). |
| 594 | */ |
| 595 | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { |
| 596 | luaK_dischargevars(fs, e); |
| 597 | switch (e->k) { |
| 598 | case VNIL: { |
| 599 | luaK_nil(fs, reg, 1); |
| 600 | break; |
| 601 | } |
| 602 | case VFALSE: case VTRUE: { |
| 603 | luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0); |
| 604 | break; |
| 605 | } |
| 606 | case VK: { |
| 607 | luaK_codek(fs, reg, e->u.info); |
| 608 | break; |
| 609 | } |
| 610 | case VKFLT: { |
| 611 | luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval)); |
| 612 | break; |
| 613 | } |
| 614 | case VKINT: { |
| 615 | luaK_codek(fs, reg, luaK_intK(fs, e->u.ival)); |
| 616 | break; |
| 617 | } |
| 618 | case VRELOCABLE: { |
| 619 | Instruction *pc = &getinstruction(fs, e); |
| 620 | SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ |
| 621 | break; |
| 622 | } |
| 623 | case VNONRELOC: { |
| 624 | if (reg != e->u.info) |
| 625 | luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); |
| 626 | break; |
| 627 | } |
| 628 | default: { |
| 629 | lua_assert(e->k == VJMP); |
| 630 | return; /* nothing to do... */ |
| 631 | } |
| 632 | } |
| 633 | e->u.info = reg; |
| 634 | e->k = VNONRELOC; |
| 635 | } |
| 636 | |
| 637 | |
| 638 | /* |
| 639 | ** Ensures expression value is in any register. |
| 640 | */ |
| 641 | static void discharge2anyreg (FuncState *fs, expdesc *e) { |
| 642 | if (e->k != VNONRELOC) { /* no fixed register yet? */ |
| 643 | luaK_reserveregs(fs, 1); /* get a register */ |
| 644 | discharge2reg(fs, e, fs->freereg-1); /* put value there */ |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | |
| 649 | static int code_loadbool (FuncState *fs, int A, int b, int jump) { |
| 650 | luaK_getlabel(fs); /* those instructions may be jump targets */ |
| 651 | return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump); |
| 652 | } |
| 653 | |
| 654 | |
| 655 | /* |
| 656 | ** check whether list has any jump that do not produce a value |
| 657 | ** or produce an inverted value |
| 658 | */ |
| 659 | static int need_value (FuncState *fs, int list) { |
| 660 | for (; list != NO_JUMP; list = getjump(fs, list)) { |
| 661 | Instruction i = *getjumpcontrol(fs, list); |
| 662 | if (GET_OPCODE(i) != OP_TESTSET) return 1; |
| 663 | } |
| 664 | return 0; /* not found */ |
| 665 | } |
| 666 | |
| 667 | |
| 668 | /* |
| 669 | ** Ensures final expression result (including results from its jump |
| 670 | ** lists) is in register 'reg'. |
| 671 | ** If expression has jumps, need to patch these jumps either to |
| 672 | ** its final position or to "load" instructions (for those tests |
| 673 | ** that do not produce values). |
| 674 | */ |
| 675 | static void exp2reg (FuncState *fs, expdesc *e, int reg) { |
| 676 | discharge2reg(fs, e, reg); |
| 677 | if (e->k == VJMP) /* expression itself is a test? */ |
| 678 | luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ |
| 679 | if (hasjumps(e)) { |
| 680 | int final; /* position after whole expression */ |
| 681 | int p_f = NO_JUMP; /* position of an eventual LOAD false */ |
| 682 | int p_t = NO_JUMP; /* position of an eventual LOAD true */ |
| 683 | if (need_value(fs, e->t) || need_value(fs, e->f)) { |
| 684 | int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); |
| 685 | p_f = code_loadbool(fs, reg, 0, 1); |
| 686 | p_t = code_loadbool(fs, reg, 1, 0); |
| 687 | luaK_patchtohere(fs, fj); |
| 688 | } |
| 689 | final = luaK_getlabel(fs); |
| 690 | patchlistaux(fs, e->f, final, reg, p_f); |
| 691 | patchlistaux(fs, e->t, final, reg, p_t); |
| 692 | } |
| 693 | e->f = e->t = NO_JUMP; |
| 694 | e->u.info = reg; |
| 695 | e->k = VNONRELOC; |
| 696 | } |
| 697 | |
| 698 | |
| 699 | /* |
| 700 | ** Ensures final expression result (including results from its jump |
| 701 | ** lists) is in next available register. |
| 702 | */ |
| 703 | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { |
| 704 | luaK_dischargevars(fs, e); |
| 705 | freeexp(fs, e); |
| 706 | luaK_reserveregs(fs, 1); |
| 707 | exp2reg(fs, e, fs->freereg - 1); |
| 708 | } |
| 709 | |
| 710 | |
| 711 | /* |
| 712 | ** Ensures final expression result (including results from its jump |
| 713 | ** lists) is in some (any) register and return that register. |
| 714 | */ |
| 715 | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { |
| 716 | luaK_dischargevars(fs, e); |
| 717 | if (e->k == VNONRELOC) { /* expression already has a register? */ |
| 718 | if (!hasjumps(e)) /* no jumps? */ |
| 719 | return e->u.info; /* result is already in a register */ |
| 720 | if (e->u.info >= fs->nactvar) { /* reg. is not a local? */ |
| 721 | exp2reg(fs, e, e->u.info); /* put final result in it */ |
| 722 | return e->u.info; |
| 723 | } |
| 724 | } |
| 725 | luaK_exp2nextreg(fs, e); /* otherwise, use next available register */ |
| 726 | return e->u.info; |
| 727 | } |
| 728 | |
| 729 | |
| 730 | /* |
| 731 | ** Ensures final expression result is either in a register or in an |
| 732 | ** upvalue. |
| 733 | */ |
| 734 | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { |
| 735 | if (e->k != VUPVAL || hasjumps(e)) |
| 736 | luaK_exp2anyreg(fs, e); |
| 737 | } |
| 738 | |
| 739 | |
| 740 | /* |
| 741 | ** Ensures final expression result is either in a register or it is |
| 742 | ** a constant. |
| 743 | */ |
| 744 | void luaK_exp2val (FuncState *fs, expdesc *e) { |
| 745 | if (hasjumps(e)) |
| 746 | luaK_exp2anyreg(fs, e); |
| 747 | else |
| 748 | luaK_dischargevars(fs, e); |
| 749 | } |
| 750 | |
| 751 | |
| 752 | /* |
| 753 | ** Ensures final expression result is in a valid R/K index |
| 754 | ** (that is, it is either in a register or in 'k' with an index |
| 755 | ** in the range of R/K indices). |
| 756 | ** Returns R/K index. |
| 757 | */ |
| 758 | int luaK_exp2RK (FuncState *fs, expdesc *e) { |
| 759 | luaK_exp2val(fs, e); |
| 760 | switch (e->k) { /* move constants to 'k' */ |
| 761 | case VTRUE: e->u.info = boolK(fs, 1); goto vk; |
| 762 | case VFALSE: e->u.info = boolK(fs, 0); goto vk; |
| 763 | case VNIL: e->u.info = nilK(fs); goto vk; |
| 764 | case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk; |
| 765 | case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk; |
| 766 | case VK: |
| 767 | vk: |
| 768 | e->k = VK; |
| 769 | if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */ |
| 770 | return RKASK(e->u.info); |
| 771 | else break; |
| 772 | default: break; |
| 773 | } |
| 774 | /* not a constant in the right range: put it in a register */ |
| 775 | return luaK_exp2anyreg(fs, e); |
| 776 | } |
| 777 | |
| 778 | |
| 779 | /* |
| 780 | ** Generate code to store result of expression 'ex' into variable 'var'. |
| 781 | */ |
| 782 | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { |
| 783 | switch (var->k) { |
| 784 | case VLOCAL: { |
| 785 | freeexp(fs, ex); |
| 786 | exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */ |
| 787 | return; |
| 788 | } |
| 789 | case VUPVAL: { |
| 790 | int e = luaK_exp2anyreg(fs, ex); |
| 791 | luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); |
| 792 | break; |
| 793 | } |
| 794 | case VINDEXED: { |
| 795 | OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP; |
| 796 | int e = luaK_exp2RK(fs, ex); |
| 797 | luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e); |
| 798 | break; |
| 799 | } |
| 800 | default: lua_assert(0); /* invalid var kind to store */ |
| 801 | } |
| 802 | freeexp(fs, ex); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | /* |
| 807 | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). |
| 808 | */ |
| 809 | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { |
| 810 | int ereg; |
| 811 | luaK_exp2anyreg(fs, e); |
| 812 | ereg = e->u.info; /* register where 'e' was placed */ |
| 813 | freeexp(fs, e); |
| 814 | e->u.info = fs->freereg; /* base register for op_self */ |
| 815 | e->k = VNONRELOC; /* self expression has a fixed register */ |
| 816 | luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ |
| 817 | luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key)); |
| 818 | freeexp(fs, key); |
| 819 | } |
| 820 | |
| 821 | |
| 822 | /* |
| 823 | ** Negate condition 'e' (where 'e' is a comparison). |
| 824 | */ |
| 825 | static void negatecondition (FuncState *fs, expdesc *e) { |
| 826 | Instruction *pc = getjumpcontrol(fs, e->u.info); |
| 827 | lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && |
| 828 | GET_OPCODE(*pc) != OP_TEST); |
| 829 | SETARG_A(*pc, !(GETARG_A(*pc))); |
| 830 | } |
| 831 | |
| 832 | |
| 833 | /* |
| 834 | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' |
| 835 | ** is true, code will jump if 'e' is true.) Return jump position. |
| 836 | ** Optimize when 'e' is 'not' something, inverting the condition |
| 837 | ** and removing the 'not'. |
| 838 | */ |
| 839 | static int jumponcond (FuncState *fs, expdesc *e, int cond) { |
| 840 | if (e->k == VRELOCABLE) { |
| 841 | Instruction ie = getinstruction(fs, e); |
| 842 | if (GET_OPCODE(ie) == OP_NOT) { |
| 843 | fs->pc--; /* remove previous OP_NOT */ |
| 844 | return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond); |
| 845 | } |
| 846 | /* else go through */ |
| 847 | } |
| 848 | discharge2anyreg(fs, e); |
| 849 | freeexp(fs, e); |
| 850 | return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond); |
| 851 | } |
| 852 | |
| 853 | |
| 854 | /* |
| 855 | ** Emit code to go through if 'e' is true, jump otherwise. |
| 856 | */ |
| 857 | void luaK_goiftrue (FuncState *fs, expdesc *e) { |
| 858 | int pc; /* pc of new jump */ |
| 859 | luaK_dischargevars(fs, e); |
| 860 | switch (e->k) { |
| 861 | case VJMP: { /* condition? */ |
| 862 | negatecondition(fs, e); /* jump when it is false */ |
| 863 | pc = e->u.info; /* save jump position */ |
| 864 | break; |
| 865 | } |
| 866 | case VK: case VKFLT: case VKINT: case VTRUE: { |
| 867 | pc = NO_JUMP; /* always true; do nothing */ |
| 868 | break; |
| 869 | } |
| 870 | default: { |
| 871 | pc = jumponcond(fs, e, 0); /* jump when false */ |
| 872 | break; |
| 873 | } |
| 874 | } |
| 875 | luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ |
| 876 | luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ |
| 877 | e->t = NO_JUMP; |
| 878 | } |
| 879 | |
| 880 | |
| 881 | /* |
| 882 | ** Emit code to go through if 'e' is false, jump otherwise. |
| 883 | */ |
| 884 | void luaK_goiffalse (FuncState *fs, expdesc *e) { |
| 885 | int pc; /* pc of new jump */ |
| 886 | luaK_dischargevars(fs, e); |
| 887 | switch (e->k) { |
| 888 | case VJMP: { |
| 889 | pc = e->u.info; /* already jump if true */ |
| 890 | break; |
| 891 | } |
| 892 | case VNIL: case VFALSE: { |
| 893 | pc = NO_JUMP; /* always false; do nothing */ |
| 894 | break; |
| 895 | } |
| 896 | default: { |
| 897 | pc = jumponcond(fs, e, 1); /* jump if true */ |
| 898 | break; |
| 899 | } |
| 900 | } |
| 901 | luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ |
| 902 | luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ |
| 903 | e->f = NO_JUMP; |
| 904 | } |
| 905 | |
| 906 | |
| 907 | /* |
| 908 | ** Code 'not e', doing constant folding. |
| 909 | */ |
| 910 | static void codenot (FuncState *fs, expdesc *e) { |
| 911 | luaK_dischargevars(fs, e); |
| 912 | switch (e->k) { |
| 913 | case VNIL: case VFALSE: { |
| 914 | e->k = VTRUE; /* true == not nil == not false */ |
| 915 | break; |
| 916 | } |
| 917 | case VK: case VKFLT: case VKINT: case VTRUE: { |
| 918 | e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ |
| 919 | break; |
| 920 | } |
| 921 | case VJMP: { |
| 922 | negatecondition(fs, e); |
| 923 | break; |
| 924 | } |
| 925 | case VRELOCABLE: |
| 926 | case VNONRELOC: { |
| 927 | discharge2anyreg(fs, e); |
| 928 | freeexp(fs, e); |
| 929 | e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); |
| 930 | e->k = VRELOCABLE; |
| 931 | break; |
| 932 | } |
| 933 | default: lua_assert(0); /* cannot happen */ |
| 934 | } |
| 935 | /* interchange true and false lists */ |
| 936 | { int temp = e->f; e->f = e->t; e->t = temp; } |
| 937 | removevalues(fs, e->f); /* values are useless when negated */ |
| 938 | removevalues(fs, e->t); |
| 939 | } |
| 940 | |
| 941 | |
| 942 | /* |
| 943 | ** Create expression 't[k]'. 't' must have its final result already in a |
| 944 | ** register or upvalue. |
| 945 | */ |
| 946 | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { |
| 947 | lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL)); |
| 948 | t->u.ind.t = t->u.info; /* register or upvalue index */ |
| 949 | t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */ |
| 950 | t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL; |
| 951 | t->k = VINDEXED; |
| 952 | } |
| 953 | |
| 954 | |
| 955 | /* |
| 956 | ** Return false if folding can raise an error. |
| 957 | ** Bitwise operations need operands convertible to integers; division |
| 958 | ** operations cannot have 0 as divisor. |
| 959 | */ |
| 960 | static int validop (int op, TValue *v1, TValue *v2) { |
| 961 | switch (op) { |
| 962 | case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: |
| 963 | case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ |
| 964 | lua_Integer i; |
| 965 | return (tointeger(v1, &i) && tointeger(v2, &i)); |
| 966 | } |
| 967 | case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ |
| 968 | return (nvalue(v2) != 0); |
| 969 | default: return 1; /* everything else is valid */ |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | |
| 974 | /* |
| 975 | ** Try to "constant-fold" an operation; return 1 iff successful. |
| 976 | ** (In this case, 'e1' has the final result.) |
| 977 | */ |
| 978 | static int constfolding (FuncState *fs, int op, expdesc *e1, |
| 979 | const expdesc *e2) { |
| 980 | TValue v1, v2, res; |
| 981 | if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) |
| 982 | return 0; /* non-numeric operands or not safe to fold */ |
| 983 | luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ |
| 984 | if (ttisinteger(&res)) { |
| 985 | e1->k = VKINT; |
| 986 | e1->u.ival = ivalue(&res); |
| 987 | } |
| 988 | else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ |
| 989 | lua_Number n = fltvalue(&res); |
| 990 | if (luai_numisnan(n) || n == 0) |
| 991 | return 0; |
| 992 | e1->k = VKFLT; |
| 993 | e1->u.nval = n; |
| 994 | } |
| 995 | return 1; |
| 996 | } |
| 997 | |
| 998 | |
| 999 | /* |
| 1000 | ** Emit code for unary expressions that "produce values" |
| 1001 | ** (everything but 'not'). |
| 1002 | ** Expression to produce final result will be encoded in 'e'. |
| 1003 | */ |
| 1004 | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { |
| 1005 | int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ |
| 1006 | freeexp(fs, e); |
| 1007 | e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ |
| 1008 | e->k = VRELOCABLE; /* all those operations are relocatable */ |
| 1009 | luaK_fixline(fs, line); |
| 1010 | } |
| 1011 | |
| 1012 | |
| 1013 | /* |
| 1014 | ** Emit code for binary expressions that "produce values" |
| 1015 | ** (everything but logical operators 'and'/'or' and comparison |
| 1016 | ** operators). |
| 1017 | ** Expression to produce final result will be encoded in 'e1'. |
| 1018 | ** Because 'luaK_exp2RK' can free registers, its calls must be |
| 1019 | ** in "stack order" (that is, first on 'e2', which may have more |
| 1020 | ** recent registers to be released). |
| 1021 | */ |
| 1022 | static void codebinexpval (FuncState *fs, OpCode op, |
| 1023 | expdesc *e1, expdesc *e2, int line) { |
| 1024 | int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */ |
| 1025 | int rk1 = luaK_exp2RK(fs, e1); |
| 1026 | freeexps(fs, e1, e2); |
| 1027 | e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */ |
| 1028 | e1->k = VRELOCABLE; /* all those operations are relocatable */ |
| 1029 | luaK_fixline(fs, line); |
| 1030 | } |
| 1031 | |
| 1032 | |
| 1033 | /* |
| 1034 | ** Emit code for comparisons. |
| 1035 | ** 'e1' was already put in R/K form by 'luaK_infix'. |
| 1036 | */ |
| 1037 | static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { |
| 1038 | int rk1 = (e1->k == VK) ? RKASK(e1->u.info) |
| 1039 | : check_exp(e1->k == VNONRELOC, e1->u.info); |
| 1040 | int rk2 = luaK_exp2RK(fs, e2); |
| 1041 | freeexps(fs, e1, e2); |
| 1042 | switch (opr) { |
| 1043 | case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */ |
| 1044 | e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2); |
| 1045 | break; |
| 1046 | } |
| 1047 | case OPR_GT: case OPR_GE: { |
| 1048 | /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */ |
| 1049 | OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); |
| 1050 | e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */ |
| 1051 | break; |
| 1052 | } |
| 1053 | default: { /* '==', '<', '<=' use their own opcodes */ |
| 1054 | OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); |
| 1055 | e1->u.info = condjump(fs, op, 1, rk1, rk2); |
| 1056 | break; |
| 1057 | } |
| 1058 | } |
| 1059 | e1->k = VJMP; |
| 1060 | } |
| 1061 | |
| 1062 | |
| 1063 | /* |
| 1064 | ** Apply prefix operation 'op' to expression 'e'. |
| 1065 | */ |
| 1066 | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { |
| 1067 | static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; |
| 1068 | switch (op) { |
| 1069 | case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ |
| 1070 | if (constfolding(fs, op + LUA_OPUNM, e, &ef)) |
| 1071 | break; |
| 1072 | /* FALLTHROUGH */ |
| 1073 | case OPR_LEN: |
| 1074 | codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); |
| 1075 | break; |
| 1076 | case OPR_NOT: codenot(fs, e); break; |
| 1077 | default: lua_assert(0); |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | |
| 1082 | /* |
| 1083 | ** Process 1st operand 'v' of binary operation 'op' before reading |
| 1084 | ** 2nd operand. |
| 1085 | */ |
| 1086 | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { |
| 1087 | switch (op) { |
| 1088 | case OPR_AND: { |
| 1089 | luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ |
| 1090 | break; |
| 1091 | } |
| 1092 | case OPR_OR: { |
| 1093 | luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ |
| 1094 | break; |
| 1095 | } |
| 1096 | case OPR_CONCAT: { |
| 1097 | luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */ |
| 1098 | break; |
| 1099 | } |
| 1100 | case OPR_ADD: case OPR_SUB: |
| 1101 | case OPR_MUL: case OPR_DIV: case OPR_IDIV: |
| 1102 | case OPR_MOD: case OPR_POW: |
| 1103 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: |
| 1104 | case OPR_SHL: case OPR_SHR: { |
| 1105 | if (!tonumeral(v, NULL)) |
| 1106 | luaK_exp2RK(fs, v); |
| 1107 | /* else keep numeral, which may be folded with 2nd operand */ |
| 1108 | break; |
| 1109 | } |
| 1110 | default: { |
| 1111 | luaK_exp2RK(fs, v); |
| 1112 | break; |
| 1113 | } |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | |
| 1118 | /* |
| 1119 | ** Finalize code for binary operation, after reading 2nd operand. |
| 1120 | ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because |
| 1121 | ** concatenation is right associative), merge second CONCAT into first |
| 1122 | ** one. |
| 1123 | */ |
| 1124 | void luaK_posfix (FuncState *fs, BinOpr op, |
| 1125 | expdesc *e1, expdesc *e2, int line) { |
| 1126 | switch (op) { |
| 1127 | case OPR_AND: { |
| 1128 | lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */ |
| 1129 | luaK_dischargevars(fs, e2); |
| 1130 | luaK_concat(fs, &e2->f, e1->f); |
| 1131 | *e1 = *e2; |
| 1132 | break; |
| 1133 | } |
| 1134 | case OPR_OR: { |
| 1135 | lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */ |
| 1136 | luaK_dischargevars(fs, e2); |
| 1137 | luaK_concat(fs, &e2->t, e1->t); |
| 1138 | *e1 = *e2; |
| 1139 | break; |
| 1140 | } |
| 1141 | case OPR_CONCAT: { |
| 1142 | luaK_exp2val(fs, e2); |
| 1143 | if (e2->k == VRELOCABLE && |
| 1144 | GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) { |
| 1145 | lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1); |
| 1146 | freeexp(fs, e1); |
| 1147 | SETARG_B(getinstruction(fs, e2), e1->u.info); |
| 1148 | e1->k = VRELOCABLE; e1->u.info = e2->u.info; |
| 1149 | } |
| 1150 | else { |
| 1151 | luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */ |
| 1152 | codebinexpval(fs, OP_CONCAT, e1, e2, line); |
| 1153 | } |
| 1154 | break; |
| 1155 | } |
| 1156 | case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV: |
| 1157 | case OPR_IDIV: case OPR_MOD: case OPR_POW: |
| 1158 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: |
| 1159 | case OPR_SHL: case OPR_SHR: { |
| 1160 | if (!constfolding(fs, op + LUA_OPADD, e1, e2)) |
| 1161 | codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line); |
| 1162 | break; |
| 1163 | } |
| 1164 | case OPR_EQ: case OPR_LT: case OPR_LE: |
| 1165 | case OPR_NE: case OPR_GT: case OPR_GE: { |
| 1166 | codecomp(fs, op, e1, e2); |
| 1167 | break; |
| 1168 | } |
| 1169 | default: lua_assert(0); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | |
| 1174 | /* |
| 1175 | ** Change line information associated with current position. |
| 1176 | */ |
| 1177 | void luaK_fixline (FuncState *fs, int line) { |
| 1178 | fs->f->lineinfo[fs->pc - 1] = line; |
| 1179 | } |
| 1180 | |
| 1181 | |
| 1182 | /* |
| 1183 | ** Emit a SETLIST instruction. |
| 1184 | ** 'base' is register that keeps table; |
| 1185 | ** 'nelems' is #table plus those to be stored now; |
| 1186 | ** 'tostore' is number of values (in registers 'base + 1',...) to add to |
| 1187 | ** table (or LUA_MULTRET to add up to stack top). |
| 1188 | */ |
| 1189 | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { |
| 1190 | int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1; |
| 1191 | int b = (tostore == LUA_MULTRET) ? 0 : tostore; |
| 1192 | lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); |
| 1193 | if (c <= MAXARG_C) |
| 1194 | luaK_codeABC(fs, OP_SETLIST, base, b, c); |
| 1195 | else if (c <= MAXARG_Ax) { |
| 1196 | luaK_codeABC(fs, OP_SETLIST, base, b, 0); |
| 1197 | codeextraarg(fs, c); |
| 1198 | } |
| 1199 | else |
| 1200 | luaX_syntaxerror(fs->ls, "constructor too long" ); |
| 1201 | fs->freereg = base + 1; /* free registers with list values */ |
| 1202 | } |
| 1203 | |
| 1204 | |